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A B S T R A C T   

Hydro-morphological processes (HMP; any process in the spectrum between debris flows and flash floods) 
threaten human lives and infrastructure; and their effects are only expected to worsen under the influence of 
climate change. Limiting the potential damage of HMPs by taking preventive or remedial actions requires the 
probabilistic expectation of where and how frequently these processes may occur. The information on where and 
how frequently a given earth surface process may manifest can be expressed via susceptibility modeling. For the 
whole Chinese territory, a susceptibility model for HMP is currently not available. To address this issue, we 
propose a yearly space-time model built on the basis of a binomial Generalized Linear Model. The target variable 
of such model is the annual presences/absences of HMP per catchment across China, from 1985 to 2015. This 
information has been accessed via the Chinese catalogue of HMP, a data repository the Chinese Government has 
activated in 1950 and which is still currently in use. This binary spatio-temporal information is regressed against 
a set of time-invariant (catchment shape indices and geomorphic attributes) and time-variant (urban coverage, 
rainfall, vegetation density and land use) covariates. Furthermore, we include a regression constant for each of 
the 31 years under consideration and also a three-years aggregated information on previously occurred (and not- 
occurred) HMP. We consider two versions of our modeling approach, an explanatory benchmark where we fit the 
whole space-time HMP data, including a multiple intercept per year. Furthermore, we also extend this explan
atory model into a predictive one, by considering four temporal cross-validation schemes. As a result, we por
trayed the annual susceptibility models into 30 maps, where the south-east of China is shown to exhibit the 
largest variation in the spatio-temporal probability of HMP occurrence. Also, we compressed the whole spatio- 
temporal prediction into three summary maps. These report the mean, maximum and 95% confidence interval of 
the spatio-temporal susceptibility distribution per catchment, per year. The information we present has a dual 
value. On the one hand, we provide a platform to interpret environmental effects controlling the occurrence of 
HMP over a very large spatial (the whole Chinese country) and temporal (31 years of records) domain. On the 
other hand, we provide information on which catchments are more prone to experience a HMP-driven hazard. 
Hence, a step further would be to select the most susceptible catchments for detailed analysis where physically- 
based models could be tested to estimate the potentially impacted areas. For transparency, the results generated 
in this work are shared in the supplementary material as GIS (geopackage) files.   
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1. Introduction 

In this work, the term hydro-morphological process (HMP; Wang 
et al., 2021a, 2021b)using was used to address a class of earth surface 
phenomena where solid and fluid phases of a gravitationally-driven 
moving mass are not well determined. Thus, this class refers to a 
broad spectrum of processes spanning from debris flows to debris floods 
and floods. The reasons behind such initial disclaimer are due to the 
nature of the dataset we used and further explanations will be provided 
later in the text. 

This class of HMPs includes some of the most frequent and damaging 
natural hazards, and their occurrence shows a close relationship with 
climatic changes (Blöschl et al., 2020). HMPs have increasingly been 
reported to threaten human lives and infrastructure in recent years (e.g., 
Guo et al., 2018). To prevent or limit losses, it is crucial to estimate 
where and when these processes may occur. In turn, this enables ad
ministrations to plan ahead and mitigate future risks (Rossi et al., 2019). 

HMPs are extremely rapid phenomena. Just few hours or even less 
are needed between the triggering heavy rain and their manifestation 
(Marchi et al., 2010). They can also be generated by snow-melt but it is 
generally the intensity and duration of precipitation that control the 
process through the water discharged over a given area. Then, the 
overland flows follow the river network, entrains all sorts of debris and 
leaves it strewn especially when the runoff intersects urban areas 
(Norbiato et al., 2008). In such cases, roads may be blocked, drainage 
systems clogged, cars trapped, lives lost and property destroyed (Mah
mood et al., 2017. For this reason, HMP prediction models are primarily 
implemented in a physically-based framework where one can reliably 
introduce the rainfall input and simulate the process by accounting for 
topography and soil hydrological characteristics (Tramblay et al., 2010). 
This is usually performed specifically for small areas (Rozalis et al., 
2010) but recent advancement have led to develop similar applications 
on much wider regions, simulating different types of HMPs from 
catchment (Javelle et al., 2010) to country-wise scales (Gourley et al., 
2017), and even up to continental scales (Paprotny et al., 2017). These 
different levels of details all share a common structure where a design 
storm is used as the input. The design storm can be either inferred from 
long time-series of rainfall data via extreme value statistics (Umer et al., 
2022). Or, it can be directly plugged in by using near-real-time rainfall 
data obtained from meteorological forecasts (Collier, 2007). As for the 
remaining information, terrain characteristics are commonly derived 
from global DEM data or from site-specific LiDAR surveys. Besides, soil 
parameters are required to describe the hydrological characteristics and 
the associated ability to retain water or to convert it into runoff (Nor
biato et al., 2008). This can be obtained via in-situ tests whenever the 
area is relatively small (Cenci et al., 2016) and from global estimates 
such as ISRIC, for large scale assessments (Ragettli et al., 2017). These 
methods have the inherited ability to produce HMP runout estimates, 
such as total impacted spatial extent, flow heights, kinetic energy, vol
umes and more, which are crucial information for engineering design 
and master plans (Li et al., 2019). However, the applicability of 
physically-based models inevitably suffers from considerable limitations 
whenever the study target involves continental to global scales (Van den 
Bout et al., 2021), with very few exceptions to this rule (Liao et al., 
2012). In fact, for large areas, the required input information is typically 
quite smooth, assuming it is even accessible. And, collecting suitable 
geotechnical data is difficult if not impossible (Gaume et al., 2009) over 
large regions. As a result, a complementary branch in the natural hazard 
community has developed statistically-based models during the last 
decades. This methods do not offer the same breath of results produced 
from the physically-based counterpart (e.g., they do not spatially predict 
runout-impacted areas nor flow-heights, etc.). However, they provide 
useful information on areas potentially subjected to HMPs, learning 
from past events from which spatio-temporal projections are made 
(Gourley et al., 2013). 

The present work fits in the second category. Specifically, the 

Chinese government has recently completed a long lasting project where 
all the available information on historical HMPs has been collated for 
the whole Chinese territory. We use the term HMP specifically because 
the Chinese catalogue reports a wide spectrum of earth surface processes 
without explicitly attributing a class. This catalogue starts from reports 
gathered even from ancient China and it covers the period until 2015. 
Because of this wide temporal coverage, the data differs in quality across 
space and time and the Chinese government has decided to use a more 
general classification, consistent through time. More specifically, the 
data collated until 1949 is relatively poor and the situation improves 
substantially from 1950 onward as the current Chinese government was 
established. Nevertheless, even from 1950 up to 1980, the data may still 
have some positional issues because the digital system did not exist (Li 
et al., 2018). The Chinese HMP report system became standardized after 
the 1980ies, with more available technologies being used to record the 
location (latitude and longitude), date and time as well as the losses, 
expressed either in the number of victims or economical value (Guo 
et al., 2018). In light of these considerations, we subset the Chinese HMP 
catalogue extracting all the available information from 1985 to 2015. 
We note here that since 1985 we also have access to meteorological 
digital data collected and aggregated daily from the Chinese rain gauge 
network. 

We use this data to build a space-time HMP susceptibility model. A 
susceptibility model essentially estimates the probability of occurrence 
of a given natural process within specific mapping and temporal units. 
Mapping units constitute the spatial structure under which a given study 
area is subdivided. They can consist of a regular lattice (usually grid- 
cells or rarely hexagons) or they can represent geographic features 
such as catchments or administrative units (Carrara et al., 1995; Lom
bardo et al., 2019; Titti et al., 2022). Irrespective of the specific geom
etry, a mapping unit represents the object upon which a statistical model 
estimates the probability of occurrence of the target hazard. As for 
temporal units, they represent the time span upon which the selected 
model makes a prediction. For physically-based models, this is typically 
expressed in hours or days whereas for statistical models this may 
involve a much larger time span. In this work we opted for a catchment 
partition, having accessed the most updated watershed delineation of 
China (Shen et al., 2017). As for the temporal partition, we selected an 
annual unit of time. 

As for the method, we chose a binomial Generalized Linear Model 
(GLM) assuming that the spatio-temporal population of HMPs across 
China behaves according to a Bernoulli probability distribution. This 
procedure is quite common and actually represents the most common 
practice in the geomorphological literature (e.g., Budimir et al., 2015; 
Tanyas et al., 2021). 

The susceptibility to any surface process is not stationary or time- 
invariant (Lombardo et al., 2020). It actually varies through time as 
the environmental conditions change (Jones et al., 2021). For instance, 
landscape evolution processes may modify the terrain, hence changing 
the hydrology of a given area. Similarly, road, settlement and urbani
zation growth can influence surface hydrology (e.g., Tanyas et al., 
2022). This is particularly valid in China where the resident population 
and urbanization rate increased from 10.64% in 1949 to 59.58% in 
2018, according to the National Bureau of Statistics of China. This may 
have changed the distribution of permeable surfaces in favor of 
concreted and sealed land covers (see, Gong et al., 2019). Also, climate 
changes may contribute to vary the HMP triggering conditions through 
space and time, especially because rainfall regimes have become less 
diluted during wet seasons and they have become more concentrated in 
narrow time windows. All these contributing/triggering factors can be 
accounted for in statistical models. For instance, if climate change and 
accelerated urbanization control the HMP occurrence distribution, then 
a space-time statistical model should be able to capture their influences 
and show a potential increase in HMP occurrences in recent years. 

We stress here an important topic before closing this Section. The 
definition of susceptibility corresponds to a purely spatial probability 
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term which does not feature the size of the HMP nor its temporal 
recurrence (Fell et al., 2008). Conversely, the definition of hazard fea
tures all these terms at once (Guzzetti et al., 1999). The models we 
present in this work do not fall in either of the two definitions mentioned 
above. In fact, we modeled the occurrence of HMPs throughout the 
Chinese territory but we also modeled their temporal recurrence. As a 
result, our model output returns a probabilistic estimate which features 
both spatial and temporal characteristics. Therefore, we do not exactly 
produce a susceptibility model because our output contains more in
formation than just a traditional susceptibility. On the other hand, our 
model does not account for the size of HMPs hence, it does not fully 
satisfy the definition of hazard. What we did, essentially falls in between 
these two definitions and could be considered a dynamic realization of 
the susceptibility through time. To simplify our description to the 
readers, we will simply refer to our output as susceptibility throughout 
the rest of the manuscript, knowing though that it is not fully correct 
with respect to the common literature. 

The present manuscript is organized as follows: Section 2 introduces 
the study area and Section 3 describes the material and methodology 
framework used in susceptibility modeling. This is followed by a 
detailed description of the model performance and the resulting sus
ceptibility maps in Section 4. Finally, Section 5 discusses the supporting 
and opposing arguments on this work. And Section 6 summarizes our 
final remarks. 

2. Study area 

China approximately covers the area between latitudes 18◦ and 54◦

N, and longitudes 73◦ and 135◦ E. It is characterized by a vast territory 
and a complex landscape. Based on geomorphological characteristics, 
China can be divided into six homogeneous regions (Wang et al., 2020): 
eastern plains (EP), southeastern hills (SEM), southwestern mountains 
(SWM), north-central plains (NCP), northwestern basins (NWB), and 
Tibetan Plateau (TP). About two-thirds of China is covered by moun
tainous areas (Liu et al., 2018a). The southern China consists of hilly and 
mountainous terrains, while the western and northern China is domi
nated by plains and basins. The annual rainfall records are strongly 
controlled by the distance to the coastline and precipitation amounts 

gradually decrease from the southeast to northwest of China. The 
eastern plains and southern coasts are severely influenced by the East 
Asian Summer Monsoon, where most of China's agricultural land and 
settlements are located. In this context, only the northwest China has a 
predominantly arid climate and a lower population density. 

3. Material and methods 

3.1. Hydro-morphological processes in China 

As introduced in the previous studies (e.g., Liu et al., 2018b), the 
Chinese catalogue of HMPs is a digital collection of events, describing a 
spectrum of phenomena where a fast moving mass – consisting of a ill- 
defined proportion of solid and fluid – propagates across the land
scape, potentially causing destruction in its path. As a result, the above 
mentioned spectrum encompasses processes from debris flows (where 
the solid and liquid phases are almost equally represented) to flash 
floods (where the fluid phase is much larger than the solid one). HMP 
records were collected from multiple sources, including Bulletins of 
Flood and Drought Disasters in China, historical chronicles, together 
with official documents issued by local governmental departments. Each 
HMP record in the database contains information on geographic co
ordinates, date and time. Here, the geographic coordinates indicate the 
location where the HMPs generated damages. Overall, the Chinese 
database reports 24,956 HMPs in the time span of 31 years (1985–2015) 
with a substantially varying concentration across space and time, with 
the exception of the western arid to semi-arid sector where essentially no 
events have been recorded (Fig. 1). 

3.2. Mapping unit 

The nature of the Chinese HMP catalogue implies that the various 
processes may act on different spatial scales. For instance, debris flows 
usually have a more limited spatial extent, thus slope- to catchment- 
based models are the most suitable to represent the physical expression 
of these phenomena. Conversely, flash floods can travel much longer 
distances, therefore covering larger geographic scales. In this case, the 
most suitable models are expressed at scales that range from slope to 

Fig. 1. The multi-temporal HMPs in China from 1985 to 2015. The Chinese territory is labelled according to six geomorphological macro-areas namely, eastern 
plains (EP), southeastern hills (SEM), north-central plateaus (NCP), southwestern mountains (SWM), northwestern basins (NWB), and Tibetan Plateau (TP). 
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regional ones. Because of this, choosing the most appropriate mapping 
unit becomes a crucial step to handle the spatio-temporal dimension of 
the HMP data. We recall here that a mapping unit, in its most basic form, 
represents the geographic object upon which the landscape is parti
tioned. In case of relatively small study areas, examples exist where 
HMPs are modeled along specific streamlined and neighboring areas by 
adopting a fine squared lattice. This type of resolution and character
ization of the HMPs cannot be used in our case, where the size of the 
Chinese territory would result in billions of grid-cells or data points. 
Therefore, in case of such large geographic context, a reasonable spatial 
partition choice could be represented by administrative boundaries, 
upon which estimating the probability of HMP occurrences. However, 
the resulting susceptibility model would neglect the hydrology behind 
the natural process. In fact, administrative boundaries do not necessarily 
follow streams or catchment divides, where HMP occurrences can be 
considered independent or nearly-independent from each other. 
Therefore, a good solution to represent the spatial scale of HMPs, while 
respecting the hydrological realization of the natural phenomena, is to 
consider a catchment partition of the Chinese territory. To support the 
analyses in this work, we selected the most detailed catchment delin
eation (the 12th level) from the Hydrological data and maps based on 
Shuttle Elevation Derivatives at multiple Scales (HydroSHEDS database, 
https://hydrosheds.org), which partitions our study area into 73,587 
catchments. The corresponding distribution of catchment sizes is 
bimodal (see second panel of Fig. 2) and it spans from 0.1 km2 to 667 
km2, with average area of 130 km2 and a 95% confidence interval – 

measured as the difference between the 97.5 and the 2.5 percentiles of 
the distribution – of 231 km2. 

As any other mapping unit partition used the context of susceptibility 
modeling, a pre-processing step is required. The presence/absence in
formation of HMPs is to be assigned to each catchment. To do so, we 
assign a presence (1) and absence (0) label to catchments where at least 
one HMP record is contained within a specific temporal unit (see details 
below). 

3.3. Temporal unit 

As much as the mapping unit choice aggregates HMP occurrences 
over space, whenever a dataset has a temporal connotation one should 
also choose a temporal unit. A temporal unit is the time interval through 
which we aggregate HMP occurrences and assign a suitable presence/ 
absence conditions. In our case, the HMP dataset has a very fine reso
lution, with date and time available. However, the environmental 
properties or covariates we will use in the model (see Section 3.4) do not 
share the same temporal resolution. For instance, rainfall and temper
ature are available with a daily resolution across China, vegetation cover 
and urban development are available on a yearly basis while terrain 
properties do not exhibit any temporal changes. Therefore, choosing a 
timescale that allows for meaningful interpretation and suitable data is 
also crucial. In this context, the coarse temporal resolution of the 
covariates inhibits our ability to build a finely resolved space-time 
model. And, in any case, choosing a fine temporal resolution would 

Fig. 2. Probability density distribution of catchments sizes in China, computed from the most detailed catchment delineation (the 12th level) from HydroSHEDS 
database (https://hydrosheds.org, last access on 7th December 2020). Red dots correspond to HMP occurrence locations. (For interpretation of the references to 
colour in this fig. legend, the reader is referred to the web version of this article.) 

N. Wang et al.                                                                                                                                                                                                                                   

https://hydrosheds.org
https://hydrosheds.org


Engineering Geology 301 (2022) 106586

5

inevitably increase the computational burden. Thus, choosing a 
reasonable trade-off is required. Due to the characteristics of some 
crucial covariates, we chose a yearly temporal unit. Such temporal unit 
implies that we assign a presence (1) and absence (0) label to catchments 
where at least one HMP record is contained within a year time window. 

3.4. Covariate set 

HMPs are the result of several interplaying factors. These primarily 
feature:  

1. terrain attributes, for they control the path of the overland flows as 
well as the availability of material to be mobilized and transported;  

2. catchment morphology, for it controls the time of concentration 
and other hydro-dynamic parameters;  

3. soil hydrology, for it controls the interaction of the water with the 
earth surface;  

4. precipitation, for it represents the main trigger;  
5. temperature, for it controls evapotranspiration and hence the soil 

moisture;  
6. vegetation density, for it can absorb part of the rainfall discharge 

and interact with soil through the root system;  
7. urbanization, for it may change the natural hydrology both because 

of impermeable surface placed over permeable ones, and because 
buildings can also reduce the hydraulic section through which HMPs 
may flow into. 

In the context of space-time modeling, these properties need to be 
considered both in terms of their spatial distribution and temporal 
evolution. In fact, some properties will be more stationary over time, 
whereas some will have a much more rapid rate of change. For instance, 
at the scale of the Chinese territory, soil hydrology can be considered 
quite stationary within the 31 years under consideration. Conversely, 
rainfall, vegetation and urbanization might have a much faster spatio- 
temporal variation. Therefore, certain properties can be introduced as 
a single realization (or map) whereas other properties should be 
accounted for their successive temporal realizations (or maps). 

The modeling protocol we implemented makes use of both types of 
covariates, featuring properties that can be safely considered time- 
invariant within three decades: terrain and catchment characteristics 
as well as soil type and climatic zones. And, also by featuring properties 
that are explicitly time-variant within the same period: climate, vege
tation and human activity, as well as antecedent HMPs (this variable will 
be explained later in the text). 

Due to the size of the study area and the temporal connotation of the 
database, the number of covariate is inevitably large especially because 
a crucial step consists of aggregating the covariate values in space (at the 
catchment scale) and time (at the yearly scale). Due to the numerous 
data sources, the spatial resolution of the covariate set we chose ranges 
from 90 m (SRTM, https://earthexplorer.usgs.gov) to 8 km (NDVI, http 
s://climatedataguide.ucar.edu). To summarize the spatial signal of each 
covariate, we calculated its mean and standard deviation per catchment. 
In case of stationary covariates, such as terrain attributes, the spatial 
mean and standard deviation is a sufficient approximation where the 
mean reflects the main bulk of the pixel distribution per catchment and 
the standard deviation highlight the associated variability. These values 
are kept constant through time. As for catchment morphological indices, 
one single value is computed per catchment and even in this case, the 
indices are kept constant through time (they are repeated for each of the 
31 years). 

For covariates that are nonstationary over time (such as rainfall, 
temperature and vegetation), we compute the spatial mean per catch
ment as well as the temporal mean and standard deviation in a year (as 
per Loche et al., 2022). As for the anthropic signal, the percent of ur
banized area with respect to the total catchment size is directly calcu
lated on a yearly basis, hence it does not need any spatio-temporal 

aggregation. To this purpose, we employed the World Settlement Foot
print (WSF) Evolution which outlines at 30 m spatial resolution the 
global settlement growth from 1985 to 2015 on a yearly basis (Mar
concini et al., 2020a). The WSF evolution has been generated by 
exploiting the recently released WSF2015 layer, which maps worldwide 
the settlement extent for the year 2015 (Marconcini et al., 2020b). In 
particular, for each pixel denoted as settlement in the WSF2015, a 
temporal analysis has been performed by means of historical Landsat-5 
and Landsat-7 optical satellite imagery to identify when the construction 
took place. Here, an iterative procedure has been implemented where - 
starting backwards from 2015 - training samples for the settlement and 
non-settlement class are extracted out of the map obtained at time t and 
Random Forest binary classification has been employed to outline the 
settlement extent at time t-1. Ultimately, zonal statistics have been 
computed to determine yearly for each catchment partition the corre
sponding total amount of settlement area. 

As previously mentioned, we also considered antecedent HMPs, 
calculated over a time window of three years and binarized into pres
ence/absence conditions per catchment. To do so, we tried to capture 
some residual dependence over space via antecedent HMPs per catch
ment, then to carry the spatial signal of the HMPs. In fact, within a 
relatively short time window, we expect the susceptibility to HMPs to be 
quite spatio-temporally consistent or stationary. In other words, areas 
that have experienced HMPs in the recent past are more likely to suffer 
from HMPs in the near future (Samia et al., 2017). Hence, introducing 
the information of previously occurred HMPs should better inform the 
model of this short-term spatial dependence and improve its overall 
prediction capacity (Lombardo et al., 2020). 

A simpler overview of the covariates we considered is provided in 
Appendix 7. To these reference set of variables, we also add a multiple- 
intercept per year exclusively for a first set of analyses where we will 
model the whole spatio-temporal data at once (explanation provided 
below). The inclusion of a yearly intercept is meant to capture residual 
temporal dependence in the data, under the assumption that climate 
change may have led to a larger number of HMP occurrences in recent 
years. 

3.5. Susceptibility modeling 

In this work, because of the vast study area and the long time series, 
we opted to create a susceptibility model that can feature spatio- 
temporal characteristics. We do so by considering two types of 
models, an explanatory one and a set of predictive ones. The explanatory 
model is a model built by using the whole available information. In our 
case, it is a model where the entirety of China is taken into consideration 
together with its 31 years observations. In such a way, one can build a 
model that can be used for interpretation, to understand the statistical 
role of every environmental factor with respect to HMP occurrences. 
However, such models do not have a predictive connotation because no 
new or unknown data is used to test the classification performance. 

We stress here that the natural hazard community – at least the part 
of it using statistical models – usually performs calibration by randomly 
subsetting a percentage of the data over space and test the validation 
performance over the complementary cases. However, prediction or 
forecast are terms usually referred to estimates of future occurrences, 
hence in time. Rarely, studies dedicated to susceptibility models are 
validated in time (or chrono-validated) (Lombardo and Tanyas, 2020; 
Cama et al., 2015), mostly because of the inherited complexity of 
obtaining accurate multi-temporal inventories (Guzzetti et al., 2012). 

Because our dataset spans over such a large time window, we actu
ally have the chance to test whether it is possible to forecast future oc
currences. Thus, in addition to a traditional 10-fold cross-validation run 
over the whole data, we have opted to assess the predictive capacity of 
future HMP occurrences by considering four temporal cross-validation 
schemes: 
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1. Forward-All or MOD1: This validation procedure starts by calibrat
ing our binomial GLM (more details in Section 3.5.1) over a specific 
year (e.g., 1985) and testing over the remaining time series (e.g., 
1986–2015). In the second step, the previous reference year is 
combined with the next (e.g., 1985 and 1986) to predict HMPs in the 
remaining years (1987 to 2015). This moving window moves one 
year at a time until completion of the time series.  

2. Forward-Sequence or MOD2: This validation scheme iteratively 
calibrates over a specific year (e.g., 1985) and predicts only the next 
(e.g., 1986). In the second step, the calibration aggregates the sub
sequent year (e.g., 1985 and 1986) and predicts only the next (e.g., 
1987). This is repeated until the completion of the time series in 
2015.  

3. Backward-All or MOD3: This validation scheme is analogous to 
MOD1 but it is implemented in the opposite temporal direction. 
Specifically, we calibrate over the last year (2015) and predict the 
whole time series backward (from 1985 to 2014). In the next step we 
then calibrate aggregating the information of the previous year (e.g., 
2015 and 2014) to predict the remaining time series (1985 to 2013). 
This operation is backwardly repeated until the completion of the 
time series in 1985.  

4. Backward-Sequence or MOD4: this model is analogous to MOD2 but 
again it is implemented in the opposite temporal direction. This 
means that the calibration starts in 2015 and it is used to predict the 
previous year only (2014). Then the calibration integrates the in
formation from the previous year (2015 and 2014) to predict only 
one step back in time (2013). This operation is repeated backwardly 
until the time series is completed in 1985. 

Notably, each of these validation schemes inevitably produces 30 
testing outputs, whereas the explanatory model only produces one 
training output. 

3.5.1. Generalized linear models 
The vast majority of statistically-based susceptibility models are 

carried out by using Generalized Linear Models (Budimir et al., 2015; 
Reichenbach et al., 2018). This class of models assumes that the 
response variable follows an exponential family distribution such as 
Gaussian, Poisson, Bernoulli and more. Among those, the Bernoulli case, 
also referred to as Binary Logistic Regression, corresponds to a model 
where the target variable can take on only two values. Therefore, a 
binomial GLM estimates the probability that a given mapping unit be
longs to one of the two classes (by standard, this is the class 1, or the 
class conveying the presence of HMPs, rather than 0). More specifically, 
a binomial GLM can be denoted as follows: 

logit(π) = π
1 − π = β0 + β1X1 + β2X2 +⋯+ βnXn (1)  

where, the target variable Y is assumed to be Binomial with a probability 
π of a given catchment to experience a HMP. The β0 term is the global 
intercept and βn are the regression coefficients estimated for Xn cova
riates. The logit, or the natural logarithm of the odds, allows for the 
conversion of the odds into probabilities. 

This framework allows for continuous and discrete covariates. Each 
class of a discrete covariate is modeled independently from the other 
classes, or technically it is assumed to be independent and identically 
distributed (iid). More specifically, the model will assign a different 
regression constant to each class separately from the others. Notably, in 
this work we make use of iid covariates for a multiple yearly intercept 
for the explanatory reference model. The remaining covariates are all 
continuous in nature and used as linear properties both in the explan
atory and predictive models. 

3.5.2. Estimates of confidence intervals 
In statistics, any model should allow for inference on a distribution of 

estimates rather than a single estimate. In other words, obtaining a mean 

prediction is as important as measuring the uncertainty around that 
mean value. Therefore, in this work we sought to retrieve both the mean 
behavior of every regression coefficient and performance metric as well 
as their estimated variability. 

To do so, we present two schemes, one for the explanatory model and 
one for the validation routines (MOD1 to MOD4). When implementing 
the explanatory model (we recall here that it is fitted using the whole 
available information), we have also added a bootstrap simulation step 
(Efron and Tibshirani, 1994). This step essentially re-samples with 
replacement the whole dataset and re-fits the same model structure to 
the simulated dataset. We do this over 100 bootstrap replicates to esti
mate the sampling distribution of each parameter we store during the 
explanatory analyses. Besides, we implement the 10-fold cross valida
tion to evaluate the overall performance on the whole dataset. As for the 
validation routines in MOD1 to MOD4, the variability of the tests is 
summarized via the 30 estimates, one for each of the 30 years under 
consideration. 

3.5.3. Model evaluation 
The primary tool to assess the performance of our HMP susceptibility 

model consists of the Receiver Operating Characteristic curves (ROC, 
Hosmer and Lemeshow, 2000) and their integral or Area Under the 
Curve (AUC, Hosmer and Lemeshow, 2000). The former is the most 
common threshold independent metric used in classification problems 
(Rahmati et al., 2019). It is constructed by slicing the probability spec
trum at various cutoff, and by computing the confusion matrix at each 
step. As a result, it is possible to calculate the False Positive Rate or FPR 
(FP / [FP + TN]) and the True Positive Rate or TPR (TP / [TP + FN]) for 
each cutoff. The integral of the curve defined by the FPR and TPR pairs 
calculates from different cutoffs can be then used as an index of per
formance. Specifically, AUC = 1 indicate a perfect classification, 0.9 <
AUC < 1 refers to outstanding performance, 0.8 < AUC < 0.9 marks 
excellent performance whereas 0.7 < AUC < 0.8 are acceptable results. 
Any AUC value from 0.7 to 0.5 indicates a range of poor performance 
down to results comparable to a random classification. 

We make use of the AUC throughout the manuscript. We also 
implement a Jackknife test in the validation scheme (Lombardo et al., 
2016a). A Jackknife test is essentially divided into two steps. The first 
one runs single (jth) variable models whereas the second runs all-but- 
one-variable (j − 1) models. In both cases, the AUC is calculated to 
offer a comprehensive summary of covariates contributions. Single 
variable models highlight stand-alone performance of specific covariates 
in explaining HMP occurrences. All-but-one-variable models highlight 
performance drop resulting from the removal of one single covariate at a 
time, with respect to a full model using them all at once. 

Notably, the validation scheme in this work includes training and 
testing 30 temporal models. As a result, we have run 30 Jackknife tests, 
one for each year from 1985 to 2015. 

4. Results 

4.1. Explanatory model and its cross-validation 

In this section, we reported the regression coefficients obtained from 
a susceptibility model built by using all the available spatio-temporal 
information. These estimates were used to interpret the relation be
tween HMP occurrences and environmental conditions (or covariates). 
Firstly, each regression coefficient is characterized by a distribution of 
values which have been retrieved from 100 nonparametric bootstrap 
replicates. Fig. 3 summarizes each model component. Among the 
continuous covariates (see Fig. 3), climatic indices (e.g. RAIN_Tσ_Sμ, 
AnnualRAIN_Sμ), terrain attributes (e.g. PLC_σ, SLP_σ), catchment 
morphology (e.g. form factor) present notable positive regression co
efficients. In addition, catchments located in Central temperate and 
South temperate zones also suffer more from the HMPs. More details on 
the interpretation of this covariate effects will be provided in Section 5. 
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Besides, we made use of an iid effect for each year, whose result is 
shown in Fig. 4. The year-specific regression constants show an inter
esting pattern. For each year from 2002 to 2014, all regression co
efficients are significantly positive and the whole distribution is quite 
distant from the zero line (between 0.5 and 1) with an exception of 
2004. As for each year in the period between 1985 and 2001, the 
regression constants are also estimated with a positive median coeffi
cient, although some of them appear to be not significant (the distri
bution of regression constants also show negative values). Besides, the 
regression coefficients vary around zero. More details on the interpre
tation of this temporal iid effect will be provided in Section 5. 

To complete the analyses on the whole spatio-temporal domain, we 
also run a 10-fold cross validation. We recall here that a 10-fold cross 
validation implies randomly partitioning the whole data population into 
ten complementary subsets, each time extracting 90% and 10% for 
calibration and validation, respectively. Fig. 5 presents the performance 
of the 10-fold cross-validation scheme. Specifically, panel 5a reports 10 
ROC curves obtained by using 90% of the spatiotemporal HMP data; and 
panel 5b reports ROC curves obtained by testing over 10% of the 
spatiotemporal HMP data. The respective mean AUC values do not 
significantly change, as they both returned 0.84. This attest both for 
excellent goodness-of-fit and prediction-skill according to Hosmer and 

Fig. 3. Regression coefficients estimated through the explanatory model built by using the whole HMP spatio-temporal information across China. The covariates 
shown in this fig. are continuous in nature. The red dash line corresponds to zero or no-contribution to the model. Boxplots shown in blue indicate a median negative 
correlation to HMPs while yellow indicates a median positive one. (For interpretation of the references to colour in this fig. legend, the reader is referred to the web 
version of this article.) 

Fig. 4. Regression coefficients estimated through the explanatory model built by using the whole HMP spatio-temporal information across China. The covariates 
shown in this fig. are categorical in nature and correspond to the yearly contribution to the model. The red dash line corresponds to zero or no-contribution to the 
model. (For interpretation of the references to colour in this fig. legend, the reader is referred to the web version of this article.) 
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Lemeshow (2000) as well as a indicating robust results with differences 
that can be distinguished only at the third decimal place. 

4.2. Temporal validation routines 

Here we present the four temporal validation schemes described in 
Section 3.5. For each temporal validation scheme, we summarize the 
model performance in Fig. 6. All models are reported with a mean 
temporal AUC greater than 0.82. We recall that this value corresponds to 
excellent performance according to the AUC classification system pro
posed by Hosmer and Lemeshow (2000). However, two distinct patterns 
arise in the four temporal validation routines. The AUCs obtained for 
each year in MOD1 and MOD3 appear quite smooth. In MOD1, this is 
also associated with a downward shift in AUC when comparing cali
bration and validation performances (Fig. 6a). As for MOD3, calibration 
and validation performance largely overlap, with the exception of the 
period in between 2009 and 2015 where the validation routine shows a 
significant drop in predictive capacity (Fig. 6c). In case of MOD2 and 
MOD4, the AUC values estimated for each year present a much rougher 

temporal variation. Between these two validation schemes, MOD4 less 
accurately predicts the HMPs in the last years of our AUC time series 
(Fig. 6d). As for MOD2, a similar difference in performance between 
calibration and validation is shown for the initial years of our HMP time 
series (Fig. 6b). However, the initial years from 1986 to 1989 contain 
less HMP occurrences, thus a relatively low performance in this period is 
much more acceptable than a relatively low performance in the latest 
years. In light of these considerations, and because of a slightly better 
performance overall, we consider MOD2 (or Forward-Sequence) as the 
best validation scheme compared to the other three. 

We stress again that a close look at MOD2 in Fig. 6b highlights some 
fluctuations in the AUC time series for the validation whereas the cali
bration appears much more stable through time in terms of estimated 
performance. This is better presented in Fig. 7 where we show 30 ROC 
curves, one for each year. The panel (a) corresponds to the training ROC 
curves and aside for a few years, they consistently overlap through time. 
As for the validation shown in panel (b) a marked spread can be seen in 
the curves spanning from 1986 to 2015. We note that the relatively 
poorer performance registered at the start and end of the time series also 

Fig. 5. ROC curves obtained via 10-fold cross-validation. (a) Ten calibration models (90%), (b) Ten validation models (10%). The AUC reported in both panels 
corresponds to the mean of the ten replicates, respectively. 

Fig. 6. Each panel corresponds to one of the four temporal validations we tested. The line plots report the AUC time series from 1985 to 2015. The boxplots 
summarize the AUC variation over the thirty years. 
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Fig. 7. The ROC curves obtained by MOD2. (a) Calibration model, (b) Validation model.  

Fig. 8. Jackknife test for covariates. Only-one variable models are shown in the left panel and all-but-one variable models in the right panel. Red line indicates the 
corresponding mean value of all combinations. Blue boxplots indicate a covariate-specific median AUC lower than the mean AUC computed for all covariates. Yellow 
boxplots correspond to higher covariate-specific median AUC. (For interpretation of the references to colour in this fig. legend, the reader is referred to the web 
version of this article.) 
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correspond to two years with a relatively lower number of observations. 
Conversely, the other relatively low AUC values between the two end
points always appear in the following year containing very large 
numbers of HMP occurrences. This may be due to the fact that an abrupt 
increase in HMPs, may induce some variations in the estimated depen
dence between HMPs and covariates. In turn, this may also induce 
variations in the susceptibility patterns, which may end up not matching 
the HMPs of the subsequent year (likely to be representative or closer to 
the average Chinese susceptibility pattern). This explanation fits well 
the year 1998. That year was characterized by an exceptionally large 
number of HMPs in China, and the temporal validation of 1999 returned 
the poorest performance we observed across the whole temporal 
sequence. Notably, such temporal variations in performance has been 
similarly shown in other studies, where the authors reported that effect 
of climate change may be responsible for large uncertainties in the 
prediction of HMPs (e.g., Collier, 2007). 

To provide a comprehensive overview of the model structure and 
covariates' role in the temporal validation, we performed a suite of 
Jackknife tests (Jiao et al., 2019). We recall here that Jackknife tests are 
essentially replicates of a reference model whose structure is perturbed 
by either building single-variable (only-one-variable) models for each of 
the covariate in the reference structure. Or, by removing one covariate 
at a time (all-but-one-variable) from the whole set of covariates. Many 
example of Jackknife tests exist in the susceptibility literature, but they 
have been limited so far to a pure spatial domain (see for instance, 
Lombardo et al., 2016b; Ramos-Bernal et al., 2019). Here, because we 
consider both spatial and temporal dimensions, we iterated the only-one- 
variable and all-but-one-variable models thirty times, once per year from 
1985 to 2015. 

Fig. 8a presents the AUC obtained via only-one-variable models. It 
indicates that most of the terrain attributes, climatic indices, and ante
cedent HMPs could contribute to a model with an AUC greater than 0.6. 
At the same time, the all-but-one-variable models in Fig. 8b indicates that 
removing either of SLP_σ, form factor, elongation ratio, RAIN_Tσ_Sμ, and 
antecedent HMPs from the model will induce an obvious AUC drop. 

4.3. Regression coefficients 

In addition to assessing model performance, another crucial step in 
any modeling protocol is to evaluate how reasonable regression co
efficients may be from an interpretative standpoint. In this work, we 
already summarized a similar information for our benchmark fit. 
Nevertheless, regression coefficients estimated for the temporal valida
tion scheme could shed light on the variability that each covariate effect 
may exhibit through time. Here, we assigned the yellow colour for a 
positive β value, which indicates the probability of HMP occurrence will 
increase by a factor equal to the exponential of the β value. Conversely, 
the blue colour indicates a decrease. 

Among the terrain attributes, the standard deviation of slope (SLP_σ) 
and plan curvature (PLC_σ) play an important role in controlling the 
estimated probability of HMP occurrences (Fig. 9). In terms of catch
ment morphology, form factor and elongation ratio show a positive ef
fect. Most soil types present non significant and negligible contributions 
to the thirty cross validation schemes, with the exception of Sandy Clay 
which appears to be negatively correlated to HMPs, although with a 
slight negative influence. Furthermore, catchments located in Central 
temperate, South temperate, and Central subtropics zones appear to be 
more prone to HMPs than the others. 

The summary presented above reports the role of time-invariant 
properties. As for time-variant covariates, AnnualRain_Sμ showed the 
largest significant and positive effect out of all the climatic indices, 
followed by RAIN_Tσ_Sμ (the intra-annual rainfall variance within a 
given catchment). The 3-years antecedent HMPs in a given catchment 
also appeared to be significant and to increase the susceptibility 
estimates. 

Notably, the summary of the covariates' effects shown above is quite 
static as it overlooks the temporal variation that each model component 
exhibit as the temporal-validation is performed. To complement this 
information, in Fig. 10 we show the temporal evolution of the regression 
coefficients belonging to covariates that appeared to be significant in 
Fig. 9. 

More specifically, to better distinguish the variance of the covariates' 

Fig. 9. Regression coefficients obtained by MOD2.  
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effects through time, we split Fig. 10 in two panels, according to the 
magnitude of the regression coefficients. Panel (a) summarizes β co
efficients whose magnitude through time ranges from − 0.5 to 0.5, 
whereas panel (b) presents the same information for β coefficients whose 
magnitude through time ranges from − 2.5 to 5. Most of the covariates in 
both panels indicated a constantly similar effect on HMP occurrence, 
whereas, few covariates showed a large variation through time. For 
instance, the annual rainfall (AnnualRAIN_Sμ) indicated an increasing 
positive influence from 1985 to 2014. However, the variance of NDVI 
(NDVI_Tσ_Sμ) within each year showed a decreasing effect before 1990, 
after which the trend flattened until the end of the time series. We stress 
here that accounting for the time-varying signal of the vegetation, here 
through the NDVI, is rarely performed in the landslide literature, with 
the exception of few cases (e.g., Schmaltz et al., 2017) Nevertheless, the 
covariates which exhibited the largest influence and variation through 
time all correspond to climatic indices, especially those associated with 
rainfall (see AnnualRAIN_Sμ and RAIN_Tσ_Sμ in Fig. 10b). 

4.4. Susceptibility mapping 

HMPs susceptibility maps generated via MOD2 are drawn in Fig. 11 
from 1996 to 2015. These have been classified into very low (VL), low 
(L), low to medium (LM), medium to high (MH), high (H), and very high 
(VH) according to break points that have been set as the 2.5%, 25%, 
50%, 75%, and 97.5% percentiles of the whole probability spectrum 
combined. In other words, to reclassify the numerical susceptibility into 
classes, we have concatenated all the space-time HMP probability esti
mates into a single vector, from which five percentiles have been 
extracted to ensure a common colour palette among the 30 maps. 

Looking at the time series of susceptibility maps (Fig. 11), at the 
beginning of the study period probabilities are generally lower, espe
cially in the western sector. Besides, as the time series evolves towards 
recent years, the probability spectrum appears to shift towards higher 
susceptibility classes. More specifically, catchments with very low 
probabilities of HMP occurrences mainly appear from 1986 to 1988; 
whereas catchments presenting very high probability of HMP occur
rences characterize the south-east sector of China since 1997. 

To summarize the space-time susceptibility information depicted in 

Fig. 10. Regression coefficients varying from 1986 to 2015, obtained by MOD2.  
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Fig. 11, we further generated three maps aimed at delivering the mean 
and the maximum susceptibility together with the 95% confidence in
terval (see Figs. 12a, 12b and 12c respectively). 

Looking at the susceptibility patterns depicted in the mean and 
maximum maps, two macro-regions stand out the most. The western 
sector of China appears to be consistently estimated as non susceptible. 
There, the susceptibility appears to be generally confined within the first 
10% of the national distribution. On the contrary, the south-eastern 
sector appears to be generally the most susceptible. There, most of the 
catchments are associated with susceptibilities estimated above 70% of 
the national probability distribution. Notably, few exceptions exist to 
this observation due to the existence of large plains, where catchments 

are generally gentler in topography. Other catchments with high HMP 
susceptibility, albeit lower than the south-east, can still be found in 
central, north-east and southern China. 

Interestingly, the 95% confidence interval map – we recall here to be 
computed as the difference between the 97.5th and 2.5th percentiles of 
the spatio-temporal probability spectrum shown in Fig. 11 – marks 
analogous geographic patterns to the mean and maximum maps. This is 
an indication of the robustness of our model. In fact, this means that 
areas with low susceptibilities are estimated with similar values through 
time. Conversely, areas with high susceptibility exhibit a much larger 
degree of variation through time, as expected just by looking at the raw 
data in Fig. 1. 

Fig. 11. Susceptibility of HMPs in China during 1986–2015, detected via MOD2.  
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Fig. 12. Summary of HMP susceptibility estimated for China from 1986 to 2015 via MOD2: (a) Mean susceptibility, (b) Maximum susceptibility, (c) 95% CI sus
ceptibility, (d) Clusters HMP susceptibility in China. 

Fig. 13. Proportion of the Chinese territory estimated to be HMP-susceptible to HMP, from 1986 to 2015, via MOD2.  
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The last panel of Fig. 12 depicts seven cluster drawn from the 
maximum susceptibility in the same fig.. These have been manually 
interpreted on the basis of expert opinion. Clusters I to V correspond to 
regions are affected by monsoon. The reason to split I and II are due to 
the difference of terrain and annual rainfall whereas the reason to split I 
and III into two parts is due to the mountain range that acts as a strong 
topographic barrier. More specifically: 

• Cluster I: the region with the most severe erosion due to the topo
graphic control;  

• Cluster II: the region mostly affected by monsoon;  
• Cluster III: less annual rainfall, Loess Plateau affected by widespread 

gully incisions;  
• Cluster IV: this sector of China shows a relatively large proneness 

towards HMP although the rainfall intensity due to the incoming 
monsoons in this area is much lower than the precipitation dis
charged to the south. This is primarily due to the local rough 
topography which contributes to increase the probability of HMP 
occurrence;  

• Cluster V: plains with widespread flat terrains;  
• Cluster VI: distinct characteristics attributable to the Taklamakan 

Desert and the Tarim Basin;  
• Cluster VII: sparsely populated area corresponding to the Changtang 

Plateau and Qinghai Hoh Xil Plateau. 

Fig. 12 is meant to compress the spatio-temporal susceptibility in
formation in the geographic space. To do the same for the temporal case, 
we went back to Fig. 11 and computed for each year the areas assigned 
with one of the six susceptibility classes. From these, we generated a 
stacked barplot (see Fig. 13) reporting the proportion of China associ
ated with one of the six classes, showing the evolution through time 
from 1986 to 2015. What stands out the most is that the areal percentage 
of catchments with very low (VL) susceptibility decreased sharply in the 
first three years. This effect is mostly due to the fact that as the time 
series progressed, more HMP have been recorded, which generally leads 
to a higher probability of HMP. On the opposite side of the probability 
spectrum, the proportion of China associated with very high (VH) HMP 
susceptibility can be seen to have increased from 1997 onward. We 
remind here the reader that despite these changes may appear small in a 
simple graphical summary such as Fig. 13, in reality a variation of even 
just 1% of the total Chinese territory involves several hundreds thou
sands of km2 and several hundreds actual catchments. 

5. Discussion 

5.1. Supporting arguments 

This work estimates and investigates the spatio-temporal variation of 
HMP susceptibility patterns over China. Because of the vast space-time 
domain, many options exists on how to build and validate a space- 
time predictive model (Lombardo et al., 2020). 

We chose a binomial GLM, which we calibrated and validated 
through different strategies. The first strategy we used exploited the 
whole space-time domain, from which catchments with high variations 
in slope steepness and planar curvature appear to increase the overall 
susceptibility to HMPs. The influence of slope with respect to HMPs is 
widely acknowledged in the literature. However, for analyses expressed 
at the catchment scale, the effect of the terrain steepness may be lost. 
This may be the reason why in our model, the positive role of the slope 
steepness is expressed in terms of standard deviation, a common proxy 
for topographic roughness. A similar reasoning can be inferred for the 
standard deviation of the planar curvature. 

Unsurprisingly, another positive contribution is carried by the rain
fall patterns, expressed through the RAIN_Tσ_Sμ and the AnnualRAIN_Sμ 
(see Fig. 3). It should be noted that the spatio-temporal rainfall signal is 
carried in the model via four summary statistics of the precipitation over 

the mapping (catchment) and over the temporal (year) units. This is 
certainly the reason behind the overall negative contribution estimated 
for RAIN_Tμ_Sμ. In fact, in any multivariate analysis, whenever slightly 
dependent covariates interact with each other, the estimation of their 
sign and amplitude can also depend on each other presence within the 
model. Because the four rainfall aggregation measures stem from the 
same spatio-temporal information, it is safe to assume that some degree 
of dependence can exist among the four we computed. Therefore, the 
overall influence of rainfall on HMP occurrences should be interpreted 
as the combined effect of the four covariates and their estimated 
regression coefficients, which returns an overall increasing effect of the 
HMP susceptibility as the rainfall increases (see Fig. 3 and note the 
following median values: βRAIN_Tμ_Sμ = − 0.75, βRAIN_Tσ_Sμ = 0.80, 
βRAIN_TA_SA = − 0.04, βAnnualRAIN_Sμ = 0.67). 

As for the temperature, the effect is much clearer there, as all the 
three summary statistics derived from the original spatio-temporal 
temperature signal appear to have a negative contribution to the 
model. This means that at increasing temperatures the probability of 
HMP occurrences consistently decreases in space and time, irrespective 
of the three components at hand. 

We also stress here the relevance of antecedent 3-years HMPs. This 
idea stems from the fact that certain types of hazard persist or cluster 
both in time and space, hence by featuring antecedent occurrences in the 
model can help predicting future HMPs. This concept is not new in 
landslide studies (Samia et al., 2017), although a similar approach has 
not been tested yet when modeling HMPs statistically. 

An additional and equally interesting contribution to the model was 
carried by human interference. Other researchers have already pointed 
out a similar consideration (Plate, 2002), which we tested in this work 
by including the presence of build-up area per catchment and per year 
(Marconcini et al., 2020b). The expansion of human settlements has a 
dual effect in our model. On the one hand, it undeniably constitutes an 
interference with the environment, potentially leading to HMP occur
rences (Duncan, 2013). On the other hand, human expansion also means 
that a larger number of people are being exposed to hazards (Cutter 
et al., 2018). This in turns may bring some degree of bias in the HMP 
inventory because events that occur in non-inhabited areas may not be 
recorded, especially due to the size of the study area. Conversely, events 
that occur in inhabited areas are much more likely to be recorded. 

As regards the temporal validation scheme we tested, it is important 
to justify why we chose MOD2 as our best and further presented it to the 
readers. When looking at performance, not only the central tendency 
(mean or median) but also the variation around it constitute a relevant 
criterion. The variation is essentially described as the difference be
tween the highest and lowest performance. Among the two terms, we 
chose the lowest performance, together with the median AUC, to be our 
primary mean of selecting the best temporal validation scheme. In fact, 
in an ideal situation one should avoid selecting a model that can poorly 
perform even as rare as this may occur. Therefore, MOD2 has become 
our best validation scheme for it both provides a median value compa
rable to MOD1, MOD3 and MOD4. And, it returned a minimum AUC 
much higher than the other temporal validation routines. 

In terms of covariates' influence on HMP susceptibility, MOD2 offers 
a slightly different perspective than the first exploratory tests. The 
morphological characteristics of the catchments largely contribute to 
the HMP susceptibility (see form factor and elongation ratio in Fig. 10. 
And even more interestingly, RAIN_Tσ_Sμ and AnnualRAIN_Sμ not only 
dominate the probability estimates to a much larger extent than any 
other covariate. But, they also show a quite distinctive increasing trend 
through time. 

An increasing trend through time is also shown for the probability of 
HMP occurrence at the scale of the whole Chinese territory. This be
comes evident when looking at Fig. 11. This illustration showcases early 
years where the western Chinese sector was characterized by very low 
susceptibilities, whereas the same territories have shifted towards low 
susceptibilities in few decades. Similarly, the south-eastern landscape 
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initially appeared to be dominated by low to medium susceptibility with 
fee high hotspots. However, in the thirty years under consideration, 
these areas have shifted to predominantly highly susceptible, with 
localized very high hotspots. Fig. 13, summarizes the same information, 
offering an even more straightforward graphical intuition. The very low 
susceptibility areas have rapidly decayed in surface extent and from the 
early 2000's, have become barely visible. In a opposite fashion, the high 
and very high susceptible areas have rapidly increased and nowadays 
characterize a relevant number of catchments. 

Ultimately, we decided to remind the reader that the susceptibility 
we estimated for the whole Chinese territory is actually much finer in 
resolution than what it looks like in the previous fig.s (e.g., Zhao et al., 
2018) (The smallest catchment area can be 0.1km2 in this study). To do 
this, we have selected eight important and large catchments. In Fig. 14 
we show the HMP susceptibility estimated for each of those catchments 
via MOD2, and specifically through the maximum probability of HMP 
occurrence shown in Fig. 12. Looking at Fig. 14 becomes evident that 
our model is built on a very detailed spatial partition of the Chinese 
landscape. And, within each of the eight selected major catchments, it is 
possible to further distinguish susceptible sub-catchments that upon 
which local administrations can made decisions to ensure the safety of 
local inhabitants. 

5.2. Opposing arguments 

The model we present is both spatial and temporal in nature. Among 
the suitable space-time models we have chosen a relatively simple one, a 
binomial GLM. Instead of this, we could have opted for a binomial 
Generalized Additive Model (GAM, Titti et al., 2021) extension to ac
count for possible nonlinear covariates' effects. And, to include potential 
variables acting at a latent level, hence requiring complex CAR (condi
tional autoregressive) or SPDE (stochastic partial differential equation) 
components to be featured as well. We maintain that our choice has 
proven to be a valid option, for both our spatio-temporal cross-valida
tion and temporal validation schemes returned AUC values well above 
0.8, the threshold for excellent binary classifiers according to Hosmer 
and Lemeshow (2000). 

However, even in this case, one could say that the performance 
shown in Fig. 6 appear to be quite constant irrespective of the temporal 
validation scheme we opted for. In this sense, the catchment and year 
units we selected may have played a role. In fact, using catchments to 
model HMP occurrences may not always be the ideal situation. These 
processes may act at a scale smaller than the catchments' extent. Thus, 
like any other relatively coarse mapping unit, a catchment may act as a 
spatial smoother. The same consideration could be made for the 

Fig. 14. Details of specific large catchments across the Chinese territory. The HMP susceptibility corresponds to the maximum probability estimated via MOD2 
between 1986 and 2015, this being shown in Fig. 12. The catchments we report here for graphical purposes are: (a) Northern Tianshan Catchment; (b) Longmen- 
Sanmen Gorge Catchment; (c) Second Songhua River Catchment; (d) Yarlung Zangbo River Catchment; (e) Liao River (main stream) Catchment; (f) Wujiang River 
Catchment; (g) Dongting Lake Catchment; (h) Taihu Lake Catchment. 
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temporal unit. The triggers of HMP may act at a daily scale or at best at a 
monthly scale, if we consider the effect of antecedent rainfall. But, a 
yearly model, could act as a temporal smoother. Thus, a higher resolu
tion both in the spatial and temporal dimensions could lead to a larger 
and more interesting variability in model performance and related in
terpretations. This being said, the model we propose is built with the 
most reasonable mapping unit if we consider the continental extent of 
the Chinese territory. And, it is built with the most reasonable temporal 
unit if we consider the 30-years epxression of the catalogue. 

Some may also argue that on a 30-year long record, the accuracy of 
the inventory may have drastically changed in recent times. As a result, 
the inventory may be biased towards a larger number of HMP records at 
the end of the time series. We maintain that the HMP inventory is reli
able and should not be affected by this type of bias, at least to the best of 
our knowledge. In fact, the Chinese government has supported the 
initiative of creating this inventory long before the 1980’ies. And, by the 
starting year of our time series (1985), the recording protocol had 
already been standardized at the whole Chinese territory scale. Surely, 
we cannot entirely disregard the possibility of some sort of bias due to 
the size of the study area. We know for a fact (and already shared the 
information with the readers in Section 4) that the western sector of the 
Chinese territory is devoid of large settlements. This may imply that the 
lack of HMP record in the region and the subsequent low susceptibility 
estimated there (see Fig.s 11 and 12) could be due (to some extent) to a 
lack of interest rather than a real absence of HMPs. We have tried to 
investigate this potential issue, by checking local news and other source 
of information. But, we have not found records of HMPs in the region. 
Thus, we can only assume the inventory to be reliable. 

Furthermore, researchers have studied the effects of incomplete in
ventories onto the modeling results. And, they confirmed that ignoring 
flaws in the mapping procedure can lead to geomorphologically inco
herent results. Nevertheless, the propagation of these flaws onto the 
model estimates can be limited or even adjusted by adopting specific 
counter-bias modeling strategies (e.g., Steger et al., 2016). These stra
tegies have been already extensively described in the literature and for 
additional details we suggest reading Steger et al. (2021). Here, for a 
brief summary, we stress that counter-bias strategies boil down to 
including the bias into the model when it comes to the fitting phases but 
they require to remove potential covariates, sensitive to the bias, when it 
comes to the prediction phase. This is referred to as a zeroing-out pro
cedure of the regression coefficients estimated for specific categorical 
properties, again, sensitive to the bias (see Lin et al., 2021, for a specific 
application in China). Alternatively, and this is also an option we are 
currently evaluating, one could opt for deep learning approaches. In 
recent years, these have been reported to produce stable results irre
spective of different sampling strategies and potential biases in the data 
(Wu et al., 2017) and especially in high-dimensional data such as ours 
(Li and Wang, 2020). 

Nevertheless, this should not be our case, or at least, we do not have 
indications that the widespread distribution of catchments with HMPs' 
absences is due to a human bias or if it is due to natural causes. In fact, 
the spatio-temporal dataset we have built features a much larger number 
of catchments without HMP records rather than catchments recorded 
with actual HMPs. In other words, we used an unbalanced presence/ 
absence dataset. In turn, this affects the estimated probability spectrum, 
resulting in a positively skewed susceptibility distribution. We maintain 
that this is a realistic pattern for such a vast spatio-temporal domain 
where probabilities of HMP are generally very low, with the exception of 
few catchments that are very susceptible (see Frattini et al., 2010). 
However, it is worth mentioning that the geomorphological community 
often operates with a balanced dataset of presence and absence cases. 
This in turn makes the probability spectrum much more normally- 
distributed and centered at around 0.5 (Rossi et al., 2010). Both ap
proaches are valid, although creating a balanced presence/absence 
dataset distorts the global intercept (Lombardo and Mai, 2018) making 
the interpretation of the probabilities valid only in a relative sense rather 

than the common notion of probability available in any other statistical 
application (Petschko et al., 2014). Therefore, we maintain that our 
unbalanced choice is valid and suitable to treat such a large spatio
temporal domain. 

6. Conclusions 

The Chinese territory hosts a vast and diverse landscape that in the 
last thirty years has been struck by thousands of hydro-morphological 
processes. Such processes, spanning from debris flows to debris floods 
and floods have been monitored and recorded in a multi-temporal dig
ital archive thanks to a Chinese program centrally coordinated but 
enacted by local administrations. In this work, we explore and exploit 
this archive to produce the first catchment-scale-based HMP suscepti
bility model of China, from 1985 to 2015. 

We distinguished seven macro-regions where the estimated proba
bility of HMP occurrence can be interpreted and explained. The south- 
eastern regions are the most susceptible to HMPs, primarily because of 
the monsoon control on precipitation regimes. This observation of a 
spatial patterns is strictly entwined with the temporal observation that 
the susceptibility estimates tend to increase in recent years. This may be 
due to the fact that climatic changes have narrowed the duration of 
storms and increased their intensity. 

For transparency, we are sharing the file containing the susceptibility 
estimates for each year under consideration. Although we cannot share 
the raw data, the method we propose is reproducible in any other 
geographic context. For this reason, we consider our work an example of 
continental-decadal scale HMP susceptibility. We stress here that other 
examples currently present in the literature have all been built by using 
a grid-cell partition of space, where each grid-cell has a resolution in the 
order of kilometers. Therefore, their actual use is hindered by the fact 
that over several kilometers, the landscape can contextually feature 
floodplains as well as mountain ridges. 

The strength of the model we propose is due to the temporal breath of 
data we examined on a yearly basis. This characteristic, makes it unique 
together with the representation of the geographic space at the catch
ment scale. As a result, the information we provide is expressed at a scale 
that respects the geomorphology and hydrology of the phenomena 
under consideration. 

The operational advantage of the model we propose is that it be 
considered as a first order indicator of catchments under threat. 
Geotechnical or more generally physically-based models aimed at 
simulating HMP genesis, propagation and deposition are extremely 
expensive because of their data requirements. However, one can use our 
output to select catchments with large probability of HMP occurrence, 
where to prioritize data acquisition for engineering solutions related to 
HMP occurrences. 
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Appendix A. Summary of the covariate set  

• Terrain features  

1. ELVμ: Mean of Elevation  
2. ELVσ: Standard deviation of Elevation  
3. SLPμ: Mean of Slope Steepness  
4. SLPσ: Standard deviation of Slope Steepness  
5. PLCμ: Mean of Plan Curvature  
6. PLCσ: Standard deviation of Plan Curvature  
7. PRCμ: Mean of Profile Curvature  
8. PRCσ: Standard deviation of Profile Curvature  

• Stream/Catchment features  

1. Wandering Ratio (Chorley et al., 1957), RW = LMF
LB  

2. Drainage Density (Strahler, 1952), Dd = LU
A  

3. Form Factor (Horton, 1932), Ff = A
LB  

4. Relief Ratio (Schumm, 1956), Rr = RB
LB  

5. Elongation Ratio (Schumm, 1956), Re = 2
LB×(A/π)0 .5  

• Soil Type  

1. this parameter is expressed as the area percentage of each soil type per catchment and includes: Clay, Clay Loam, Loam, Loamy Sand, Sand, Sandy 
Clay, Sandy Clayey Loam, Sandy Loam, Silt, Silty Clay, Silty Clayey Loam and Silty Loam  

• Climatic Zones  

1. this parameter is expressed as the area percentage of climatic zone per catchment and includes: North Temperate, Central Temperate, South 
Temperate, North Subtropic, Central Subtropic, South Subtropic, North Tropic, Central Tropic, Highland  

• Climatic Indices  

1. RAIN_Tμ_Sμ: The mean estimated from the daily rainfall for each year (Tμ) spatially aggregated as the mean computed for the whole catchment (Sμ)  
2. RAIN_Tσ_Sμ: The temporal standard deviation estimated from the daily rainfall for each year (Tσ) spatially aggregated as the mean computed for the 

whole catchment (Sμ)  
3. RAIN_TA_SA: The maximum daily rainfall for each year (TA) spatially aggregated as maximum for the whole catchment (SA)  
4. Annual RAIN_SA: The mean annual rainfall for each year (TA) spatially aggregated as mean for the whole catchment (SA)  
5. TEM_Tμ_Sμ: The mean estimated from the daily temperature for each year (Tμ) spatially aggregated as the mean computed for the whole catchment 

(Sμ)  
6. TEM_Sμ_Tσ: The temporal standard deviation estimated from the daily temperature for each year (Tσ) spatially aggregated as the mean computed 

for the whole catchment (Sμ)  
7. TEM_Td_Sμ: The difference between the maximum and the minimum temperature estimated for each year (Td) spatially aggregated as the mean 

computed for the whole catchment (Sμ)  

• NDVI  

1. NDVI_Tμ_Sμ: The mean estimated from each NDVI acquisition for each year (Tμ) spatially aggregated as the mean computed for the whole 
catchment (Sμ)  

2. NDVI_Tσ_Sμ: The temporal standard deviation estimated from each NDVI acquisition for each year (Tσ) spatially aggregated as the mean computed 
for the whole catchment (Sμ)  

• Settlement Area 
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1. The estimated settlement area per polygon expressed in km2 for each year  

• Antecedent HMPs  

1. The cumulative number of HMPs occurred in a three-year time window before each considered year 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.enggeo.2022.106586. 
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