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Abstract 
Contrary to conventional frame-based imaging, event-based vision or dynamic vision sensing asynchronously records binary 
signals of intensity changes for given pixels with microsecond resolution. The present work explores the possibilities of 
harnessing the potential of event-based vision for fluid flow measurement. The described implementations of event-based 
imaging velocimetry rely on imaging small particles that are illuminated by a laser light sheet which is similar to classical 
two-dimensional, two-component (2d–2c) PIV with the difference that a continuously operating laser light sheet is used 
without modulation of the laser or camera. The moving particles generate continuous time-stamped events on the detector 
that are later used to infer their velocity using patch-wise processing schemes. Two flow estimation algorithms are pro-
posed; one uses a “motion compensation” that maximizes the local contrast and the other is based on a sum-of-correlations 
approach. The underlying motion detection schemes in combination with the complete absence of background signal allow 
straightforward retrieval of the events associated with individual particles thereby allowing the reconstruction of individual 
particle tracks. Alternatively, the event data can be processed with conventional PIV algorithms using images reconstructed 
from the event data stream. The concepts are demonstrated on simple flows in water and air.
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1  Introduction

Event-based vision (EBV), also termed dynamic vision sens-
ing (DVS) or neuromorphic imaging, is a new upcoming 
field within the field of computer vision. Contrary to con-
ventional frame-based imaging, EBV only records changes 
of image intensity (i.e., contrast changes) on the pixel level, 
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triggering a positive event ( +1 ) for increasing intensity and 
a negative event ( −1 ) for a decreasing intensity change. The 
typical threshold of the intensity-change trigger is on the 
order of 20% but can be fine-tuned. As the pixels on the 
detector respond individually, the events appear asynchro-
nously throughout the detector area resulting in a continu-
ous stream of asynchronous data, with each event datum 
Ei = Ei(�, t, p) consisting of pixel coordinates �

�
= (xi, yi) , 

a time stamp ti and a polarity pi ∈ {+1,−1} indicating the 
sign of the intensity change.

Original prototype development of the technology dates 
back to work of Mahowald and colleagues at the Califor-
nia Institute of Technology in the 1990’s and was initially 
referred to as silicon retina (Mahowald 1992) as the inten-
tion of the imaging approach was to mimic the function of 
the eye’s retina. First practical implementations of EBV 
resulted from work at University of Zurich as well as ETH 
Zurich around 2008 (Lichtsteiner et al. 2008; Posch et al. 
2014). In recent years, several ready-to-use cameras and 
sensor evaluation kits based on the EBV technology have 
become commercially available. This has broadened the 
range of applications as testified in a steadily increasing 
number of publications (see, e.g., Robotics and Perception 
Group 2022) and also has made the present feasibility study 
possible. For recent reviews of event-based sensing tech-
nology and underlying concepts, the reader is referred to 
Gallego et al. (2022) and Tayarani-Najaran and Schmuker 
(2021).

The application of EBV for the visualization and meas-
urement of fluid flows is by no means new. Initial work 
was performed by Drazen et al. (2011) on particle track-
ing velocimetry (PTV) of dense particles in a solid–liquid 

two-phase pipe flow using an EBV sensor of 256 × 256 
pixels and continuous-wave (CW) laser illumination at 5W. 
Ni et al. (2012) used an EBV array of 128 × 128 elements 
to demonstrate micro-particle tracking ( μPTV) with 12 μ m 
microspheres and were able to detect Brownian motion. 
Measurements in microchannels based on event-based imag-
ing of 1–10 μ m fluorescent beads were performed by Howell 
et al. (2020) at exposure times down to 100 μ s and velocities 
exceeding 1 m/s. First PTV measurements in an air flow 
were performed by Borer et al. (2017) using three synchro-
nized EBV cameras (128 × 128 pixels) to track helium-filled 
soap bubbles (HFSB) in volumes up to about 1 m side length 
using white-light LED arrays for illumination. The flow 
was only sparsely seeded allowing individual particles to 
be tracked throughout the volume with final data sets con-
taining up to O(1000–10,000) tracks. More recently, Wang 
et al. (2020) implemented a stereoscopic EBV system using 
two event cameras each with 480 × 360 pixels. They recon-
structed three-dimensional tracks using 2d tracking results 
from each of the cameras. Their flow experiment consisted 
of a small hexagonal cell with stirrer inducing a swirling 
flow containing O(100 μ m) polystyrene spheres.

The present work aims at assessing the potential of EBV 
for more “traditional” planar 2d–2c flow measurement, ide-
ally being able to extend the findings to full 3d–3c meas-
urements. In particular, much higher seeding densities than 
in previous studies are investigated and are made possible 
through recent advances in EBV hardware development. 
Two commercially available event-based imaging cameras 
are used for the investigations with their specifications pro-
vided in Table 1. While the data presented in the remainder 
of the article is acquired with the high-resolution version, 

Table 1   Specifications of 
cameras used for the present 
study

a Values sourced from Table 1 in Gallego et al. (2022)

Camera model SilkyEvCam EvC3A Evaluation Kit 2-HD

Provider Century Arks Prophesee
Sensor Gen3, PPS3MVCD Gen4.1, HD CIS-BSI

(Prophesee) (Back-side illumi-
nated, Finateu et al. 
2020)

Array size (W × H) 640 × 480 1280 × 720
Pixel size 15 × 15 4.86 × 4.86
Fill factor 25% >77%
Nominal contrast threshold 25% 25%
Minimum detectable contrast changea 12% 11%
(50% response)
Dynamic range >120 dB >110 dB
Latency (spec-sheet) 200 μs 220 μs
Latencya 40–200 μs 20–150 μs
Time-stamp resolution 1 μs 1 μs
Bandwidth (events/s) ≈550 M 1066 M
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both cameras produce event data streams of similar quality 
with a detailed comparison beyond the scope of the material 
presented herein. Measurements are demonstrated in both 
water and air using the same seeding particles and densities 
as used for conventional PIV. To the best of the authors’ 
knowledge, EBV-based fluid flow measurements so far have 
not been demonstrated at considerably higher particle image 
densities.

The paper is structured as follows: after briefly explaining 
the event generation process, various recently introduced 
motion detection schemes for EBV are described with regard 
to their suitability for fluid velocity estimation of flows 
seeded with small particles. Two approaches are chosen to 
be adapted to the present application. Section 3 introduces 
measurements on a simple water flow and provides illustra-
tive, real-world examples of both the acquired event image 
data and the application of the motion detection schemes. 
In Sect. 4, the performance of the algorithms is assessed 
using a known motion (spinning disk) and scatter plots of 
a turbulent flow to highlight possible systematic sources of 
error. The current limits of event-based imaging velocimetry 
(EBIV) are then tested using an air flow with a wide range of 
velocities and scales (Sect. 5). The discussion section pro-
vides an overview of both the advantages and disadvantages 
of the EBIV technique, followed by concluding remarks con-
cerning possible improvements and further applications.

2 � Event‑based vision and optical flow

2.1 � Event generation and particle imaging

The event generation for a single pixel of the event image 
sensor is schematically outlined in Fig. 1 using a Gaussian 
profile to represent the intensity variation over time. The 
example considers the time-varying light I(t) scattered by 
a single particle as it passes the sensitive area (photodiode) 
of the pixel (Fig. 1a). The resulting photocurrent is fed into 
a contrast detection unit within the pixel that evaluates the 
intensity contrast C(t) with respect to a reference intensity 
Iref:

where the reference intensity generally is the intensity meas-
ured at the previously generated event, ti in Fig. 1. An event 
is triggered when the contrast change C(t) exceeds a certain 
threshold level:

Typically, this threshold is in the range (10–20%) and is part 
of the camera’s parameter adjustment. Also the threshold 

(1)C(t) =
log I(t) − log Iref

log Iref

(2)‖C(t)‖ > Cthr .

may differ for positive and negative event generation, result-
ing in asymmetric response. Due to the logarithmic differ-
entiation, the contrast measurement in low light conditions 
becomes less reliable and is more susceptible to dark cur-
rent noise, that is, spontaneously generated photoelectrons 
may trigger “false” events. This can be minimized through 
a sensitivity adjustment of the pixel.

Figure 1 illustrates a few important aspects in the context 
of particle imaging: for one, a particle can trigger several 
events as it comes into the pixel’s view. This may introduce 
uncertainties in the motion estimation because the actual 
time of a particle’s appearance is not clearly defined—pre-
conditioning of the event data such as using only the first 
event of such a burst of events may be necessary. Then, the 
recorded events by themselves give no indication with regard 
to the location of the particle image center (maximum inten-
sity). Rather, the events are associated with the edges of the 
particle images, that is, the regions of significant intensity 
gradients. This may be of relevance when tracking individual 
particles, especially so if their imaged size increases beyond 
a few pixels.

To illustrate the concepts of motion estimation from asyn-
chronously recorded event data, Fig. 2 shows the motion of 
a single particle P both through planar space ( � = (x, y) ) 
as well as in the space-time domain (Fig. 2b) and the trail 
of discrete events Ei(�, y, t) it may produce in space-time 
(Fig. 2c). Assuming a locally constant velocity, a first-order 
estimate of the particle velocity � is given by the slope of 
the particle path (i.e., � = Δ�∕Δt ) in the space-time domain, 
which is the sought-after quantity for which a suitable esti-
mation algorithm has to be found. Figure 3 provides a 3d 

(a)

(b)

(c)

Fig. 1   Illustration of the event generation process for a single pixel 
of the event sensor: a time-varying intensity signal seen by the pho-
todiode of the pixel, b log intensity signal processed by the contrast 
detection unit of the pixel, c asynchronous event stream produced by 
the pixel after reaching a certain contrast threshold C 
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rendition of actually recorded events of particles images in 
a water flow (see Sect. 3).

2.2 � Suitable processing algorithms for EBIV

Within the computer vision community, considerable 
research has been performed in recovering the optical flow 
from conventional frame-based image sequences and, more 
recently, event-based image data. In part, these efforts are 
aimed at transferring the concepts from frame-based imag-
ing to event-based imaging, but have only partially been 
successful, which is mostly due to the fact that the well-
established optical flow approaches rely on brightness con-
stancy (Horn and Schunck 1981; Lucas and Kanade 1981). 
In event-based imaging, image brightness per se is not avail-
able, such that some of the proposed optical flow algorithms 
rely on reconstructed image intensity as an intermediate 
quantity (Benosman et al. 2012) or recover the brightness 
field along with the optical flow (Bardow et al. 2016).

The output of the optical flow algorithm can be classified 
as “dense” or “sparse,” respectively, providing motion esti-
mates for every pixel or on selected pixels only. Event image 

data produced by discrete, small particles initially only pro-
vide sparse motion fields where the sparseness directly cor-
responds to the source density, namely, the imaged particles. 
To obtain a dense field (for every pixel) requires a smooth-
ness regularization that results in a continuous variation of 
the velocity estimate within the sampled volume. Ideally, the 
estimated velocity field predicts the motion of the individual 
particles taking into account the spatiotemporal filtering 
introduced by the discretely sampled particle image data.

The motion estimation approach chosen here follows the con-
cepts used in the computer vision community for optical flow 
estimation. Preferably, the optical flow estimation algorithm 
should not require to explicitly reconstruct image intensity, that 
is, it operates only by using the spatiotemporal resolved events 
Ei = Ei(�, t, p) . Event data generated from imaged objects (i.e., 
cars, people, trees, buildings, etc.) typically consist of broad 
“swaths” of events that, when aligned, result in sharp edges. 
By fitting a plane in x–y–t space to these events, Benosman 
et al. (2014) show that optical flow data can be retrieved but the 
approach has its limitations on more complex scenes (Rueckauer 
and Delbruck 2016). Imaged particles, on the other hand, typi-
cally only cover a few pixels when properly focused. In fact, for 

(a) (b) (c)

Fig. 2   Illustration a single particle P moving at a fixed velocity V = (vx, vy) in 2d space (a), in x − t space (b) and trail of events produced the 
particle in x − t space (c)

Fig. 3   3d rendition of a sub-volume of events of size 40 × 40 pixels and 20 ms duration. Blue color coding marks past events while red indicates 
later events. a isometric view; b view aligned with x-axis; c view direction chosen to align events into clusters
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the PIV technique an optimal particle image has a size of 2–3 
pixels [ e−2 diameter (Adrian and Westerweel 2011; Raffel et al. 
2018)]. This makes a plane fitting approach challenging. The 
line-like nature of the events created by the particles suggests 
the use of algorithms suited for the detection of line segments 
such as the Hough transform (Bagchi and Chin 2020), but may 
be computationally expensive. Another approach relies on the 
convolution of the event data with separable space-time filter 
kernels to estimate the motion from the maximum response 
(Brosch et al. 2015). Some optical flow techniques for frame-
based image data, such as the Lucas–Kanade algorithm (Lucas 
and Kanade 1981), rely on structure tensors (based on image 
intensity gradients) while others employ principal component 
analysis to extract motion baring elements from the image data. 
In principle, these approaches could also be extended to the 
space-time event-based data but have not been investigated in 
the scope of this work.

At present, one of the most suitable approaches for EBIV 
seems to be the so-called motion compensation introduced by 
Gallego et al. (2018). The idea behind motion compensation is 
to align the events such that they line up using a linear skew-
ing (warping) of the sampled x − y − t sub-volume, assuming 
constant (linear) motion within the sampled volume. Concep-
tually this can be visualized by choosing a viewing direction 
onto a x − y − t sub-volume that makes the events in this vol-
ume appear to be lined up, as illustrated in Fig. 3c. Applied to 
imaged scenes the motion compensation in effect removes the 
motion blur, hence its name.

In practice, the motion compensation is performed itera-
tively on sub-volumes of dimension NX × NY × T using veloc-
ity candidates �′ that map (“warp”) the original events within 
the sub-volume according to

The resulting set of Ne mapped events is then used to create 
an image of warped events (IWE) by summing all events that 
coincide with a given pixel �:

(3)�
�
i
= �i + �

�(ti − t0).

Here, the function � can take the form of a nearest neighbor 
operation or higher interpolation scheme. For an optimal 
choice of �′ the number of coinciding events will concen-
trate into a reduced number of pixels � within the IWE—the 
imaged particles will appear concentrated into a few small 
clusters, as illustrated in the third column of Fig. 4. Here the 
intensity variance �2

�
 serves as a measure of image contrast:

where Np = NX × NY is the number of pixels comprising the 
IWE and �

�
 its mean intensity. As investigated in detail by 

Gallego et al. (2019) a wide variety of so-called loss func-
tions (objective functions) can be used to maximize local 
contrast; image variance was found to be among the most 
reliable, is simple to implement and is used in the present 
implementation.

An alternative method of retrieving the optical flow from 
event data is proposed by Nagata et al. (2021) who claim 
that their method is more robust in comparison to the previ-
ously described iterative variance-based motion compensa-
tion approach. In their case the local optical flow is obtained 
from two sub-volumes at the same location but slightly offset 
in time � and measures the consistency of the time-surfaces 
formed by the events in x − y − t space between the two 
samples. The minimization-based algorithm relies on spatial 
derivatives of the time surface and requires a smoothness 
regularization term to stabilize the minimization.

For the present study, the algorithm by Nagata et al. 
(2021) has not been implemented. Instead, we propose to 
use their concept of sampling the x − y − t volume with two 
sub-volumes separated by time 𝜏 < T  and apply a motion 
estimation scheme that is more suited for particle image 

(4)�(�,��) =

Ne∑

k=0

�(� − �
�
k
).

(5)�2
�
= Var(�(�,��)) =

1

Np

Np∑

i,j

(Ii,j − �
�
)2

(a) (b) (c)

Fig. 4   Principle of patch-wise motion compensation; a events are sampled in volume of spatial dimension NX and time interval of T, b motion 
compensation is performed iteratively using velocity candidates vk ; c optimal velocity v̂ is found when events line up at a constant position �

i,�̂
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data. The basic principle is outlined in Fig. 5: the two sub-
volumes are subdivided into NT equal time-slices of duration 
T∕NT . Events within each time-slice are then combined and 
result in NT planes of events within x − y space for each of 
the two samples. Next, the cross-correlation is computed for 
each pair of event planes. Finally, the NT cross-correlation 
planes are summed to form a single combined correlation 
plane. The position of the maximum correlation value with 
respect to the origin represents the most likely particle 
displacement within the sampled volume. Division of the 
correlation peak displacement by the sample time-offset � 
yields a first-order estimate of the “pixel velocity” within the 
sampled sub-volume.

For both approaches the velocity estimation is performed 
symmetrically around time t0 making them central difference 
schemes which are inherently second-order accurate (Were-
ley and Meinhart 2001). To improve sub-pixel performance, 
3-point parabolic fits or 3-point Gauss fits are, respectively, 
applied in X and Y direction using the neighboring values of 
the maximum variance or maximum correlation.

In order to retrieve velocity data across the field of view, 
the simplest algorithm involves a patch-wise processing 
very similar to conventional PIV. The sample size is fixed 
throughout the field of view and the interrogation is per-
formed on a regular grid regardless of the local particle 
image (e.g., events) concentration. For the motion compen-
sation approach a sufficient range of “pixel velocities” needs 
to be defined a priori to ensure the capture of the variance 
peak. Similarly, an adequate time-offset � has to be chosen 
for the sum-of-correlation scheme to capture events of the 
same particle(s) in both x − y − t sub-volumes.

The logical extension of these single-pass algorithms is a 
grid-refining scheme that starts coarse and iteratively moves 
into finer grid resolutions, both spatially and with increas-
ingly finer velocity resolution. Here deformation schemes 
that allow a continuous variation of the velocity estimate 
within the sampled volume can be directly imported from 
state-of-the-art PIV processing algorithms.

When converged, the iterative, patch-wise particle motion 
detection scheme effectively results in clusters of pixels that 
are associated with the motion of single particles (see, e.g., 
Fig. 9c, g). Therefore, it is a (nearly) trivial step to single out 
the events for an individual particle image from the original 
event data set. These events can then be used to recover 
the track of the given particle in both space and time using 
an adequate fitting scheme [see, e.g., methods used for 3d 
Shake-The-Box Lagrangian tracking, STB (Gesemann et al. 
2016; Schanz et al. 2016)].

In the following section implementations of both the 
motion compensation algorithm and the sum-of-correlation 
scheme are used to recover the flow field of a simple water 
flow experiment.

3 � EBIV applied to a water flow experiment

A water basin of about 400 × 250 × 60mm3 , is seeded with 
nearly neutrally buoyant silver-coated, hollow glass spheres 
of about 10 μ m diameter. A small pump on the side intro-
duces a globally recirculating flow with underlying turbu-
lent structures (see Fig. 6). The particles are illuminated by 
a ≈100 mm wide laser light sheet with about 1 mm waist 
thickness created with a laser (Kvant Laser, 4W max., � = 
520 nm) operating in CW mode. The light sheet is induced 
through the vertical side of the tank and the camera is rotated 
by 90◦ such that the glass wall appears at the bottom of the 
recorded images.

Figure 7 shows an “image” of events compiled from a 
time interval (10 ms) of recorded events sampled on a field 
of view (FOV) of 54 × 30 mm2 at a magnification of 42.3 μ
m/pixel. The data was acquired at a data rate of 2 × 107 
events per second which is two orders of magnitude below 
the maximum supported by the camera. The reconstructed 
image of Fig. 7 contains a total of about 130,000 events that 
are color-coded using their respective time of occurrence. 
Events marked blue occurred in the “past” while red events 

(a) (b)

Fig. 5   Principle of patch-wise velocity estimation using a temporal 
offset; a events are sampled in two volumes of equal spatial dimen-
sion NX for a time interval T, but separated by a time delay of � , b 

mean displacement Δx is determined by summing NT separate cross-
correlations of events for different time slots tk . Mean velocity is 
given by ratio Δ�∕�



Experiments in Fluids          (2022) 63:101 	

1 3

Page 7 of 20    101 

occur in the “future” in reference to time t0 = 0 , for which 
events are coded in white. Note, that the wall through which 
the light sheet is introduced is not at all visible, which is a 
direct result of the lack of temporal intensity variations at 
the glass–water interface. A dashed line in Fig. 7 indicates 
the approximate position of the wall. Animations of the raw 
event image data and recovered velocity fields are provided 
in the supplementary material.

The two small squares in Fig.  7 indicate samples of 
40 × 40 pixels. The areas surrounding them are highlighted 
in Fig. 8. Event tracks produced by the particles have a 
width of 2–5 pixels. The procedure of the motion compen-
sation algorithm is further demonstrated in Fig. 9. Here, 
Fig. 9a, e show the sampled events color-coded with the 
time of arrival. For better visibility, Fig. 9b, f show only the 
currently “active” pixels in the sampled sub-volumes. By 
applying motion compensation, these pixels are aligned such 
that a maximum of events coincide, as shown in Fig. 9c, g. 
In order to achieve this alignment, a measure based on the 

variance with respect to the space-time warped event data 
is used. Figure 9d, h show the distribution of the intensity 
variance spanned by a range of possible “pixel velocity” 
candidates. These variance intensity maps exhibit clearly 
detectable peaks that coincide with the most probable veloc-
ity estimate. In effect, this is very similar to the 2d cross-
correlation map used in conventional PIV processing.

Figure 10 illustrates the sum-of-correlation approach on 
the same sample as in Fig. 9. Here, the summed correlation 
plane is akin to the correlation planes obtained with con-
ventional 2d–2c PIV processing, exhibiting, for instance, 
multiple correlation peaks that appear when events of a 
given particle correlate with those from a different particle. 
As the number of imaged particles within the sampled vol-
ume decreases, the likelihood of particle mismatch increases 
and the “false” correlation peaks become more prevalent. 
Figure 10f also shows one of the main advantages of the 
sum-of-correlation method: any time-slices without events 
produce no correlation signal and have no contribution to 

Fig. 6   a Photograph of a simple water flow EBV imaging setup in the 
“home-lab” of the first author involving a small water tank, laser light 
sheet and event-based imaging camera. b Image of a ruler moving 

sideways recorded by the event camera illustrating the event genera-
tion within a period of 10 ms (white pixels are positive (“on”) events, 
black pixels are negative (“off”) events)

Fig. 7   Image constructed from 
10 ms worth of positive events 
triggered by particles moving in 
a tank of water and illuminated 
by a CW laser light sheet. The 
mean flow is from left to right. 
The black rectangles indicate 
sample areas of 40 × 40 pixels 
used in the following figures. 
The thin line near the bot-
tom indicates the position of 
the glass tank wall which is 
essentially invisible due to the 
absence of intensity events
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the final correlation sum. Also noise in the individual cor-
relation slices is averaged out.

In PIV processing, the displacement should be limited to 
about one-fourth the sample dimension to warrant an opti-
mal displacement recovery by restricting the in-plane loss 
of particle image pairs (so-called one-quarter rule, see, e.g., 
Adrian and Westerweel 2011; Raffel et al. 2018). At first 
sight, this sort of restriction is not present for the described 

variance-based motion compensation algorithm. This can be 
observed in Fig. 9e which shows a displacement of about 25 
pixels in a sample of 40 × 40 pixel. The event data shown in 
Fig. 7 contains particle image tracks whose length exceeds 
30 pixel. Nonetheless, fast moving particles will produce a 
reduced number of events in the sampled space-time sub-
volume which in turn reduces the reliability of the veloc-
ity estimate. The sum-of-correlation approach, on the other 

Fig. 8   Zoomed-in portions of Fig. 7. The black rectangles indicate sample areas of 40 × 40 pixels

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9   Sampled events from Fig. 7 and corresponding images of warped events (IWE) after applying motion compensation. Black arrows in left-
most sub-figures indicate the velocity estimate determined by finding the maximum in the 2d variance distribution
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hand, should adhere to the “one-quarter rule” in order to 
reliably line up the event tracks from both volumes. Faster 
moving particle images are captured by reducing the separa-
tion � or by increasing the size of the sample.

As an example, the result of a single-pass process-
ing of the water flow is provided in Fig. 11 using a fixed 
sample size of 40 × 40 pixels on a time-slab of 10 ms. 
For the motion compensation algorithm the veloc-
ity search domain is set to v

x
= [−1,+5]  pixel/ms and 

v
y
= [−2,+2] pixel/ms at an initial sampling resolution 

of 0.250 pixel/ms which is iteratively refined on a 5 × 5 
neighborhood around the maximum variance until the res-
olution is below a cutoff value of 0.05 pixel/ms. The sum-
of-correlation approach uses a temporal offset between 
the samples of � = 2.5 ms (1/4th of the sample interval). 
Each pair of x − y − t sub-volumes is resampled to NT  = 
20 planes from which 20 individual correlation planes are 
calculated and subsequently summed. Figure 11e, f pre-
sent the velocity field obtained using a conventional PIV 
processing algorithm. This is realized by first generating 
conventional PIV recordings from the event data simply by 
combining events from a given time interval (1.5 ms) into 
a single image frame using the time stamps as intensity 
values. The temporal spacing between the image frames 

is chosen at Δt = 2.5 ms which equates to a frame rate of 
400 Hz. No further image processing, such as filtering or 
intensity thresholding, is performed prior to applying an 
iterative, coarse-to-fine cross-correlation scheme using 4 
frames per time-step (Lynch and Scarano 2013).

Overall, the agreement between the results of the three 
processing approaches is very good; the differences are 
on the order of 0.1 pixel/ms. The data obtained with the 
motion compensation scheme appears noisier in com-
parison to the other two approaches but exhibits the 
least amount of spurious (outlier) vectors. The sum-of-
correlation scheme has difficulty in the quiescent regions 
whereas the conventional PIV processing exhibits most 
of the outliers near the wall ( y ≈ 40 pixel). Due to their 
reduced motion, particles in the quiescent regions produce 
a reduced number of events such that the algorithms fail 
to produce reliable results in these areas.

The processing speed of the algorithms depends on 
numerous parameters and varies linearly with the num-
ber of sampling points and sub-sample size in space and 
time. For the present data, the sum-of-correlation approach 
requires about 1 s per time-step (single thread processing 
on a 4 GHz Intel CPU) and is about five times faster than 
the motion compensation approach.

(a) (b) (c)

(d) (e) (f)

Fig. 10   a, b Sampled events from Fig. 7 obtained with time separa-
tion of � = 3 ms (color map as in Fig. 8). d, e x − t projection of both 
samples. f x − t view of NT = 40 individual cross-correlations over 
10 ms sample interval. c Cross-correlation map obtained by summing 

correlation planes below. Black arrow in upper left sub-figure indi-
cates the velocity estimate determined by finding the maximum in the 
2d cross-correlation map
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4 � Performance assessment

While the previously shown measurements of the water 
flow demonstrate the feasibility of EBIV, little can be 
learned regarding measurement accuracy and uncertainty. 
One approach to at least assess the influencing factors is 
to use an experiment or simulation with known character-
istics. This can be either achieved using synthetic data, 
which is a challenge in itself (see, e.g., Hu et al. 2021), 
or by recording event data from a clearly defined flow. 

In the present case, the “flow” is a solid body rotation of 
constant angular speed achieved by placing a plate of fixed 
particles on a turn table (i.e., record player). Sufficiently 
small particles are provided by reflective spray contain-
ing small glass spheres of about 50 μ m diameter. The lens 
of the event camera is fitted with a ring of white-light 
LEDs such that the illumination is essentially on-axis with 
the lens, thereby achieving optimal intensity of the retro-
reflective glass beads. Event data is acquired for the inner 
radius extending out to R ≈ 60 mm and the outer radius in 

(a) (b)

(c) (d)

(e) (f)

Fig. 11   Velocity fields obtained with the proposed processing algo-
rithms using event data shown in Fig. 7. Top row: a, b motion com-
pensation approach, middle row: c, d sum-of-correlation approach, 
bottom row: e, f 4-frame PIV analysis using images created from 

events of duration 1.5 ms. Physical velocity is obtained by multiply-
ing with the scaling factor, m = 0.021  mm/pixel. Animations of the 
data obtained with the sum-of-correlations approach are provided in 
the supplementary material
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the range 85 < R < 150 mm with the turn table operating 
at 45 rpm.

Acquired event data is processed along the radius using 
the previously described motion compensation algorithm 
with a fixed sample size of 20(W) × 40(H) pixels for the 
smaller radii and increased to 20(W) × 80(H) pixels for 
R > 85 mm to capture a sufficient number of events. Velocity 
information is determined by sampling the 2 s long records 

with sampling intervals T of 5, 10 and 20 ms. Figure 12 pre-
sents both the raw velocity estimates in the form of scatter 
plots along with a linear fit to the data. In agreement with 
the underlying solid body rotation, the velocity increases 
proportional with increasing radius. The deviation of the 
data from the linear fit is plotted with red dots and exhibits 
a normal distribution. The scatter increases with increasing 
radius and decreases with increasing sampling time T. The 

(a) (b)

(c) (d)

(e) (f)

Fig. 12   Solid-body rotation data obtained by imaging small particles 
on a turn table rotating at 45  rpm. The same data set is processed 
with the motion compensation algorithm using different event sam-

ples times: 5, 10 and 20 ms. Left column (a, c, e) is processed with 
samples of 20 × 40 pixel, the right (b, d, f) with 20 × 80 pixel. Data 
in the grayed out regions are excluded
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Fig. 13   Histograms obtained from 35 reconstructed flow fields of the 
turbulent water flow using three different algorithms for time inter-
vals of T = 10 ms (a, b) and T = 20 ms (c, d). Subfigure (e) shows 

result obtained using multi-frame PIV applied to images separated by 
2.5 ms, each containing 1.5 ms of events
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measurement of the solid body rotation clearly shows that 
measurements up to (and beyond) 12 pixel/ms (or 12,000 
pixel/s) are feasible and show no systematic deviation.

In effect, the sampling time defines how many events of 
a particle are captured and used for the estimation of the 
velocity. Unlike PIV, in-plane loss of particle images is 
not really relevant here because other particles come into 
view and also contribute to the velocity estimate. For the 
10 ms sampling condition the dynamic velocity range (DVR, 
Adrian 1997) can be estimated at (3.5/0.020) = (175÷ 1) 
which is comparable to that of 2d–2c PIV with sampling at 
32 × 32 pixel. While the rms deviation reduces by 50% when 
doubling the sampling time from 5 to 10 ms, the reduction 
is not as significant when doubling the sampling time from 
10 to 20 ms. The presented test case of “particles” rotating 
with constant angular speed does not mimic actual fluid flow. 
Variations in particle path curvature or particle acceleration/
deceleration along with other effects will undoubtedly con-
tribute to uncertainty in velocity estimation of fluid flows. It 
is clear, that additional Monte Carlo simulations and mod-
eling of the EBV imaging process (which can be described 
as a Poisson distribution) are required to further quantify the 
factors influencing measurement uncertainty. While not pre-
sented here, it should be noted that the sum-of-correlation 
approach is not able to capture the entire range of radii with-
out adjusting the temporal sample offset � to warrant that the 
correlation peak is captured at higher velocities.

Another common practice of assessing PIV data qual-
ity is to plot the histograms of the displacement data in 
order to uncover artifacts such as pixel locking. Using 1s 
worth of processed event data from one of the experiments 
(turbulent water flow, see Sect. 3) both 2d scatter plots and 
projected (1d) histograms of the velocity data are provided 
in Fig. 13. The first four sub-figures show velocity scatter 
plots obtained with the motion compensation approach (left) 
and sum-of-correlation approach (right) for time samples 
of T = 10 ms (top row) and T = 20 ms (second row). The 
motion compensation data results from an iterative scheme 
that reevaluates the area around the most probable velocity 
value is the variance map using a grid of 5 × 5 samples. The 
cutoff is chosen at 0.025 pixel/ms. All sub-figures in Fig. 13 
clearly show effects similar to pixel locking found in PIV. 
In the present case, the imaged turbulent flow should show a 
uniform distribution; the gridded nature of velocity cluster-
ing is non-physical. In particular, the motion compensation 
algorithm produces pronounced star-shaped features that 
can also be observed in the variance maps of Fig. 9, right. 
The artifacts may be rooted in an inadequate peak finding 
scheme of the variance maximization that is unsuited for 
the rather broad peak of the variance map. Gradient-based 
optimization methods are likely to improve the performance 
but have not been implemented in the present study. Unlike 
pixel locking in PIV, these clustering artifacts are believed 

to be systematic errors that are purely associated with the 
respective processing algorithms. This, however, does not 
imply that event-based imaging does not suffer other short-
comings that propagate into the velocity estimates. In order 
to further characterize the sources of uncertainty, the event-
based imaging of small particles has to be modeled using, for 
instance, approaches such as put forth by Hu et al. (2021).

Noteworthy in Fig. 13 is the absence of velocities near 
zero. This is due to the fact, that particles at rest do not pro-
duce sufficient events to be registered. This is clearly a short-
coming of the measurement technique for which no obvious 
solution is presently available. In principle by increasing 
the sampling time T more events can be collected allowing 
velocities closer to zero to be captured.

5 � EBIV measurement in air

Figure 14 shows a photograph of measurements performed 
in a small wind tunnel with a square cross section of 76 × 76 
mm2 and 1.5 m length. A steel cylinder of 14 mm diameter 
spanning the height of the channel is placed on the cen-
terline. At a bulk flow velocity of Ub ≈ 1.5 m/s the diam-
eter-based Reynolds number is ReD = 1400 , which is well 
beyond the transition to turbulence resulting in a turbulent 
wake. At the upstream end of the wind tunnel the flow is 
seeded with 1 μ m paraffin droplets produced by an atomizing 
aerosol seeder (Laskin type). The droplets are illuminated 
by a CW laser with 5.6 W maximum power (Kvant Laser, 
� = 520 nm) using a light sheet with a waist thickness of 
about 1 mm.

Measurements are performed at different magnifications 
and fields of view. Here, we will focus on close-up meas-
urements of the shear layer formed downstream of the flow 
separation on the cylinder surface. This area is characterized 
by high dynamics within the flow and includes quiescent 
regions on the downstream side of the cylinder and strong 
velocity gradients within the shear region. Flows such as 
these are challenging to capture using planar flow meas-
urement techniques. At a magnification m = 41.2 pixel/mm 
the imaged area covers 31.0 × 17.5 mm2 . The light sheet is 
aligned with the centerline of the test section and passes 
from bottom to top in the photograph of Fig. 14a, while the 
flow moves from left to right.

Figure 14b shows an image of the cumulative intensity-
change events and represents a total of 1.3⋅108 events col-
lected in 6 s. The event rate, measured in events per pixel 
and time, varies by about a factor of 3 between the quiescent 
wake and the faster outer flow in spite of the fact that the 
flow throughout the field of view in uniformly seeded. In 
the photograph of Fig. 14a, the wake region also does not 
appear brighter than the outer flow. An explanation for this 
effect may be the limited latency [typ. ≈100 μ s, see Table 1 
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in Gallego et al. (2022)] of the event camera sensor: parti-
cles in the outer flow either move too fast or are too faint to 
trigger the contrast detection circuit on the pixel level that 
result in intensity-change events. With increased speed of the 
intensity gradient moving across the pixel (e.g., illuminated 
particle), the pixel will have a reduced likelihood of respond-
ing to the change. The event generation is a probabilistic 

process that has a stochastic nature depending a number of 
parameters (Gallego et al. 2022; Hu et al. 2021). Among 
the faster moving particles in the outer flow, it is only the 
brighter ones that trigger events.

Noteworthy is the absence of laser flare in the event 
recordings such as on the cylinder itself. In the particle 
streak image of Fig. 14, bottom, the outline of the cylinder 

Fig. 14   Top: Photograph of 
imaging setup for flow around 
a cylinder of 14 mm diameter 
within a square duct of 76 mm 
side length. Droplet-based 
aerosol seeding of 1 μ m is 
present; the shadow of the 
cylinder within the light sheet is 
visible. Middle: Event recording 
rate within the imaged domain. 
The cylinder surface is outlined 
with the red-dashed circle. 
Bottom: Recorded particle event 
tracks for a duration of 50 ms 
highlighting the surface of the 
cylinder. The outer flow has a 
velocity of 1.7 m/s; magnifica-
tion is 0.0237 mm/pixel

(a)

(b)

(c)
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can be identified by the mirrored particle image event tracks 
on “inside” the cylinder. Pixels on the cylinder surface pro-
duce no events which is either due to time-constant intensity 
levels or due to saturation of the photodiodes. Image-bloom-
ing, which is common for overexposed CCD sensors, can-
not be observed. The fact that no stationary “particles” are 
present on the surface allows the motion of actual particles 
to be tracked within a few pixel distance of the surface which 
in itself has been a challenging task for the PIV technique.

Compared to the water flow, the air flow has a much 
higher “pixel velocity” exceeding 50,000 pixel/s. This is 
about four times higher than the measurements performed 
with the rotating plate of particles (c.f. Fig. 12). In their 
work on adaptive time-slice block-matching optical flow 
algorithms (ABMOF) (Liu and Delbrück 2018) quote val-
ues of >30,000 pixel/s as “extremely fast.” The presently 
available processing algorithms based on motion compensa-
tion and sum-of-correlation have been found not suitable to 
reliably recover velocity information simultaneously in the 
slow wake region and the fast outer flow. In order to capture 
the outer flow, the single pass motion compensation algo-
rithm requires sampling areas with dimensions exceeding 
100 pixel. On the other hand, the wake region can be reliably 
processed with samples of 40 × 40 pixel (1.0 × 1.0 mm2 ). 
Similarly, the temporal offset � of the sum-of-correlation 
approach needs by sufficiently short in order to capture 
the event tracks of fast moving particles in both sampling 
volumes. To properly capture the high dynamic range of 
velocities, an adequate processing strategy first needs to be 
developed.

5.1 � PIV processing of the air flow event data

Through temporal sampling of the event data, image 
sequences can be generated that can then be processed with 
conventional, cross-correlation-based PIV algorithms. The 
present data of the near-cylinder shear layer is sampled for a 
duration of T = 250 μ s at intervals of ΔT = 250 μ s. With this 
sampling, the outer flow exhibits a particle image displace-
ment magnitude of about 20 pixels for a velocity of 1.7 m/s. 
The resulting image sequence is processed with the previ-
ously mentioned multi-frame, grid-refining algorithm using 
final sampling windows of 64 × 64 pixel to accommodate the 
rather low event density and correspondingly low particle 
image density of the outer flow.

Selected velocity maps from a sequence of 1000 “recon-
structed” PIV recordings are provided in Fig. 15 alongside 
with corresponding particle event tracks. The high flow 
velocity and reduced event density of the outer flow result 
in considerable data dropout, whereas very high validation 
rates are achieved within the cylinder wake. The recovered 
data set has a temporal resolution of 4 kHz albeit low-pass 
filtered by the multi-frame PIV processing scheme. An 

adaptive processing scheme is required to further bring out 
the fine-scale structure of the immediate cylinder wake with-
out compromising the velocity estimates from the outer flow 
obtained at coarser resolutions.

6 � Discussion

From the previous experiments, image velocities on the 
order of ±10,000 pixel/s were found feasible with the present 
event camera hardware. Given a field of view 100 mm, that 
is imaged by a sensor of 1000 pixels side length, flow veloci-
ties in range of ( ±10 pixel/ms)  ×  (100 mm / 1000 pixel) = 
±1 m/s are possible. By increasing the field of view to 1 m, 
the measurements range is linearly increased to ±10 m/s. As 
these limitations seem to be rooted in the sensors’ latency, it 
will require advancements on the detector end to extent the 
velocity range to higher values.

The measurement of quiescent regions in the flow was 
found to be a limitation, in particular, in making a reliable 
distinction between the actual absence of particles and the 
absence of events due to resting particles. Here, a combina-
tion between a framing camera and an event camera, such 
as the DAVIS camera introduced by Tedaldi et al. (2016), 
could be used to localize stationary particles at regular time 
intervals.

While it is true that an event camera actually produces a 
reduced number of data while viewing a scene, in particu-
lar one with limited dynamic content, the imaging of many 
small and constantly moving particles quickly leads to a con-
siderable amount of incoming events. The investigated water 
and air flows produced on the order of 20 × 106 events/s 
resulting in data rates of up to 60 MB/s. With increased 
seeding density, the event data rate increases proportion-
ally, resulting in data dropout in the limited bandwidth data 
acquisition channel. During the previously described experi-
ments, the seeding density and directly coupled event data 
rate had to be carefully adjusted in order not to cause data 
dropout, which was accompanied with loss of time-stamp 
information or even a complete loss of signal (blank areas). 
With the current hardware, reliable measurements could be 
obtained with data rates of up to 50 × 106 events/s at an 
associated compressed data stream of about 130 MB/s. This 
data rate corresponds to the 8-bit data stream of a high-
speed camera with the same sensor resolution (1280 × 720) 
recording at 150 frames/s. With a specified contrast change 
detection latency of 100 μ s, the event cameras are capable 
of providing equivalent frame rates of 10,000 frames/s as 
demonstrated, for instance by Howell et al. (2020).

Some of the particle event tracks of the recorded air flow 
in Fig. 14 have a width of only 1 pixel which is known to 
result in so-called pixel-locking artifacts in conventional PIV 
processing. Possible influences of this and other effects on 



	 Experiments in Fluids          (2022) 63:101 

1 3

  101   Page 16 of 20

Fig. 15   Left column: Event-images of the near-cylinder shear layer 
for different times. Right column: velocity maps obtained with PIV 
processing of the event data sampled for time intervals of T = 250 μ s. 

Bottom row: shows both the event data and mean flow field for a 
duration of 0.25 s
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the measurement uncertainty of EBIV will have to be inves-
tigated further. This includes possible nonlinearities arising 
through the generation of repeated events at the same pixel 
location as a bright particle image passes the pixel.

The following summarizes a number of advantages and 
disadvantages of flow velocimetry using event-based cam-
eras based on practical experiences gained in the process of 
developing the EBIV technique.

Advantages

•	 Event-based sensing is suitable for real-time flow visu-
alization. The event tracks produced by the movement of 
the particle field directly visualize the flow field without 
the need of further processing.

•	 Compared to conventional imaging, event-based imaging 
is associated with a considerably reduced data rate.

•	 Event-based cameras are tolerant against spatial intensity 
variations within the light sheet because its sensors only 
react on intensity changes.

•	 Event-based cameras are tolerant against laser flare (light 
scatter on surfaces) and non-uniform background inten-
sity.

•	 Event-based cameras are tolerant against high back-
ground intensity. This allows particles to be tracked in 
bright environments, assuming this intensity is essen-
tially constant in time (or only varies slowly in time).

•	 Particle event tracks are clearly distinguishable from the 
background and can be extracted either by feature detec-
tion or by using the clusters formed in the motion com-
pensation analysis.

•	 Both in-plane and out-of-plane loss of particle images is 
not as critical as for PIV. For particles leaving the sample 
volume the number of events contributing to the velocity 
estimate is reduced which results in an increased uncer-
tainty.

•	 The time-resolved nature of the event data can be used 
to extract additional information of the particle motion 
such as acceleration or path curvature. Contrary to pulse-
illuminated PIV (or PTV) image frames, the event-trails 
generated by moving particles provide continuous infor-
mation on their location with microsecond resolution.

•	 Conventional PIV processing is possible by generating 
sub-frames from the time-resolved event data.

•	 Hardware requirements are less demanding in compari-
son to conventional PIV systems relying pulsed light 
illumination (see below).

Disadvantages

•	 Slow moving particles will produce less events per 
given time. In areas of slow or nearly quiescent flow, an 
increase in the sampling time will result in more events 

from which to reconstruct the velocity. On the other 
hand, faster moving particles have a reduced likelihood 
of producing events which is due to the inherent latency 
of the EBV sensor (typ. O(100 μs)).

•	 Temporal intensity variations within the image scene, 
such as 50 Hz lamp flicker, will trigger many simultane-
ous events that are not related to the motion of objects. 
This can be addressed through the design of sensor using, 
e.g., the Global Hold, Global Reset approach (see Ryu 
2019). The Gen.4 sensor of the evaluation kit by Pro-
phesee has an anti-flicker filter option available. This 
spontaneous generation of events could be harnessed to 
briefly make stationary or slowly moving particles visible 
thereby overcoming the previously mentioned shortcom-
ing.

•	 The velocity range is restricted which limits the applica-
bility of EBIV to slow flows. While for PIV the velocity 
range can be adapted by simply changing the separation 
of the laser pulses (or frame rate of the high-speed cam-
era), no such option currently exists for EBIV. The upper 
bound on reliable velocity detection is on the order of 
50,000 pixel/s and seems due to sensor’s latency with 
present day event camera hardware.

•	 The bandwidth of EBV hardware can be a limiting fac-
tor as the number of events scales linearly with seeding 
density (i.e., illuminated particles).

7 � Conclusion and outlook

The material presented in the preceding sections consti-
tutes a feasibility study on the use of event-based vision 
(EBV) for the estimation of fluid flow velocity maps. The 
work is focused on obtaining dense 2d–2c data using 
particle image densities previously not reported with 
event-based imaging. While there is no intention in rival-
ing the well-established PIV techniques, which follow 
frame-based approaches, event-based imaging veloci-
metry (EBIV) may nonetheless provide some attractive 
advantages. The flow measurements clearly demonstrate 
that EBIV enables measurements in close proximity of 
surfaces where PIV and other frame-based imaging meth-
ods generally have problems with excessive light scatter. 
As surfaces generally do not move, they do not trigger any 
intensity-change events and hence are not visible by the 
event camera (this also makes calibration using stationary 
targets a little more challenging). Another advantage is 
that individual particles can be identified efficiently once 
the underlying flow field has been determined. Although 
not implemented in the present work, the continuous event 
tracks produced by the imaged particles allow the recon-
struction of the particle paths in time and 2d space. As 
demonstrated in previous works Borer et al. (2017) and 
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Wang et al. (2020), this can be readily extended to time-
resolved 3d particle tracking.

From an implementation point of view, the investment 
cost is reasonable, given the fact, that instead of a pulsed 
laser, a low-cost CW laser or other constant-intensity light 
source (e.g., LED) can be used. The sensitivity of event cam-
eras is considerably higher such that moderate laser powers 
in the 1-5 Watt range are already sufficient to adequately 
image micrometer-sized particles in water and air flows with 
viewing domains of 10 cm side length. Beyond this, EBIV 
does not require elaborate synchronization between camera 
and laser. The currently available event camera hardware 
can be synchronized between different units for multi-view 
imaging and can additionally record external synchroniza-
tion events in the data stream. Finally, unlike specialized 
cameras used for PIV (e.g., actively cooled sensor, double-
shutter capability), event cameras are available at a signifi-
cantly reduced unit cost as their use is intended for a much 
wider range of applications such as autonomous navigation, 
3d sensing, object counting, to name a few.

Processing of the captured event data can be optimized 
considerably through GPU implementations such that real-
time processing becomes feasible. Latency between data 
acquisition (event data input) and result can be on the order 
of milliseconds, as already demonstrated in a multitude of 
applications using EBV [e.g., real-time autonomous navi-
gation (Rebecq et al. 2018; Kim and Kim 2021; Liu et al. 
2021) or collision avoidance (Falanga et al. 2020)].

EBV sensor development is ongoing with some event 
cameras already employing sensors with megapixel (HD) 
resolution along with small pixels in the 5 μ m range. The 
use of back-side illuminated pixels, such as in the device 
used in the current study, further increases sensitivity and 
dynamic range. Currently, the systems can image at an 
equivalent frame rate of up to 5–10 kHz. The latency of 
future EBV sensors could be reduced through the imple-
mentation of alternative read-out architectures which 
would increase the temporal precision of fast occurring 
events. The previously shown velocity data of the cylinder 
wake flow already has an effective temporal resolution of 
250 μ s with a corresponding frame rate of 4 kHz.

Beyond the application described herein, event-based 
vision will certainly find other applications in the field of 
flow diagnostics and related areas such as time-resolved 
background-oriented schlieren (BOS) and flow visualization.
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