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ABSTRACT

Verifying the safety and security requirements of embedded software requires a code analysis.
Many software systems are developed based on software development libraries; therefore, code
specifications are known at compiling time. Hence, many source-code analyses will be excluded,
and low-level intermediate representations (LLIRs) of the analyzed binaries are preferred. Im-
proving the expressiveness of the LLIR and enhancing it with more information from the binaries
will improve the tightness of the applied analyses. This work is interested in developing a lifter
that lifts binaries into an enhanced LLIR and can resolve indirect jumps. LLVM is used as the
LLIR.

Our proposed lifter, which we call DEL (Dynamic symbolic Execution Lifter), combines both
static and dynamic symbolic execution and strives to fully recover the analyzed program’s control
flow. DEL consists of an API to translate ARMv7-M assembly instructions into static single
assignment LLVM instructions, an LLIR to Z3 expressions parser, a memory model, a register
model, and a specialized condition flags handler. This work used a case study based on a software
development library for onboard data-handling applications developed at the German Aerospace
Center (DLR), which is called the Tasking Framework. DEL demonstrated high accuracy of
around 93% in resolving indirect jumps in our case study.
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Chapter 1

Introduction

Designing embedded systems for space applications is a complicated process. The moderniza-
tion of aerospace systems has given rise to more-electric technologies and tightly interconnected
architectures, contributing to a considerable increase in design complexity. Various architectural
design approaches develop these systems effectively and efficiently. Because of its capacity to
address the complexity of systems, the model-based approach is amongst the most ubiquitous
design techniques [10]. The model-based approach entails creating models as rudimentary blocks,
which create the entire embedded system’s software using code that is generated automatically
[10]. This approach enhances productivity and guarantees the correctness of the software as the
applications are implemented in a structured and error-proof manner [10]. There are numerous
software analysis techniques that can be applied on the developed models including data flow
analysis [12, 72], worst-case execution time analysis (WCET) [80], input/output analysis [54],
and security analysis [33]. Nevertheless, their analysis becomes increasingly challenging because
the developed models are intricate and dynamic.

The Tasking Framework is a model-based framework developed by the German Aerospace
Center’s Institute for Software Technology (DLR). This software library supports the scheduling
of embedded software space systems. Tasks are represented in the Taking Framework as graphs
of tasks with arbitrary activation patterns. It is implemented in C++ and follows an event-
driven paradigm. The framework’s capabilities have been applied to a wide range of non-safety
critical aerospace applications since its inception, including [76] and [45]. The Tasking Framework
must be certified for use in safety-critical applications, which can be indeed an arduous process.
The ECS-Q-ST-40C is the most commonly used certification standard for aerospace-embedded
programs and the standard for validating implementation and verification tools [1]. It defines five
levels of design assurance, varying between E-Level, which requires the least amount of testing
and verification, to A-Level, which necessitates significant testing and verification. The standard
demands the Tasking Framework at the very least to demonstrate functional correctness and the
absence of dangers in the software to get qualified for the C-Level certification. The presented
proofs must not be vulnerable to any logical or reasonable objections. It is required to show that
all real-time tasks are completed on time or that missing the deadlines will not jeopardize the
system’s safety [10].

The computation of the WCET helps establish deadline correctness. A precise WCET analy-
sis requires detailed architectural knowledge. Performing a WCET analysis to the source code of
the Tasking Framework makes it language-dependent, while analyzing its binaries is hardware-
dependent. Consequently, analyzing at the intermediate representation (IR) level proves a more
viable option. An IR is the data format used inside a compiler or virtual machine to represent
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14 CHAPTER 1. INTRODUCTION

source code. It is designed to be suitable for post-processing, for instance, optimization and
translation. It should accurately represent the source code with no loss of information – and in-
dependent of any specific source or target language. Strictly speaking, there are two approaches
to acquiring the IR of a program, as shown in Figure 1.1, is either through compiling source code
or through lifting binaries.

Nevertheless, the high-level IR acquired from compilers lacks information about the memory
model and ignores linking effects. As a result, low-level IRs acquired through binary lifting have
become an increasingly attractive alternative for performing software analyses at the intermediate
level of a program. Even so, due to underlying factors such as the handling of condition flags
and resolving indirect control flow targets, it is pretty challenging to generate a highly accurate
and 100% representative IR.

Figure 1.1: The two approaches to get an IR, compiling source code and lifting binaries.

An IR should be able to capture the control flow of the original program. A control flow
graph (CFG) illustrates such flow. Figure 1.2 showcases the CFG of a simple Python program.
A CFG represents all possible paths a program takes during execution in program analysis. The
CFG consists of nodes exhibiting blocks of instructions and directed edges exhibiting control
flow jumps [90]. The CFG is the cornerstone of numerous program analysis techniques, such as
taint analysis [44, 84] and symbolic execution [53, 73]. The CFG is also prominent in program
verification [42, 70], malware detection [28, 47], code similarity analysis [63, 74], and software
vulnerability detection [49, 87]. Consequently, implementing the right approach to generate a
complete and accurate CFG while lifting to an IR is imperative [90].

Nevertheless, indirect jumps present a challenge when constructing complete CFGs [31]. We
can classify a jump instruction as either direct or indirect. A direct jump has a statically
determined target which refers to a specific location in the program; however, for an indirect
jump, the jump target is execution-dependant and is only known at run-time [90]. In most
cases, indirect branches provide dynamic programming behaviors by implementing standard
programming constructs such as function pointers and virtual function calls [90]. While indirect
jumps are ubiquitous and helpful, a purely static analysis often fails to resolve an indirect jump’s
target due to its dynamic nature, which poses intrinsic issues when lifting into an IR module
that mirrors a complete CFG.

There are two lifting solutions available today: static lifting and dynamic lifting. Static
techniques do not require executing the target programs; instead, they only need to examine
their code structure. These approaches offer high code coverage at a low time cost. As a result,
static lifting tools like McSema [2] are used extensively in a wide range of analyses. Nevertheless,
static techniques lack completeness because of their inability to resolve indirect jump relations
[90]. A dynamic lifter such as BinRec [14] on the other hand, runs programs on a set of test
suites and acquires control flow information from the traces of the execution while lifting. This
dynamic approach is capable of resolving several indirect jumps. However, the precision of the
CFG constructed by it is determined by how well the test cases cover indirect jumps. Xu et al.
[85] proposed forcing a program’s execution to investigate both possible paths of each conditional
branch in order to increase test case coverage. Although forced execution is a powerful tool for
analyses, it still lacks sufficient coverage for large-scale programs.

In this thesis, we propose a novel hybrid static-dynamic symbolic execution lifter (DEL) that
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Figure 1.2: From source code to CFG.

combines both dynamic and static techniques while lifting to a low-level virtual machine (LLVM)
[3] IR. Our approach is motivated by the fact that each indirect jump in the program can have
multiple potential-jump targets. Each indirect jump’s target calculation depends on an input-
based potential execution path starting from the program’s entry point up to the basic block
that terminates with the indirect jump in question.

Our key insight is to combine static and dynamic symbolic execution while lifting to resolve
all potential-jump targets of each indirect branch instruction. More specifically, The static part
of our approach aims to construct a preliminary IR module while generating a mathematical
expression for each potential-jump target address of each indirect jump detected in the binary
we aim to lift. The dynamic part then performs the dynamic symbolic execution (DSE) [78] of
the statically generated IR module to resolve all individual expressions of each potential-jump
target of all indirect jumps to a concrete value. DEL uses Microsoft’s Z3 [37] solver for its
DSE engine. We suggested an iterative approach of varying the program’s input during the
dynamic analysis continuously. By varying the program input, we aim to explore all possible
execution paths leading to an indirect jump instruction’s basic block and resolve all possible
potential-jump targets for each indirect jump detected. As the final output, we consider the IR
constructed through multiple iterations.

In order to lift into a more complete and representative IR for the Tasking Framework, DEL
implements its memory and register model. The lifted IR module captures the effects of each
instruction on the state of the memory and register model and the effects of each instruction on
the state of the condition flags.
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1.1 Contribution

Nowadays, binary lifting tools rely heavily on static disassembly techniques and heuristics to
disassemble binaries, an approach that fails to identify indirect control-flow targets, accurately
distinguish between data constants and code pointers, and correctly interpret instruction and
data byte boundaries. In this thesis, we present DEL, a new optimized approach of dynamic
binary lifting to a low-level IR. DEL makes it possible to make use of current IR-level compiler
analyses on binaries where static lifting falls short. DEL integrates symbolic execution into the
lifting process to generate an enhanced IR that models the state of the memory, registers, and
condition flags of the program as it executes. We divided our work into the following tasks.

• Overview of the state-of-the-art lifting tools and techniques

We present an overview of the available lifting tools and techniques.

• Introducing a new hybrid approach for lifting binaries into an enhanced inter-
mediate representation

We introduce a new hybrid lifting approach that tackles issues related to existing lifting
tools.

• Comprehensive Evaluation

We evaluate the percentage of indirect control flow targets resolved by our lifting approach
for a given test case of the Tasking Framework.

1.2 Structure

Following is an outline of this thesis. Chapter two discusses program analysis at the IR level
and presents an overview of the state-of-the-art lifting tools and techniques. Chapter three
presents the Tasking Framework and its relevance for IR analysis. Chapter four presents our
new dynamic lifting tool DEL and its enhanced generated IR module features. Chapter five
discusses the results of our approach. Finally, Chapter six presents our discussion and future
steps.



Chapter 2

State of the art

Many safety and security analyses can be performed on the IR of a program. An application
could have one of two IRs, one that is spawned from binary lifters, the other from compilers. Both
IRs possess expressive capabilities that set them apart. IRs obtained from source code exhibit
high-level language constructs such as loops and functions. Alternatively, IRs obtained from a
binary lifter do not have to take into account these language abstractions in their underlying
syntax tree. Using a binary lifter to derive the IR of a program could be especially useful when
the analyses require information that cannot be extracted from the source code. This thesis
focuses on IRs acquired from binary lifters and does not consider the work of compilers in IR
generation.

In an IR code analysis, various analysis techniques are typically used to model data types,
flows, and control paths of the program being analyzed. The refined model can then be eval-
uated to identify well-known security issues. The results can be compiled into comprehensive
vulnerability reports with effective practical countering actions to tackle such vulnerabilities.

There are two approaches when analyzing at the IR level: static and dynamic analyses.

• Static analysis

A static analysis examines programs to obtain specific code characteristics and behaviors
before it is run. It is extensively utilized in many compiler optimizations and program
analyses. It gives the chance to collect information about programs without executing them,
thus acquiring a minimal or zero runtime cost [88]. A static analysis typically identifies
bugs preceding the execution of a program (e.g., between coding and unit testing).

• Dynamic analysis

A dynamic analysis entails examining a particular program as it runs. Various tools are
available for dynamic analysis, including profilers, checkers, and execution visualizers. A
program could have code for analysis incorporated fully inline or external routines that
are invoked by the inline analysis code. This code runs in the background, not disrupting
the program’s normal execution (other than maybe slugging it down), but instead carries
out additional work (during the analysis session), such as checking for bugs or assessing
performance [61]. A dynamic analysis pinpoints potential bugs that may appear when a
program is run (e.g., during unit testing).

Both strategies complement one another. A static analysis is generally reliable, as it considers
all execution paths in a program. A dynamic analysis, however, is usually less pessimistic than a
static analysis because it employs real values ”in the perfect light of runtime” [38]. However, it

17



18 CHAPTER 2. STATE OF THE ART

lacks sound reasoning, as it only examines a single execution path [41]. Consequently, in reality,
a dynamic analysis tends to be far less complex than a static analysis.

As we move forward, we examine the first step of analyzing at the IR level: the generation
of an IR module through binary lifting.

2.1 Binary lifting

Binary lifting is transforming a binary executable into a higher-level intermediate language. A
crucial part of binary translation, analysis, and instrumentation applications is the translation
of low-level machine instructions into higher-level IR [52]. A mapping table between machine
instructions and IR is usually manually created in these systems. The mapping table designates
a single or a set of IR instructions to each assembly code instruction in the Instruction Set
Architecture (ISA). ISA cross-compatibility is typically achieved with this method. A formal
definition of binary lifting adapted from [52] is as follows:

Definition 1 (Binary Lifting).
Binary lifting is a function ↑ tarins: I

ins
ISA → I tar

IR , where I ISA is an instruction from a specific ISA,
I IR is an IR instruction, ins is the name of an ISA and tar is the target IR we would like to lift to.

For example, I x86
ISA means x86 assembly language, and I V EX

IR is VEX IR. ↑ vexx86 is a function
to which an x86 binary code is given as input and outputs a translated VEX instance. So the
expression ↑ x86vex(0x41) lifts the binary instruction 0x41 into a VEX IR instance as highlighted in
Figure 2.1, 0x41 is the inc ecx when decoded. A tool that conducts this process of lifting binaries
is called a binary lifter.

Figure 2.1: A lifted IR instance of Valgrind [62].

The term Binary-Based IR was first introduced by [52] to differentiate between two types of
IRs: one derived from binary lifters, the other from compilers. The main distinguishing feature
between Binary-Based IRs and IRs from compiler theory [11] is their expressive ability [52]. IRs
generated from source code exhibit high-level language constructs such as loops and functions.
However, Binary-Based IRs do not need to take such language components into account in their
abstract syntax tree [52]. Binary analysis tools like Valgrind and bap create their own Binary-
Based IRs to convey the semantics of binary code at a low level.

Strictly speaking, Binary-Based IRs have two main properties: explicitness and self-containment
[52]. A Binary-Based IR is said to be explicit if it updates only a single variable in the execu-
tion context. On the other hand, the self-containment property of a Binary-Based IR basically
demonstrates whether or not it fully reflects the relevant binary code semantics. For instance,
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In QEMU [24], the semantics of binary instructions are often expressed with external functions.
Here, is an example from [52] of a logical AND instruction in x86: pand xmm0, xmm1. Upon
lifting the instruction to the Binary IR of QEMU (TCG), the IR instance directly forwards both
operands to an external function named pandxmm rather than explicitly defining its operation
within the IR’s semantics. In this scenario, [52] argued that the IR instance is not self-contained
since it has a side-effect.

Typically, in IR analysis, The explicitness helps perform control- and data-flow analyses; how-
ever, self-containment makes it possible to conduct analyses without unwanted over-approximation
[52].

2.1.1 General Phases of Binary Lifting

This section highlights the common steps that a binary lifting tool goes through to transform
binaries to a higher-level intermediate representation. Figure 2.2 illustrates these steps according
to the logical order of their application to low-level code.

The first step in lifting binary code is to disassemble it. In the next section, we will discuss
the different disassembly methods currently used in practice.

Figure 2.2: Binary lifting stages.

• Disassembly

Disassembly is the translation of a program from machine code into assembly language
[55]. Next, we highlight the two different disassembly techniques currently employed by
existing binary analysis tools.

– Disassembly methods

∗ Static disassembly
A static disassembler reads the binary from a file and parses the headers and
section contents to disassemble it. This technique has zero runtime overhead
because all of the work takes place offline. When utilized by tools like profilers
and binary rewriters, the output of a static disassembler can boost performance
[20]. The GNU objdump utility is a good example of a static disassembler.
By far, the most well-known disassembler for static analysis and reverse engineer-
ing is IDA pro [4]. To find function start addresses, IDA Pro utilizes a depth-first
call-graph traversal. The disassembler can accurately identify only functions that
are directly called. For indirect function calls, however, it uses heuristics like
scanning for conventional function prologue patterns. Nevertheless, the applied
heuristics are not portable to other architectures and are complex to implement
[40]. Even with the high static disassembly coverage of IDA Pro, it cannot be
used in analyses that have no tolerance for intermittent errors in the disassembly
output [20].

∗ Dynamic disassembly
A dynamic disassembler interacts with the software to be disassembled. Each
instruction is deconstructed before it is executed as the software runs. The key
benefit of this method is that data and code can be differentiated because the
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disassembler only disassembles the instructions that will be executed. As in-
structions are deconstructed and executed, it becomes possible to use dynamic
disassemblers with self-modifying code [20].
Because control must be passed to the disassembler before each instruction can
be carried out, the performance of dynamic disassemblers is their worst flaw. In
other words, the application runtime is significantly slowed down since control
must be handed to the disassembler prior to the execution of each instruction.
Moreover, disassemblers that use dynamic disassembly do not provide full code
coverage since such a technique only disassembles specific program paths, which
are executed given a predefined program input [20].
Despite the runtime overhead and low coverage of dynamic disassembly, [20] ar-
gued that the approach’s ability to resolve indirect control flow targets makes it
very useful for much current instrumentation and binary analysis tools, including
Pin [58] and Valgrind [62].

804964a: bf 00 nop

804964c: 55 push%ebp

804964d: 89 e5 mov %esp,%ebp

804964f: 53 push%ebx

8049650: 83 ec 04 sub $0x4.%esp

8049653: eb 04 jmp 0x8049658

8049655: e6 02 04 <junk>

8049658: be 05 00 00 00 mov 1$0x5,%esi

Listing 1: Dynamic Disassembly Output.

804964c: 55 push%ebp

804964d: 89 e5 mov %esp,%ebp

804964f: 53 push%ebx

8049650: 83 ec 04 sub $0x4.%esp

8049653: eb 04 jmp 0x8049658

8049655: e6 02 out Ox2, al

8049657: 04 be add al, Oxbe

8049659: 05 00 00 00 12 add eax,0x12000

Listing 2: Linear Disassembly Output.

– Disassembly algorithms

∗ Linear sweep
Utilizing the linear sweep algorithm is the easiest and quickest way to disassemble
binaries [20]. The GNU disassembler, objdump, is based on such algorithm [5].
The disassembly commences from the entry point found in the binary’s header in
virtually every binary. Each consecutive instruction is disassembled from the sub-
sequent position, which is determined by adding the current instruction’s length
to its start address.
Linn and Debray’s publication [57] is the foundation for the linear sweep method.
Algorithm 1 from [57] below is a pseudocode depiction of the linear disassembly
approach’s theoretical implementation.
The linear sweep algorithm, however, has its shortcomings. Its main flaw is that
it cannot differentiate between data and code. Any data contained in the code
is disassembled incorrectly [20]. Above is a sample log from [20] that includes
the attested disassembled output using a dynamic disassembler shown in Listing
1 and that of objdump shown in Listing 2. [20] demonstrated through the run-
time disassembler output that some garbage bytes are stored following the jump
instruction. The jump target follows the current instruction, 0x8049658, by 0x4
bytes. They argued that it is possible that the garbage bytes are perhaps data
or merely alignment bytes. When using a linear disassembler, following the ren-
dering of the two-byte jump instruction that appears at address 0x8049653, the
disassembler proceeds with decoding at address 0x8049655, which is most likely
not code. As a result, the actual jump destination is wrongly deconstructed, and
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the output is a jump in the middle of the instruction [20].

∗ Recursive traversal
The recursive traversal algorithm traverses through one starting address to one
end address in a sequential manner for every recursive traversal call. If the algo-
rithm has visited an address already, the procedure will return. Otherwise, the
algorithm decodes the current address instruction and checks whether it is a jump
or a call instruction. In this approach, potential branches and function calls are
followed to identify new controlling edges.
Algorithm 2 from [57] highlights the pseudocode characterization of a recursive
traversal algorithm. Because it considers the control flow in the binary, the re-
cursive traversal approach has several advantages over the linear sweep [20]. For
example, data is not falsely identified as code. As a jump instruction is disas-
sembled, the disassembler decodes the jump target rather than heedlessly disas-
sembling the next instruction. However, code accessed by indirect control flow
transfers is not disassembled by a recursive disassembly algorithm [20].

• Control flow graph re-construction

For binary analyses, a Control Flow Graph (CFG) is indispensable. It is a graph that
illustrates all paths that could potentially be taken throughout the execution of a program.
Figure 2.3 shows a sample CFG built for the Mälardalen WCET crc benchmark binaries
[6]. In this example, there are three functions, icrc, icrc1, and main. Each function in the
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source code is viewed as a cluster of interlinked basic blocks. Each basic block is represented
by a node containing the address of the first instruction in that basic block.

A CFG is required for conducting an accurate IR analysis. For most IR analysis algorithms,
the flow of the program being analyzed is a crucial consideration, and hence such algorithms
indeed require a CFG. Following the disassembly of binary code, it is necessary to create
a CFG or build on the premise of one created before disassembly.

There are numerous algorithms to choose from for building CFGs. A disassembler can
readily determine the targets of the edges caused by direct branches and call instructions
and append the edges for them to the CFG. Like any static disassembler, IDA Pro, for
example, creates a CFG with only the direct branch and call instructions as edges without
considering indirect jumps.

The traditional method for creating a CFG is to begin at the start of a function and continue
through instructions. At first, the CFG has neither nodes nor edges. The algorithm begins
at the point of entry, and whenever a jump command is found, the current basic block ends.
Generally, a basic block contains instructions devoid of branching instructions or targets
of branching instructions between them. In other words, in a basic block, an instruction
is executed prior to the instructions in subsequent addresses in the same basic block, with
no instruction being executed in the middle [88].

For example, in the code snippet of Listing 3 of the function icrc1 in Mälardalen WCET crc
benchmark, Figure 2.4 shows that the icrc1 function is constructed of 7 basic blocks. Each
basic block ends with a branching instruction such as the basic block labeled BB1 or ends
with an assembly instruction immediately preceding an instruction targetted by a jump
instruction. A good example for the latter case would be BB6, where its last instruction
of address 0x00008084 directly precedes the load instruction of address 0x00008088, which
is the target address of the unconditional branching instruction 0x00008078 of BB5.

1 unsigned short icrc1(unsigned short CRC, unsigned char onech)

2 {

3 int i;

4 unsigned short ans=(crc^onech << 8);

5

6 for (i=0;i<8;i++) {

7 if (ans & 0x8000)

8 ans = (ans <<= 1) ^ 4129;

9 else

10 ans <<= 1;

11 }

12 return ans;

13 }

Listing 3: Icrc1 source code from Mälardalen WCET crc benchmark [6].

Even though the standard approach for CFG construction mentioned above is frequently
used in analyzing the control flow of both the source and intermediate level representations
generated by compilers, it cannot be applied in the opposite direction when binaries are
statically lifted into IR. There are indirect calls and jumps where the targets can only
be found in registers or memory. As a result, it is not always feasible to determine the
destination of indirect calls and jumps statically. The targets of indirect calls and jumps
can result from data segments that are globally initialized, such as function tables and
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jump tables [88]. They could rely on the input set, which is difficult to establish statically.
In light of this, existing static analyses can either be cautious, reasoning that an indirect
jump can leap to any basic block, any instruction, or in the middle of an instruction, or
perhaps arbitrarily supposing that every indirect jump can only step into a limited number
of targets [88].

Balakrishnan et al. devised the Value Set Analysis (VSA) algorithm for statically analyzing
the memory contents in binary code [21]. On-the-spot detection of control flow boundaries
caused by indirect calls is possible using this method. Here, the aim is primarily to cre-
ate an IR for binary code analogous to the IR produced by a compiler from the source
code. Firstly, the algorithm used in this technique takes as input the assembly code pro-
vided by IDA Pro, which includes procedure boundaries and an incomplete CFG. Secondly,
a value set analysis is conducted to develop a complete CFG. With its coupled numeric
and pointer analysis algorithm, VSA calculates a rounded-off set of values or addresses that
could be stored in each register and memory location [22]. Generally speaking, VSA can
be helpful when analyzing indirect jump targets or even analyzing the potential targets
of ”read” and ”write” operations in memory. However, due to failed branch conditions
tracking, value set analysis can suffer from a lack of accuracy [56].

In light of the approaches mentioned above, it becomes clear that a strictly static approach
hinders the accurate reconstruction of a CFG from binary code. Consequently, resorting to
the dynamic execution of the program being analyzed has become a more appealing option.
The goal is to run programs against a suite of test cases and acquire the control-flow data
from the traces of the execution [90]. This method can resolve indirect jumps and capture
an accurate control flow. However, the ability of the test cases to cover all indirect jumps
determines the completeness of the CFG created using this method [10]. Conventional
dynamic analysis tools handle only a limited part of the program execution routes. In light
of this, [85] has implemented forced execution to increase the code coverage. In forced
execution, the code is run symbolically to examine both pathways at each branch point,
and the indirect branches’ targets are retrieved in a scale-able manner at run time. Using
the same rationale to resolve indirect jumps, Syder [78] implemented the dynamic symbolic
execution (DSE), which is a method for determining the program’s execution based on a
particular input value.

In this study, DEL aims to integrate both static and dynamic symbolic execution into
the lifting process itself. Its goal is to provide an enhanced intermediate representation of
C++ programs by combining some of the above-mentioned static and dynamic approaches.
Firstly, DEL statically disassembles the binary it aims to lift and then constructs a pre-
liminary CFG using the standard approach for CFG reconstruction discussed above. DEL
then translates all the assembly instructions generated by its disassembler into an LLVM
IR module. Embedded inside this module is the preliminary CFG constructed from step
one. DEL then performs a static symbolic execution in an effort of formulating each po-
tential target of the indirect jumps into individual Z3 formulas. DEL then proceeds with
dynamically symbolically executing the preliminary IR module to resolve the Z3 formulas
generated for each indirect jump detected and finally output an enhanced IR module that
can accurately represent the control flow of the program being analyzed.
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Figure 2.3: DEL ’s reconstructed CFG for WCET crc benchmark [6].
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Figure 2.4: DEL ’s reconstructed CFG for the icrc1 function.
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• Translation

After re-constructing the CFG of a program, a lifting tool typically translates each assembly
code instruction into its equivalent set of IR instructions.

DEL implements its assembly to IR translator as a C++ API. DEL’s translator takes
an assembly code instruction as an argument and maps its opcode to the relevant API
that translates it into a set of LLVM instructions. For this study, DEL’s translator API
was implemented for a subset of the ARMv7-M ISA [7] present in the assembly code of
the Tasking Framework’s case study, the Join fork example shown in Listing A.1. ARM
assembly instructions that were not included in the assembly code of our case study have
not been considered in the implementation of the translator API. Chapter 4 explains in
more detail how the API was implemented.

With translation marking the end of the binary lifting process, next, we explore the current
limitations of binary lifting tools.

2.1.2 Today’s challenges in binary lifting

Binary lifting has not gained much traction in practice due to its reliance on static disassem-
bly. This approach fails to account for indirect control-flow targets, distinguish between data
constants and code pointers, and recognize instruction and data byte boundaries [14].

[14] argued that transformation, analysis, and recompilation of binary code could be com-
plicated without accurate representation at the high level. If the binary code is encoded or
ciphered, the problem is exacerbated. [14] highlighted some prominent challenges when perform-
ing binary lifting and program transformations using purely static approaches. Here, we provide
an overview of these challenges and promote our hybrid approach of lifting by highlighting why
static approaches cannot be relied upon in the context of binary lifting.

• Code vs data, and reference ambiguity:

Data and references inserted into programs by compilers are usually not labeled. Program
analysis must deduce the relevant labels to segregate code from data and constants from
references. In the general case, there is no clear-cut answer to such an issue, and modern
analyzers use heuristics to estimate the right labeling scheme [82, 83, 89]. If, for example,
a data value has the correct alignment and a valid binary code address, it can be deemed
a code reference. However, value collisions are common [82], and many platforms do not
require alignment.

Generally speaking, analyzing how the processor interprets values from memory can aid a
dynamic tool with precisely assigning labels.

• Indirect control flow:

Based on the execution context, indirect control flow transfers (ICFTS) can pass control to
multiple target locations. Such indirect calls take the form of function pointers in C code,
and they are, in fact, more common in C++ code appearing as virtual functions. Addi-
tionally, position-independent code (PIC) and switch statements are frequently enacted in
indirect branches. All direct branches turn into indirect branches in PIC, which append
the offset of the binary/ library’s memory mapping to the branch target.

Based on the standard scenario, statically determining all potential targets of ICFTS is
impossible [46]. However, when it comes to determining the possible targets of branching
instructions that get their target address from jump tables, static techniques have proven
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to be proficient [39, 89]. Nevertheless, resolving indirect function calls and returns re-
mains an issue. Although Wang et al. [83] claim that their technique can assist in dealing
with ICFTs, their prototype Uroboros indeed does not [14]. Moreover, based on architec-
ture, the rudimentary analytical techniques [39] employed in Rev.Ng [40] state they at best
have achieved 90-95 percent jump target recovery.

As opposed to the approaches mentioned above, given enough input configurations (to
cover as many execution paths as possible), the DSE of code at the intermediate level can
effectively identify control flow targets. The DSE follows the execution path to any jump
target, regardless of how the destination address is derived.

• poorly-structured code:

Apart from optimization, manually produced assembly code is also used for debugging
and disassembly prevention. Although the generated code is deterministic, excessive op-
timizations added by a compiler may lead to poorly defined instruction constructs [18].
Overlapping instructions remain a popular anti-disassembly strategy [86], but they can
also be found in highly optimized libraries [18]. [14] mentioned that some compilers reduce
selection control structures (e.g., switch/case) to jump tables and inline data. However, de-
tecting function boundaries can become challenging with overlapping multi-entry functions,
basic blocks, and tail calls.

Typically, dynamic techniques avoid handling ill-formed code, as they are only concerned
with instructions that the processor executes [14].

• Obfuscation:

Binary lifting techniques will inevitably encounter binary files that have been actively mod-
ified to impede analysis. Even though various obfuscation strategies have been thoroughly
published [34, 35, 79], they nevertheless pose major difficulties in actual use. Virtualizing
obfuscators, for example, convert executable code in code segments to bytecode in data seg-
ments and insert a virtual machine in the program to elucidate the bytecode [17, 34]. The
static code parts of a program covered by such an obfuscator give very little insight into the
program’s functionality. Moreover, control-flow flattening [35], obscure predicates [36] and
aliasing [81] are some additional obfuscation approaches that can indeed pose problems.
These modifications can be utilized to synthetically expand the complexity and size of the
control-flow graph of a program to the point where performing an accurate IR analysis
becomes very challenging. However, employing dynamic approaches midst of the lifting
process can reverse all of these obfuscating processes by eliminating dead code and aliases
that are not needed [14].

Now that we have discussed the most prevailing challenges faced by today’s existing binary lifters,
we move forward to review the state-of-the-art binary analysis and lifting tools.

2.2 State of the Art Analysis Tools

There have been many frameworks developed for program analysis. In most cases, these projects
go beyond simply analyzing binaries to reverse engineer systems and firmware. There is currently
no single tool capable of performing all the tasks required in the analysis process. Rather than
choosing one, it is worthwhile to explore all alternatives. Tools such as these are primarily
utilized for binary analysis, malware analysis, and reverse engineering. The purpose of this
section is to provide a comprehensive overview of the most popular program analysis tools out
there, emphasizing their strengths and shortcomings.
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2.2.1 McSema

McSema is a static binary lifter that transforms executable binaries to LLVM IR. Analysts can
use McSema to detect security vulnerabilities in binary programs, independently verify vendor
source code, and write high-code-coverage application tests. Despite its strengths when employed
in the static binary analysis, McSema does indeed have its shortcomings. When it comes to CFG
reconstruction, McSema relies heavily on IDA Pro, where only directly called functions can be
accurately identified. As a result, IDA Pro, in a way, hinders McSema’s performance due to its
inability to detect function pointers in real-world code correctly. Such a scenario is demonstrated
in Listing 4 of the excerpt of decompress.c: libjpeg example from a case study by [13]. Here, the
structure object ”progress” provides a member field ”progress monitor” that stores the address
of a callback function at line 8, While at the same time, a second member ”pass-limit” holds
an integer indicating a loop bound at line 9, which turns out to be in a comparable value range
as that of the address of the callback function. Altinay [13] reasons that the fact that IDA
utilizes heuristics to determine integers with values in the executable section as code pointers
will cause McSema’s lifted binaries in this specific case to incorrectly modify the integer, which
in turn alters the program’s semantics. Likewise, if the code pointers are not identified correctly,
callbacks could be poorly managed in this case.

Another challenge would be dealing with obfuscated code. McSema is designed for the trans-
lation of compiler-generated binaries and due to its reliance on the thoroughness of IDA pro’s
recovered CFG, using McSema in the accurate binary analysis of obfuscated code becomes in-
feasible. After all, IDA pro’s recovered CFG will not always accurately capture the program’s
semantics, especially if code encryption takes place.

1 void callback_func(j_common - ptr cinfo) {

2 printf("");

3 }

4 int main(int arge, char** argv) {

5 struct jpeg - decompress - struct info; //jpeg info

6 struct jpeg - progress - mgr progress;

7 // After some initialization code

8 progress.progress monitor = callback_func;

9 progress.pass_limit = 0x8048860;

10 progress.pass - counter = OL;

11 info.progress = &progress;

12 jpeg - start_decompress(&info);

13 char* data = (char*)malloc(dataSize);

14 readData(info, data);

15 }

Listing 4: Excerpt of decompress.c: libjpeg example in C [8].

2.2.2 BinRec

BinRec uses dynamic analysis to lift binary code to LLVM IR, where complicated transformations
can be applied, then lowers it back to machine code, resulting in a recovered binary [14].

Binrec’s primary purpose is to retrieve code that is difficult to analyze statically. Even though
their use of dynamic analysis eliminates this obstacle, it also introduces the issue of covering code
that is not used when lifting. While dynamically lifting a program from a single trace, the user
is only presented with one of the multiple alternative code pathways. As a result, the recovered
binary only works for paths with all of the control flow edges detected during lifting.
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2.2.3 BAP

BAP is an open-source platform for performing binary code verification and analysis. One of
BAP’s flaws is that its lifting mechanism assumes it will be directed to an aligned sequence
of instructions. As a result, the user must determine code locations. Although this can be
accomplished by using a recursive descent analysis [26], still such analysis technique is once
more ineffectual at resolving indirect control flow targets. Consequently, employing BAP in
analyses where indirect jumps must be resolved becomes exceedingly challenging. Moreover,
BAP uses IR instructions that are not explicit, which makes the prospect of the DSE of its lifted
IR challenging and hence restricts the tool’s ability to perform control- and data-flow analyses
based on the DSE [10].

2.2.4 REV.NG

REV.NG is a binary analysis framework that works with a variety of architectures and is based
on QEMU [24]and LLVM. When it comes to CFG recovery, REV.NG largely relies on the Simple
Expression Tracker (SET) and Offset Shifted Range Analysis (OSRA) [39].

SET is a technique for extracting jump targets from translated code. It recognizes all store
instructions and keeps track of how the value being stored is calculated successively. The analysis
continues as long as the operations that make up the expression rely only on one non-constant
operand. In actuality, the purpose of SET is to gather the destination addresses of direct and
indirect jumps that realize the target address in many instructions. This method can be quite
useful for finding the most basic jump targets embedded in the code. It can retrieve the desti-
nations of direct jumps, indirect jumps with a fixed destination manifested in a register, and all
call instruction return addresses [39]. However useful it may be, SET still fails to retrieve jump
targets resulting from switch statements in which the jump destination address is dependent on
a non-constant operand: the result of the switch statement’s expression evaluation [39].

OSRA however, is a specific data flow analysis whose purpose is to illustrate how the tar-
get address of an indirect jump caused by a switch statement is calculated. It achieves this by
formulating each Static Single Assignment (SSA) value of the relevant IR instruction as an ex-
pression that eventually highlights all the operations involved in the target address computation.
It is primarily implemented to recover jump targets for a specific variety of switch statements.
OSRA however, is not without flaws. In general, OSRA is not capable of reading data from
memory segments contained in binary code and only supports a limited set of binary operations
[39].

In REV.NG, both SET and OSRA collaborate while utilizing an SSA intermediate represen-
tation and cycle several times until they yield no further information that could be used in the
CFG reconstruction process. Indeed, these analyses could be utilized as a prelude towards ob-
taining a basic CFG. However, the recovered CFGs’ accuracy tends to be a problem [39]. A
source of such inaccuracy could be, for example, an aggressively optimized nested switch. Where
REV.NG could not determine the size of the jump tables utilized by the inner switch statement
in specific functions that used nested switch statements. Another source of inaccuracy is the
jump table addresses spilled on the stack. Because the initial address of a jump table may be
utilized several times within the function, GCC can spill it on the stack in the function prologue
in some cases [40]. Furthermore, due to it not having a dynamic component that involves the
actual execution of the program being analyzed, REV.NG has no information about function
calls, making tracking stack values across function calls exceedingly challenging [40].
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2.2.5 Angr

Angr is a binary analysis framework that combines many current cutting-edge binary analysis
algorithms. It provides a reliable foundation for many different analyses, both static and dynamic.
When analyzing binaries, this binary analysis tool particularly introduces a dynamic component.
It employs a technique known as under-constrained symbolic execution UCSE [66], which rather
than executing the full program, executes an arbitrary function within the program that is being
analyzed directly.

The fundamental goal of Angrs’ usage of UCSE is to prove the correctness of Real Code.
Instead of starting with main, UCSE starts with an arbitrary function chosen by the user. When
the function exits all possible execution paths within it, the intended check of the function’s
correctness is complete (a real case example would be checking that the introduction of a patch
does not cause a crash). However, directly invoking functions within a program poses a unique
complication where a program’s crash points detected by UCSE are not reproducible. This
problem happens because each function is executed independently while at the same time the
analysis cannot reason about how to get to a certain function. Since each function is generated
without prior knowledge of its arguments and the global variables with which it is called in
actual executions, the analysis is rendered inaccurate [66]. On the other hand, performing the
DSE of the whole program involves acquiring input values from outside sources. [66] argued
that in most circumstances, valid software should reject erroneous external inputs rather than
crashing. Individual functions, however, frequently have preconditions forced on their inputs.
A function may, for example, require non-null pointer arguments. Moreover, because UCSE
executes functions without prompting the user for their preconditions, the inputs it takes into
account may be an over-approximation of the permissible values the function can take [66]. As a
result, UCSE symbolic inputs are labeled as under-constrained, indicating that they lack specific
constraints. While this approach allows inaccessible code to be thoroughly examined, the lack
of preconditions may result in unfounded errors being reported during execution [66].

Strictly speaking, the DSE of the whole program essentially investigates every execution
path during a program’s execution in a bit-precise manner and considers all possible input
values. It explores a much larger number of paths than conventional testing, hence guaranteeing
a high program coverage and making it even possible to check whether a particular combination
of inputs could result in the program failure.



Chapter 3

Tasking Framework

Nowadays, running sophisticated algorithms and complex processing data pose a formidable chal-
lenge for space missions, which is why managing resources is of great importance for the success
of such missions. Rather than using trajectory control advance algorithms, which necessitated
the use of more power [10], missions like Rosetta or the Mars rover landing were built on a list
of directives to regulate landing and maneuvering in order to conserve energy. The estimator
and observer control modules were developed in a fixed fashion (order and time) during the
creation of the TET-1 satellite mission (Technology demonstration) and the Bi-spectral Infrared
Detection (BIRD) missions. The module’s full calculation duration was the time it took to wait
for the sensors’ data plus an extra delay to guarantee a full data delivery prior to the start of
the calculation. Because of an overestimation of the timing delay, this model causes a timing
violation throughout the control cycle. This problem was not found until after the launch, when
a timing failure in another bus application caused the computed tasks to be reordered, resulting
in erroneous data and the malfunctioning of the orbit control systems [60].

Figure 3.1: Scheduling in the Tasking Framework adapted from [10].

DLR’s onboard computer-next-generation project began to establish reliable processors and
network nodes with an operating system that would guarantee satellite timing behavior.

This design must also account for multi-core and distributed systems’ timing behavior. The
Tasking Framework constituted the foundation of this concept. The framework was created
primarily to increase the performance of attitude control systems by breaking the computational

31
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data from the sensor into small portions, each of which is referred to as a task, and then scheduling
them according to their readiness [10]. The Tasking Framework was created using the inversion
of control design paradigm, which is commonly utilized in creating lightweight frameworks. The
Autonomous Terrain-based Optical Navigation (ATON) project [76] uses the framework, which is
a technology to navigate a lunar landing scenario that uses multiple image processing techniques
[60]. The framework’s most essential feature is its ability to alter the time behavior of the tasks
being processed [10]. Figure 3.1 from [10] shows the impact of using the ASAP scheduling policy
on overall response time, as opposed to conventional scheduling, which starts calculation at a
predetermined time in the computation cycle.

3.1 Task-Channel Model

The task-channel paradigm presented in [43] was used to create the Tasking Framework. The
idea is to create a barrier between functionality and data. [10] described a task as a ”state-
less executable program” with memory and I/O ports in this model, whereas a channel is a
message queue that links the output port of one task to the input port of another. The channel
in the Tasking Framework is a data container that the task object may handle. It works as
an interface that serves as a link between tasks and connects software outputs and inputs, as
demonstrated in Figure 3.2. The use of a task-channel architecture improves the reusability of
code [10]. It is conducive in systems that are distributed in which some components of the soft-
ware must be moved between processing nodes [10]. The Tasking Framework was created with
data-flow-oriented applications in mind. The operation of a system is understood by looking at
how data flows through it. [10] argued that data-flow-focused methodologies require that the
input data of the system be determined and processed to produce the appropriate outputs. The
program is constructed as a sequence of successive operations that occur in a specific order using
this method. The Tasking Framework employs this design paradigm to introduce an interface
that is structural and not reliant on the availability of data but rather on its flow. All APIs,
except for the Execution class APIs, demonstrate a high level of generalization, as they are
no longer constrained by the presence of input data and the current task [10]. The framework
can be compared to operating systems in that it controls the entire process in a deterministic,
generic, and abstract manner [45].

Figure 3.2: Task Channel Model adapted from [10].

3.2 Execution Model

[10] stated that when all task inputs are active, a task instance τ is launched in the Tasking
Framework. For example, Task A will be executed in Figure 3.3 when input 1 is active immedi-
ately after receiving Msg.A from sensor A. Marking one of the task’s inputs as final is another
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approach to triggering it right away. If this input is enabled, the task will execute regardless of
the state of the other inputs. in Figure 3.3 Task E, for example, will be triggered when the task
event (Timer) gives the input 0, which is marked as final, regardless of the state of the other
inputs. C will be triggered immediately after that.

The Tasking Framework’s schematic diagram is depicted in Figure 3.4. When a message from
a sensor is received, the main execution thread uses the channel class’s push() method to alert
the related inputs. In the scenario where all task inputs have been set up, the Tasking Framework
will instantly inform a thread to run the waiting instance of this task by invoking perform().
The framework’s scheduler kicks off the task right away. The job will begin as soon as a free
resource, such as a CPU core, becomes available; or else, the task will be queued [45, 60].

Figure 3.3: BIRD - AOCS and the Tasking Framework Components adapted from [10].
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Figure 3.4: The Tasking Framework’s sequence diagram adapted from [10].
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3.3 Tasking Framework in use

Several DLR initiatives have made use of the Tasking Framework. This section briefly highlights
3 projects mentioned in [10] where the Tasking Framework plays a key role. The Tasking Frame-
work was utilized to apply the functional tasks and link them by means of channels in ATON.
In this model, channels are data-containers that store data, while events are used to trigger the
different system components routinely. 4 threads were employed by the developers to run the
software on the prototype flying computer.

The Attitude and Orbit Control System (AOCS) was developed using the Tasking Framework
in the Euglena Combined Regenerative Organic Food Production In Space project (Eu:CROPIS)
[59].

Another DLR project presents and evaluates a novel onboard computing architecture con-
sisting of re-configurable interlinked commercial off-the-shelf processors coupled in a single dis-
tributed system. The project is called Scalable On-Board Computing for Space Avionics (ScOSA)
[77]. The Tasking Framework is a component of the middle-ware and the core API for develop-
ing the ScOSA-based application. On-board Data Analysis and Real-time Information System
(ODARIS) [68], and Rendezvous Navigation [67] are two examples of applications that will be
implemented utilizing the Tasking Framework to run on ScOSA.

3.4 Tasking Framework as a C++ Library

The Tasking Framework is created by the German Aerospace Center’s Institute for Software
Technology (DLR). The framework is a platform for event-driven execution for onboard software
systems that run in real-time. It enables tasks to be implemented as graphs with capricious
patterns of activation [10]. It is developed in C++ based on the event-driven programming
approach and is capable of multi-threading programming [45]. Even though C++ is not often
used to construct aerospace applications, it was employed in the development of this framework
because of the following factors as discussed by [10]:

• To begin with, the language is modular since it employs object-oriented programming.
Class implementation in C can also be achieved using struct, but due to constructors
and deconstructors, C++ surpasses it. These constructors ensure that objects are always
properly instantiated, while the destructors ensure that they are permanently deleted when
they are no longer needed, guarding against bugs or leaks.

• Thanks to C++’s templates, it is possible to program abstractly and generically. It is
possible to transform a template into a macro that creates a unique data type that is fully
functional. These templates can help adapt algorithms efficiently for various types with
reduced resource demand.

• Another reason to use C++ is type safety. In type safety, the compiler makes sure all
variables are valid and that there are no mix-ups of data types involved in the relevant
operations. In contrast to C++, the C function memcpy can copy double values into an
array of char values, eventually generating meaningless data.
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• It is not easy to create distinctive descriptive naming in large projects; hence prefixes have
traditionally been appended to the names. As a result, names become long and difficult
to read. The simplest way to fix that issue is to use namespaces in C++. Multiple
occurrences of the same name in various contexts are permitted by such namespaces, which
are determined later during compilation. This C++ feature ensures that the name is used
in many informative and distinctive ways.

• As opposed to C, which allocates and frees memory by invoking malloc() and free(), C++
utilizes new and delete, adding constructors and destructors to prevent memory leaks and
other errors.

• C++ provides novel features such as inheritance, operator overloading, and virtual func-
tions that are not present in C.

• In C++, references and smart pointers are far more secure than regular C pointers because
they prevent pointers from referencing NULL or being uninitialized.

3.5 Tasking Framework and its relevance to static analysis

[10] argued the relevance of the Tasking Framework in static analysis. Their argument is based
on a handful of points, which we highlight in the following paragraphs:

Strictly speaking, the application is treated as a directed graph in data-flow programming,
where the tasks handle the data and then pipe-lined to the following tasks in the sequence. In
this case, instructions’ execution does not depend on the completion of previous tasks; instead,
once the data becomes available, they can be executed, which is known as event-driven execution.

Abstract classes are provided by the Tasking Framework. The classes can be used to create
applications organized as a directed network of tasks and channels. As a result, the API loops
that link the channels and tasks are constrained. Put another way; the API is not reliant on any
data provided at run-time.

The channels in Tasking Framework serve as data containers. The Tasking Framework’s
technique for exchanging data between tasks and inputs is preordained and independent of the
data type or value.

3.6 Tasking Framework in this thesis

Typically, strict verification and validations are required before the Tasking Framework could be
employed in hard real-time safety-critical applications.

A static analysis is the only way to assess the system’s real-time capabilities and demon-
strate its ability to meet deadlines. At all execution stages, a static analysis computes a general
overestimate for all sets of architectural states. It guarantees that a specific condition will not
be encountered at a specific execution point. This safety attribute permits a safe WCET upper
bound to be established. The framework’s provision of WCET is the initial step toward devel-
oping safety-critical applications. This thesis aims to optimize the lifting of C++ applications’
binaries for effective loop bounding and WCET analysis at the IR level. We evaluate our novel
approach of combining both static and dynamic symbolic execution while lifting binaries of the
Tasking Framework case study, the Join fork example in Listing A.1. The Join fork example is an
illustrative example for an onboard data processing application inspired by the ATON project.

Similar to [10], The Tasking Framework makes a suitable candidate test case for our thesis
for two main reasons. Firstly, the Tasking Framework is designed to help create data-handling
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applications. It proposes a novel satellite onboard data modeling and computes scheduling
approach. The framework deviates from conventional scheduling, which requires all compute
processes to wait to receive a single message. It does, however, introduce an ASAP schedule,
which more effectively utilizes the time available and improves the worst-case response time of
the entire onboard system. For this reason, conducting a WCET analysis at the IR level is
critical for computing end-to-end real-time assurances on the envisaged satellite onboard system
scheduling model.

The second reason for using the Tasking Framework as our case study is that it is a real-world
application that investigates whether WCET can be conducted on model-based C++ code. The
framework provides most C++ structures employed in embedded safety-critical applications [10].
Abstract classes and virtual methods are covered. As a result, it is a viable candidate for WCET
analysis at the IR level.





Chapter 4

DEL Lifter

This chapter introduces DEL, our new lifting tool that combines static and dynamic symbolic ex-
ecution while lifting into LLVM IR. We start by presenting the motives behind the techniques we
adopted, then discuss some definitions, followed by presenting our concept and implementation.

4.1 Motivation

There are three main reasons behind the techniques we adopted while implementing our lifting
tool, DEL:

• We chose to integrate symbolic execution into the lifting process as such a method gives
a clear insight into the program’s workflow. Dynamic and static analyses are coupled
together in this procedure. It generalizes a valid and exact program trace to forecast how
the program will behave when presented with a particular input [10]. Through the proposed
technique, we resolve indirect control flow targets and check the correctness of the lifting
process.

• DEL’s intermediate representation language DSEIR uses a subset of LLVM instructions due
to its popularity and its support of various forms of analyses as natural loop information,
memory dependence analysis, and many more. Such analyses could be very useful when
applied to data flow space applications.

• To generate an enhanced IR of data flow space applications, DEL implements its memory
and register models. It makes sure the effect of condition flags checking and updating
functionalities of assembly instructions are captured in the lifted IR module.

Let us consider the example program in Listing 5. Here, different inputs to the program could
result in different potential-jump targets for a single indirect jump instruction. Based on the
input argument of the index calculator function, the program ends up either invoking function
f1 or function f2 in line 18 of Listing 5. Listing 6 shows a snippet of the assembly code of the
program. Figure 4.1 shows DEL’s re-constructed control flow graph (CFG) for the program.
The figure illustrates the two possible paths that could be taken from the start entry point of
the program to the basic block with the indirect jump in line 31 of Listing 6. The two paths
define two potential-jump target addresses for the indirect jump, and those are the addresses of
functions f1 and f2 (00008000, 00008020). The assembly instruction in line 28 of Listing 6, ldr
r3, [r3, r2, lsl 2] defines the calculation of each possible jump target address. The computation

39
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takes the form of Equation 4.1 where each jump target address (J) is computed by adding the
jump table’s base address (A) with a variable offset (X) multiplied by the memory byte size in
bits (k).

J = A+ kX (4.1)

In this scenario, the base address of the jump table is stored in r3, and the offset is stored in r2.
The lsl 2 resembles a multiply operation by the constant 4. This factor represents the size of a
memory byte in bits for the used architecture at the time of disassembling the program.

As the program invokes the index calculator function, the input argument is stored in r0,
which is then conveyed to r3 through the store and load operations in lines 5 and 6 of Listing
6, respectively. The compare instruction in line 7 of Listing 6, cmp r3, #0, checks if the value
held in r3 is equal to zero or not. This value reflects the argument passed to the index calculator
function. Depending on the result of the comparison, the program can branch to basic block L6
setting r3 to 1 in line 12 of Listing 6 or Alternatively, execute the instruction in line 9 of Listing
6 and set r3 to 0. This results in two potentially different offset calculations by the instruction
in line 28, and hence a different jump target address for the indirect jump in line 31.

This example program was intentional to highlight how different inputs to a program can
result in different potential-jump target addresses for a single indirect branching instruction. For
this purpose, our approach firstly performs a static symbolic execution (SSE) to formulate each
potential-jump target address of each indirect jump in the program as a Z3 expression. Secondly,
we perform a dynamic symbolic execution (DSE) using the Z3 solver from Microsoft Research
[37] to resolve the Z3 expressions of the indirect jump target addresses to their concrete values.

Figure 4.1: Two potential paths from the main entry point till the basic block of the indirect
jump (00008088).
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1 // Type your code here, or load an example.

2 typedef int (*function_pointer) (int);

3 int f1(int a) {

4 return (a * 2);

5 }

6 int f2(int a) {

7 return (a * 7);

8 }

9 int index_calculator(int n) {

10 n = n * 1;

11 if (n > 0) {

12 return 0;

13 }

14 return 1;

15 }

16 function_pointer jumpTable[] = { f1,f2 };

17 int main() {

18 jumpTable[index_calculator(1)](4);

19 return 0;

20 }

Listing 5: Source code of the example program.

1 index_calculator(int):

2 str fp, [sp, -4]!

3 add fp, sp, #0

4 sub sp, sp, #12

5 str r0, [fp, -8]

6 ldr r3, [fp, -8]

7 cmp r3, #0

8 ble .L6

9 mov r3, #0

10 b .L7

11 .L6:

12 mov r3, #1

13 .L7:

14 mov r0, r3

15 add sp, fp, #0

16 ldr fp, [sp], #4

17 bx lr

18 jumpTable:

19 .word f1(int)

20 .word f2(int)

21 main:

22 push {fp, lr}

23 add fp, sp, #4

24 mov r0, #1

25 bl index_calculator(int)

26 mov r2, r0

27 ldr r3, .L10

28 ldr r3, [r3, r2, lsl 2]

29 mov r0, #4

30 mov lr, pc

31 bx r3

32 mov r3, #0

33 mov r0, r3

34 sub sp, fp, #4

35 pop {fp, lr}

36 bx lr

37 .L10:

38 .word jumpTable

Listing 6: Assembly code of the example program.
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4.2 Preliminaries

This section covers some of the terminology and definitions that the reader will encounter in this
chapter.

• Assembly code:

Microprocessors and other programmable devices use assembly code as a low-level pro-
gramming language. Assembly code is a symbol for the machine code needed to program
a specific CPU architecture.

• Instruction:

A computer instruction code is a set of bits that tells the computer how to complete a
specific task. The operation code is a group of bits in an instruction that defines the
operation to be done, such as addition, subtraction, shift, complement, and so on.

• Basic block:

A basic block is a sequence of instructions without branches going in except at the entry
and without branches going out except at the exit.

• Control flow graph (CFG):

The CFG of a program is a graphical representation of all the possible paths a program
can take during execution.

• Path:

A path in the CFG is represented by a series of basic blocks B1,B2,...Bk such that k > 0
and for all 1 ≤ i < k there is a transition from Bi to Bi+1 [30].

• Jump table:

A jump table is an array of pointers to functions. Functions are called through indexing
into the array. The first address in the jump table is called the base address. The functions’
addresses are stored in the table as an offset added to the base address.

• Symbolic execution:

It is a method of conceptually executing a program. The execution encompasses more than
one input of the program that follows a common execution path. During execution, these
inputs are interpreted symbolically, and expressions based on these symbols are returned
[15]. There are two distinct types of symbolic execution:

– Static symbolic execution (SSE):

This technique evaluates a sequential program P’s viability by examining its control
flow by assigning symbols representing the program’s inputs. It is intended to execute
the instructions ordinarily, only now the values are formulated as symbolic expressions
of the input symbols [10]. This corresponds to an expression Φ(P) that defines the set
of inputs i ∈ I used to assess the feasibility of the path [10]. As a result of conditional
branching, the execution is divided to find a set of inputs i ∈ I that fulfill each path
separately [10]. The execution of each instruction along each path is validated against
the branching condition. Upon failure, Φ(P) contains an empty value, meaning that
no path could be followed [48].
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– Dynamic symbolic execution (DSE):

This method inspects program P by executing it with the input of i to produce
a viable path for the execution process [10]. Whenever appropriate, it substitutes
symbol expressions with the true values from P(i) execution. DSE exhibits real-time
execution capabilities combined with symbolic expressions [10]. As a consequence of
the program’s symbolic execution, while making use of actual concrete values, the
symbolic expressions can be greatly simplified [48].

For understanding symbolic execution, we will consider the example shown in Listing 7
adapted from [10] and its corresponding assembly in Listing 8. Here, the program uses the
result computed value from the performCalculations() function as an input i and stores
it in r0. A multiplication step, followed by a conditional if evaluation, follows. Symbolic
execution reads a symbolic value (β) and assigns it to r0. Following that, the multiplication
operation is carried out, which will set β << 1 to r0. Then, at the cmp instruction, β
is compared with 9. Now, β can be assigned any random value, and symbolic execution
continues in either direction. Every path is designated a set of constraints and a program
state. Here, the path constraint is β * 4 > 9 for Branch2 and β * 4 <= 9 for the Branch1.
It is possible that the two paths are symbolically executed separately. Whenever the paths
finish executing, symbolic execution calculates an exact value for β by resolving each path’s
cumulative constraints. In order to use DSE on this program, actual values will be used to
substitute the symbol expressions β.
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1 int perfromCalculations() {

2 //return a computation value

3 }

4 int fail() { return 0; }

5 int success() { return 1; }

6 int main() {

7 int x, z;

8 x = perfromCalculations();

9 z = x * 4;

10 if (z <= 9) {

11 return fail();

12 }

13 else {

14 return success();

15 }

16 }

Listing 7: Symbolic execution example in C++ adapted from [10].

1 bl performComputation()

2 str r0, [sp, 8]

3 ldr r0, [sp, 8]

4 lsl r0, r0, #1

5 str r0, [sp, 4]

6 ldr r0, [sp, 4]

7 cmp r0, #9

8 bgt Branch2

9 b Branch1

10 Branch1:

11 bl fail()

12 str r0, [r11, -4]

13 b exit

14 Branch2:

15 bl sucess()

16 str r0, [r11, -4]

17 b exit

Listing 8: Symbolic execution example in ARMv7-M assembly.

• Satisfiability modulo theories (SMT):

SMT deals with the determination of an expression’s satisfiability with regard to a com-
bination of first-order background(decidable) theories. Real-number theory, the integer
theory, and other data structure theories such as array and bit-vector theory are examples
of SMT theories. Programming problems can be formalized and constrained with SMT.
SMT solvers are primarily used for creating test cases and determining model bounds [37].

In many ways, SMT is a variant of the Boolean Satisfiability problem (SAT). By the
Boolean Satisfiability problem, it is assessed if it is feasible to provide values to a set of
variables of an expression in a way that will result in it evaluating to true. For instance,
the expression in Equation 4.2 from [10] is satisfied if p is set to true and q is assigned to
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false, in which case the trinomial (expression) will result in true.

(p ∨ q) ∧ (¬p ∨ ¬q) ∧ (p ∨ ¬q) (4.2)

Boolean Logic is used to solve Boolean satisfiability problems. SMT solvers, meanwhile,
use first-order theories. In first-order theories, statements are broken down into relations
(e.g., predicate:assert (a<b)), component parts (e.g., functions and variables), quantifiers
(e.g., ∀) and connectives (e.g., ||) [10]. According to first-order linear inequality theory, the
expression in Equation 4.3 adapted from [10] is satisfiable if variables x, y, z, and w are set
to 30, 27, 32, and 21, respectively.

(2 ∗ x > y + z) ∧ (2 ∗ y > z + w) ∧ (2 ∗ z > 3w) ∧ (3 ∗ w > x+ z) (4.3)

The purpose of SMT is to evaluate the satisfiability of the expression β for a theory T.
The expression is characterized by signatures containing a set of function symbols and a
set of conditional symbols. Such a problem can be polynomial or undecidable depending
on β and T [10]. Examples for T from [25] are:

– Real Arithmetic Theory with Σ = {+, x,≤} includes all isomorphic structures to real
numbers with +, x and ≤ functionalities [10].

– Array Theory with Σ = {select, store} includes all the isomorphic structures to the
memory read (select) and memory write (store) functionalities [10].

• Array theory:

[64] first introduced the arrays theory which has the signature Σ = {select, store,=}. When
the select(a,i) function is called, it returns the element i of the array a, while the store(a,
i, e) function returns the array a with the element e in place of the index i. Array elements
are only subject to the = predicate if they follow the principles of array theory [27]:

– First principle: i = j =⇒ select(a, i) = select(a, j)

– Second principle: i = j =⇒ select(store(a, i, e), j) = e

– Third principle: i 6= j =⇒ select(store(a, i, e), j) = select(a, j)

• Bit-vector theory:

A bit-vector is an array that stores data in a close-packed manner in one vector unit.
It is characterized by its width, which represents the number of bits of the vector. The
bit-vector theory problem seeks to determine whether it is feasible to ascribe values to
the bit-vector in an expression such that the expression evaluates to true. This technique
is useful for simulating bit-level operations on the hardware level. The bit-vector theory
handles bit-wise operations as ∨, ∧, ¬, <<, >>, etc [10]. An example of a summation
operation utilizing bit-vectors is shown in Figure 4.2 in which the summation of 160 and
230 gives a result of 6 because of an overflow. [29] argued that as the theory handles an
array of bits, the expression in Equation 4.4 from [10] that applies to integers does not
apply to bit vectors since there’s a possibility that an overflow can happen. In this thesis,
bit-vector theory is used to determine the SSA expression’s satisifability similar to the work
done by [10].

x− z > 0 =⇒ x > z (4.4)
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Figure 4.2: Bit-vector addition with overflow example.

• Z3 SMT Solver:

Microsoft Research developed the Z3 SMT solver. It is intended to be used for software
analysis problems and verification. Z3 offers an SAT solver, a satellite solver that sup-
ports array and arithmetic theories, and a core theory solver that handles functions, [37].
Throughout this thesis, we utilized the C++ API provided by Z3.

• Static single assignment (SSA):

As defined by compiler theory, a static single assignment (SSA) is a distinctive property of
an IR, meaning that a variable can only be assigned once, and its definition must precede
its use. With SSA, compiler optimizations are significantly streamlined and enhanced
[19]. As an example, in Listing 9 adapted from [10], the value of a in the group (1) is
determined by the instruction in line 2 and the first instruction in line 1 is unnecessary. In
order to identify cases like this, a reach definition analysis must be conducted [10]. In SSA
instructions group (2), on the other hand, it is readily apparent that b1 is meaningless.

1 b := 7 b1 := 7

2 b := 12 b2 := 12

3 a := b a1 := b2

4 (1) (2)

Listing 9: SSA instructions adapted from [10].
Control flow merges provide an additional φ function when an SSA instruction is coming from
more than one path, which implies that there are instructions that may acquire different values
depending on which path they fall on. Listing 10 and Figure 4.3 from [10] illustrate how merging
of the control-flow works in SSA. The value of b in Figure 4.3 has two interpretations, either b1
or b2 depending on the execution path. According to the control flow, b3 can be set to b1 or
b2 by the φ function.
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1 if ( condition )

2 b := 5

3 else

4 b := 36

5 a := b

Listing 10: CFG merging adapted from [10].

Figure 4.3: Φ Function adapted from [10].

• Memory model:
DEL implements a memory model based on C++ map object theory. Data inside the memory
model is formulated as Z3 bit-vector expressions. Thus the memory model object is defined as
a pair, a memory hex string address as a key, and a data bit-vector as a value. The state of
the memory model is updated with the execution of each instruction in the set of IR objects
equivalent to the load/store (Main memory) and the push/pop assembly instructions (Stack).
Before DEL is run, the memory model is populated with the initial values of all the program’s
data variables in the provided input file. This chapter refers to DEL’s memory model by the
symbol µ.

• Register model:
To facilitate the DSE of IR instructions. DEL implements a register model. The register model
is constructed as a C++ map object with the registers’ names as the map’s keys. The map’s
values are expressed as Z3 bit-vectors of the data stored inside the registers. The size of the
bit-vectors matches the target architecture. During the dynamic run of DEL, for each register
in the register model, the bit-vector value of the data stored inside the register is updated with
the execution of each SSA IR instruction that sets that register. This chapter refers to DEL’s
register model by the symbol ρ.

• Condition flags:
Many architectures, including ARM, provide conditional execution by storing state information
about previous operations in a set of flags. An s suffix can be appended to many ARM assembly
instructions to update the condition flags based on the result of the instruction’s operation.
The additional information is held in four condition flag bits in the Application Processor Status
Register (APSR) or the Current Processor Status Register (CPSR). In the flag bits, fundamental
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information such as whether or not the result of an operation was negative is specified. Those
bits can be used in different combinations to recognize higher-level relationships, such as ”less
than” and similar concepts.
DEL handles the condition flags in a similar manner to the work done by [71]. To examine
the side effects of instructions on the condition flags, DEL decides to expose such effects. For
each assembly instruction updating the flags(i.e., the opcode ending with the optional s suffix),
the corresponding effect is represented by a sequence of IR instructions. For example, DEL’s
API translates each adds assembly instruction object into a sequence of IR instructions which
model not only the effects of the add operation on its operands but also the effects of the result
of the operation on the condition flags. Similarly, DEL integrates IR instructions that model
the checking of the state of the condition flags done by some instructions. Certain assembly
instructions have an optional condition suffix added to their opcode. Taking addeq for example,
with the ”eq” being a condition that has to be met (i.e., the Z flag bit has to be set to 1) for
the instruction to be executed and its effects reflected on the state of the corresponding register
in DEL’s register model.

4.3 Concept

DEL is a lifter that implements a combined translation with static and dynamic symbolic execu-
tion. Strictly speaking, DEL comprises a static and dynamic component. The static component
consists of a CFG re-constructor, an assembly code to LLVM IR translator, and an SSE engine.
DEL’s dynamic component has a Z3 solver coupled with a memory model and a register model,
acting as a DSE engine.

DEL has two different run modes; the tool can either run in a static mode or a dynamic
mode. The static run mode only makes use of the static component. The dynamic run mode
makes use of both the static and dynamic components. In a way, DEL’s dynamic run starts with
a static run, then the dynamic component steps in to perform the DSE. Figure 4.4 illustrates
DEL’s static and dynamic run modes. Algorithms 3 and 4 highlight the pseudocode descriptions
for the static and dynamic runs, respectively. Before starting a static or a dynamic run, the
memory model initial state µi is initialized through a separate input data file extracted from the
disassembled binary. The input data file captures the state of the memory before stepping into
the start entry point of the program.

When DEL runs in the static mode, it reconstructs a preliminary CFG, statically translates
the input binaries into a primary IR module, and finally performs the SSE, specifically targeting
the indirect branching instructions in the primary IR module. At this point, the IR module does
not cover indirect control flow targets with exact resolved values. The SSE aims to define the
possible range of addresses an indirect jump target could resolve to for all statically detected
indirect jumps. The SSE determines the possible program paths leading to the basic block whose
tail instruction is the indirect jump in question. The goal is to generate a Z3 expression for each
possible path identified for each indirect jump in the program. The Z3 expressions define the
possible jump target addresses’ calculations in the form of Equation 4.1.

When DEL is run in the dynamic mode, it executes a static run. The generated Z3 expressions
of all indirect control flow targets are passed to the Z3 solver of the dynamic component as
additional satisfiability constraints when solving for indirect control flow targets. For a given
input configuration, DEL’s dynamic component performs the DSE of the primary IR module to
resolve indirect control flow targets to their concrete values. The dynamic run is input dependent,
meaning different inputs to the program result in different paths being executed during the run.
The dynamic component requires different inputs to ensure all the possible paths leading to an
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indirect jump’s basic block are covered. Generally speaking, the dynamic run operates iteratively.
Each iteration involves using an input configuration that results in a particular execution path.
DEL then performs the DSE of the path governed by the chosen input to resolve an exact target
address value for each indirect jump statically detected on that particular execution path. The
dynamic run ends once all possible jump targets of all statically detected indirect jumps have
been resolved or when the tool has exhausted all given input cases.

In a way, DEL’s static and dynamic components complement one another to generate a
final IR Module that tries to capture the complete control flow of the program being analyzed.
Following are the sections illustrating the implementation of each component.

Figure 4.4: DEL ’s static and dynamic run modes.
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4.4 Implementation

This section illustrates how DEL’s static and dynamic components are implemented. DEL’s static
component has three main features: CFG re-construction, translating assembly instructions into
LLVM IR instructions, and SSE. DEL’s dynamic component’s main feature is performing the
DSE. The following sections explain how each feature of the static and dynamic components is
implemented, starting with the static component.

4.4.1 Static component

DEL’s static component has three main roles during the static run. It iterates through the input
assembly code while gathering information to reconstruct a preliminary control flow graph. It
then iterates once more through each instruction in the input assembly code and translates it
into an equivalent set of IR objects. Finally, it performs an SSE, targeting the indirect control
flow branching instructions. The next sections explain the implementation of the three main
features of the static component.

4.4.1.1 CFG re-construction

DEL’s static component adopts the basic block creation algorithm for control flow graph re-
construction, shown in Algorithm 5. Firstly, it iterates through the input assembly code and
identifies instructions that are leaders. A leader is the first instruction of a basic block. The
first instruction in the program is identified as a leader. Moreover, any instruction that succeeds
a jump is also identified as a leader. Instructions that are targets of branching instructions are
also classified as leaders. Once leaders are identified, DEL proceeds with the identification of
tail instructions. Those are defined as any instruction that marks the termination of a basic
block. A good example of tail instructions would be any jump instruction. Once DEL identifies
leader and tail instructions, it segregates the input assembly code into basic blocks. Each basic
block is represented as a block of instructions with incoming and outgoing edges. The incoming
edges are the group of basic blocks that end with a jump instruction whose target address is the
address of the first instruction of the basic block in question. On the contrary, a basic block’s
outgoing edges are those blocks that start with an instruction whose address is the target address
to which the tail instruction of the basic block jumps. Once basic blocks have been specified,
DEL reconstructs a preliminary control flow graph illustrating the predecessor and successor
relationships between the different basic blocks.
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DEL’s implementation makes use of C++’s object-oriented programming concepts. It creates
Assembly Code Instruction objects. Each Assembly Code Instruction object has, as attributes,
an address, an opcode, registers, and immediates. Each Assembly Code Instruction object be-
longs to an Assembly Code Basic Block object, which belongs to an Assembly Code Function
object. As DEL statically constructs the preliminary control flow graph, assembly objects are up-
dated with information highlighting relationships between the different objects. For example, how
basic blocks are related to one another. Each Assembly Code Basic Block object has successors
and predecessors attributes which are also Assembly Code Basic Block objects. The control flow
graph also highlights the caller-callee relationships between different Assembly Code Function
objects. Each Assembly Code Function object has callers and callees attributes of class type As-
sembly Code Function. Figure 4.5 illustrates a customized UML class diagram that highlights
the relationships between the classes of the different assembly code objects implemented by DEL
(for simplicity, class methods have been omitted from the diagram).

Figure 4.5: DEL ’s UML class diagram.

At this point, the constructed control flow graph does not account for indirect control flow
targets. To resolve indirect control flow targets, DEL has a dynamic component, explained in
detail in Section 4.4.2.

After the re-construction of the CFG, the static component proceeds with the next step of
statically translating assembly instructions to their equivalent set of IR instructions.
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4.4.1.2 Static translation

Our dynamic lifting tool DEL lifts assembly instructions from the ARMv7-M ISA [7] into an
LLVM IR. The IR is tailored for the DSE and hence the name DSEIR. DSEIR only uses a subset
of LLVM instructions that are both explicit and self-contained, as was explained in Chapter 2.

DSEIR’s design is quite straightforward; it has only 14 instructions. That means that every
assembly instruction in the ARMv7-M ISA is translated into an average of 3-5 DSEIR instruc-
tions. Table 4.1 shows as an example, the equivalent DSEIR instructions for the add, sub and
lsl ARMv7-M instructions. Each lifted DSEIR instruction is considered a static single assign-
ment (SSA) where each IR statement updates only a single variable in the execution context.
In other words, DSEIR is characterized as an explicit Binary-Based IR, as discussed in Chapter
2. Furthermore, the flag checking and updating functionalities of a lifted assembly instruction
are also broken down into their own set of DSEIR instructions during lifting. In the DSE, Each
DSEIR instruction could either update the memory model or the register model. Being SSA,
while having its memory and register model alongside its condition flags checking and setting
features, DSEIR becomes optimized for performing the DSE at the IR level.

Different analyses can be applied to the output DSEIR module, such as natural loop infor-
mation analysis or a memory dependence analysis.

Table 4.1: DSEIR example table.

ARMv7-M instruction DSEIR instructions

add r3, #4
%55 = load i32, i32* %R3, align 4
%56 = add i32 %55, 4
store i32 %56, i32* %R3, align 4

sub r1, #1
%55 = load i32, i32* %R1, align 4
%56 = sub i32 %55, 1
store i32 %56, i32* %R1, align 4

lsl r1,r2 #3
%85 = load i32, i32* %R2, align 4
%86 = shl i32 %85, 3
store i32 %86, i32* %R1, align 4

For each assembly instruction in the ARMv7-M ISA, DEL implements a C++ API that
translates it into its equivalent set of DSEIR instructions.

Following the re-construction of the CFG, DEL iterates through each assembly instruction
object and translates it into an equivalent set of DSEIR instruction objects.

DEL transfers information of the program’s CFG stored as attributes of the assembly objects
to the newly lifted IR objects. The control flow information is also represented at the IR level
using C++ attributes. For instance, IR instruction objects belong to an IR basic block object.
At the same time, each IR basic block object belongs to an IR function object. Essentially, DEL
accurately represents assembly objects with their equivalent IR counterpart objects.

4.4.1.3 Static symbolic execution

DEL performs an SSE to identify all the potential target addresses that each indirect jump could
resolve to. It determines all the possible program paths leading to the basic block whose tail
instruction is the indirect branch in question. Each possible path would yield a Z3 expression
for a potential target address of the indirect jump. The generated Z3 expressions are later used
by DEL’s dynamic component when resolving indirect jumps through the DSE.
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The SSE can be divided into two main steps: path detection and formulating indirect jumps’
target addresses into Z3 expressions. In SSE, DEL starts by detecting all possible paths that
might lead to a basic block with an indirect branch. For each path detected, DEL then formulates
the set of IR instructions on the path into a single Z3 formula that expresses the potential target
address of the indirect jump in the form of a base and an offset, as was illustrated by Equation 4.1.

Next, we discuss each step of the SSE in more detail.

• Path detection

Firstly, DEL’s static component identifies all possible paths that might lead to a basic block
with an indirect jump. It combines two algorithms, a depth-first search algorithm (DFS]
[75] to detect all possible paths from a source s to a destination d in a directed acyclic
graph and Johnson algorithm [51] for finding all simple cycles in the program’s CFG. Both
algorithms work together to identify all possible paths starting from the start entry point
of the program up to the point of an indirect branch. As the DFS algorithm traverses the
CFG, it makes sure not to visit the same node twice [75]; hence it is unable to detect and
integrate cycles (loops) in a path between two nodes. Consequently, we additionally use the
Johnson algorithm to detect the loops and subsequently add them to their corresponding
paths.

• Formulating indirect jump target addresses into Z3 expressions

Here, in this step, the main goal is to primarily identify for each indirect jump’s target
address register all the relevant assembly instructions that directly influence the value
stored in that register. Algorithm 6 illustrates our approach to identifying all the assembly
instructions that take part in calculating the value stored in the indirect branch target
address register. For each identified potential execution path from the start entry point
of the program to the indirect branch in question, the algorithm starts from the indirect
jump instruction and goes back up the path, searching for the first preceding instruction
I pre that sets the register containing the target address and appends it to the relevant
instructions set. The second step is to identify the set of registers that hold the operands
used by the instruction I pre to set the target address register. The algorithm repeats
this process of identifying the first preceding instructions that set each register r in the
registers set while appending the instructions to the relevant instructions set. For each
newly identified I pre instruction, the registers set is updated with the registers that hold
the operands of I pre. The algorithm ends once we reach an I pre instruction that is
a memory load instruction or a mov{s} instruction that sets r to an immediate value.
All instructions in the relevant instructions set must belong to a single potential execution
path leading to the indirect jump in question. For clarity, Figure 4.6 highlights in yellow
what our algorithm considers as relevant instructions for the indirect jump in basic block
4 of a simple example program.

After identifying the relevant assembly instructions, each DSEIR instruction in the set
of IR instructions of each relevant assembly instruction is parsed into a Z3 expression.
Finally all Z3 expressions for all the IR instructions on a single potential execution path
are factorised into one single Z3 expression taking the form of Equation 4.1.
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Figure 4.6: An indirect jump’s relevant instructions highlighted in yellow.

After performing the SSE on the example program from Listing 5, DEL generated two Z3
expressions for the two potential-jump targets of the indirect branch instruction in line 31 of
Listing 6. Equations 4.5 and 4.6 define the two possible jump target addresses of the indirect
branch as Z3 expressions as generated by the SSE.

JZ3 potential target 1 = (select MEM (bvadd (select MEM (bvadd pc #x00000020))

(bvshl #x00000000 #x00000002)))
(4.5)
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JZ3 potential target 2 = (select MEM (bvadd (select MEM (bvadd pc #x00000020))

(bvshl #x00000001 #x00000002)))
(4.6)

Once the static run ends, DEL passes the Z3 formulas of all potential paths of all indirect
branching instructions to DEL’s dynamic component. The formulas are treated as additional
satisfiability constraints by the Z3 solver when performing the DSE of the preliminary IR module.

4.4.2 Dynamic component

The dynamic component takes as input the IR module generated from the static component and
the Z3 formulas for each potential target address of each indirect jump in the program. The
dynamic component then performs the DSE using the Z3 solver. Each IR instruction in the
input module is first parsed into a Z3 expression to be dynamically symbolically executed. The
following sections illustrate in detail how the dynamic component is implemented.

• Translation to SMT expressions

In the DSE, the first step is to compile the DSEIR module generated from DEL’s static
run into SMT expressions. In the later stages, we analyze the program’s execution by
using these expressions. IR instruction objects are parsed into Z3 expressions, which the
Z3 solver then evaluates during DEL’s dynamic run. The operands of each instruction
are then fed into the Z3 solver in a way that reflects the mathematics underlying the IR
instruction’s effect on the solution state. Each SSA instruction can be aptly converted
into one SMT expression by applying array and bit-vector theories, easing the translation
process [10]. For example, the SSA IR [%r1 = add i32 %r0, 1] is translated as shown in
Equation 4.7 adapted from [10]. The same applies to memory instructions. For example,
the SSA instruction shown in Equation 4.8 adapted from [10] is calculated as µ[0x00008000]
where µ is the memory model and 0x00008000 is the load address. The translator repeats
the preceding steps for each IR operation.

[%r1 = add i32 %r0, 1]⇒ BitV ec(r1, size) = BitV ec(r0, size) +BitV ec(1, size) (4.7)

r2 = [data 0x0008000]⇒ µ[0x00008000] (4.8)

• Symbolic execution engine

Z3 is used to construct a dynamic execution engine. Its purpose is to execute SMT ex-
pressions directly on the memory and register models in DEL’s dynamic run. Similar to
the work done by [10], the engine has n states each of them reflects any alteration in the
registers (∆ρ), the memory (∆µ), or the stack (∆σ) state following a single expression’s
execution (a single DSEIR instruction). The number of states n should be identical to the
number of executions of each instruction in the IR module during the dynamic run. The
execution path followed during DEL’s dynamic run depends on the input configuration
given to DEL before the dynamic run starts. While translating [%r1 = add i32 %r0, 1],
the translator is first examining if r1 and r0 have existing variables in the register model.
If yes, the value of r0 is retrieved from the engine, then an immediate value of 1 is added to
it, and finally, the result is stored in r1. If r0 has a former value of 10, then the translation
is performed as outlined in Equation 4.9 adapted from [10].

[%r1 = add i32 %r0, 1]⇒ BitV ec(r1, size) = BitV ec(10, size) +BitV ec(1, size) (4.9)



56 CHAPTER 4. DEL LIFTER

• Execution

Similar to the approach adopted by [10], the initial state Si <ρi, µi, σi> is fed into the
DSE solver. As each DSEIR instruction is symbolically executed, the engine state changes
from Si to Si+1. DEL iterates through all instructions in the control flow path until the
final state Sf is attained.

By combining the execution engine and the memory and register models, SMT expressions
can be executed dynamically [10]. The satisfiability of each expression is verified before
the execution engine alters the engine state from Si to Si+1. Consider an example where
the previous value of r0 was 10. In Equation 4.10 adapted from [10], the SMT expression
evaluates to true and sets the value of r1 to 11. SMT expressions involving memory follow
the same principle. As a result of executing each instruction, the engine will transition from
state si to state s[i+1]. Execution of an expression results in an engine state s[i+1] = si+∆k

where k = [ρ, µ, σ] [10].

BitV ec(r1, size) = BitV ec(r0, size) +BitV ec(1, size) (4.10)

As they are executed, expressions are divided into three main classes: memory expressions,
registers expressions, and director expressions [10]. A solver follows the execution path
determined by director expressions (branching instructions). For instance, the DSEIR
instructions in Listing 11 are parsed into the SMT expression in Listing 12 which evaluates
the condition r1 = 0 in order to determine the following basic block to be visited.

1 %1 = icmp eq i32 %r1, 0

2 br i1 %1, label %BB1, label %BB2

Listing 11: DSEIR branching instructions.

1 If r1 = 0 then BB1 else BB2

Listing 12: CFG merging in the SSA context.
For SMT expressions, Algorithm 7 adapted from [10] describes how the DSE works. The algo-
rithm takes as input the CFG from DEL’s static component. As discussed in Section 4.4.1.1,
the CFG highlights the predecessor and successor relationships between different basic blocks in
assembly code. The algorithm iterates through the instructions of each basic block of the CFG.
For every instruction, I in basic block B, the satisfiability of its expression is checked. The state
si is modified depending on its effect on the engine model. In order to execute the instructions,
the engine state must be modified and the transition condition assessed. If the instruction is a
conditional branch, it can lead to either basic block Bx or By. The current state of the condition
flags is checked to determine which basic block should be executed next. The execution normally
runs from one basic block to the next till the exit function of the program.
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• Input based execution paths
DEL’s dynamic run is input-based. Strictly speaking, different inputs govern different program
execution paths. More than one execution path from the start of the program could lead to the
basic block of an indirect jump. DEL’s SSE aims to acquire all possible paths leading to an
indirect jump’s basic block and formulate each target of an indirect branching instruction as a
Z3 expression. Since each possible path might yield a different jump target for an indirect jump,
different program input configurations could result in a different control flow target for a given
indirect branching instruction. The source code in Listing 5 shows an example where different
inputs to the program could result in different potential-jump targets for a single indirect jump,
as was explained in Section 4.1.
DEL’s dynamic component operates by iterating through different program inputs. It performs
the DSE of each possible execution path governed by a chosen input. Its main goal is to resolve
all possible indirect control flow targets of indirect branching instructions to their exact address
values. The dynamic run ends once ideally all possible jump targets of all detected indirect
jumps have been resolved or when all possible input configurations passed to the tool have been
exhausted.
It is important to highlight that DEL’s dynamic capability is limited by the range of the inputs
tested out during the dynamic run. However, choosing the input configurations that guarantee
the execution of all possible program paths during the dynamic run is outside the scope of this
thesis.

• Loop bound analysis
A useful feature of DEL’s dynamic component is detecting how many times a basic block has been
executed during the dynamic run. During the DSE process, DEL keeps track of each assembly
instruction that has been executed. Since each instruction object belongs to a basic block object
as was explained in Section 4.4.1.1, the number of times an instruction has been executed reflects
the number of times its basic block has been visited during the dynamic run. Such a feature,
when coupled with Johnson’s cyclic graph detection algorithm [50], could be particularly useful
in conducting a loops bound analysis. This application could help improve the work done by
[10].





Chapter 5

Evaluation

So far, we have looked at the challenges that modern-day lifters face when considering IR analysis.
We have also introduced a novel hybrid symbolic execution technique in the lifting process for
resolving indirect jumps using the Z3 solver. Our approach aims at generating a complete and
enhanced IR of data flow space applications. In this chapter, we firstly evaluate DEL’s ability
to resolve indirect jumps present in the example program in Listing 13 adapted from [65, 69] as
compared to Angr [32], a recent binary analysis framework based on UCSE. Secondly, we evaluate
the effectiveness of our approach in resolving indirect jumps of a large scale C++ application
developed by the Tasking Framework, the Join fork example in Listing A.1.

5.1 DEL Vs Angr

Here, we showcase DEL’s ability to resolve indirect jumps present in the example program of
Listing 13 in comparison to Angr, which uses a control-flow recovery algorithm that tries to
resolve indirect control flow targets by employing a data-flow analysis.

Our work aims to lift to an IR module that captures the control flow of an input binary. In
order to perform WCET analysis at the IR level, the control flow model needs to be valid, which
means that all potential control flow that exists in the binary must also be present in the IR
module. The IR module quality relies on the control flow’s preciseness. Ideally, there should be as
few infeasible transitions in the control flow as possible. However, accurate resolution of indirect
control flow targets necessitates the calculation of all feasible outcomes, which in principle is
impractical [65].

In Listing 13, since the indirect call at line 10 relies on the value that the count variable
holds, the resolution of the possible targets of the indirect jump necessitates an examination of
the potential values the count variable can take. Since the value stored in the argument vector
(ARGV) is dependent on the user input, the previous loop results in a massive number of paths
during analysis. The path explosion problem arises, making precise analysis impossible as was
argued by [65] for the used example.

59
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1 int foo_1(void) { return 5; }

2 int foo_2(void) { return 6; }

3 int main(int arge, char** argv) {

4 int (*procs[]) (void) = { foo_1,foo_2 };

5 int count = 0;

6 for (int i = 0; i < 100; i++) {

7 if (argv[1][i] == '0') break;

8 if (argv[1][i] == 'Z') count ^= 1;

9 }

10 return procs[count]();

11 }

Listing 13: Example program adapted from [65, 69].

We proposed SSE to formulate all potential-jump targets of the indirect jump in question to
solve this issue. The generated formulas take the form of a fixed base address (the first address
in the jump table) added to a variable offset (limited to the range of addresses of functions in
the input program) as was explained in Section 4.1. Our solution narrows down the search scope
for the possible jump target values that the indirect jump can take. We then perform the DSE
to resolve as many potential-jump targets as possible by trying different inputs to our example
that satisfy the formulas generated from the SSE.

As previously discussed, the quality of the IR module generated depends on the precision
of the constructed control flow graph. The precision of a CFG is notoriously difficult to assess
as one would need a perfect comparison model [65]. Rather, in this section, we evaluate our
solution’s quality through lifting the example given in the Listing 13. For the given example,
[65] argued that most of the control flow could be reconstructed directly without performing a
data-flow analysis. Because branches and loops are constructed via direct branch instructions,
it is possible to resolve them without further input. On the other hand, the indirect call at line
10 cannot be resolved easily since its target address relies on the values that r3 can hold during
execution, as shown in the red block of Figure 5.2. The algorithm utilized by Angr for control
flow recovery was unable to resolve the jump targets of the indirect jump in question, resulting
in an erroneous outcome [65]. In contrast, our solution successfully resolved both potential-
jump targets for the indirect jump. Firstly, DEL’s static component generated the Z3 formula
shown in Equation 5.1 for the potential jump targets of the indirect jump. Figure 5.1 shows an
incomplete CFG reconstructed from DEL’s static component. It shows that the SSE was able
to identify all six potential paths from the main entry point of the program to the basic block
with the indirect jump. However, just one formula was generated for all six paths. Although
the potential target formula seems the same for all detected paths, the underlying path to be
executed for the formula is different. Each path can enclose unique instructions that store data
in specific addresses in the memory model. Since it is impossible to know the exact addresses
to which str instructions store into memory without executing the program, the effects of such
instructions are not observed in the Z3 formulas generated. Consequently, the DSE execution
of each path might yield a different potential-jump target address for what seems to be a single
identical formula for different potential paths. By iteratively varying the input configuration,
DEL’s dynamic component was able to execute each of the possible six paths identified, resolving
Equation 5.1 into two possible addresses from the jump table { 00008000, 0000801c }, which are
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the addresses for functions foo 1 and foo 2, respectively.

JZ3 = (Select MEM (bvadd (bvadd (bvadd #xfffffffc (bvadd #x00000004 sp))

(bvnot (bvor (bvnot maskBit) (bvnot (select MEM (bvadd (bvadd #x00000004 sp)

#xfffffff8)))))) #xfffffff0))

(5.1)

Figure 5.2 shows the final reconstructed CFG after DEL has performed the DSE; the red
block highlights the basic block with the indirect jump. The orange blocks highlight the two
potential-jump targets, foo 1 and foo 2, as identified by our algorithms. The red arrows resemble
the resolved indirect control flow targets, where based on the inputs entered by the user, either
function foo 1 or function foo 2 are called.

Listing B.1 illustrates the final lifted IR module of the example program. For the given input
configuration, DEL’s dynamic run followed an execution path that yielded function foo 1 as the
resolved indirect control flow target for the indirect branch in the example program.

For further evaluating the performance of our approach, We compared our solution’s execution
time to that of Angr’s CFG re-construction approach. Both tools were operated on a workstation
with a Linux operating system, i7-9750H processor, and 16GB RAM. The results are shown in
Table 5.1. Here, it shows that DEL is significantly slow compared to Angr; however, this is
insignificant to our objective as the IR analysis of DEL’s lifted module is normally carried out
offline amidst the design validation and verification phase. As DEL operates, it also consumes
more memory storage space compared to Angr due to the size and complexity of its C++
implemented objects.

Table 5.1: Performance results: Angr vs DEL.

Tool Binary Size (Kbyte) %CPU Average Memory ( MiB ) Execution Time (sec)
Angr 34 24% 55 35
DEL 34 24% 335 125
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Figure 5.1: Six potential paths from the start entry point till the basic block of the indirect jump
(000080dc).
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Figure 5.2: DEL’s full re constructed control flow graph of the example program.
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5.2 Evaluating DEL’s dynamic run on the Tasking Frame-
work

Here, we evaluate DEL’s ability to resolve indirect jumps in a large-scale program, the Tasking
Framework.

Jumps in the Tasking Framework fall into two classes. Firstly, direct jumps in the framework’s
architecture that are based solely on the system’s design. Thus, their targets are determined
during the compile-time and stay the same as the application runs. Secondly, Indirect jumps that
can be found as virtual functions of developed tasks. Their targets’ calculations are determined
by the tasks being executed in run time. Our primary evaluation measure is calculating the
percentage of indirect jumps resolved out of the indirect jumps visited during the DSE for each
function in the case study.

Similar to [10], this thesis focuses solely on binary input task-triggered events. In a strict
sense, the input events can be thought of as task on/off switches [10]. Through DEL, it is possible
to force events (inputs) during the DSE of the enhanced IR module.

5.2.1 Experimental setup

Figure 5.3 illustrates the setup we proposed for measuring the number of indirect jumps resolved
when lifting the Join fork example case study using DEL. Our experimental setup was built in as
part of DEL’s implementation. It primarily uses DEL’s static component to detect all indirect
jumps (bx and blx instructions) for each function in the case study, assuming the disassembler
correctly disassembles the input binary. It then passes the control flow information of all the
statically identified possible paths leading to each indirect jump detected and the preliminary
DSEIR module to DEL’s dynamic component. As explained in Chapter 4, DEL’s dynamic
component works iteratively. Each iteration tries out a different input configuration to visit a
different execution path between iterations. The setup makes use of DEL’s dynamic component
to resolve as much as possible of the detected indirect jumps through the DSE of the DSEIR
module. During this process, for each function, the setup reports the percentage of indirect
jumps visited out of the indirect jumps statically detected and the number of indirect jumps
resolved out of the indirect jumps visited. DEL moves on to the next function regardless of the
unresolved indirect jumps. The current DSE iteration ends once DEL reaches the exit block of
the program. The next DSE iteration starts with a different input aiming to visit a different
execution path. The experiment ends once all given inputs to DEL have been exhausted or if
DEL could resolve all statically detected indirect jumps. In practice, a developer can be satisfied
with a finite number of inputs that resolve a subset of the indirect jumps detected. The setup
then outputs a log file reporting the number of indirect jumps visited during the dynamic run
for each function in the binary input file and the number of resolved indirect jumps.
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Figure 5.3: Experimental setup.

5.2.2 Indirect jumps’ results

In this section, we detail the results of the indirect jumps resolved by DEL as tested on lifting
the Tasking Framework’s Join fork example use-case for a given input configuration.

Strictly speaking, there are three main sources of indirect jumps: virtual function calls, switch
statements, and function pointers. In our case study, the indirect jumps detected were caused by
virtual function calls. Neither switch statements nor function pointers were used in the Tasking
Framework’s implementation.

Functions containing indirect jumps in the Tasking Framework are mainly distributed across
six modules: InputArray, Scheduler, Task, Event, Clock, and Group. We chose an example
function for each module in our case study that encloses one or more indirect jumps caused by
virtual function calls. We begin by briefly explaining the role of each function in the Tasking
Framework accompanied by its source code and CFG. We then tabulate DEL’s results for a
given input configuration, highlighting the number of indirect jumps detected and the number
of visited and resolved indirect jumps for each example function. Finally, we tabulate the results
for all functions visited during DEL’s dynamic run for the given input configuration.

5.2.2.1 Tasking Framework’s functions

• InputArray:

The Tasking::InputArray::reset function performs the reset operation on all task inputs.
All task inputs are stored in an input array. Listing 14 highlights the source code of the
Tasking::InputArray::reset function. Here, the function invokes the reset method of each
input array element in line 5. The reset method is implemented by the Input class as a
virtual method as highlighted in line 158 in Listing C.1. It resets the activation state of
each input task to 0 activations when the scheduler starts.

Figure 5.4 highlights the CFG of the Tasking::InputArray::reset function where the virtual
function call can be seen as the indirect branch blx r1.
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Table 5.2 shows that for the given input configuration, DEL was able to successfully detect
and resolve the single indirect jump detected for the Tasking::InputArray::reset function.

1 void Tasking::InputArray::reset(void)

2 {

3 for (unsigned int i = 0; i < impl.length; ++i)

4 {

5 impl.inputs[i].reset();

6 }

7 }

Listing 14: Tasking::InputArray::reset function C++ source code.

Figure 5.4: Tasking::InputArray::reset function CFG.
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Table 5.2: Tasking::InputArray::reset function results.

Function No. of detected indirect jumps No. of visited indirect jumps No. of resolved indirect jumps
Tasking::InputArray::reset 1 1 1

• Scheduler:

The Tasking::SchedulerImpl::perform function Initiates the execution of a referenced task
passed to it. By default, calling this function switches the state of the referenced task to
pending. The exact starting time for executing the referenced task depends on the selected
schedule policy and the number of available executors. A perform function call has no effect
if the scheduler is not started or terminated. Listing 15 highlights the source code of The
Tasking::SchedulerImpl::perform function. Both lines 7 and 8 have virtual function calls
where the perform function calls the queue and the signal functions. Both the queue and
signal functions are implemented as virtual methods by their relevant classes as seen in lines
70 and 116 in Listing C.2 and Listing C.3 respectively. Firstly, if the scheduler is running,
the perform function invokes the queue function. Typically, the queue function is called
when a task switches from wait to pending. It queues a task according to the policy into
the run queue. An implementation of a scheduling policy must implement this function.
Each task provides the management data structure to provide the memory space for the
scheduling. Secondly, the perform function invokes the signal function. This function is
called whenever a new task should perform, the run queue is empty, or the clock fires an
event. It wakes up one of the executors of the scheduler instance.

Figure 5.5 highlights the CFG of the Tasking::SchedulerImpl::perform function. Since
both the queue and the signal functions are implemented as virtual methods in the Task-
ing Framework, both calls are considered by the compiler as indirect jumps. They are
disassembled as the two blx instructions shown in the figure.

Table 5.3 shows that for the given input configuration, DEL was able to successfully detect
and resolve both indirect jumps detected for the Tasking::SchedulerImpl::perform function.

1 void Tasking::SchedulerImpl::perform(Tasking::TaskImpl& task)

2 {

3 // Do only something when the scheduler is running.

4 if (running)

5 {

6 // Queue task for execution and signal scheduler execution model

7 policy.queue(task);

8 static_cast<UnprotectedSchedulerAccess&>(parent).signal();

9 }

10 }

Listing 15: Tasking::SchedulerImpl::perform function C++ source code.
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Figure 5.5: Tasking::SchedulerImpl::perform function CFG.

Table 5.3: Tasking::SchedulerImpl::perform function results.

Function No. of detected indirect jumps No. of visited indirect jumps No. of resolved indirect jumps
Tasking::SchedulerImpl::perform 2 2 2

• Task:

The Tasking::TaskImpl::synchronizeStart function is called directly by the scheduler before
executing a task. It loops over all inputs to call the synchronizeStart of all connected input
channels. In line 5 of Listing 16, The Tasking::TaskImpl::synchronizeStart function invokes
the Input::synchroniseStart function. The Input class implements the synchronizeStart
function as a virtual method as shown in line 215 of Listing C.1. This function defines
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the associated task start to execute. It is protected against concurrent access to two tasks
associated with the scheduler.

Figure 5.6 shows the CFG of the Tasking::TaskImpl::synchronizeStart function. Here, the
virtual function call is highlighted as the indirect branching instruction blx r3.

Table 5.4 shows that for the given input configuration, DEL was able to successfully de-
tect and resolve the indirect jump detected for the Tasking::TaskImpl::synchronizeStart
function.

1 void Tasking::TaskImpl::synchronizeStart(void)

2 {

3 for (unsigned int i = 0; (i < inputs.size()); i++)

4 {

5 static_cast<ProtectedInputAccess&>(inputs[i]).synchronizeStart();

6 }

7 }

Listing 16: Tasking::TaskImpl::synchronizeStart function C++ source code.

Figure 5.6: Tasking::TaskImpl::synchronizeStart function CFG.



70 CHAPTER 5. EVALUATION

Table 5.4: Tasking::TaskImpl::synchronizeStart function results.

Function No. of detected indirect jumps No. of visited indirect jumps No. of resolved indirect jumps
Tasking::TaskImpl::synchronizeStart 1 1 1

• Event:

The Tasking::EventImpl::handle function is responsible for the task-specific processing of
a timed event by the Tasking Framework. Its source code is illustrated in Listing 17. The
Tasking::EventImpl::handle function makes two virtual function calls in lines 21 and 23.
Both the shallFire and onFire functions are implemented as virtual functions in the Event
class implementation as shown in lines 186 and 193 in Listing C.4. The shallFire function
is called when an event is planned to be handled by the Tasking Framework’s scheduler.
The onFire function is called to check if the scheduler is currently handling a task event.

Figure 5.7 highlights the disassembly graph of the Tasking::EventImpl::handle function
where both virtual function calls have been disassembled as indirect branching instructions.

Table 5.5 shows that for the given input configuration, DEL was able to resolve the first
indirect branching instruction that is related to the shallFire function call; however, the
second indirect branch that is related to the onFire function call was not resolved. Since
the if condition in line 21 was never met for the given input configuration, the second
indirect branch was not visited during the dynamic run; hence, DEL did not resolve its
target address.

1 void Tasking::EventImpl::handle(void)

2 {

3 // If the event is periodic, the next wake-up time should hand over to the clock

4 mutex.enter();

5 if (periodical)

6 {

7 if (nullptr == periodicSchedule)

8 {

9 // No periodic schedule to play, jump to next period

10 // If trigger is called now clock are out of order.

11 clock.startAt(*this, (nextActivation_ms + period_ms));

12 }

13 else

14 {

15 // Play periodic schedule

16 periodicSchedule->pushTriggers();

17 clock.startAt(*this, periodicSchedule->stepToNextTriggerOffset());

18 }

19 }

20 mutex.leave();

21 if (parent.shallFire())

22 {

23 parent.onFire();

24 static_cast<UnprotectedChannelAccess&>(parent).push();

25 }

26 }

Listing 17: Tasking::EventImpl::handle function C++ source code.
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Figure 5.7: Tasking::TaskImpl::synchronizeStart function CFG.

Table 5.5: Tasking::EventImpl::handle function results.

Function No. of detected indirect jumps No. of visited indirect jumps No. of resolved indirect jumps
Tasking::EventImpl::handle 2 1 1

• Clock:

The Tasking::clock::isPending function checks whether the activation time of the clock
queue head element is equal or smaller than the current time. In Listing 18, we can
see in line 7 that the Tasking::clock::isPending function invokes the getTime function. The
getTime function gets the absolute time used to control events. An application programmer
can use this time for time stamps or for calculating the offset time of a periodic event. The
getTime function is implemented as a virtual method for the Clock module, as seen in line
57 of Listing C.5.

Figure 5.8 shows in the CFG of the Tasking::clock::isPending function that the virtual
function call was disassembled as the single indirect branching instruction, blx r3.
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Table 5.6 shows that for the given input configuration, DEL was able to successfully detect
and resolve the single indirect jump present in the Tasking::clock::isPending function.

1 bool Tasking::Clock::isPending(void) const

2 {

3 timeQueueMutex.enter();

4 bool pends = (queueHead != NULL);

5 if (pends)

6 {

7 pends = (queueHead->nextActivation_ms <= getTime());

8 }

9 timeQueueMutex.leave();

10 }

Listing 18: Tasking::clock::isPending function C++ source code.

• Group:

The Tasking::GroupImpl::reset function call resets all associated tasks. Activated but not
yet started threads will not be started after that call. In Listing 19, this function makes
a virtual function call in line 6. Here, it calls the reset function for each task, resetting
the activation state of all task inputs. The class Task implements the reset function as a
virtual method as seen in line 158 in Listing C.6. This function is called whenever a task
was executed by the associated scheduler or when the task belongs to a group where all
tasks are executed.

The CFG of the Tasking::GroupImpl::reset function in Figure 5.9 shows that the virtual
function call was disassembled as the indirect branching instruction, blx r3.

Table 5.7 shows that for the given input configuration, DEL was able to successfully detect
and resolve the indirect jump of the Tasking::GroupImpl::reset function.

1 void Tasking::GroupImpl::reset(void)

2 {

3 // Reset all tasks of the group;

4 for (unsigned int i = 0; (i < maxTasks) && (taskList[i] != NULL); i++)

5 {

6 taskList[i]->parent.reset();

7 }

8 }

Listing 19: Tasking::GroupImpl::reset function C++ source code.



5.2. EVALUATING DEL’S DYNAMIC RUN ON THE TASKING FRAMEWORK 73

Figure 5.8: Tasking::clock::isPending function CFG.

Table 5.6: Tasking::clock::isPending function results.

Function No. of detected indirect jumps No. of visited indirect jumps No. of resolved indirect jumps
Tasking::clock::isPending 1 1 1
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Figure 5.9: Tasking::GroupImpl::reset function CFG.

Table 5.7: Tasking::GroupImpl::reset function results.

Function No. of detected indirect jumps No. of visited indirect jumps No. of resolved indirect jumps
Tasking::GroupImpl::reset 1 1 1
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5.2.2.2 Overall Join fork case study results

Table 5.8 highlights DEL’s results for the Join fork case study for the given input configuration.
DEL resolved the target addresses of 26 out of 28 indirect jumps that were statically detected
in the case study. The unresolved indirect control flow targets resulted primarily from the
corresponding indirect jump instructions not being visited during DEL’s dynamic run for the
given input configuration. In other words, those instructions were not on the DSE path and,
hence, their target addresses were not resolved. On the other hand, all the indirect jumps that
were visited during the dynamic run had their target addresses resolved through the DSE.

Strictly speaking, using multiple input configurations that guarantee the execution of all the
possible paths in the program should be sufficient to resolve all detected indirect jumps; however,
the design of such input configurations is outside the scope of this thesis.

Table 5.8: Join fork case study overall results.

Function No. of detected indirect jumps No. of visited indirect jumps No. of resolved indirect jumps
Tasking::InputArray::reset 1 1 1

Tasking::Input::synchronizeEnd 1 1 1
Tasking::Input::synchronizeStart 1 1 1

Tasking::Input::reset 1 1 1
Tasking::Scheduler::initialize 1 1 1

Tasking::Scheduler::start 1 1 1
Tasking::Scheduler::getTime 1 1 1

Tasking::Scheduler::terminate 2 2 2
Tasking::SchedulerImpl::perform 2 2 2
Tasking::SchedulerImpl::execute 1 1 1

Tasking::TaskImpl::synchronizeEnd 1 1 1
Tasking::TaskImpl::synchronizeStart 1 1 1
Tasking::TaskImpl::finalizeExecution 1 1 1

Tasking::Event::trigger 1 1 1
Tasking::Event::now 1 1 1

Tasking::EventImpl::configurePeriodicTiming 3 2 2
Tasking::EventImp::handle 2 1 1

Tasking::Clock::readFirstPending 1 1 1
Tasking::Clock::startAt 1 1 1
Tasking::Clock::startIn 1 1 1

Tasking::Clock::isPending 1 1 1
Tasking::GroupImpl::reset 1 1 1
Tasking::GroupImpl::reset 1 1 1

5.2.3 Performance

Table 5.9 shows the performance results during DEL’s dynamic run of the Join fork example.
Here, we can conclude that owing to the large size of the Join fork example binary, DEL needed
more time and memory storage to lift it when compared to the example program used in Sec-
tion 5.1. However, as discussed earlier, that is not a critical limitation as the tool will normally
be operated offline amidst the design validation and verification phase.

Table 5.9: Performance results.

Use-Case Binary Size (Kbyte) %CPU Average Memory ( MiB ) Execution Time (sec)
Join fork example of the Tasking Framework 630 37% 819 2213
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5.2.4 Bounding loops

Through its DSE engine, DEL can detect and bound loops accurately. DEL keeps track of the
number of times instructions are visited during the dynamic run. This feature could be used
to detect and bound loops in an input binary accurately. It could be particularly useful when
performing a WCET analysis at the IR level of a program similar to the work done by [10].

5.2.5 Limitations

• DEL’s translation APIs only cover ARMv7-M ISA instructions that were present in the
Tasking Framework’s Join fork example case study. Such instructions resemble only a
subset of the ARMv7-M ISA (67%).

• Our suggested method cannot handle parallel executing threads that have resources shared
between them. Because the symbolic execution strategy applied in our method only ex-
plores one control-flow path at a time in the program being analyzed, it is difficult to
anticipate the behavior of parallel executing binaries similar to the issue mentioned by
[10].



Chapter 6

Discussion

6.1 Conclusion

In this thesis, we presented a new lifter that lifts given binaries to LLIR and applies static and
dynamic execution, attempting to recover the control flow of the provided software fully. The
lifter, DEL, first performs a static symbolic execution to formulate each indirect jump’s control
flow target as a Z3 expression. Secondly, it performs a dynamic symbolic execution using the Z3
SMT solver to resolve all the Z3 expressions generated to their concrete values. DEL implements
its memory and register models and a condition flags handler to facilitate the dynamic symbolic
execution. DEL showed high precision when resolving indirect control flow targets for a case
study developed based on the Tasking Framework. According to our experimental results, given
the required input configurations, our proposed method is pragmatic and capable of constructing
an upgraded intermediate representation of C++ based applications.

This work considers ARMv7-M ISA. The time frame of the Master’s thesis was not enough
to fully cover the entire ISA. The presented work covers about 60%. Full coverage and different
ISAs are left for future work. ARMv7-M ISA has been chosen among many other ISAs because
it is commonly used in embedded systems.

DEL lifts the given binaries to static single assignment LLVM instructions. We aim to use
the lifted LLIR to apply different code analyses for safety and security purposes. LLVM can help
us reach our goal because of its broad support.

The work showed the power of symbolic execution but at the cost of run-time and memory
requirements of the developed lifter. The relatively straightforward translation from static single
assignment expressions to Z3 expressions is an essential motivation to use symbolic executions.
However, many points need to be resolved to improve the capabilities of symbolic execution, such
as memory aliasing and multi-threading.

6.2 Future Work

Testing the tool’s performance while running real-life programs other than the Tasking Frame-
work is crucial for comprehensively evaluating a binary lifting tool as DEL. SPEC CPU2006
benchmark suite [9], which is typical in the binary lifting literature [14, 16, 23, 40] can be an
appropriate benchmark to evaluate DEL’s ability to resolve indirect control flow targets. This
benchmark suite includes CPU-bound benchmarks, giving a cynical view of run-time overheads.
As already mentioned, DEL’s translation APIs only cover a subset of the ARMv7-M present
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in the Tasking Framework’s Join fork example case study. Consequently, we leave for future
work the implementation of additional translation APIs for covering the remaining assembly
instructions for ARMv7-M ISA that were not present in our case study. Only then a compre-
hensive evaluation of DEL’s abilities against the SPEC CPU2006, and other similar performance
benchmarks would be possible.

Another paramount future step is introducing parallel-execution SMT solver threads that
carry out symbolic execution for architectures that utilize parallel threads.



Appendix A

The Tasking Framework’s Join fork
example

Listing A.1: The Tasking Framework’s Join fork example.

1 /∗
2 ∗ joinForkExample . cpp
3 ∗
4 ∗ Copyright 2012−2020 German Aerospace Center (DLR) SC
5 ∗
6 ∗ Licensed under the Apache License , Version 2.0 ( the ” License ” ) ;
7 ∗ you may not use t h i s f i l e e x c e p t in compliance wi th the License .
8 ∗ You may o b t a i n a copy o f the License at
9 ∗

10 ∗ h t t p ://www. apache . org / l i c e n s e s /LICENSE−2.0
11 ∗
12 ∗ Unless r e q u i r e d by a p p l i c a b l e law or agreed to in w r i t ing , s o f t w a r e
13 ∗ d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
14 ∗ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .
15 ∗ See the License f o r the s p e c i f i c language governing permiss ions and
16 ∗ l i m i t a t i o n s under the License .
17 ∗/
18
19 /∗
20 ∗ This example
21 ∗/
22 #inc lude <s chedu l e rProv ide r . h>
23 #inc lude <s c h e d u l e P o l i c y F i f o . h>
24 #inc lude <taskChannel . h>
25 #inc lude <taskEvent . h>
26 #inc lude <task . h>
27 class ImgChannel : public Tasking : : Channel
28 {
29 public :
30 const i n t& getValue ( void ) const ;
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31 void pushValue ( i n t ) ;
32 protected :
33 i n t imgValue = 10 ;
34 } ;
35 const i n t&
36 ImgChannel : : getValue ( void ) const
37 {
38 return imgValue ;
39 }
40 void ImgChannel : : pushValue ( i n t va lue )
41 {
42 imgValue = value ;
43 Channel : : push ( ) ;
44 }
45 class CamTask : public Tasking : : TaskProvider<1u , Tasking : : Schedu lePo l i cyF i fo>
46 {
47 public :
48 CamTask( Tasking : : Scheduler& scheduler , ImgChannel& outChannel ) ;
49 virtual void execute ( void ) ;
50 private :
51 ImgChannel& out ;
52 } ;
53 CamTask : : CamTask( Tasking : : Scheduler& scheduler , ImgChannel& outChannel ) :
54 TaskProvider ( s chedu l e r ) ,
55 out ( outChannel )
56 {
57 inputs [ 0 u ] . c o n f i g u r e (1u ) ;
58 }
59 void CamTask : : execute ( void )
60 {
61 i n t imgValue = 10 ;
62 out . pushValue ( imgValue ) ;
63 }
64 class CraterTask : public Tasking : : TaskProvider<1u , Tasking : : Schedu lePo l i cyF i fo>
65 {
66 public :
67 CraterTask ( Tasking : : Scheduler& scheduler , ImgChannel& craterChannel ) ;
68 virtual void execute ( void ) ;
69 private :
70 ImgChannel& out ;
71 } ;
72 CraterTask : : CraterTask ( Tasking : : Scheduler& scheduler , ImgChannel& craterChanne l ) :
73 TaskProvider ( s chedu l e r ) ,
74 out ( craterChannel )
75 {
76 inputs [ 0 u ] . c o n f i g u r e (2u ) ;
77 }
78 void CraterTask : : execute ( void )
79 {
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80 i n t imgValue = getChannel<ImgChannel>(0u)−>getValue ( ) + 10 ;
81 out . pushValue ( imgValue ) ;
82 }
83 class FeatureTask : public Tasking : : TaskProvider<1u , Tasking : : Schedu lePo l i cyF i fo>
84 {
85 public :
86 FeatureTask ( Tasking : : Scheduler& scheduler , ImgChannel& featureChanne l ) ;
87 virtual void execute ( void ) ;
88 private :
89 ImgChannel& out ;
90 } ;
91 FeatureTask : : FeatureTask ( Tasking : : Scheduler& scheduler , ImgChannel& featureChanne l ) :
92 TaskProvider ( s chedu l e r ) ,
93 out ( featureChanne l )
94 {
95 inputs [ 0 u ] . c o n f i g u r e (2u ) ;
96 }
97 void FeatureTask : : execute ( void )
98 {
99 i n t imgValue = getChannel<ImgChannel>(0u)−>getValue ( ) + 5 ;

100 out . pushValue ( imgValue ) ;
101 }
102 class N a v i g a t i o n F i l t e r : public Tasking : : TaskProvider<3u ,
103 Tasking : : Schedu lePo l i cyF i fo>
104 {
105 public :
106 N a v i g a t i o n F i l t e r ( Tasking : : Scheduler& scheduler , ImgChannel& featureChanne l ) ;
107 virtual void execute ( void ) ;
108 private :
109 ImgChannel& out ;
110 } ;
111 N a v i g a t i o n F i l t e r : : N a v i g a t i o n F i l t e r ( Tasking : : Scheduler& scheduler ,
112 ImgChannel& outChannel ) :
113 TaskProvider ( s chedu l e r ) ,
114 out ( outChannel )
115 {
116 inputs [ 0 u ] . c o n f i g u r e (0u ) ;
117 inputs [ 1 u ] . c o n f i g u r e (0u ) ;
118 inputs [ 2 u ] . c o n f i g u r e (1u , true ) ;
119 }
120 void N a v i g a t i o n F i l t e r : : execute ( void )
121 {
122 i n t imgValue = getChannel<ImgChannel>(0u)−>getValue ( ) +
123 getChannel<ImgChannel>(1u)−>getValue ( ) ;
124 out . pushValue ( imgValue ) ;
125 }
126 class TerminalTask : public Tasking : : TaskProvider<1u , Tasking : : Schedu lePo l i cyF i fo>
127 {
128 public :
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129 TerminalTask ( Tasking : : Scheduler& schedu l e r ) ;
130 virtual void execute ( void ) ;
131 i n t va l = 0 ;
132 } ;
133 TerminalTask : : TerminalTask ( Tasking : : Scheduler& schedu l e r ) :
134 TaskProvider ( s chedu l e r )
135 {
136 inputs [ 0 u ] . c o n f i g u r e (0u ) ;
137 }
138 void TerminalTask : : execute ( void )
139 {
140 va l += getChannel<ImgChannel>(0u)−>getValue ( ) + 1 ;
141 }
142 // <<<<<<== i n s t a n c e s ==>>>>>
143 Tasking : : SchedulerProvider<1u , Tasking : : Schedu lePo l i cyF i fo> s chedu l e r ;
144 ImgChannel imgChannel10 ;
145 ImgChannel imgChannel45 ;
146 ImgChannel c rate rPos ;
147 ImgChannel f ea turePos ;
148 ImgChannel outPos ;
149 Tasking : : Event inputTr igger ( s chedu l e r ) ;
150 Tasking : : Event p roc e s sTr i gge r ( s chedu l e r ) ;
151 CamTask camTask1 ( schedu ler , imgChannel10 ) ;
152 CamTask camTask2 ( schedu ler , imgChannel45 ) ;
153 CraterTask craterTask0 ( schedu ler , c ra te rPos ) ;
154 FeatureTask featureTask0 ( scheduler , f ea turePos ) ;
155 N a v i g a t i o n F i l t e r navTask0 ( schedu ler , outPos ) ;
156 TerminalTask terminalTask1 ( s chedu l e r ) ;
157 TerminalTask terminalTask2 ( s chedu l e r ) ;
158 // <<<<<< == program code == >>>>>
159 i n t main ( void )
160 {
161 // Connect t a s k s to input channe ls
162 camTask1 . con f i gu r e Input (0u , inputTr igger ) ;
163 camTask2 . con f i gu r e Input (0u , inputTr igger ) ;
164 craterTask0 . con f i gu r e Input (0u , imgChannel10 ) ;
165 featureTask0 . con f i gu r e Input (0u , imgChannel45 ) ;
166 navTask0 . con f i gu r e Input (0u , c rate rPos ) ;
167 navTask0 . con f i gu r e Input (1u , f ea turePos ) ;
168 navTask0 . con f i gu r e Input (2u , p roc e s sTr i gge r ) ;
169 terminalTask1 . con f i gu r e Input (0u , outPos ) ;
170 terminalTask2 . con f i gu r e Input (0u , outPos ) ;
171 // Set p e r i o d s
172 inputTr igger . s e tPer iod icTiming (500 , 1000u ) ;
173 proc e s sTr i gge r . s e tPer iod i cTiming (850 , 100u ) ;
174 // S t a r t Tasking s c h e d u l e r
175 schedu l e r . s t a r t ( ) ;
176 while ( terminalTask1 . val <73){
177 }
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178 // Stop Tasking s c h e d u l e r
179 schedu l e r . terminate ( true ) ;
180 return 0 ;
181 }
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Example DSEIR module

Listing B.1: Final lifted DSEIR module of the example program.

1 define void @” f o o 1 ; ” ( i32 %0, i32 %1) {
2 ”0” :
3 %memory addre s s to s to r e in = alloca i32 , a l i g n 4
4 %2 = load i32 , i32∗ %SP , a l i g n 4
5 %3 = sub i32 %2, 4
6 store i32 %3, i32∗ %memory addres s to s to re in , a l i g n 4
7 %4 = load i32 , i32∗ %memory addres s to s to re in , a l i g n 4
8 %5 = load i32 , i32∗ %FP, a l i g n 4
9 %memory cel l = alloca i32 , a l i g n 4

10 store i32 0 , i32∗ %memory cell , a l i g n 4
11 store i32 %5, i32∗ %memory cell , a l i g n 4
12 %6 = load i32 , i32∗ %SP , a l i g n 4
13 %7 = sub i32 %6, 4
14 store i32 %7, i32∗ %SP , a l i g n 4
15 %8 = load i32 , i32∗ %SP , a l i g n 4
16 store i32 0 , i32∗ %IMM, a l i g n 4
17 %9 = add i32 %8, 0
18 store i32 %9, i32∗ %FP, a l i g n 4
19 store i32 5 , i32∗ %IMM, a l i g n 4
20 %10 = load i32 , i32∗ %IMM, a l i g n 4
21 store i32 %10, i32∗ %R3 , a l i g n 4
22 %11 = load i32 , i32∗ %R3 , a l i g n 4
23 store i32 %11, i32∗ %R0 , a l i g n 4
24 %12 = load i32 , i32∗ %FP, a l i g n 4
25 store i32 0 , i32∗ %IMM, a l i g n 4
26 %13 = add i32 %12, 0
27 store i32 %13, i32∗ %SP , a l i g n 4
28 %memory address to load from = alloca i32 , a l i g n 4
29 %14 = load i32 , i32∗ %SP , a l i g n 4
30 store i32 %14, i32∗ %memory address to load from , a l i g n 4
31 %15 = load i32 , i32∗ %memory address to load from , a l i g n 4
32 store i32 0 , i32∗ %memory cell , a l i g n 4
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33 %DATA = load i32 , i32∗ %memory cell , a l i g n 4
34 store i32 %DATA, i32∗ %FP, a l i g n 4
35 %16 = load i32 , i32∗ %SP , a l i g n 4
36 %17 = add i32 %16, 4
37 store i32 %17, i32∗ %SP , a l i g n 4
38 %18 = icmp eq i32 0 , 0
39 br i1 %18, label %”9”
40 }
41 define void @” f o o 2 ; ” ( i32 %0, i32 %1) {
42 ”0” :
43 %memory addre s s to s to r e in = alloca i32 , a l i g n 4
44 %2 = load i32 , i32∗ %SP , a l i g n 4
45 %3 = sub i32 %2, 4
46 store i32 %3, i32∗ %memory addres s to s to re in , a l i g n 4
47 %4 = load i32 , i32∗ %memory addres s to s to re in , a l i g n 4
48 %5 = load i32 , i32∗ %FP, a l i g n 4
49 store i32 0 , i32∗ %memory cell , a l i g n 4
50 store i32 %5, i32∗ %memory cell , a l i g n 4
51 %6 = load i32 , i32∗ %SP , a l i g n 4
52 %7 = sub i32 %6, 4
53 store i32 %7, i32∗ %SP , a l i g n 4
54 %8 = load i32 , i32∗ %SP , a l i g n 4
55 store i32 0 , i32∗ %IMM, a l i g n 4
56 %9 = add i32 %8, 0
57 store i32 %9, i32∗ %FP, a l i g n 4
58 store i32 6 , i32∗ %IMM, a l i g n 4
59 %10 = load i32 , i32∗ %IMM, a l i g n 4
60 store i32 %10, i32∗ %R3 , a l i g n 4
61 %11 = load i32 , i32∗ %R3 , a l i g n 4
62 store i32 %11, i32∗ %R0 , a l i g n 4
63 %12 = load i32 , i32∗ %FP, a l i g n 4
64 store i32 0 , i32∗ %IMM, a l i g n 4
65 %13 = add i32 %12, 0
66 store i32 %13, i32∗ %SP , a l i g n 4
67 %memory address to load from = alloca i32 , a l i g n 4
68 %14 = load i32 , i32∗ %SP , a l i g n 4
69 store i32 %14, i32∗ %memory address to load from , a l i g n 4
70 %15 = load i32 , i32∗ %memory address to load from , a l i g n 4
71 store i32 0 , i32∗ %memory cell , a l i g n 4
72 %DATA = load i32 , i32∗ %memory cell , a l i g n 4
73 store i32 %DATA, i32∗ %FP, a l i g n 4
74 %16 = load i32 , i32∗ %SP , a l i g n 4
75 %17 = add i32 %16, 4
76 store i32 %17, i32∗ %SP , a l i g n 4
77 %18 = icmp eq i32 0 , 0
78 br i1 %18, label %”9”
79 }
80 define void @”main ; ” ( i32 %0, i32 %1) {
81 ”0” :
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82 %memory addre s s to s to r e in = alloca i32 , a l i g n 4
83 %2 = load i32 , i32∗ %SP , a l i g n 4
84 %3 = sub i32 %2, 4
85 store i32 %3, i32∗ %memory addres s to s to re in , a l i g n 4
86 %4 = load i32 , i32∗ %memory addres s to s to re in , a l i g n 4
87 %5 = load i32 , i32∗ %FP, a l i g n 4
88 store i32 0 , i32∗ %memory cell , a l i g n 4
89 store i32 %5, i32∗ %memory cell , a l i g n 4
90 %6 = load i32 , i32∗ %SP , a l i g n 4
91 %7 = sub i32 %6, 4
92 store i32 %7, i32∗ %SP , a l i g n 4
93 %memory addre s s to s to r e in1 = alloca i32 , a l i g n 4
94 %8 = load i32 , i32∗ %SP , a l i g n 4
95 %9 = sub i32 %8, 4
96 store i32 %9, i32∗ %memory addres s to s tore in1 , a l i g n 4
97 %10 = load i32 , i32∗ %memory addres s to s tore in1 , a l i g n 4
98 %11 = load i32 , i32∗ %LR, a l i g n 4
99 store i32 0 , i32∗ %memory cell , a l i g n 4

100 store i32 %11, i32∗ %memory cell , a l i g n 4
101 %12 = load i32 , i32∗ %SP , a l i g n 4
102 %13 = sub i32 %12, 4
103 store i32 %13, i32∗ %SP , a l i g n 4
104 %14 = load i32 , i32∗ %SP , a l i g n 4
105 store i32 4 , i32∗ %IMM, a l i g n 4
106 %15 = add i32 %14, 4
107 store i32 %15, i32∗ %FP, a l i g n 4
108 %16 = load i32 , i32∗ %SP , a l i g n 4
109 store i32 24 , i32∗ %IMM, a l i g n 4
110 %17 = sub i32 %16, 24
111 store i32 %17, i32∗ %SP , a l i g n 4
112 %memory addre s s to s to r e in2 = alloca i32 , a l i g n 4
113 %pre index = alloca i32 , a l i g n 4
114 %18 = load i32 , i32∗ %FP, a l i g n 4
115 store i32 %18, i32∗ %pre index , a l i g n 4
116 %19 = load i32 , i32∗ %pre index , a l i g n 4
117 %20 = add i32 %19, −24
118 store i32 %20, i32∗ %memory addres s to s tore in2 , a l i g n 4
119 %21 = load i32 , i32∗ %R0 , a l i g n 4
120 %22 = load i32 , i32∗ %memory addres s to s tore in2 , a l i g n 4
121 store i32 0 , i32∗ %memory cell , a l i g n 4
122 store i32 %21, i32∗ %memory cell , a l i g n 4
123 %memory addre s s to s to r e in3 = alloca i32 , a l i g n 4
124 %pre index4 = alloca i32 , a l i g n 4
125 %23 = load i32 , i32∗ %FP, a l i g n 4
126 store i32 %23, i32∗ %pre index4 , a l i g n 4
127 %24 = load i32 , i32∗ %pre index4 , a l i g n 4
128 %25 = add i32 %24, −28
129 store i32 %25, i32∗ %memory addres s to s tore in3 , a l i g n 4
130 %26 = load i32 , i32∗ %R1 , a l i g n 4
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131 %27 = load i32 , i32∗ %memory addres s to s tore in3 , a l i g n 4
132 store i32 0 , i32∗ %memory cell , a l i g n 4
133 store i32 %26, i32∗ %memory cell , a l i g n 4
134 %28 = load i32 , i32∗ %FP, a l i g n 4
135 store i32 20 , i32∗ %IMM, a l i g n 4
136 %29 = sub i32 %28, 20
137 store i32 %29, i32∗ %R3 , a l i g n 4
138 store i32 0 , i32∗ %IMM, a l i g n 4
139 %30 = load i32 , i32∗ %IMM, a l i g n 4
140 store i32 %30, i32∗ %R3 , a l i g n 4
141 %memory addre s s to s to r e in5 = alloca i32 , a l i g n 4
142 %pre index6 = alloca i32 , a l i g n 4
143 %31 = load i32 , i32∗ %FP, a l i g n 4
144 store i32 %31, i32∗ %pre index6 , a l i g n 4
145 %32 = load i32 , i32∗ %pre index6 , a l i g n 4
146 %33 = add i32 %32, −8
147 store i32 %33, i32∗ %memory addres s to s tore in5 , a l i g n 4
148 %34 = load i32 , i32∗ %R3 , a l i g n 4
149 %35 = load i32 , i32∗ %memory addres s to s tore in5 , a l i g n 4
150 store i32 0 , i32∗ %memory cell , a l i g n 4
151 store i32 %34, i32∗ %memory cell , a l i g n 4
152 store i32 0 , i32∗ %IMM, a l i g n 4
153 %36 = load i32 , i32∗ %IMM, a l i g n 4
154 store i32 %36, i32∗ %R3 , a l i g n 4
155 %memory addre s s to s to r e in7 = alloca i32 , a l i g n 4
156 %pre index8 = alloca i32 , a l i g n 4
157 %37 = load i32 , i32∗ %FP, a l i g n 4
158 store i32 %37, i32∗ %pre index8 , a l i g n 4
159 %38 = load i32 , i32∗ %pre index8 , a l i g n 4
160 %39 = add i32 %38, −12
161 store i32 %39, i32∗ %memory addres s to s tore in7 , a l i g n 4
162 %40 = load i32 , i32∗ %R3 , a l i g n 4
163 %41 = load i32 , i32∗ %memory addres s to s tore in7 , a l i g n 4
164 store i32 0 , i32∗ %memory cell , a l i g n 4
165 store i32 %40, i32∗ %memory cell , a l i g n 4
166 %42 = icmp eq i32 0 , 0
167 br i1 %42, label %”5”
168
169 ”1” : ; preds = %”5”
170 %43 = load i32 , i32∗ %R3 , a l i g n 4
171 store i32 4 , i32∗ %IMM, a l i g n 4
172 %44 = add i32 %43, 4
173 store i32 %44, i32∗ %R3 , a l i g n 4
174 %45 = load i32 , i32∗ %R2 , a l i g n 4
175 %46 = load i32 , i32∗ %R3 , a l i g n 4
176 %47 = add i32 %45, %46
177 store i32 %47, i32∗ %R3 , a l i g n 4
178 %memory address to load from = alloca i32 , a l i g n 4
179 %48 = load i32 , i32∗ %R3 , a l i g n 4
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180 store i32 %48, i32∗ %memory address to load from , a l i g n 4
181 %49 = load i32 , i32∗ %memory address to load from , a l i g n 4
182 %temp1 = alloca i32 , a l i g n 4
183 store i32 0 , i32∗ %memory cell , a l i g n 4
184 %Full DATA = load i32 , i32∗ %memory cell , a l i g n 4
185 store i32 %Full DATA , i32∗ %temp1 , a l i g n 4
186 %v 0 = alloca i32 , a l i g n 4
187 %Full DATA9 = load i32 , i32∗ %temp1 , a l i g n 4
188 %v 010 = shl i32 %Full DATA9 , %I 246
189 store i32 %v 010 , i32∗ %v 0 , a l i g n 4
190 %50 = load i32 , i32∗ %v 0 , a l i g n 4
191 %v 011 = lshr i32 %50, %I 246
192 store i32 %v 011 , i32∗ %v 0 , a l i g n 4
193 %51 = load i32 , i32∗ %v 0 , a l i g n 4
194 store i32 %51, i32∗ %R3 , a l i g n 4
195 %52 = load i32 , i32∗ %R3 , a l i g n 4
196 store i32 48 , i32∗ %IMM, a l i g n 4
197 %53 = sub i32 %52, 48
198 store i32 %53, i32∗ %TEMP, a l i g n 4
199 %54 = icmp eq i32 0 , 0
200 br i1 %54, label %”7” , label %”2”
201
202 ”2” : ; preds = %”1”
203 %55 = load i32 , i32∗ %R3 , a l i g n 4
204 store i32 4 , i32∗ %IMM, a l i g n 4
205 %56 = add i32 %55, 4
206 store i32 %56, i32∗ %R3 , a l i g n 4
207 %57 = load i32 , i32∗ %R2 , a l i g n 4
208 %58 = load i32 , i32∗ %R3 , a l i g n 4
209 %59 = add i32 %57, %58
210 store i32 %59, i32∗ %R3 , a l i g n 4
211 %memory address to load from12 = alloca i32 , a l i g n 4
212 %60 = load i32 , i32∗ %R3 , a l i g n 4
213 store i32 %60, i32∗ %memory address to load from12 , a l i g n 4
214 %61 = load i32 , i32∗ %memory address to load from12 , a l i g n 4
215 %temp113 = alloca i32 , a l i g n 4
216 store i32 0 , i32∗ %memory cell , a l i g n 4
217 %Full DATA14 = load i32 , i32∗ %memory cell , a l i g n 4
218 store i32 %Full DATA14 , i32∗ %temp113 , a l i g n 4
219 %v 015 = alloca i32 , a l i g n 4
220 %Full DATA16 = load i32 , i32∗ %temp113 , a l i g n 4
221 %v 017 = shl i32 %Full DATA16 , %I 246
222 store i32 %v 017 , i32∗ %v 015 , a l i g n 4
223 %62 = load i32 , i32∗ %v 015 , a l i g n 4
224 %v 018 = lshr i32 %62, %I 246
225 store i32 %v 018 , i32∗ %v 015 , a l i g n 4
226 %63 = load i32 , i32∗ %v 015 , a l i g n 4
227 store i32 %63, i32∗ %R3 , a l i g n 4
228 %64 = load i32 , i32∗ %R3 , a l i g n 4



90 APPENDIX B. EXAMPLE DSEIR MODULE

229 store i32 90 , i32∗ %IMM, a l i g n 4
230 %65 = sub i32 %64, 90
231 store i32 %65, i32∗ %TEMP, a l i g n 4
232 %66 = icmp eq i32 0 , 0
233 br i1 %66, label %”4” , label %”3”
234
235 ”3” : ; preds = %”2”
236 %67 = load i32 , i32∗ %R3 , a l i g n 4
237 store i32 1 , i32∗ %IMM, a l i g n 4
238 %68 = xor i32 %67, 1
239 store i32 %68, i32∗ %R3 , a l i g n 4
240 %memory addre s s to s to r e in19 = alloca i32 , a l i g n 4
241 %pre index20 = alloca i32 , a l i g n 4
242 %69 = load i32 , i32∗ %FP, a l i g n 4
243 store i32 %69, i32∗ %pre index20 , a l i g n 4
244 %70 = load i32 , i32∗ %pre index20 , a l i g n 4
245 %71 = add i32 %70, −8
246 store i32 %71, i32∗ %memory addres s to s tore in19 , a l i g n 4
247 %72 = load i32 , i32∗ %R3 , a l i g n 4
248 %73 = load i32 , i32∗ %memory addres s to s tore in19 , a l i g n 4
249 store i32 0 , i32∗ %memory cell , a l i g n 4
250 store i32 %72, i32∗ %memory cell , a l i g n 4
251
252 ”4” : ; preds = %”2”
253 %74 = load i32 , i32∗ %R3 , a l i g n 4
254 store i32 1 , i32∗ %IMM, a l i g n 4
255 %75 = add i32 %74, 1
256 store i32 %75, i32∗ %R3 , a l i g n 4
257 %memory addre s s to s to r e in21 = alloca i32 , a l i g n 4
258 %pre index22 = alloca i32 , a l i g n 4
259 %76 = load i32 , i32∗ %FP, a l i g n 4
260 store i32 %76, i32∗ %pre index22 , a l i g n 4
261 %77 = load i32 , i32∗ %pre index22 , a l i g n 4
262 %78 = add i32 %77, −12
263 store i32 %78, i32∗ %memory addres s to s tore in21 , a l i g n 4
264 %79 = load i32 , i32∗ %R3 , a l i g n 4
265 %80 = load i32 , i32∗ %memory addres s to s tore in21 , a l i g n 4
266 store i32 0 , i32∗ %memory cell , a l i g n 4
267 store i32 %79, i32∗ %memory cell , a l i g n 4
268
269 ”5” : ; preds = %”0”
270 %81 = load i32 , i32∗ %R3 , a l i g n 4
271 store i32 99 , i32∗ %IMM, a l i g n 4
272 %82 = sub i32 %81, 99
273 store i32 %82, i32∗ %TEMP, a l i g n 4
274 %83 = icmp eq i32 0 , 0
275 br i1 %83, label %”1” , label %”6”
276
277 ”6” : ; preds = %”5”
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278 %84 = icmp eq i32 0 , 0
279 br i1 %84, label %”8”
280
281 ”7” : ; preds = %”1”
282
283 ”8” : ; preds = %”6”
284 store i32 2 , i32∗ %IMM, a l i g n 4
285 %85 = load i32 , i32∗ %R3 , a l i g n 4
286 store i32 2 , i32∗ %IMM, a l i g n 4
287 %86 = shl i32 %85, 2
288 store i32 %86, i32∗ %R3 , a l i g n 4
289 %87 = load i32 , i32∗ %FP, a l i g n 4
290 store i32 4 , i32∗ %IMM, a l i g n 4
291 %88 = sub i32 %87, 4
292 store i32 %88, i32∗ %R2 , a l i g n 4
293 %89 = load i32 , i32∗ %R2 , a l i g n 4
294 %90 = load i32 , i32∗ %R3 , a l i g n 4
295 %91 = add i32 %89, %90
296 store i32 %91, i32∗ %R3 , a l i g n 4
297 %92 = load i32 , i32∗ %PC, a l i g n 4
298 store i32 %92, i32∗ %LR, a l i g n 4
299 %93 = icmp eq i32 0 , 0
300 br i1 %93, label %”0” , label %”9”
301
302 ”9” : ; preds = %”8”, %”0”, %”0”
303 %94 = load i32 , i32∗ %R0 , a l i g n 4
304 store i32 %94, i32∗ %R3 , a l i g n 4
305 %95 = load i32 , i32∗ %R3 , a l i g n 4
306 store i32 %95, i32∗ %R0 , a l i g n 4
307 %96 = load i32 , i32∗ %FP, a l i g n 4
308 store i32 4 , i32∗ %IMM, a l i g n 4
309 %97 = sub i32 %96, 4
310 store i32 %97, i32∗ %SP , a l i g n 4
311 %memory address to load from23 = alloca i32 , a l i g n 4
312 %98 = load i32 , i32∗ %SP , a l i g n 4
313 store i32 %98, i32∗ %memory address to load from23 , a l i g n 4
314 %99 = load i32 , i32∗ %memory address to load from23 , a l i g n 4
315 store i32 0 , i32∗ %memory cell , a l i g n 4
316 %DATA = load i32 , i32∗ %memory cell , a l i g n 4
317 store i32 %DATA, i32∗ %LR, a l i g n 4
318 %100 = load i32 , i32∗ %SP , a l i g n 4
319 %101 = add i32 %100, 4
320 store i32 %101, i32∗ %SP , a l i g n 4
321 %memory address to load from24 = alloca i32 , a l i g n 4
322 %102 = load i32 , i32∗ %SP , a l i g n 4
323 store i32 %102, i32∗ %memory address to load from24 , a l i g n 4
324 %103 = load i32 , i32∗ %memory address to load from24 , a l i g n 4
325 store i32 0 , i32∗ %memory cell , a l i g n 4
326 %DATA25 = load i32 , i32∗ %memory cell , a l i g n 4
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327 store i32 %DATA25, i32∗ %FP, a l i g n 4
328 %104 = load i32 , i32∗ %SP , a l i g n 4
329 %105 = add i32 %104, 4
330 store i32 %105, i32∗ %SP , a l i g n 4
331 br i32 1 , label %” l r ”
332 }



Appendix C

Relevant Tasking Framework header
files

Listing C.1: Task input header file.

1 /∗
2 ∗ t a s k I n p u t . h
3 ∗
4 ∗ Copyright 2012−2019 German Aerospace Center (DLR) SC
5 ∗
6 ∗ Licensed under the Apache License , Version 2.0 ( the ” License ” ) ;
7 ∗ you may not use t h i s f i l e e x c e p t in compliance wi th the License .
8 ∗ You may o b t a i n a copy o f the License at
9 ∗

10 ∗ h t t p ://www. apache . org / l i c e n s e s /LICENSE−2.0
11 ∗
12 ∗ Unless r e q u i r e d by a p p l i c a b l e law or agreed to in w r i t ing , s o f t w a r e
13 ∗ d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
14 ∗ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .
15 ∗ See the License f o r the s p e c i f i c language governing permiss ions and
16 ∗ l i m i t a t i o n s under the License .
17 ∗/
18 #i f n d e f TASKINPUT H
19 #d e f i n e TASKINPUT H
20 #inc lude ” impl / taskInput impl . h”
21 namespace Tasking
22 {
23 class Task ;
24 class Channel ;
25 /∗∗
26 ∗ Manage the a c t i v a t i o n s t a t e o f incoming channe l s to a t a s k .
27 I f a l l t a s k i n p u t s o f a t a s k are a c t i v a t e d
28 ∗ or at l e a s t one i s a c t i v a t e d and marked as f i n a l , the t a s k w i l l e x e c u t e .
29 ∗ A t a s k input i s a c t i v a t e d , i f the number o f a c t i v a t i o n s reaches
30 the a c t i v a t i o n t h r e s h o l d d e f i n e d

93
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31 ∗ by the c o n s t r u c t o r o f the t a s k input . Def in ing a t a s k input wi th
32 a c t i v a t i o n t h r e s h o l d o f zero
33 ∗ means , t h a t the input i s on ly o p t i o n a l f o r a t a s k and w i l l not
34 b l o c k t a s k a c t i v a t i o n by o the r i n p u t s .
35 ∗/
36 class Input
37 {
38 public :
39 /∗∗
40 ∗ Nul l i n i t i a l i z a t i o n o f a t a s k input .
41 ∗/
42 Input ( void ) ;
43 /∗∗
44 ∗ Destruc tor
45 ∗/
46 virtual ˜ Input ( void )
47 {
48 }
49 /∗∗
50 ∗ Connect the input to a channel and c o n f i g u r e the b e h a v i o r f o r
51 the a c t i v a t i o n o f the input .
52 ∗ Without t h i s c a l l , the input i s i n v a l i d and an a p p l i c a t i o n
53 can not s t a r t . As s i d e e f f e c t
54 ∗ the input i s c o n f i g u r e d as synchronous input .
55 To g e t an unsynchronized input a c a l l to
56 ∗ method setSynchron with parameter f a l s e i s necessary .
57 ∗
58 ∗ @param channel Reference to the channel where t h i s input i s a s s o c i a t e d to .
59 ∗
60 ∗ @param a c t i v a t i o n s Threshold v a l u e o f new data
61 n o t i f i c a t i o n s at channel to a c t i v a t e the t a s k .
62 ∗ D e f a u l t v a l u e i s one incoming message to t r i g g e r a t a s k .
63 A v a l u e o f 0 mark the t a s k input
64 ∗ o p t i o n a l f o r the a c c e p t i n g t a s k s .
65 ∗
66 ∗ @param f i n a l Flag to i n d i c a t e t h a t reach ing the
67 a c t i v a t i o n t h r e s h o l d a c t i v a t e the t a s k
68 ∗ immediate ly wi thou t r e s p e c t to o t her a c t i v a t i o n
69 s t a t e s o f o the r i n p u t s from the t a s k .
70 ∗ D e f a u l t v a l u e i s f a l s e .
71 ∗/
72 void c o n f i g u r e ( Channel& channel , unsigned i n t a c t i v a t i o n s = 1 ,
73 bool f i n a l = fa l se ) ;
74 /∗∗
75 ∗ Configure the s e t t i n g s o f the input wi thout s e t t i n g a
76 channel to the input . The input remains
77 ∗ i n v a l i d u n t i l a channel i s a s s o c i a t e d to the input .
78 As s i d e e f f e c t the input i s c o n f i g u r e d as
79 ∗ synchronous input . To g e t an unsynchronized input a



95

80 c a l l to method setSynchron with parameter
81 ∗ f a l s e i s necessary .
82 ∗
83 ∗ @param a c t i v a t i o n s Threshold v a l u e o f incoming messages
84 on a channel to a c t i v a t e the t a s k .
85 ∗ D e f a u l t v a l u e i s one incoming message to t r i g g e r a t a s k .
86 A v a l u e o f 0 mark the t a s k input
87 ∗ o p t i o n a l f o r the a c c e p t i n g t a s k s .
88 ∗
89 ∗ @param f i n a l Flag to i n d i c a t e t h a t reach ing the a c t i v a t i o n
90 t h r e s h o l d t r i g g e r s the t a s k
91 ∗ immediate ly wi thou t r e s p e c t to o t her a c t i v a t i o n s t a t e s o f
92 o t her i n p u t s from the t a s k .
93 ∗ D e f a u l t v a l u e i s f a l s e .
94 ∗
95 ∗ @see a s s o c i a t e
96 ∗/
97 void c o n f i g u r e ( unsigned i n t a c t i v a t i o n s , bool f i n a l = fa l se ) ;
98 /∗∗
99 ∗ Configure input s y n c h r o n i z a t i o n as on . I f s y n c h r o n i z a t i o n

100 i s on and the input i s a c t i v a t e d , the r e s e t ope ra t ion
101 ∗ consumes only the number o f expec ted a c t i v a t i o n s .
102 No n o t i f i c a t i o n s are l o s t when the input i s a c t i v a t e d and the
103 ∗ r e s e t ope ra t i on i s not executed f o r t h i s a c t i v a t i o n c y c l e .
104 I f enough n o t i f i c a t i o n s have been r e c e i v e d when the
105 ∗ r e s e t ope ra t i on i s s t a r t e d , the input g e t ' s immediate ly
106 a c t i v a t e d d i r e c t l y a f t e r the r e s e t ope ra t ion .
107 ∗ E. g . i f a c t i v a t i o n s i s s e t to two and f i v e n o t i f i c a t i o n s happens wi thout
108 ∗ the r e s e t operat ion , the input i s a c t i v a t e d d i r e c t l y
109 again by the r e s e t o per a t io n . Af ter the next
110 ∗ r e s e t ope ra t i on the input w i l l wai t f o r a f u r t h e r
111 n o t i f i c a t i o n to g e t a c t i v a t e d .
112 ∗
113 ∗ By d e f a u l t the s y n c h r o n i z a t i o n i s sw i t che d on .
114 ∗
115 ∗ @param s y n c S t a t e S e t t i n g f o r the s y n c h r o n i z a t i o n s t a t e .
116 I f s e t to f a l s e n o t i f i c a t i o n s w i l l be l o s t a f t e r the
117 ∗ a c t i v a t i o n o f the input and b e f o r e i t s r e s e t ope ra t i on i s f i n a l i z e d
118 An a s s o c i a t e d channel can ho ld in t h i s
119 ∗ case unread data i tems and the a s s o c i a t e d t a s k
120 has to handle t h e s e circumstance .
121 ∗/
122 void setSynchron ( bool syncState = true ) ;
123 /∗∗
124 ∗ Connect a channel to the input . I f the input i s conf igured ,
125 i t becomes v a l i d a f t e r the c a l l .
126 ∗
127 ∗ @param channel Reference to the message where t h i s
128 input i s a s s o c i a t e d to .



96 APPENDIX C. RELEVANT TASKING FRAMEWORK HEADER FILES

129 ∗
130 ∗ @re su l t t r u e i f the a s s o c i a t i o n succeed . f a l s e i f the
131 input i s a l r e a d y a s s o c i a t e d to the channel .
132 ∗
133 ∗ @see c o n f i g u r e
134 ∗/
135 bool a s s o c i a t e ( Channel& channel ) ;
136 /∗∗
137 ∗ Remove the a s s o c i a t i o n between the input and the channel .
138 The input i s no l o n g e r n o t i f i e d by the channel
139 ∗ and can not be a c t i v a t e d u n t i l a new a s s o c i a t i o n to a channel i s s e t .
140 The input becomes i n v a l i d
141 ∗ a f t e r the c a l l .
142 ∗/
143 void d e a s s o c i a t e ( void ) ;
144 /∗∗
145 ∗ Connect the input wi th a t a s k . By usage o f a TaskProvider
146 the method i s c a l l e d by the c o n s t r u c t o r .
147 ∗ The method i s a l s o c a l l e d when i n s t a n t i a t i n g a t a s k or
148 connect an input array to a t a s k . By d e f a u l t
149 ∗ from a p p l i c a t i o n code no c a l l i s necessary .
150 ∗
151 ∗ @see Task : : c o n s t r u c t
152 ∗ @see InputArray : : connectTask
153 ∗/
154 void connectTask ( TaskImpl& task ) ;
155 /∗∗
156 ∗ Reset the a c t i v a t i o n s t a t e to 0 a c t i v a t i o n s .
157 ∗/
158 virtual void r e s e t ( void ) ;
159 /∗∗
160 ∗ Request i f the t a s k input i s n o t i f i e d the expec ted
161 number o f t imes s i n c e the l a s t r e s e t .
162 ∗
163 ∗ @r esu l t True , i f the t a s k input i s a c t i v a t e d . Fa lse
164 i f not the r e q u i r e d number o f n o t i f i c a t i o n
165 ∗ happens . For o p t i o n a l and f i n a l i n p u t s the r e s u l t i s
166 f a l s e i f not at l e a s t one n o t i f i c a t i o n happens .
167 ∗/
168 bool i sAc t i va t ed ( void ) const ;
169 /∗∗
170 ∗ Check i f the input i s marked as f i n a l .
171 ∗
172 ∗ @r esu l t True , i f the input i s marked as f i n a l .
173 False i f not .
174 ∗/
175 bool i s F i n a l ( void ) const ;
176 /∗∗
177 ∗ Check i f the input i s c o n f i g u r e d as o p t i o n a l



97

178 ∗
179 ∗ @re su l t True i f the input i s c o n f i g u r e d wi th zero
180 a r r i v a l as a c t i v a t i o n t h r e s h o l d , e l s e f a l s e .
181 ∗/
182 bool i sOpt i ona l ( void ) const ;
183 /∗∗
184 ∗ True i f the input i s c o r r e c t l y c o n f i g u r e d .
185 ∗ @see c o n f i g u r e
186 ∗/
187 bool i s V a l i d ( void ) const ;
188 /∗∗
189 ∗ Request the number o f a c t i v a t i o n s s i n c e l a s t
190 r e s e t o f the t a s k input .
191 ∗ S p e c i a l case : o p t i o n a l f i n a l input r e t u r n s
192 only t r u e i f an a c t i v a t i o n came
193 ∗
194 ∗ @re su l t Number o f a c t i v a t i o n s s i n c e l a s t c a l l to r e s e t .
195 ∗/
196 unsigned i n t g e tAc t i va t i on s ( void ) const ;
197 /∗∗
198 ∗ Type s a f e r e q u e s t o f a channel from a t a s k input
199 ∗ @tparam ChannelType Type o f the channel to r e q u e s t
200 ∗ @r esu l t Pointer o f corresponding t a s k channel
201 type a s s o c i a t e d wi th the t h i s input
202 ∗/
203 template<typename ChannelType>
204 ChannelType∗
205 getChannel ( void ) const
206 {
207 return static cast<ChannelType∗>( impl . getChannel ( ) ) ;
208 }
209 protected :
210 /∗∗
211 ∗ The a s s o c i a t e d t a s k s t a r t to e x e c u t e . This method
212 i s p r o t e c t e d by the s c h e d u l e r a g a i n s t concurrent
213 ∗ ac ces s o f two t a s k s a s s o c i a t e d wi th the s c h e d u l e r .
214 ∗/
215 virtual void synchron i z eS ta r t ( void ) ;
216 /∗∗
217 ∗ The a s s o c i a t e d t a s k has f i n a l i z e i t s run .
218 This method i s p r o t e c t e d by the s c h e d u l e r a g a i n s t concurrent
219 ∗ ac ces s o f two t a s k s a s s o c i a t e d wi th the s c h e d u l e r .
220 ∗/
221 virtual void synchronizeEnd ( void ) ;
222 private :
223 /// Implementation par t o f the input
224 InputImpl impl ;
225 } ;
226 } // namespace Tasking
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227 #e n d i f /∗ TASKINPUT H ∗/

Listing C.2: Scheduler policy header file.

1 /∗
2 ∗ s c h e d u l e P o l i c y . h
3 ∗
4 ∗ Copyright 2012−2019 German Aerospace Center (DLR) SC
5 ∗
6 ∗ Licensed under the Apache License , Version 2.0 ( the ” License ” ) ;
7 ∗ you may not use t h i s f i l e e x c e p t in compliance wi th the License .
8 ∗ You may o b t a i n a copy o f the License at
9 ∗

10 ∗ h t t p ://www. apache . org / l i c e n s e s /LICENSE−2.0
11 ∗
12 ∗ Unless r e q u i r e d by a p p l i c a b l e law or agreed to in w r i t ing , s o f t w a r e
13 ∗ d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
14 ∗ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .
15 ∗ See the License f o r the s p e c i f i c language governing permiss ions and
16 ∗ l i m i t a t i o n s under the License .
17 ∗/
18 #i f n d e f TASKING INCLUDE SCHEDULEPOLICY H
19 #d e f i n e TASKING INCLUDE SCHEDULEPOLICY H
20 namespace Tasking
21 {
22 class TaskImpl ;
23 /∗∗
24 ∗ I n t e r f a c e c l a s s o f a s c h e d u l i n g p o l i c y . For the implementat ion o f a new
25 s c h e d u l i n g p o l i c y the two s t r u c t u r e s
26 ∗ and two methods have to be implemented by a s p e c i a l i z a t i o n o f t h i s c l a s s .
27 ∗/
28 class Schedu lePo l i cy
29 {
30 public :
31 /∗∗
32 ∗ S t r u c t u r e to i n i t i a l i z e p o l i c i e s wi th s e t t i n g s f o r a task ,
33 e . g . the t a s k p r i o r i t y f o r a p r i o r i t y based
34 ∗ s c h e d u l i n g p o l i c y . A s p e c i a l i z a t i o n o f t h i s c l a s s has to
35 pr ov id e the corresponding s t r u c t u r e when
36 ∗ t a s k s e t t i n g s are needed f o r the p o l i c y . I t i s used to
37 i n i t i a l i z e the management data o f a t a s k .
38 ∗ @see ManagementData
39 ∗/
40 struct S e t t i n g s
41 {
42 } ;
43 /∗∗
44 ∗ S t r u c t u r e f o r data used by the implementat ion . This data i s h e l d by each t a s k .
45 Typica l data are f o r
46 ∗ example p o i n t e r s between t a s k s to implement a run queue .
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47 I t i s i n i t i a l i z e d wi th t a s k s e t t i n g s .
48 ∗ A s p e c i a l i z a t i o n o f a s c h e d u l i n g p o l i c y has to pr ov id e t h i s data s t r u c t u r e .
49 ∗ @see S e t t i n g s
50 ∗/
51 struct ManagementData
52 {
53 } ;
54 /// Needed f o r v i r t u a l methods
55 virtual ˜ Schedu lePo l i cy ( void )
56 {
57 }
58 /∗∗
59 ∗ Queue a t a s k accord ing to the p o l i c y i n t o the run queue .
60 An implementat ion o f a s c h e d u l i n g p o l i c y must implement
61 ∗ t h i s method . Each t a s k p r o v i d e s the management data s t r u c t u r e to
62 pr ov id e the memory space f o r the s c h e d u l i n g
63 ∗ p o l i c y . The method i s c a l l e d when a t a s k s w i t c h e s the s t a t e from
64 wai t to pending .
65 ∗ @param t a s k Reference to the t a s k to queue in the run queue by
66 the s c h e d u l i n g p o l i c y
67 ∗ @return True when queue was empty at c a l l t ime .
68 ∗ @see ManagementData
69 ∗/
70 virtual bool queue ( Tasking : : TaskImpl& task ) = 0 ;
71 /∗∗
72 ∗ Request and remove the next t a s k in the s c h e d u l i n g order .
73 An implementat ion o f a s c h e d u l i n g p o l i c y has to pr ov id e
74 ∗ t h i s method . The d e l i v e r e d t a s k w i l l s w i t c h from s t a t e
75 pending to run .
76 ∗ @return Pointer to the next t a s k in the order o f
77 the s c h e d u l i n g p o l i c y .
78 I f no pending t a s k i s a v a i l a b l e , a NULL
79 ∗ p o i n t e r i s re turned .
80 ∗/
81 virtual Tasking : : TaskImpl∗ nextTask ( void ) = 0 ;
82 } ;
83 } // namespace Tasking
84 #e n d i f /∗ TASKING INCLUDE SCHEDULEPOLICY H ∗/

Listing C.3: Scheduler header file.

1 /∗
2 ∗ s c h e d u l e r . h
3 ∗
4 ∗ Copyright 2012−2019 German Aerospace Center (DLR) SC
5 ∗
6 ∗ Licensed under the Apache License , Version 2.0 ( the ” License ” ) ;
7 ∗ you may not use t h i s f i l e e x c e p t in compliance wi th the License .
8 ∗ You may o b t a i n a copy o f the License at
9 ∗
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10 ∗ h t t p ://www. apache . org / l i c e n s e s /LICENSE−2.0
11 ∗
12 ∗ Unless r e q u i r e d by a p p l i c a b l e law or agreed to in w r i t ing , s o f t w a r e
13 ∗ d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
14 ∗ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .
15 ∗ See the License f o r the s p e c i f i c language governing permiss ions and
16 ∗ l i m i t a t i o n s under the License .
17 ∗/
18 #i f n d e f TASKING INCLUDE SCHEDULER H
19 #d e f i n e TASKING INCLUDE SCHEDULER H
20 #inc lude ” impl / s chedu l e r imp l . h”
21 namespace Tasking
22 {
23 // Forward name d e c l a r a t i o n s
24 class TaskImpl ;
25 /∗∗
26 ∗ Common i n t e r f a c e to the s c h e d u l e r used by the Tasking Framework e lements .
27 I t i s recommended to use the temp la te
28 ∗ c l a s s Schedu lerProv ider to i n s t a n t i a t e a s c h e d u l e r .
29 ∗ @see Schedu lerProv ider
30 ∗/
31 class Scheduler
32 {
33 public :
34 /∗∗
35 ∗ I n i t i a l i z e the s c h e d u l e r .
36 ∗
37 ∗ @param s c h e d u l e P o l i c y Reference to the used s c h e d u l i n g p o l i c y
38 f o r the s c h e d u l e r .
39 ∗ @param c l o c k Reference to the c l o c k used by the s c h e d u l e r implementat ion
40 ∗/
41 Scheduler ( Schedu lePo l i cy& schedu lePo l i cy , Clock& c lo ck ) ;
42 /// V i r t u a l d e s t r u c t o r o f i n t e r f a c e
43 virtual ˜ Scheduler ( void ) ;
44 /∗∗
45 ∗ Set a zero time with an o f f s e t time to the current time when
46 the f u n c t i o n i s c a l l e d .
47 By d e f a u l t a zero time
48 ∗ i s s e t a t c o n s t r u c t i o n time o f the s c h e d u l e r wi thou t o f f s e t ,
49 but f o r s y n c h r o n i z a t i o n i s s u e s the c l o c k can
50 ∗ a d j u s t e d to an outer s i g n a l from time to time .
51 ∗
52 ∗ I f the system i s c u r r e n t l y running ,
53 a d j u s t i n g the c l o c k w i l l have an e f f e c t on the s t a r t time o f a l l events ,
54 ∗ because a l l t ime p o i n t s to s t a r t an event in the c l o c k queue
55 are organ i zed by a b s o l u t e time p o i n t s .
56 ∗
57 ∗ The bare metal implementat ion has to implement t h i s f u n c t i o n a l i t y .
58 ∗



101

59 ∗ @param o f f s e t O f f s e t time to the curren t time . Using the
60 curren t time o f the c l o c k w i l l have n e a r l y no e f f e c t
61 ∗ to the t iming .
62 ∗/
63 virtual void setZeroTime (Time o f f s e t ) = 0 ;
64 /∗∗
65 ∗ S t a r t the s c h e d u l i n g o f t a s k s .
66 ∗
67 ∗ @param doReset I f s e t to true , a r e s e t on a l l a s s o c i a t e d t a s k s i s performed .
68 I f s e t to f a l s e , each a c t i v a t e d t a s k
69 ∗ w i l l be queued f o r e x e c u t i o n .
70 ∗
71 ∗ @see terminate
72 ∗/
73 void s t a r t ( bool doReset = true ) ;
74 /∗∗
75 ∗ Stopping the s c h e d u l i n g o f t a s k s . The s c h e d u l e r didn ' t
76 accept t a s k s to perform u n t i l s t a r t i s c a l l e d .
77 ∗
78 ∗ @param doNotRemovePendingTasks I f the f l a g i s s e t to f a l s e ,
79 a f t e r s top acceptance o f t a s k a c t i v a t i o n s i s stopped ,
80 ∗ pending t a s k s in the run queue are removed . Current ly running
81 t a s k s w i l l not terminated by t h i s c a l l .
82 ∗
83 ∗ @see s t a r t
84 ∗/
85 void terminate ( bool doNotRemovePendingTasks = fa l se ) ;
86 /∗∗
87 ∗ C a l l i n i t i a l i z e method o f a l l a s s o c i a t e d t a s k s o f the s c h e d u l e r .
88 A t a s k i s a s s o c i a t e d to a t a s k when i t
89 ∗ i s c o n s t r u c t e d wi th a r e f e r e n c e to the s c h e d u l e r i n s t a n c e .
90 ∗/
91 void i n i t i a l i z e ( void ) ;
92 /∗∗
93 ∗ Get the a b s o l u t e time used to c o n t r o l e v e n t s . The zero time
94 depends on the bare metal implementat ion . A p p l i c a t i o n
95 ∗ programmer can use t h i s time f o r time stamps or to c a l c u l a t e
96 the o f f s e t time o f a p e r i o d i c event .
97 ∗
98 ∗ @r esu l t Time which i s in the time frame used f o r t r i g g e r i n g e v e n t s in ms .
99 Most o f the time , zero time i s s t a r t

100 ∗ o f the system .
101 ∗
102 ∗ @see Event : : se tPer iod icTiming
103 ∗ @see setZeroTime
104 ∗/
105 Time getTime ( void ) const ;
106 protected :
107 /∗∗
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108 ∗ Pure a b s t r a c t method which must be implemented by
109 the bare metal implementat ion o f the s c h e d u l e r .
110 ∗ The method implementat ion s h a l l wake up one o f
111 the e x e c u t o r s o f the s c h e d u l e r i n s t a n c e .
112 The method i s c a l l e d
113 ∗ whenever a new t a s k shou ld perform and the run queue
114 i s empty or an event i s f i r e d by the c l o c k .
115 ∗/
116 virtual void s i g n a l ( void ) = 0 ;
117 /∗∗
118 ∗ A c a l l to the method w a i t s u n t i l the run queue o f the s c h e d u l e r runs empty .
119 I f pending t a s k s a c t i v a t e o the r t a s k s
120 ∗ a l s o t h i s t a s k w i l l be executed b e f o r e waitUnti lEmpty r e t u r n s .
121 The bare metal model has to implement t h e s e
122 ∗ f u n c t i o n a l i t y to ena b l e a s a f e terminat ion o f the Tasking Framework .
123 ∗/
124 virtual void waitUntilEmpty ( void ) = 0 ;
125 /∗∗
126 ∗ @return Reference to the implementat ion par t o f the s c h e d u l e r .
127 ∗/
128 SchedulerImpl& getImpl ( void ) ;
129 private :
130 SchedulerImpl impl ;
131 } ;
132 } // namespace Tasking
133 // −−−−−−−−−−−−−−−− i n l i n e s −−−−−−−−−−−−−−−−−
134 inl ine Tasking : : Time
135 Tasking : : Scheduler : : getTime ( ) const
136 {
137 return impl . c l o ck . getTime ( ) ;
138 }
139 inl ine Tasking : : SchedulerImpl&
140 Tasking : : Scheduler : : getImpl ( void )
141 {
142 return impl ;
143 }
144 #e n d i f /∗ TASKING INCLUDE SCHEDULER H ∗/

Listing C.4: Task event header file.

1 /∗
2 ∗ taskEvent . h
3 ∗
4 ∗ Copyright 2012−2019 German Aerospace Center (DLR) SC
5 ∗
6 ∗ Licensed under the Apache License , Version 2.0 ( the ” License ” ) ;
7 ∗ you may not use t h i s f i l e e x c e p t in compliance wi th the License .
8 ∗ You may o b t a i n a copy o f the License at
9 ∗

10 ∗ h t t p ://www. apache . org / l i c e n s e s /LICENSE−2.0
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11 ∗
12 ∗ Unless r e q u i r e d by a p p l i c a b l e law or agreed to in w r i t ing , s o f t w a r e
13 ∗ d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
14 ∗ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .
15 ∗ See the License f o r the s p e c i f i c language governing permiss ions and
16 ∗ l i m i t a t i o n s under the License .
17 ∗/
18 #i f n d e f TASKEVENT H
19 #d e f i n e TASKEVENT H
20 #inc lude ” impl / taskEvent impl . h”
21 namespace Tasking
22 {
23 // Forward d e f i n i t i o n o f p e r i o d i c s c h e d u l e
24 class Per iod i cSchedu l e ;
25 /∗∗
26 ∗ The t a s k event i s a timed event . The b e h a v i o r o f the event can be
27 p e r i o d i c a l l y or r e l a t i v e to the
28 ∗ c a l l o f the method r e s e t .
29 ∗
30 ∗ The implementat ion s p e c i a l i z e s the c l a s s Channel wi th
31 t iming f u n c t i o n a l i t i e s .
32 An a p p l i c a t i o n programmer can
33 ∗ s p e c i a l i z e the t a s k event by o v e r r i d i n g the two methods
34 s h a l l F i r e and onFire
35 with own f u n c t i o n a l i t i e s .
36 ∗
37 ∗ @see TaskChannel
38 ∗/
39 class Event : public Channel
40 {
41 public :
42 /∗∗
43 ∗ @param s c h e d u l e r Reference to the s c h e d u l e r r e s p o n s i b l e to e x e c u t e the event .
44 ∗ @param e v e n t I d I d e n t i f i e r f o r t h i s channel .
45 ∗
46 ∗ NOTE:
47 ∗ I t i s the r e s p o n s i b i l i t y o f the user to ensure uniqueness o f the channel
48 and e v e n t s i d e n t i f i c a t i o n s .
49 ∗/
50 expl ic it Event ( Scheduler& scheduler , ChannelId eventId = 0 ) ;
51 /∗∗
52 ∗ @param s c h e d u l e r Reference to the s c h e d u l e r r e s p o n s i b l e
53 to e x e c u t e the event .
54 ∗ @param eventName Null−terminated s t r i n g s p e c i f y i n g a name
55 f o r t h i s event .
56 The name w i l l be
57 ∗ t r unca ted a f t e r 4 c h a r a c t e r s .
58 ∗/
59 expl ic it Event ( Scheduler& scheduler , const char ∗ eventName ) ;
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60 /∗
61 ∗ Destruc tor o f the t a s k event
62 ∗/
63 ˜Event ( void ) ;
64 /∗∗
65 ∗ Set the t iming o f event to a f i x p e r i o d i c b e h a v i o r .
66 C a l l t h i s method only :
67 from a cons t ruc tor , when
68 ∗ the s c h e d u l e r i s i n i t i a l i z i n g , or when the t imer i s s topped .
69 ∗
70 ∗ @param per iod Period time in case o f a p e r i o d i c a l c l o c k .
71 A per iod o f zero w i l l
72 l e a d to a s i n g l e s ho t wi th
73 ∗ an a b s o l u t e time
74 ∗
75 ∗ @param o f f s e t O f f s e t o f the s t a r t time o f the system .
76 I f the o f f s e t i s in the past ,
77 the method computes
78 ∗ the next time p o i n t in the f u t u r e by adding a m u l t i p l e o f
79 the per iod to the o f f s e t .
80 For a s i n g l e sho t wi th
81 ∗ per iod zero t h i s event i s f i r e d immediate ly .
82 ∗/
83 void se tPer iod icTiming ( const Time per iod , const Time o f f s e t ) ;
84 /∗∗
85 ∗ Set the t iming o f event to p lay s c h e d u l e o f p e r i o d i c t r i g g e r s .
86 C a l l t h i s method only :
87 from a cons t ruc tor ,
88 ∗ when the s c h e d u l e r i s i n i t i a l i z i n g , or when the t imer i s s topped .
89 ∗ In t h i s c o n f i g u r a t i o n t h i s event i t s e l f w i l l not n o t i f y an
90 a s s o c i a t e d t a s k input ,
91 only the p e r i o d i c t r i g g e r s in
92 ∗ the p e r i o d i c s c h e d u l e n o t i f i e s a s s o c i a t e d t a s k i n p u t s . To
93 change t h i s behavior ,
94 the method s h a l l F i r e can be
95 ∗ overr idden .
96 ∗
97 ∗ @param per iod Period time in case o f a p e r i o d i c a l c l o c k .
98 I f the t r i g g e r time o f
99 the f i r s t p e r i o d i c t r i g g e r in

100 ∗ the p e r i o d i c s c h e d u l e i s not w i t h i n the g iven period ,
101 the event i s not s t a r t e d to
102 p l ay the p e r i o d i c s c h e d u l e .
103 ∗
104 ∗ @param o f f s e t O f f s e t o f the s t a r t time o f the system . I f the
105 o f f s e t i s in the past ,
106 the method computes
107 ∗ the next time p o i n t in the f u t u r e by adding a m u l t i p l e o f the
108 per iod to the o f f s e t .
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109 ∗
110 ∗ @param s c h e d u l e Reference to the s c h e d u l e o f p e r i o d i c t r i g g e r s
111 to p l ay by the event .
112 I f t r i g g e r s are in the
113 ∗ s c h e d u l e wi th an b i g g e r o f f s e t than the per iod o f the event ,
114 t h e s e t r i g g e r s w i l l not f i r e d .
115 ∗
116 ∗ @see s h a l l F i r e
117 ∗/
118 void s e tPe r i o d i c Sch edu l e ( const Time per iod , const Time o f f s e t ,
119 Per iod i cSchedu l e& schedu le ) ;
120 /∗∗
121 ∗ Set the t iming o f the event r e l a t i v e to the r e s e t ope ra t ion .
122 A c a l l to r e s e t
123 w i l l t r i g g e r the t a s k event
124 ∗ f o r the next a c t i v a t i o n . To s t a r t the r e l a t i v e t iming a c a l l to
125 the r e s e t op era t ion
126 i s necessary . Keep in
127 ∗ mind t h a t a r e s e t r e s t a r t s the timer , when the event i s
128 connected to s e v e r a l t a s k s
129 or a f i n a l input i s
130 ∗ connected to the t a s k .
131 ∗
132 ∗ @param d e l a y Delay time in m i l l i s e c o n d s which i s used as
133 t r i g g e r time r e l a t i v e
134 to the r e s e t op era t ion .
135 ∗/
136 void se tRe lat iveTiming ( const Time delay ) ;
137 /∗∗
138 ∗ Trigger the event out o f order . When the event i s c o n f i g u r e d
139 to p e r i o d i c or
140 r e l a t i v e t iming the c a l l o f
141 ∗ the method has no e f f e c t , u n t i l the p e r i o d i c or
142 r e l a t i v e t iming i s s topped .
143 An event can be only t r i g g e r e d
144 ∗ once . I f i t i s queued by the c lock , the event i s
145 removed from the c l o c k
146 b e f o r e i t i s queued again . This
147 ∗ means r e s e t o p e r a t i o n s on connected t a s k s w i l l
148 s t op the event timer , e . g .
149 when the event i s connected to
150 ∗ s e v e r a l t a s k s or anconnected t a s k wi th an input
151 c o n f i g u r e d as f i n a l .
152 ∗
153 ∗ @param time O f f s e t time in ms when the event
154 i s t r i g g e r e d out o f order .
155 This can use to t r i g g e r an
156 ∗ t a s k a f t e r a s p e c i f i e d time to another t a s k .
157 ∗
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158 ∗ @see se tPer iod icTiming
159 ∗ @see se t R e l a t i v T i m i n g
160 ∗/
161 void t r i g g e r (Time time = 0 ) ;
162 /// @return True , when the c l o c k i s s t i l l queued f o r
163 t r i g g e r i n g at the c l o ck .
164 bool i s T r i g g e r e d ( void ) const ;
165 /∗∗
166 ∗ Remove the t a s k event from the l i s t o f time e v e n t s
167 in the c l o c k . The event
168 w i l l not f i r e u n t i l a new
169 ∗ t iming i s programmed to the t a s k event .
170 ∗/
171 void stop ( void ) ;
172 /∗∗
173 ∗ Reset the t a s k event . In case o f a r e l a t i v e t iming
174 t h i s method s t a r t s the
175 t imer and c a l l s the
176 ∗ r e s e t method o f the overr idden channel .
177 ∗/
178 void r e s e t ( void ) o v e r r i d e ;
179 /∗∗
180 ∗ The method i s c a l l e d when the event i s handled .
181 ∗ @re su l t By d e f a u l t true , so long no p e r i o d i c s c h e d u l e
182 i s p layed by the event .
183 I f the method or an o v e r r i d e
184 ∗ re turn f a l s e , the a s s o c i a t e d input i s not n o t i f i e d .
185 ∗/
186 virtual bool s h a l l F i r e ( void ) ;
187 /∗∗
188 ∗ The method i s c a l l e d every time the t a s k event i s
189 handled by the s c h e d u l e .
190 The method can be overr idden by
191 ∗ by the a p p l i c a t i o n s o f t w a r e . By d e f a u l t i t does noth ing .
192 ∗/
193 virtual void onFire ( void ) ;
194 /∗∗
195 ∗ @r esu l t Current time o f the a s s o c i a t e d s c h e d u l e r .
196 ∗/
197 Tasking : : Time now( void ) const ;
198 private :
199 /// S t r u c t u r e f o r implementat ion
200 EventImpl impl ;
201 } ;
202 } // namespace Tasking
203 #e n d i f /∗ TASKEVENT H ∗/

Listing C.5: Task clock header file.

1 /∗
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2 ∗ c l o c k i m p l . h
3 ∗
4 ∗ Copyright 2012−2019 German Aerospace Center (DLR) SC
5 ∗
6 ∗ Licensed under the Apache License , Version 2.0 ( the ” License ” ) ;
7 ∗ you may not use t h i s f i l e e x c e p t in compliance wi th the License .
8 ∗ You may o b t a i n a copy o f the License at
9 ∗

10 ∗ h t t p ://www. apache . org / l i c e n s e s /LICENSE−2.0
11 ∗
12 ∗ Unless r e q u i r e d by a p p l i c a b l e law or agreed to in w r i t ing , s o f t w a r e
13 ∗ d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
14 ∗ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .
15 ∗ See the License f o r the s p e c i f i c language governing permiss ions and
16 ∗ l i m i t a t i o n s under the License .
17 ∗/
18 #i f n d e f TASKING INCLUDE CLOCK H
19 #d e f i n e TASKING INCLUDE CLOCK H
20 #inc lude ” . . / taskEvent . h”
21 #inc lude ” . . / t a s k U t i l s . h”
22 namespace Tasking
23 {
24 class Scheduler ;
25 /∗∗
26 ∗ Base c l a s s to manage the s t a r t o f e v e n t s at a time p o i n t .
27 I t must be over loaded wi th a system s p e c i f i c c l o c k
28 ∗ mechanism which t r i g g e r the s c h e d u l e r f o r the e x e c u t i o n
29 o f e v e n t s at a s p e c i f i c time .
30 ∗/
31 class Clock
32 {
33 public :
34 /∗∗
35 ∗ I n i t i a l i z a t i o n o f the c l o c k and connect i t to s c h e d u l e r
36 ∗
37 ∗ @param s c h e d u l e r Reference to the s c h e d u l e which shou ld
38 wake up in case o f a c l o c k event .
39 ∗/
40 Clock ( Scheduler& schedu l e r ) ;
41 /// Des t ruc tor
42 virtual ˜Clock ( void ) ;
43 /∗∗
44 ∗ Get the a b s o l u t e time used to c o n t r o l e v e n t s . The zero time
45 depends on the bare metal implementat ion .
46 ∗ The method must be implemented by the bare metal implementat ion
47 o f the c l o c k . A p p l i c a t i o n programmer
48 ∗ can use t h i s time f o r time stamps or to c a l c u l a t e the o f f s e t
49 t ime o f a p e r i o d i c event .
50 ∗
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51 ∗ @re su l t Time which i s in the time frame used f o r t r i g g e r i n g
52 e v e n t s in ms . Most o f the time zero time i s s t a r t
53 ∗ o f the system .
54 ∗
55 ∗ @see Event : : se tPer iod icTiming
56 ∗/
57 virtual Time getTime ( void ) const = 0 ;
58 /// @return True when no event i s in the c l o c k queue
59 bool isEmtpy ( void ) const ;
60 /// @return True when a c t i v a t i o n time o f the c l o c k queue head
61 element i s equal or sma l l e r than the cur rent time .
62 bool i sPending ( void ) const ;
63 /∗∗
64 ∗ S t a r t an event at an a b s o l u t e time .
65 ∗
66 ∗ @param p e v e n t Reference to the event to s t a r t a t an a b s o l u t e time
67 ∗ @param time Abso lu te time in ms when the event shou ld s t a r t e d .
68 Time zero depends on the bare metal
69 ∗ implementat ion . By d e f a u l t i t shou ld be the i n s t a n t i a t i o n time o f t h i s c l a s s .
70 ∗/
71 void s tar tAt ( EventImpl& p event , const Time time ) ;
72 /∗∗
73 ∗ S t a r t an event at a r e l a t i v e time span from now .
74 ∗
75 ∗ @param p e v e n t Reference to the event to s t a r t a t the r e l a t i v e time
76 ∗ @param time R e l a t i v e time span from now in ms in which the
77 event shou ld s t a r t e d .
78 ∗/
79 void s t a r t I n ( EventImpl& p event , const Time time ) ;
80 /∗∗
81 ∗ Enqueue an element to the c l o c k queue . The method search the
82 r i g h t p o s i t i o n in the queue by the time ,
83 ∗ e a r l i e s t time f i r s t . The l a s t enqueued event i s t r i g g e r e d f i r s t .
84 ∗
85 ∗ @param event Reference to the element to enqueue
86 ∗
87 ∗ @return True when the head element i s r e p l a c e d by the enqueued
88 element , e l s e f a l s e .
89 ∗/
90 bool enqueue ( EventImpl& event ) ;
91 /∗∗
92 ∗ Replace d i r e c t l y the head o f the c l o c k queue wi thout s e a r c h i n g
93 the c o r r e c t s po t . This i s done wi th e v e n t s
94 ∗ which has a d e l a y time with zero or s m a l l e r .
95 ∗
96 ∗ @param event Reference to the element which becomes the
97 new head o f the queue .
98 ∗/
99 void enqueueHead ( EventImpl& event ) ;



109

100 /∗∗
101 ∗ Dequeue an element from the queue .
102 ∗ This method i s used i f an event i s d e l e t e d to s a t i s f y t h a t
103 the event w i l l not t r i g g e r e d in the f u t u r e . Such
104 ∗ a t r i g g e r can l e a d i n t o a memory c o r r u p t i o n .
105 ∗
106 ∗ @param event Event to dequeue from the l i s t .
107 ∗/
108 void dequeue ( EventImpl& event ) ;
109 /∗∗
110 ∗ Remove a l l e v e n t s from the c l o c k queue .
111 ∗/
112 void dequeueAll ( void ) ;
113 /∗∗
114 ∗ Stop a running t imer and s t a r t the t imer to wake up the system
115 a f t e r a time span i s over .
116 ∗ The method must o v e r r i d e by the bare metal implementat ion
117 ∗
118 ∗ @param timeSpan Length o f the time i n t e r v a l . When the
119 t ime i n t e r v a l pass , the system shou ld wake up and t r i g g e r
120 ∗ the s c h e d u l e r to handle pending time e v e n t s .
121 ∗/
122 virtual void startTimer (Time timeSpan ) = 0 ;
123 /∗∗
124 ∗ Read and remove the f i r s t pending element from the c l o c k queue .
125 ∗
126 ∗ @return Pointer to the from the c l o c k queue removed head element .
127 ∗/
128 EventImpl∗ readFirs tPending ( void ) ;
129 /∗∗
130 ∗ @return The time between head o f the c l o c k queue and the
131 next d i f f e r e n t time p o i n t in the c l o c k queue .
132 ∗ I f t h e r e i s no f u r t h e r time p o i n t in the c l o c k queue or the
133 c l o c k queue i s empty , the method re turn 0 .
134 ∗/
135 Time getNextGapTime ( void ) const ;
136 /∗∗
137 ∗ @return Wake up time p o i n t o f the c l o c k queue head . I f the
138 c l o c k queue i s empty , the method re turn 0 .
139 ∗/
140 Time getHeadTime ( void ) const ;
141 /// Reference to the schedu ler , which e x e c u t e e v e n t s from t h i s
142 c l o ck implementation .
143 Scheduler& schedu l e r ;
144 /// Mutex to p r o t e c t the c l o c k queue a g a i n s t concurrent acc es s .
145 mutable Mutex timeQueueMutex ;
146 /// Flag to i n d i c a t e i f s t i l l in mutex .
147 bool inTimeQueueMutex ;
148 /// Mutex to p r o t e c t change o f p a i r timeQueueMutex and inTimeQueueMutex .
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149 mutable Mutex timeQueueMutexMutex ;
150 /∗∗
151 ∗ Pointer to the c l o c k queue head . This event has the e a r l i e s t
152 a b s o l u t e wake up time or the same time l i k e an
153 ∗ event wi th the same time queued f i r s t .
154 ∗/
155 EventImpl∗ queueHead ;
156 /∗∗
157 ∗ Pointer to the c l o c k queue t a i l . This event has the h i g h e s t
158 a b s o l u t e wake up time or an e q u a l time to the
159 ∗ event enqueued a f t e r .
160 ∗/
161 EventImpl∗ queueTai l ;
162 } ;
163 } // namespace Tasking
164 #e n d i f /∗ TASKING INCLUDE CLOCK H ∗/

Listing C.6: Task header file.

1 /∗
2 ∗ t a s k . h
3 ∗
4 ∗ Copyright 2012−2019 German Aerospace Center (DLR) SC
5 ∗
6 ∗ Licensed under the Apache License , Version 2.0 ( the ” License ” ) ;
7 ∗ you may not use t h i s f i l e e x c e p t in compliance wi th the License .
8 ∗ You may o b t a i n a copy o f the License at
9 ∗

10 ∗ h t t p ://www. apache . org / l i c e n s e s /LICENSE−2.0
11 ∗
12 ∗ Unless r e q u i r e d by a p p l i c a b l e law or agreed to in w r i t ing , s o f t w a r e
13 ∗ d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
14 ∗ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r e x p r e s s or i m p l i e d .
15 ∗ See the License f o r the s p e c i f i c language governing permiss ions and
16 ∗ l i m i t a t i o n s under the License .
17 ∗/
18 #i f n d e f TASK H
19 #d e f i n e TASK H
20 #inc lude ” impl / task Impl . h”
21 #inc lude ” t a s k U t i l s . h”
22 namespace Tasking
23 {
24 /∗∗
25 ∗ A t a s k performs a s i n g l e e x e c u t i o n i f a l l i n p u t s o f the
26 input array are a c t i v a t e d or one input
27 ∗ marked as f i n a l i s a c t i v a t e d . To implement the body o f
28 the task , the method e x e c u t e has
29 ∗ to be overr idden . To s i m p l i f y c r e a t i n g o f a t a s k wi th
30 a l l i t s i n p u t s the temp la te c l a s s
31 ∗ TaskProvider e x i s t s , which p r o v i d e s an i n s t a n c e o f the
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32 input array f o r a l l incoming i n p u t s o f
33 ∗ the t a s k .
34 ∗
35 ∗ The purpose o f t h i s c l a s s i s the r e a c t i v e and concurrent
36 p r o c e s s i n g on incoming e v e n t s or data
37 ∗ packages . For example a t a s k implementat ion can be the
38 r e a c t i o n on an i n t e r r u p t d i s t r i b u t e d by
39 ∗ an i n t e r r u p t channel , the c l a s s i f i c a t i o n o f an incoming
40 message on a channel , or a f u r t h e r
41 ∗ computation s t e p in a sequence o f computation t a s k s .
42 ∗
43 ∗ For a c o r r e c t o per a t io n i t i s necessary to c o n f i g u r e the
44 c l a s s c o r r e c t l y . This means the i n p u t s
45 ∗ are c o n f i g u r e d wi th the expec ted s e t t i n g s and connected to
46 a channel and the i n p u t s in the input
47 ∗ array are connected to t h i s t a s k by a c a l l o f the method
48 c o n s t r u c t or by us ing the temp la te
49 ∗ c l a s s TaskProvider i n s t e a d o f Task d i r e c t l y .
50 ∗
51 ∗ To combine s e v e r a l t a s k s to a group , the t a s k s shou ld bind
52 to a group wi th the c l a s s Group .
53 ∗ By d e f a u l t each t a s k i s s c h e d u l e d wi thout r e l a t i o n s h i p s to
54 o t her task , which means t h a t the
55 ∗ method r e s e t i s c a l l e d d i r e c t l y a f t e r the t a s k i s executed
56 and i t s i n p u t s are synchronized . I f
57 ∗ the t a s k i s b ind to a group r e s e t i s c a l l e d on ly when a l l
58 t a s k s a s s o c i a t e d to a group are marked
59 ∗ as executed . By t h i s , a subsequent a c t i v a t i o n can only
60 happen when a l l t a s k s o f the group are
61 ∗ executed .
62 ∗
63 ∗ Each t a s k has an i d e n t i f i e r which s h a l l unique . I t can
64 be e i t h e r a numeric id or a name o f up to
65 ∗ 4 c h a r a c t e r s in l e n g t h . Only use the r e s p e c t i v e s e t t e r / g e t t e r methods .
66 ∗
67 ∗ @see TaskProvider
68 ∗ @see Group
69 ∗ @see InputArray
70 ∗ @see Event
71 ∗ @see Channel
72 ∗/
73 class Task
74 {
75 protected :
76 /∗∗
77 ∗ The i d e n t i f i c a t i o n o f the t a s k . I t shou ld always
78 mapped to the f i r s t data member to f i n d the
79 ∗ i d e n t i f i c a t i o n easy in a memory dump .
80 ∗/
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81 TaskId m taskId ;
82 public :
83 /∗∗
84 ∗ F i r s t i n i t i a l i z a t i o n s t e p and connect the t a s k to the
85 s c h e d u l e r . The t a s k i s not f u l l y
86 ∗ i n i t i a l i z e d u n t i l the second i n i t i a l i z a t i o n s t e p wi th a
87 c a l l to c o n s t r u c t i s done .
88 ∗
89 ∗ @param s c h e d u l e r Reference to the s c h e d u l e r . I t p rov i de
90 means to e x e c u t e t h i s t a s k .
91 ∗
92 ∗ @param p o l i c y Reference to the data s t r u c t u r e needed f o r
93 management o f the t a s k by the s c h e d u l e r .
94 ∗
95 ∗ @param i n p u t s Reference to an array o f i n p u t s a s s o c i a t e d wi th t h i s t a s k .
96 ∗
97 ∗ @param t a s k I d I d e n t i f i c a t i o n o f the t a s k . This i d e n t i f i c a t i o n
98 i s needed by e x t e n s i o n s o f the
99 ∗ Tasking framework to address a t a s k or to i d e n t i f y

100 the t a s k f o r debugg ing . I f not given ,
101 ∗ an i d e n t i f i c a t i o n the number o f c o n s t r u c t o r c a l l s
102 i s g i ven as i d e n t i f i c a t i o n .
103 ∗
104 ∗ NOTE:
105 ∗ I t i s the r e s p o n s i b i l i t y o f the user to ensure uniqueness
106 o f the t a s k id .
107 ∗
108 ∗ @see t a s k I d t
109 ∗ @see c o n s t r u c t
110 ∗/
111 Task ( Scheduler& scheduler , Schedu lePo l i cy : : ManagementData& po l i cy ,
112 InputArray& inputs , TaskId taskId = 0u ) ;
113 /∗∗
114 ∗ F i r s t i n i t i a l i z a t i o n o f t a s k wi th a t a s k name . The t a s k
115 i s not f u l l y i n i t i a l i z e d u n t i l the
116 ∗ second i n i t i a l i z a t i o n s t e p wi th a c a l l to c o n s t r u c t i s done .
117 ∗
118 ∗ @param s c h e d u l e r Reference to the s c h e d u l e r which
119 performs t h i s t a s k .
120 ∗
121 ∗ @param p o l i c y Reference to the data s t r u c t u r e needed
122 f o r management o f the t a s k by the s c h e d u l e r .
123 ∗
124 ∗ @param i n p u t s Reference to an array o f i n p u t s a s s o c i a t e d wi th t h i s t a s k .
125 ∗
126 ∗ @param taskName Null−terminated s t r i n g s p e c i f y i n g
127 a name f o r t h i s t a s k . The name w i l l be
128 ∗ t r unca ted a f t e r 4 c h a r a c t e r s .
129 Only a name o r a t a s k I d can be used f o r
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130 ∗ channel i d e n t i f i c a t i o n .
131 ∗ @see c o n s t r u c t
132 ∗/
133 Task ( Scheduler& scheduler , Schedu lePo l i cy : : ManagementData& po l i cy ,
134 InputArray& inputs , const char ∗ taskName ) ;
135 /// Des t ruc tor needed by v i r t u a l methods
136 virtual ˜Task ( ) ;
137 /∗∗
138 ∗ Connect a channel to an input o f the t a s k .
139 ∗
140 ∗ @param key I d e n t i f i c a t i o n s o f the input which shou ld connect to the channel .
141 ∗
142 ∗ @param channel Reference to the channel to connect .
143 The channel shou ld have the type the t a s k e x p e c t .
144 ∗
145 ∗ @r esu l t t r u e i f the c o n f i g u r a t i o n o f the input to the
146 channel succeed . f a l s e i f an e rror during the c o n f i g u r a t i o n
147 ∗ happened .
148 ∗/
149 bool con f i gu r e Input ( unsigned i n t key , Channel& channel ) ;
150 /// @re su l t True i f a l l i n p u t s are c o n f i g u r e d and connected to a channel .
151 bool i s V a l i d ( void ) const ;
152 /∗∗
153 ∗ A c a l l r e s e t s the a c t i v a t i o n s t a t e o f a l l t a s k i n p u t s .
154 This method i s c a l l e d whenever a t a s k was executed
155 ∗ by the a s s o c i a t e d s c h e d u l e r or when the t a s k b e l o n g s to
156 a group a l l t a s k s o f the group are executed .
157 ∗/
158 virtual void r e s e t ( void ) ;
159 /∗∗
160 ∗ Enquire the i d e n t i f i c a t i o n o f a t a s k
161 ∗
162 ∗ @re su l t The i d e n t i f i c a t i o n o f type t a s k I d t f o r the t a s k .
163 ∗
164 ∗ NOTE:
165 ∗ I f a t a s k name was a s s i g n e d to t h i s t a s k the id
166 ∗ w i l l r e p r e s e n t the numeric v a l u e o f the
167 4−c h a r a c t e r s t r i n g .
168 ∗
169 ∗ @see t a s k I d t
170 ∗ @see convertTaskIdToStr ing
171 ∗/
172 TaskId getTaskId ( void ) const ;
173 /∗∗
174 ∗ Set a new name f o r a t a s k
175 ∗
176 ∗ @param newTaskName Null−terminated s t r i n g s p e c i f y i n g
177 the new name
178 ∗ which w i l l be s e t f o r the t a s k .
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179 ∗ The name w i l l be t r unca ted
180 a f t e r 4 c h a r a c t e r s .
181 ∗
182 ∗/
183 void setTaskName ( const char ∗ newTaskName ) ;
184 /∗∗
185 ∗ Set a new ID f o r a t a s k
186 ∗ @param newTaskId The new ID which w i l l be s e t f o r the t a s k .
187 ∗
188 ∗ @see t a s k I d t
189 ∗/
190 void setTaskId ( TaskId newTaskId ) ;
191 /∗∗
192 ∗ Join ing the t a s k to a t a s k group . The method i s c a l l e d
193 by the group on c a l l i n g j o i n wi th a r e f e r e n c e
194 ∗ to the t a s k i n s t a n c e . The method shou ld never use by
195 an a p p l i c a t i o n s o f t w a r e .
196 ∗
197 ∗ @param p group Reference to the t a s k group .
198 ∗
199 ∗ @re su l t Reference to the implementat ion par t o f the t a s k .
200 ∗ @see Group : : j o i n
201 ∗/
202 TaskImpl& joinTo ( GroupImpl& p group ) ;
203 protected :
204 /∗∗
205 ∗ Second i n i t i a l i z a t i o n s t e p o f c o n s t r u c t i o n us ing the input array
206 from o u t s i d e the c l a s s t a s k . The method i s
207 ∗ c a l l e d by the c o n s t r u c t o r o f the s p e c i a l i z e d c l a s s to connect
208 the t a s k wi th the i n p u t s . I f the temp la te c l a s s
209 ∗ TaskProvider i s used , which i s the p r e f e r r e d way to s e t up a task ,
210 w i l l c a l l t h i s method in the c o n s t r u c t o r .
211 ∗/
212 void cons t ruc t ( void ) ;
213 /∗∗
214 ∗ Pure v i r t u a l entrance p o i n t f o r the p r o c e s s i n g o f the t a s k .
215 An implementat ion o f a t a s k shou ld o v e r r i d e t h i s
216 ∗ method wi th the t a s k s p e c i f i c p r o c e s s i n g .
217 ∗/
218 virtual void execute ( void ) = 0 ;
219 /∗∗
220 ∗ I n i t i a l i z e the t a s k . This s t e p i s performed by c a l l i n g the
221 i n i t i a l i z e method o f the a s s o c i a t e d s c h e d u l e r .
222 ∗ The method can o v e r r i d e by the a p p l i c a t i o n programmer wi th
223 f u r t h e r i n i t i a l i z a t i o n s t e p s .
224 ∗
225 ∗ @see Schedu ler : : i n i t i a l i z e
226 ∗/
227 virtual void i n i t i a l i z e ( void ) ;
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228 /∗∗
229 ∗ Request the a s s o c i a t e d channel p o i n t e r connected to an input .
230 This c a l l s i m p l i f y the c a s t to the corresponding
231 ∗ channel type .
232 ∗
233 ∗ @tparam channelType Expected type o f the channel .
234 ∗
235 ∗ @param key Key to i d e n t i f y the input to r e q u e s t the channel .
236 ∗
237 ∗ @return Pointer to the a s s o c i a t e d channel a t input
238 with the key or n u l l p o i n t e r i f input i s not connected to any
239 ∗ channel .
240 ∗/
241 template<typename channelType>
242 channelType∗ getChannel ( unsigned i n t key ) const ;
243 private :
244 /// Forbid copy c o n s t r u c t o r
245 Task ( Task &);
246 /// Implementation s p e c i f i c s t r u c t u r e o f t a s k
247 TaskImpl impl ;
248 } ;
249 /∗∗
250 ∗ Helper temp la te to s i m p l i f y s e t up o f a t a s k .
251 ∗
252 ∗ @tparam numberOfInputs Number o f i n p u t s f o r the t a s k
253 ∗
254 ∗ @tparam P o l i c y Schedu l ing p o l i c y type
255 ∗/
256 template<unsigned i n t numberOfInputs , class Pol icy>
257 class TaskProvider : public Task
258 {
259 public :
260 /∗∗
261 ∗ Constructor f o r a t a s k wi th i d e n t i f i c a t i o n number
262 ∗
263 ∗ @param s c h e d u l e r Reference to the s c h e d u l e r
264 which performs t h i s t a s k .
265 ∗
266 ∗ @param t a s k I d S p e c i f y the ID number f o r a s p e c i f i c t a s k .
267 ∗
268 ∗ NOTE:
269 ∗ I t i s the r e s p o n s i b i l i t y o f the user to ensure
270 uniqueness o f the t a s k id .
271 ∗ @see t a s k I d t
272 ∗/
273 TaskProvider ( Scheduler& scheduler , TaskId taskId = 0u ) ;
274 /∗∗
275 ∗ Constructor f o r a t a s k wi th i d e n t i f i c a t i o n number and a
276 s c h e d u l i n g p o l i c y wi th s e t t i n g s .
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277 ∗
278 ∗ @param s c h e d u l e r Reference to the s c h e d u l e r which performs t h i s t a s k .
279 ∗
280 ∗ @param s e t t i n g s I n i t i a l s e t t i n g s on the t a s k f o r the s c h e d u l i n g p o l i c y .
281 ∗
282 ∗ @param t a s k I d S p e c i f y the i d e n t i f i c a t i o n f o r a s p e c i f i c t a s k .
283 ∗
284 ∗ NOTE:
285 ∗ I t i s the r e s p o n s i b i l i t y o f the user to ensure uniqueness
286 o f the t a s k id .
287 ∗ @see t a s k I d t
288 ∗/
289 TaskProvider ( Scheduler& scheduler , typename Pol i cy : : S e t t i n g s s e t t i n g s ,
290 TaskId taskId = 0u ) ;
291 /∗∗
292 ∗ Constructor f o r a t a s k wi th a name .
293 ∗
294 ∗ @param s c h e d u l e r Reference to the s c h e d u l e r which performs t h i s t a s k .
295 ∗
296 ∗ @param taskName Null−terminated s t r i n g s p e c i f y i n g a name f o r
297 t h i s t a s k . The name w i l l be
298 ∗ t r unca ted a f t e r 4 c h a r a c t e r s . Only a name
299 o r a t a s k I d can be used f o r
300 ∗ channel i d e n t i f i c a t i o n .
301 ∗
302 ∗ NOTE:
303 ∗ I t i s the r e s p o n s i b i l i t y o f the user to ensure uniqueness
304 o f the t a s k id .
305 ∗ @see t a s k I d t
306 ∗/
307 TaskProvider ( Scheduler& scheduler , const char ∗ taskName ) ;
308 /∗∗
309 ∗ Constructor f o r a t a s k wi th a name .
310 ∗
311 ∗ @param s c h e d u l e r Reference to the s c h e d u l e r which performs
312 t h i s t a s k .
313 ∗
314 ∗ @param s e t t i n g s I n i t i a l s e t t i n g s on the t a s k f o r the s c h e d u l i n g
315 p o l i c y .
316 ∗
317 ∗ @param taskName Null−terminated s t r i n g s p e c i f y i n g a name f o r
318 t h i s t a s k . The name w i l l be
319 ∗ t r unca ted a f t e r 4 c h a r a c t e r s . Only a name
320 o r a t a s k I d can be used f o r
321 ∗ channel i d e n t i f i c a t i o n .
322 ∗/
323 TaskProvider ( Scheduler& scheduler , typename Pol i cy : : S e t t i n g s s e t t i n g s
324 , const char ∗ taskName ) ;
325 protected :
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326 /// Inputs o f the t a s k
327 InputArrayProvider<numberOfInputs> inputs ;
328 /// P o l i c y data o f the t a s k .
329 typename Pol i cy : : ManagementData pol icyData ; // Typename i s needed
330 to see the management
331 data o f the s p e c i f i e d p o l i c y
332 } ;
333 // ========= implementat ion par t ==========
334 template<typename channelType>
335 channelType∗
336 Task : : getChannel ( unsigned i n t key ) const
337 {
338 return impl . inputs [ key ] . getChannel<channelType >() ;
339 }
340 // −−−−−−−−−−−−−−−−
341 template<unsigned i n t numberOfInputs , class Pol icy>
342 TaskProvider<numberOfInputs , Pol icy > : : TaskProvider ( Scheduler& schedu l e r ,
343 TaskId taskId ) :
344 Task ( s chedu l e r , pol icyData , inputs , ta skId )
345 {
346 Task : : cons t ruc t ( ) ;
347 }
348 template<unsigned i n t numberOfInputs , class Pol icy>
349 TaskProvider<numberOfInputs , Pol icy > : : TaskProvider ( Scheduler& schedu l e r ,
350 typename Pol i cy : : S e t t i n g s s e t t i n g s ,
351 TaskId taskId ) :
352 Task ( s chedu l e r , pol icyData , inputs , ta skId ) , po l icyData ( s e t t i n g s )
353 {
354 Task : : cons t ruc t ( ) ;
355 }
356 template<unsigned i n t numberOfInputs , class Pol icy>
357 TaskProvider<numberOfInputs , Pol icy > : : TaskProvider ( Scheduler& schedu l e r ,
358 const char ∗ taskName ) :
359 TaskProvider ( s chedu l e r , getTaskIdFromName ( taskName ) )
360 {
361 }
362 template<unsigned i n t numberOfInputs , class Pol icy>
363 TaskProvider<numberOfInputs , Pol icy > : : TaskProvider ( Scheduler& schedu l e r ,
364 typename Pol i cy : : S e t t i n g s s e t t i n g s ,
365 const char ∗ taskName ) :
366 TaskProvider ( s chedu l e r , s e t t i n g s , getTaskIdFromName ( taskName ) )
367 {
368 }
369 } // namespace Tasking
370
371 #e n d i f /∗ TASK H ∗/
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[72] Johannes Späth, Karim Ali, and Eric Bodden. “Context-, flow-, and field-sensitive data-flow
analysis using synchronized pushdown systems”. In: Proceedings of the ACM on Program-
ming Languages 3.POPL (2019), pp. 1–29 (cit. on p. 13).

[73] Nick Stephens et al. “Driller: Augmenting fuzzing through selective symbolic execution.”
In: NDSS. Vol. 16. 2016. 2016, pp. 1–16 (cit. on p. 14).

[74] Xin Sun et al. “Detecting code reuse in android applications using component-based con-
trol flow graph”. In: IFIP international information security conference. Springer. 2014,
pp. 142–155 (cit. on p. 14).

[75] Robert Tarjan. “Depth-first search and linear graph algorithms”. In: SIAM journal on
computing 1.2 (1972), pp. 146–160 (cit. on p. 53).

[76] Stephan Theil et al. “ATON (Autonomous Terrain-based Optical Navigation) for explo-
ration missions: recent flight test results”. In: CEAS Space Journal 10.3 (2018), pp. 325–
341 (cit. on pp. 13, 32).

[77] Carl Johann Treudler et al. “ScOSA - Scalable On-Board Computing for Space Avionics”.
In: IAC 2018. Oct. 2018. url: https://elib.dlr.de/122492/ (cit. on p. 35).

[78] Alexey Vishnyakov et al. “Sydr: Cutting Edge Dynamic Symbolic Execution”. In: 2020
Ivannikov Ispras Open 134 Conference (ISPRAS). IEEE. 2020, pp. 46–54 (cit. on pp. 15,
23).

[79] vmpsoft. https://vmpsoft.com/ (cit. on p. 27).

[80] Reinhard Von Hanxleden et al. “WCET tool challenge 2011: Report”. In: Procs 11th Int
Workshop on Worst-Case Execution Time (WCET) Analysis. 2011 (cit. on p. 13).

[81] Chenxi Wang et al. “Protection of software-based survivability mechanisms”. In: 2001
International Conference on Dependable Systems and Networks. IEEE. 2001, pp. 193–202
(cit. on p. 27).

[82] Ruoyu Wang et al. “Ramblr: Making Reassembly Great Again.” In: NDSS. 2017 (cit. on
p. 26).

[83] Shuai Wang, Pei Wang, and Dinghao Wu. “Reassembleable disassembling”. In: 24th {USENIX}
Security Symposium ({USENIX} Security 15). 2015, pp. 627–642 (cit. on pp. 26, 27).

[84] Tielei Wang et al. “TaintScope: A checksum-aware directed fuzzing tool for automatic
software vulnerability detection”. In: 2010 IEEE Symposium on Security and Privacy.
IEEE. 2010, pp. 497–512 (cit. on p. 14).

[85] Liang Xu, Fangqi Sun, and Zhendong Su. “Constructing precise control flow graphs from
binaries”. In: University of California, Davis, Tech. Rep (2009) (cit. on pp. 14, 23).

https://elib.dlr.de/122492/
https://vmpsoft.com/


124 BIBLIOGRAPHY

[86] Babak Yadegari et al. “A generic approach to automatic deobfuscation of executable code”.
In: 2015 IEEE Symposium on Security and Privacy. IEEE. 2015, pp. 674–691 (cit. on p. 27).

[87] Insu Yun et al. “{QSYM}: A practical concolic execution engine tailored for hybrid fuzzing”.
In: 27th {USENIX} Security Symposium ({USENIX} Security 18). 2018, pp. 745–761 (cit.
on p. 14).

[88] Bin Zeng. Static Analysis on Binary Code. Tech. rep. Tech-report, 2012 (cit. on pp. 17, 22,
23).

[89] Mingwei Zhang and R Sekar. “Control flow integrity for {COTS} binaries”. In: 22nd
{USENIX} Security Symposium ({USENIX} Security 13). 2013, pp. 337–352 (cit. on pp. 26,
27).

[90] Kailong Zhu et al. “Constructing More Complete Control Flow Graphs Utilizing Directed
Gray-Box Fuzzing”. In: Applied Sciences 11.3 (2021), p. 1351 (cit. on pp. 14, 23).


	Introduction
	Contribution
	Structure

	State of the art
	Binary lifting
	General Phases of Binary Lifting
	Today's challenges in binary lifting

	State of the Art Analysis Tools
	McSema
	BinRec
	BAP
	REV.NG
	Angr


	Tasking Framework
	Task-Channel Model
	Execution Model
	Tasking Framework in use
	Tasking Framework as a C++ Library
	Tasking Framework and its relevance to static analysis
	Tasking Framework in this thesis

	DEL Lifter
	Motivation
	Preliminaries
	Concept
	Implementation
	Static component
	CFG re-construction
	Static translation
	Static symbolic execution

	Dynamic component


	Evaluation
	DEL Vs Angr
	Evaluating DEL's dynamic run on the Tasking Framework
	Experimental setup
	Indirect jumps' results
	Tasking Framework's functions
	Overall Join fork case study results

	Performance
	Bounding loops
	Limitations


	Discussion
	Conclusion
	Future Work

	References
	Appendices
	The Tasking Framework's Join fork example
	Example DSEIR module
	Relevant Tasking Framework header files

