Analyzing spatial patterns of change in vegetation & monitoring health status in Bavarian Forest National Park using multi- and hyperspectral datasets

Knowledge for Tomorrow

Nivedita P. Kamaraj (University of Münster)

Stefanie Holzwarth (DLR-DFD)

Martin Bachmann (DLR-DFD)

DLR.de · Chart 1

Aim

The study aims to analyze the spatial patterns of change in vegetation inside Bavarian Forest National Park (BFNP) using spaceborne hyperspectral and multispectral datasets.

Objectives

- To estimate seasonal variation in vegetation from 2017 to 2021.
- To compare Vegetation Indices (VI's) results of the multi-temporal S2 with the multi-annual DESIS.
- To validate results with additional information like deadwood areas from BFNP team and other supporting datasets.

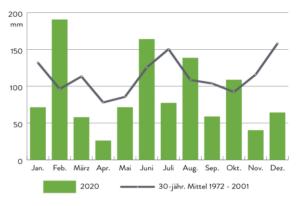
Fig. 1. Study area location

Scenario in BFNP

→ Bark beetle outbreaks - large-scale breakdown of conifer forests

→ Seasonal change in vegetation – observed from precipitation patterns

→ Climate trend – favors growth of bark beetle population


→ Focus on conifers – as it shows less phenological changes season wise.

Research questions

 \rightarrow What are the spatial patterns of vegetation change when analyzing time series for Sentinel 2 and multi-annual DESIS datasets?

 \rightarrow Which spectral indices are well suited to observe change in vegetation pattern?

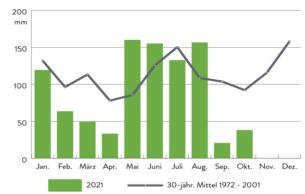


Fig. 2. Monthly precipitation observed in BFNP from Jan 2019 to Oct 2021

Source: https://www.national-park-bayerischerwald.bayern.de/aktuelles/wetterstation/index.htm

DLR Earth Sensing Imaging Spectrometer (DESIS) Mission

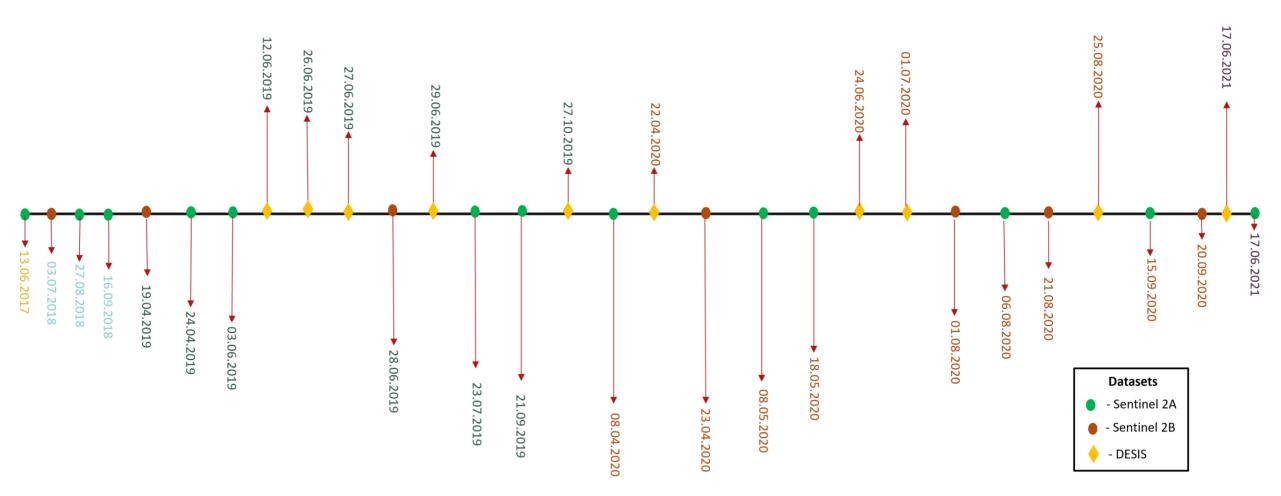
 \rightarrow Hyperspectral mission operated together by DLR and Teledyne Brown Engineering (TBE).

→ Instrument integrated in the Multi-User-System for Earth Sensing (MUSES) platform installed on the International Space Station (ISS) (R. Müller et al., 2016).

→Uses a push broom spectrometer which is sensitive for visible and NIR wavelength range from 400 – 1000 nm with spectral sampling of 2.55 nm.

 \rightarrow Target lifetime from 2018 – 2023 with average revisit frequency of 3 – 5 days.

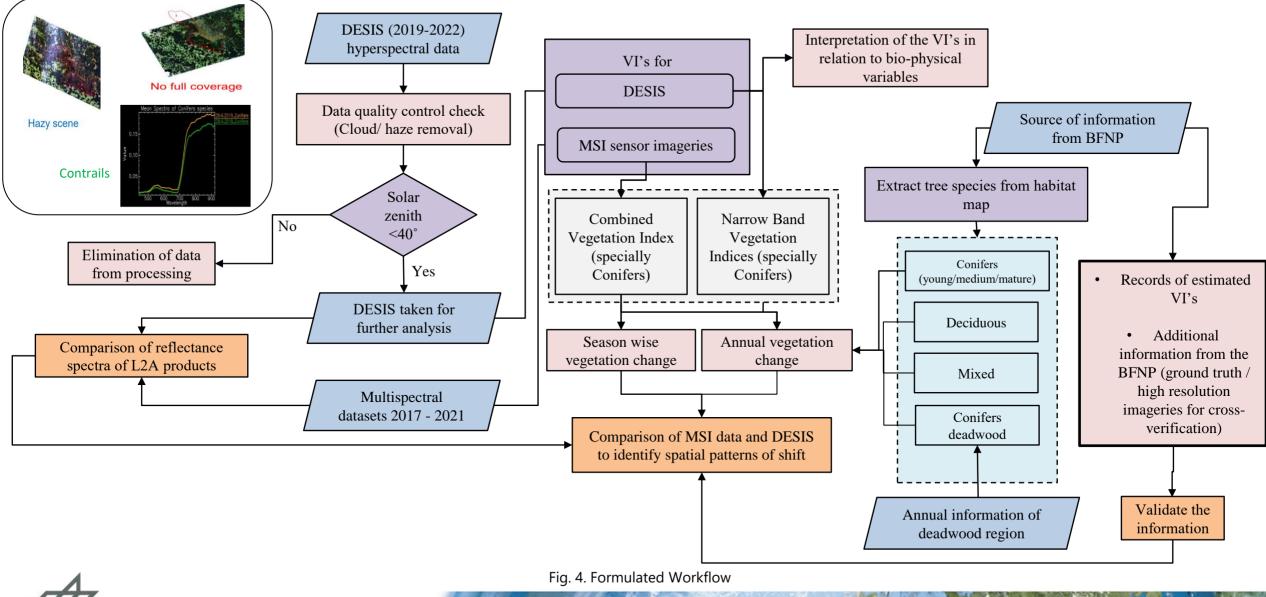
Band Information


DESIS (L2A Product – used for this study)

- 4 * binning with 60 spectral bands (54 spectral bands considered for analysis)
- at ~10.20 nm FWHM (Alonso et al.,2019)
- Spatial resolution 30 meters
- Wavelength ranging from 430 975 nm (after removal of noisy bands).

Band Information Sentinel 2 (L2A MAJA Corrected used for this study)

- 12 bands (9 spectral bands considered for analysis)
- Spatial resolution 20 meters (for all bands, resampled)
- Wavelength ranging from 490–2185 nm (taken till 1000 nm)



Cloud free datasets available

Fig. 3. Multi-annual DESIS and Time series of Sentinel 2 MAJA Corrected datasets

Methodology

Indices estimation

→ Assess if negative change in vegetation coincides with deadwood areas

 \rightarrow Evaluate DESIS with narrow band indices to determine suitable spectral indices.

 \rightarrow Compare with high temporal resolution S2 and see if there are changes in vegetation pattern.

List of Vegetation Indices estimated (Morcillo-Pallarés et al., 2019)

Bio-physical variables :

<u>Structural</u>

Normalized Difference Vegetation Index (NDVI) – **D & S2**

Green Normalized Difference Vegetation Index (GNDVI) -S2

Specific Leaf Area Vegetation Index (SLAVI) – S2

<u>Chlorophyll</u>

Normalized Difference Red Edge Index (NDRE) - D & S2

Photochemical Reflectance Index (PRI) - D

Modified Chlorophyll Absorption Ratio Index (MCARI) - D

Modified Red Edge Simple Ratio (MRESR)- D

Vogelmann Red Edge Index 1 - D

<u>Leaf pigment</u>

Visible Atmospherically Resistant Indices Green (VIGreen)-D & S2

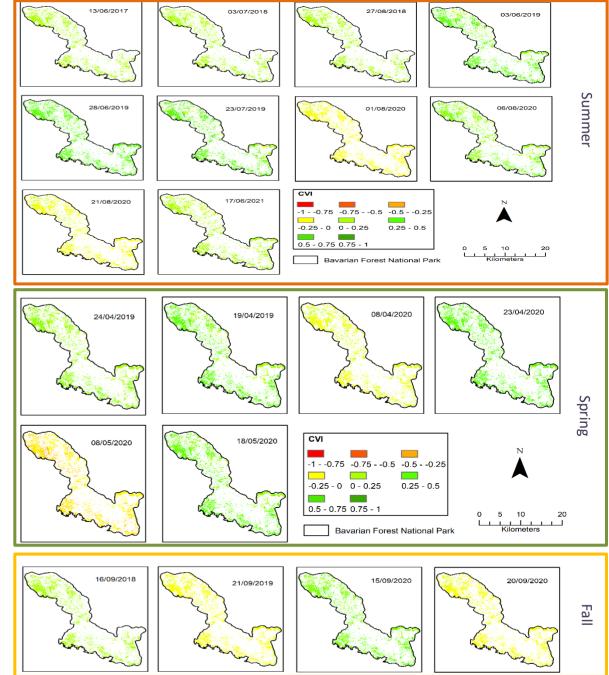
Carotenoid Reflectance Index 2 (CRI) – D

Anthocyanin Reflectance Index (ARI) – D

Data pool meeting 2021, Neuschönau, 29.11.2021 DLR.de • Chart 8

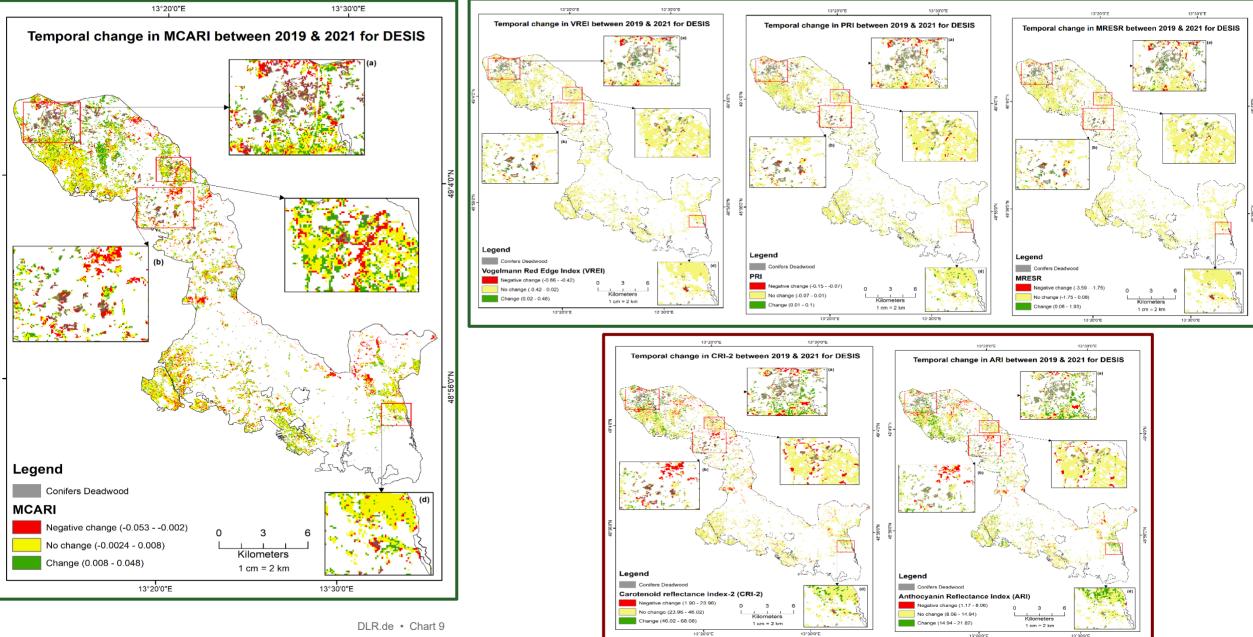
Vegetation Indices of Multi-temporal Sentinel 2

 \rightarrow VI's for Conifers represents changes that are easily visible.


 \rightarrow Entire forest health cannot be determined from a single VI hence vegetation vitality index called "CVI" is used for this study.

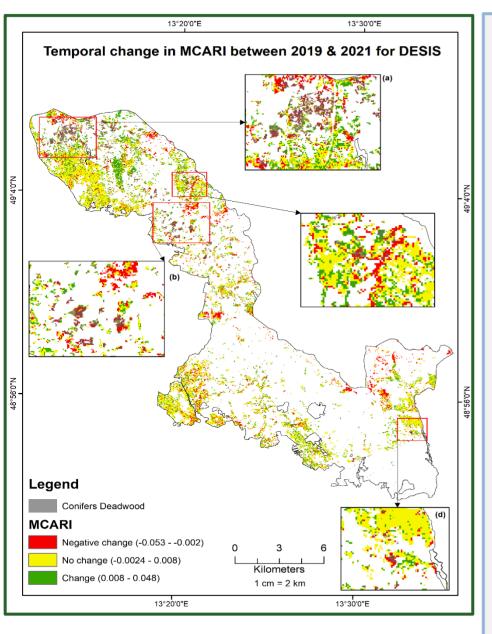
 \rightarrow CVI is Equal weightage to one index from every bio-physical variable (Hill et al., 2018)

Combined Vegetation Index (CVI) = (NDVI + VIgreen + NDRE)/3



Sentinel-2 Derived Mean CVI Time-Series

Vegetation Indices of DESIS


Fig. 6 Narrow band vegetation indices for DESIS

13"20"0"E

Vegetation Indices of DESIS

Fig. 6 Narrow band vegetation indices for DESIS

Summary

INDICES IN CORRESPONDENCE WITH DEADWOOD AREAS

<u>Chlorophyll</u>

- Narrow band indices that incorporates red edge range strongly corresponds to the affected deadwood areas.
 - MCARI outperforms well than other chlorophyll indices.
- MRESR, PRI and Vogelmann Red Edge partially matches with deadwood.

Leaf pigment

- Indices like Carotenoid 1, 2 and Anthocyanin sparsely matched with the deadwood regions.
 - Needle like leaves of conifers shows minimal variation.

<u>Structural</u>

- Structural indices like NDVI showed negligible differences
- Sensitive to background reflectance and difficult to interpret changes in conifers
 - Potential for broadleaf canopy

Inferences

- CVI from Sentinel 2 MSI seasonal change variation suitable for mapping changes in conifers.
- VI from high spectral information DESIS renders clear details corresponding to deadwood locations.
- For future work: examining acquired results any recent real time information available for validation (2021)?

Discussion

• When is a tree dead (any specific season), are infected trees cut down showing canopy gaps or covered with understory?

References

- Alonso, K., Bachmann, M., Burch, K., Carmona, E., Cerra, D., Ios Reyes, R., ... others. (2019). Data Products, Quality and Validation of the DLR Earth Sensing Imaging Spectrometer (DESIS). Sensors, 19(20), 4471.
- Hill, J., Stoffels, J., & Buddenbaum, H. (2018). Die Nutzung des Sentinel-2-Datenarchivs zur zeitnahen Bewertung des Vitalita "tszustands von Nadelholzbesta" nden im Bundesland Folgen des trockenen Spa "tsommers 2018 " Überdurchschnittlicher Temperaturanstieg in Rheinland-Pfalz " " Eigentlich harmlose Insekten und Pilze werden zur Gefahr " " Hitze und Dürrejahre bleiben kein Einzelfall ".
- Morcillo-Pallarés, P.; Rivera-Caicedo, J.P.; Belda, S.; De Grave, C.; Burriel, H.; Moreno, J.; Verrelst, J. Quantifying the Robustness of Vegetation Indices through Global Sensitivity Analysis of Homogeneous and Forest Leaf-Canopy Radiative Transfer Models. Remote Sens.2019,11,2418. <u>https://doi.org/10.3390/rs11202418</u>
- Müller, R., Avbelj, J., Carmona, E., Gerasch, B., Graham, L., Günther, B., ... others. (2016). The new hyperspectral sensor desis on the multipayload platform muses installed on the iss. *The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, 41, 461–467.
- T Daughtry, C. S., Walthall, C. L., Kim, M. S., Brown de Colstoun, E., & McMurtrey III, J. E. (1999). Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. REMOTE SENS. ENVIRON, 74, 229–239.

THANK YOU !!

DLR.de • Chart 13