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Abstract 

The study presents a method embedded in a software for estimating series of integrated sea state parameters from satellite-

borne synthetic aperture radar (SAR), which allows processing of data from different satellites and modes in near real 

time (NRT). The developed Sea State Processor (SSP) estimates total significant wave height Hs, dominant and secondary 

swell and windsea wave heights, first, and second moment wave periods, mean wave period and period of wind sea. The 

algorithm was applied for the Sentinel-1 (S1) C-band Interferometric Wide Swath Mode (IW), Extra Wide (EW) and 

Wave Mode (WM) Level-1 (L1) products and also extended to the X-band TerraSAR-X (TS-X) StripMap (SM) mode. 

The wide scenes are processed in raster format and resulting in continuous sea state fields. For the S1 WV 20 km × 20 km 

imagettes averaged values for each sea state parameter are provided. Validated with worldwide data the reached RMSE 

for Hs are 0.25 m for S1 WV, ~35 cm for TS-X SM and ~60 cm for the coarser S1 IW and S1 EW. 

 

 

1 Introduction  

 
In recent years, the ongoing development of space-borne 

SARs together with corresponding data transfer and data 

processing infrastructures has made a series of oceano-

graphic applications possible in near real time (NRT), e.g. 

[1], [2], [3]. Several minutes after image acquisition, the 

acquired scene can be processed and derived meteo-marine 

parameters are transferred to weather services that can use 

these products for forecast validations and to support ma-

rine traffic. In turn, sea state or sea ice information, for in-

stance, can also be sent directly to a ship’s bridge in order 

to optimise the ship routing. Oceanographic products, such 

as significant wave height fields and surface wind speed 

fields, ice coverage maps, oil spill locations, etc., can be 

processed in parallel from the same satellite image or from 

acquisitions from different satellites and combined to sup-

port Maritime Situational Awareness (MSA) by fusing data 

from various sources based on remote sensing, in situ 

measurements, forecast modelling or communication sys-

tems. One essential data source for MSA is high-resolution 

weather and sea state spatial information, which can be es-

timated only from remote sensing data. Further, the fusion 

of oceanographic parameters not only generates direct ad-

ditional value for MSA, but can also be applied for forecast 

model assimilation and to gain insights into the underlying 

physics. 

2 Subject and linear regression method 

 

This work introduces an algorithm and processor for me-

teo-marine parameter estimation for near real time (NRT) 

applications. The main goal of the study was to improve 

the accuracy of existing algorithms [4], [6], expand the list 

of obtained sea state parameters and also apply the method 

to various satellites and modes. 

In this study, the empirical approach was applied, as it is 

most suitable for direct estimation of sea state parameters 

form SAR features. The linear regression method delivers 

a first guess Hs, which is then supplemented using machine 

learning to increase accuracy of Hs estimation further. Cor-

respondingly, the developed sea state processor (SSP) con-

sists of two parts: CWAVE_EX (extended CWAVE) based 

on widely known approach using linear regression [4] and 

additional machine learning postprocessing.  

The advantage of the empirical CWAVE approach is that 

an analytical solution exists. The function’s coefficients 

can be obtained quickly using singular value matrix de-

composition (SVM), an extensive machine learning train-

ing is not necessarily. As will be seen further in this work, 

although the empirical solution is inferior in accuracy to 

that obtained by adding machine learning, this solution is 

already stable at about 80,000 random samples (the distri-

bution of wave heights in the worldwide tuning data is near 

to the normal distribution with ~70% of Hs<3 m, see per-

centage in Table 2): additional tuning data does not dis-

tinctly affect the obtained results from the point of view of 

total Hs.  

In order to improve accuracy of the original CWAVE 

[4][6], series of modifications were considered and intro-

duced:  

- additional data preparation steps i.e., image artifact filter-

ing, SAR-feature smoothing, etc.  

- new SAR features [8] additionally to features used in 

[10].  

In detail, five types of primary SAR-features are involved: 

Type-1: Normalized radar cross section (NRCS) and 

NRCS statistics (variance, skewness, kurtosis, 

etc.).  

Type-2: Geophysical parameters (wind speed using 

CMOD/XMOD algorithms). 
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Type-3: Grey Level Co-occurrence Matrix (GLCM) pa-

rameters (entropy, correlation, homogeneity, con-

trast, dissimilarity, energy, etc.). 

Type-4: Spectral parameters based on image spectrum 

(ISP) integration of different wavelength domains 

(0-30 m, 30-100 m, 100-400 m, etc.) and spectral 

width parameters (Longuet-Higgins, Goda-param-

eter). 

Type-5: Parameters defined in [4] based on products of ISP 

with orthonormal functions and cut-off wavelength 

estimated using autocorrelation function (ACF). 

Secondary features are combinations of primary features. 

The algorithm was tuned and validated using two inde-

pendent global wave model hindcasts: 

- WaveWatch3 (WW3, NOAA) [8] with a resolution of 

0.5 degrees, spatially interpolated on 0.25 degrees (ca. 

20–25 km grid cells, which corresponds to the S1 WV 

imagette size, data available for the entire S1 mission). 

- CMEMS (Copernicus) [9] with a spatial resolution of 

1/12 degrees (data available from April 2016 onwards). 

The 3 h outputs of both models were interpolated tempo-

rally. 

As in situ the National Data Buoy Center (NDBC) buoy 

measurements were used. The records (mainly 1 h interval) 

are also interpolated temporally. Data with a measurement 

time gap of over 6 h were excluded. 

The cross validations carried out using CMEMS and WW3 

shows: in comparison to with NDBC data, using only 

CMEMS ground truth resulted into an accuracy ~3 cm bet-

ter than when the model function was tuned using WW3 

data. The Hs comparison between CMEMS, WW3 and 

NDBC resulted into an RMSE=0.26 cm for 

CMEMS/NDBC and an RMSE=0.23 cm for 

CMEMS/WW3 at NDBC buoy locations. Generally, in 

terms of Hs, the ground truth noise can be assessed to an 

error of ~0.25 m. 

The reached root mean squared errors (RMSE) for 

CWAVE_EX for the total Hs are 0.35 m for S1 WV and 

TS-X SM (pixel spacing ca. 1–4 m) and 0.60 m for low-

resolution modes S1 IW (10 m pixel spacing) and S1 EW 

(40 m pixel) in comparison to CMEMS. 

Additional to Hs, integrated sea state parameters were con-

sidered: dominant and secondary swell and windsea wave 

heights (Hs
swel-1, Hs

swel-2, Hs
wind), first and second moment wave 

periods, mean wave period and period of wind sea (Tm0, Tm1, 

Tm2, Twind). The accuracies of the four studied periods are in 

the range of 0.45–0.90 s for all considered satellites and 

modes. Similarly, the dominant and secondary swell and 

wind sea wave height RMSEs are in the range of 0.35–

0.80 m compared to CMEMS wave spectrum partitions. 

More details are given in Table 1 and in [7].  

 

3 Machine learning postprocessing  

 

The postprocessing step uses machine learning. The sup-

port vector machine technique (SVM) [5] was applied. As 

input, the primary SAR-features estimated directly form 

the image (no features combinations) are used [11], ex-

tended by three additional features:  

- first-guess Hs from linear regression solution. 

- precise incidence angle (degree, third decimal place) 

- flag identifying the satellite (0 for S1-A and 1 for S1-B). 

For the training of hyperparameters, around 0.5 Mio model 

collocations were applied. The entire SVM-model training 

used ~1.5 Mio samples and took around 3 weeks. For the 

validation, data from the entire S1 WV archive 

Dec. 2014 - Feb. 2021 (around 15 Mio samples) was used. 

The resulting accuracy of Hs reaches an RMSE=0.25 m by 

SVM postprocessing of S1 WV. Comparison to 61 NDBC 

buoys, collocated at distances shorter than 50 km to S1 WV 

worldwide imagettes, result into an RMSE=0.41 m.  

 

Table 1 RMSE of sea state integrated parameters using lin-

ear regression CWAVE_EX approach. 
 

Parameter 

 

Unit 

Satellite mode 

S1 

IW 

S1 

EW 

S1 WV  

(wv1/wv2) 

TS-X 

SM/SL 

Hs m 0.57 0.61 0.34 / 0.38 0.36 

Tm0 s 0.96 0.86 0.46 / 0.51 0.72 

Tm1 s 0.97 0.85 0.51 / 0.56 0.59 

Tm2 s 0.82 0.86 0.46 / 0.51 0.51 

Hs
swell-1 m 0.68 0.63 0.42 / 0.47 0.33 

Hs
swel-2 m 0.38 0.44 0.41 / 0.46 0.27 

Hs
wind m 0.77 0.66 0.40 / 0.46 0.37 

Twind s 0.97 0.95 0.62 / 0.67 0.71 

 

4 Sea state processor (SSP)  

 

The Sea State Processor (SSP) is a C++ software package 

integrating series of operations and functions, e.g.: 

- SAR image reading and calibration 

- Land-masking and pre-filtering NRCS artefacts  

- SAR feature estimation, feature filtering 

- Empirical model functions for different sea state parame-

ters parameters for different satellites and modes 

- filtering and control of results 

- writing of results  

SSP was designed in a modular architecture for S1 IW, 

EW, WV and TS-X SM/SL modes. The DLR Ground Sta-

tion “Neustrelitz” applies the SSP as part of a near real-

time demonstrator service that involves a fully automated 

daily provision of surface wind and sea state parameters 

estimated from S1 IW images of the North and Baltic Sea. 

Due to implemented parallelization, a fine raster can be 

practical set: for example, S1 IW image with large cover-

age of 200 km × 250 km can be processed using a raster 

with 1 km grid cell (~50000 subscenes) during minutes. 

The maritime environment and ship detection products are 

combined in layers (see Figure 1). The applied series of 

technical innovations improved not only the total RMSE, 

but are also seen in the local effects: e.g. the antenna beam 

pattern that impacted the results in the old SSP version [7] 

is not more present in the new sea state products (see Fig-

ure 2). This pattern resulted from NRCS gradients at the 

beam borders in S1 IW and EW images. Also, the NRCS 

“black gaps” (NRSC≈0), a frequent error at image borders, 



does not affect the processed parameters anymore. Fig-

ure 3 shows an example for additional parameters for the 

SAR image presented in Figure 2: swell wave height Hs
swel-

1, wind-sea wave height Hs
wind and periods Tm0, Tm1, Tm2, Twind. 

5 Processing Sentinel-1 Wave Mode 

archive 

Using the SSP, the complete archive of S1 WV from De-

cember 2014 until February 2021 with around 60 over-

flights/day, each including around 120 imagettes, was pro-

cessed. The validation using the CMEMS model within lat-

itudes of -60°<LAT<60° to avoid ice coverage resulted in 

an RMSE of 0.245/0.273 m for wv1/wv2 imagettes, re-

spectively. Comparisons to 61 NDBC buoys, collocated at 

distances shorter than 50 km to S1 WV worldwide im-

agettes, result into an RMSE of 0.41 m.  

The monthly estimated total RMSE (compared with 

CMEMS) varies form 0.22 m to 0.31 m. These RMSE fluc-

tuations around the mean value are caused by different 

amounts of acquired storms in separate months. As high 

waves have a higher RMSE of around 52 cm, they increase 

the total RMSE when their relative percentage in a month 

is higher (see Table 2). 

 

Table 2 Accuracy distribution for Hs using the machine 

learning approach SVM for four sea state domains and in 

total. Dataset: entire S1 WV archive with ~15 Mio samples 
Hs 

 domain, m 
Sea 

 state, % 
RMSE (m) 

wv1  wv2  Averaged wv1/wv2 

0.0 - 1.5 11 0.280 0.342 0.311 

1.5 - 3.0 62 0.196 0.227 0.2115 

3.0 - 6.0 24 0.304 0.332 0.318 

6.0 < 2 0.519 0.558 0.5385 

Total 100 0.245 0.273 0.259 

 

All processed S1 WV data including derived state parame-

ters and imagette information (geo-location, time, ID, orbit 

number, etc.) are stored both as ascii and in netcdf format 

for convenient use. The data is made available to the public 

within the scope of ESA’s climate change initiative CCI. 

Figure 4 shows an example of Sentinel-1 Wave Mode WV 

archive processing for Feb. 2021. 

 

6 Accuracy reached for different sat-

ellites and modes 

 
In comparison to previous studies (e.g. [7]) a large amount 

of data was collected and applied. As many S1 IW, EW and 

TS-X images are acquired in coastal areas, only ~40% of 

all processed subscenes show ocean (wet points) and could 

be used for tuning/validation. The relatively coarse grid 

resolution of the used sea state models required an addi-

tional distance of 20 km from the coastline. The amount for 

resulting samples used for tuning and validations are 

shown in Table 3. The conducted studies and comparisons 

for S1 and TS-X show that using linear regression, the 

method tuned for different satellites and modes reaches an 

accuracy that depends more on the SAR image’s pixel res-

olution rather than on the used frequency band (C-band for 

S1 and X-band for TS-X) or satellite altitude (ca. 700 km 

for S1 and ca. 500 km for TS-X). A RMSE of around 

0.35 m was reached for both S1 WV and TS-X SM which 

have similar pixel resolution (1-4 m dependent on product 

and incidence angle), and an RMSE of around 0.60 m was 

achieved for the lower resolution S1 IW and S1 EW (pixel 

spacing of 10 m and 30 m, respectively). A limited valida-

tion case study conducted for TS-X ScanSAR (SC, pixel 

spacing 10 m) using 150 TS-X SC images also showed an 

RMSE of 0.60 m, which confirms this assumption. 

For S1 WV almost all data were acquired in VV polariza-

tion (only a few months HH polarization data were ac-

quired, e.g. May-July 2017), and since 2019 only in VV 

polarization. So, the S1 WV function was designed for VV 

polarization. The HH polarization data, validated sepa-

rately, resulted into RMSE lower of around 10% than VV 

pol. data. The S1 IW and EW are acquired in both HH and 

VV polarizations. However, to estimate the sea state pa-

rameters VV polarization images were actually used. The 

reason is that tuning Hs using different polarizations results 

into better results for VV pol. images. Also, using com-

bined HH and VV polarization images did not improve the 

results reached using only VV pol. [3].  

Around 60% of all pooled TS-X SM data had dual polari-

zation. As the function was tuned for each polarization in-

dividually, the dual-polarization products allowed to ex-

tend the number of samples for each polarization. The re-

sults of the study showed later that the data for both polar-

izations tuned independently resulted in the same accuracy 

for TS-X SM. 

 

Table 3 Amount of data used for tuning and validation of 

S1 IW, EW and TS-X SM 
Data N  

ID  

N collocated  

subscenes  

total   

N sub-

scenes  

tuning    

N sub-

scenes 

validation    

S1-IW 1,062 517,289 300,000 217,289 

S1-EW 2,093 1,162,492 800,000 362,492 

TS-X-

SM 

HH 2,047 216,938  120,000  96,938  

VV 138,885 120,000   18,885  

7 Conclusion 

The purpose of this work is a consistent improvement of 

the method based on the classical CWAVE approach (in-

volving both: SAR features and a solution using linear re-

gression). The following was achieved: 

- the series of additional operations and features signifi-

cantly increase the accuracy in terms of Hs compared to the 

original CWAVE approach [4][6]. The studies with differ-

ent options conducted in this work show that the cumula-

tive improvement in RMSE reached around 15 cm (ca. 

30% of RMSE~50 cm using the original CWAVE).  

- an additional machine learning technique (SVM) further 

improves the Hs results by another ~10 cm compared to the 

linear regression solution and brings the results to the noise 

level of the ground truth data of around 25 cm (see ground 

truth comparisons in Section 2). 

It was found that for a stable solution that is valid for 

worldwide applications, the linear regression approach 



needs around 80,000 random samples for tuning. Only 

when using this number of samples including any new data 

into the tuning does not improve the accuracy of the result-

ing model. For the machine learning (SVM) approach with 

a more complex function, this amount needs to be larger 

with around 600,000 samples. This is consequence of the 

Hs distribution in the worldwide acquired SAR data: 

Hs<3 m in ~75% of all cases, 3 m<Hs<6 m in around 24% 

and only around 1% of Hs>6 m and even less than 0.1% for 

Hs >10 m. For accurate reflection of the physical reality, 

the algorithms should be based on data covering all sea 

state domains with sufficient density.  
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Figure 1 Screenshot of the demonstrator for NRT services at Ground Station Neustrelitz. The demonstrator runs daily for 

Sentinel-1 IW in Southern North Sea and Western Baltic Sea. The actual processing raster is 3 km (the processed subcenes 

cover an area of ~4 km × 4 km), the wave-detection layer shows wave height (colored) and period (in circles: Hs above, 

Tm2 below). Data for all eight sea state parameters can be downloaded as google-earth ID*kmz file. The wind-detection 

level shows the wind speed estimated from SAR image. 

http://marine.copernicus.eu/
https://www.ndbc.noaa.gov/


 
Figure 2 Significant wave height field estimated from S1 IW image acquired on 2018-11-02 at 18:05 UTC. The results 

for the previous algorithm version [2,7] and the results from this study are presented. The errors “black gap” (boundary 

effect, NRCS=0) and antenna beam pattern (middle of the SAR image, flight direction) are not more present. Isolines 

show the Hs from CMEMS on 2018-11-02 at 18:00 UTC. 

 

 

Figure 3 Example for integrated sea state parameters for Sentinel-1 IW image shown in Figure 2: swell and wind-sea wave 

heights, mean, first and second moment periods and period of the wind sea.  

 
Figure 4 Example of Sentinel-1 Wave Mode WV archive processing. On the right half of the globe only one-day acquisi-

tions are displayed, on the left half all data acquired during February 2021 


