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ABSTRACT
Mental health issues are a serious consequence of the COVID-19 pandemic, influencing
about 700 million people worldwide. These physiological issues need to be consistently
observed on the people through non-invasive devices such as smartphones, and fitness
bands in order to remove the burden of having the conciseness of continuously
being monitored. On the other hand, technological improvements have enhanced
the abilities and roles of conventional mobile phones from simple communication
to observations and improved accessibility in terms of size and price may reflect
growing familiarity with the smartphone among a vast number of consumers. As a
result of continuous monitoring, together with various embedded sensors in mobile
phones, raw data can be converted into useful information about the actions and
behaviors of the consumers. Thus, the aim of this comprehensive work concentrates
on the literature work done so far in the prediction of mental health issues via passive
monitoring data from smartphones. This study also explores the way users interact with
such self-monitoring technologies and what challenges they might face. We searched
several electronic databases (PubMed, IEEE Xplore, ACM Digital Libraries, Soups,
APA PsycInfo, and Mendeley Data) for published studies that are relevant to focus on
the topic and English language proficiency from January 2015 to December 2020. We
identified 943 articles, of which 115 articles were eligible for this scoping review based
on the predetermined inclusion and exclusion criteria carried out manually. These
studies provided various works regarding smartphones for health monitoring such as
Physical activity (26.0 percent; 30/115), Mental health analysis (27.8 percent; 32/115),
Student specific monitoring (15.6 percent; 18/115) are the three analyses carried out
predominantly.

Subjects Emerging Technologies, Mobile and Ubiquitous Computing
Keywords Mobile phone, Sensor, Smartphone, Passive sensing, Mental health, Ambient sensors,
Mental health monitoring

INTRODUCTION
There are widespread concerns about the impact of the COVID-19 pandemic on mental
health, which has led to a natural urgency for mental health research. There are many

How to cite this article Gopalakrishnan A, Venkataraman R, Gururajan R, Zhou X, Genrich R. 2022. Mobile phone enabled
mental health monitoring to enhance diagnosis for severity assessment of behaviours: a review. PeerJ Comput. Sci. 8:e1042
http://doi.org/10.7717/peerj-cs.1042

https://peerj.com/computer-science
mailto:ag1266@srmist.edu.in
mailto:xujuan.zhou@usq.edu.au
mailto:xujuan.zhou@usq.edu.au
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1042
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1042


contributing factors towards poor mental health, but the COVID-19 pandemic has
exaggerated many psychological obstacles, and the hypothesis is that this has subsequently
led to a greater incidence of mental health issues in those who may have otherwise never
come to the attention of health services (Zhang & Ma, 2020). Moreover, the government’s
order to ‘‘stay at home’’ and the quarantine have led to the longest period of enforced
isolation in human history, with the accompanying psychological toll of bereavement and
unexpected fatalities. Similarly, the consequences of such widespread isolation have led
to a number of intangible effects, such as increased substance use and financial stresses.
While the COVID-19 pandemic continues, efforts have turned to early detection of warning
markers of psychiatric illness in order to implement time-sensitive therapies (Adogwa et al.,
2016). Traditional psychiatric evaluation approaches, such as clinical assessments and self-
survey reports have limitations in terms of achieving this goal. Firstly, clinical assessments
frequently rely on a person’s hindsight subjective evaluation of their activities over weeks,
months, or years (Garcia-Ceja, Osmani & Mayora Ibarra, 2015). As a result, individuals
may not be willing to engage appropriately, or may introduce an element of recall bias
during the assessment. Secondly, the types of consumers chosen for inclusion in such
studies are often sourced from clinical environments and rely on those who are sufficiently
disordered to require contact with mental health services. Subsequently, such assessments
may have minimal consistency and may be subject to types of reactions associated with
a person’s drive to undergo therapy e.g., minimising symptoms, hyper-endorsing issues
or avoidance of treatment. Furthermore, examinations are frequently conducted after
psychological problems or cognitive disability which have progressed to the point where
therapy is required for them, as they are much more resistant to treatment. Improved
precise diagnosis of behavioural indications linked to imminent difficulties could lead
to early remedies, potentially improving long-term outcomes. In the last decade, mobile
phones have exceeded their original use as communication devices. A smartphone can
now function as a digital camera, accelerometer, activity tracker, or chatbot, amongst
other functions. The different embedded sensors, together with the usage of smartphones
coupled with widespread availability, havemade them a significant research tool in a variety
of fields. One such aspect was passively monitoring or self-monitoring for forecasting
or categorizing smartphone customers’ health-related actions (Cheffena, 2015; Huang
et al., 2015). Manipulation of mobile data such as application usage, communications
and performed activities can be converted into latent information for predicting users’
well-being. Furthermore, contextual data of users includes weather and Wifi access
used to determine location (Moher, 2009). The embedded sensors act as effective self-
monitoring tools which enable the passive collection through the customized platforms
containing microphone, zoom lens, magnetometer, speedometer, bluetooth, light and
sound sensors (Higgins et al., 2011; Wang & Zhang, 2015). This evolution has sparked a
lot of curiosity and research possibilities in the context of mental health and wearable
technologies. It also emphasises the need for greater research into its mental health
implications, based on past material.
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The overarching goal of this scoping review is to establish a uniform framework
for defining the behaviours collected through various sensing techniques. The specific
objectives of this study are:
1. To concentrate on the prospect of employing current mobile or wearable devices to

detect and treat mental health issues early.
2. To provide an outline of clinical competencies used to compare the novel findings and

data from smartphones that are utilized to track the health of the users.
3. To identify prospective areas for future research in behavioural sciences studies.
This review focuses on evaluating human behaviour during this pandemic using the

best companion smartphones and highlights recent advances in the field of mobile phone
usability to answer the following primary research questions:
1. Could wearable or mobile tech be used to offer remote psychological assistance during

the COVID-19 pandemic recovery process?
2. What are the recent improvements in measuring instruments such as hardware and

software?
3. What are the limitations or concerns with passive monitoring that have been detected

into the articles integrated in the study are of interest to us?
The rest of the paper is organized as follows. ‘Survey Methodology’ presents methods

for narrowing publications by including the recent works in estimating the mental health
issues in this COVID scenario. ‘Results and Analysis’ deals with the systematic search
methods for deducing the nature of mental well-being observing frameworks. ‘Discussion’
presents different related work for mental health monitoring systems. ‘Current Challenges
in Passive Sensing for Mental Health Research’ describes the significant drawbacks of
change in expectation. Finally, conclusions and advanced work are given in ‘Conclusions’.

SURVEY METHODOLOGY
This survey methodology proceeds with a description of the searching strategy, scientific
databases retrieved, the inclusion and exclusion criteria, and the number of research articles
selected from the various databases to find the research work.

Search strategy and information Source
The strategic purpose of digitised assessments for psychological health issues has been
immediately required during the COVID-19 pandemic. Wearable gadgets can be used
to enhance assessments of mental health issues and can be used for tracking at-risk and
quarantined populations. Furthermore, while passive monitoring does not operate as
frequently as active monitoring, it can collect and generate vast amounts of data, which
may be used in supporting clinical assessment. As a result, the search focused on identifying
the most appropriate keywords for collecting recent papers on the subject such as mobile
technologies, ambient sensing, sensors and wearable and clinical competencies. Searches
were conducted in electronic bibliographic databases such as PubMed (Health Science),
IEEE Xplore, ACM Digital Libraries (computing methods), Soups (information article),
APA PsycInfo, and Mendeley Data (Physio informatics), addressing this via query-based
searches.
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1. Scopus (ScienceDirect)((ALL (Monitoring deceives)) OR (ALL (Passive monitoring))
OR (ALL (hardware)) OR (ALL (Software)) OR (ALL (smartphone deceives)) OR
(ALL (‘monitoring AND deceives’ OR ‘Passive AND monitoring’ OR ‘hardware AND
software’ OR ‘smartphone AND deceives’))) AND (ALL (well-being * OR physical *
OR mental * AND health))

2. IEEE Xplore digital library(‘‘Full Text Only’’: mental health monitoring) AND (‘‘Full
Text Only’’: hardware) OR (‘‘Full Text Only’’: software) AND (‘‘Full Text Only’’:
passive monitoring) AND (‘‘All Metadata’’: mental behaviours) AND (‘‘All Metadata’’:
well being)

3. APA PsycInfo Any Field: mental health monitoring using hardware OR Any Field:
software with passive sensing

4. Mendeley ALL(mental AND health AND well AND being AND using AND passive
AND monitoring AND sortBy = publicationYear)

5. PubMed((‘‘mental health’’[MeSH Terms] OR (‘‘mental’’[All Fields] AND ‘‘health’’[All
Fields]) OR ‘‘mental health’’[All Fields]) AND (‘‘health’’[MeSH Terms] OR
‘‘health’’[All Fields] OR ‘‘well’’[All Fields] OR ‘‘well being’’[All Fields]) AND
(‘‘passive’’[All Fields] OR ‘‘passively’’[All Fields] OR ‘‘passives’’[All Fields]) AND
(‘‘monitor s’’[All Fields] OR ‘‘monitorable’’[All Fields] OR ‘‘monitored’’[All Fields]
OR ‘‘monitoring’’[All Fields] OR ‘‘monitoring s’’[All Fields] OR ‘‘monitoring,
physiologic’’[MeSH Terms] OR (‘‘monitoring’’[All Fields] AND ‘‘physiologic’’[All
Fields]) OR ‘‘physiologic monitoring’’[All Fields] OR ‘‘monitor’’[All Fields] OR
‘‘monitorings’’[All Fields] OR ‘‘monitorization’’[All Fields] OR ‘‘monitorize’’[All
Fields] OR ‘‘monitorized’’[All Fields] OR ‘‘monitors’’[All Fields])) AND
(2003:2022[pdat])

6. ACM [All: mental health behaviors prediction using passive monitoring] AND [All:
mental health well being using passive monitoring]
Various reputable databases are excluded so the risk of duplication of research is

minimized, for example, the Web of Science database.

Criteria for inclusion and exclusion
This study mainly focuses on the passive monitoring system for analysing the behaviours
to predict the mental health which does not need user interaction, moreover, it is not
necessary for monitoring users to communicate with the sensors voluntarily for sensing
purposes, it should be embedded as they use in their routines. Thus, articles that were
published between January 2015 and December 2020, written in English and meet the
above purpose, are included.

In contrast, records excluded are based on the following reasons removal of duplication-
429 (sample article indexed in various databases), based on: the title of studies; 192 (active
monitoring methods, self-questionnaire methods); irrelevant review objectives, 79; and
finally based on the articles that lack availability of results and discussion, 128 (EEG, ECG
monitoring). Books, book chapters, conference abstracts, short surveys, editorials and
letters were excluded as well. Finally, omitted studies which do not contain proper ethical
clearance to carry out the research work.
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Study selection
Studies were extracted based on the query formed above and refined based on their titles,
followed by their abstracts. The rest of the refined articles were further scrutinised by
reviewing the content and determining relevance to the research question. The search list
was ordered chronologically and then analysed by a group of researchers in unison so as to
minimise selection bias.

Figure 1 shows the data flow diagram explaining how the publications for the review
were chosen based on elimination carried out manually with inclusion and exclusion
criteria. The systematic search described above yielded a sample of 943 manuscripts.After
removing the duplicates, we were left with 514 studies. 349 of the 514 titles examined were
deemed eligible for abstract evaluation. An estimated 199 abstracts were considered as
potential review candidates, which led to 182 full-text retrievals and evaluations. Finally,
115 manuscripts were included in the study. Table 1 shows the number of returned and
selected papers from retrieved databases.

Based on the exclusion criteria Table 2 shows the count of papers that were excluded
from the final stage of the review. Table 3 shows the number of articles published per year
in the last six years.

RESULTS AND ANALYSIS
Summary of the search results
Tables 4 and 5 provide the summary of various behavioural health outcomes from sensors,
wearable remote monitoring intervention studies which include duration of the evaluation,
target population, methods involved, resultant outcomes, clinical outcomes, hardware,
software components used for monitoring.

From Figs. 2 and 3 and Tables 4 and 5 it can be seen the majority of review articles
considered for analysis chose the accelerometer and GPS as a source of the user’s data
can be seen. The accelerometer provides added benefits such as covered distance, speed,
static/inactive and time periods of movements which also provided amiability, movement
and confinement. Moreover, the GPS provides dynamic, location variance, entropy,
circadian movement and universally common latitude and longitude data from the satellite
to predict the intensity of movement. It can also predict sociability, and detachment that
can provide context information to predict the mental health issues more accurately.

Analysis of the results
The framework for the health assessment system represents in Fig. 4 was created to guide
the analysis. This framework includes the combination of embedded sensors values used
to deduce the majority of behavioural classifiers (markers) to forecast the inferences such
as mental health issues, academic performance, fall detection for elderly people, isolation
from the social group and even for lifestyle recommendations. Those behavioural markers
such as physical activities, usage of the phone, sleep, location and social activities are
detected from the sensors data. Finally, inferences are compared with the self-reports as
described in Table 6 (ASRM, SGABS, GABS, IBS, HADS, PHQ, GHQ) which are generally
used by clinical experts to analyse the health issues. This section deals with a detailed
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Figure 1 Data flow diagram explaining how the publications for the review were chosen.
Full-size DOI: 10.7717/peerjcs.1042/fig-1

Table 1 The number of documents resulted and chosen for review from various databases.

Articles PubMed APA PsycInfo IEEE explore ACM Scopus Mendeley

Result of the search query 105 76 186 206 244 126
Taken for the survey 30 9 28 20 16 12

review of the embedded sensors and their function, which can result in monitoring
various health metrics like behaviour monitoring, physical activities, overall well being,
sleep quality, student monitoring and conviviality. In addition, traditional methods used
by practitioners were later combined into scales given as self-reports for mental health
monitoring.
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Table 2 The distribution of rejected papers as a result of the full-text review.

Reason for exclusion Publications excluded

Survey paper 46
collecting data with questionnaire 39
Activity monitoring 12
Language of articles not in English 2
Mental health monitoring with invasive methods 29

Table 3 Year-by-year breakdown of the number of unique papers returned.

Year Articles per year

2020 19
2019 16
2018 20
2017 15
2016 25
2015 20

Embedded sensors in smartphones
A smartwatch resembles a wristwatch in appearance, but it can do much more than keep
time. Bluetooth is supported on digital timepieces, and the functions can be extended to
smartphones. In such instances, the smartwatch can be used to read messages, accept calls,
monitor the climate, and many more advanced functions.

In addition to these advantages, smartwatches aid in the analysis of thewearer’s behaviour
and the determination of theirmental health. The researchers used a combination of sensors
and wearable technology (Table 7). Smartphones (71/115, 61.7 percent), wristbands or
smartwatches (44/115, 38.2 percent), were the most commonly utilised gadgets in the
research of behaviour monitoring. Accelerometers (46/115, 40.0 percent), mobile phone
usage (36/115, 31.3 percent), Global Positioning System (33/115, 28.6 percent), actigraph
(23/115, 20 percent), microphones (28/115, 24.34 percent), electrocardiogram (ECG) ,
and Electroencephalogram EEG (were the most commonly utilized sensors (23/115, 20.0
percent).

From Table 8 it is clear that 72.1 percent of research papers (83/115) used this sensor to
collect data from users, most of which were related to physical activity. In smartwatches,
the accelerometer is used to detect the wearer’s movement and orientation. Regardless of
whether one or two hands are used, the accelerometer in the smartwatch detects about
two dozen movements and activities (Lindner et al., 1999). The controls for software
applications are then mapped to these motions. The Tri-axial version is a common
smartwatch modification that maintains track of the wearer’s physical activity. The Tri-
axials record up and down, side-to-side, and back-and-forth movements, unlike the
uniaxial version, which only records up and down movements (Carbonell, Michalski &
Mitchell, 1983).
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Table 4 Summary of behavioral health outcomes from sensors, wearable, and remote monitoring intervention studies. P- Participants/Study
length, CA- Clinical assessment, H/w-Hardware, S/w-Software.

Study Period Population Method/Outcomes CA H/w, S/w Sensor

Ponzo et al. (2020) 262/4
weeks

College
students

BioBase application was
used for 4 weeks to reduce
anxiety and promote well-being.

STAI, PHQ,
WEMWBS

SP (iOS),
Wristband
(BioBeam),
Biobase app

Accelerometer,
actigraph

Doryab et al. (2019) 160/4
weeks

college
students

To detect the loniesss, keep an
eye on social and sleeping habits.
With an accuracy of 80.2%,
it can detect loneliness and
changes in loneliness levels, and
with an accuracy of 88.4%, it can
detect changes in loneliness levels.

UCLA SP, Wristband,
AWARE app
(freeware data
collection app)

Accelerometer,
actigraph,
Bluetooth,
phone usage,
GPS, microphone,
SMS usage

Sano et al. (2018) 201//4
weeks

college
students

Critical items detected using
wearable sensors like temperature,
barometer such as routine behavior,
socializing for stress,
depression with 78.3% accuracy
for segregating stress level
among students.

ASRM, IBS SP, wristband
(Afectiva),
Motion Logger
(AMI),
Funf open-sensing
framework

Accelorometer,
actigraph,
temperature sensor,
GPS, light sensor,
phone usage

Demasi, Aguilera &
Recht (2016)

44/8
weeks

Healthy
adults

Change over and abnormality
in sleep, length of sleep are
used to predict emotional
wellbeing.

BDI, PHQ-9 SP (Android),
Funf opensending
framework

Accelorometer,
actigraph,
Bluetooth

Gaggioli et al. (2014) 121/5
weeks

Healthy
adults

Participants reported a
signifcant increase in the
emotional support skill

COPE-NIV,
PHQ, SWLS

SP (iPhone),
Wireless
cardiovascular
belt, body worn
wireless sensor

Accelorometer,
Bluetooth, Camera,
ECG, electrodermal
sensor

Knight & Bidargaddi
(2018)

120/8
months

open When comparing self-reported
data from activity tracker
applications to wearables
for psychological anguish/moderate
level of psychological distress,
wearable devices had
considerably longer daily activity
duration than smartphone apps.

DASS-21 SP Accelorometer,
actigraph

Szydlo & Konieczny
(2016)

25/2
weeks

Outpatient The smartwatch recognises
75% of archetypal ASD
motions after six sessions
of use with an electronic
photographic activity
programme.

None
identifed

SP (Android),
Smart- watch

Accelorometer,
actigraph

Garcia-Ceja et al.
(2018)

30/6
weeks

Healthy
adults

Stress detection and
prediction using accelerometer
data with 95% accuracy

None
identifed

SP, Wireless
Sensor Data
Mining (WISDM),
chest sensor,
wrist sensor

Accelerometer,
actigraph,
Bluetooth,
microphone,
Wi-Fi
(continued on next page)
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Table 4 (continued)

Study Period Population Method/Outcomes CA H/w, S/w Sensor

Huang et al. (2016) 16/10
days

Students Examine the relationship
between university students’
visits to religious sites and
their social anxiety.

SIAS SP Accelerometer,
GPS

Wang et al. (2016) 21/9-36
Weeks

Outpatient Use random forest regression
to correlate smartphone data
with schizophrenia
symptoms/Significant
association between ground
truth and anticipated mental
health status scores

EMA (measuring
sleep, calm,
depression,
hope, cognition,
thoughts of harm,
psychotic symptoms)

SP (Android),
CrossCheck app,
Funf open sensing
framework,
MobileEMA System

Accelerometer,
app usage,
GPS, light
sensor,
microphone,
phone usage,
SMS usage

In order to enhance the prediction of behavioural characteristics, context-based scenarios
have to be added by using location data from the GPS in devices. The user’s location and
movements are tracked with this GPS data in most studies 37.39 percentage (43/115). It can
be either used alone as an individual sensor or combined along with Bluetooth and Wi-Fi
networks. The level of sociability among the users can be easily measured in addition apart
from the location measured from the Bluetooth. To determine the wearer’s orientation and
angular velocity, gyroscope sensors are used. Gyroscope sensors are more advanced than
accelerometers in terms of functionality. These sensors are capable of tracking both lateral
and tilt orientations. Accelerometers, on the other hand, can only track linear motions
(MacInnes, 2003). A revolving disc called the motor is mounted on a spinning axis in
the gyroscope’s design. With the help of Earth’s gravitational field, this sensor detects the
wearer’s orientation (Liu et al., 2018).

Out of the refined papers, SMS and calls were used to analyse the depressed mood
and social avoidance in (13/115) 11.3 percent of papers, gyroscope and microphone were
used for passive sensing in seven percent (8/115) and 5.2 percent (6/115), respectively. The
major work of a microphone is to communicate with the opposite parties. By analyzing this
factor, the predictions that can be made are mood (modulation of your voice), drowsiness
and isolation, while a gyroscope is used to measure the basic day to day activities.

Apart from the data received through sensors, some other additional information
can also be collected by the utilization of user patterns for handling the mobile. The
communication made using the phone such as calls, text messages, as well as usage of
devices incidents such as screen ON/OFF, time spent on the phone, lighting and settings
of the device, are used to detect health-related data. Application usage like ambient light
and phone screen on/off status were considered as a key factor in 7.82 percentage (9/115)
selected publications to predict the sleep of the users. Table 8 illustrates the rest fitness data,
such as the camera, and magnetometer, which can be collected from embedded sensors
and mobile phones.

The ability to collect data passively is one of the key benefits of using smartphones for
health monitoring. All sensor data comes from the smartphone’s omnipresent sensors,
and passive data collection means there is no user interaction or participation. To detect
physical activities, 52 of the 115 publications employed data from only two or more
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Table 5 Summary of behavioral health outcomes from sensors, wearables, and remote monitoring intervention studies. P- Participants/Study
length, CA- Clinical assessment, H/w-Hardware, S/w-Software.

Study Period Population Method/Outcomes CA H/w, S/w Sensor

Hartanto et al. (2015) 5/8
weeks

Healthy
adults

Feedback based
motivational methods
used to predict anxiety
with virtual captions

IPQ, SUD Head mounted
VR, Zephyr HxM
HR device,
Memphis VR
dialogue
system

Accelerometer,
ECG, microphone,
Wi-fi

Ben-Zeev et al. (2015) 47/10
weeks

Healthy
adults

Predicts the correlation
between location,
length of sleep and stress
levels from smartphone data.

PHQ-9, PSS,
UCLA-LS

SP (Android),
Wristband
(JawBone Up),
cell towers,
wi-fi receiver

Accelerometer,
actigraph,
Bluetooth,
GPS, light sensor,
microphone

Lim et al. (2012) 537/3
months

Outpatient Evaluate association
of depression using Used
generalized estimating
equations (GEE)

SGDS-K SP, Sensor
FH62C14

GPS

Osmani (2015) 12/12
weeks

Inpatient, depression
and bipolar disorder

The correlation between
daily intervals’
activity scores and mental
state assessment scores
was 0.6248, indicating
that the mood state
(manic, depressed)
could be recognised.

BSDS, HDRS Wristband
activity tracker

Accelerometer,
GPS, microphone,
phone usage

Saeb (2015) 28/2
weeks

Outpatient Predict depressive
symptoms/Signifcant
negative correlations
between GPS features and
depression;

PHQ-9 SP (Android),
Purple robot
app

GPS,
phone usage

Canzian &Musolesi (2015) 28/10
weeks

Outpatient The mobility trace
characteristics were linked
to depressive mood
in a model designed to
predict changes in
depression based on
mobility patterns.

PHQ-8, HADS,
GHQ

SP (Android),
MoodTraces app

GPS

Grünerbl et al. (2015) 10/12
weeks

Outpatient With 97% precision
and 97% recall,
detect state shift
in persons with bipolar
disorder; recognise
state with 76% accuracy.

ADL, HAMD, SP (Android),
tracking app

Accelerometer,
GPS, microphone,
phone usage

Wahle et al. (2016) 37/2
weeks

Outpatient A SVM predicts
depression with 61%
accuracy, and an RF
classifier predicts
depression with
59% accuracy.

PHQ-9 SP, Mobile
Sensing
and Support
(MOSS) app

Accelerometer,
GPS, phone usage,
SMS usage

(continued on next page)
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Table 5 (continued)

Study Period Population Method/Outcomes CA H/w, S/w Sensor

Maxhuni et al. (2016) 10/12
weeks

Outpatient Ability to classify mood
with confdence (85%)
in the course of
mood episodes

HAMD, YMRS SP (Android),
MONARCA app

Accelerometer,
Bluetooth, GPS,
microphone, phone
usage, Wi-fi

Faurholt-Jepsen et al. (2020) 129/9
months

Outpatient To compare differences
in depressed and manic
symptoms, researchers used
an SP-based method with
traditional treatment.

ASRSM, BDI SP (Android),
MONARCA II

Accelerometer,
actigraph, GPS,
phone usage,
SMS usage

Figure 2 Source of health-related data from various sensors.
Full-size DOI: 10.7717/peerjcs.1042/fig-2

Table 6 Clinical assessment scales.

Acronyms Description

ASRM Atlman Self-Rating for Mania
SGABS Shortened General Attitude and Belief Scale
GABS General Attitude and Belief Scale
IBS Irrational Belief Scale
HADS Hospital Anxiety and Depression Scale
28 –GHQ General Health Questionnaire-28
BDI Beck Depression Inventory

sensors, the majority of which were accelerometers. Various articles additionally used GPS,
camera, and speedometer on their own as described in 115 articles involving the usage
of several sensors. In the majority, 23 articles predominantly use the accelerometer, and
in conjunction with GPS, Wi-Fi, gyroscope sensors and microphone to determine the
physical activities and overall general behaviour.
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Figure 3 The selected publications in research fields.
Full-size DOI: 10.7717/peerjcs.1042/fig-3

Figure 4 Framework of health assessing system.
Full-size DOI: 10.7717/peerjcs.1042/fig-4

Another important issue that affects the accuracy of the collection of sensing data in
the monitoring systems is the operating system. Building for Android and IOS, the two
most popular phone operating systems, has its own set of issues and problems. Android
is presently the most widely used operating system, with the benefit of being simple to
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Table 7 Passive monitoring sensors.

Sensors Analytics

Accelerometer Covered distance, speed, static/inactive and time periods of
movements

Actigraph Physical progress, activity - rest cycles, circadian-rhythm
cycles

Barometer To measure the air density
Bluetooth Identify adjacent Bluetooth enabled devices
Blood pressure monitor Systolic and diastolic cycle of the blood, Eye gaze, light
Electro Cardio Gram (ECG) Heart rate activity, heart rate variability
Electro Encephalon Gram (EEG) Monitoring the brain activity
Global positioning system (GPS) Location, duration of the movement, speed, proximity
Gyroscope Gyroscope rotation of the device
Light sensor Measures surrounding and device light
Magnetometer Direction, field strength
Microphone Speech communication
pH monitor Stomach acid secretion intervals
Temperature sensor Skin and ambient temperature
Wi-Fi Location and signal strength of networks

Table 8 Source of the health-related data.

Components of mobile device
used for sensing

No of
studies

Low level
features

High level
behavioral makers

GPS (Global Positioning System),
Bluetooth, Wi-Fi

43 Movement intensity,
Location

Hedonic activity, Stress,
Social avoidance

Accelerometer 32 Activity type,
Movement intensity

Psychomotor activity, Fatigue,
concentration/Distractibility

Gyroscope 8 Movement intensity Hedonic activity, Stress
Microphone 6 Paralinguistic information,

Acoustic environment,
Bedtime/Wakeup time

Depressed mood, Stress

Camera 4 Pictures Social avoidance
SMS & calls 13 In phone social activity Social avoidance,

Depressed mood
Others (Ambient light,
phone screen (On/Off)

9 Acoustic environment,
Bedtime/Wakeup time

Depressed mood, Stress

write (Wang & Zhang, 2015). The quicker sensor scanning rates of this operating system
have been demonstrated (Boonstra et al., 2017). Furthermore, IOS prohibits third-party
apps from operating in the background indefinitely, preventing data collection (Hossain
& Poellabauer, 2016). 73.6 percent (67/91) of the chosen papers developed their solution
exclusively for Android devices, 18 for both Android and IOS, and six did not specify which
operating system they used.

Many of the publications identified using the phones’ sensors because of efficiency
in energy and reduced overhead in collecting data from users in the passive matter.
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Table 9 The selected publications mental health monitoring.

Exploration area Counts

Mental health 32
Physical activity 30
Student-specific monitoring systems 18
Conviviality 11
Sleep 9
Overall well-being 8
Ailment monitoring 7

Advancement in various platforms in machine learning fields provides various tools to
develop prediction models to analyse and interpret data in studies using more than three
sensors.

Statistical analysis
Physical activities and mental health, as well as sociability, academic achievement
monitoring, and overall well-being, are the most examined health features among the
publications chosen for this systematic review, as shown in Table 9.

Behaviour monitoring
We can group the studies based on the behaviourmonitoring from the selected publications
and their indicated survey topics. In a few papers, gadgets are used to predict the users’
personal life to enhance their monitoring and maintaining their lifestyle such as motor
skills of hands in Parkinson’s disease, predicting the abnormalities that arise due to sleep in
Schizophrenia, abnormal brain neuron activities in Autism and anxiety disorders. People
suffering frommental health difficulties such as depression or schizophrenia accounted for
5.2 percent (6/115) of studies with a specific population (Pratap et al., 2019; Zhang et al.,
2018;Wahle et al., 2016; Soares Teles et al., 2017; Ng et al., 2014; Staples et al., 2017).

Physical activity
The papers that were chosen based on the detection of users’ physical activity accounts are
26.0 percent (30/115). The daily events identified to carried out studies are standing or siting
(Shoaib et al., 2014; Li et al., 2016; Del Rosario et al., 2014; Incel & Ozgovde, 2018; Mafrur,
Nugraha & Choi, 2015; Lee & Kwan, 2018; Capela et al., 2016; Hnoohom, Mekruksavanich
& Jitpattanakul, 2017; Bort-Roig et al., 2019), on foot moving (Shoaib et al., 2014; Wang
& Zhang, 2015; Arif et al., 2014; Spinsante et al., 2016; Yang et al., 2014; Aguiar et al., 2014;
Del Rosario et al., 2014; Merchán-Baeza, González-Sánchez & Cuesta-Vargas, 2018; Incel
& Ozgovde, 2018; Mafrur, Nugraha & Choi, 2015; Lee & Kwan, 2018; Solanas et al., 2015;
Capela et al., 2016), lying down (Yang et al., 2014; Aguiar et al., 2014; Del Rosario et al.,
2014), going up and down the stairs (Shoaib et al., 2014; Yang et al., 2014; Del Rosario et
al., 2014), and riding any motor vehicle (Shoaib et al., 2014; Li et al., 2016; Trifan, Oliveira
& Oliveira, 2019; Wan, Lin Kan &Wilson, 2017; Juen et al., 2014). Additionally, other
activities considered were skipping (Trifan, Oliveira & Oliveira, 2019), being motionless,
surfing, cooking, dining and shopping activities (Wan, Lin Kan &Wilson, 2017). Those
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activities are assessed by identifying and evaluating burnt calories, counting steps (Chu et
al., 2014; Tang, Guo & Chen, 2016), diet (Khedr & El-Sheimy, 2017; Luštrek et al., 2015), to
prevent from living sedentary identifying the motion (Gu et al., 2017), non exercise actions
(Madhushri et al., 2016; Lathia et al., 2017; Liu & Chan, 2016), and number of hours spent
and to be spent in walking and pulmonary diseases patient’s movements (Kelly, Curran &
Caulfield, 2017).

Overall well-being
Some of the chosen publications looked into each of the health elements stated above
separately, while others looked into multiple areas to acquire a better understanding of
the consumers’ overall well-being. Such systems detect sleep patterns, exercises activities,
users’ physical activities, and consciousness (DeMasi et al., 2017; Lane et al., 2014; Aslam et
al., 2016;Mo et al., 2015;DeMasi & Recht, 2017) and position in order to fully comprehend
and adjust their actions, or to improve development off lifestyle.

Sleep
Only 7.9 percent (9/115) of the publications chosen used irregular night, sleep patterns,
and sleep start and finish times to deduce users’ sleep (Cheffena, 2015; Huang et al., 2015;
Saeb et al., 2017a; Montanini et al., 2018; Sarda et al., 2019; Lin et al., 2019; Nakano et al.,
2014). A few studies (Staples et al., 2017) looked at the relation among sleep models and
schizophrenia.

Student-specific monitoring systems
Monitoring student’s lives was the focus of the research with a specific demographic
behaviors (Huang et al., 2016; Pulekar & Agu, 2016; Wang et al., 2014; Wang et al., 2015;
Vhaduri, Munch & Poellabauer, 2016; Harari et al., 2017a; Chen et al., 2014). Out of these,
about 15.6 percent (18/115) of the studies selected created student-specific monitoring
systems, in order to predict activities such as walking, running, jogging, sleeping,
communication, and movement intensity (Wang et al., 2014; Wang et al., 2015; Baras
et al., 2016), social phobia (Saeb et al., 2017b), psychological health (Buck et al., 2019;
Farhan et al., 2016; Yue et al., 2018; Boukhechba et al., 2018), mobility, and attitudes
(Mafrur, Nugraha & Choi, 2015; Tseng et al., 2016; Hossain & Poellabauer, 2016; Vhaduri,
Munch & Poellabauer, 2016; Harari et al., 2017a). One study (Chen et al., 2014) presented
a mechanism for anticipating students’ shopping habits of food in their local region and
offering healthier alternative options.

Mental health
Mental health issues are another health-related topic that is well-studied in the publications
chosen. Major mental health related diseases are studied due to usage of smart mobile
phones such as anxiety (Wang et al., 2016; Saeb et al., 2017b), bipolar syndrome (Matthews
et al., 2016; Beiwinkel et al., 2016; Maxhuni et al., 2016; Wang et al., 2016), schizophrenia
(Boukhechba et al., 2017; Ben-Zeev et al., 2016), depression (Ben-Zeev et al., 2016; Buck et
al., 2019; Farhan et al., 2016; Yue et al., 2018; Boukhechba et al., 2018), stressful situations
(Juen, Cheng & Schatz, 2015; Garcia-Ceja, Osmani & Mayora Ibarra, 2015; Ben-Zeev et al.,
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2015), psychotic deterioration (Higgins et al., 2011), and mood (Pratap et al., 2019; Ben-
Zeev et al., 2017; Servia-Rodríguez et al., 2017; Grünerbl et al., 2014; McNamara & Ngai,
2016; Zhang et al., 2018; Jeong & Breazeal, 2016).

The research on consumers’ typing habits and texting speed is an innovative way of
assessing their emotions (Higgins et al., 2011). Evaluating the effect of users’ exposure to
surroundings (Triguero-Mas et al., 2017) used to determine the mental health by passive
sensing. Two more studies (Ellis et al., 2012; Wahle et al., 2016) built their monitoring
method, which included a recommendation system to help depressed individuals cope
with their illness. Attendants also used the disability service system to get a review of
circumstances faced by patients with depression (Soares Teles et al., 2017) or to inform
psychiatrists and family and friends if patients with mood disorders exhibit unusual
behavior (Ng et al., 2014).

Cordiality
Cordiality is a level of interaction with the peer groups (friends, colleagues, family and
others). It is recognized to have a significant impact on people’s psychological distress levels.
According to the majority of articles retrieved, Only a few factors have been considered to
be allied, although it can improve the prediction in a better aspect. Healthy relationships
among coworkers are shown to increase productivity (Boonstra et al., 2017), united families
are more contented (Ng et al., 2014; Sahiti et al., 2017), and pupils cope better with their
schoolwork when they are accompanied by friends (Ng et al., 2014). Exploring interaction
patterns and nearby areas is one way of studying this health factor (Luo et al., 2015; Sofia
et al., 2016). In two research works (Singh, Goyal & Wu, 2018; Bati & Singh, 2018), an
intriguing strategy for exploiting the sensing capabilities of smartphones to predict users’
risk-taking tendencies were explored (Pulekar & Agu, 2016).

Self reports-traditional scales used to analyze mental health
Before releasing smartphone-based passive monitoring systems to the general public, it
is necessary to do extensive testing to guarantee that users are engaged with the device.
These scales are used to evaluate and compare results like behaviours, length of study
and number of participants involved to access the study. The data were collected using a
cross-sectional survey method, which entails gathering data at a single moment in time
(Lindner et al., 1999). During one phase of data collection, the phenomena under inquiry
are captured as they present themselves. In order to cross-validate and test the recent
instrument’s measurement, clinical assessment scales are used. Table 6 shows the major
valuation scales used (Polit & Hungler, 1993; Lindner et al., 1999; MacInnes, 2003; Bernard,
1998). The data collected by smart mobile phones can be compared and validated using
ground truth data. The sort of data utilised as base ground truth was disclosed in around
60.8 percent (70/115) of the evaluated papers, while the other research provided no relevant
information. However, there are several drawbacks to this strategy, such as the fact that
users may not always react precisely, resulting in inconsistent bipolar outcomes.
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Atlman self-rating for mania-ASRM
A set of five statements describes the primary signs of Maina as defined by the DSM-IV
(American Psychiatric Association, APA, 1994). Individuals were directed to evaluate only
one of the five statements from each group that best reflected their mindset or behaviour
in the previous week, scored in severity from zero (not present) to four (present in severe
degree). To enable for self-assessment of depressive episodes, three extra sets of five
statements were included (e.g., auditory and visual hallucinations, delusional thoughts).
These questions were then reviewed and modified by other staff physicians who had
experience with manic patients.

Shortened general attitude and belief scale -SGABS
An elongated version of the General Attitude and Belief Scale (GABS), contains more than
50 items in the measuring scale (Singh, Goyal & Wu, 2018; Malouff & Schutte, 1986). It
contains seven items of reasonableness along with one sub-scale (demand for trust, need
for relief, need for support, need for attainment) (Thomas & Bond, 2014; Cornet & Holden,
2018).

Irrational belief scale –IBS
To investigate the well-being, a self-report questionnaire on various factors of irrational
behaviours are listed. About 20 items are to be answered and the total score was calculated
by accumulating them together. Higher scores on the measure imply more illogical beliefs.
The scale is frequently utilized in REBT research and clinical practice (Thomas & Bond,
2014;Wertheim & Poulakis, 1992; As, 1983).

Hospital anxiety and depression scale –HADS
A fourteen-item fear and sadness assessment was separated into two subscales (Goldberg,
1972). The total score for each sub-scale ranges from 0 to 21, and respondents rate their
answers on a four-point scale. Clinical significance is defined as a score of 11 or higher.

General health questionnaire-28 –GHQ
Completion of self-analysis for measuring mental health disturbance by answering the
questions (Beck, 1979). Its major focuses on items related to depression and anxiety are
widely used in more clinical 439 research projects. In the survey, users are asked to rate
the severity of their current experience based on a six-item severity scale. Scores of six or
higher are indicative of overall health issues (Bowling, 1991).

Beck depression inventory -BDI
The majority of depression predicting papers uses this BDI self-rating scale that consists
of 21 questions. The total score range from 0 to 63, with which a higher score suggests
depression and lower one exemplifies a good attitude. It is suggested that the inventory
be used in clinical and research settings (Beck, 1979). Several methodological features of
smartphone-based health monitoring systems should be considered. The most intriguing
of these is the ability to discreetly and consistently collect well-being information about
users without requiring them to change their everyday routines, transforming smartphones
into a less intrusive and demanding tool than other health gadgets. Furthermore, mobile
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phones are portable, less expensive, and efficient than other gadgets, and stay with users
for a longer duration, making them utilize the smartphone as a familiar tool (Anderson,
Burford & Emmerton, 2016). Since these crucial health related data from the inactive device
should be preserved from others such as friends and the outside world.

DISCUSSION
People may be hesitant to use smartphones for health monitoring because of the previously
mentioned disadvantages. Users currently make rapid judgments about whether or not to
use an app; as a result, their needs must be met completely. Consumers frequently judge
apps based on their design initially. Generally, users require a user-friendly app and they
were not willing to spend much time learning to use it. Battery usage and privacy are
common concerns. In actuality, because these programs are often run in the background,
consumers do not expect their battery level to decline significantly. Users may also delete
apps if they have privacy concerns. Data acquired on a mobile is personal and should not
be shared or accessed without permission. Commonly, people are not ready to share their
health-related data on social media sites. But, at the same time, they may share it openly
with physicians if they went for diagnosing health-related issues. Furthermore, consumers
are comfortable utilising password-protected apps but are wary about putting in too much
effort to create accounts. Moreover, an app’s deactivation may be due to unreliable or
inadequate outcomes or advice. Memory space used for application storage and working in
the background is also an issue during normal smartphone operations (Torous, Friedman
& Keshavan, 2014; Carbonell, Michalski & Mitchell, 1983).

Yet another critical factor to be considered is based on their present situation, people
may receive a few numbers of calls, texts, emails and notifications with the majority of
them being favourable recommendations. They find the ability to customize the frequency
and timing of notifications to be appealing (Torous, Friedman & Keshavan, 2014). Users,
on the other hand, are equally interested in defining and accomplishing personal goals.
(Dogan et al., 2017; Nguyen & Silva, 2016).

In light of the aforementioned obstacles and potential issues, the created systems
discussed in this comprehensive study still have some constraints that must be addressed
in order to meet users’ expectations and demands. It is critical for the validation of such
monitoring systems to include a population sample that is representative of the target
population for an extended period of time, in order to collect sufficient data and produce
reliable results. From the above findings, about 83.4 percent (96/115) of the chosen papers
tested their system with up to 250 participants, and their entire working observed for study
purposes ranged up from one to four weeks in 16.5 percent (19/115) of the chosen papers,
thus it looks like very short duration to guarantee realistic performance and ensure the
customers’ confidence in operating with the systems.

Additionally, the discussed models were suited for a limited population, which could
lead to erroneous results when the system is used with a different population. Although 44.3
percent (51/115) of the selected papers proved that sensing can be passively done without
disturbing the regular activities, it had to be retained in exclusive locations for effective
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measurement such as pockets, purses, handbags and hands. According to the above study,
smartphones can collect health-related data and offer users relevant feedback on health
problems. Despite the increased interest and evolution, monitoring systems will require
improvement in order to attract a wider range of users and achieve their expectations. In
addition to the aforementioned demands and problems, the use of Mobile phones in health
monitoring may generate further questions. Smartphones are currently utilised all around
the world. The health monitoring systems may be beneficial to the elderly, smartphones
may not be a simple or flexible tool for them but the younger generation is more familiar
with them.

Furthermore, these systems may appeal to those with diagnosed ailments who have
specific goals in mind, like observing lifestyles, regulating heartbeat rate, working of
hormones, and reducing obesity, rather than people who have no clear goals in mind.
Finally, once users are either comfortable with such systems or reached their individual
goals, they may stop using the monitoring devices. The research presented shows how
individuals can improve their health andwell-being bymonitoringmany health dimensions
exclusively using data collected from their smartphones. Most of the papers address
unique disorders related to mental health, including depression, fear, anxiety, bipolar
disorder, mood cornered problems, schizophrenia (Faurholt-Jepsen, Bauer & Kessing, 2018;
Rajagopalan et al., 2017; Dogan et al., 2017; Areán, Ly & Andersson, 2016; Þórarinsdóttir,
Kessing & Faurholt-Jepsen, 2017; Nguyen & Silva, 2016), heart related diseases (Ko et al.,
2015), tension (Nguyen & Silva, 2016), sleep (Ko et al., 2015), and other physiologically
health issues including obesity due to lack of physical exercises (Thomas & Bond, 2014),
long-lasting diseases in older adults (Cornet & Holden, 2018), overall health (predicting
disturbance in sleep (Harari et al., 2016), andmobility patterns (Leigh & Flatt, 2015). Figure
3 represents the selected publications in research fields. From the above figure, it is evident
that due to the increase in the number of cases related to various issues in mental health and
in general people are much more consciences about physical health. The smartphone was
the most widely utilized technology and device in the evaluations (Faurholt-Jepsen, Bauer
& Kessing, 2018; Rajagopalan et al., 2017; Batra et al., 2017; Dennison et al., 2013), although
only someworks perform it by gathering the sensors data (Faurholt-Jepsen, Bauer & Kessing,
2018; Batra et al., 2017; Nguyen & Silva, 2016; Ko et al., 2015; Thomas & Bond, 2014).
Rarely in some circumstances, phones are utilized to persuade users to conduct ecological
temporary assessments (Batra et al., 2017; Areán, Ly & Andersson, 2016; Nguyen & Silva,
2016), to deliver notifications apps of the smartphone are used (Rajagopalan et al., 2017;
Batra et al., 2017; Dogan et al., 2017; Areán, Ly & Andersson, 2016; Þórarinsdóttir, Kessing
& Faurholt-Jepsen, 2017; Ko et al., 2015), or to send brief messaging service suggestions
to users (Rajagopalan et al., 2017; Thomas & Bond, 2014). Wearable gadgets, (Batra et al.,
2017; Þórarinsdóttir, Kessing & Faurholt-Jepsen, 2017; Ko et al., 2015; Cornet & Holden,
2018) are also considered in peer-reviewed articles, as replacement of smart phones and
due to the reputation of the embedding sensors in any daily usage components to monitor
passively are tablets, accessories, health trackers and smartphone-linked devices (Batra et
al., 2017; Ko et al., 2015; Thomas & Bond, 2014; Kim & Lee, 2017; Cornet & Holden, 2018).
Unlike the other publications in this review, this one does not focus on a particular situation
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or sensor. The aim of this study is to find various and possible physical condition-related
variables which can be tracked using a phone, further determining how majority of sensing
systems replace or supplement conventional diagnostic procedures.

CURRENT CHALLENGES IN PASSIVE SENSING FOR
MENTAL HEALTH RESEARCH
Frequent users anticipate monitoring systems to give them relevant data and
recommendations regarding their actions (Torous, Friedman & Keshavan, 2014). Users are
provided with well-being feedback (Harari et al., 2017b; Anderson, Burford & Emmerton,
2016) related to mental stress, well being and overall physical activities in order to alter
their standard of living.

The use of smartphones in healthmonitoring appears to be a promising research subject.
The current solutions have significant drawbacks that must be overcome in order for users
to feel comfortable and confident utilising such systems. In reality, monitoring systems
may be deemed unsettling, unpleasant, and intrusive, such as the use of smartphones
for diagnostic evaluations, which have social, economic, and cultural limitations. Sick or
socially vulnerable people have different behaviours in different scenarios. The current
challenges in passive monitoring are broadly classified as shown in Fig. 5 such as issues in
the monitoring system, end-users issues, and behavioural marker issues.

Challenges in monitoring systems
The created systems discussed in this scoping review still have several flaws that must be
addressed in order to meet the expectations and demands of users.
• validation of monitoring systems

– These systems should be tested with a population sample that is highly representative
of the target population for a sufficient period of time in order to collect enough data
and produce as accurate results as possible. From the survey, 71.1 percent (84/115)
of the selected papers tested their system with up to 50 participants, and 17.7 percent
(21/115) of the selected papers tested their system for one to three weeks, which
appears to be a short period to ensure reasonable results and ensure users’ confidence
in using available solutions.

– Majority of the systemdesigned so far are assessed on younger generations additionally
outputs may not be much reliable (Cheffena, 2015; Del Rosario et al., 2014). Single
population alone was targeted in the vast number of research works that may be
overly customized, resulting in erroneous findings when the systems are utilised
by other groups (Chen et al., 2014; Beck, 1979). Personalized models outperformed
general models, according to other studies (Huang et al., 2015; Juen, Cheng & Schatz,
2015; Saeb et al., 2017a; DeMasi et al., 2017).

• Furthermore, 43.2 percent (51/115) of the papers chosen demand users to keep their
smartphones close to them or to use them in a specified bodily position, such as their
hand, chest, or trouser pocket. Other research required users to have their handsets near
them (Bowling, 1991; Huang et al., 2015; Ellis et al., 2012) or to keep them turned on

Gopalakrishnan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1042 20/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1042


Figure 5 The challenges in passive monitoring systems.
Full-size DOI: 10.7717/peerjcs.1042/fig-5

all the time to ensure that the system worked properly (Boonstra et al., 2017; Staples et
al., 2017). Because smartphones become an invasive technology for users under certain
situations, they may be rendered obsolete.

End users issues
• In terms of privacy, 26.08 percent (30/115) of respondents indicated that privacy
concerns could cause consumers to abandon their commitment. All those data are
related to their personal these have to be kept secure were concentrated in (Kelly, Curran
& Caulfield, 2017; Wang et al., 2014). In some studies users are not willing to save their
personal data on cloud environment (Ben-Zeev et al., 2017; Aslam et al., 2016) or in
their internal mobile devices by hashing techniques (Huang et al., 2015; Boonstra et al.,
2017; Aslam et al., 2016; Wang et al., 2014), and there are sensor which contains certain
concerns about privacy (Juen, Cheng & Schatz, 2015).
• Still on the subject of technological considerations, consumers anticipate that the
software will not take up too much space or memory and that it will be able to run in
the background without interfering with other smartphone functions.

Behavioral marker issues
Seasonality and the environment are two other essential factors to consider. In the winter,
for example, GPS and accelerometer data in Minneapolis will differ from that in Miami.

Variability in sensing data is due to the decentralized sources, including data types,
people’s characteristics, and diverse situations. Sensors in cellphones differ from one
manufacturer to the next, from one model to the next, and from one version to the next,

Gopalakrishnan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1042 21/34

https://peerj.com
https://doi.org/10.7717/peerjcs.1042/fig-5
http://dx.doi.org/10.7717/peerj-cs.1042


impacting the data collected. The link between constructs or how people use measurement
equipment may be influenced by their properties. For example, age may be linked to
the number of social contacts, with older people having fewer contacts and desiring less
contact, but it could also be linked to how social engagement is monitored using a phone
(e.g., older people are more likely to call and less likely to send text messages than younger
people).

Finding a scientifically valid balance between identifying uniform variables, to making
data pooling simple (e.g., using the same questions) statistical methods is used to manage
heterogeneity by providing similarity. It is challenging to pool data points if they are not
identical. Since the field of personal sensing inmental health is not mature, some agreement
may be possible on a core set of clinical assessment methods (EMA or self-report), which
will allow for uniform anchoring of a wide range of sensor data as it evolves and changes
over time and between research projects. A fully integrated assessment is complicated by
the wide range of devices, sensors, and data permissions available.

Motion artefacts (MA) are common in EDA data gathered with wrist wearables.
Variations in the pressure put on the EDA electrodes as a result of the wearable tightness,
handmovements, or wrist rotationmay cause severe data distortion.Many researchers have
used approaches such as exponential smoothing, filtering, and adaptive denoising based on
the wavelet transform to suppress artefacts in the past. MA suppression approaches, on the
other hand, have the issue of indiscriminately filtering the entire time series data, resulting
in distortions even in artifact-free areas. As a result, a new approach called MA detection
was developed, which tries to efficiently encode expert knowledge on artefact recognition
into a machine learning classifier model.

The technical novelty over generalisability research works appear to address the same
behavioural marker often use different sensors, different sets of features, different methods
of measuring behavioural markers, and different research designs (e.g., giving people
phones versus having them use their own, studying them for varying periods of time, or
having varying numbers of participants excluded). The machine learning methods utilised
differ, and the results or weightings, especially for groupmodels, are not always comparable
between research. As a result, studies looking at the use of machine-learning approaches to
estimate behaviouralmarkers show that it is possible under certain conditions; nevertheless,
the dependability required for clinical use has yet to be established.

Future work
Existing solutions on the other hand, have various flaws that must be solved in order to
meet user expectations, such as privacy and battery issues. First, just a conceptual analysis
was provided rather than a numerical analysis of the extent and type of the research.
Second, a fully integrated assessment is complicated by the wide range of devices, sensors,
and data permissions available. Thus, the sensor data from the monitoring system will
be more accurate if a two-stage technique is used with an initial artefact detection phase
followed by localised categorization depending on the target population. Finally, due to
the limited sample size, different methodology, and varying research duration, we were
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unable to use a systematic quality grading system or draw conclusions using quantitative
meta-analysis.

CONCLUSIONS
The number of people affected by mental illness has increased dramatically during the last
decade richter. Importantly, many of these patients received inter care during COVID-19
as a result of an overburdened health service whose efforts were primarily committed to
COVID-19. The global epidemic emphasises the need for contemporary digital tools in
providing care when it is needed. In recent years, smartphone capabilities have enabled
users to detect and track mental health issues, since it is available to individuals throughout
the day. Technological advancements havemade smartphonesmore accessible to users than
traditional monitoring methods. A continuous stream of data is collected by the embedded
sensors, resulting in minimal disruption to daily routines due to the collection of health
data. This methodical review shows that sensing using a mobile phone and similar devices
may create an authentic dataset, as seen by increased interest and awareness. Although
there are a few significant areas where smartphone passive sensing contribute to users’
well-being, there are many more that have yet to be discovered. While the accelerometer
and GPS are predominately used, sensors alone are often used individually or combined.
Only a few studies predict well-being based on the usage patterns and interactions made
using smartphones. The smartphone evolved as an effective surveillance weapon because
of its specific nature such as disconnected, and ubiquitous it allows continuous data
accumulation from the users. Those data gathered by the smartphone can be made
accessible by the medical experts, or caretakers in order to assist in the diagnosis and
treatment of a variety of mental illnesses and even one step ahead may notify family
members if they are far about apart.
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