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A B S T R A C T

This study proposes a new hybrid deep learning (DL) model, the called CSVR, for Global Solar Radiation
(GSR) predictions by integrating Convolutional Neural Network (CNN) with Support Vector Regression (SVR)
approach. First, the CNN algorithm is used to extract local patterns as well as common features that occur
recurrently in time series data at different intervals. Then, the SVR is subsequently adopted to replace the fully
connected CNN layers to predict the daily GSR time series data at six solar farms in Queensland, Australia. To
develop the hybrid CSVR model, we adopt the most pertinent meteorological variables from Global Climate
Model and Scientific Information for Landowners database. From a pool of Global Climate Models variables
and ground-based observations, the optimal features are selected through a metaheuristic Feature Selection
algorithm, an Atom Search Optimization method. The hyperparameters of the proposed CSVR are optimized
by mean of the HyperOpt method, and the overall performance of the objective algorithm is benchmarked
against eight alternative DL methods, and some of the other Machine Learning approaches (LSTM, DBN, RBF,
BRF, MARS, WKNNR, GPML and M5TREE) methods. The results obtained shows that the proposed CSVR model
can offer several predictive advantages over the alternative DL models, as well as the conventional ML models.
Specifically, we note that the CSVR model recorded a root mean square error/mean absolute error ranging
between ≈ 2.172–3.305 MJ m2/1.624–2.370 MJ m2 over the six tested solar farms compared to ≈ 2.514–3.879
MJ m2/1.939–2.866 MJ m2 from alternative ML and DL algorithms. Consistent with this predicted error, the
correlation between the measured and the predicted GSR, including the Willmott’s, Nash-Sutcliffe’s coefficient
and Legates & McCabe’s Index was relatively higher for the proposed CSVR model compared to other DL and
Machine Learning methods for all of the study sites. Accordingly, this study advocates the merits of CSVR
model to provide a viable alternative to accurately predict GSR for renewable energy exploitation, energy
demand or other forecasting-based applications.
. Introduction

Following the recent report by the World Energy Outlook (WEO)
Mead, 2017), power plants in future will be dominated by more renew-
ble energy resources, with two-third of the global investments being
iverted to such modern systems. Considering also the finite lifetime
f fossil fuels, and their major adverse effects on the environment, we
re currently trending significantly towards exploiting the enormous
otential of renewable energy resources, including but not limited to
olar, hydro-power, wind, geothermal, tidal, and nuclear systems. In
ddition to the benefits of renewable energy-based systems, the WEO
020 also reports that the production in this sector has somewhat
een less affected during and the aftermath of COVID-19 pandemic,
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making this as a resilient power generation resource (IEA, 2020).
The three most widely used renewable alternative energy sources are
hydro-power, wind, and solar systems. Renewable energy-based power
plants when connected to a grid should thus be able to generate all
required power to meet the real-time consumer demand. Except for
hydro-power, the characteristics of the power produced from other
sources such as photovoltaic (PV) and wind energy systems depends
on stochastic, temporal, and spatially variant weather conditions. This
means that the power production supply can be somewhat unreliable
in itself without either the sufficient capacity storage devices e.g., bat-
teries, or backup systems like conventional diesel generators (Bhandari
et al., 2014b) or a constant supply–demand management system. Two
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of the most plausible solutions to this natural problem could be (1)
to either design hybrid systems with optimal component sizing or (2)
to accurately model, predict and forecast the uncertainty in renewable
energy potentials (Bhandari et al., 2014a; Deo et al., 2016). As the need
for monitoring and forecasting systems for solar energy technologies
continue to increase, improvements in traditional approaches or build-
ing new hybrid predictive systems remains an ongoing motivation for
research in the solar energy engineering area.

This study focuses on the prediction of daily global solar radiation
(GSR), so the rest of the paper will be confined to a discussion of
solar renewable energy only. In principle, the radiant energy within
solar radiation can be captured and turned into heat and electricity
using different technologies (Ghimire et al., 2019a). In the case of
a photovoltaic (PV) system, the output power depends on the solar
irradiance and temperature (Ghimire et al., 2019c). Therefore, accurate
and precise predictions of GSR is expected to assist in the estimation of
power production from solar-based systems. However, the prediction of
solar radiation is not a straightforward process as it is likely to depend
on several atmospheric parameters of geographic origin (e.g., longi-
tude, latitude, altitude), environmental origin (e.g., time of the day,
season, weather, landscape, precipitation, air temperature, humidity,
sunshine duration, wind speed and direction, daily global irradiation
etcetera) (Zhou et al., 2021b; Salcedo-Sanz et al., 2018b). These vari-
ables can be obtained from in-situ measurements or simulated through
numerical weather prediction models (Salcedo-Sanz et al., 2020), and
used to monitor energy generation, supply or financial (i.e.,) risk model-
ing for solar energy industries. In spite of this need, existing traditional
methods based on deterministic approaches continue to have caveats
that limit their performance accuracy for real-time applications.

The history of GSR estimation dates back several decades. In 1984,
Brinsfield et al. (1984) developed a mathematical model as a function
of the latitude and the total opaque cloud cover. Although they had
verified their model efficacy in some cases, it still did not reliably
predict the GSR for high or low cloud cover values. By the end of
the last decade, researchers were somewhat convinced that empirical
models alone may not be suitable for high prediction accuracy, and
started to integrate Artificial Intelligence (AI) based models to obtain
more accurate GSR predictions (Zhou et al., 2021b). AI has gradually
led into more sophisticated Machine Learning (ML) methods to become
more popular for GSR prediction problems. In general, ML aims to build
a predictive model from the concept of learning patterns in data so GSR
prediction methods became dominated by Artificial Neural Networks
(ANN) and statistical learning models (Cao and Lin, 2008; Salcedo-
Sanz et al., 2014a; Aybar-Ruiz et al., 2016; Jiang, 2017; Cornejo-Bueno
et al., 2019; Guijo-Rubio et al., 2020; Zjavka, 2020; Garud et al., 2021;
Karaman et al., 2021; Pang et al., 2020). Some recent specific examples
are the works by Cornejo-Bueno et al. (2019), where different ML
regressors including Multi-Layer Perceptron (MLP), Extreme Learning
Machine (ELM) and Support Vector Regressor (SVR) are tested and
compared in a problem of solar radiation prediction in Spain. Ağbulut
et al. (2021) who has used four different ML models: ANN, SVR, Kernel
Nearest-Neighbor (K -NN) and Deep Neural Network (DNN) for daily
GSR prediction by training a model with daily minimum and maximum
ambient temperature, cloud cover, daily extraterrestrial solar radiation,
day length as the input and GSR as the target. Their study concluded
that an ANN model was the best followed by a DNN, SVR and K -
NN, respectively. Using maximum and minimum temperature, sunshine
duration, daylight hour, clear-sky solar radiation, and extraterrestrial
radiation as the input variables. Ramedani et al. (2014) has developed
a ML model using radial Basis Function and Polynomial Based SVR to
predict GSR dataset. Alsharif et al. (2019) has developed a Seasonal
Autoregressive Integrated Moving Average model on Korean meteoro-
logical data to report the accuracy, suitability, and adequacy of the
predicted data. Basaran et al. (2019) has investigated an ensemble of
SVR and ANN to estimate GSR with hourly meteorological datasets.
In spite of these several applications of both ML and deep learning
2

models, each kind of predictive model on its own, had its merits and
constraints, therefore, have not able to capitalize the benefits of their
joint capabilities to improve to the GSR prediction.

Besides ANNs and SVR methods, other ML models such as Deci-
sion Trees (Jumin et al., 2021), ELM (Hai et al., 2020; Salcedo-Sanz
et al., 2014a), Gradient Boosting (Park et al., 2020) or Random Forest
(RF) (Zeng et al., 2020) have been pivotal tools in GSR prediction
problems in the last years (see Del Ser et al. (2021), a recent review on
randomization-based learning approaches in renewable energy). How-
ever, in general, these algorithms follow a shallow network principle
for learning, which means that their architecture has a single hidden
layer. While such shallow networks showed a good performance for
small datasets (Sun et al., 2016), they nonetheless are seen to suffer
from major drawbacks of over-fitting, gradient disappearance and net-
work training explosions in some cases (Bengio, 2009). These inherent
deficiencies in existing GSR predictive models continued to increase
the motivation of researchers to develop fusion-based or hybrid models
to handle the challenging task of solar radiation prediction in solar
renewable energy engineering problems.

To address some of the accuracy and model integrity issues in the
more simplistic predictive models, the advent of Deep Learning (DL)
methods have recently received significant research attention, and such
studies have noted much better performance than a shallow-equivalent
(or non-DL) models. One plausible reason for the DL methods to
outperform the conventional predictive methods includes their ability
to extract the data features more automatically, without knowing any
background details of the data, their powerful generalization capability
and the ability to interact with multiple huge datasets (Kawaguchi
et al., 2017). Several studies on DL models for GSR prediction problems
include: Long Short Term Memory (LSTM) (Al-Hajj et al., 2021; Yeom
et al., 2020; de Araujo, 2020; Huang et al., 2020; Husein and Chung,
2019; He et al., 2020), Deep Belief Networks (DBN) (Vijayakumar et al.,
2021; Zang et al., 2020a), Convolutional Neural Networks (CNN) (Zang
et al., 2020b; Rai et al., 2020; Ghimire, 2019), Echo State Networks
(ESN) (Alizamir et al., 2021; Li et al., 2020a,b; Del Ser et al., 2021),
Recurrent Neural Networks (RNN) (Alizamir et al., 2021; Ahn and Park,
2021; Kumar et al., 2021) and Gated Recurrent Unit (GRU) (Rai et al.,
2020; Sivanand et al., 2021; Jaihuni et al., 2021, 2020). These studies
have reported the DL-based models to be a superior approach against
the conventional prediction methods in GSR prediction problems (Lima
et al., 2022). Furthermore, to fully harness the strengths of multiple
DL-based models, researchers have also come up with more innovative
ideas to implement both hybrid DL and ML models, such as combina-
tions of LSTM and CNN or convolutional LSTM models (Zang et al.,
2020b; Prado-Rujas et al., 2021), specific versions of DL algorithms
such as bidirectional LSTM (BILSTM) (Li et al., 2021; Ziyabari et al.,
2020) combination of DL with wavelets approaches (Wang et al.,
2018; Rodríguez et al., 2022), or hybridization with meta-heuristic
approaches (Bendali et al., 2020; Ghimire et al., 2022). In spite or these
intense research on hybrid approaches involving DL methods, there are
still points which require attention, in order to improve the perfor-
mance of the models. Specifically, in problems with a huge number
of inputs variables, the application of feature selection problems may
considerably improve the performance of the prediction approaches.
As previously mentioned, some recent approaches have included meta-
heuristics algorithms combined with DL algorithms in order to improve
the performance of the latter. However, there have not been, to our
knowledge, a previous approach in which meta-heuristics and DL are
devoted to improve the feature selection process, and a ML algorithm
is finally used to obtain the final prediction, in this case to a solar
radiation prediction problem.

Based on the above discussion, in this paper we propose a novel
DL hybrid model where a meta-heuristic approach and a CNN are used
to carry out a robust feature selection, and they are finally integrated
with a SVR method to obtain a final prediction of GSR at six solar
energy farms in Queensland, Australia. We have named this approach
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as CSVR algorithm. To construct the hybrid CSVR model, we have used
a large number of meteorological variables derived from Global Cli-
mate Models (GCM) as inputs, together with Queensland Government’s
Scientific Information for Landowners (SILO), and GSR datasets as the
target. From these pool of GCM and SILO variables, the most important
features are first selected through a metaheuristic Feature Selection
(FS) model called Atom Search Optimization (ASO). Then, the most
useful features form the ASO are further processed by the CNN, and the
SVR algorithm is finally applied, in order to obtain the GSR prediction.

The performance of the proposed DL hybrid CSVR model is bench-
arked in this work against eight alternative DL approaches, as well

s other ML models (LSTM, DBN, RBF, Boosting RF Regression (BRF),
ultivariate Adaptive Regression Splines (MARS), Weighted K -Nearest
eighbor (WKNNR), Gaussian Processes for ML (GPML) and M5 Regres-

ion Tree (M5TREE)), obtaining excellent performance and improving
he results of alternative DL and ML in all cases.

The remainder of this paper has been structured in the following
ay: next section present a brief description of the different methods
hich form the proposed CSVR approach, and how they are combined

o obtain the final proposed algorithm. Section 3 discusses the details
f the GSR prediction problems tackled in this paper, including the
ata description and processing, the hyperparameters optimization of
he proposed model, implementation details of the different models
onsidered for comparison and the performance metrics considered.
ection 4 shows and discusses the obtained results in six PV solar farms
n Queensland, Australia. Section 6 closes the paper with some final
onclusions and remarks on the research carried out. Appendix A shows
list of acronyms to facilitate the reading of the article.

. Methods

In this section we fully describe the different methods which form
he proposed CSVR model for GSR prediction. We start with the ASO
lgorithm for FS, we also describe the CNN and the SVR algorithms
hich process the input data to obtain the final GSR prediction. To
uild the proposed model, we divide the modeling steps into the
ollowing three stages:

(i) Application of the ASO metaheuristic as a FS technique to extract
the important features to predict GSR.

(ii) Extracted important features are further processed by the CNN.
(iii) Outputs of CNN are applied as inputs to a SVR approach to

finally obtain a GSR prediction.

.1. Atom Search Optimization

In this work we utilized FS model as an efficient data preprocessing
echnique to find the best subset of significant features, by eliminating
edundant and non-informative features (Salcedo-Sanz et al., 2018a;
arcía-Hinde et al., 2018). The main purpose of FS in ML is to im-
rove the prediction accuracy, improve the multicollinearity problem,
nable faster training, reduce complexity of the model, and reduce
verfitting. FS can be divided into four types: filter, wrapper, hybrid
nd embedded methods (Salcedo-Sanz et al., 2018a; Chen et al., 2020;
astangia et al., 2021). Filter methods are independent of any ML
lgorithm, and based on statistical analysis or mutual information, for
.g., t -test, Linear Discriminant Analysis, Minimal Redundancy Maximal
elevance Criterion (mRMR), Dynamic Relevance and Joint Mutual

nformation, Multivariate Relative Discrimination Criterion. Further-
ore, filter methods are simple and can be implemented with less

omputational cost than other FS techniques. Wrapper methods, unlike
ilter methods, use a learning algorithm as part of the evaluation of the
eature subset. Even though the wrapper methods are computationally
ostly, they have been shown to be superior to filter methods in many
ases. Many wrapper methods have used heuristic search algorithms to

ind an optimal subset of features. These methods usually start with a

3

andomly generated solution, and in each iteration, they are one step
loser to the best subset of the solution. The evolutionary algorithms
sed in wrapper methods include Genetic Algorithm (GA) (Salcedo-
anz et al., 2002), Simulated Annealing (SA) algorithm (Yan et al.,
019), Ant Colony Optimization (Ma et al., 2021), Shuffled Frog Leap-
ng Algorithm, Particle Swarm Optimization (PSO) Algorithm (Zhou
t al., 2021a), Grey Wolf Search, Moldovan and Slowik (2021) or Coral
eefs Optimization (CRO) approaches (Salcedo-Sanz et al., 2014b,a),
mong others. Hybrid methods, which incorporate filter and wrapper
ethods, are another type of FS processes which can be found in the

iterature (Solorio-Fernández et al., 2016).
Zhao et al. (2019a) has suggested Atom Search Optimization (ASO)

s a new metaheuristic algorithm for solving optimization problems.
n multiple benchmark studies, ASO outperformed the recent meta-
euristic algorithms like PSO, GA, SA, Gravitational Search Algorithm
r Wind Driven Optimization. The ASO is based on the atom’s move-
ent theorem, which involves characteristic of the potential function,

nteraction force, and geometric constraint force. Details on the ASO
lgorithm can be found in Appendix B.

.2. Convolutional Neural Networks

Our primary feature extraction method in this study is the Convo-
utional neural networks (CNN), originally developed by LeCun et al.
1989). It is a kind of DL network based on multilayer perceptrons. The
ollowing benefits can be attributed to the CNNs’ unprecedented suc-
ess: (a) Feature extraction and classification processes are combined
nto a single CNNs body, allowing CNNs to learn to refine features from
aw data during training; (b) Since, CNN neurons are not connected to
he previous layer, besides the weights of the filters are shared, they
an interact with large datasets more efficiently than MLP (Gao et al.,
020). Suppose the convolutional layer input is 𝐗 ∈ R𝐴×𝐵 , where 𝐴

and 𝐵 are the dimensions of the input data. Then the output of the
convolutional layer can be calculated as follows:

𝐶𝑐𝑛 = 𝑓 (𝑋 ∗ 𝑊𝑐𝑛 + 𝑏𝑐𝑛) (1)

where ∗ is an operator of convolution; 𝐶𝑐𝑛 is the cn-th feature map
f the convolutional layer, and the number of the filters is 𝐶𝑁 ; 𝑋
epresents the input data matrix; 𝑊𝑐𝑛 is the weight matrix of cnth
ilter of the current layer; the cnth bias is denoted with 𝑏𝑐𝑛; Finally,
n activation function 𝑓 is applied to the result. Fig. 1 illustrates the
chematic diagram of a typical CNN model which is structured by a
eries of different stages. The first few stages are composed of two
ombined layers: convolutional layer and the pooling layer, while the
ast stage of the architecture consists of a fully connected layer and a
raditional regression model.

Even though CNN models are often used for image recognition,
D CNN models have only recently been proposed for prediction tasks
nvolving time series. Another significant feature of the 1D CNN is that
ue to the simple and compact design of 1D CNNs that perform one-
imensional convolutions, an efficient and low-cost implementation is
ossible (Cavalli and Amoretti, 2021). A standard CNN is made up of
wo layers: a feature extraction layer and a fully connected layer, which
re all cascaded together (Ju et al., 2019). The feature extraction layer,
hich comes after the input layer in the architecture, is made up of
ultiple layers. There are two kinds of layers in the feature extraction

ayer: convolution layer and pooling layer (Syarifudin et al., 2021). The
onvolutional layer employs a number of filters that convolve through
he data to provide the filters’ activation maps. Neurons are directly
onnected to the input data points in each filter, multiplying the data
oints by the weights. The weights of all the neurons in a single filter
re shared, reducing the time and complexity of CNN optimization.
he pooling layer, also known as subsampling, reduces the size of the
atrix. Max pooling and average pooling are the two kinds of pooling

ayers. Max pooling is a reduction in the size of the matrix by taking
he largest value or maximum value contained in the matrix. Average
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Fig. 1. Structure of the three-layer convolutional neural network algorithm.
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ooling is a reduction in the size of the matrix by taking the average
alue of the matrix (Xie et al., 2020; Kwon et al., 2020).

Finally, these extracted features are combined into the fully con-
ected layer, and the regression problem is solved using an activation
unction. The backpropagation algorithm (e.g., Stochastic Gradient De-
cent, Adaptive Gradient Algorithm, Root Mean Square Propagation,
daptive Moment Estimation (Adam)) is used to train CNNs in a super-
ised manner. The gradient magnitude (or sensitivity) of each network
arameter, such as the weights of the convolution and fully-connected
ayers, is computed during each iteration of the backpropagation al-
orithm. The parameter sensitivities are then used to update the CNN
arameters iteratively until a certain stopping condition is met. In the
D domain, a kernel can be regarded as a filter acting as a feature
xtractor in CNN model. The formula of feature extraction by one-
imensional convolution is described as Ordóñez and Roggen (2016):

𝑙+1
𝑗 (𝜏) = 𝜎

⎛

⎜

⎜

⎝

𝑏𝑙𝑗 +
𝐹 𝑙
∑

𝑓=1
𝐾 𝑙

𝑗𝑓 (𝜏) ∗ 𝑎𝑙𝑓 (𝜏)
⎞

⎟

⎟

⎠

= 𝜎
⎛

⎜

⎜

⎝

𝑏𝑙𝑗 +
𝐹 𝑙
∑

𝑓=1

𝑝𝑙
∑

𝑝=1
𝐾 𝑙

𝑗𝑓 (𝑝)𝑎
𝑙
𝑓 (𝜏 − 𝑝)

⎞

⎟

⎟

⎠

(2)

where

• 𝑎𝑙+1𝑙 (⋅) represents the feature map 𝑗 in layer 𝑙,
• 𝜎(⋅) denotes nonlinear function,
• 𝐹 𝑙 denotes the number of feature maps in layer 𝑙,
• 𝐾 𝑙

𝑗𝑓 (⋅) denotes the kernel convolved over feature map 𝑓 in layer
𝑙 to create the feature map 𝑗 in layer 𝑙 + 1,

• 𝑏𝑙𝑗 denotes a bias vector.

2.3. Support vector regression

This study has adopted Support Vector Regression (SVR) as the final
step of the CSVR model, due to its recent success in energy demand
and solar radiation prediction problems (Ghimire et al., 2019d; Al-
Musaylh et al., 2018a,b; Deo et al., 2016). In general, SVR is built
on a statistical learning theory-based ML system and been widely
used for solving high-dimensional regression problems, and it works
well in situations where there are few training samples and limited
computational resources (Salcedo-Sanz et al., 2014c; Piri et al., 2015).

The SVR model’s basic idea is to map the original data points from
the input space into a higher or even infinite-dimensional feature of
space, where an ideal separating hyperplane is constructed (Smola
and Schölkopf, 2004). The distance between all data points and the
constructed separating hyperplane is the minimum. Hence, only a

brief description of the SVR method is given below, together with a T

4

schematic diagram as shown in Fig. C.15, further information on the
technique can be found in Smola and Schölkopf (2004). Details on the
training process of the SVR algorithm can be found in Appendix C.

2.4. Hybrid CNN-SVR model: Construction, merits and constraints

We proposed a new modeling framework (called CNN-SVR) by com-
bining the CNN and SVR methods to provide a novel data-driven, deep
learning method for GSR prediction. The decision to develop CNN-SVR
model was based on prior success of the approach in computer vision,
albeit extending the CNN-SVR applications to the GSR prediction prob-
lem. To the best of our knowledge, there has been no such application
so in this model, we constructed a hybrid architecture where the top
layer of the traditional CNN was engineered into an SVR training
system, creating a stacked layer-by-layer platform with convolutional
layers and pooling layers within it. As illustrated in Fig. 9, this structure
had combined 9 layers totally including the input layer, three convolu-
tional layers (i.e., C1, C2, C3 and C4), three pooling layers (i.e., P1,
P2, P3, P4), one flattening layer and an SVR-based top layer. The
fully engineered convolutional layer aimed to extract the short-term
patterns in time series to better understand the dependence between
predictors to produce a homologous feature map. Each convolutional
layer consisted of multiple filters (FL) of width w and height h equal to
the number of variables in the sequence. In convolutional layer, there
were no connections between neurons, besides the weights of the filters
being shared to provide a seamless passage of data features. Therefore,
compared to the MLP (Multilayer Perceptron) system with the same
layers and neurons, the CNN system can be trained more efficiently.
The pooling layer was added to convolutional layer to reduce the
output size and prevent over-fitting. The 𝑘th filter scanned the input
matrix X𝑐𝑇 to produce:

𝐻𝑐𝑘 = 𝑓 (𝑊𝑐𝑘 ∗ 𝑋𝑐𝑇 + 𝑏𝑐𝑘) (3)

where * denoted the convolution operation, H𝑐𝑘 was the output vector,
W𝑐𝑘 and b𝑐𝑘 was the weight parameter and 𝑓 was the activation func-
tion. Finally, the output matrix calculated by convolution component
was d𝑐 ⋅ ℎ ⋅ 𝑘𝑐 ; d𝑐 = number of filters in last convolutional layer.
Therefore, the output after the convolution operation is 𝑉𝑐 ∈ 𝑅𝑑𝑐×ℎ×𝑘𝑐 .

he output from CNN were flattened into 1-D arrays and were input
nto the SVR model as time sequence to predict the GSR values. One of
he main challenges in the training of CNN model is the risk of over-
itting, where the model performs very well during training, but it fails
o generalize smoothly in the test data. This problem almost occurs
hen the training data has a large amount of noise or outlier, which
oes not really represent the actual properties of the regular patterns.

o overcome this problem, there have been several methods proposed,



S. Ghimire, B. Bhandari, D. Casillas-Pérez et al. Engineering Applications of Artificial Intelligence 112 (2022) 104860

C
s
r
u
o
s
a
c
d

n

Fig. 2. A routine check to recognize over-fitting by monitoring the loss function on
training and validation set during training iterations. If the model performs well on
training set compared to the validation set, then the model has been over-fitted to the
training set. If the model performs poorly on both training and validation sets, then
the model has been under-fit to the data. Although the longer a network is trained,
the better it performs on the training set, at some point, the network fits too well to
the training data and loses its capability to generalize.

the best solution for reducing over-fitting is to obtain more training
data. A model trained on a larger dataset typically generalizes better.
The other solutions include early stopping, regularization with dropout
or weight decay, batch normalization, and data augmentation, as well
as reducing architectural complexity.

In this study we have utilized the early stopping as regularization
technique, the available data is divided into training, testing and val-
idation set. The error on the validation set is monitored during the
training process. The validation error normally decreases during the
initial phase of training, as does the training set error. However, when
the network begins to over-fit the data, the error on the validation
set typically begins to rise. When the validation error increases for a
specified number of iterations the training is stopped, and the weights
and biases at the minimum of the validation error are returned. These
weight and biases are used in the testing dataset to predict the GSR.
This process is exemplified in Fig. 2.

In this study we have engineered a new CNN-SVR framework to
produce an efficient and extendable method to predict GSR while
testing the overall system at six solar energy farms. We have also
adopted an ASO-based as a FS algorithm to select inputs from pool of
meteorological and atmospheric variables, fed into a CNN system to
extract local pattern/features, as well as common features that recur
in the time series at different intervals and subsequently incorporated
an SVR regressor to predict the GSR. The proposed CNN-SVR model
can predict GSR quickly and accurately by extracting meteorological
and atmospheric features that affect GSR. In real-world experiments
conducted on Australian solar farm GSR prediction, the proposed CNN-
SVR model was compared with LSTM, DBN, RBF, BRF, MARS, WKNNR,
GPML and M5TREE models. The results (see Section 4) show the
proposed CNN-SVR model can process the time sequence data and
effectively extract hidden feature in the datasets. This was mainly
because the CNN-SVR topology merges the advantages of the CNN (that
extracts data’s spatial properties) and the SVR (robust to outliers and
has excellent generalization capability, with high prediction accuracy).
This set of findings demonstrate that hybrid architectures outperform
single models in most scenarios. The CNN-SVR model had the lowest
value of Ratio Root Mean Square Error (RRMSE) and Root Mean Square
Error (RMSE) and it demonstrates that the proposed CNN-SVR model
achieves the best performance among all the eight models. However,
even the ameliorated CNN-SVR performs exceptionally well in daily-
GSR prediction. Still and all, there are still some improvements to be
5

made. CNN-SVR can be utilized to predict wind power production,
energy costs, and load consumption prediction. Be that as it may,
further studies are to be conducted to explore cloud characteristics
and apply the collected information to improve GSR prediction model.
The main disadvantage with this model is computational time for the
selection of hyperparameters, there are seven parameters that need to
be selected (Table 4) for CNN-SVR model and we have utilized the
Bayesian Optimization (BO) technique to optimize the hyperparam-
eters. One of the reasons behind this was because we have almost
54 years of data (20,089 × 16) for training, which took almost 19 h
to get the optimal parameters.

Therefore, reducing the training size with only few optimal input
parameters can decrease the computation time but the performance
may be hindered. Furthermore, to reduce computational cost while
optimizing architecture hyperparameters, researchers often adopt a
halving strategy, namely the number of hidden states consecutively
reduce by half from lower to higher layer. For instance, if the number
of hidden layers NL = 3 and the number of hidden states for the first
CNN layer Nh1 = 100, then the number of hidden states for the second

NN layer Nh2 = 50 and for the third layer Nh3 = 25. This halving
trategy will reduce the number of parameters to be selected and can
educe the computational cost. In our study we have not tested this and
sed the BO to find the optimal hyperparameters. Moreover, research
n the deep learning-based model for GSR prediction is still at an early
tage as numerous, more complex and modern deep learning models
wait further exploration. Finally, it is possible that integration of cloud
over features can also improve predictive power of GSR prediction
eep learning models.

The integration of CNN and SVR, as a hybrid CNN-SVR (CSVR) DL
eural network, designed for GSR time series prediction in this study,

will enable the CNN to extract local pattern features, as well as common
features that recur in the time series at different intervals (Tian et al.,
2018; Lin et al., 2017). The SVR has replaced the fully connected layer
of the CNN to predict the GSR in this case. The inputs after FS using
ASO, convolution, and pooling layers of the CNN were set aside for
extracting input data functions. The obtained features from CNN were
flattened into 1-D arrays and were input into the SVR model as time
sequence to predict the GSR values.

3. Data and case study

3.1. Data description

The state of Queensland, often called Australia’s ‘‘Sunshine state’’,
has abundant solar energy resources (Zahedi, 2010). The Queensland
state government has pledged renewable energy sources to account
for up to 50% of the overall future energy supply by 2030 in ac-
cordance with the United Nations Sustainable Development Goal #7
(SDG7) (Martin, 2019). There are currently 44 large-scale solar energy
schemes in Queensland (operating, under construction or financially
committed), this equates to an investment of $ 8.5 billion, 7000 jobs,
4600 MW of renewable electricity, and more than 11 million tons of
pollutants avoided. As of January 2021, Queensland has 6200 MW
of renewable energy power, which includes rooftop solar, 20% of
electricity used in Queensland is produced from renewable energy
sources (Works DoEaP, 2021). In this study six solar power generation
sites in Queensland, Australia, ranging in size from 30 MW to 150 MW,
were selected. The Aramara (140 MW, approved for construction) solar
farm project located at Fraser Coast, Aramara, Queensland, Australia
on a 323 Ha land and is powered by approximately 500,000 solar PV
modules. The Cloncurry solar farm (30 MW) located 120 km East of
Mount Isa, Australia, has been announced recently and will be built
by Infigen Energy Development. The Childers solar farm (42 MW),
located in Bundaberg, Australia has been announced by DDN Green
Pty Ltd, using approximately 147,840 PV modules and covering 67 Ha

of land. The other three solar farm Cloncurry Solar Farm (100 MW),
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Table 1
Descriptive statistics of daily global solar radiation (GSR; MJ m−2 day−1) for six solar energy farms.

Property Aramara
Solar Farm

Childers DDN
Green Solar Farm

Cloncurry
Solar Farm

Crinum Creek
Solar Farm

Daystar Energy
Solar Farm

Ewerleigh
Solar Farm

Geographic location:
Latitude 25.572◦S 24.923◦S 20.706◦S 23.031◦S 26.643◦S 26.913◦S
Longitude 149.854◦E 152.294◦E 140.509◦E 148.340◦E 150.290◦E 150.586◦E

Energy Capacity, MW 140 42 30 100 100 150

Daily GSR statistics:
Median 19.00 20.00 22.00 20.00 20.00 19.00
Mean 19.39 19.33 21.91 19.88 19.86 19.32
Standard deviation 6.32 6.08 5.09 5.83 5.75 6.41
Variance 39.97 37.02 25.94 34.00 33.06 41.15
Maximum 33.00 32.00 32.00 32.00 32.00 33.00
Minimum 4.00 4.00 4.00 4.00 4.00 4.00
Mode 29.00 28.00 28.00 28.00 28.00 29.00
Interquartile range 9.00 8.00 7.00 8.00 8.00 9.00
Skewness −0.24 −0.34 −0.47 −0.38 −0.39 −0.18
Kurtosis 2.40 2.49 3.11 2.63 2.64 2.33
a
b
l
w
(

Fig. 3. Location of the six solar energy farms in Queensland, Australia, where CSVR
odel has been implemented to predict the daily GSR data.

aystar Energy Solar Farm (100 MW) and Ewerleigh Solar Farm (150
W) are announced and located at Tieri, Columboola and Crossroads

espectively (Wikipedia, 2021). The study site details (the statistics of
SR) are shown in Table 1 and their locations are shown in Fig. 3.

Furthermore, the predictor (or input) variables used to predict
aily GSR at these study sites were acquired from the meteorological
ariables produced by a set of GCMs (i.e., cloud parameters, humid-
ty parameters, precipitation, wind speed, etc.) and enriched by the
round-based observation data (i.e., evaporation, vapor pressure, rela-
ive humidity at maximum temperature, relative humidity at minimum
emperature, rainfall, maximum temperature and minimum tempera-
ure) from the Scientific Information for Landowners (SILO) repository.
ince, GSR measurements for each solar energy site with an exact lati-
udinal and longitudinal location are not readily accessible, the ground
ruth observations of daily GSR are taken from SILO database. The
ong Paddock SILO database is operated by the Department of Science,
nformation Technology, Innovation and the Arts (DSITIA). The GCM
utputs are sourced from the web archive at the Centre for Environ-
ental Data Analysis (CEDA), which hosts the CMIP5 project (CEDA,
020). Daily atmospheric model outputs for historical are sourced
rom this archive. The models include CSIRO-BOM ACCESS1-0 (grid
ize 1.25◦ × 1.875◦) (CEDA, 2017), MOHC Hadley-GEM2-CC (grid size
.25◦ × 1.875◦) (Met Office Hadley Centre, 2012) and the MRI MRI-
GCM3 (grid size 1.121◦ × 1.125◦) (Meteorological Research Institute
f the Korean Meteorological Administration, 2013). The runs for the
istorical outputs span the time range between 1950-01-01T12:00:00
6

nd 2006-01-01T00:00:00. Variables output by the model are indexed
y dimensions for longitude, latitude, time, atmospheric pressure (at 8
evels), or as near surface readings. The final dataset obtained in this
ay was composed of 20 455 records and 75 meteorological variables

20 455 × 75). A brief overview of each meteorological variables in the
dataset can be found in Table 2.

In this study we adopt GCMs that depict the climate using a three-
dimensional grid over the globe, typically having a horizontal reso-
lution of between 250 and 600 km, 10 to 20 vertical layers in the
atmosphere and sometimes as many as 30 layers in the oceans. GCM’s
employs a mathematical model of the general circulation of a planetary
atmosphere or ocean with Navier–Stokes equations on a rotating sphere
with thermodynamic terms for energy sources (radiation, latent heat).
These equations are the basis for computer programs used to simulate
Earth’s atmosphere or oceans. Atmospheric and oceanic GCMs (AGCM
and OGCM) are key components along with sea ice and land-surface
components. In this study, the GCM outputs are sourced from the web
archive of the Centre for Environmental Data Analysis (CEDA), which
hosts the Coupled Model Intercomparison Project Phase 5 (CMIP5)
project’s GCM output collection. it is noteworthy that CEDA holds
environmental data related to atmospheric and earth observation fields
with most popular dataset includes (Climate — e.g. HadUK Grid, CMIP,
CRU, Composition — e.g. CCI, Observations — e.g. MIDAS Open,
Numerical weather prediction — e.g. Met Office NWP, Airborne —
e.g. FAAM, Satellite data and imagery — e.g. Sentinel).

The GCM data (meteorological and atmospheric variables) are ex-
tracted for each solar farm locations using latitude and longitude.
This requires several of the nearest locations for each variable to be
extracted within the region of interest. Similarly past observations
of GSR MJ m−2 (including both direct and indirect radiation) are
extracted for each BOM site from the SILO database. The time range
available for this data from SILO spans from 1859 up until recent
observations, hence historical GCM outputs will need to be aligned
with observational data for the time range between 1950 and 2006.
1-dimensional observations are extracted and paired with the daily
sequences of GCM outputs for the setting where a 1-dimensional output
from the model is required. To reduce the impact of extreme values in
different model measures, all data were normalized prior to training
the models, a min–max normalization is applied. Furthermore, CMIP5
datasets must pass a series of quality control (QC) checks before they
can be published and formally cited. The stages of quality control are:
QC1: data and metadata compliance check automatically imposed by
CMOR2 and the Earth System Grid data publishing software. QC2: data
consistency checks; and QC3: extended checking of data and metadata.
In addition to official QC checks, the ACCESS modeling team has
also done extensive analysis and manual checking of the data before

publishing.
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Table 2
Predictor variables and data sources (i.e., atmospheric variables from Global Climate Models and observations from the
Scientific Information for Landowners (SILO) repository.

Data repository name Variable Description Units

Global Circulation
Model (GCM)
Atmospheric
Predictor Variables

clt Cloud Area Fraction %
hfls Surface Upward Latent Heat Flux W m−2

hfss Surface Upward Sensible Heat Flux W m−2

hur Relative Humidity %
hus Near Surface Specific Humidity g kg−1

pr Precipitation kg m−2 s−1

prc Convective Precipitation kg m−2 s−1

prsn Solid Precipitation kg m−2 s−1

psl Sea Level Pressure Pa
rhs Near Surface Relative Humidity %
rhsmax Surface Daily Max Relative Humidity %
rhsmin Surface Daily Min Relative Humidity %
sfcWind Wind Speed m s−1

sfcWindmax Daily Maximum Near-Surface Wind Speed m s−1

ta Air Temperature K
tas Near Surface Air Temperature K
tasmax Daily Max Near Surface Air Temperature K
tasmin Daily Min Near Surface Air Temperature K
ua Eastward Wind m s−1

uas Eastern Near-Surface Wind m s−1

va Northward Wind m s−1

vas Northern Near-Surface Wind m s−1

wap Omega (Lagrangian Tendency of Air Pressure) Pa s−1

zg Geopotential Height m

Ground-based SILO

T. Max Maximum Temperature K
T. Min Minimum Temperature K
Rain Rainfall mm
Evap Evaporation mm
VP Vapor Pressure Pa
RHmaxT Relative Humidity at Maximum Temperature %
RHminT Relative Humidity at Minimum Temperature %
w
v
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In terms of potential limitations of the database used and its im-
act on the training of the prediction model and the method for the
alidation of the prediction tool, we note that CMIP5 data are used
xtensively in Intergovernmental Panel on Climate Change Assessment
eports (the latest one was IPCC AR5). The use of these data are mostly
imed at: (a) addressing outstanding scientific questions that arose as
art of the IPCC reporting process; (b) improving the understanding of
he climate system; (c) providing estimates of future climate change and
elated uncertainties; (d) providing input data for the adaptation to the
limate change; (e) examining climate predictability and exploring the
bility of models to predict climate on decadal time scales; and (f) eval-
ating how realistic the different models are in simulating the recent
ast. Furthermore, a recent study (Jia et al., 2019) focused on assessing
he performance of 33 CMIP5 GCMs in simulating temperatures in the
ibetan Plateau. By adopting a multiple-criteria approach, an improved
core-based method was used for comprehensive assessment of GCM
erformance using temperature data gathered from 1961 to 2005.
uture temperatures were then projected based on a MME coupled with
he Delta method, resulting in near-term (2006–2050) and long-term
2051–2095) temperature projections under RCP4.5 and RCP8.5 sce-
arios. It was reported that almost all GCMs evaluated in this study (Jia
t al., 2019) could reliably reproduce the seasonal temperature pattern
f the Tibetan Plateau, with the highest temperature occurring typically
n July. However, during winter and spring season the GCM tends to
nderestimate by an average of −2 ◦C.

3.2. Data preprocessing

The preprocessing of the downloaded meteorological variables was
done using the min–max (range between 0 and 1) normalization in
order to provide each variables the same order of magnitude and to
speed up the training of the ML model (Castangia et al., 2021). The
min max normalization method can be expressed as:

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − min(𝑥) (4)
max(𝑥) − min(𝑥) t

7

here 𝑥 is the vector of values to be scaled, 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 is the normalized
alue of 𝑥, max(𝑥) and min(𝑥) are the maximum and minimum values
f that vector, respectively.

Furthermore, the ASO FS model was implemented to select the
ost significant predictor variables by removing unimportant variables

rom the pool of downloaded 75 meteorological variables. The ASO FS
lgorithm is proceeded by normalizing all the meteorological variables
nd running with the following configurations:

• The depth weight 𝛼 = 50.
• The multiplier weight 𝛽 = 0.2.
• The number of atoms in the population:

𝑁 ∈ {5, 10, 35, 80, 100, 150, 250, 350, 400, 550, 700, 900, 1000, 1100, 1200} .

• The number of maximum iterations 𝑇 = 50.

The population number 𝑁 was varied from 5 to 1200, to find the
ptimal population which will give the minimum root mean square
rror (fitness value). As shown in Fig. 4 (Childers DDN Green Solar
arm), when number of atoms 𝑁 is 80, after the 23 iterations the fitness
alue is lower (2.33) when compared to other 𝑁 values. Similarly, with
ncrease in number of atoms the fitness value converges faster but the
itness value is high (N = 100 and N = 50). It has also been found
hat higher value of 𝑁 increases the computational cost, when N = 5,
he time taken for commutation was 6 min compared to 480 min for
= 1200. Hence, for Childers DDN Green Solar Farm the number of

toms for the FS process was chosen as 80. With this ASO FS process 15
eteorological variables (Data: 20 455 × 15) are selected for Childers
DN Green Solar Farm, Aramara Solar Farm; Crinum Creek Solar Farm
nd Daystar Energy Solar Farm, whereas for Cloncurry Solar Farm and
werleigh Solar Farm, 16 meteorological variables (Data: 20 455 × 16)
re selected. Table 3 shows the final results of the predictors from ASO
S process for the prediction of GSR. Additionally, correlation matrix
f predictors and predictands (GSR) is shown in Fig. 5.

Finally, we divided the dataset into a training set and a test set
o assess the proposed CSVR model prediction results. In most of
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Fig. 4. Convergence curve for the ASO, with increasing number of atoms (N), With N = 80, the fitness value was lower (FV = 2.33) and converges after 23 iterations (Iter).
Table 3
Input variables selected for six solar energy farm sites using a Atom Search Optimization(ASO) feature selection process. Abbreviations as per
Table 2 e.g., 𝑧𝑔1000 = Geopotential Height 1000 hPa pressure height.
Aramara
Solar Farm

Childers DDN Green
Solar Farm

Cloncurry
Solar Farm

Crinum Creek
Solar Farm

Daystar Energy
Solar Farm

Ewerleigh
Solar Farm

zg_1000 Evap Evap Evap Evap Evap
wap_70000 RHmaxT RHmaxT RHmaxT RHmaxT RHmaxT
wap_10000 ua_1000 T. Max hfss hfss ua_1000
wap_85000 hfls hfss hur_1000 hur_1000 hfls
ua_85000 Rain ua_5000 ua_5000 wap_1000 hfss
va_85000 hus_5000 hur_1000 wap_1000 ua_5000 hus_5000
ua_50000 zg_1000 Rain T. Max T. Max wap_1000
va_10000 wap_1000 uas Rain Rain ta_25000
ta_70000 sfcWindmax wap_1000 va_85000 va_85000 Rain
rhsmax ua_5000 hur_70000 wap_85000 RHminT zg_1000
ua_10000 ta_25000 zg_5000 zg_5000 wap_85000 RHminT
tasmax hur_1000 RHminT va_50000 zg_5000 sfcWindmax
prc va_50000 wap_5000 sfcWindmax sfcWindmax T. Max
hus_85000 T. Max ta_25000 hus_5000 va_50000 ua_5000
va_70000 hfss va_85000 wap_5000 hus_5000 wap_85000

va_1000 va_25000
the previous study we found that, 70–30 was used as baseline for
training and testing data division, as there are no fixed rule for data
division (Ghimire et al., 2019a, 2018, 2019d,c,b; Salcedo-Sanz et al.,
2018b), in this study, the 54 years of data used for training (20 089 data
points), 20% of data within training set are used for validation (4018
data points) and 1 year of data is used for testing (365 data points),
while the target data were the time-series of the daily GSR. It is worth
noting that all optimizations were carried out with only the training
set to prevent any look-ahead bias. The key phases of our approach are
depicted in Fig. 6.

3.3. Predictive model development and hyperparameters settings

In this study, the CSVR model is made up of three convolutional
layers with pooling operations, the flattening layer’s outputs are con-
nected to the SVR to predict the GSR. Fig. 7 shows the proposed CSVR
model. The CSVR architecture is defined in more detail as follows.
8

• Three-layer CNN network (C1, C2 and C3), filter size for each
layer is selected using hyperparameter optimization method (Hy-
perOpt).

• Three pooling layers (max-pooling) (P1, P2 and P3) with
pool_size=2.

• One flattening layer, we flatten the output of the convolutional
layers to create a single long feature vector to feed as a SVR model
input.

• The convolutional layers apply ReLU activation function, this
activation function ReLU is used to solve the problem of vanishing
gradients, enable models to learn more quickly and perform
better (Cavalli and Amoretti, 2021).

• The Adam is selected as the optimization algorithm because it
is computationally efficient, has little memory requirements, is
invariant to diagonal rescaling of the gradients, and is well suited
for large data (Kingma and Ba, 2014). Furthermore, the learning
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Fig. 5. A matrix of correlation coefficient (𝑟) of the predictor variables in respect to the daily GSR data. The variables names are outlined in Table 2.
Fig. 6. A schematic of the proposed CSVR methodology employing 54 years of training and 1 year of testing dataset.
rate of parameters can be dynamically modified in Adam opti-
mizer, as a result, the parameter has a greater chance of escaping
the local optimum.

• Number of epoch and batch size is selected using HyperOpt, the
epoch specifies how many times the learning algorithm will go
through the entire training dataset whereas the batch size is a
number of samples processed before the model is updated.

• Radial Basis function is used as kernel for the SVR, the kernel pa-
rameter ‘‘kernel width’’ (𝛾) and cost function of SVR (C) plays vital
role in the model performance and accuracy. These parameters
are deduced using HyperOpt.

• The insensitive parameter (𝜖) of SVR is fixed as 0.00001.

3.3.1. Hyperparameter optimization
The method of finding the best combination of hyperparameter

values in order to achieve optimal output on the data in a reasonable
amount of time is called hyperparameter optimization (HPO). HPO is
crucial to a ML algorithm’s prediction accuracy. As a result, HPO is
regarded as the complicated aspect of developing ML models. In this
study, HyperOpt (Bergstra et al., 2013; Komer et al., 2014) is utilized
for the HPO of the proposed model as well as benchmark models.
Hyperopt is an HPO platform that employs the optimization algorithm
based on Bayesian Optimization- Tree-structured Parzen estimator (BO-
TPE) in order to tune the ML model to give the good prediction
9

accuracy. Unlike to some other HPO algorithms (Shen and Rossel,
2021) that only support a single model, HyperOpt can model hierar-
chical hyperparameters using multiple models. A surrogate function
and performance metric are the two key components of a Bayesian
optimization algorithm. The surrogate function is a computationally
efficient approximation of the real objective function that updates as
the optimization is performed. The surrogate function, in combination
with the performance metric, provides a new hyperparameter config-
uration for the next evaluation. The Tree Parzen Estimator is used
as a surrogate function, and the expected improvement is used as a
performance metric in the TPE algorithm. The TPE algorithm begins
with a series of evaluations on hyperparameter configurations that have
been randomly sampled. The completed evaluations can then be used
to build the optimization history (H), which consists of hyperparameter
vector and objective value pairs. The algorithm then employs H to
update the surrogate function and choose the next hyperparameter
configuration (𝜆𝑁). The optimization history H is revised after the
evaluation of 𝜆𝑁 . Until a stopping criterion is reached, the algorithm
continues to propose and evaluate new hyperparameter configurations.
The pseudocode of TPE algorithm is shown in Fig. 7(b). The considered
search space for the CSVR and the benchmark models hyperparameters
is shown in Table 4. HyperOpt considers all possible variations of these
values before deciding on the best one. Table 5 shows the optimal
hyperparameter obtained by HyperOpt for the objective model CSVR
and the benchmarked models.
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Fig. 7. (a) Topological structure of CNN integrated with SVR in the proposed CSVR model used in daily GSR prediction. Mathematical symbols are as per Section 2.2. (b)
seudocode of The Tree Parzen Estimator (TPE) used in HyperOpt for hyperparameter optimization.
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.4. Benchmark models implementations

To comprehensively evaluate the optimal CSVR model for GSR
rediction, eight other popular prediction models based on The Long
hort-Term Memory (LSTM), Deep Belief Network (DBN), Radial Basis
unction Network (RBF), Boosting Random Forest Regression (BRF),
ultivariate Adaptive Regression Splines (MARS), Weighted K -Nearest
eighbor (WKNNR), Gaussian Processes For Machine Learning (GPML)
nd M5 Regression Tree (M5TREE) models were developed. All DL
odels as well as GPML were built using Keras 2.2.4 (Chollet et al.,
017; Brownlee, 2016) on TensorFlow 1.13.1 (Goldsborough, 2016;
badi et al., 2016) backend in Python 3.6. Hyperopt-sklearn (Bergstra
t al., 2013) library was used for the HPO. The training process of
ll the models was conducted on a system that has the CPU type
f Intel®Core™i7 with 32 GB RAM, remaining models (RBF, BRF,
ARS, WKNNR and M5TREE) models were developed using MATLAB

oftware.

.5. Performance metrics

Several approaches for evaluating model efficiency have been used
n the past. Since each metric has its own strengths and weaknesses,
he current study uses a common collection of statistical metrics (e.g.,
orrelation Coefficient (𝑟), RMSE, Mean Absolute Error (MAE), RRMSE,
elative Mean Absolute Error (RMAE), Willmott’s Index (WI), Nash-
utcliffe’s Efficiency (NSE), Legates’ Modulus (LM) and Explained Vari-
nce Score (Evar)) to determine model efficiency. These metrics can be
10
athematically represented as below (Willmott and Matsuura, 2005;
hai and Draxler, 2014; Moriasi et al., 2007) in Eqs. (5)–(15).
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⟨𝐺𝑆𝑅𝑚
⟩

(8)

𝑅𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|𝐺𝑆𝑅𝑝 − 𝐺𝑆𝑅𝑚
|

𝐺𝑆𝑅𝑝 (9)

𝑊 𝐼 = 1 −
∑𝑛

𝑖=𝑛(𝐺𝑆𝑅𝑚 − 𝐺𝑆𝑅𝑝)2
∑𝑛

𝑖=𝑛(|𝐺𝑆𝑅𝑝 − ⟨𝐺𝑆𝑅𝑚
⟩| + |𝐺𝑆𝑅𝑚 − ⟨𝐺𝑆𝑅𝑚

⟩|)2
(10)

𝑆𝐸 = 1 −
∑𝑛

𝑖=1(𝐺𝑆𝑅𝑚 − 𝐺𝑆𝑅𝑝)2
∑𝑛

𝑖=1(𝐺𝑆𝑅𝑚 − ⟨𝐺𝑆𝑅𝑚
⟩)2

(11)

𝑀 = 1 −
∑𝑛

𝑖=1 |𝐺𝑆𝑅𝑚 − 𝐺𝑆𝑅𝑝
|

∑𝑛
𝑖=1 |𝐺𝑆𝑅𝑚 − ⟨𝐺𝑆𝑅𝑚

⟩|

(12)

𝐸𝑣𝑎𝑟 = 1 −
Var(𝐺𝑆𝑅𝑚 − 𝐺𝑆𝑅𝑝) (13)
Var(𝐺𝑆𝑅𝑚)
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𝑅

Table 4
Architecture of the CSVR model, with DNN and LSTM models developed for daily GSER prediction. ReLU = Rectified Linear Units; Adam = adaptive moment estimation.

Predictive
model

Model Hyperparameters Hyperparameter Selection Aramara Solar
Farm

Childers DDN
Green Solar
Farm

Cloncurry
Solar Farm

Crinum Creek
Solar Farm

Daystar
Energy Solar
Farm

Ewerleigh
Solar Farm

CSVR

Filter1 [50,80,100,200,300,400] 100 80 200 80 100 50
Filter 2 [40,50,60,70,80] 80 70 80 80 80 80
Filter 3 [20,10,30,5] 5 5 10 30 20 5
Batch Size [25,50,100,400] 50 100 25 100 400 100
Activation function ReLU
Epochs [1000,1200,300,400,700] 700 400 300 700 400 400
Optimization Algorithm Adam
Cost Function [0.001, 0.01, 0.1, 1, 10, 100] 0.001 10 0.1 100 0.01 100
Penalty function [0.001, 0.01, 0.1, 1, 10, 100] 100 0.1 100 0.01 100 0.001
𝜖 1.00E−05
SVR_kernel RBF

DBN

Hidden Layer Structure [200-100-50] 200-100-50 200-100-50 200-100-50 200-100-50 200-100-50 200-100-50
Pre-training iteration [100,200,300] 100 300 100 200 300 100
RBM learning rate [0.0005, 0.001] 0.0005 0.001 0.0005 0.001 0.0005 0.0005
Samples of
pre-training/batch

[75,100,150] 150 75 100 75 150 150

Reverse fine-tuning epoch [500,1000,1500] 1000 500 1000 500 1000 500
Reverse fine-tuning
learning rate

0.01

Reverse fine-tuning/batch 64

LSTM

LSTM cell 1 [50, 60,100,200] 100 60 50 200 100 60
LSTM cell 2 [40,50,60,70,130] 50 70 60 130 70 130
LSTM cell 3 [20,10,30,5] 5 10 30 20 10 20
LSTM Cell 4,5 and 6 [Fixed as 30,20,10]
Activation function ReLU
Optimization Algorithm Adam
Epochs [1000,1200,300,400,700] 400 700 1000 400 700 1000
Drop rate [0,0.1,0.2] 0 0.1 0 0.1 0 0.1
Batch Size [25,50,100,400] 40 100 50 25 400 100
Table 5
Architecture of Boosting Random Forest Regression (BRFR), Weighted K-Nearest Neighbor (WKNNR), Gaussian Process of Machine Learning (GPML), Radial Basis Function (RBF)
Network And Multivariate Adaptive Regression Splines (MARS).

Model Model
Hyperparameters

Hyperparameter
Selection

Aramara
Solar Farm

Childers DDN
Green Solar
Farm

Cloncurry
Solar Farm

Crinum Creek
Solar Farm

Daystar
Energy
Solar Farm

Ewerleigh
Solar Farm

BRFR

The maximum depth of the
tree.

[5, 8, 10, 20, 25] 10 20 25 8 10 20

The number of trees
in the forest.

[50, 100, 150, 200,
400, 600, 800]

50 100 50 50 100 100

Minimum number of
samples
to split an internal node

[2, 4, 6, 8, 10] 4 6 2 6 8 6

The number of features
to consider when looking
for the best split.

[‘auto’, ‘sqrt’, ‘log2’] auto auto auto auto auto auto

MARS Maximum term generated
by forward pass

[10, 20, 30] 10 10 20 10 30 10

Maximum degree of terms
generated by forward pass

[5, 10, 15, 20] 10 15 5 10 15 15

WKNNR Number of neighbors [5, 10, 20, 30, 50, 100] 20 30 50 50 20 50

Algorithm used to compute
the nearest neighbors

[‘auto’, ‘ball_tree’, ‘kd_tree’,
‘brute’]

auto auto auto auto auto auto

GPML The kernel specifying the
covariance function of the
Gaussian Process.

[Dot Product, White Kernel,
Dot Product + White Kernel,
RBF, Matern]

Dot Product Dot Product
+ White
Kernel

Dot Product
+ White
Kernel

Dot Product Dot Product
+ White
Kernel

Dot Product
+ White
Kernel

RBF Spread value [1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5,
5]

1.5 1.5 2 1.5 3 1.5

Maximum number of
neurons

[50, 100, 150, 200, 250, 300] 150 250 200 100 200 150
w
G
G
p

𝑆𝑆 = 1 −
𝑅𝑀𝑆𝐸(𝑝, 𝑥)
𝑅𝑀𝑆𝐸(𝑝𝑟, 𝑥)

(14)

𝑀𝑆𝐸𝑟 =
𝑅𝑀𝑆𝐸(𝑝, 𝑥) (15)

𝑅𝑀𝑆𝐸(𝑟, 𝑥) p

11
here 𝐺𝑆𝑅𝑚 and 𝐺𝑆𝑅𝑝 are the observed and predicted value of
SR, ⟨𝐺𝑆𝑅𝑚

⟩ and ⟨𝐺𝑆𝑅𝑝
⟩ are the observed and predicted mean of

SR, 𝑝 stands for the model prediction, 𝑥 for the observation, 𝑝𝑟 for
erfect prediction (persistence), and 𝑟 for the reference prediction. The
ersistence model considers that the solar radiation at 𝑡 + 1 is equal to
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the solar radiation at 𝑡. It assumes that the atmospheric conditions are
tationary (clear sky condition).

For a better model performance,

• 𝑟 can be in the range of −1 and +1, MAE, 𝑅𝑀𝑆𝐸 all range from
0 (perfect fit) to ∞ (the worst fit);

• 𝑅𝑅𝑀𝑆𝐸 and 𝑅𝑀𝐴𝐸 ranges from 0% to 100% and model eval-
uation, a model’s precision level is excellent if 𝑅𝑅𝑀𝑆𝐸 < 10%,
good if 10% < 𝑅𝑅𝑀𝑆𝐸 < 20%, fair if 20% < 𝑅𝑅𝑀𝑆𝐸 < 30%, and
poor if 𝑅𝑅𝑀𝑆𝐸 > 30% (Pan et al., 2013).

• 𝑊 𝐼 which is improvement to 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 and overcomes
the insensitivity issues as the differences between the observed
and predicted values are not squared, ranges from 0 (the worst
fit) to 1 (perfect fit) (Willmott and Matsuura, 2005).

• NSE, compares the variance of observed and predicted GSR and
ranges from −∞ (the worst fit) to 1 (perfect fit) (Nash and
Sutcliffe, 1970).

• LM, is a more robust metrics developed to address the limitations
of both the WI and ENS (Legates and McCabe, 1999) and the
value ranges between 0 and 1 (ideal value).

• 𝐸𝑣𝑎𝑟; uses biased variance for explaining the fraction of variance
and ranges from 0 to 1.

urthermore, the overall model performance was ranked using the
lobal Performance Indicator (GPI) (Despotovic et al., 2015). GPI was
alculated using the six metrics.

PI𝑖 =
6
∑

𝑗=1
𝛼𝑗 (𝑔𝑗 − 𝑦𝑖𝑗 ) (16)

where 𝛼𝑗 denotes the median of scaled values of statistical indicator
𝑗, equals to 1 for 𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸, Mean Absolute Percentage Error
MAPE), 𝑅𝑅𝑀𝑆𝐸 and 𝑅𝑅𝑀𝑆𝐸 (𝑗 = 1, 2, 3, 4, 5), −1 for 𝑟; 𝑔𝑗 denotes

the scaled value of the statistical indicator 𝑗 for model 𝑖. Greater GPI
value indicates the corresponding model has better performance. This
study also evaluated the performance of the models using the Kling–
Gupta Efficiency (KGE) (Gupta et al., 2009) and Absolute Percentage
Bias (APB; %) (McKenzie, 2011). Mathematically, these metrics are
stated as follows:

𝐾𝐺𝐸 = 1 −

√

(𝑟 − 1)2 +
(

⟨𝐺𝑆𝑅𝑝
⟩

⟨𝐺𝑆𝑅𝑚
⟩

− 1
)2

+
( 𝐶𝑉 𝑝

𝐶𝑉 𝑚

)2

(17)

𝑃𝐵 =
∑𝑛

𝑖=1(𝐺𝑆𝑅𝑚 − 𝐺𝑆𝑅𝑝) ⋅ 100
∑𝑛

𝑖=1 𝐺𝑆𝑅𝑚 , (18)

where 𝑟 is the correlation coefficient, 𝐶𝑉 is the coefficient of variation,
𝐺𝑆𝑅𝑝 refers to the predicted GSR (MJ m−2 day−1), 𝐺𝑆𝑅𝑚 is the
measured 𝐺𝑆𝑅𝑝 (MJ m−2 day−1), ⟨𝐺𝑆𝑅𝑚

⟩ is the average value of the
𝑆𝑅𝑚, ⟨𝐺𝑆𝑅𝑝

⟩ is the average value of the 𝐺𝑆𝑅𝑝 and finally 𝑛 is the
umber of actual values.

Furthermore, this study also use the Promoting Percentage of: APB
𝜆𝐴𝑃𝐵), MAE (𝜆𝑀𝐴𝐸), and RMSE (𝜆𝑅𝑀𝑆𝐸) (Liu et al., 2018) to compare
arious models that have been used in the GSR prediction.

𝐴𝑃𝐵 =
|

|

|

|

𝐴𝑃𝐵1 − 𝐴𝑃𝐵2
𝐴𝑃𝐵1

|

|

|

|

(19)

𝜆𝑀𝐴𝐸 =
|

|

|

|

𝑅𝑀𝐴𝐸1 − 𝑅𝑀𝐴𝐸2
𝑅𝑀𝐴𝐸1

|

|

|

|

(20)

𝑅𝑅𝑀𝑆𝐸 =
|

|

|

|

𝑅𝑅𝑀𝑆𝐸1 − 𝑅𝑅𝑀𝑆𝐸2
𝑅𝑅𝑀𝑆𝐸1

|

|

|

|

(21)

where, 𝐴𝑃𝐵1, 𝑅𝑅𝑀𝑆𝐸1 and 𝑅𝑀𝐴𝐸1 refers to the objective model
(i.e., CSVR) performance metrics and 𝐴𝑃𝐵2, 𝑅𝑅𝑀𝑆𝐸2 and 𝑅𝑀𝐴𝐸2
refers to the benchmark model performance metrics.

In addition, we have also used supplementary assessment criteria
denoted as the Diebold–Mariano (DM) test, the Harvey, Leybourne,
12
and the Newbold (HLN) to test the statistical significance of all models
in this study. These statistical tests are done to further evaluate the
proposed model prediction performance and the directional prediction
performance from a statistical standpoint. When comparing such mod-
els, the alternative model is expected to outperform the comparative
model when the DM statistics > 0 and the HLN statistics > 0. The key
steps in implementing the DM and HLN tests are defined in previous
literature (Sun et al., 2017; Diebold and Mariano, 2002; Costantini and
Pappalardo, 2008).

4. Results and discussion

Using statistical score metrics presented in Section 3.5 aided by
several diagnostic plots, the newly developed deep hybrid CSVR model,
coupled with the ASO method for FS was evaluated. Over the testing
period, the CSVR model was compared with a standalone DL method
(i.e., LSTM, DBN) as well as the other ML methods (i.e., RBF, BRF,
MARS WKNNR GPML and M5TREE). The objective model (i.e., CSVR)
that showed the lowest RMSE, MSE, RRMSE, RMAE, MAPE, and APB
values and the highest KGE, NSE, r, LM, and WI was chosen and finally
model are ranked on the basis of GPI.

In Table 6, we show the performance results of the deep hybrid
CSVR models in terms of the 𝑟, 𝑅𝑀𝑆𝐸, and 𝑀𝐴𝐸 performance metrics
used in evaluation of the predictive performance of daily GSR models
at all of the six solar farms. The comparative statistics are also provided
for the other DL (LSTM, DBN) model variants along with the other
conventional ML models (i.e., RBF, BRF, MARS WKNNR GPML and
M5TREE) used as benchmarks for the CSVR. As compared to the
other models, the statistical performance metrics for deep hybrid CSVR
models were generally larger in magnitude. For instance, CSVR model
for Daystar Energy Solar Farm produced higher 𝑟 (≈ 0.927) and low
𝑅𝑀𝑆𝐸 (≈ 2.172 MJ m−2 day−1) and 𝑀𝐴𝐸 (≈ 1.624 MJ m−2 day−1)
followed by LSTM model (𝑟 ≈ 0.901, 𝑅𝑀𝑆𝐸 ≈ 2.514 MJ m−2 day−1,
𝑀𝐴𝐸 ≈ 1.939 MJ m−2 day−1). The other DL model i.e. DBN model
show the worst performance (𝑟 ≈ 0.393, 𝑅𝑀𝑆𝐸 ≈ 5.418 MJ m−2 day−1,
𝑀𝐴𝐸 ≈ 4.301 MJ m−2 day−1). Further for, conventional ML models,
MARS (𝑟 ≈ 0.897, 𝑅𝑀𝑆𝐸 ≈ 2.647 MJ m−2 day−1, 𝑀𝐴𝐸 ≈ 2.022

J m−2 day−1) shows better performance than RBF, BRF, WKNNR
GPML and M5TREE. It was therefore evident that the deep hybrid CSVR
model was considerably better than the LSTM and the other comparable
conventional ML models.

In Table 7, the results of all DL models as well as conventional
ML models developed to predict daily GSR at six solar farms are
summarized based on WI, NSE, LM and Evar. In all six solar farms,
he deep hybrid CSVR model performs best with the highest magnitude
f (e.g., Daystar Energy Solar Farm) WI (≈ 0.928), NSE (≈ 0.856), LM
≈ 0.651), and Evar (≈ 0.859). These metrics for the other DL model
STM (WI ≈ 0.907, NSE ≈ 0.807, LM ≈ 0.584 and Evar ≈ 0.809) and
BN are in lower magnitude WI ≈ 0.006, NSE ≈ 0.107, LM ≈ 0.076 and
var ≈ 0.108. Likewise, for the conventional ML models, RBF model
hows better performance for the Aramara Solar Farm, whereas MARS
odel shows better performance for the Childers DDN Green Solar

arm, Cloncurry Solar Farm, Crinum Creek Solar Farm, Daystar Energy
olar Farm and Ewerleigh Solar Farm. In general for all six solar farms
ith WI > 0.822, NSE > 0.856, LM > 0.651 and Evar > 0.859, the CSVR
utperform all the other comparative models. Furthermore, it should
lso be noted that models can be classified on the basis of NSE metrics
s unsatisfactory (NSE < 0.800), fairly good (0.800 ≤ NSE ≤ 0.900 and
ery satisfactory (NSE > 0.900).

A further evaluation of the deep hybrid CSVR model is conducted
y means of scatter plot diagrams (Fig. 8) of GSR𝑝𝑟𝑒𝑑 versus GSR𝑜𝑏𝑠,
here each scatterplot is generated using a linear regression equation
𝑆𝑅𝑝𝑟𝑒𝑑 = 𝑚 ⋅ 𝐺𝑆𝑅𝑜𝑏𝑠 + 𝐶. The scatter plot also reveals that the
SVR model performs the best since its scatter points lie close to the
egression line, whilst the other models are far from the regression
ine. In line with Tables 6, 7, Fig. 8 confirms that deep hybrid CSVR
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Table 6
Testing performance of CSVR. (a) correlation coefficient (r), root mean square error RMSE (MJ m−2 day−1) and mean absolute error MAE (GSRUnitD). (b) relative RMSE and MAE
values (%).

Predictive
models

Aramara Solar
Farm

Childers DDN
Green Solar Farm

Cloncurry
Solar Farm

Crinum Creek
Solar Farm

Daystar Energy
Solar Farm

Ewerleigh Solar Farm

r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE

CSVR 0.863 3.305 2.370 0.893 2.635 1.870 0.863 2.519 1.860 0.908 2.437 1.805 0.927 2.172 1.624 0.924 2.429 1.779

LSTM 0.790 3.879 2.866 0.876 2.862 2.129 0.848 2.703 1.940 0.885 2.772 2.085 0.901 2.514 1.939 0.908 2.673 1.952
DBN 0.494 5.546 4.407 0.711 4.040 3.204 0.598 3.709 2.890 0.486 5.207 4.069 0.393 5.418 4.301 0.444 6.005 4.877
RBF 0.823 3.636 2.642 0.857 3.100 2.307 0.757 3.245 2.401 0.865 3.358 2.577 0.863 3.206 2.404 0.839 3.775 2.915
MARS 0.806 3.761 2.809 0.865 2.923 2.200 0.837 2.693 2.075 0.884 2.737 2.147 0.897 2.647 2.022 0.889 3.031 2.345
WKNNR 0.605 5.010 3.882 0.773 3.594 2.811 0.755 3.075 2.271 0.869 2.983 2.278 0.882 2.858 2.195 0.830 3.539 2.574
GPML 0.607 5.158 3.989 0.610 4.763 3.896 0.706 3.397 2.634 0.805 4.003 3.223 0.803 3.975 3.231 0.753 4.478 3.432
BRFR 0.648 5.202 3.981 0.748 4.188 3.169 0.738 3.470 2.656 0.797 3.659 2.869 0.805 3.520 2.687 0.814 3.914 3.081
M5TREE 0.664 5.251 3.716 0.778 3.986 2.906 0.724 3.567 2.680 0.774 3.895 2.941 0.824 3.424 2.636 0.826 3.792 2.958
Table 7
Testing performance of CSVR model in terms of (a) Willmott’s Index (WI) and Nash–Sutcliffe coefficients (NS) an (b) Legates and McCabe’s index (LM) and explained variance
score (Evar).

(a)

Predictive
models

Aramara
Solar Farm

Childers DDN Green
Solar Farm

Cloncurry
Solar Farm

Crinum Creek
Solar Farm

Daystar Energy
Solar Farm

Ewerleigh
Solar Farm

WI NS WI NS WI NS WI NS WI NS WI NS

CSVR 0.822 0.726 0.888 0.785 0.807 0.713 0.907 0.822 0.928 0.856 0.926 0.853

LSTM 0.749 0.617 0.875 0.745 0.781 0.677 0.871 0.773 0.907 0.807 0.903 0.822
DBN 0.206 0.218 0.651 0.493 0.558 0.355 0.050 0.203 0.006 0.107 0.285 0.116
RBF 0.782 0.665 0.843 0.704 0.679 0.530 0.807 0.684 0.808 0.702 0.772 0.661
MARS 0.765 0.641 0.864 0.735 0.816 0.670 0.889 0.775 0.898 0.788 0.880 0.775
WKNNR 0.579 0.362 0.751 0.596 0.711 0.562 0.834 0.733 0.844 0.751 0.810 0.688
GPML 0.482 0.325 0.450 0.298 0.560 0.461 0.625 0.518 0.620 0.517 0.661 0.509
BRFR 0.631 0.306 0.758 0.454 0.722 0.448 0.824 0.599 0.829 0.622 0.824 0.619
M5TREE 0.632 0.300 0.778 0.506 0.718 0.410 0.794 0.544 0.841 0.642 0.816 0.646

(b)

Predictive
models

Aramara
Solar Farm

Childers DDN Green
Solar Farm

Cloncurry
Solar Farm

Crinum Creek
Solar Farm

Daystar Energy
Solar Farm

Ewerleigh
Solar Farm

LM Evar LM Evar LM Evar LM Evar LM Evar LM Evar

CSVR 0.537 0.744 0.600 0.792 0.500 0.743 0.614 0.823 0.651 0.859 0.662 0.853

LSTM 0.440 0.624 0.545 0.749 0.478 0.720 0.555 0.785 0.584 0.809 0.629 0.822
DBN 0.139 0.221 0.315 0.496 0.223 0.356 0.131 0.207 0.076 0.108 0.072 0.118
RBF 0.484 0.675 0.507 0.716 0.355 0.560 0.449 0.735 0.484 0.741 0.446 0.693
MARS 0.451 0.650 0.530 0.741 0.442 0.692 0.541 0.777 0.566 0.797 0.554 0.787
WKNNR 0.242 0.367 0.399 0.596 0.389 0.570 0.513 0.734 0.529 0.755 0.510 0.688
GPML 0.221 0.329 0.167 0.301 0.292 0.465 0.311 0.519 0.306 0.517 0.347 0.517
BRFR 0.222 0.307 0.323 0.456 0.286 0.461 0.387 0.602 0.423 0.623 0.414 0.619
M5TREE 0.274 0.304 0.379 0.510 0.279 0.416 0.372 0.544 0.434 0.643 0.437 0.652
models demonstrated better and more reliable prediction capabilities
throughout all six solar farms.

The model outcomes outlined in Tables 7 and 8 indicate there is a
distinct difference in the performance of these models. However, one
of the limitations of the above measures (Eqs. (5)–(7), (10)–(12)) is
that they do not match models operating at different physical locations.
Consequently, the comparative accuracy (Table 8) shows that the CSVR
model exhibited the lowest 𝑅𝑅𝑀𝑆𝐸 and 𝑅𝑀𝐴𝐸 compared to LSTM,
DBN, RBF, BRF, MARS WKNNR GPML and M5TREE.

To discuss the objective model more specifically, we group the
magnitude of the 𝑅𝑅𝑀𝑆𝐸 and 𝑅𝑀𝐴𝐸 values for the proposed deep
hybrid CSVR model against LSTM and MARS models as [𝑅𝑅𝑀𝑆𝐸,
𝑅𝑀𝐴𝐸 for CSVR : 𝑅𝑅𝑀𝑆𝐸, 𝑅𝑀𝐴𝐸 for LSTM : 𝑅𝑅𝑀𝑆𝐸, 𝑅𝑀𝐴𝐸 for
MARS]. For all of the six solar energy farms, these comparative ratios
could be enumerated as follows:

• Daystar Energy Solar Farm:

[10.67%, 9.74% ∶ 12.95%, 11.89% ∶ 13.00%, 11.88%],

• Childers DDN Green Solar Farm:

[13.52%, 11.91% ∶ 14.69%, 13.83% ∶ 14.99%, 14.17%],

• Cloncurry Solar Farm:

[11.39%, 9.98% ∶ 12.23%, 10.33% ∶ 12.18%, 10.55%],
13
• Crinum Creek Solar Farm:

[12.10%, 11.08% ∶ 13.66%, 13.14% ∶ 13.49%, 12.89%],

• Ewerleigh Solar:

[12.06%, 10.71% ∶ 13.27%, 12.91% ∶ 15.04%, 14.17%],

and
• Aramara Solar Farm:

[16.41%, 16.38% ∶ 19.26%, 19.69% ∶ 18.67%, 19.79%].

It is thus clear that the proposed hybrid CSVR model was able to
produce more accurate results for daily GSR prediction compared to
all of the benchmark deep learning (i.e., LSTM, DBN) methods, and also
the other conventional ML methods.

An analysis of the frequency distribution of prediction error |𝑃𝐸|

produced by CSVR compared to benchmark methods is shown in Fig. 9.
Each error bin contains the percentage of all tested points, which
is shown at the top of each error bar. Each error bin has a size
of 1.5 MJ m−2 day−1. Interestingly, GSR predictions using the deep
hybrid CSVR model were found to have the greatest frequency of
errors within the smallest error bracket (1.5 MJ m−2 day−1), which
encompassed 55% of the test data. On the other hand, the LSTM, MARS,
WKNNR, RBF,M5TREE, BRFR, GPML and DBN accumulated 48%, 44%,
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Fig. 8. Scatter plots of the observed (GSR𝑜𝑏𝑠) and the predicted (GSR𝑝𝑟𝑒𝑑 ) daily GSR at six solar energy farms. Red line shows least-square regression 𝑦 = 𝑚𝑥 + 𝑐 where 𝑦 is the
𝑆𝑅𝑝𝑟𝑒𝑑 , 𝑥 is the 𝐺𝑆𝑅𝑜𝑏𝑠 and 𝑟 is the correlation coefficient. Names for each model are provided in Tables 4 and 5.
i
p

0%, 40%, 36%, 32%, 28% and 24% respectively. In accordance with
ig. 8 and Tables 6–8, the CSVR model generates most of its error
redictions within the lowest magnitude band, making it more accurate
 t

14
n predicting GSR at the six solar farms. Additionally, violin plot of
rediction error |𝑃𝐸| for CSVR as well as the other DL models and
he conventional ML models are created in Fig. 10. The |𝑃𝐸| error
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Table 8
Testing performance of CSVR in terms of relative RMSE and MAE values (%).

Predictive
models

Aramara
Solar Farm

Childers DDN Green
Solar Farm

Cloncurry
Solar Farm

Crinum Creek
Solar Farm

Daystar Energy
Solar Farm

Ewerleigh
Solar Farm

RRMSE RMAE RRMSE RMAE RRMSE RMAE RRMSE RMAE RRMSE RMAE RRMSE RMAE

CSVR 16.405 16.373 13.521 11.913 11.395 9.979 12.014 11.084 10.668 9.474 12.056 10.712

LSTM 19.257 19.693 14.686 13.828 12.226 10.328 13.664 13.143 12.345 11.890 13.265 12.907
DBN 27.531 30.967 20.728 21.672 16.773 15.226 25.666 29.296 26.612 29.492 29.805 31.397
RBF 18.049 18.531 15.903 14.286 14.677 12.984 16.555 15.900 15.745 15.169 18.736 19.072
MARS 18.669 19.785 14.996 14.167 12.178 10.549 13.494 12.886 13.003 11.881 15.043 14.165
WKNNR 24.866 25.872 18.439 18.461 13.906 11.959 14.703 14.634 14.036 13.876 17.563 17.373
GPML 25.602 26.944 24.437 25.929 15.362 14.076 19.734 21.412 19.522 21.069 22.225 22.106
BRFR 25.821 25.551 21.485 18.788 15.694 13.499 18.036 16.567 17.290 15.192 19.426 18.254
M5TREE 26.066 24.947 20.453 17.621 16.135 13.768 19.198 16.548 16.816 14.548 18.822 17.505
Table 9
The promoting percentage metric, 𝜆 for the comparison models against objective (i.e., CSVR) model in the testing phase. Note that 𝜆𝑅𝑀𝐴𝐸 = promoting percentage of the relative
mean absolute error, 𝜆𝑅𝑅𝑀𝑆𝐸 = promoting percentages of relative root mean square error, and 𝜆𝐴𝑃𝐵 = promoting percentages of absolute percentage bias.

Predictive
models

Aramara
Solar Farm

Childers DDN
Green Solar Farm

Cloncurry
Solar Farm

Crinum Creek
Solar Farm

Daystar Energy
Solar Farm

Ewerleigh
Solar Farm

𝜆𝑅𝑅𝑀𝑆𝐸 𝜆𝑅𝑀𝐴𝐸 𝜆𝐴𝑃𝐵 𝜆𝑅𝑅𝑀𝑆𝐸 𝜆𝑅𝑀𝐴𝐸 𝜆𝐴𝑃𝐵 𝜆𝑅𝑅𝑀𝑆𝐸 𝜆𝑅𝑀𝐴𝐸 𝜆𝐴𝑃𝐵 𝜆𝑅𝑅𝑀𝑆𝐸 𝜆𝑅𝑀𝐴𝐸 𝜆𝐴𝑃𝐵 𝜆𝑅𝑅𝑀𝑆𝐸 𝜆𝑅𝑀𝐴𝐸 𝜆𝐴𝑃𝐵 𝜆𝑅𝑅𝑀𝑆𝐸 𝜆𝑅𝑀𝐴𝐸 𝜆𝐴𝑃𝐵
LSTM 17% 20% 21% 9% 16% 14% 7% 3% 4% 14% 19% 15% 16% 25% 19% 10% 20% 10%
DBN 58% 74% 71% 49% 71% 63% 44% 51% 53% 100% 139% 109% 129% 168% 138% 134% 160% 159%
RBF 6% 7% 6% 11% 11% 14% 20% 20% 19% 18% 16% 19% 19% 19% 18% 22% 27% 23%
MARS 13% 18% 17% 9% 16% 14% 5% 4% 9% 9% 11% 13% 15% 16% 17% 16% 18% 19%
WKNNR 45% 48% 54% 33% 46% 43% 21% 19% 20% 20% 28% 22% 26% 37% 28% 37% 47% 34%
GPML 37% 41% 42% 59% 76% 72% 29% 34% 34% 53% 71% 62% 63% 84% 73% 58% 66% 64%
BRFR 37% 34% 40% 33% 27% 33% 28% 25% 30% 31% 26% 33% 34% 27% 33% 33% 34% 38%
M5TREE 37% 34% 34% 32% 30% 33% 30% 28% 31% 40% 33% 40% 36% 33% 38% 35% 37% 38%
distribution acquired by the deep hybrid CSVR model for all sites
is observed to be smaller as compared to standalone LSTM, MARS,
WKNNR, RBF, M5TREE, BRFR, GPML and DBN. Consequently, the fre-
quency distribution plot and the violin plot clearly shows that the CSVR
accomplished the best predictive accuracy for all six solar farms. An
analysis of the frequency distribution of prediction error |𝑃𝐸| produced
by CSVR compared to benchmark methods is shown in Fig. 9. Each
error bin contains the percentage of all tested points, which is shown at
the top of each error bar. Each error bin has a size of 1.5 MJ m−2 day−1.
Interestingly, GSR predictions using the deep hybrid CSVR model were
found to have the greatest frequency of errors within the smallest error
bracket (1.5 MJ m−2 day−1), which encompassed 55% of the test data.
On the other hand, the LSTM, MARS, WKNNR, RBF,M5TREE, BRFR,
GPML and DBN accumulated 48%, 44%, 40%, 40%, 36%, 32%, 28%
and 24% respectively. In accordance with Fig. 8 and Tables 6–8, the
CSVR model generates most of its error predictions within the lowest
magnitude band, making it more accurate in predicting GSR at the six
solar farms. Additionally, violin plot of prediction error |𝑃𝐸| for CSVR
as well as the other DL models and the conventional ML models are
created in Fig. 10. The |𝑃𝐸| error distribution acquired by the deep
hybrid CSVR model for all sites is observed to be smaller as compared
to standalone LSTM, MARS, WKNNR, RBF, M5TREE, BRFR, GPML and
DBN. Consequently, the frequency distribution plot and the violin plot
clearly shows that the CSVR accomplished the best predictive accuracy
for all six solar farms.

Furthermore, to determine the enhanced performance of the models,
promoting percentages are calculated as per Eqs. (19)–(21). Concurrent
with earlier findings (Tables 6–8), the deep hybrid CSVR for all solar
farms shows the better performance. For instance, at Daystar Energy
Solar Farm the deep hybrid CSVR can significantly improve 𝑅𝑅𝑀𝑆𝐸
over LSTM, DBN, RBF, MARS, WKNNR, GPML, BRFR, and M5TREE
by 16%, 129%, 19%, 15%, 26%, 63%, 34% and 36%, respectively.
Therefore, with positive promoting percentage errors, the deep hybrid
CSVR model appears to possess advanced predictive capabilities that
allow it to provide reliable prediction of GSR (see Table 9).

The effectiveness of the deep hybrid CSVR model was verified using
𝐾𝐺𝐸 and the 𝐴𝑃𝐵, 𝐾𝐺𝐸 is based on the decomposition of NSE into
its component parts (correlation, variability bias and mean bias), and
addresses several perceived shortcomings with NSE (Knoben et al.,

2019). With a relatively high 𝐾𝐺𝐸 and a comparatively low 𝐴𝑃𝐵, the

15
results show that the deep hybrid CSVR predictive model outperforms
the counterpart models significantly, as illustrated Fig. 11a. More ac-
curately, the magnitudes of 𝐾𝐺𝐸 and 𝐴𝑃𝐵 when comparing the deep
hybrid CSVR model with the subsequent best prediction model, LSTM
and MARS, in the grouping [CSVR: LSTM: MARS] were [0.900, 9.229 :
0.886, 10.536 : 0.886, 11.097] Furthermore, the GPI metrics are used,
GPI captures the individual effects of all statistical tests and helps rank
the developed GSR model. The GPI score for the developed GSR models
lies between 2.721 and −4.271. The maximum value indicates the best
model. Based on GPI, the best suitable model is deep hybrid CSVR (GPI
≈ 2.721) which ranks first among all the develop GSR models. Model
LSTM (GPI ≈ 1.774) and MARS (GPI ≈ 1.566) comes in second and third
respectively, Fig. 11b. Indeed, the highest value of GPI for the deep
hybrid CSVR model cemented even further its accuracy in predicting
daily GSR.

Additionally, to enables a more detailed assessment of the model
results, a Taylor plot (Fig. 12) was established to compare the models’
performance based on centered root-mean-square (RMS) difference and
correlation coefficient (r). Based on Taylor plot, the most efficient
model is the deep hybrid CSVR, with the lowest centered RMS dif-
ference and a high 𝑟. In other words, the CSVR produced the best
results among all the DL as well as conventional ML models developed.
Even though comparing standard deviations between different models
in this study is not significant since their average values differ, the
CSVR model demonstrated acceptable variation of predicted values.

Furthermore, all predictive models were tested by using several
statistical techniques, namely Diebold–Mariono (DM), Harvey, Ley-
bourne, and Newbold (HLN) tests, for which the statistical significance
of all of the predictive models was analyzed. The purpose of these
tests is to deduce to see if the deep hybrid CSVR prediction model is
more accurate than the predictions made by other comparison models
(Table 10(a) and (b)). It should be noted that when comparing models
in these tables, the model in the column is compared with the model
in the row, and if there is a positive outcome, the model in the column
would most likely outperform the one in the row while vice versa if
the result is negative. Congruent with the previous findings and taken
together the results of DM and HLN tests, we aver that the deep hybrid
CSVR model can predict the daily GSR data more accurately than the

other models.
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Fig. 9. Cumulative frequency of the forecast error (in ±1.5 MJ m−2 day−1 bracket) for all tested solar energy farms pooled together.

Fig. 10. Violin plot of the absolute forecast error of daily GSR generated by the proposed CSVR model in respect to eight other comparative models (LSTM, DBN, WKNNR, RBF,
GPML, M5TREE, MARS and BRFR) within the testing phase.

16
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Fig. 11. (a) Bar chart comparing the efficacy of the proposed CSVR model in terms of the tested absolute percentage bias (𝐴𝑃𝐵, %) and Kling–Gupta efficiency (𝐾𝐺𝐸). (b) Global
performance indicator (GPI) used to evaluate the proposed CSVR model relative to eight other benchmarked models.
Fig. 12. Taylor diagram evaluating the proposed CSVR model in terms of bias and standard deviation of model errors. The azimuthal angle represents the correlation, the radial
istance shows the standard deviation, and the semicircles centered at the observation ‘‘OBS’’ marker show the standard deviation of the errors. Color scale shows the bias (i.e.,
ean of model minus mean of observation) and the names of each model are provided in Tables 3–5.
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The 𝑅𝑀𝑆𝐸 values of the deep hybrid CSVR model, are now com-
ared with the 𝑅𝑀𝑆𝐸 values of the model developed using only
lear-sky index persistence measure (Marquez and Coimbra, 2013),
enoted as the Skill Score (SS). Likewise, ratio of the 𝑅𝑀𝑆𝐸 of
eep hybrid model CSVR with the 𝑅𝑀𝑆𝐸 of the other DL models
nd conventional ML models are computed as per Eq. (15) (Yang
t al., 2020). Notably, all the comparative models appear to have a
ignificantly lower SS and RMSEr relative to the deep hybrid CSVR
redictive model as shown in Table 11a and b. It should be noted that,
f 𝑆𝑆 > 0 the prediction model have a smaller 𝑅𝑀𝑆𝐸 than that of
he persistence model, otherwise, 𝑆𝑆 ≤ 0 indicates that the model

of fails to outperform the persistence model. Similarly, 𝑅𝑀𝑆𝐸𝑟 > 1
would indicate that the objective model outperforms the comparative
 o

17
model and 𝑅𝑀𝑆𝐸𝑟 < 1 indicates the comparative model is better. The
roposed deep hybrid CSVR model appears to perform exceptionally
ell for all six solar farms, whereas the DBN, the WKNNR, the BRFR,
nd the GPML models produce very poor results.

As an additional evaluation of the deep hybrid CSVR predictive
odel, the data of all study sites are divided into four distinct seasons

nd the simulations are repeated for all models. Fig. 13 is a representa-
ion of the model in terms of the performance measures of WI, NSE and
KGE, 𝑅𝑅𝑀𝑆𝐸, 𝑅𝑀𝐴𝐸 and APB for all four seasons. Concurrent with
revious deductions for daily GSR predictions, the proposed deep hy-
rid SAELSTM model appears to register the best seasonal performance,
ith a lower value of RRMSE, 𝑅𝑀𝐴𝐸 and APB and a higher value
f WI, NSE and KGE compared with equivalent metrics for the LSTM,
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Table 10
Evaluation of CSVR model against comparison models in terms of: (a) The Diebold–Mariano (DM) test statistic, (b) The Harvey–
Leybourne–Newbold (HLN) test statistic. The column of the table is compared with the rows, and if the result is positive, the model
in the rows outperforms the one in the column; on the contrary, if it is negative, then the one in the column is superior.

(a)

Predictive model CSVR LSTM DBN M5TREE BRFR RBF GPML MARS WKNNR

CSVR 5.534 10.663 11.326 13.786 8.304 10.456 6.758 6.974

LSTM 9.799 9.293 11.975 5.536 9.558 0.944 5.741
DBN −4.815 −5.040 −8.043 −4.798 −9.304 −7.312
M5TREE 0.054 −4.496 2.125 −8.772 −3.876
BRFR −5.167 2.251 −10.469 −4.063
RBF 6.050 −5.166 1.318
GPML −8.364 −6.962
MARS −4.632

(b)

Predictive model CSVR LSTM DBN M5TREE BRFR RBF GPML MARS WKNNR

CSVR 5.600 10.791 11.462 13.951 8.403 10.582 6.839 7.057

LSTM 9.917 9.404 12.119 5.602 9.673 0.955 5.810
DBN −4.873 −5.100 −8.140 −4.855 −9.415 −7.400
M5TREE 0.055 −4.550 2.150 −8.877 −3.922
BRFR −5.229 2.278 −10.594 −4.111
RBF 6.122 −5.228 1.334
GPML −8.465 −7.046
MARS −4.688
Table 11
Evaluation of CSVR model and all other comparison models in terms of (a) Skill Score Metric (SS) Note: The persistence model considers that
the solar radiation at 𝑡 + 1 is equal to the solar radiation at 𝑡. It assumes that the atmospheric conditions are stationary (clear sky condition).
(b) The performance of the CSVR model with comparative benchmark models in the test period measured by the ratio of root mean square
error (𝑅𝑀𝑆𝐸𝑟). The column of the table is compared with the rows, and if the result is <1, the model in the row outperforms the one in the
column; on the contrary, if it is >1, then the one in the column is superior.

(a)

Locations CSVR LSTM DBN RBF MARS WKNNR GPML BRFR M5TREE

Aramara Solar Farm 0.462 0.369 0.098 0.408 0.388 0.185 0.161 0.154 0.146
Childers DDN Green Solar Farm 0.498 0.455 0.231 0.410 0.444 0.316 0.094 0.203 0.241
Cloncurry Solar Farm 0.549 0.516 0.336 0.419 0.518 0.449 0.392 0.378 0.361
Crinum Creek Solar Farm 0.553 0.492 0.046 0.384 0.498 0.453 0.266 0.329 0.286
Daystar Energy Solar Farm 0.591 0.527 −0.021 0.396 0.501 0.462 0.251 0.337 0.355
Ewerleigh Solar Farm 0.625 0.587 0.073 0.417 0.532 0.454 0.309 0.396 0.415

(b)

Predictive model CSVR LSTM DBN M5TREE BRFR RBF GPML MARS WKNNR

CSVR 1.268 3.762 2.390 2.397 1.696 2.764 1.315 1.890

LSTM 0.789 2.967 1.885 1.891 1.338 2.180 1.037 1.490
DBN 0.266 0.337 0.636 0.637 0.451 0.735 0.350 0.502
M5TREE 0.418 0.530 1.574 1.003 0.710 1.156 0.550 0.791
BRFR 0.417 0.529 1.569 0.997 0.708 1.153 0.549 0.788
RBF 0.590 0.747 2.217 1.409 1.413 1.629 0.775 1.114
GPML 0.362 0.459 1.361 0.865 0.867 0.614 0.476 0.684
MARS 0.760 0.964 2.860 1.817 1.823 1.290 2.102 1.437
WKNNR 0.5292 0.6709 1.9905 1.2649 1.2685 0.8977 1.4627 0.696
RBF, MARS, WKNNR, GPML, BRFR, and M5TREE. In accordance with
this finding, we content that the deep hybrid CSVR predictive model is
deemed suitable for both daily and seasonal GSR predictions.

5. Further discussion and predictive model comparison

Accurate prediction of GSR is pivotal to the monitoring of electricity
supply, management and utilization of solar energy, and it is also of
paramount importance to the renewable energy industries. Although
computational prediction of GSR has made much progress recently,
the accuracy remains to be improved. In this study, we introduced a
novel and interpretable deep learning framework named CNN-SVR for
GSR prediction. Specifically, CNN works as a trainable feature extractor
and SVR performs as a GSR predictor. Compared with other deep
learning and ML models, CNN-SVR achieved the best performance. So
18
by engineering the two methods (SVR & CNN together), the resulting
CNN-SVR framework was not only able to automatically extract GSR
features, but also led to improved generalization capability of CNN and
regression method’s accuracy.

Previous studies have suggested that hybrid models (Agga et al.,
2022; Livera et al., 2018) that incorporate multiple DL and ML architec-
tures can achieve higher accuracy than a single learner model. Inspired
by this strategy, instead of using a single convolution network to train
the model, we have engineered the CNN and SVR model. Compared
with several state-of-the-art learning-based methods, CNN-SVR can
effectively exploit deep features of the GSR time series. Experimental
results demonstrated the predictive power of the proposed CNN-SVR for
GSR predictions. Comparing deep hybrid CSVR model with benchmark
models, the accuracy of the proposed hybrid CSVR model is notably
higher based on a lower relative error and high-performance metric.
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Fig. 13. Seasonal performance of the proposed CSVR model compared with benchmark models in terms of Willmott’s Index (WI), Nash–Sutcliffe Coefficient (NS), Kling Gupta
fficiency (KGE), normalized root mean square error (nRMSE, %), Relative mean absolute error (RMAE, %) and absolute percentage bias (APB, %).
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he deep hybrid CSVR also demonstrated the lowest RMSE, APB and
AE for all study sites, as well as highest magnitude of the normalized

erformance metrics (r, WI, NSE, 𝐾𝐺𝐸, LM, Evar) thereby outperform-
ng the DL based model LSTM and DBN, as well as the conventional ML
odels. Furthermore, the CSVR model outperformed LSTM, DBN, RBF,
RF, MARS, WKNNR, GPML, and M5TREE models, obtaining the lowest
agnitude of RRMSE and RMAE at the six solar farms considered. The

verall results revealed that the CNN-SVR model, using Atmospheric
nd Meteorological data, had a superior performance compared to the
ther ML as well as deep learning models.

To further ascertain the predictive capability of the proposed CSVR,
e now compare these results with recent studies conducted in Turkey
nd some of the other regions. Since the aim of our study was to
stimate the daily GSR, we have considered only the daily basis studies
rom literature. In Salcedo-Sanz et al. (2018b) a robust hybrid mod-
ling mechanism was developed for Brisbane and Sunshine Coast in
ustralia with the Interim-ERA European Centre for Medium-Range
eather Forecasting (ECMWF) Reanalysis data employed to train and

ross-validate the model formulated by an evolutionary-type algorithm:
RO integrated with ELM model. The hybrid CRO-(ELM) algorithm is
pplied in two stages: first for FS process guided by an ELM algorithm
a class of fast training neural network tool) as the model’s fitness
unction to screen an optimal set of predictor variables and second,
or the estimation of the solar radiation using the optimally screened
ariables by the final hybrid CRO-(ELM)-ELM system. In terms of root

ean square error and Willmott’s Index, the hybrid CRO-(ELM)-ELM 2

19
as seen to outperform the non-hybrid ELM, MARS, SVR and MLR-
ased models with RMSE = 3.1877 MJ m−2, RRMSE = 16.0277 MJ m−2

ndWI = 0.8249 vs. 3.5990, 19.5328, 0.8072 for the ELM-based model,
.6172, 19.6052, 8.122 for the MARS-based model, 3.4609, 19.0729,
.8048 for the SVR-based model and 3.6787, 20.1047, 0.8024 for the
LR-based model.

The recent study of Zang et al. (2020a) proposed a deep learning
ethod for estimating daily GSR which is constituted by embedding

lustering (EC) and functional deep belief network (DBN) and reported
o have 𝑅𝑀𝐴𝐸 of 13.71%. Furthermore, in Quej et al. (2017) ANN,
VM and Adaptive neuro-fuzzy interference system (ANFIS) models to
stimate the daily GSR for five stations which are located in Yucatán
eninsula in Mexico. It was reported that SVM model had better
erformances than the ANN and ANFIS. The best values of MAE, RMSE
nd 𝑅2, respectively, were found to be as 1.97 MJ m−2, 2.68 MJ m−2

nd 0.689. Similarly in Bulut and Büyükalaca (2007) a simple model
ased on a trigonometric function was developed and it has only one
ependent parameter, namely, day of the year, for estimating the daily
lobal radiation. The correlation coefficient (𝑟), 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸
ere in the range of 0.620 and 0.900, 2.13 MJ m−2 and 4.45 MJ
−2 and 2.89 MJ m−2 and 5.45 MJ m−2, respectively. Additionally,

n Ghimire et al. (2019a), ANN model was developed to predict GSR
t five different location of Australia. The study concluded that the
erformance of ANN was better than the other models (SVR, GPML,
P, TM), resulting in lower 𝑅𝑀𝑆𝐸 (1.715–2.27 MJ m−2 relative to

−2
.14–5.90 MJ m ), relative 𝑅𝑀𝑆𝐸 (9.07–12.47% vs. 10.98–29.15 m
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%), relative 𝑅𝑀𝐴𝐸 (7.97–11.74% vs. 9.27–33.96%) and larger WI, NS
(0.938–0.967 vs. 0.462–0.955, 0.935–0.872 vs. 0.355–0.915, 0.672–
0.783 vs. 0.252–0.740). In conclusion, our results are better than the
rest of above studies, except the study of Ghimire et al. (2019a) to
which our results are comparable.

The results presented so far have indicated an excellent capability
of the proposed CSVR model to predict solar radiation. It is note-
worthy that the solar energy industry relies on accurate predictions
of the atmospheric state considering the cloud movement, including
factors like humidity, temperature, rainfall and cloud fraction that
affect the ground solar radiation. Solar energy received at solar energy
farms or their PV systems can be highly intermittent due to these
atmospheric factors — therefore, accurate forecast models are required
by solar industries. In this study, a daily-step CSVR model is trained
with GCM predictor variables utilizing meteorological variables pro-
duced by a set of GCMs (i.e., cloud parameters, humidity parameters,
precipitation, wind speed, etc.) and enriched by the ground based
observation data (i.e., evaporation, vapor pressure, relative humidity
at maximum temperature, relative humidity at minimum temperature,
rainfall, maximum temperature and minimum temperature). Therefore,
this trained model can be used to monitor solar radiation at industrial
scale solar farms, at inter-daily, or weekly scales whereby accurate
prediction of solar radiation can help energy companies in decision-
making regarding the best ways to integrate solar energy into electricity
grids.

6. Conclusion and future research directions

6.1. Conclusion

In this study, a robust version of a Convolutional Neural Network
(CNN) integrated with Support Vector Regression (SVR) model has been
developed to predict daily GSR. A comprehensive comparison of the
SR prediction performance of CSVR and other DL methods as well
s conventional ML models is carried out. The CNN model is used to
xtract local pattern features as well as common features that recur in
he time series at different intervals, and the SVR replaced the fully
onnected layer of the CNN to predict the daily GSR at six solar farms
f Australia.

In order to develop the hybrid CSVR model and other comparative
odels, we have used the meteorological variables as input from the
CM and the SILO. Additionally, from the pool of GCM and SILO
eteorological variables, optimal features for the input to develop the
odels are selected through a metaheuristic FS algorithm called ASO.
he hyperparameter selection of the CSVR as well as other DL based
odels are carry out via HyperOpt. The performance of proposed deep
ybrid CSVR model is benchmarked against eight other DL as well as
ther ML models (LSTM, DBN, RBF, BRF, MARS, WKNNR, GPML, and
5TREE).

Comparing deep hybrid CSVR model with benchmark models, the
ccuracy of the proposed deep hybrid CSVR model has been higher
ased on a low relative error and high-performance metric. Deep hybrid
SVR demonstrated the lowest 𝑅𝑀𝑆𝐸, 𝐴𝑃𝐵 and 𝑀𝐴𝐸 for all study

sites, as well as highest magnitudes for normalized performance metrics
(r,WI, NSE, KGE, LM, Evar) thereby outperforming the DL based models
LSTM and DBN, as well as conventional ML models. Furthermore, the
deep hybrid CSVR model outperformed the LSTM, DBN, RBF, BRF,
MARS, WKNNR, GPML, and M5TREE models, obtaining the lowest
magnitude of 𝑅𝑅𝑀𝑆𝐸 and 𝑅𝑀𝐴𝐸 at the six solar farms considered.

A comparison of the model’s prediction error when all six solar
farms were pooled, revealed that the CSVR model generated the largest
proportion of predicted error (≈55%) in the smallest (±0.5 MJ m−2

day−1) error range, although the LSTM model also recorded about 48%
and MARS model generated only 44% of all errors in this particular
error bracket. Additionally, the promoting percentage error demon-
strates that CSVR model was able to improve the predictive accuracy,
20
for instance, at Daystar Energy Solar Farm, the deep hybrid CSVR can
significantly improve 𝑅𝑅𝑀𝑆𝐸 over LSTM, DBN, RBF, MARS, WKNNR,
GPML, BRFR, and M5TREE by 16%, 129%, 19%, 15%, 26%, 63%, 34%
and 36%, respectively and 𝑅𝑀𝐴𝐸 by 25%, 168%, 19%, 16%, 37%,
84%, 27%, and 33%, respectively. In this study, we clearly endorse
the use of a deep hybrid CSVR model as an effective alternative tool
for GSR prediction, and the tool may therefore be explored for use as
an AI tool to advance energy exploration and planning. In the future,
we would like to see whether the proposed model can predict solar
radiation at real-time resolutions (e.g., sub-hourly or hourly) in addition
to testing other kinds of hybrid time sequencing methods, such as Deep
net approaches.

6.2. Limitations, additional scope, and opportunities for future research

It is crucial to mention that the evaluation of the proposed GSR
prediction models based on past climate observations could have some
important limitations such as being limited to those variables and
phenomena for which observations exist. In many cases, the lack or
insufficient quality of long-term observations, be it a specific variable,
an important processes, or a particular region (e.g., polar areas, the
upper troposphere/lower stratosphere (UTLS), and the deep ocean),
remains an impediment. In addition, owing to observational uncertain-
ties and the presence of internal variability, the observational record
against which models are assessed is ‘imperfect’. These limitations can
be reduced, but not entirely eliminated, through the use of multiple
independent observations of the same variable as well as the use of
model ensembles. Elimination of these limitation is out of scope for this
study and the approach to GSR prediction model evaluation taken in
this study reflects the need for climate models to represent the observed
behavior of past climate as a necessary condition to be considered a
viable tool for future predictions. Additionally in the previous stud-
ies (Ghimire et al., 2019d; Ghimire, 2019) it has been reported that
with the use of Aerosol and cloud properties the performance can be
improved, so including such parameters during training can improve
the accuracy of proposed model.

The increasing capacity to use freely-available solar energy into the
renewable energy mix creates new problems in area of solar PC power
systems engineering. The problem arises due to the increasing role in
everyday electricity usage systems, with the proliferation of roof-top
solar PV panels as well as new industrial-scale solar farms being built
to integrate more energy into power grids. One main challenge for
optimizing solar energy contributions is the intermittency in energy
supply with well-documented reports suggesting the need for better
forecasting of cloud cover impact. As solar radiation is significantly
affected by cloud characteristics, the testing of the developed CSVR
model under various cloud cover conditions remains to be seen. The
need to monitor cloud cover in respect to ground-based solar radiation
was identified in an Australian Government CSIRO report (Sayeef et al.,
2012) stating that: ‘‘Without such a forecast system, wind and solar
renewable energy generation will be subjected to increasing level of
curtailment that can undermine their viability and significant contribu-
tions towards greenhouse gas reduction’’. It is therefore desirable that
the proposed CSVR model is tested in a real-time PV power system to
examine its capability to monitor the supply of electricity into power
grids.

Although the proposed CSVR model was developed and tested for
six solar farms, its ability to model the GSR in respect to the worst-case,
rapidly changing cloud patterns, including cumulus (i.e., fast-moving,
well-defined clouds with the clear sky in between) or a squall (i.e., solid
line of dark clouds moving across clear sky) can help solar engineers to
better enable an optimization of solar energy in electrical power grids.
This is a key problem in solar engineering area where poor prediction of
cloud cover shifts is a challenge to maximize its contribution to energy
needs as stipulated in a recent energy industry report (Brinsmead et al.,
2014). If the proposed CSVR model can also be employed to test its
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capability to connect with solar PV systems for real-time cloud cover
monitoring, there could be major economic benefits arising from the
improved solar energy forecasting. One practical example could be
applying the CSVR model in future renewable energy investment, such
as the Australia–Asia Power Link (AAPowerLink) (ASEANPowerLink,
2020), a proposed electricity infrastructure planned to include the
world’s largest solar plant, battery and longest submarine power cable
in Australia. The AAPowerLink has the world’s largest solar farm in the
Northern Territory in Australia with a 4500 km transmission system
planned to supply solar power Darwin, Singapore, and the ASEAN
power export markets with competitively-priced renewable electricity.
Therefore, a future testing of the CSVR model at such large-scale solar
farms could lead to a better understanding of the capability of our
system to monitor cloud cover effects on the transported electricity in
this system.

Recently, there has been some emphasis on using sky images and
sequence-to-sequence models to capture not only the cloud cover effects
but also the influence of water vapor, aerosols, ozone changes, and par-
ticulate matter, or dust on the electrical energy received at a solar PV
panel (Ghimire et al., 2022; Prasad et al., 2022). To increase the scope
of the proposed CSVR model and to better incorporate these effects
into solar radiation forecast models or in energy demand monitoring,
a future research should consider sky images as inputs to build more
explainable predictive system whereby for example, determine how a
particular image pixel with a specific cloud feature can contribute to
an outcome and to what extent it influences the solar energy captured
by a solar PV panel. A future study can therefore use deep Taylor
decomposition methods to decompose the CSVR predictions of GSR
in terms of contributions of individual input features at a pixel level
capturing water vapor, aerosols, ozone, particulate matter, or dust
effects. These effects captured at the input relevance level (e.g. cloud
shifts) from the output layer of the CSVR model can help understand
contributing neurons in terms of total relevance of each image feature
to produce an explainable CSVR model for solar PV engineering and
related energy forecasting problems.
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Table A.12
List of acronyms of the metrics.

Acronym Full name

APB Absolute Percentage Bias
DM Diebold–Mariano
GPI Global Performance Indicator
HLN Harvey, Leybourne, and the Newbold
KGE Kling–Gupta Efficiency
LM Legates’ Modulus
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
NSE Nash–Sutcliffe’s Efficiency
𝑟 Correlation Coefficient
RMAE Relative Mean Absolute Error
RMSE Root Mean Square Error
RRMSE Relative Root Mean Square Error
WI Willmott’s Index

Table A.13
List of acronyms.

Acronym Full name

Adam Adaptive Moment Estimation
AI Artificial Intelligence
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Networks
ASO Atom Search Optimization
BILSTM Bidirectional Long Short-Term Memory
CNN Convolutional Neural Network
CSVR Our hybrid approach CNN with SVR
DBNs Deep Belief Networks
DL Deep Learning
DNN Deep Neural Network
ELM Extreme Learning Machine
ESN Echo State Networks
FS Feature Selection
GA Genetic Algorithm
GCM Global Climate Models
GRU Gated Recurrent Unit
GSR Global Solar Radiation
K -NN Kernel Nearest-Neighbor
LSTM Long Short-Term Memory Networks
MLP Multilayer Perceptrons
ML Machine Learning
PV PhotoVoltaic
PSO Particle Swarm Optimization
RF Random Forest
RNN Recurrent Neural Networks
SA Simulated Annealing
SILO Queensland Government’s Scientific Information

for Landowners
SVR Support Vector Regression
WEO World Energy Outlook

Appendix A. Acronyms

Table A.12 shows a list of alphabetically ordered acronyms used
for the metrics used in the present paper. Table A.13 shows a list of
alphabetically ordered acronyms for the methods that appear in this
paper.

Appendix B. Theoretical details — Atom Search Optimization

Like other metaheuristic algorithms (PSO, GA, SA), ASO generates
an initial population of solutions called atoms. In ASO, each atom
maintains two vectors, namely position and velocity as follows:

𝑋 =
(

𝑋1, 𝑋2,… , 𝑋𝐷) (B.1)
𝑖 𝑖 𝑖 𝑖
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(B.2)

where 𝑋𝑖 and 𝑉𝑖 are the position and velocity of the 𝑖th atom, and 𝐷
is the maximum number of dimensions. The acceleration of an atom
has a major impact on its movement. The atom’s acceleration can be
expressed mathematically as:

𝑎𝑖 =
𝐹𝑖 + 𝐺𝑖

𝑚𝑖
(B.3)

here 𝐹 is the interaction force, 𝐺 is the constraint force, and 𝑚 is the
ass of the atom.

The interaction force between the ith atom and jth atom dth di-
ension at 𝑡 time is drawn from the Lennard-Jones (L-J) potential as

ollow (Zhao et al., 2019b):

𝑖𝑗 (𝑡) =
24𝜖(𝑡)
𝜎(𝑡)

(

2
(

𝜎(𝑡)
𝑟𝑖𝑗 (𝑡)

)13
−
(

𝜎(𝑡)
𝑟𝑖𝑗 (𝑡)

)7
)

𝑟𝑖𝑗 (𝑡)

𝑟𝑑𝑖𝑗 (𝑡)
(B.4)

𝐹 ′
𝑖𝑗 (𝑡) =

24𝜖(𝑡)
𝜎(𝑡)

(

2
(

𝜎(𝑡)
𝑟𝑖𝑗 (𝑡)

)13
−
(

𝜎(𝑡)
𝑟𝑖𝑗 (𝑡)

)7
)

(B.5)

where 𝐹 ′ is the model of the interaction force, 𝜖 is the depth of
potential, 𝜎 is the length scale, 𝑟 is the distance between two atoms
(atom 𝑖 and atom 𝑗), and 𝑑 is the dimension of search space. As for
optimization, a simplified version of Eq. (B.3) is designed as:

𝐹 ′
𝑖𝑗 (𝑡) = −𝜂(𝑡)

(

2
(

ℎ𝑖𝑗 (𝑡)
)13 −

(

ℎ𝑖𝑗 (𝑡)
)7
)

(B.6)

where the function ℎ is the scaled distance between two atoms (Heki-
moğlu, 2019) and 𝜂 is the depth function to regulate the attraction or
repulsion region, and defined as:

ℎ𝑖𝑗 (𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ℎ𝑚𝑖𝑛
𝑟𝑖𝑗 (𝑡)
𝜎(𝑡)

< ℎ𝑚𝑖𝑛

𝑟𝑖𝑗 (𝑡)
𝜎(𝑡)

ℎ𝑚𝑖𝑛 ≤
𝑟𝑖𝑗 (𝑡)
𝜎(𝑡)

≤ ℎ𝑚𝑎𝑥

ℎ𝑚𝑎𝑥
𝑟𝑖𝑗 (𝑡)
𝜎(𝑡)

> ℎ𝑚𝑎𝑥

(B.7)

𝜂 = 𝛼
(

1 − 𝑡 − 1
𝑇

)3
𝑒−

20𝑡
𝑇 (B.8)

here 𝛼 is the depth weight, 𝑇 is the maximum number of iterations,
nd, ℎ𝑚𝑎𝑥 and ℎ𝑚𝑖𝑛 are the upper boundary and lower boundary of ℎ,
espectively (Zhao et al., 2019b), calculated as:

ℎ𝑚𝑖𝑛 = 𝑔0 + 𝑔(𝑡)

ℎ𝑚𝑎𝑥 = 𝑢
(B.9)

here 𝑔0 is the lowest limit set to 1.1 and 𝑢 is the upper limit set to 1.24,
nd 𝑔(𝑡) is the drift factor to make the algorithm capable of drifting from
xploration to exploitation, which is given as:

(𝑡) = 0.1 sin
( 𝜋𝑡
2𝑇

)

; where 𝑡 is the current iteration. (B.10)

he length scale 𝜎 is calculated as:

(𝑡) =
‖

‖

‖

‖

‖

𝑥𝑖𝑗 (𝑡)

∑

𝑗∈best
𝑥𝑖𝑗 (𝑡)

𝐾(𝑡)

‖

‖

‖

‖

‖2
(B.11)

where, best is a subset of an atom population, which is made up of
he first 𝐾 atoms with the best function fitness values.

Then the sum of components with random weights in the dth dimen-
ion acting on the ith atom from the other atoms can be considered as
total force, which is expressed as
𝑑
𝑖 (𝑡) =

∑

𝑗∈best

𝑈𝑗𝐹
𝑑
𝑖𝑗 (𝑡) (B.12)

here 𝑈 is a random number uniformly chosen over the interval [0, 1].
𝑗 R
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According to Newton’s third law, the force on the jth atom for the
same pairwise interaction is the opposite of force on the ith atom:

𝑖𝑗 = −𝐹𝑗𝑖 (B.13)

urthermore, the geometric constraint of the ith atom and constraint
orce which is the weighted position difference between each atom and
he best atom can be expressed as follows:
𝑑
𝑖 (𝑡) = 𝜆(𝑡)

(

𝑥𝑑best(𝑡) − 𝑥𝑑𝑖 (𝑡)
)

(B.14)

here 𝑥𝑑best(𝑡) is the position of the best atom in dth dimension and 𝜆(𝑡)
s the Lagrangian multiplier, which is defined as:

(𝑡) = 𝛽𝑒−
20𝑡
𝑇 (B.15)

where 𝛽 is the multiplier weight. At last, the acceleration of the atom
can be written as:

𝑎𝑑𝑖 (𝑡) =
𝐹 𝑑
𝑖 (𝑡)

𝑚𝑑
𝑖 (𝑡)

+
𝐺𝑑
𝑖 (𝑡)

𝑚𝑑
𝑖 (𝑡)

(B.16)

𝑑
𝑖 (𝑡) = −𝛼

(

1 − 𝑡 − 1
𝑇

)3
𝑒−

20𝑡
𝑇

∑

𝑗∈best

𝑈𝑗

(

2
(

ℎ𝑖𝑗 (𝑡)
)−13 −

(

ℎ𝑖𝑗 (𝑡)
)−7

)

𝑚𝑖(𝑡)

(

𝑥𝑑𝑗 (𝑡) − 𝑥𝑑𝑖 (𝑡)
)

‖�⃗�𝑖(𝑡), �⃗�𝑗 (𝑡)‖2

+ 𝛽𝑒−
20𝑡
𝑇

(

𝑥𝑑best(𝑡) − 𝑥𝑑𝑖 (𝑡)
)

𝑚𝑖(𝑡)

(B.17)

here 𝑚𝑑
𝑖 (𝑡) is the mass of the ith atom in dth dimension at iteration 𝑡,

nd calculated by its fitness function value as follows:

𝑖(𝑡) = 𝑒
− 𝐹 𝑖𝑡𝑖 (𝑡)−𝐹 𝑖𝑡best (𝑡)

𝐹 𝑖𝑡𝑤𝑜𝑟𝑠𝑡 (𝑡)−𝐹 𝑖𝑡best (𝑡)

𝑖(𝑡) =
𝑀𝑖(𝑡)

∑𝑁
𝑗=1 𝑀𝑗 (𝑡)

(B.18)

where 𝐹 𝑖𝑡𝑖(𝑡) is the fitness function value of ith atom at iteration 𝑡,
𝐹 𝑖𝑡𝑏𝑒𝑠𝑡(𝑡) and 𝐹 𝑖𝑡𝑤𝑜𝑟𝑠𝑡(𝑡) are the fitness values of the best and worst
atoms at iteration 𝑡, respectively, and defined as:

𝑖𝑡best(𝑡) = min
𝑖∈{1,2,…,𝑁}

𝐹 𝑖𝑡𝑖(𝑡)

𝑖𝑡worst(𝑡) = max
𝑖∈{1,2,…,𝑁}

𝐹 𝑖𝑡𝑖(𝑡)
(B.19)

Finally, the velocity and position update of ith atom at iteration
𝑡 + 1) are defined as:
𝑑
𝑖 (𝑡 + 1) = 𝑈𝑑

𝑖 𝑣
𝑑
𝑖 (𝑡) + 𝑎𝑑𝑖 (𝑡)

𝑑
𝑖 (𝑡 + 1) = 𝑥𝑑𝑖 (𝑡) + 𝑣𝑑𝑖 (𝑡 + 1)

(B.20)

here 𝑥𝑑𝑖 and 𝑣𝑑𝑖 are the position and velocity of the ith atom, 𝑎 is the
cceleration, 𝑑 is the dimension of search space, 𝑈𝑑

𝑖 is a random vector
niformly chosen in [0, 1], and 𝑡 is current iteration.

In ASO, the number of best atoms in subset 𝐾 is used to balance the
xploration and exploitation phase.

= 𝑁 − (𝑁 − 2)
√

𝑡
𝑇

(B.21)

where 𝑁 is the number of atoms in the population. Initially, a higher
value of 𝑘 enables the atoms to explore the untried areas. At the end of
the iteration, a lower value of 𝑘 promotes exploitation, which performs
the search around the best solutions.

The flowchart of ASO is shown in Fig. B.14.

Appendix C. Theoretical details — Support vector regression

For a training dataset {(𝐱1, 𝑦1),… , (𝐱𝑛, 𝑦𝑛)|𝐱𝑖 ∈ R𝐷, 𝑦𝑖 ∈ R}, where
𝐷 is a 𝐷-dimensional real input vector, 𝑦 ∈ R is the corresponding
𝑖
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Fig. B.14. Flowchart of the ASO FS used to select predictands to train the objective
CSVR model.

target value, and 𝑛 is the total number of data patterns, the regression
unction of the SVR model is expressed as follows:

(𝐱) = 𝐰𝑇𝜙(𝐱) + 𝑏 (C.1)

here 𝐰 ∈ R𝐷 is a weight vector, 𝑇 stands for the transpose operator.
he term 𝑏 is a bias, 𝜙(⋅) is a nonlinear transfer function mapping the

nput vectors into a high dimensional feature space.
The slack variables 𝜉𝑖 and 𝜉∗𝑖 are defined to address infeasible con-

traints. The SVR algorithm’s optimization problem can be expressed
sing Eq. (2):

ubject to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓 (𝐱𝑖) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖
𝑦𝑖 − 𝑓 (𝐱𝑖) ≤ 𝜖 + 𝜉∗𝑖
𝜉𝑖 ≥ 0 𝑖 = 1, 2,… , 𝑛

𝜉∗𝑖 ≥ 0 𝑖 = 1, 2,… , 𝑛

(C.2)

Again, transform the objective function into the unconstrained La-
range objective function as Eq. (C.1):

(𝐰, 𝑏,𝜶,𝜶∗, 𝝃, 𝝃∗, 𝝂, 𝝂∗) = 1
2
𝐰2 + 𝐶

𝑛
∑

𝑖=1
(𝜉𝑖 + 𝜉∗𝑖 ) −

𝑛
∑

𝑖=1
𝜇𝑖𝜉𝑖 −

𝑛
∑

𝑖=1
𝜇∗
𝑖 𝜉

∗
𝑖 +

𝑛
∑

𝑖=1
𝑎𝑖(𝑓 (𝐱𝑖) − 𝑦𝑖 − 𝜖 − 𝜉𝑖) +

𝑛
∑

𝑖=1
𝑎∗𝑖 (𝑦𝑖 − 𝑓 (𝐱𝑖)) − 𝜖 − 𝜉∗𝑖

(C.3)
 𝐾

23
Fig. C.15. Schematic representation of the SVR algorithm showing the slack variable
(𝜉). The mathematical symbols are outlined in Section 2.3 along with the SVR model
equations.

where the Lagrange multipliers are 𝑎𝑖 ≥ 0, 𝑎∗𝑖 ≥ 0, 𝜇𝑖 ≥ 0, and 𝜇∗
𝑖 ≥ 0.

is the punishment factor for the SVR.
Let the partial derivative of Eq. (C.3) be 0 and introduce the solution

ack into Eq. (C.3), the dual SVR algorithm problem can be expressed
y using Eq. (C.4).

max
𝜶,𝜶∗

( 𝑛
∑

𝑖=1
𝑦𝑖(𝑎∗𝑖 − 𝑎𝑖) − 𝜖(𝑎∗𝑖 + 𝑎𝑖) −

1
2

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
(𝑎∗𝑖 − 𝑎𝑖)(𝑎∗𝑗 − 𝑎𝑗 )𝐱𝑇𝑖 𝐱𝑗

)

(C.4)

.t
⎧

⎪

⎨

⎪

⎩

𝑛
∑

𝑖=1
(𝑎∗𝑖 − 𝑎𝑖) = 0

0 ≤ 𝑎𝑖, 𝑎
∗
𝑖 ≤ 𝐶

(C.5)

The dual problem should satisfy the Karush–Kuhn–Tucker condition as
follows:

s.t

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎𝑖(𝑓 (𝐱𝑖) − 𝑦𝑖 − 𝜖 − 𝜉𝑖) = 0

𝑎∗𝑖 (𝑦𝑖 − 𝑓 (𝐱𝑖) − 𝜖 − 𝜉∗𝑖 ) = 0

(𝐶 − 𝑎𝑖)𝜉𝑖 = 0, (𝐶 − 𝑎∗𝑖 )𝜉
∗
𝑖 = 0

𝑎𝑖𝑎
∗
𝑖 = 0

(C.6)

inally, the SVR solution can be expressed using Eq. (C.7),

(𝐱) =
𝑛
∑

𝑖=1
(𝑎∗𝑖 − 𝑎𝑖)𝐱𝑇𝑖 𝐱 + 𝑏. (C.7)

he inner product 𝐱𝑇𝑖 𝐱 can be replaced by the so-called kernel function
(𝑥𝑖, 𝑥) under Mercer’s condition. Therefore, the final form of SVR

unction can be expressed using Eq. (C.8).

(𝐱) =
𝑛
∑

𝑖=1
(𝑎∗𝑖 − 𝑎𝑖)𝐾(𝐱𝑖, 𝐱) + 𝑏. (C.8)

he kernel function, as can be seen from Eq. (C.8), plays a critical role
n the SVR algorithm. In SVR model, polynomial, sigmoid, linear and
adial basis function (RBF) can be used as kernel function. In this study
BF kernel function was chosen because of its a) capability of modeling
onlinear relationships by mapping data points from the input space
nto a high dimensional feature space in a nonlinear fashion, (b) com-
are to polynomial and sigmoid kernels, RBF needs less customizable
arameters, making it straightforward and functional (Keerthi and Lin,
003) and (c) RBF’s superior performance has been demonstrated in
everal literature (Keerthi and Lin, 2003; Dibike et al., 2001).

The kernel function RBF is expressed as Eq. (C.9):

(𝐱 , 𝐱) = 𝑒−
−‖𝑥𝑖−𝑥‖2

2𝜎2 (C.9)
𝑖
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where 𝜎 is variance and ‖𝐱𝑖 − 𝐱‖ is the Euclidean distance (𝐿2-norm)
between two points 𝐱𝑖 and 𝐱.

𝐾(𝐱𝑖, 𝐱) = 𝑒−𝛾‖𝐱𝑖−𝐱‖
2 (C.10)

he RBF Kernel Support Vector Machines has two hyperparameters
ssociated with it, 𝐶 for SVR and 𝛾 for the RBF Kernel. Here, 𝛾 is

inversely proportional to 𝜎 and can be expressed as below.

𝛾 = 1
2𝜎2

(C.11)
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