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Abstract

In this work we study some algebraic and analytical properties of the orthogonal
polynomials in d real variables x = (x1,xs,...,z4) with respect to the continuous-
discrete Sobolev inner product:

k—1

(f.9)g =c / VEF(x) - VRgOW (x)dx + 3 AV (p) - Vig(p).

=0

where W is a non-negative weight function on the domain  C R% X\; > 0 for i =
0,1,....,6— 1, ks €N; p = (p1,p2,...,pa) is a given point in R%; Vif i=0,1,...,k,
is a column vector of size d* which contains all the partial derivatives of order i of f;
and c is the normalization constant of W:

¢ = (/Q W(x)dx) o

We consider the Sobolev polynomials on different domains, namely: a product domain
Q = [ay,b1] X [ag,bs] X + -+ X [ag, bg], where [a;,b;], 1 < i < d, is an interval of the
real line; the unit ball Q = B? := {X ERY:z?+ a3+ - +22 < 1}; the simplex
Q=T!:={xeR":2;>0,...,24 > 0,21+ 22+ -+ x4 < 1}; and the cone Q =
Vé = {xeR':iai+al+ - +a3 <a23,0<z,<9}, 0 < ¥ < oo. Our main
results consist of an iterative method for constructing the polynomials with respect
to (-,-)g, properties that involve the main (continuous) part of this inner product, a
connection formula, and some results on partial differential equations. In order to
illustrate our main ideas, at the end of this work we present some numerical examples
in two variables. In addition, we discuss some open problems.

Key words: orthogonal polynomials, Sobolev polynomials, polynomials in several
variables, inner products, Sobolev inner products, differential equations, partial dif-

ferential equations.

Mathematics Subject Classification (2020): 33C45, 33C47, 33C50, 42C05



Resumen

En este trabajo estudiamos algunas propiedades algebraicas y analiticas de los poli-
nomios ortogonales en d variables reales x = (z1, xs, ..., x4) con respecto al producto
interno Sobolev continuo-discreto:

k—1

(Fahs = [ V500 VW (x)dx + 3 AT (B) - V'o(p).

donde W es una funcién de peso no negativa sobre el dominio @ C R% X\, > 0
parai = 0,1,...,5s — 1, s € N; p = (p1,p2,...,pa) s un punto dado de R?; Vif,
i=0,1,...,K, es un vector columna de tamafio d* que contiene todas las derivadas
parciales de orden ¢ de f; y ¢ es la constante de normalizacion de W':

¢— (/Q W(x)dx) -

Consideramos los polinomios Sobolev sobre diferentes dominios, a saber: un dominio
producto = [ay, b1] X [ag, bg] X -+ - X [ag, byg], donde [a;, b;], 1 < i < d, es un intervalo
de la recta real; la bola unitaria Q = B? := {X ER:a?+ a3+ +22 < 1}; el
simplex Q = T¢ := {x € R?: 21 >0,...,24> 0,21 + 22+ -+ 24 < 1}; y el cono
Q=V) ={xeR:af+ad+ +2F,<22,0<2,<V}, 0 <9 < oo. Nue-
stros principales resultados consisten en un método iterativo de construccién de los
polinomios ortogonales con respecto a (-,-)g, propiedades que involucran su parte
principal (continua), una férmula de conexién, y algunos resultados sobre ecuaciones
diferenciales parciales. Con el fin de ilustrar nuestras principales ideas, al final de este
trabajo presentamos varios ejemplos numéricos en dos variables. Ademas, discutimos
algunos problemas abiertos.

Palabras clave: polinomios ortogonales, polinomios Sobolev, polinomios en varias

variables, productos internos, productos internos Sobolev, ecuaciones diferenciales,
ecuaciones diferenciales parciales.
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Introduction

The theory of standard orthogonal polynomials in one and several variables is well
established and documented in several books, for example, Dunkl and Xu [44] and
Szegd [111]. Properties like the three-term relation, the Favard’s theorem, or the
Christoffel-Darboux identity and their importance for the study of this kind of poly-
nomials (for example, their zeros) are well known. Conversely, orthogonal polynomials
with respect to inner products that involve derivatives are called Sobolev orthogonal
polynomials. The non-standard character of these inner products makes their study
more difficult, mainly because the three-term relation no longer holds. The lack of
this tool has motivated the study of new tools and techniques in recent years. As a
result, the theory of Sobolev polynomials is non-uniform and fragmented [86].

Sobolev orthogonal polynomials in one variable have been studied since the decade
of the 60s when the first paper was published on this topic due to Althammer [7].
This first paper was motivated by an optimization problem which was proposed by
Lewis [73] in the 40s. In the last 30 years a big number of publications have appeared.
Some authors worked on properties like asymptotic behavior [11] and zeros [33, 34] of
those polynomials. On the other hand, some applications have been considered, for
example, electrostatic models [35, 40] and generalizations for higher-order derivatives
(38, 95]. On the subject of differential equations, it is well-known that the classical
orthogonal polynomials are eigenfunctions of a second-order differential equation. Or-
thogonal polynomials which are eigenfunctions of a fourth-order differential operator
were classified by Krall [67] in the 40s, and some higher-order cases were studied by
Koornwinder [65] and Krall [66] in the 80s. In two and several variables, a similar
problem was considered by Fernandez, Pérez, and Pinar [50] and Martinez and Pinar
[87]. A classification of the so-called admissible equations in two variables was made
by Krall and Sheffer [68] in the 60s. In the multivariate case, there are well-known
results on second-order partial differential equations for which orthogonal polynomi-
als are eigenfunctions [44]. These cases include polynomials on product domains,
the unit ball, and the simplex. Most of these results in the theory of orthogonal
polynomials have helped to find differential equations that are satisfied by families
of Sobolev polynomials in two and several variables (see, for example, [72, 99, 113]).
Therefore, a very interesting question is to find new differential operators for Sobolev
polynomials derived from the existing ones. We remit the reader to a detailed survey
on Sobolev orthogonal polynomials by Marcellan and Xu [86], and other references
by Meijer [92] and Martinez-Finkelshtein [88, 89] who give the state of the art on this
topic.
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In contrast to one variable, the study of Sobolev orthogonal polynomials in several
variables is most recent. The tools and techniques for studying this kind of polyno-
mials are even fewer than in one variable. We refer some studies [23, 30, 32, 36,
94, 98, 99, 112, 113] on the unit ball B := {x € R?: 2? + 23+ .-+ 23 <1}, on
the unit sphere S ! := {x ERY i+ ad+ - +ad= 1}, on the simplex [2, 114]
T¢ .= {xeRd::cl >0,292>0,...,04 20,21 +22+ -+ 14 < 1}, and on a prod-
uct domain [ay, by] X [ag, ba] X - -+ X [ag, bg] [41, 49]. Most of the results were obtained
in two variables where the inner products involved only first-order derivatives [18].

In the case of the ball and the sphere, several results provided an explicit basis for
the spaces of orthogonal polynomials with respect to Sobolev inner products defined
on B? and S%!, or they provided an approximation to functions on these domains.
For example, Xu [112] constructed the orthogonal polynomials with respect to certain
Sobolev inner product on B? which introduced the Laplacian operator /\. This study
was motivated by a paper due to Atkinson and Hansen [13|, where the same inner
product was found for two variables in the numerical solution of the Poisson equation
—Au= f(-,u). Xu [113], motivated by a problem related to dwell time for polishing
tools in fabricating optical surfaces, constructed the orthogonal polynomials with
respect to an inner product involving the gradient operator V on the unit ball. Pérez,
Pinar, and Xu [98] showed a similar work in this way. Pinar and Xu [99] studied a
partial differential equation with Sobolev orthogonal polynomials as eigenfunctions
involving the operators /A and V. The approximation by polynomials on the sphere
and the ball was studied by Dai and Xu [23], and asymptotic properties on B? were
studied in [30, 32, 36, 94].

We found just a few studies of Sobolev orthogonal polynomials on the simplex T¢
of RY, and on a product domain [ay, b1] X [ag, by] X « -+ X [ag, bg]. Xu [114] considered
approximation problems and orthogonality on the triangle T?. Aktag and Xu [2]
analyzed the orthogonal polynomials on the simplex with special attention to those
on the triangle T?. Recently, Fernandez, Marcelldn, Pérez, Pifiar, and Xu [49] studied
the Sobolev orthogonal polynomials in two variables on the product domain 2 =
la1, b1] X [ag, by] with respect to the inner product:

(f.g)s = ¢ / Vf(a,y) - Voo, )W (e, y)dedy + A (prpo)gprps), A> 0. (1)

Following a similar strategy, Duenas, Pinzén-Cortés, and Salazar-Morales [41] re-
placed in (1) the gradient operator V = (9,,9,)", where T represents the transpose
operator, by the gradient of order two V? = (9, Ozy, Oya, Oyyy)' and the corresponding
Sobolev orthogonal polynomials were discussed.

In d real variables x = (1, xs,...,24) our general study of the orthogonal poly-
nomials with respect to the Sobolev inner product:

k—1

(fr9)s = C/Q Vo f(x) - Vig(x)W (x)dx + Z NV f(P)-Vig(p), Xi>0, (2)

started in [42] on a product domain of the form Q = [ay, b1] X - - - X [aq, bg], where [a;, b;]
is an interval of the real line. As mentioned above, in [41, 49, 101] some particular
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studies for specific weights W appeared for the cases d = 2 and k = 1,2,3. In the
present work we study some algebraic and analytical properties of the orthogonal
polynomials with respect to (2). We also consider other domains like the simplex
Q) = T<, the unit ball Q = B? and the cone Q = V¢. For some of these domains and
specific weights we provide some results on partial differential equations. As far as we
know, no other studies in several variables regarding this type of continuous-discrete
inner products have been reported in literature.

In contrast, in one variable inner products of the form (2) were studied in [3, 6,
8, 47, 48, 57, 70, 71, 75, 97, 105-108, 114] to name just a few. Pérez and Pinar
[97] proved that the monic generalized Laguerre polynomials, with arbitrary param-
eter a € R, are orthogonal with respect to a Sobolev inner product which involved
higher-order derivatives. These authors also observed that if a € {—1,—-2,-3,...}
then the inner product reduced to the continuous-discrete case studied by Kwon and
Littlejohn [70], which had the same form as (2). Therefore, the paper [97] contains
a generalization of the results in [70]. These generalized Laguerre polynomials with
negative integer parameter were also studied in [47, 48] in spectral theory. Kwon and
Littlejohn [71] studied some particular cases of (2) with first-order derivatives and
classical weights, with additional attention to differential equations. Alfaro, Pérez,
Pinar, and Rezola [6] presented a more general study of the orthogonal polynomi-
als with respect to a bilinear form which had the same form as (2). These authors
provided examples, which included the classical cases with negative parameters: La-

guerre polynomials {LSJN)(:U)} , and Jacobi polynomials {Pn(fN’ﬁ ) (a:)} and
n>0 n>0

{PT(LO"_N)(x)} , with 8+ N and a + N not being a negative integer and N being a
>0

natural number. Alfaro, Alvarez de Morales, and Rezola [3] and Alvarez de Morales,
Pérez, and Pinar [8] studied the remainder cases of the Jacobi and Gegenbauer poly-

nomials {C’,EfNH/ 2)(:1:')} , with N a natural number. A similar study in a general
n>0

setting, but only with first-order derivatives, was presented by Jung, Kwon, and Lee
[57]. Li and Xu [75] and Xu [114] defined the generalized Jacobi polynomials and
they proved that these polynomials are orthogonal with respect to an inner product
of the form (2). These authors used some of theirs results in one variable for studying
Sobolev polynomials in several variables on the unit ball and on the triangle. Shara-
pudinov [105-108] studied the Sobolev polynomials with respect to an inner product
of the form (2) in the spectral theory for solving differential equations, with special
attention to the Chebyshev, Legendre, and Gegenbauer cases.

This document is organized as follows. In Chapter 1 we present some basic back-
ground on standard orthogonal polynomials in one and several variables. In Chapter 2
we provide a state of the art on Sobolev polynomials in one and several variables.
Our main results are presented in Chapter 3, namely, an iterative method for con-
structing the orthogonal polynomials with respect to (2), properties that involve the
main (continuous) part of this inner product, a connection formula, and some results
on partial differential equations. In order to illustrate our main ideas, in Chapter 4
we present some numerical examples in two variables. In addition, in Chapter 5 we
state some open problems derived from the present work.



Chapter 1

Basic background

In this chapter, we introduce notation and basic background concerning standard
orthogonal polynomials in one and several variables. The results in this chapter are
well-known and they can be found in classical references by Chihara [21], Dunkl and
Xu [44], and Szego [111]. Complementary material is due to Abramowitz and Stegun
[1], Dai and Xu [24], Duistermaat and Kolk [43], Saint Raymond [100], and Xu [115].

1.1 Notation

We use the usual symbols N, Z, Q, R, and C for the natural, integer, rational, real
and complex numbers, respectively. We also denote by Ny the set Ny := N U {0},
and by Ry and R_ the sets Ry :={x € R: 2 >0} and R_ :={z € R:2 <0}. All
functions in this work are real valued. We use the symbols 0,,, and (x), for the
Kronecker delta and the Pochhammer symbol, respectively, which are defined by:

1, n=m
5n,m = ’ 7 n7m627
0, n#m,

1 2).-- —1 >1
(2), = x4+ 1) (z+2)--(z+n—-1), n>1, t€R. neNy
1, n =20,
For n € Ny, we denote by n! the factorial of n which is given by n! = (1),. Also, we
denote by I'(z) the gamma function which is defined by the integral:

[(x) :/ e 't ldt, x>0,
0

This function satisfies the well-known property I'(z + 1) = zI'(x), x > 0. And more
generally, for n € Ny and > 0 the equation I'(z + n) = (z),['(x) holds. This last
relation is used for extending the gamma function to the set R_\ {0, —1,—2,-3,...}
by the equation I'(x) :=I'(z +n)/(x),, —n <z < —n+ 1, n € N. Two well-known
values of T are I'(1/2) = /m and I'(1) = 1. See Abramowitz and Stegun [1, Chapter 6]
for more properties.



1.2. Orthogonal polynomials in one variable 2

Let d € N. If @ = (o, 9, ..., aq) € NE, is a d-tuple of non-negative integers oy,
we call @ a multi-index for which |a| := a; + as + -+ + ag. We say a < 3, where «
and (8 are both multi-indices, if o; < 3; for all i = 1,2,...,d. We denote by a! and
0,5 the symbols

al == ailag! -+ - ay!, 00,8 = 0oy 810028, ** Oay B>

and if § < « then

(5)= () () ()

where

n n!

If x = (21, 29,...,74) € R? then (x), denotes

(X)a = (1)1 (T2)as *** (Ta)ay-
Associated with x € R?, for each i define by x; a truncation of x, namely,
xg:=0, x;=(r1,29,...,2;) € Ri, 1 <¢<d.

Notice that x; = x. For two (row or column) vectors x and y, we use the usual
notation of x -y and ||x| to denote the dot product x -y = 3¢ z;5; and the
Euclidean norm |[|x|| = v/x - x.

If v is a multi-index, and if 9f" := 0% /0x;" denotes the a;-th partial derivative
with respect to z; for 1 < ¢ < d, then 0% := 0052 ---0y* denotes a differential
operator of order |a| where 9%y := u. For one variable, we use the usual
symbols du/dx, d*u/dz?, d*u/dx® (or ', u”, u™) for the first, second, third derivative
with respect to z, respectively, and d"u/dxz™ (or u™) for higher-order derivatives. For
later use, we define the following differential operators:

Ai = 28]2, V, = (81,82,...,82')T, <X;F,Vl> ::ij(?j, 1 SZSCZ,
j=1

j=1

where T' is the transpose operator. When ¢ = d, we drop the subscript and we write
A =Ny, V=V and (x7,V) = (x},V,) instead’. The operators A and V are

known as Laplacian and gradient, respectively.

1.2 Orthogonal polynomials in one variable

Let x € R and n € Ny. We denote by 2" a monomial of degree n. A (real) polynomial
p of degree n in one variable z is a finite linear combination of monomials of the form

1Some authors use the notation (x, V) when V is defined to be a row vector.
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p(x) = cpr™ +cp 12"+ -+ 1w+ g, ¢ # 0, where ¢;, 0 < @ < n, is a real number.
The number ¢, is called the leading coefficient. If ¢, = 1 the polynomial is said to
be monic. Sometimes we use the notation degp to denote the degree of p. Let II
denote the linear space of polynomials with real coefficients on the real line and, for
n = 0,1,2,... let II,, denote the linear subspace of polynomials of degree at most
n. A basis of II,, is the set {1, 2,22, ..., 2"}, which is known as the canonical basis.
Then dimII,, = n + 1.

Let (-,-) be a symmetric bilinear form? defined on II. Tt is an inner product if
(p,p) > 0 for all non-zero polynomial p € II. A sequence of polynomials {p,},~, is
called an orthogonal polynomial sequence (OPS) with respect to (-, -) if: -

1. degp, =n,
2. (pn,Pm) = 0if n # m, and

3. <pnapn> 7é 0,n>0.

If {pn}n20 is an OPS for (-, -) and, in addition, we also have (p,,p,) =1, n > 0, then
the sequence is said to be orthonormal.

Let
(1,1)  (1,z) --- (L,z™)
M, — <[E,1> <ZL‘,CL’> <CL’,[E > ’ n>0.
(x”‘, 1) <x”', x) - (x",‘ ™)

If (-,-) is an inner product, then M,, is definite positive, that is, det M,, > 0 for
every n € Ny. If det M,, # 0 for all n € Ny then a sequence of monic orthogonal
polynomials exists. In this case, the monic sequence is given by po(z) = 1 and

(1,2")
(z,2")
1 Mnfl
(1) = ———— det : , > 1.
Pal®) = qopp, R n >
"
1 2 - a7t "

If the multiplication operator is a symmetric operator with respect to (-, -), that is,

(zp.q) = (p,zq), p,qell, (1.1)

then there exist constants b, and ¢, # 0 such that the monic OPS {pn}n20 satisfies
the three-term recurrence relation:

TP (T) = prs1(z) + bupn(z) + capna(x), n >0, p_i(z):=0.

2In a more general setting, the theory of (real) standard orthogonal polynomials in one variable
can be described in terms of a linear functional £ : IT — R. In this work, we restrict our study to
bilinear forms in order to get concrete results for particular domains and weight functions. A similar
comment applies for orthogonal polynomials in several variables. See [21, 44, 111] for more details
of the general theory.
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On the other hand, K, (z,y), the n-th reproducing kernel associated with {p,}, - is
defined by: -

il
Z pkapk

k=0

The three-term recurrence relation implies a closed formula for computing K, (z,y)
in terms of p,1 and p,, the so-called Christoffel-Darboux identity:

L Para(@)pa(y) = pa(@)pna(y) Ly

pk _ < n; n) €L — 7 ’
; o) = )| Paa()pal) = Ph(@)pus (@)

(Dns Pn)

Then, the three-term recurrence relation plays an important role in the study of
standard orthogonal polynomials. Conversely, in the theory of Sobolev polynomials
the condition (1.1), in general, is not satisfied. This fact makes the study of these
non-standard polynomials more difficult, mainly because the three-term relation no
longer holds. The lack of this tool has motivated the study of new techniques in
recent years.

) L=y

1.2.1 Classical orthogonal polynomials

These polynomials are associated with inner products that involve the following
weight functions:

1. Hermite: w(z) = e, z € (—o0, ),

2. Laguerre: w,(z) = 2% ", a > —1, z € [0, 00),

3. Jacobi: wap(x) = (1 —2)*(1+ ), a,b> -1, x € [-1,1].

In the last case, the well-known families of Legendre (a = b = 0), Tchebichef (first
kind a = b = —1/2, second kind a = b = 1/2), and Gegenbauer (a = b) polynomials
are renormalizations of the Jacobi polynomials for particular values of the parame-
ters® @ and b. There is another family which satisfies many properties of the classical
orthogonal polynomials: the so-called Bessel polynomials. They are orthogonal with
respect to a weight function defined on the complex plane. This case involves com-
plex variable and integration on the unit circle {z € C: |z| = 1}. Therefore, these
polynomials are not considered in this work. See Chihara [21, Chapter 6] for more
details.

There are several characterizations of classical orthogonal polynomials but we will
present only the most basic facts concerning them. For example, the polynomials in
each classical family are eigenfunctions of a second-order linear differential operator
with polynomial coefficients, and also, they can be expressed by a Rodrigues’ formula.
For more properties see Szego [111, Chapters 4 and 5] and Chihara [21, Chapter 5].

3In the references is usual to find a and 3 to denote the parameters of the Laguerre and Jacobi
polynomials. In this work we reserve greek letters for denoting multi-indices.



1.2. Orthogonal polynomials in one variable )

Hermite polynomials The monic sequence {H,(z)},, of Hermite polynomials is
orthogonal with respect to the inner product:

n!

1 > 2
H, H,) =— H,(z)H dr = — =0,1,2,3,...
(Hy ) = 5= [ @) B () e = S, mm = 01,23,

which is normalized such that (1,1) = 1. This monic sequence satisfies the three-term
recurrence relation:

Hn+1(x) = :UHn(m) - an,1($), n > 17 Ho(l’) = 17 H1($) =Z.
Also, these polynomials satisfy the second-order linear differential equation:
y' =22y +2ny =0, y=Hy,(x), (1.2)

that is, these polynomials are eigenfunctions of the second-order differential operator
‘H given by:

d? d
Hy = —2ny, H:= i QxE, y = H,(z). (1.3)

For more properties and relations see Szegé [111, Section 5.5].

Laguerre polynomials The monic sequence {L,(f) (93)} , a > —1, of Laguerre
n>0

polynomials is orthogonal with respect to the inner product:

1 [e.e]
<L£L“), Lﬁfl‘)> = ) / L (2) L\ (z)2% %dx = n!(a+1)pbpm, n,m=0,1,2,...
0

Fa+1

which is normalized such that (1,1) = 1. This monic sequence satisfies the three-term
recurrence relation:

Lﬂl(x) =(r—-2n—a-— 1)L,(1“)(:1:) —n(n+ a)lea_l(:v), n>1,

Also, these polynomials satisfy the second-order linear differential equation:
2y’ +(a+1—2)y +ny=0, y=LY), (1.4)

that is, these polynomials are eigenfunctions of the second-order differential operator
L, given by:

2

d d
Loy=-ny, Ly=x—+(a+1-—2)

— L9 (). 1.
T o v=L7) (1.5)

For more properties and relations see Szegé [111, Section 5.1].
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Jacobi polynomials The monic sequence {P,ga’b)(:v)} , a,b > —1, of Jacobi
>0

n>
polynomials is orthogonal with respect to the inner product:

[(a+0b+2) !
plab) plab)y — / P (2) P (2)(1 — 2)(1 + 2)°d
< n rTm > 2a+b+1r(a 1)F(b 1) _1 n (l’) m (l’)( .CE) ( .CE) T

_ 4"(a+ 1) (b+ 1),
(n+a+b+1)(a+b+2),

Oopm, mn,m=0,1,2,3,...,

which is normalized such that (1,1) = 1. This monic sequence satisfies the three-term
recurrence relation:

2 _p2?
P(ayb) _ a P(avb)
1 (T) <x+(2n+a+b)(2n+a+b+2) )
) dn(a+n)(b+n)(a+b+n) PV (x), n>1,
2n+a+b-1)2n+a+b)>22n+a+b+1)
—b
plad iy 1 pleb .y = —
o (x) =1, P7(x) a2

Also, these polynomials satisfy the second-order linear differential equation:
(1=2")y" +b—a—(a+b+2)aly +n(n+a+b+1)y=0, y=P""(z), (16)

that is, these polynomials are eigenfunctions of the second-order differential operator
Jap given by:

Ty =-—n(n+a+b+ 1)y, y=P"(2),

2 (1.7)

d d
- _ 2 —q — —
TJop =1 —x >dx2 +b—a—(a+b+ 2)x]d$.

For more properties and relations see Szeg6 [111, Chapter 4].

1.3 Orthogonal polynomials in several variables

Let d € N. If a is a multi-index and x = (x1,79,...,24) € R? we denote by

x® the monomial z{"'z5?--- 25" which has total degree |a| = a3 + a2 + -+ + ag.
Similarly, (x —y)® denotes the shifted monomial (xy —y1)* (2 —y2)** - - - (Xg — ya)*.
A polynomial P in d real variables x1,xs,...,24 is a finite linear combination of

monomials in the form P(x) =) ¢,x“, where ¢, is a real number. The total degree
of P is defined as the highest degree of its monomials. We denote the linear space
of polynomials in d variables by II¢, and the subspace of polynomials of degree at
most n by I19. When d = 1, we drop the superscript and we write IT and II,, instead.
A basis of I1¢ is the set {x® : |a| < n}, which is known as the canonical basis. It is
known [44] that:

dim I1¢ = ntd
n n *
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A polynomial P € TI¢ is said to be monic if it is of the form P(x) = x® + Q(x), with
Q€ Hg—lﬂ |a| =n.

A polynomial is called homogeneous if all its monomials have the same total
degree. We denote by 2% the linear space of homogeneous polynomials of degree n

in d variables, that is,

P = PGH;‘i:P(X):z:caxCY

n

laf=n

A basis of 222 is the set {x* : || = n}, hence, dim ¢ = # {a € NJ : |a| =n}. It is
known [44] that:

rd .= dim 2% = (n+d—1)
n n n ‘

Let (-,-) be a symmetric bilinear form defined on II%. It is an inner product if
(P, P) > 0 for all non-zero polynomial P € II1%. Two polynomials P and @ are said
to be orthogonal to each other with respect to the bilinear form if (P,Q) = 0. A
polynomial P is called an orthogonal polynomial if it is orthogonal to all polynomials
of lower degree, that is, if (P,Q) = 0 for all Q € II¢ such that deg@ < deg P. We
denote by #¢ the linear space of orthogonal polynomials of degree exactly n with
respect to (-, ), that is,

Kl={Pell: (P,Q)=0,vQ cll;_,}.

When (-, -) is defined in terms of a weight function W, we write ¥,¢(W). It is known
[44] that:
—1
dim%dzrg:(n_l_d )

n

Since r! = #{a € N{:|a] =n}, it is natural to use a multi-index to index the
elements of an orthogonal basis of ¥/¢. Let {P" : |a| = n} denote a basis of ¥/¢. If
the elements of the basis are orthogonal to each other, that is, <Pg, Pg> = 0 whenever
a # 3, we call the basis mutually orthogonal. A basis is said to be monic if each P
is a monic polynomial. If, in addition, (P?, P?) = 1, we call the basis orthonormal.
It is common to write a basis {P" : |a| = n} of ¥¢ as the column vector:

T
P, (x) := <P2<1> (%), Pry (%), - - "Pf<r%><x)) ’

where a,a® ... o™ is the arrangement of elements in {a eNd:|a| = n} ac-
cording to the reverse lexicographical order*. We will say that {Pn},50 18 an ortho-
gonal polynomial system (OPS). With this notation, the orthogonality of {P,}, -,

4Sometimes the lexicographical order is used (see [44, page 61]). In this work we use the reverse
lexicographical order as usual in literature.
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can be expressed as (P,,PL) = 0 if n # m, and (P,,P!) = H,, where H, =

<<P§(i), PC’;‘(J-)>>7T"'_1 is a symmetric non-singular matrix of size r;il X rj. In addition,
H,, is positive cijeﬁnite if (-,-) is an inner product.
T
Let X, := <X°‘<1),x°‘(2>, o 7X&‘*) and let
<XO7X(7;> <X07X,{> e <XO7XZ>
M, = <X1’,Xg> <X1’_X1T> N <X1’_X£> . n>o0

We call M, ; a moment matrix, and its elements are (x*,x?) for || < n and |3] < n.
This matrix preserves several properties like in the univariate case. If (-, -) is an inner
product, then M,, 4 is definite positive, that is, det M,, 4 > 0 for every n € Ny. If
detM,, 4 # 0 for all n € Ny then a sequence of monic orthogonal polynomials in
several variables exists. This monic sequence is given by PJ(x) = 1 and

<XU7XQ>
<X17Xa>
1
P(;L(X) = d tM— det Mn—l,d , |Cy| =n>1.
€ n—1,d
7 <anlax >
XT XTI . XTI, X

As in the univariate case, if the multiplication operator is a symmetric operator with
respect to (-, ), that is,

(2;P,Q) = (P,z,Q), P,Qell’, 1<i<d, (1.8)

: ~ : d o d d o d d o pd
then there exist matrices A, ;, B,; and C,,;, of sizes ry, X ry,_, ry X 1y, and 75, X 1, _y,

respectively, such that {P,}, ., satisfies the three-term relation:
[L’l]Pn(X) = An7iPn+1(X)+Bn7iPn(X)+Cn7iPn,1(X), n > O, 1 < 1 < d, ]P,1 = 0.

The matrices A, ;, B, ; and C,,; have several additional properties that can be found
in [44, Sections 3.3 and 3.5].

On the other hand, K, (x,y), the n-th reproducing kernel associated with {P,}
is defined by:

n>0

Ku(x,y) = > PL(x)(He) 'Bi(y), xy€R"
k=0

It is known [44, Theorem 3.6.1] that K,(-,-) depends only on ¥ rather than a
particular basis of #%. Therefore, it is usual to work with an orthonormal basis of
¥, for which Hy, = I,4, the identity matrix of size r{ x r{. In this case K,(-, ) takes
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a simpler form. The three-term relation implies that the corresponding Christoffel-
Darboux identity for several variables is:

K, (x,y) = Z PL (x)(Hy) "' Pr(y)

) _[AN,iPn-i-l(X)]T(Hn)1Pn(z?__fg(x)(Hn)1[An,ipn+1(}’)]7 x4y,

PZ(X) (Hn)_l[An,iaiPn-I-l (x)] = [AniPnia (X)]T(Hn)_laipn(x)7 X=Y.

Even though for each of the above formula the right-hand side seems to depend on 1,
the left-hand side shows that it does not.

The three-term relation is essential in understanding the structure of standard
orthogonal polynomials in several variables. The lack of (1.8) (and consequently of
the three-term relation) in the theory of Sobolev polynomials has motivated new tools
and techniques for this type of non-standard polynomials.

1.3.1 Orthogonal polynomials on product domains
We consider the product domain:
Q= [ay, b1] X [ag, bg] X -+ X [ag, by],

where [a;,b;], i =1,2,...,d, is an interval of R, and where |a;| and |b;| can be infinity.

Let w;(z;) be a non-negative weight function defined on the interval [a;, b;], i =
1,2,....d, . Let {po(wi;x;)},~0. 1 < i < d be a sequence of polynomials that are
orthogonal with respect to w;, that is,

b;
(P D), = / Do (2) Do (220523 = o (03) S

b; -1 (19)
¢ = (/ wz(xz)dx,> ,
where h,,(w;) is the L? norm:
hi(Wi) == (Pn, Pu), » (1.10)

and ¢; is the normalization constant of w; such that (1,1), = 1.
Let W be the product weight function:

W(x) = wy(x)wa(xs) - we(zy), x= (ml, To, ... ,xd) € Q, (1.11)

and the inner product:

gy =c [ FGow e, o= ( [ W(x)dx)_l, (1.12)
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where ¢ is a normalization constant of W such that (1,1);, =1 and dx = dx; - - - dzq.
We denote by #¢(W) the space of orthogonal polynomials of total degree n in d
variables with respect to (1.12), and by || - lw := /(- )y, the norm induced by the
inner product (-, -);;,. Notice that if ¢; is given in (1.9), then c in (1.12) can be written
as ¢ = c1¢y - - - ¢4. 'The product structure implies that:

P (W;x) := pa, (W1; 21)Day (W25 T2) - - - Py (Wa; ), o € Ng, la] =n, (1.13)

is an orthogonal polynomial of degree |a| = n with respect to W on the product
domain 2. We have the following proposition for the polynomials in (1.13).

Proposition 1.1. [/4, Theorem 5.1.1] Forn =0,1,2, ..., the set {P2(W) : |a|] = n}
is a mutually orthogonal basis of ¥,4(W). More precisely,

<P27PEn>W = ha(W)ba.p,
where, with hy,(w;) given in (1.10),
ho(W) = ha, (w1)hay (w2) - - - ho, (W4). (1.14)

From Proposition 1.1 it follows that if the polynomials p,, (w;) are orthonormal
(ha,; (w;) = 1) with respect to w; for each ¢ = 1,2,...,d then the polynomials P!(W)
in (1.13) are also orthonormal with respect to W. In addition, if the polynomials
Pa, (w;) are monic for each ¢ = 1,2, ..., d then the polynomials P (W) are also monic,
that is, P*(W) is of the form P*(W;x) = x* + Q(x), with Q € II¢_ .

In a matrix form,

T
Bt - ({720, )
W/ ici<rda<j<rd,

is matrix of size 74 x rf, such that (P,,PL), = 0if n # m and (P,,PL) = HY
where

H" = diag <ha(1>(W), hoo (W), . .. ,ha(rﬁ)(W))

is a diagonal positive definite matrix. Since det HY = Hil how (W) > 0, it follows
that HY is a non-singular matrix.

Several examples of polynomials on a product domain can be obtained from well-
known families of orthogonal polynomials on the real line. Next, we show some
important examples obtained from the classical orthogonal polynomials. See [44,
Sections 5.1.3 and 5.1.4] for more details.

1.3.1.1 Multiple Hermite polynomials

The multiple® Hermite polynomials are orthogonal on the product domain R¢ with
respect to the product weight function:

_xp2 2 _ 2 _ 2
WH(X):e ‘rle x?...e xd:e ||X||’ XeRd7

>The word multiple was extracted directly from Dunkl and Xu [44, pages 139-141].
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that is, with respect to the inner product:

(s g)yn = c Rdf(X)g(x)e—HXHde’ . (/Rd e—xQdX) _ # L15)

From Proposition 1.1, a monic mutually orthogonal basis of #4(W), the space of

orthogonal polynomials with respect to (1.15), is given by {PS(WH ) ol = n}, where

PS(WHaX) = Hal(l‘l)Hch(l?)"'Hozd(xd)a |O[| =n,
a! (1.16)

(W) = [P = 5

and where H,,(z;), 1 <1i < d, is the monic Hermite polynomial of degree «;. The
polynomials in #4(W*H) are eigenfunctions of a second-order differential operator H:

HP = —2nP, PcyiWwh), (1.17)
where
H:=A0-2(x",V). (1.18)

This fact follows from the product structure (1.16) and the differential equation (1.2)
(or differential operator (1.3)) satisfied by the Hermite polynomials.

1.3.1.2 Multiple Laguerre polynomials

The multiple Laguerre polynomials, with parameter n = (91,72, ...,1n4) € R, n; >
—1,1 <4 < d, are orthogonal on the product domain Ri with respect to the product
weight function:

WnL(x) =alle lale ™ gltem M = xle X xe R‘i,

771'>_17 1§Z§d, ‘X’:l'l‘i‘l'z—'—-"—l—xd’

that is, with respect to the inner product:

(f, g>WnL =, g f(x)g(x)x”e—lxldX,

1
1
Cp = / xTe ¥l dx = — )
RS [l T +1)

From Proposition 1.1, a monic mutually orthogonal basis of ”//nd(WnL), the space of
orthogonal polynomials with respect to (1.19), is given by { P}(W,F) : |a| = n}, where

(1.19)

P2WF5%) = Lo @) L) (w) -+ L (za), o] =

o (1.20)
ha(W)) = || P} Hian =al(n+1),, 1=(1,1,...,1),
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and where Lg")(:v,), 1 < i < d, is the monic Laguerre polynomial of degree «;
and parameter 7;. The polynomials in %ld(WJJ ) are eigenfunctions of a second-order
differential operator L,:

L,P=-nP, Pe¥iW)), (1.21)
where
d 82 d 9

This fact follows from the product structure (1.20) and the differential equation (1.4)
(or differential operator (1.5)) satisfied by the Laguerre polynomials.

1.3.1.3 Multiple Jacobi polynomials

The multiple Jacobi polynomials, with parameters ¢ = (¢1,¢a,...,() € RY n =
(M, 7m2, -+, ma) € RY, G,mi > —1, 1 < i < d, are orthogonal on the product domain
-1, 1]d with respect to the product weight function:

d
W, (x) = H(l — )5 (L + )" = (1 —x)°(1 +x)",
=1
x € [-1,1)", Gomi>-1, 1<i<d,

that is, with respect to the inner product:

0z, =con || FOO00(0 =) (14

J (1.23)

B o (G +mi +2)
Com = (/[—md(l —x)S(1+ x)ndx> =11 TG+ DT 1)

=1

From Proposition 1.1, a monic mutually orthogonal basis of “I/nd(WC‘{n), the space
of orthogonal polynomials with respect to (1.23), is given by {PS(W&]n) ol =n},
where
PR (W, x) = BSH™ (1) P () - P (2a), |l = n,

4M(¢+ Daln +1)a (1.24)
(@+C+n+1alC+n+2)2a’ = B

J n
hoz(Wg“,n) = ||Pa ||$/V€:7ﬂ7 =
and where P
parameters (;, n;.
Each polynomial in the basis {Pg(Wan) : |o| = n} satisfies the second-order par-
tial differential equation:

(x;), 1 <i < d, is the monic Jacobi polynomial of degree «; and

d
TenPli == il + G +n; + 1) P, (1.25)

i=1
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where

d d

0? 0
N é‘laﬁag EJm G @+m+m@%ﬁ,<;m> 1, 1<i<d

(1.26)

This fact follows from (1.24) and the differential equation (1.6) (or differential operator
(1.7)) satisfied by the Jacobi polynomials.

Remark 1.1. Notice that equations (1.17) and (1.21) are of the form HP = \,P
and £, P = A\, P, respectively, with n = deg P, and where A, is a number, called an
eigenvalue, which depends on n only. But this is not the case for the Multiple Jacobi
polynomials in (1.25).

1.3.2 Orthogonal polynomials on the simplex

The simplex of R? is the set:

T .= {xERd:wl > 0,29 >0,...,24 > 0,1 —|%] 20}, x| =21 +xo+- -+ 4.

Orthogonal polynomials on the simplex [44, Section 5.3| are orthogonal with re-
spect to the weight function:

W, (x) = a]'a3® o) (1— x|, xeT? ~>-1, 1<i<d+1, (1.27)

where v = (71,72, - - -, Ya11) € R4 is such that v; > —1 fori = 1,2,...,d + 1. That
is, these polynomials are orthogonal with respect to the inner product:

(f.9),:=¢ y f(x)g(x)W,(x)dx, (1.28)

d+1 ’
[IT(v+1)

i=1

-1
D(ly| +d+1
C“:(dw“gﬁ) _Lpl+d+1) V== + v+ + 9401, (1.29)
T

and where ¢, is the normalization constant of W, such that (1, 1) ., = 1. We denote by

¥,4(W.,) the space of orthogonal polynomials in d variables of degree n with respect
o (1.28).

For @ € N¢ and |a| = n, a monic orthogonal basis of ¥,4(W.) is given by the
polynomials:
d + 1 )
VIWysx) = ) (- ”+W< ) II ’” ARLIES (1.30)
0<B<a i=1 )n+|a|

Proposition 1.2. [/4, Proposition 5.53.2] Let V.*(W.,) be defined in (1.30), then the
set {V(W,) : |a| = n} forms a monic orthogonal basis of ¥,4(W.,).
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It is known [44] that the orthogonal polynomials P € ¥,¢(W.) with respect to W,
are eigenfunctions of a second-order differential operator 7., that is,

TP =—n(n+ || +d)P, Pe¥i(W,), A
where
d 5? 9
T, = ;xz(l xZ)ﬁ_x? —2 1<;<dx,x] 0,0z,

+ Z [(vi + 1) = (7] + d + D] %. (1.32)

1.3.3 Spherical harmonics
The unit ball B¢ and the unit sphere S%~! are the sets:
BY:={xeR*: x| <1}, S*':={ceR*:|¢|=1}.

The volume of B? and the surface area of S¢~!, denoted by vol(B¢) and wy_1, respec-
tively, are given [44] by:

Wd—1 w . 27Td/2
d TN T TWd)2)

vol(B?) = (1.33)

A harmonic polynomial P is a homogeneous polynomial that satisfies the Laplace
equation A P = 0 [24]. We denote by #¢ the space of harmonic polynomials in d
variables of total degree n, that is,

Al ={PePlNP=0}.

It is known [24, 44] that:

P g_ (n+d=1\ (n+d-=3
an.—dlm%—< d—l) (d—l .

Spherical harmonics are the restriction of harmonic polynomials on the unit sphere
S9!, In spherical-polar coordinates x = r¢, x € R%, r > 0, £ € ST!, we use the
notation Y'(x) for harmonic polynomials and Y (£) for spherical harmonics. Since
Y € #% is homogeneous then Y (x) = r"Y ().

In spherical-polar coordinates x = 7€, x € R?, r > 0, ¢ € S?!, the differential
operators V and A can be decomposed® as follows [24]:

1 0
V==V +§T§, (1.34)
% d—-10 1
=oet e et 139

6¢ is used in (1.34) instead of ¢7° when V is defined to be a row vector.
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The operators V and A\, are the spherical parts of the gradient and the Laplacian,
respectively. The operator A is the Laplace-Beltrami operator, and it has spherical
harmonics as its eigenfunctions [24, Theorem 1.4.5], that is, for Y € 2%

Ny Y (&) = —n(n+d—-2)Y (), ¢esS (1.36)

Spherical harmonics of different degrees are orthogonal with respect to the inner
product on the sphere [24, Theorem 1.1.2]:

s = —— | F(©)g(©)dw(©). (1.37)

Wd—1 Jsd-1

where dw is the surface area measure. We use the notation {Yl," 1<r < afl} to
denote an orthonormal basis for % with respect to (1.37), that is,

! / YO (E)d(E) = Sumby. (1.38)
Sd—l

Wd—1

1.3.4 Orthogonal polynomials on the unit ball

The orthogonal polynomials on the unit ball B? [44, Section 5.2] are orthogonal with
respect to the weight function:

Wa(x) = (1= [x[I)", xeB’ p>-1, (1.39)

that is, with respect to the inner product:

(£,9),=cu g f(x)g(x)W,.(x)dx, (1.40)
0 im < ) WM(X)dX>_ - Fiﬁj/jrz 2:1)1), (1.41)

and where ¢, is a normalization constant such that (1,1),, = 1. We denote by %,%(W,,)
the space of orthogonal polynomials in d variables of degree n with respect to (1.40).
A mutually orthogonal basis of #,%(W,) is given in terms of the Jacobi polynomi-

als” P{*? and harmonic polynomials.

Proposition 1.3. [/4, Proposition 5.2.1] For n =0,1,2,3,... and 0 < j < n/2, let
{Yynfzj 1<rv< ai_Qj} denote an orthonormal basis of z%’jld_%. The polynomials:

1 ( vn_2l+ﬂ) n—2j
P (Wix) = P 2P = DY) (x), (1.42)
form a mutually orthogonal basis of ¥,2(W,). More precisely,
<P” P’Z@n% = N 1 0n,m05 k00,

j7l/7
B e o .
where by, is given by:

pe D/ 0=+t df2)
e i pw+1+d)2)p—j(n+p+df2)
"Proposition 1.3 assumes that the Jacobi polynomials are non-monic. Therefore, hé‘ , Was com-
puted under this assumption.
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It is known [44, 99] that the orthogonal polynomials P € ¥,%(W,) with respect to
W, are eigenfunctions of a second-order differential operator B, that is,

B,P=-n(n+2u+d)P, p>-1, Pe¥YW,), (1.43)
where
B, = A—(x", V)" — (2u+d) (x", V), (1.44)

Another second-order differential operator D, that appears in literature [44, Sec-
tion 5.2] for which the polynomials P € ¥,%(W,) are eigenfunctions is:

where
d a d a
D, = A—jzla—xjxj 2#"";%8—%] (1.46)

It is not difficult to show that (1.44) and (1.46) satisfy the relation:

B, =D, +2dpZ, T isthe identity operator.

1.3.5 Orthogonal polynomials on a cone

Let us recall that for x € R?, the symbol x; = (21, 79,...,2;) € RY, 1 < i < d, with
xo := 0, denotes a truncation of x. The solid cone® (or simply the cone) of R? is the
set:

Vii={xeR: |xq1]| 24,0 < 2g <V}, 0<9 < o0

If ¥ is finite then we have a bounded cone, otherwise we have an unbounded cone. In
literature [115] we found the cases ¥ = 1 and ¥ = oo as we will show in the sequel.
Orthogonal polynomials on V¢ are orthogonal with respect to the weight function:

Ww,#(x) = (‘r?l - HdeIHQ)’uw(wd)u > _17 X = (xlux% s ,I’d) S Vﬁ? (147>

where w is a non-negative weight function on the interval 0 < x; < ¢, that is, with
respect to the inner product:

(f, g>w,u = Cup a f(x)g(x) Wy, (x)dx, (1.48)

Cop 1= (/d Ww#(x)dX) : (1.49)

8In [115] all the theory on the cone VI := {(x,t) € R¥ : ||x|| < ¢,0 <t < ¥} was presented.
In order to fit notation and theory to d variables, in this work we use the cone V¢, It is just a matter
of changing d 4+ 1 by d.
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and where ¢, , is the normalization constant of W, such that (1,1), , = 1. We

denote by ¥,%(W,,,) the space of orthogonal polynomials in d variables of degree n
with respect to (1.48).

Xu [115] showed that under the change of variables x; 1 = zgy, y € B!, we
have dx4_1 = xff’ldy, and therefore, the following integral formula on the cone holds:

9
f(X)dX = / / f(del, l’d>dXd,1d$d
v Ixa—1l<z4a

/ f T4y, l’d)dydfcd

Bd—1

(1.50)

In particular, by (1.41), (1.49) and (1.50), the normalization constant c,,, is given

by:
can= ([ wtanr ) ([0 1siray)

_ (1.51)

T + d—1 +1 9 1

— (fil 2 ) </ w(md)zzlﬁ-d—ldmd)
7z I'(p+1) 0

Particular examples presented by Xu [115, section 3] for the weight function w include
Jacobi and Laguerre cases:

wap(t) =t"(1—1)° a,b>-1, 0<t<1=4, (1.52)
we(t) =t a>-1, 0<t<oo=41. (1.53)

-1

From (1.51), in these two cases the normalization constants are given in (1.55) and
(1.59), respectively.
1.3.5.1 Jacobi polynomials on the bounded cone (¢ = 1)
The Jacobi polynomials on the cone are orthogonal on the set
={xeR": x| < 24,0 <2y <1}
with respect to the weight function:
Wolyu(x) = (25 — [xaal)'25(1 — 20)", x € VY, a,b,p>—1,

that is, with respect to the inner product:

<f7 g>W&J,b,;L = Cab,p v f(X)g(X)Wz;],b,/L(X)dxv (154)
—1
F(p+E)Ta+b+2u+d+1
Cabpy = / iju(x)dx = d_(iu 2 ) (a a ) . (1.55)
vi 2 D(p+ DI (a+2p0+d)T(b+1)

An orthogonal basis of ¥/ d(WC‘L] ».u)> the space of orthogonal polynomials with respect
o (1.54), is given in terms of Jacobi polynomials in one variable and an orthonormal

basis in d — 1 variables on the unit ball B¢ 1.
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Proposition 1.4. [115, Proposition 3.1] Form =0,1,2,3,..., let
{Pa(W,) ol =m,a e Ng—'}
denote an orthonormal basis of ¥,4~1(W,) on the unit ball B, Define

m,o n—m T4

n (W(;],b“u; X) _ P(2M+2m+a+d—1,b)(1 . 21}1) l‘:in Pocn <Wu; Xd_1> '

Then {ana(iju) ol =m,a € NT',0<m < n} is an orthogonal basis of the
space V,H (W7, ).
There is an important case that arises when the parameter a = 0. It is known

[115, Theorem 3.2] that the orthogonal polynomials P € ¥,#(Wy/, ,) with respect to
W(f b, are eigenfunctions of a second-order partial differential operator Vl;{ > that Is,

Vi.P=-n(n+2u+b+dP, bu>-1, PV W), (1.56)
where?
Vi, = wxa(l— xd)a—Q2 +2(1 — z4) (x3_1, V1) 9 +za Dy — (X5, Vd_1>2
x; Oy
+ (2u + d)i — 2u+b+d+1)(x", V) +(x} 1, Va1). (157

8xd

Remark 1.2. Accordingly with Xu [115, remark 3.1], when the parameter a # 0, the
Jacobi polynomials ()7, , on the cone with respect to WL;I by also satisty a differential
equation, but the eigenvalues depend on both m and n. In this case, %Ld(W(;{ b, u) is
not an eigenspace of such a differential operator.
1.3.5.2 Laguerre polynomials on the unbounded cone (¥ = o0)
The Laguerre polynomials on the cone are orthogonal on the set

VL = {x eR?: ||xq1]| < 24,0 < 24 < 00}
with respect to the weight function:

WE () = (0 — [xalPVafe ™, xe VL, ap> -1,

that is, with respect to the inner product:

<f> g>Wal:# = Ca,u . f(X)g(X)WaL#(X)dX, (158)

v
—1
Cap = (/ qu(X)dX> - Chis o) : (1.59)
v, w2z I(p+ 1)I(a+2u+d)

An orthogonal basis of ”//nd(W(f’M), the space of orthogonal polynomials with respect to
(1.58), is given in terms of Laguerre polynomials in one variable and an orthonormal
basis in d — 1 variables on the unit ball B!,

9The operator V,;],M was written for fitting to our notation. See [115, pages 12-13] for more details.
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Proposition 1.5. [115, Proposition 3.3/ Form =0,1,2,3,..., let
{PI"(W,): |a| =m,a e N;'}

denote an orthonormal basis of ¥4~ (W,) on the unit ball B, Define

n 2u+2m+a+d—1 m m Xd—1
Lm,a(ch:/,L;X) = L;f:z e )(xd) Lq Pa <Wu7 J7_d> .

Then {an,a<Wc£u> ol =m,a e NEHLO<m < n} is an orthogonal basis Of%d(Wf:u>.

As in the Jacobi case, when the parameter a = 0 [115, Theorem 3.4] the orthogonal
polynomials P € ”Vnd(W(fu) with respect to Wy, are eigenfunctions of a second-order
partial differential operator Vf, that is,

VIP=-nP, p>-1, P} (W§,), (1.60)

where!?

0 0
Vﬁ = T4 AN +2 <X§_1, vd71> 8_51:(1 — <X§_1, Vd,1> + (2u +d— .Td)a—xd (161)
Remark 1.3. Accordingly with Xu [115, remark 3.2, when the parameter a # 0, the
Laguerre polynomials Ly, , on the cone with respect to Waf# also satisfy a differential
equation, but the eigenvalues depend on both m and n. In this case, ”Vnd(chu) is not

an eigenspace of such a differential operator.

1.4 Taylor’s formula in several variables

Let us recall that a function u(x) is said to be of class ¢ if it has continuous
derivatives up to order x, and these derivatives do not depend on the order used to
achieve the differentiations. The following classic result known as Taylor’s formula
can be found in [100, Theorem 1.1].

Theorem 1.1 (Taylor’s formula). [100, theorem 1.1] Let u be a €* function defined
on R%. Then for x,y € R%:

ux+y)= Y y—ﬁc‘?ﬁu(x)quzl:%T/Olﬁ(l—t)”_lc‘?ﬁu(quty)dt. (1.62)
Bl=k

The first sum in (1.62) is the well-known Taylor polynomial of degree k — 1 of u
at x € R%, and the second sum is the remainder term.

For our purposes, let p € R? be a fixed point in R?. If P € II? is a polynomial
(a € function) in d variables, we denote by 7% '(P, p;x) the Taylor polynomial of

10The operator Vlf was written for fitting to our notation. See [115, page 15] for more details.
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degree K — 1 of P at p, and by R, (P, p;x) its remainder term. Then by (1.62), and
by setting x = p and y = x — p, we have:

P(x) = T" (P, p;x) + Ru(P, p; %),

where
&
TR L T i
1Bl<k—1 '
x—p)f [
Ri(P,p;x) = Z %/ k(1 —1)""'0°P(p + t(x — p))dt. (1.64)
8= ' 0

A well-known property of the Taylor polynomial (1.63) is that, at the point p € R,
it satisfies:

(0°P)(p) = (°T" 1 (P,p))(P). laf <k -1,
which implies that

(0°R(P,p))(p) =0, o] < -1



Chapter 2

State of the art

Chapter 1 was devoted to the main topics for the so-called standard orthogonal poly-
nomials. In this chapter we focus our attention to a type of non-standard polynomials,
which are known in literature as Sobolev orthogonal polynomials. In contrast to the
standard case, the theory of Sobolev polynomials is non-uniform and fragmented.
This chapter is not comprehensive. Conversely, we only mention some well-known
results in literature and we remit the reader to a detailed survey by Marcellan and
Xu [86], and some other references by Meijer [92] and Martinez-Finkelshtein [88, 89]
who give the state of the art on this topic.

2.1 Sobolev orthogonal polynomials in one vari-
able

Sobolev orthogonal polynomials in one variable have been studied since the decade
of the 60s when the first paper on this topic was published by Althammer [7]. This
first paper was motivated by an optimization problem proposed by Lewis [73] in the
40s. The Lewis’ problem consists in finding a polynomial P,,, of degree at most n,
such that it minimizes:

> [106) - PO Pdan (o),

where ag(z), 1(z), ..., ay(z) are p + 1 monotonic non-decreasing functions defined
for a < o < b, and f is a function of class €7~! over an interval A < z < B, where
A < a < b < B, such that its p-th derivative f®)(x) exists almost everywhere with
respect to «;, and is such that the Lebesgue-Stieltjes integral,

b
/ O ()P dory (1),

exists. More than fifty years have passed and a big number of publications have
appeared. In the next sections we present a survey of some references on Sobolev
polynomials.

21
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2.1.1 First publications on Sobolev polynomials

Initial studies showed that many properties of the standard polynomials were not pre-
served on Sobolev polynomials. Althammer [7], for example, considered the sequence
{Sn(X;2)},,50 of Sobolev-Legendre orthogonal polynomials with respect to the inner
product:

<ﬁms=/}ﬂ@ﬁ@m+k/}f@M@M% ) 2.1)

This author gave an example in which dz is replaced in the second integral of (2.1)
by w(z)dx, where w(z) = 10 for —1 < 2 < 0 and w(z) = 1 for 0 < z < 1, and he
observed that Sy(\;z) = K(2? 4+ 27x/35 —1/3), with K a real constant, for this new
inner product has a zero at x = —1.08, which is outside! the interval [—1,1]. Schifke
[103] made important simplifications to the calculations presented by Althammer,
and in particular, he observed that the normalization S, ();1) = 1 simplified many
results. Grobner [51] also studied the Sobolev-Legendre polynomials on the interval
[0,1], and he found a generalized Rodrigues’ formula for these polynomials. Cohen
[22] studied the zeros of S, ();-) and he proved that they interlace with those of the
Legendre polynomial P, _; if A > 2/n, among other results. Brenner [19] also studied
the Sobolev orthogonal polynomials with respect to the inner product:

fgs—/ flz “””dx+A/ f'(x)g (x)e “dx, X>0, (2.2)

with similar results to those of Althammer.
Schéfke and Wolf [104] considered a family of inner products of the form:

o b
(f.9)s=Y_ | fO)g™ (@)vi(z)w(z)de, (2.3)

j,k=0"9

where w(z) and (a, b) are one of the three classical cases (Hermite, Laguerre or Jacobi),
and where v;;, are polynomials that satisty v;, = v ;, 7,k = 0,1,2,..., and other
additional restrictions. With their study, Schatke and Wolf showed eight classes
of Sobolev orthogonal polynomials, which they called a generalization of classical
orthogonal polynomials. In addition, through their study they extended known results
to the Sobolev case. Recently, analytical and algebraic properties were studied for
particular cases of (2.3). See for example [4, 11, 37-39, 84, 96].

After the Schéfke and Wolf’s paper, the theory remained without significant con-
tributions for about two decades until the coherent pairs appeared in a paper due to
Iserles, Koch, Norsett, and Sanz-Serna [56] when they studied the polynomials with
respect to the inner product:

ng—/‘f 2)dp(z +A/'f d(x), A>0, (2.4)

1Tt is well-known [111, Theorem 3.3.1] that a standard orthogonal polynomial has all its zeros
inside the interval of orthogonality.
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where dp and di are two Borel measures. They showed, among several results and
under certain conditions, that the orthogonal polynomials with respect to (2.4) can
be expanded in terms of the orthogonal polynomials with respect to dyp. According
with [56, Theorem 3], the pair {dp,dy} is coherent if there exist non-zero constants
ai, a9, as, ... such that:

Pold; ) = ap1 P (dpy 2) — an Py (dps ), n>1, (2.5)

where P, (dy;-) and P,(di;-) are the orthogonal polynomials with respect to dy and
di, respectively. If both measures dp and dip are symmetric (that is, invariant under
the transformation x — —x), then the pair {dp,dy} is symmetrically coherent [56,
Theorem 4] if there exist non-zero constants a, as, as, ... such that:

Po(d; x) = any1 Py 1 (de; ) — a1 Py (dp;z), n>2.

Inner products like (2.1) and (2.2), which involve derivatives, do not satisfy the
symmetry property (1.1). This fact makes that the three-term recurrence relation no
longer holds, and as a consequence, many properties (their zeros, for example) of the
corresponding Sobolev polynomials become more difficult to study. Many techniques
have been developed through the years to balance the lack of this tool as we will show
in the sequel. In next sections we present some references that have appeared in the
last thirty years.

2.1.2 Recent publications on Sobolev polynomials

After the notion of coherent pair appeared in 1991, this idea was incorporated by
some authors to the study of some sequences of Sobolev orthogonal polynomials.

Meijer [90] derived general results for the zero distribution of {S,(\;x)}, <, the
sequence of orthogonal polynomials with respect to (2.4), when {dy, dv} is a coherent
pair. Meijer showed that, for n > 2 and if X is large enough, the polynomial S,,(};-)
has n different, real zeros, and these zeros interlace with those of P, ;(dy;-) and
P,_1(dy;+). This author also studied the case when {dy,dy} is a symmetrically
coherent pair. This last situation is more complicated, even leading to complex zeros
of S, (A;-) when n is an even number.

The results in [90] were generalized by De Bruin and Meijer [26]. They showed
that, under certain conditions, the polynomials {5, (); x)}, -, satisfy a 5-term recur-
rence relation. Marcelldn, Pérez, and Pifiar [78-80] deduced some properties con-
cerning the localization and separation of the zeros of these polynomials in the La-
guerre case (dp(x) = dip(z) = x%e *dx, a > —1) and Gegenbauer case (dp(z) =
diy(z) = (1 — %) Y2dz, a > —1/2), and a similar work was carried out by Kim,
Kwon, Marcellan, and Yoon [59] in the Jacobi case (dp(z) = (1 — 2)%(1 + z)?dz,
di(z) = (1 —2)*H (1 + 2)Pdr, a > -1, =1 < 3 <0).

Marcellan and Petronilho [81] extended the notion of coherent pair to linear func-
tionals {®, U}. These authors found all the coherent pairs when one of the measures
is classical. Meijer [93] proved that if {®, U} is a coherent pair, then at least one of
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them has to be classical (Hermite, Laguerre, Jacobi, or Bessel). A similar result was
derived for symmetrically coherent pairs.

The generalized coherent pairs appeared in a paper due to Kim, Kwon, Mar-
cellan, and Yoon [58] when they solved an inverse problem concerning coherent pairs.
According with [58], the pair {dp,dv} is called a generalized coherent pair if the
following relation holds for all n > 1:

/ . / .

Po(dt; ) + by s Pa (i) = L2l28) | Baldein) sy
n+1 n
which is a more general relation than (2.5). In this case P,(dy;-) and P, (dv;-) are
monic polynomials. These authors also extended the definition to linear functionals
{®, ¥}. Alfaro, Marcelldn, Pena, and Rezola [5] identified all the generalized coherent
pairs when @ is a classical linear functional. Delgado and Marcellan [31] made a
complete identification of generalized coherent pairs, and they found that either ® or
U must be a semiclassical linear functional. Berti, Bracciali, and Sri Ranga [16] and
Berti and Sri Ranga [17] provided two examples of generalized coherent pairs in the
Jacobi case:

do(r) = (1 —2)*(1 + 2)°da,
Oé,ﬁ > _17 |€0|7 |§1’ > 17

xr —

dp(z) = go (1 —2)*™ (1 + 2)*Mdx + M6, ,
1

and Laguerre case:

dp(z) = 2% "dx, dip(z) = L&]anrle*xdx—i-Még, a>-—1, [& =1, £€<0,

r—§
where ;¢ is the Dirac delta at &.

A further generalization of coherent pair is the so-called (M, K)-coherent pair of
order (m, k), where M, K, m, k are non-negative integers. A pair of linear functionals
{®, ¥} is said to be a (M, K)-coherent pair of order (m,k) if {P,(®;z)},-, and
{P.(¥;2)}, 50, the monic sequences of orthogonal polynomials with respect to ® and
U, respectively, satisfy a linear algebraic structure relation of the form:

M K

m k
Z Tianpé—z?—&—m(q); l‘) = Z Sz,nprg_)H_k(\ij CL’), (26)

i=0 =0

where 7;, and s;, are complex numbers satisfying some conditions. The relation
(2.6) was studied by de Jesus and Petronilho [28] in the context of an inverse problem
in the theory of orthogonal polynomials. Kwon, Lee, and Marcelldn [69] considered
the (2,0)-coherent pair of order (1,0) when they studied the Sobolev orthogonal
polynomials with respect to (2.4). These authors provided [69, section 5] an efficient
way for computing the Sobolev-Fourier coefficients at the Fourier’s series expansion.
Delgado and Marcelldn [31] characterized all the pairs of linear functionals {®, U} that
are (1, 1)-coherent of order (1,0). The (M, K)-coherence of order (1,0) was studied by
de Jesus and Petronilho [29] and the Sobolev orthogonal polynomials with respect to
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(2.4) were considered. In this case, these authors also gave an an efficient algorithm for
computing the coefficients at the Fourier’s series expansion with respect to (2.4). The
case (M, 0)-coherent of order (1,0) was studied by Marcellan, Martinez-Finkelshtein,
and Moreno-Balcédzar [77], where several examples of non-trivial measures were given
by these authors. The more general case of (M, K)-coherence of order (m,k) was
studied by de Jesus, Marcellan, Petronilho, and Pinzén-Cortés [27]. In particular,
in their paper they studied the Sobolev orthogonal polynomials with respect to the
inner product:

(f 9 = / F(2)g(@)dp(x) + A / F @)™ @)du(x), A>0,  (27)
where {dp,dy} is a (M, K)-coherent pair of measures of order (m,0), m > 1. The
inner product (2.7) was also studied by Marcellan and Pinzén-Cortés [82]. The notion
of coherent pairs has been also extended to complex domains with the corresponding
study of the associated Sobolev orthogonal polynomials. See, for example, Marcellan
and Pinzén-Cortés [83]. At the time of writing this document, the research on coher-
ent pairs still continues.

It is known that the classical polynomials (with parameters greater than minus
one) are also Sobolev orthogonal polynomials with respect to a certain non-standard
inner products [86, Section 6]. More generally, when their parameters are taken
to be real numbers, it is also known that the Laguerre and Jacobi polynomials are
orthogonal with respect to a Sobolev inner product. For example, Pérez and Pinar
[97] proved that the monic generalized Laguerre polynomials:

(n =)

are orthogonal with respect to the Sobolev inner product:

~(a+j+1Dn
Lff‘)a:: —1)"n! (04‘ I (—z), a€R,
(0= (1P 3 S )

(hatk) _ [ T, .a+k, —z
) = [ POMEGE) " e s, 29)
k =max{0, |[—al}, a€eR,

where:

F@) = (f(@), /(@) fP@) . G@) = (902),9(@),. ., 0" (@),

k
and M(k) = (m”(k:)> is a positive definite matrix of size (k+ 1) x (k+ 1) whose
=0

Z?.]:
entries are given by:

min{,j}

(k= D\ (k-1 .

mi(k) = Y (1) H(z’—l) (j—z>’ O=hish
1=0

and where | x| denotes the greatest integer less than or equal to x. These authors also
observed that if « € {—1,—2, -3, ...} then the inner product (2.8), taking integration
by parts, reduces to:
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(f, 9>(sk’0) = /000 f(k)(x)g(k)(x)e_xdx—ir

E
—_

— m;;(k)
2

[F(0)g9(0) + f9(0)g2(0)]. (2.9)

j=0

Il
=)

%

This last inner product was also studied by Kwon and Littlejohn [70], and the par-
ticular case k = 1 was also considered by the same authors in [71].

In addition, Alfaro, Pérez, Pinar, and Rezola [6] studied the Sobolev polynomials
with respect to the bilinear form:

(f, )8 = 2(fMg™M) + F(c)AG(c)T, (2.10)

which is more general than (2.9), where .Z is a quasi-definite linear functional on II,
¢ is a real number, N is a positive integer number, A is a symmetric N x N real matrix

such that each of its principal submatrices is regular, F(c) = <f(c), fle),..., f(N‘l)(c)>,
and G(c) = <g(c), gc),..., gV (c)) These authors provided examples of or-

thogonal polynomials with respect to (2.10), with an adequate choice of ¢. These

examples are the Laguerre polynomials {L,(T_N) (x)} with ¢ = 0, Jacobi polyno-
n>0

mials {Pn(fN’ﬁ) (:v)} with ¢ = 1 and 8 + N not being a negative integer, and

n>0
{PT(LO"_N)(:E)} with ¢ = —1 and o + N not being a negative integer.
n>0
In a similar way, the Sobolev orthogonality with respect an inner product like

(2.10) was studied by Alfaro, Alvarez de Morales, and Rezola [3] for the remainder
cases of the Jacobi polynomials, and by Alvarez de Morales, Pérez, and Pinar [8] for

the Gegenbauer polynomials {C,S,_NH/ 2) (:13)} , with N > 1 being a non-negative in-
n>0

teger. Jung, Kwon, and Lee [57] made a similar study for the orthogonal polynomials
with respect to (2.10) in a general setting, but only for first-order derivatives.

Xu [113, section 2.3] used some of the results in [57] to deduce that the sequence
{gn(x)}, > of orthogonal polynomials with respect to the Sobolev inner product:

(f.g) = 222 / @ @)1+ 2 de+ fDg(=1). A>0.  (@21)

where d is a non-negative integer, is defined by:

2

d—2
nA e

<P,§_1’d52)(x)—(—1)”w>, n>1, (2.12)

Qo(r) =1, g, (v)= n

where P{* is the Jacobi Polynomial of degree n.
Pérez, Pinar, and Xu [98, Section 4] studied the Sobolev orthogonal polynomials
with respect to the inner product:

<f7 g>a”3 = /_1 f(ﬂf)g($)wa75($)dm+
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Yl BRB—d+2)  (280-d+2)(1+x)\ (g
# /1 (f’ f> ((26 —d+2)(1+2) A(1 + z)? ) (9’) Wayp-1(2)d,

(2.13)

where d € N, A > 0, a > —1, 8 > max {0, (d — 2)/2}, and w, 5(z) = (1 — 2)*(1 + x)?
is the Jacobi weight function. The restriction 5 > max {0, (d — 2)/2} guarantees that
the 2 x 2 matrix in (2.13) is positive definite, and consequently, (2.13) is indeed an
inner product. This inner product appeared naturally when these authors studied a
family of Sobolev orthogonal polynomials in several variables on the unit ball (see
Theorem 2.13 below).

Sobolev polynomials also have been used in the spectral theory for solving dif-
ferential equations. For example, Sharapudinov [105-108] considered the Sobolev
orthogonal polynomials with respect to the inner product:

s = [ SO @u@ds + 3 /O@g @), e, (214)

where w is a weight function on [a, b]. This author studied the approximation prop-
erties of Fourier series with weights for the Haar functions and Jacobi polynomials
(with special attention to the Chebyshev, Legendre and Gegenbauer cases), and he
showed that the Fourier series and sums of orthogonal polynomials with respect to
(2.14) are an efficient tool for the approximate solution of the Cauchy problem for
ordinary differential equations.

The generalized Jacobi polynomials (with arbitrary parameters «, 5 € R) also
have been used in spectral methods. See, for example, [52, 74, 75, 109]. Li and Xu
[75] and Xu [114] defined the generalized Jacobi polynomial by the equation:

TR - (k+a+1)n ($—1>k
I (x)'_z(n—k)!k!<n+a+ﬁ+k+1>n—k 2 ’

k=0
a,B €R, neNy (2.15)

where 1g = 157 (n) == —n—a—fif —-n—a—pF € {1,2,3,...,n} and 1y = 0 otherwise.
This extends the definition of the Jacobi polynomials to all o, 8 € R avoiding the
problem of a degree reduction. Indeed, if o, 3 > —1 then J%¥ is a renormalization of
the ordinary Jacobi polynomial PP hecause Lg"g (n) = 0 and the following relation
holds [114, proposition 2.2]:

1
Joz,/o’ _ P(aﬁ) if a,f = 0.
n (l’) (n‘i‘a‘i‘ﬁ‘i‘l)n n (:C)7 1 [’0 ( )

Many other identities [114, Section 2| for the ordinary Jacobi polynomials were ex-
tended to the generalized polynomlals From these generalized polynomials, Xu [114]
defined the polynomials JO‘ -, J"“ - J L8 and J LB with n € Ny, m,l € N,
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o, € R, and of := max {0, | —«]}, by the following relations:

(
JoOTm (2 — 1), n>m+af
j\g’_m(fb) _ min{n,m}—1 . :L'k
JOTm (2 — 1) + Z Jotk +k(—1)y, n <m -+ af
\
((—1)"Jy~m(1 - 2),
j;?,*m(x) = a,—m — n k rat+k,—m+k (CL’ - 1)k
(—1)m g (1 — 20) = Y (=1)" kS (-
\ k=0
(J-58 (22 — 1), n >,
Ty =8 (x — 1)k
n B B —l+k ﬁ—i—k
J L8 (2x 1+ZJ )= n<l,
(—1)"J;”ﬁ(1 - 256), n>1,
j—l,,@ _ n—1 k
n (ZE) 4 (_1)njn—lﬁ(1 _ QI) _ ( )n kJ—l+k 5+k<1) k‘ . on< l,
\ k=0

and he also defined the Sobolev inner products:

= | @@ -

M >0, kE=0,1,..

-1
-/ FO@)g0 @) e 1+ 3 AP (1) (1),
0 k=0

11,

.m—=1, a+m>-1,

(f, 9)-15

A >0, kE=0,1,... B+1>—1.

Then, Xu [114, Propositions 3.1 to 3.4] proved the following results.

1. The sequence {j\g‘*m} ,withm=1,2,3,...
n>0
defined in (2.16).

with respect to the inner product (-,-),

2. The sequence {j;?_m} ,withm=1,2,3,...
n>0
defined in (2.17).

with respect to the inner product (-,-)

3. The sequence {jfﬁ} , with [ = 1,2,3,...
n>0
defined in (2.17).

with respect to the inner product (-,-)_;

4. The sequence {jn_l’f’} , with [ = 1,2,3,...
n>0

with respect to the inner product (-, -); _; defined in (2.16).

m—1
x)*T"dr + Z A f8(0)g*
k=0

Y

(0),

n>m+ of,

n<m+af

(2.16)

(2.17)

and o +m > —1, is orthogonal

and oo +m > —1, is orthogonal

and 8+ 1 > —1, is orthogonal

and g + [ > —1, is orthogonal
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The so-called Sobolev-type inner products, for which the derivatives appear only
on function evaluations on a finite discrete set, also have considered in literature.
They have the form:

s = [ Fagta)dn+ Z / 79 (@)g® (),

where dp is a positive Borel measure supported on an infinite subset of R, and
dug, k =0,1,...,m, are Borel measures supported on finite subsets of R. Koekoek
[62] studied the Laguerre case dy = 2% “dz/T'(a + 1), x € Ry, a > —1, and
dug = Mpdg, My > 0,k =0,1,2,...,m, where J,. is the Dirac delta measure supported
at ¢ € R. Bavinck and Meijer [14, 15] studied the Gegenbauer case du = I'(2a +
2)(1 — 2%)%dz /(22T T?*(a + 1)), * € [-1,1], a > —1, and dug = M(6_1 + &y),
dpy = N(0-1 4+ 61), M, N > 0. The case du = w(z)dz, where w is a weight function,
dup =0, k=0,1,...,m — 1, dit, = X716, XA > 0, ¢ € R, was studied by Marcelldn
and Ronveaux [85].

The well-known Favard’s theorem for standard polynomials, which guarantees
the orthogonality of a sequence of polynomials if it satisfies a three-term recurrence
relation, was generalized by Durdn [45]. A similar work in this direction is due to
Evans, Littlejohn, Marcellan, Markett, and Ronveaux [46].

Koekoek [63] studied the sequence {Py#NM(z)} _  of orthogonal polynomials
with respect to the inner product:

(f,9) = 2a+5+1é0(éa+f+2ﬁ+ / f(@)g(x)(1 —2)*(1 + 2)do+
Mf(=1)g(=1) + N f(1)g(1),

with a, 3 > —1 and M, N > 0. This author found that { P&-#MM ()} satisfied a
differential equation of the form: B

o0

MZ@Z +N2bl —|—MNZCZ @ (z)+
=0

(1 — 2y (@) +[B—a— (a+ B+ 2)z]y(x) +nln+a+ B+ 1)y(x) =0,

where a;(x), b;(z), ¢;(x) are polynomials, independent of n. Similarly, in [63], a study
for the polynomials {L%N M (x)}n>0 with respect to the Sobolev inner product:

s = Fagy [ F@)at)aede+ MF©)a(0) + NS (0)5/0),

with @« > —1 and M, N > 0, was carried out. This author also found that the
sequence {L%N M (az)}n>0 satisfied a differential equation of the form:

M Z a;(z)y (z) + N Z bi(z)y' (x) + MN Z ci(z)y®
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zy"(x) + (e + 1 — 2)y'(z) + ny(z) =0,

where a;(x), b;(z), ¢;(x) are again polynomials. Complementary results on these gen-
eralized Jacobi and Laguerre polynomials can be found in [60, 61, 64]. Some other
results on differential equations for Sobolev-type orthogonal polynomials are due
to Arvesd, Alvarez-Nodarse, Marcelldn, and Pan [12], Duenias and Garza [35], and
Duenas and Marcellan [39].

The zeros of the Sobolev polynomials also have been studied in recent years.
Contrary to the standard polynomials on the real line, for which their zeros are all
real, simple, interlace, and they lie at the interior of the interval of orthogonality,
in the Sobolev setting some of these properties are lost. On this subject, we could
reference the works [4, 10, 12, 15, 22, 25, 26, 33, 34, 59, 84, 90, 91| to name just a
few. And more recently, over the last ten years, the works by Duenas and Garza [35],
Huertas, Marcellan, and Rafaeli [55], and Molano-Molano [96].

2.2 Sobolev orthogonal polynomials in several vari-
ables

In contrast to one variable, the study of Sobolev orthogonal polynomials in several
variables is recent. Most of the results were obtained in two variables and where the
inner products introduced only first-order derivatives [18]. Next, we show a summary
in regards to Sobolev orthogonal polynomials of several variables on different domains.

2.2.1 Sobolev-type orthogonal polynomials in several vari-
ables

Mello, Paschoa, Pérez, and Pinar [94] studied the Sobolev-type orthogonal polyno-
mials with respect to the inner product:

(f.9)s =(f,9)c +AVf(P)-Vyg(p), A>0, (2.18)

where (-, ) is the inner product:

f. 9 = /G £ ()9(x)du(x), (2.19)

and where G C R? is a domain having a non-empty interior, dy is a positive measure
defined on the domain G, and p is a given point in R%.

Let {P":]a| =n} be an orthonormal basis of ¥/¢(G), the space of orthogonal
polynomials with respect to (2.19), and let [P, denote the column vector:

«

T
P (x) = <P§<1> (%), By (%), -+ ’P;l“%)(x)) ’

where o, a® ... ol is the arrangement of elements in {a eNd: |a| = n} accord-
ing to the reverse lexicographical order. In addition, let VI, (x) denote the matrix of
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size r¢ x d given by:

VP, (x) = (81Pn(x), D, (x), - - - ,adpn<x))

and the kernel function of I1¢ by:
=> PI(x)(H)) 'Pi(y), H;=(P;,P]),,
=0

for which KS’O), K%Y and K&V are matrices of sizes d x 1, 1 xd, and d x d,
respectively, given by:

K9 (x,y) = Z(VIP? ()" (H;)"'Pi(y), KPV(x ZE”T )V (y),

K£1171)(X> y) = (awiayjK"(X’ y>> A

7,7=1
Then the following result was proved in [94].

Theorem 2.1. [94, Theorem 5.1] Let {Py.}, -, be an orthonormal polynomial system
associated with (2.19). We define the polynomial system {Q,}, >, by means of

0(x),
(x) = AVP,(p)[Ls + AK ") (p, p)) 'K (p.x), n>1.

: (2.20)
]P) n—1 ‘

Then {Qn},5¢ is a sequence of orthogonal polynomials with respect to (-,-)g defined
n (2.18). Reciprocally, any sequence of orthogonal polynomials with respect to (2.18)
can be expressed as in (2.20).

Additional results [94, Lemma 2.1, Proposition 3.2, Theorem 3.3] showed that
I+ )\Kg’l)(p, p), A >0, n >0, is a symmetric and non-singular matrix of size d x d,
and explicit expressions were given for G,, = <@n, @£> ¢ and its inverse G, ! and for

the kernel function K, (x,y) associated with (-, -) ¢ which is given by:

Z QT 1@] )

As a generalization from the previous result, Duenas, Garza, and Pinar [36] studied
the Sobolev-type polynomials with respect to:

(f.9)s = (f2g), + MYDFE)(TVg(e))" /f x)do(x). (2.21)

where o is a measure defined on the domain G C R? with a non-empty interior,
€ € RY VU f is the row vector which contains all the partial derivatives of order j
of f, and M € R,. The main result we found in [36] is the following.



2.2. Sobolev orthogonal polynomials in several variables 32

Theorem 2.2. [36, Theorem 1] Let {P,}, -, be an orthonormal polynomial system
(OPS) associated with the inner product (-,-)_ . Define a Sobolev-type inner product
as in (2.21). Then, if we denote by {Q,},~, its corresponding OPS, normalized in
such a way that Q, —P, is a r® dimensional vector whose components are polynomials
of total degree lower than n, we have

[P, "<
w0 = {Mx) — MYOB )Ty + MK (E )K€ x), 0> 0

Conwversely, if we define {Q,},~, as in (2.22), then they are an OPS with respect to
(2.21). -

In (2.22), VWP, is a matrix of size r¢ x &/ which contains the partial derivatives
of order j of P,,, K,(x,y) is the kernel polynomial of T1¢, K(“)(x y) is a matrix of

size d’ x d’ with all the partial derivatives of order j of K,(x,y), and

K70 (x,y) =Y (VUP;(x)"(H,))'Pi(y), K(x,y) Z]P’T VU, (y).

Jj=0

2.2.2 Sobolev orthogonal polynomials on the unit ball

At this moment, Sobolev orthogonal polynomials on the unit ball B¢ are the most
studied polynomials in several variables [86].

Xu [112] considered the Sobolev orthogonal polynomials in d variables on the unit
ball with respect to the inner product:

00 = e L, & [0 = 0] &[0~ [xIPal0] ax. (223)

where A\ is the Laplacian operator, and where vol(B?) is the volume of B? given in
(1.33). This work was motivated by a study due to Atkinson and Hansen [13], where
they found the same inner product (2.23) for the case d = 2, in the numerical solution
of the Poisson equation —Au = f(-,u). The main result in [112, Theorem 2.4]
showed an explicit construction for a mutually orthogonal basis of #/4(A), the space
of orthogonal polynomials with respect to (2.23), in terms of the Jacobi polynomials
P (t), which are orthogonal on [—1, 1] with respect to the weight (1 — ¢)%(1 + t)°,
and harmonic polynomials. That is,

Theorem 2.3. [112, Theorem 2.4] A mutually orthogonal basis for ¥,4(/\) is given
by:
Qp,, (%) = ¥,' (%),
n (2,n—25 +— n—2i .
L) = = IxP) P2 7 @I - DY T (x), 1<) <n/2,

Jw -
where {YV"’QJ' 1< < aﬁ_gj} 1s an orthonormal basis of e%’jld_gj. Furthermore,

_ 2n+d < " n> _8‘7'2(17'—1—1)2
- d WEIVEA T d(n 4 d)2)

(@b, Qb) A
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Similarly, Xu [113] considered the Sobolev orthogonal polynomials on the unit ball
with respect to the inner products:

oy = [ V60 Vatix+ —— [ 5(©a©)da(e) (2.24)
gy = 2 [ V60 Valx)ax + (0)g(0). (2.25)

where A > 0, V is the gradient operator, and w,_; is the area of the unit sphere given in
(1.33). Similar results [113, Theorem 2.3 and 2.6] showed an explicit construction for
mutually orthogonal bases for ¥/¢(I) and ¥,%(]|), the spaces of orthogonal polynomials
with respect to (2.24) and (2.25), respectively.

Theorem 2.4. [113, Theorem 2.3] A mutually orthogonal basis
no. . d
{UF,:0<j<n/2,1<v<al_y}
for ¥V 4(I) is given by:

Us,, (%) = Y' (%),
n (1n 2j442 n—=24 .
U7,(x) = (1= x| P P~ DY ¥ (x), 1< <n/2,

J7V

where {Y” il1<v<ad } s an orthonormal basis of %’j{{%. Furthermore,

n—2j
2

<U&V’U&V>1:n)‘+17 < i U >1 n+d R

Theorem 2.5. [113, Theorem 2.6/ A mutually orthogonal basis
{V;”V 0<j<n/2,1<v< ai_%}

for V4(||) is given by:

Vi) = U7, (), ogs[";lj,

n 4 (-1,452 2 n z(d/Q)nﬂ
() = —(Pm (@lx]? — 1) - (‘”/W)’

n+d—2
where V', (x) := V7, (x) holds only when n is even. Furthermore,

[ , n—1
<]V’ ]V>H <]V’ jﬂ/>1’ OS]S\\ 2 J?

n n 8
< n/2» n/2>H — n+_%

Pinar and Xu [99] studied the second-order differential operator B, given in (1.43)
for u = —1,-2,—-3,—4,.... One result [99, Theorem 3.3] showed that the orthogonal
polynomials with respect to (-,-); in (2.24) satisfy the equation (1.43) for p = —1,
that is,
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Theorem 2.6. [99, Theorem 3.5] Elements of ¥,%(I) satisfy B_1P = —n(n+d—2)P.
In particular, the eigenfunctions of the operator B_y consist of a complete polynomial
basts.

For p=—k, k=2,3,... Pinar and Xu defined:

k—1 J
Uy (W_y) = AU (U [Z aj, (1 — IIXHQ)”] %d_z]) (1= I 7L g (W),

j=1 Lv=0
where, for 1 < j <k —1,

o G kA )0 =~k df2),
WG =k D=kt df2);

0<v<y,
and where a7, is well-defined if n—j—k+v+d/2 # 0. Pifiar and Xu [99, Theorem 3.4]
showed the followmg result.

Theorem 2.7. [99, Theorem 3.4] If u = —k and k = 2,3, ..., then the polynomials in
UL(W_y) satisfy equation (1.43); that is, B_j.P = —n(n—2k+d)P for P € %3(W_y).
Furthermore,

dim % = dim 22¢,  ifn—2k —1+d/2 #0.

In particular, the operator B_; has a complete polynomial basis of eigenfunctions if
the dimension d 1s odd.

Pinar and Xu [99, Theorem 4.1] observed that for 4 = —2, the polynomials in
P Wog) i= 70 (1= [x[1) 240, U (1= [x]1%)* 7L, (W),

n

are orthogonal with respect to the inner product:

A A f(x) Ag(x)dx +

Wd—1 JBd Wd—1 Jsd-1

(f9) o= f(x)g(x)dw(x), A >0.

Theorem 2.8. [99, Theorem 4.1] The elements in ¥,2(W_5) are orthogonal polyno-
mials with respect to (-,-)_,. Moreover, they contain an orthonormal basis; in other
words,

P (Woo) = 2 @ (1= |x||*) 40, & (1 — [x|*)* 7L, (Wa).

n

With respect to the inner product:

(fo 90 = wzil AT A glx)dx+ 7 F)g(x)dew(x)
Wil\il /gd 1 CZ”[ T )} [ "G (x)]dw(x),  Ar, A >0,

where d/dr is the normal derivative, another result is the following.
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Theorem 2.9. [99, Theorem 4.2] The elements of ¥,2(W_5) are orthogonal polyno-
mials with respect to the inner product (f, g). .

Li and Xu [75] studied the polynomials in #4(W_,), s € N, the space of Sobolev
orthogonal polynomials with respect to the inner product:
[s/2]-1 ' 4
(F,9)_s = (VEVDaat D N(A A g, s=1,23...,  (2.26)
=0
where \; > 0 for i =0,1,...,[s/2] — 1,
Vi .= A" and VT .=VA™ m=1,2.3,...,

and where (-, )gs 1= (-,-)g, with® (-,-)  given in (1.40), and where (-,-)sa1 is given
n (1.37). For s = 1 the inner product (2.26) is essentially (-,-); in (2.24). The
motivation for introducing this inner product was to study the orthogonal structure
in the Sobolev space® #,°(B?). In fact, (2.26) is an inner product on #4°(B?) [75,
Definition 3.1].

Li and Xu [75, Proposition 2.1, Definition A.2] extended the polynomials in Propo-
sition 1.3 to the following definition:

P (x) = (n— j +d/2);7" 7 2)x]? — 1)y ¥ (%),

75l
uER, neNy, 0<j<n/2, 1<l<an2j,

where Jf’ﬁ, a,B € R, is the generalized Jacobi polynomial (2.15) of degree j [75,
(A.3)], and {Yn_2j :1<1<al ,;} is an orthonormal basis for ,.. Then the
set {P“" :0<j<n/2,1<1<al_,} is an orthogonal basis of #,4(W,) when-
ever > —1, and for s = 1,2,3,... the polynomial P, > can be expressed as [75,

Lemma 3.2]:
(1_n_d/2) s pS,n—2s
. (x| = 1P (),
(_])5(1 _n_d/2+23)j—s
seN, neNy s<j<n/2 1<l<an2

P " (x) =

Jsl

J

From these definitions, and for s € Ny n € Ng, 0 < j <n/2,1 <1< a4 x € B,

and ¢ € S?71, define:

n—277

P (), iz
[s/2]—1 Ak Pfs,n<£>
s,n —s,n j,l n—27, .
Qu"(x) = P (x) — > Yn_]—gjyz hx), [s/2] <j<s—1,
N k=0 ! (6)
anfQJJ(X)’ 0<j<TJs/2] -1,

2In [75, Sections 2.1 and 2.2] the definition of (f, g),, and (f, g)sa—1 assumes complex variable.
Therefore, at their definitions, g appears instead of g.

3In [75] the Sobolev space V/Z)S(WH,IB%d) is defined to the space of functions whose derivatives up
to the s-th order are all in (W, B¢), 1 < p < co. For p = oo, £ is replaced by the space ¢ (B?)
of continuous functions. The space ¥’ (B?) is defined to be %f(Wde) when g = 0.
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where for any n,j € Ny, y;n,j<x) :=01if j <0 and, if j >0,
Y (x) =) (- )Y (%), 1<1<al,

1=0

and c?’j , 0 <4 <, is the unique solution of the system of linear equations:

! . n+d/2)k .
4 Z(_Z)k(_k)i—kwci 7= Ok, 0<k<y.
i=k i—k

Among several results in [75], most of them on approximation theory on the unit
sphere, we have the following concerning the inner product (2.26):

Theorem 2.10. [75, Theorem 3.7] The polynomials in

{Q;"x):0<j<n/21<1<al ,;}

form an orthogonal basis of ¥,4(W_,). More precisely, <Q]_ls”, Q;§m>_s = h;f5n7m5j7i51,k
for (-,-)_, defined in (2.26), where:

2257 ld(n +d/2 — s)s(n+d/2 —s+1)sq, j>[s/2],
h;ls: d(n—?j)—l—)\j, j=(s—1)/2,

Another Sobolev inner product on the unit ball was considered by Pérez, Pinar,
and Xu [98, Definition 3.2]. It is given for u > —1 by:

A [ V) VW ()t

Wd—1 Jpd Wd—1 Jsd-1

(f, 9>v,WM = f(&)g(§)dw(§), (2.27)

where W), is the weight function (1.39). The inner product (-, -), in (2.24) corresponds
to the limiting case of (2.27) when y — —1. A result by Pérez, Pinar, and Xu [98,
Theorem 3.4] showed an explicit mutually orthogonal basis of #,4(V,W,), the space
of orthogonal polynomials with respect to (2.27), that is,

Theorem 2.11. [98, Theorem 3.4] For 0 < j <n/2, let {Y"% : 1 <wv <al ,;} be
an orthonormal basis of %‘1_2].. Define

Ry, (%) = Y)' (%),

n _ (nn—2j+52) 2 (pn—2j+952) n—2i )
f%@%{% 22lx]* - 1) - Py me@ﬂwx15jgmg

Then {R;{V 0<ji<n/2,1<v< agﬁj} forms a mutually orthogonal basis of ¥,2(V,W,,).
Furthermore,

[(p+2)T(n+d/2)
T(n+p+1+d/2)

<R87V’ R87V>V’W‘u = )\n + ]‘7
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(B} By, = A0(2) + p+1) = j(2) — d +2))
XF(u—l—j—i—1)F(n—j+d/2)(n—|—u—j+d/2)
JMn+pu+1—7+d/2)(n+p+d/2)
(D +2)0(n — 25+ d/2)(pn+1)7
+An = 2) Ph(n—2j +p+d/2)

1<j<n/2

Another result we found in Pérez, Pinar, and Xu [98, Theorem 3.5] is the following.

Theorem 2.12. [98, Theorem 8.5] Let p > —1 and let P}, be the mutually orthogonal
polynomials in ¥,4(W,), defined in (1.42). Then they are also mutually orthogonal
with respect to the Sobolev inner product:

(o) = | [ 100060, vt 3 [ V100 TaloWyuaiax| - (225)

where A > 0 is a fized constant.

Notice that the parameters of the weight functions in (2.28) are p and p + 1.
According to Pérez, Pinar, and Xu [98], the orthogonal structure becomes far more
complicated if we want the weight functions have the same parameter. The main
result in [98, Theorem 5.2] showed a mutually orthogonal basis for ¥,4(V,W,, BY),
the space of Sobolev orthogonal polynomials with respect to the inner product:

)= | [ TR, 000512 [ 9760)- Ta, (x| (229

with A > 0 and p > —1.

Theorem 2.13. [98, Theorem 5.2] Let A > 0. For0 < j <n/2, let §; := n—2j+%
and let q,(c“’ﬁj)(t) be the k-th Sobolev orthogonal polynomial associated with the inner
product (-,-), 5 in (2.13). Let {Y=%:1<v<al_,} be an orthonormal basis of
AL ,;. Define

(%) := ¢ 2l|x|? - )Y, ¥(x).

J

T?’L

j?y

Then the set {TJ”V 0<j<n/2,1<v< athj} is a mutually orthogonal basis of
¥4V, W,,B?). Moreover,

<Tn ™ > — F(,LL +1+ d/2) <q(}tﬂj) q(uyﬁj)>
e Bedews = Wm0 ),

Among several results on spherical harmonics, Pérez, Pinar, and Xu [98, Lemma 2.2]
provided the following result, with V; the spherical part of the gradient (see equation
(1.34)).

Lemma 2.1. [98, Lemma 2.2] Let {Y:1<v <al} be an orthonormal basis of
AL Let x = 1€, withr > 0 and £ € ST1. Then we have the following:
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1. é VQYVR(X) = 0.

2. VY '(x) - VY, "(x) = T%VOYV"(X) VoY, (%) + 53 Y (%)Y, (%),

3. For1<v<a® and1<n<al, the following relation holds:
1

Wd—1 Jsd-1

VY(E) - VY (€)dw () = n(2n + d — 2)5p mbuy. (2.30)

Delgado, Pérez, and Pinar [32] studied the Sobolev-type orthogonal polynomials
on the unit ball with respect to the inner product:

) )

. A>0, (2.31)

where (-, '>u is the inner product (1.40) on the unit ball, N € N, S = {sg,s1,...,Sn5}

is a set of N + 1 points on S¢~!, and df/On is the normal derivative on S%~! given
by:

ofx) _ 0fx) 9f(x) 0f(x)
on N 8561 e 8x2 Tt T 8$(Zd '

In addition, df(S)/0n denotes the row vector of dimension N + 1:

oI5) _ (0ft) Ofta)  often)).
on on ' On ' On

If K,(x,y), n > 0, is the kernel function of I1¢ associated with the inner product
(1.40) defined by:

=Y ) PP

m:O |a|:m

where {P}(x) : |a| =n}, ., is an orthonormal polynomial system on the unit ball
with respect to (1.40), and for n > 1,

K00 (x ZZ 5Pm Pr(y), (2.32)

m=0 |a|=m
" 0P (x) 0P (y)
K LD — o a 2.33
Y (x.y) mz; T (2.33)
KT(LLO)(S7 Y> = (K(l 0)(507}’) K( O)(SDY) 7K7(11’0)(SN7y)> ’ (234)
N

K .= K(bD(S 9) = (K,(ll’l)(si,sj))' o (2.35)

)=

where K is a symmetric matrix of size (N+1)x (N+1), then a result with respect
to the inner product (2.31) is the following.
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Theorem 2.14. [32, Theorem 3.1] Let { P} (x) : |a| = n}, -, denote an orthonormal

polynomial system on the unit ball with respect to (1.40), and let K (1, 0)(5 x) and K
be as in (2.34) and (2.35), respectively. Define the polynomials {QZ( )i lal =n},50
by means of:

Q) = PR(x).
QL) = Px). ol =1,
Qi) = i)~ A e )

there the superscript T' denotes the transpose. Then {Q4(x) : |a| = n}, . is a se-
quence of polynomials satisfying the following weak orthogonality with respect to the
Sobolev-type inner product (2.31):

(Q1QE) g = abums mym >0, L, >0

Additional results [32, Lemmas 4.1 and 4.2, Corollary 4.3] give explicit expressions

T+ AK ) K5, x)7, n>2, |al =n,

for computln% the matrix K\ Y in terms of the Jacobi polynomials. These results on
the matrix K" allowed the authors deduce asymptotics for the Christoffel functions,
which are the reciprocal of the kernel functions (see [32, Section 5]).

2.2.3 Sobolev orthogonal polynomials on the simplex

In two variables, Xu [114] studied in a extensive paper the approximation by poly-
nomials on the triangle T? = {(x,y): z > 0,y > 0,z +y < 1} in the Sobolev space
w5, which consists of functions whose derivatives of up to r-th order have bounded
L? norm. His work was motivated by the fact that with respect to the inner product:

) = / F(@,9)g(@, 9) Wy o (@, y)dady, (2.36)
TQ

with W, 1, 14 (2,y) = 27y (1 — 2 — y)'Y3, Y1,72,7Y3 > —1, a mutually orthogonal
basis {P%’“’m3 0<k< n} of #,2(W,, ~ss), the space of orthogonal polynomials
with respect to (2.36), is given by:

P]zz'mw(x’y) — (x_i_y)kpk(%m) (?) PéZ_/’c]:«ﬂ+'y2—i—1,'y3)(1_Zm_zy)7 0<k< n,
) x y

where P*” denotes the Jacobi polynomial of degree n. Therefore, with respect to
this basis, the best polynomial approximation (Hilbert spaces theory) for a function
f € L*(W,, 1,.,) is given by its Fourier orthogonal expansion:

<f P’Yl 7’}’2,'Ys>
Y1,72,73
Y1,72,73 V1,72,73
<Pk:,m ) Pk,m >

n m
YIV2 Y3 £ e § :E :Avl,vma V152573 Y28
Sn f T fk,m Pk’,m ’ fk,m -
m=0 k=0 Y1,72,73

More precisely, the standard Hilbert space result shows that:

E (f>’71’727'¥3 = lnf Hf P“L2 Wvlyvg,vg) = Hf - 521772#3‘][”LZ(WMszg)'

Pell2
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Xu motivated with finding similar results on the Sobolev space #4", in the first part
of his work he extended P to negative parameters, by using the generalized

Jacobi polynomials J%# defined in (2.15), to the following definitions:

J]zlyz’72,’73(x7y) = (x + y)kjl;th <y ;fE) J311271+72+1,73<1 Y YO 2y)7 0< L < n,
k) x y

2x
I—y

Lzlﬁw’% (m,y) — (1 . :L,)k(]]zzw, (1 . 29 ) lei“!];'72+'Y3+1,’Yl (2$ _ 1)7 0 S k S n.
El - ZIZ'

K5 (@y) = (1= y) T ( = 1) JRTe 29y 1), 0<k <n,

—_

For v1,72,73 € R and n = 0,1,2,..., let #2(W,, ,..s)s be the space spanned by
{J0727 00 <k <n}. The spaces %2 (W, yyys) i and ¥2(Wo, 5, ,)1 are defined in
a similar way.

Proposition 2.1. [114, Proposition 4.2] If 1,772,773 > —1 or —y1, =2, —73 ¢ N then
%LQ(W%ryzﬁs)J = 7/712<W71,’727’73)K = %12(W71,72,73>L = %Q(W’Ylﬁmﬁs)? where =: means

we remove the subscript J, K, L when they are equal®.

Xu proved that the subspace ¥,2(W,, -, _1) is the space of orthogonal polynomials
for three different Sobolev inner products as shown in the propositions below.
For 41,79 > —1, let the inner products:

(f9)], 1 = / (20, f (2, 9)0g(,y) + YO, f(x,9)0yg(x, Y)W, 1, 0(z, y)drdy

T2

1
+ )\/ flx,1 —2)g(z,1 —2)W,, 1, 0(x,1 —2)dz, X>0,
0

()= |

T

20:f(2,9)0:9(2, Y)Wy o 0(, y)dady

+ )\/01 flx,1 —2)g(z,1 —2)W,, 1, 0(x,1 —2)dz, X>0,
0 s = [ 90,5 0)0,9(0,0) W ol )y
+ )\/01 flx,1 —2)g(z,1 —2)W,, 1, 0(x,1 —2)dz, X>0.

Proposition 2.2. [11/, Proposition 5.1] The space ¥;2(W,, ~,.—1)s consists of ortho-
gonal polynomials of degree n with respect to (-, ->i1772,_1 and {J,Z;;”’_l 0<k < n}
18 a mutually orthogonal basis of this space.

Proposition 2.3. [11/, Proposition 5.2] The set {K,er;vz’_l 10 <k <n} is a basis
of V2(Wo, s —1)s, and so is {LZ;’J’Q’A :0<k<n}.

“In [114] the symbol ¥2(W., »,~s) is used to denote the space of polynomials with respect
to (2.36) and, at the same time, to denote the equality between the spaces #2(W., y54s)7s

V2 (Weyy oy )i and %2(Wo, o, +2)r. Such an equality also holds for some triplets v1,72,7s that
contain negative integers, but does not hold for all such triplets.
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Proposition 2.4. [114, Proposition 5.3] The set {K,Z},;W’*l :0 <k <n} consists of

a mutually orthogonal basis of ¥;2(W,, ~,.—1)s under the inner product (-, >51 I

Proposition 2.5. [114, Proposition 5.4] The set {LZ?;;’Q’_I :0 <k <n} consists of

a mutually orthogonal basis of ¥,2(W., 1, —1); under the inner product (-, ->§17%_1.

He also defined suitable inner products for %", and he formally extended ;727 f
to 71,792,773 being —1 or —2. The main results on approximation are given in [114,
Theorem 1.2 and 1.3] where the extended polynomials S, 5! f and S,27%72f
appear.

2.2.4 Sobolev orthogonal polynomials on a product domain

Recently Ferndndez, Marcelldn, Pérez, Pinar, and Xu [49] studied the orthogonal
polynomials in two variables with respect to the Sobolev inner product:

(f.9)s = ¢ / Vf(e,y) - Vole. )Wz, y)dedy + Af(er,cx)glen e, (2.37)

where Vf = (@f, 8yf>T is the gradient vector, (ci,c) is a given point in R?
Q := [a1,b1] X [ag,by] is a product domain, W (z,y) = wy(z)ws(y) is a non-negative
weight function which is obtained as a product of two weights in one variable, ¢ =
1/ Jo W (z,y)dzdy is the normalization constant of W, and A > 0. These authors
proposed a strategy for constructing the Sobolev polynomials with respect to (2.37),
which includes the definition of the product polynomials:

Qr(,Yy) = ur(wi; T)qe(we;y), 0<k<n, n=01,2..., (2.38)
where ¢, (w;), i = 1,2, is a monic polynomial of degree n in one variable defined by:
qn(Wi; ) = pp(ws; ) 4 Nap_1 (W) pp—1(Wi; ©) + nbp_1 (i) pp—o(wi; ), n >1,

which satisfies the property ¢}, (w;) = npn—1(w;), and {p,(w;;x)},~, is a sequence of
self-coherent monic orthogonal polynomials with respect to the weight w;, that is,
this sequence satisfies also the relation:

P (Wi )

] + an(wi)py (wis ©) + b (wi)p, 1 (wiz), n=>1, (2.39)

po(wisx) =
where a,(w;) and b, (w;) are real constants. Marcellan, Branquinho, and Petronilho
[76] proved that the only families of self-coherent polynomials on the real line are, up
to a linear change of variable, Hermite, Laguerre and Jacobi.
Let (-, )y denote the bilinear form:

(. ghe = /Q V£ y) - Volr,y)W (. y)dedy. (2.40)

If ¥2(S) and ¥,%(V) denote the space of orthogonal polynomials of degree n with
respect to (2.37) and (2.40), respectively, then the following result is given in [49].



2.2. Sobolev orthogonal polynomials in several variables 42

Proposition 2.6. [/9, Proposition 2.3] For n > 1, let {S}} : 0 < k <n} denote a
monic orthogonal basis of ¥,2(V). Then, the monic orthogonal basis {SP' : 0 < k < n}
of ¥2(S) is given by SY(z,y) =1 and

S]:tl(x7y):S]?(l’7y)_sl’?(01762)7 TZZ 1.

The previous proposition justified working with (2.40) only. In order to find a
basis {S7:0 <k <n} for the space ¥?(V), the authors denoted by @, the col-

T
umn vector Q,, = (Qg‘(x,y),Q?(x,y), .. ,QZ(m,y)) , where Q7 (z,y) is defined in

T
(2.38), and by S, = (S{}(x,y), St(x,y),. .., S;}(x,y)> the polynomials in the basis
{S; : 0 < k <n}. Then, they proved [49, theorem 2.5] that there exist matrices A,,
and B,, such that:

@n = Sn + Anflgnfl + Bn728n727 (241>

where = denotes a congruence relation on II?, where two polynomials P and () are
equal up to a generic constant ¢, that is, P(z,y) = Q(z,y) if P(x,y) — Q(z,y) = c.
Equation (2.41) provided an iterative method for computing the polynomials in S,, in
the form S,, = Q, — A,,_1S,_1 — B,,_2S,_». Then, two particular cases were discussed
by these authors: Laguerre-Laguerre weight W, s(z,y) = 2%~ "y’e™¥, a, 8 > —1, and
Gegenbauer-Gegenbauer weight W, s(x,y) = (1 —22)*"Y2(1—42)%~12 o, 8 > —1/2.
Following a similar strategy, Duenas, Pinzén-Cortés, and Salazar-Morales [41]
studied the Sobolev orthogonal polynomials with respect to the bilinear form:

(f,9)s = C/Q V2 f(x,y) - Vg, y)W (x,y)dedy + Mf(c1, c2)g(er, e2),  (2.42)

T
where V2f = (@w [y Oy f, Oys f, Oy f) is the gradient or order two, and where the

remaining symbols in (2.42) have the same meaning that in (2.37). In this case,
similar results like those in [49] were obtained.



Chapter 3

Main results

3.1 List of publications

The results in Chapter 3 and Chapter 4 were considered for publication at different
journals. The following papers form a list of publications until February, 2022.

e Duenas, Herbert A., Salazar-Morales, Omar, and Pinar, Miguel A. “Sobolev
orthogonal polynomials of several variables on product domains”. In: Mediterr.
J. Math. 18.5 (2021). Article 227, pp. 1-21

e Salazar-Morales, Omar and Duenas, Herbert A. “Laguerre-Gegenbauer-Sobolev
orthogonal polynomials in two variables on product domains”. In: Rev. Colom-
biana Mat. (2021). Accepted. To appear

e Salazar-Morales, Omar and Duenas, Herbert A. “Partial differential equations
for some families of Sobolev orthogonal polynomials”. Submitted to journal.
2022

3.2 Introduction

Chapter 1 was devoted for a basic background on standard orthogonal polynomials
in one and several variables. In Chapter 2 a state of the art on Sobolev polynomials
was presented. In this chapter we study some algebraic and analytic properties of the
Sobolev orthogonal polynomials in several variables with respect to the inner product
(2) that involves higher-order derivatives.

In order to get a better understanding of this chapter, the results of our study
were divided into sections that can be summarized as follows:

1. In a similar way that the gradient vector V f contains all the first-order partial
derivatives of a function f, in Section 3.3.1 we introduce a column vector, de-
noted by V* f, which contains all the partial derivatives of order k € N of f. In
this same section, we present some of its properties and related results.

43
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2. Our Sobolev inner product (2), denoted by (-, -)g, is presented in Section 3.3.2

and it is divided into a continuous (main) part and a discrete part. The contin-
uous part is denoted by (-,-)g. and it includes a non-negative weight function

w.

Some properties of (-,-)y. are developed in Section 3.3.3. In particular, we
will show that (-,-)g. is a positive semi-definite bilinear form, and therefore,
the orthogonal polynomials with respect to (:,-)g. can be determined up to a
polynomial of degree at most k — 1. Even though this seems to be a drawback,
in Section 3.3.4 we will show that the orthogonal polynomials with respect to
(-,-)¢ can be uniquely determined by means of the orthogonal polynomials with
respect to (-, -) g« and through a connection formula. Some additional properties
of this connection formula are presented in Section 3.3.5.

Since most of the work is reduced at studying the orthogonal polynomials with
respect to (-, )y, in Section 3.3.6 and Section 3.3.7 we present an iterative
method for constructing the polynomials with respect to this bilinear form.
This method requires explicit computation for the entries of some matrices that
are involved. This is performed for particular weight functions in Section 3.4.1
to Section 3.4.4.

Finally, in Section 3.4.1 to Section 3.4.4 we consider additional properties (in-
cluding partial differential equations) on each one of the following domains:

e A product domain:
Q= [al,bl] X [(lg,bg] X X [ad,bd] ,

where [a;, b;],7=1,2,...,d, is an interval of R.

e The simplex:
Q=T¢.= {XE]Rd::vl20,x220,...,xd20,1—|x|ZO},

where |x| ==z + 23+ - + x4
e The unit ball:

Q=B":={xeR’: x| <1}.
e The cone:
Q:ngz{xeRd:||xd_1||§xd,0§:£d§19}, 0 <9< o0,

where x4_1 = (z1,...,Z4-1).
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3.3 General properties

The definition of our Sobolev inner product involves higher-order partial derivatives.
In addition, many of its properties are independent of the domain 2 where its con-
tinuous part is defined. In this section we present some of these properties. We begin
our study with the introduction of a column vector which contains all the partial
derivatives of order x of a function f.

3.3.1 Gradient of order

Let f be areal-valued function of d variables x1, s, ..., x4, and let V = ((91, o, ... ,ad)T
be the gradient operator. We define recursively the gradient of order x € N, which is
denoted by V*f as the column vector:

(V< f)

Oy (VH—L
Vrf = 2(. h ., Kk>1, where V'f:=f. (3.1)

Aa(V<f)

Notice that V1f := Vf. It is not difficult to show that V* is a linear operator and
V*f is a column vector of size d* which contains all the partial derivatives of order
k. Let us recall that if f has derivatives of all orders then the order of differentiation
does not matter. This is our case because we work with polynomials. Therefore,
0; (V5 f) =V (0;f), i =1,2,...,d. We will use this property in the sequel.

Similarly, let x = (z1,72,...,24) € R and y = (y1,¥2,...,%4) € RL. We define
recursively the column vector (x — y), k € N, by:

(21 =) (x — y)lr !

(zq — ya)(x —y)lF 1

Notice that (x — y)[l] = (xl — Y1, Ty — Y, ..o, Tg — yd)T, and therefore, (3.2) can be
written in terms of the Kronecker product [54, section 4.2], denoted by ®, in the
foom (x — y)¥ = (x — y) ® (x — y)*"1. Let us observe that (x — y)I is a
column vector of size d® which contains all the possible products of the differences
1 — Y1, L2 —Y2,---,%d — Ya-

Proposition 3.1. Let k > 0, and let f and g be real-valued functions of d variables
with partial derivatives up to order k. Then

K K, K Q Q
VEFV g—|§n (oq,ozg,...,ozd>a fo%g, (3.3)
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where

K k! k!
- ———— =~ lal=aita+ o ta=r
a1,09,...,04 1091 - - (Og. (6%

denotes the multinomial coefficient.

Proof. We use mathematical induction on . The result is immediate for kK = 0. Let
us suppose that (3.3) holds for K — 1, kK > 1. Now, we use the induction hypothesis
on VY9, f) - VA 1(8,9), 1 <1 < d, that is,

ap, O, ..., 04

VU8, f) - VL (Big) = Z( el )aa(aif)aa(aig).

|a|=k—1

Then, by its definition

d

d
VIV = 30T (T ) = 39O T (0),
=1

=1

and the property:

d

k—1 K
E — , a1+a2+...+ad:,€7
: i, e, ...,0; —1,...04 a1, Q9,...,04

=1
of the multinomial coefficients follows the result. O

The proof of the following proposition is similar. Therefore, we omit it.

Proposition 3.2. Let k > 0, and let f be a real-valued function of d variables with
partial derivatives up to order k with respect to x. Then

AR ED DY RN R
= 1,89, ...,

It is well-known [44] that if P € 22 is homogeneous polynomial of degree n then
its partial derivative 0°P € ‘@ff—\ow 0 € NZ, is also a homogeneous polynomial of
degree n — |0[. That is, if P(x) = >, _, caXx” then P(x) = 2 lal=n Cad?x =
2 lal=n Ca(—1)P(—a)ex*% is a linear combination of monomials of degree |a — 6| =
(g —61)+- -+ (ag—04) = n—10|. Some other properties that include V*, when it is
applied to polynomials, are generalizations of well-known properties of the gradient
V. For example, if P is a homogeneous polynomial of degree n, it is known [44] the
Euler’s equation:

d
Zmi&»P(x) =nP(x), Pec 2% (3.4)
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Therefore, homogeneous polynomials are eigenfunctions of the differential operator
Zle x;0;. With our notation, the equation (3.4) can be written in the form (with
k=1andy=0):

x. VP(x) =nP(x), Pe 2 (3.5)
Now we present a generalization of (3.5) to higher-order derivatives.

Proposition 3.3. Let k > 0 and let p = (p1, D2, - - ., pa) be a given point in RE. Then,
if P €114 is a polynomial of the form P(x) = Z|B|:n cs(x — p)?, where cg is a real
constant, then the following equation holds:

(x —p)l - V*"P(x) = (n — K + 1) P(x). (3.6)

In particular, if P is a homogeneous polynomial then we have the following generalized
FEuler’s equation:

x" . V"P(x) = (n — k+1),P(x), Pec P (3.7)

Proof. First notice that if P is of the form P(x) = 3, _, cs(x — p)”’, then O;P,
1 < < d, has the same form, that is:

OP(x) = > caBilwr —p1)™ (2 — p)* e (0 — pa)™ (3.8)
|B]=n
= Z /C\Th‘(x_p)menzflv /C\m‘zcﬁﬁia ni:(ﬁla"wﬁi_la"'?ﬁd)-
[ni|=n—1
' (3.9)

For k = 0 the equation (3.6) is immediate. For x = 1, by (3.8) we have that:

d

(x —p)"-VP(x) =) (; — p;)dP(x) = nP(x), (3.10)

=1

and (3.6) also holds in this case. Let us suppose that the proposition holds for k — 1,
x > 1. By the induction hypothesis applied to 9;P € TI¢_, we have that:

(x — p)F 1. V19, P(x) = (n — K + 1) 10 P(x), 1<i<d. (3.11)

Then by (3.1), (3.2), (3.10) and (3.11):

(x—p)- V" P(x) = Z(ﬂfz —p)(x—p)lr v, P(x)
d
=n—Kk+1),1 Z(xz —pi)0iP(x) = (n—k+1),P(x).

Finally, equation (3.7) follows with P € 2% and p = 0. O
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3.3.2 Sobolev inner product

Let x € N be a fixed number. We denote by #¢(S, W) the linear space of Sobolev
orthogonal polynomials of total degree n in d variables with respect to the inner
product:

k—1

Fghs = [ 95100 VglW (x)dx + 3 AT (B) - V'o(p). (3.12)

=0

with Q C R? being a domain having a non-empty interior, and where! )\; > 0 for
1=0,1,...,k— 1, W is a non-negative weight function on €2, ¢ is the normalization
constant of W, that is,

¢im (/Q W(x)dx>_1,

and p = (p1,p2,...,p4) is a given point in R?, typically on the boundary of Q. The
sum in (3.12) is added to make the inner product well-defined on I1%. For (-, )¢ we
denote its continuous (main) part by:

(f. G = / VF(x) - VEg() W (x)dx, (3.13)

where we observe that (-, ). can be defined for k = 0 by (-,-)go = (-, ")y, Where
(-,-)y is the inner product:

(f. gh = / F ()9 ()W (x)dx. (3.14)

We denote by ||-|lw := 1/(:, )y the norm induced by (3.14). In addition, we denote by
#,4(W) the space of orthogonal polynomials with respect to (3.14), and by %,¢(V*, W)
the linear space of orthogonal polynomials of total degree n with respect to (3.13).
Then (-,-)4 can be written as:

) = . ghen + SNV (0) - Tiglp)

We will give some properties of (3.13) in order to find a connection formula between
polynomials in the spaces #4(V*, W) and #4(S,W).

3.3.3 Some properties of (-,-)g.

Observe that the recursive definition of V* f implies for x > 1 that:

d

(f,9)on = C/Q (Z VO f) - VH_I(@Q)) W(x)dx

=1

Tf we choose A\g = 1, then we get the normalization (1, 1) g = 1 for this Sobolev inner product.
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d
_Z /v“af ) - V)W (x)dx = > (Dif,0:9) g1
=1

and more generally we have the following proposition.

Proposition 3.4. Let k > 0. Then (-,-)g. is a symmetric bilinear form which is
positive semidefinite and it is related to the inner product (-,-)y, by:

(f9)ge =Y ( : &d) (0“f,0%q)y » o= (a1,00,...,aq) € NG. (3.15)

lal=r g, Qg, ...,

Proof. That (-, ) g« is a symmetric bilinear form which is positive semidefinite follows
from its definition. Equation (3.15) follows by (3.13), (3.14) and (3.3). O

The bilinear form (-, -)g. is not an inner product on I1%, except for £ = 0. To see
this, if k > 1 and P € I3, P # 0, then (P, P)g. = 0 but P # 0. As a consequence the
orthogonal polynomials with respect to (-, -)g. can be determined up to a polynomial
of degree at most Kk — 1 as we will show in the sequel.

For k > 1 we adopt the following notation for two polynomials P and @ of d
variables that are equal up to a polynomial of degree at most x — 1:

P=Q if P-Qell’_,

The relation "= is a congruence relation? on I1¢. We denote by || - ||y« the seminorm
|- [y« = /{, )o~ induced by (-,-)g.. Next we show a characterization of = in
terms of V*, (-,-)gx and || - [|v=.

Proposition 3.5. Let P,Q € I1? and k > 1. The following statements are equivalent.
1. P'=Q,
2. (P,R)g. = (Q,R)gx for all R € T1%,
3. [P = Qllvs =0,
4. VP =V"Q.

Proof. If P "= @Q then P — Q € TI¢_,. Then V*(P — Q) = 0 and as a consequence
(P—Q,R)g. =0, that is, (P, R)g. = (Q, R)g. for all R € I1°.
If (P,R)o. = (Q, R)g. for all R € I1? then, in particular, for R = P — Q € II* we

have:

0=(P,R)g. = (Q, R)ge = (P = Q, R)gs = (P = Q,P = Q)gx = | P = Ql[5~.

2A congruence relation is an equivalence relation (reflexivity, symmetry, transitivity) which sat-
isfies the compatibility property [20, Deﬁmtlon 5.1] with the operations of the linear space me: if
P,Q,R,S € II% then P "=" Q implies (aP) =" (aQ), a € R, and P "= @Q and R "= S imply
(P+R) =" (Q+S9).
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If ||P — Q|lv~ = 0 then by (3.15):

0=||P—Q||2vn=<P—Q,P—Q>w=Z( "

laj=r

Wl - Qs

A, ...

which implies that 0°P = 9°Q for all a € N¢ such that |a| = &, that is, VFP = V*Q.
Finally, if V*P = V*@ then V*(P — Q) = 0. Therefore, P — (@ is a polynomial
of degree at most x — 1, that is, P "= Q. ]

Let [P] denote the equivalence class that contains P € I1¢ due to the congruence
relation "=. The equivalence class that contains the zero polynomial is exactly the
subspace II¢_,, that is:

k—1»
0 ={Pen’:P=0}=1¢_|.

Let us observe that if P is any polynomial in I1¢_, (that is, VP = 0) and if S is a
polynomial in #7(V*, W) (that is, (S, @)y~ = 0 for all Q € TI}_,) then S+ P is also
in %,4(V*, W) because of the equality (S + P,Q)g. = (S,Q)g. =0 for all Q € I1¢_,.
Then the polynomials in #4(V* W) are determined up to a polynomial of degree at
most k — 1. This remark is important and it seems to be a drawback but, as we will
see later, the polynomials in the space #,4(S, W) do not depend on the representative
we choose of each equivalence class.

3.3.4 Connection formula between polynomials in the spaces
VH(VE,W) and 71(S, W)

Let us recall (see [43, pp. 51] and Section 1.4) that the Taylor polynomial 77! ( P, p; x)
of total degree k — 1 in d variables of P € II¢ at p = (p1, 2, ..., pq) € R? is given by:

T U Ppix)= Y —(3/31;')(13) (x —p)’ (3.16)
|B]<k—1 '
=3 L)) (x ) .17

and the corresponding remainder term (and its integral form) in the Taylor’s formula
is:

Re(P,p;x) = P(x) — T" (P, p;x) (3.18)
=Y x-p) ;'p)ﬁ / (1 —=1)H(9"P)(p + t(x — p))dt (3.19)

Bl= 0
= /0 %(x —p)" - (VEP)(p + t(x — p))dt, (3.20)
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where the expressions (3.17) and (3.20) follow from Proposition 3.2. Notice that,
because of the linearity of 07, if P,Q € II? and a,b € R then:

T HaP +bQ,p;x) = aT" (P, p;x) + b7 1(Q, p; %),
Re(aP +bQ,p;x) = aR.(P,p;x) + bR.(Q, p; X),

that is,
% 1% : P T (P, p), (3.21)
¢ —1%: P — R.(P,p), (3.22)

are linear operators. A well-known property of the Taylor polynomial (3.16) is that,
at the point p € R?, it satisfies:

(0°P)(p) = (T (P.p)(P). 0] <K—1,
which implies that:

(0"Ru(P,p))(P) =0, 0] <r—1,
or the latter in a vector form:

(V'R«(P,p))(p) =0, 0<i<w—1.

Therefore, if P,Q € 11, and since V*T*~ (P, p;x) = 0, then:

<R5<P> p)?Q)S = <RH(Pa p)aQ>V"‘ +

k—1

Z)\z KVVR%(E, P))(PZ(VZQ)@) = <P7 Q>V'€ : (323>

=0

=0

From the last equation, in particular, if P € #4(V* W), Q € II?_,, n > k, then

n—1»
by (3.18), R.(P,p) is a polynomial of degree n for which (R,.(P,p), Q)¢ = 0 for all
Q e TI¢_,, that is, R.(P,p) € ¥(S,W). This shows that the linear operator:

n—17
Ryp: VUV W) s VHS, W) 0 P R (P,p), n>r,
is well-defined. Based on these properties, we have the following theorem.

Theorem 3.1. Let {S": |a| =n} denote a monic orthogonal basis of ¥,4(V*, W).
Then, a monic orthogonal basis {S" : || = n} of ¥,4(S, W) is given by:

Shx)=(x—p)* 0<|al=n<xk, (3.24)
Sa(x) = Su(x) =T 1(Ss, p;x), o] =n>r, (3.25)
where (x —p)® denotes the shifted monomial (x1 — p1)®* (xg — p2)** - -+ (x4 — pa)™® and

Tr1(S", p;x) denotes the Taylor polynomial of total degree k — 1 in d variables of
SZ at pP= <p17p27 R 7pd)'
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Proof. Tt is not difficult to see that (3.24) and (3.25) are monic of degree exactly n,
that is, S is of the form S7(x) = x* + R.(x), |a| = n, R, € I¢_,, if S? is monic.
Now we prove the orthogonality of S)! with respect to <-, )¢ We consider two cases.

Case 0 < |a] = n < kin (3.24): If n = 0 we have nothing to prove. Let
n>1land Q € TI¢_|. If n < i < k then VIS" = 0, and also V"Q = 0 and
VUS2(p) := S%(p) = 0. Therefore (8", Q) in (3.12) reduces to:

n—1
s=>_ AV'Si(p)- V'Q(p).
=1

Now for 1 <7 < n—1 let us observe that each entry in the vector V'S" = Vi(x — p)~
is a polynomial of total degree n —i > 0, therefore each entry in V'S” has at least
one factor of the form (z; —p;) for some j € {1,2,...,d}, where we get V'S(p) = 0.
Consequently, (87, Q)¢ =0 for all Q € II¢_,

Case |a] =n > & in (3.25): By hypothesis (S?,Q)g. = 0 for all Q € IT_,. Since
(ViS™)(p) = (VT 1S, p))(p) foralli = 0,1,...,xk—1, and also V*T*1(S" p) =
0 then:

(82 Qs = (Sh = T 150, P) Q)gn +ZA V(e = T"71(S2,p))(p) -V'Q(D)
-0
= < TH 1 STZ’p Q>VN - oﬂQ)V“ = 07
for all Q € I1¢_,. O
Remark 3.1. Notice that if P € TI¢_; then T }(P,p;x) = P(x) for all x. As a
STL

consequence, if S € TI? is such that S "= S”, that is, S(x) = S?(x) + P(x) where
P ell¢_,, then:

K—1>
S(x) ~ T*1(S,pi%) = (S5 + P)(x) = T (Sl + P,pix)
= Sa(x) + P(x) = T (S, psx) = T (P, p;x)
= 50 = T (52, i),
Therefore, the polynomial S in (3.25) does not depend on the representative we
choose of each equivalence class due to the congruence relation "=

Theorem 3.1 shows it is only necessary to work with the bilinear form (-, -)g. and
on the set [I7\TI¢_, (polynomials of degree at least ). Notice that the polynomials in
¥ 4(V*5, W) are determined up to a polynomial of degree at most x — 1, but according

to Theorem 3.1 and the previous remark, this issue does not affect the polynomials
in V4(S,W).

3.3.5 Some consequences of the connection formula

In this section we present some consequences of (3.25) in the case n > k. Let us
observe that for any polynomial in several variables P € II¢, the Taylor polynomial
of P at p satisfies the following relation:

PTHNP pix) =T PN (P p;x), 6eN], [0 <k—1. (3.26)
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Equation (3.26) can be proved directly from (3.16) and it implies, by (3.18), that:

PRu(P,p;x) = Ru_jo(°P,pix), 0] <k —1, (3.27)
IR (P, p;x)=0"P(x), |0]>Kr—1. (3.28)
Then, for the monic orthogonal basis {S" : |a| = n} of ¥,4(S, W) given in Theo-
rem 3.1 we have that the partial derivatives of S” are given for the case || =n > &
by:
'S (x) = 0" (x) = T 71885, pi x) = Ry (9°Si, 03 %), |l =n >k > 6],
'Sn(x) = °S™(x), |a|=n>k, |0 >k

These two last equations and the Taylor’s formula prove the following result.

Proposition 3.6. Let P € ¥%(S,W). Then, the partial derivative °P, § € N,
satisfies the equation:

R jo)(0°P,p) =P, n>r>|0].
And moreover, (0°P)(p) =0, n > K > |0|, or the latter in a vector form.:
(V'P)(p) =0, n>k>i. (3.29)
In particular, for 6 = (0,0,...,0), the polynomial P satisfies the equation:
R.(P,p)=P, n>k. (3.30)

Proof. Let n > k and let {S” : |a| = n} and {S” : |a] = n} be monic orthogonal bases
of ¥4(S,W) and ¥,4(V*, W), respectively, as in Theorem 3.1. Let us observe that
S, given in (3.25), is S? = R, (5%, p). Then, by (3.27) and (3.19), we have that:

ZL

0P S1(x) = R (ST, 93 %) = R (0752, i X) =

1
B [ -1 — @y o+ - phi. 18] < .
In|=r—16] ' 0

(3.31)

Since the multi-index 1 + 6 in (3.31) satisfies |n + 0| = |n| + |#] = K, we have
again by (3.25) that 978" = 97"9S". Therefore, the right-hand side of (3.31)
is equal to R,_jg(0°S2, p), that is, we have the equality 9°S? = R,_js(8°S”, p).
Now, (0°S7)(p) = 0 because the remainder term R, (0’S?, p;x) vanishes at
x = p. The result follows by the linearity of R,_jg/(-,p) on its first argument
and because P € ¥,4(S,W) is a linear combination of the polynomials in the ba-
sis {S” : |a| = n}. O

Notice that (3.29) implies that if P € ¥/4(S,W), n > k, then

0= (P.Q)s = (P.Q)er + SN (VPID) (VQp), Qelli .

— ——
=0 -0
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that is, P € #4(V* W). Then, by (3.30), the linear operator %, p, is surjective. It
is not difficult to prove that ker %, , = I1%_,. Therefore, by the first isomorphism
theorem [20, theorem 6.12], there is an isomorphism .%, , from the linear quotient
space ¥,4(V* W)/II¢_| to the linear space ¥,%(S, W) defined by Z,., = Swp o N,
where .4 is the natural mapping defined by A4 (P) = [P], P € ¥4(V*, W), such that

the following diagram commutes.

VAVE W) —22 sy (S W)

l,/V r,p

VUV W),

Recall that on the linear space #,4(V*, W) /II%_, the operations [P]+[Q] := [P+Q)]
and a[P] := [aP], a € R, P,Q € ¥,4(V*, W), are well-defined. On the quotient space
¥ A(VE W) /T2, there is a well-defined inner product (that is, it does not depend on

the representative we choose of each equivalence class), induced by the bilinear form
(-, ) gn, defined by

([P, [Q]>‘//T;1(VH,W)/H§7
Moreover, (3.23) implies that

<[P]7 [QD‘I/T#(VN,W)/Hd = <°§ﬂn,p([P])7°yﬂ,p([Q])>S7 P,Q € %d(vﬁvw)v

r—1

= (P,Q)on, P,QeVIV"W).

1

that is, 74(V* W) /T | and #4(S, W), n > k, are isomorphic inner product spaces.

Remark 3.2. The multinomial theorem [1, Section 24.1.2] in d variables:
. K
proves the factored form of the differential operator:
K
Or+ Oy + -+ 0g)" = o, o' =00ak - 0 3.33
(Or+ 02+ -+ 0a) |9|Z_(91792’ _’@d> ; 1 02 d > (3.33)
which appears in Proposition 3.7.
Proposition 3.7. Let n > k, and let P € ¥,%(S,W) or let P € ¥,2(V*, W). Then:
(O + 0y 4+ 0g)"P e ¥, (W). (3.34)

Proof. Notice that for any monomial x? we have:

GRS 6 <
SOV s

0, 0 £5,

0,3 € NI,
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and for a fixed multi-index § € N¢ we have the equality of sets:

{BeN;:[B|<n—-10<pB}={n+0eNi:|n<n—10]—1}.

then by (3.15)

n—1»

B
If P e ¥4V~ W), and since {% 8l <n— 1} is a basis of 1%
and the orthogonality of P with respect to (-,-)g«, we have that:

— x” _ K 0 g [(XP
° <P’E>w - % (91,---,%) <a Po (§)>W
K X,B*H p o
AT DI I

—— ~—~
Bl<n—1,0<8 nl<n—r-1

K 0 X

= E P, —
< (81,...,9,1)8 ’n!> ’
10|=k W

where we conclude that (0 +0y+---+0,) P = Z " 9’ P is a polynomial
16/=r 017 K Qd

of degree n — k that is orthogonal to all polynomials in II?_, , with respect to (-, )y,

that is, we have (3.34). If P € #4(S,W) then by (3.29) we have that:

x’ x’ — i i
0— <P, E>S _ <P, E>w AT (V) (), 1510

We follow the same steps as above and again we conclude (3.34). ]

Notice that if the polynomials in the space ¥¢(W) are eigenfunctions of some
differential operator £, that is,

LP=M\,P, PecviYW), (3.35)

where A, is an eigenvalue which depends on the degree n only, then Proposition 3.7
implies that the polynomials in the space %,4(S, W) (or #,2(V*, W)) satisfy a partial
differential equation of the form:

L — Xk Z](OL + 02+ -+ 4+ 04)"P =0, (Z is the identity operator).

Equations (1.17), (1.21), (1.31), (1.43), (1.45), (1.56), and (1.60) are examples of the
more general equation (3.35). Therefore, for those equations we have some corollaries
in Section 3.4.1 to Section 3.4.4.
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3.3.6 Construction of a basis for the space 7/%(V* W)

Theorem 3.1 shows that we only need to know a basis for the space ¥4(V* W) for
n > k. In this section we present an iterative method for constructing such a basis.

Asin Theorem 3.1, let us denote by {S7 : |a| = n} and {S? : || = n} monic ortho-
gonal bases of #/4(V*, W) and ¥,2(S, W), respectively. We know that dim ¥/4(V*, W) =
dim 7,%(S,W) = rl. The elements of these two bases can be arranged in a vector
form. We denote by S, and &,, the column vectors:

S,(x) = (St (%), 2 (). ST (x))T ,

a(rn)
n n n T
&, (x) = (Sa<1> (%), SZiy (%), - S" g (x)) :
where o, a® ... o) is the arrangement of elements in {a € N : |a| = n} ac-

cording to the reverse lexicographical order. Then, by Theorem 3.1 we have that:

T
Sn(x) = <(X — p)a(l), (x — p)o‘@), e (x = p)"‘(rg)> , 0<n <k,
Gn(X) = Sn(X) - TH_1<S7L7 p; X)7 n Z R,

where T*71(S,, p) denotes the column vector:

T
T (S, p) = <7ﬂ"C NS08 ), T Sk p), -, TH(S (Td>>P)> :

In addition, with this notation (S,, m>
size r¢ x ré such that

0
(SnSh)gw = (< ali) ngj)> ) =9 o= s
v 1§i§rg,1§j§rd H n=m,

n

0 n#m

T ) )
<6n’6m>s - (<SZ(Z)’Sg(LJ)> ) = HS .

S/ 1<i<rd 1<j<rd, ny N=m,

where HY" and H? are both symmetric matrices.

and (&, 6%>S are both matrices of

K

Remark 3.3. Even though the polynomials in the space ¥,4(V* W) are determined
up to a polynomial of degree x — 1, notice that the matrix <Sn, m> is well-

K

defined. If P, Q5 € T are such that ST, "= P, and Sp, "= Qu,, that
is, St (x) = Pl (x) + Q(x) and Sp,) (x) = QF) (%) + R(x), with @, R € TI7_,,
then <SZ : ’Sﬂ(j)>w = <P§(i), Qg}j)>w, because V*Q) = V¥R = 0. Then, each entry
in <Sn, m> . does not depend on the representative we choose of each equivalence
class. In particular, HY " is well-defined.
Let us observe that HY ™ and H? are given by:
d

H" = <Smgg>v~:<<SZ<2'>’SZ(J'>>V~>; ; (3.36)

J=1
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T
that is, (3.36) and (3.37) are Gram matrices [53, pp. 407]. Therefore, they are always

T
positive semi-definite. To see this in the case of HY ", let a = <a1, ag, ... ,arg> be a

. d
non-null column vector in R™, then

rd  pd
T Vr L, E E n n
H a= E : § :CLZCL] <Sa( a(J)> <a/i5'06(’.>’ajs’()t(j)>V'i
=1 j=1 i=1 j=1
., . y ) (3.38)
n n — n
< E @Sk, § ajSa(j>> = Za’isa(i) > 0.
i=1 j=1 v i=1 v

In fact, since (-,-)q is an inner product then H? is positive definite, but this is not
always the case for HY  as we will show in the following proposition.

Proposition 3.8. HY" = (S,,S]), is positive definite if, and only if, n > k.

Proof. If n < k then every polynomial in the set {S” : || = n} has degree at most
k—1. Then, V*S? = 0 and as a Consequence (57, Q) o = 0 for all Q € IT%. Therefore,

HY" = (S,, S5, = (<SZ<1>, ") >w> =0 and HY" is not positive definite.

=1

Conversely, let us suppose n > k. Smce the polynomial Zil aiSha = a’sS, in
(3.38) has degree n, a € R, a # 0, then alS, ¢ 1¢_| = [0(x)], where 0(x) is the
zero polynomial, that is, aS, 7é 0(x). By Proposition 3.5 we have that:

rd rd
Y Sl (x) —0x)| =) aSie| #0.
i=1 o i=1 o
Therefore, from (3.38) we have that HY " is positive definite. O
Corollary 3.1. HY" = <Sn, ST>W 1s non-singular if, and only if, n > k.

Proof. Let us denote by A(HY") an eigenvalue of HY . In the proof of Proposition 3.8
we showed that if n < x then HY" = 0 and, therefore, HY" is singular.
Conversely, if n > k then HY " is positive definite by Proposition 3.8, and therefore

N(HY") >0 forall i =1,2,...,re. As a consequence det(HY ") = Hil N(HY™) >0

and we conclude that HY" is non-singular. O
The following proposition shows a relation between the matrices HY and HY .

Proposition 3.9. Let \; > 0, ¢ = 0,1,...,k — 1 be the positive constants in the
Sobolev inner product (3.12), and let HY " and HY be defined in (3.36) and (3.37),
respectively. Then:

HY = \anldiag (a01,a®1,...,a0D1), o =n, 1<i<rl, 0<n<k,

H=HY", n>=s.
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Proof. Case 0 < |a| =n < k in (3.24): Since V'S" = Vi(x —p)* =0 if n < i < k,
then by (3.3) and for all Q € II? the inner product (8", @) in (3.12) reduces to:

Qs = S AV (D) QD) = 3 A Z( )aasz<p>a%2<p>. (3.30)
i=0 =0 |o]=

But °S?(x) = 8 (x—p)® = [T, (e — s+ 1), (z; — pi)* %, where we get 0°S?(p) =
ald, 9. Therefore, (3.39) reduces even more to:

n

(S7.Q)s = A ( )a!a“cxp) Al Q(p),

a1, 0, ..., 0q
and, in particular, the entries of HY are given by:
(870 S0 ) g = Manld* 87, (p) = AanlaM6 0 00y, 1<, < 1l
Case |a] = n > k in (3.25): Since (V'S?)(p) = (VT 1(S”,p))(p) for all i =
0,1,...,5— 1, and also VAT*"1(S", p) = 0 then for all Q € 1%

(82 Qs = (Sa = T (S0 p), Q>W+ZA Vi(Sy =T (S, p))(p) V' QD)

=0
= < TK 1 Snap Q>V'i = Q>Vﬂ7
and, in particular, the entries of HY are given by:
(S0, Sty g = (Sl Sl yow s 1< 4,5 <. O

In view of Proposition 3.9, HY can be computed in a closed form for 0 < n < k.
In Proposition 3.11 we will show an iterative method for computing the matrix HY "
(and therefore HY) for n > k. In addition, HY inherits all the properties of HY " for
n > k. In particular, we can confirm that for all n > 0:

1. H? is positive definite. This follows from Proposition 3.8 and Proposition 3.9.
2. HY is non-singular. This follows from Corollary 3.1 and Proposition 3.9.

3. If HY" is a diagonal matrix then HY so is. This implies that if {S" : |a| = n}
is a mutually orthogonal basis of #/4(V* W) then {S" : |a| = n} is a mutually
orthogonal basis of #4(S, W).

In order to construct a monic orthogonal basis {S" : |a| = n} for the space ¥4(V*, W),
we expand each S} in terms of well-known polynomials Q' of degree m, |3| = m,
0 <m <mn, in the form:

= D casQF (), (3.40)

m=05|=m
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and then we determine the coefficients ¢, 3 of such an expansion by orthogonality.
Since each polynomial in the space ¥¢(V*, W) is determined up to a polynomial of
degree k— 1, the equality in (3.40) must be replaced by the relation "='. The choice of
Q% clearly matters, mainly because in our construction method we need to compute
explicitly some matrices where the polynomials Q3" are involved (see Proposition 3.10,
Proposition 3.11, and Section 3.3.7). In addition, many computations involve higher-
order derivatives of Q. Then, our choice criteria for Q" depend on the domain
2 (product domain, ball, simplex, or cone) where the (,-)g. is defined and the
simplification of several computations.

Definition 3.1. Let P,Q € I1¢, with n = deg P = deg Q. We say P and Q) have the

n’

same leading coefficient if P — Q € 114 _,

Let Q" € TI¢, |a| = n, be a polynomial that has the same leading coefficient than
Sl'. Notice that our assumption that S} is a monic polynomial leads to that Q7 is
also monic. We denote by Q,, the column vector:

@ = (Qu (). Qs (9. @, (9)) (3.41)

where a®,a® ... o) is the arrangement of elements in {a eNZ:|a|=n} ac-
cording to the reverse lexicographical order. We have the following proposition that
relates the sequences {S,}, ., and {Qy}, -

Proposition 3.10. There exist real matrices A,; of sizerd xrl, k <i<n-—1, such
that:
n—1
Q,=S,, n<k, and Q,=S,+ ZAn,iSia n > K.

1=K

Proof. If n < k then Q" — S™ € TI¢_, is a polynomial of degree at most x — 1 and
therefore V*(QI — S”) = 0, that is, V*Q! = V*S”. By Proposition 3.5 we have that
Qr = S” and as a consequence:

[0
T T
n n n 1 n . .
@n = <Qo¢(1) ) Qa(Z)a cee ’Qa(T%)> = (Sa(1>, Sa(Q)’ ceey S (r%)) — Sn

[0}

Now, let us suppose n > . If Q, = > 7_; A, ;S; then we have:

(Qu, S ) = D> Ani (81,8 )gn = Ani (Si,S] ) g = ApHY", 0<i<m,

§=0
By Corollary 3.1, HY" is non-singular if, and only if, i > k. Therefore:
— T V-1 .
An,i - <Qn7Si >V" (Hz ) 5 K S 1 S n,

and Q,—"_, (Q,,S] ). (HY")7'S; = Z;;é A, ;S; is a column vector whose entries
are polynomials of degree at most x — 1, that is,

n

Q=) (QuS)g. (HY)'S;.

j=r
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Now, since each entry in the column vector Q, — S, is a polynomial of degree at
most n — 1 we have that (Q, — Sn,SCDVN = 0, that is, <@n,Sg>w = <Sn,S£>VH =
HY". Therefore, A, = (Q,,ST),. (HY")"' = HY"(H)")"! = I,,, and we have the

result. O

As a consequence of Proposition 3.10, for n > k the polynomials in S,, can be
found recursively, up to a vector of polynomials of degree at most x — 1, in terms of

Sk, Skity ..., 5,-1 of lower degrees by means of the relation:
n—1
Sn = Qu =Y AnSi, n>k, with S,= Q.. (3.42)

In addition, Proposition 3.10 shows that {Sn}nzo can be expressed, up to a vector of
polynomials of degree at most x — 1, in terms of {Q,},-, as follows:

1. S, = Q,, n <k,
2. SH_A'_l Rél Q;{,—f—l - A/@—&—l,ﬁ@ﬂa
3. S/ﬁ-? = @n+2 - An+2,n+1<@n+1 - Aﬂ+1ﬁ@f<) B AHQWQ"“

4. etc.

Then, all we need is to compute the matrices A,, ; that appear in Proposition 3.10.
Since we cannot calculate directly the n — x matrices A,; = (Q,, S;I>w (HY") L,
k <1 < n —1, because we do not know explicitly the polynomials S,, we must
proceed inductively in the sequel.

We define the matrix B,,; := (Q,, S;TF>VH, k <i<mn-—1,of size r? x r¢ such that
we can write A, ; in the form A,,; = B,,;(HY")~!. By Proposition 3.10 we have that:

H:K = <SmS£>vn - <@m@g>vn ) Bn,n = <Qn7SZ>Vﬁ = <Qn7@£>vn .

Therefore, for i = k we have that:

An,/{ == Bn,/{(HSK)_l = <Qn7 Q:,§>V,< (<@m QZ>V~)_1-

We need to find A,,; only for k < i <n — 1. By Proposition 3.10, the orthogonality
of {Sy.},5o With respect to (-, -)gx, and Corollary 3.1 we have that:

i—1 i—1
Hivn = <Sza SlT>VN - <(@Z o ZAi,ijv (@z - ZAi’ZSZ)T>
j=k =k

VK
i—1 i—1

=(Qi, QYo — > _ A (S5, Q)0 — ) Qi ST, Al
j=r =k

i—1 i—1

+D D A (S, ST )g. AL

Jj=kK l=k



3.3. General properties 61

i—1 i—1 i—1
= (Qi, Q) ) — Z A HAT - Z A, HYAT + Z A H) A

J=K =k =k
1—1
T V11T .
=(Qi,Q)o. - > _By(HY")'Bf,, r<i<n-1,
=K
and also we have:

i—1
Bn,i = <@n7 SZT>VN = <@n7 (@z - ZAZ,]SJ)T>

VN
1—1 1—1

= (@0, Qg = D {Qu,S] ) AL = (@0, Q) = Y A, HYAL
J=K J=kK
1—1

= <@n; QDW — ZBn,j(HjV”)*lej, k<i<n-—1.
j=kK

Therefore, we have proved the following proposition.

Proposition 3.11. Let n > k. The n—k real matrices A,,;, k < i <n—1, are given
by A, = B, ;(HY")™!, where B,; and HY", of size ré x ré and rl x r¢ respectively,
satisfy the recursive relations:

B _ {<@n,<@£>w, | i =k,
@@, — Xn Buy (HY) B, i >,
— {<<@m@£>w, | i =x,
1 (Qi, Q) g — X0 Biy(HY) "B, i > k.

In order to find recursively the polynomials {S,}, ., by means of (3.42), Propo-
sition 3.11 shows us it is necessary to know explicitly the n — & rectangular matrices
<Qn,QiT>w of size r¢ x r® k < i < n —1, and also the n — k square matrices
(Q;, QiT>vn of size r¢ x r¢, k < i < n — 1. In the next subsection we present some
considerations for computing these matrices. In Section 3.4.1 to Section 3.4.4 we
present computations for particular domains €2 (product domain, the simplex, the
unit ball and the cone). Chapter 4 presents some examples in two variables on dif-
ferent domains. In addition, in [42, Section 4] there is an example in three variables

on a product domain.

3.3.7 Some considerations for computing <Qn,Q%>w

As mentioned above, our recursive method (Proposition 3.10 and Proposition 3.11)
for computing a monic orthogonal basis for the space ¥/¢(V*, W) requires the explicit
computation of the matrix <@n, @ﬁ>vm n,m > k, of size r¢ x ré  given by:

(Q@n QL) g = (<@g(i>,ngﬂ>w) , (3.43)

1<i<rd, 1<j<rd,
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where Q" (x) = x* + R, (x), |a| = n, R, € I2_,, that is, Q" is monic, and Q, is the
column vector defined in (3.41).

Remark 3.4. Notice that the matrix <@n,(@ﬁ>w is well-defined. 1If R, Ti,) €
I1 are such that Q", = R" and Q7 = Ti,), that is, Q7 (x) = R, (x) +
U(x) and Q) (x) = T3 (x) + V(x), with U,V € I1¢_,, then <Qg(i),Qg§j>>w =

<RZ(“,T5"@-)>VH, because V*U = V*V = 0. Then, each entry in <@n,(@£>vﬁ does
not depend on the representative we choose of each equivalence class.

From equation (3.15), each entry of the matrix <Qn, @§>vn can be computed in

terms of the inner product (-, -),, and partial derivatives 9° = 9?1952 - - 9 of order
|0| = Kk by:

(@ @), = X (0" ) (TP @), (3.44)

|0]=r

Therefore, the computation of (3.44) depends significantly on the weight function W
(see Remark 3.5), the domain €2, and a suitable choice of Q7. An obvious choice is
the basis of orthogonal polynomials with respect to (-,-);,. This basis, however, is
not a good choice because we need to work with higher-order derivatives of the basis
elements. Our choice of )7 depends basically on the following criteria:

1. that ()7 is monic, and

2. that areduction of a big amount of calculations for computing (3.44) is desirable,
depending on the weight function W and the domain ).

Then, in order to get additional results we will work with specific weight functions in
the next sections.

Remark 3.5. If Q7 is expanded in terms of the canonical basis:

Qh(x) = ) capX’, Cap €ER, oy =0y if |a|=|¢]=n, (3.45)

lp|<n

then we have:

P = Y capd’*x* = > cau(=1)(=0)ex"’, 0] =&, (3.46)

w<[p|<n #<|p|<n

where by properties of the Pochhammer symbol:

d

d
(—1)*(=¢)o = (—1) H(—@)ei = H(¢i —0; + 1)y,

=1

Therefore, (3.44) reduces to:
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(Qur @), =
2 2 X (91,.7,ed)Camm%ﬂ,w(—eb)e(—so)e<X¢"Cx”)w. (3.47)

0]=r £<|p|<n k<|p|<m

Equation (3.47) shows that the entries of the matrix <Qn,Q%>w depend on the
moments (x¢~? x#7%) of the weight function W. In addition, notice that the ex-
pression (3.47) can be reduced even more if we choose Q" as a monomial, that is,
Q" (x) = x%, |a| = n. In this last case, Q,, is defined to be the column vector:

T
Y R (3.5

9

where o™, a® ... o™ is the arrangement of the elements in {a eN¢:|a| =n}
according to the reverse lexicographical order, and (3.47) can be simplified even more
to:

< NOY 75”(1‘>>w = I;}ﬁ (9179;“ ‘ 79d> (—aD)g(—B9)), <Xa(i>_eaxﬂ(j>_6>w- (3.49)

A direct comparison of (3.47) and (3.49) shows that choosing )7 as a monomial then
we get a considerable reduction of calculations.

3.4 Computing <Qn, Q£>w on different domains and
other results on partial differential equations

3.4.1 Product domains

For this section we remit the reader to the results from Section 1.3.1 on the space
¥, 4(W) of standard orthogonal polynomials on the product domain:

Q= [ay, 1] X [ag, bg] X -+ X [ag, by], (3.50)

where [a;,b;], i = 1,2,...,d, is an interval of R (|a;| and |b;| can be infinite), with
respect to the product weight function:

W (x) = wi(z1)wa(zs) - - - wa(zq), x= (1,22,...,24) € Q, (3.51)

and where w;(z;) is a non-negative weight function on [a;, b;].
The results in this section are mainly devoted in considering two subjects:

1. The problem of computing the matrix <Qn,Q§>w, defined in (3.43), on the
product domain (3.50). Because of the properties of (3.50) and (3.51) this
problem will be approached in two different ways:

(a) Considering the moments of the product weight function W (see Sec-
tion 3.4.1.1).



3.4. Computing <@n, Q%>w on different domains and other results on PDEs 64

(b) Considering classical weight functions (Jacobi, Hermite, Laguerre) on each
interval [a;,b;], i = 1,2,...,d (see Section 3.4.1.2). This second case was
motivated by the paper [49] as a generalization to several variables and
higher-order derivatives. Our results in this case were published in [42].

2. To present some results on partial differential equations for Sobolev orthogonal
polynomials on specific product domains (see Section 3.4.1.3).

3.4.1.1 Computing <Qn,(@ﬁ>w by means of the moments of the weight
function

As mentioned in Remark 3.5, the entries of the matrix <Qn, Qﬁ>vm n,m > Kk, can be
computed in a simplified form by means of (3.49) if we choose Q7 (W) as the monomial
Qr(W;x) = x%, |a| = n. We need to compute the moments <xa(i)’9, Xﬁ(j)’9> of the
w
product weight function (3.51). Let Q, denote the column vector defined in (3.48).

Then, we have the following proposition.

Proposition 3.12. Let n,m > k and let Q,, be defined in (3.48). Then, each entry
of the matriz (Q,, Qf»w of size rd x rd which is defined in (3.43), can be computed
on the product domain (3.50) by:

(Quo (W), Qi (W)) _ =

V.‘Q
Z( K )ﬁ( ), (—9) < R ﬁl‘j’el>
=)o\ =P e \ Ty » Ly )
= 0 b, 60) "

0] = &, |oz(i)|:n, |ﬁ(j)|:m, 1§i§rfm 1§j§r7‘f1.

Proof. Since W is a product of non-negative weight functions w;, 1 < [ < d, the
product structure implies by (1.11) and (1.12) that the moments of (3.51) are given

by:
0] () - -0, -0
ah—g _pul—g\ _ =0 B0
R T | (U I
I=1 wy
where (-,-),,, 1 <1 <d, is the inner product (1.9). The result follows from (3.49). [

(i) _ () _
In view of Proposition 3.12, the calculation of the moments <a:lal 91, xlﬁ’ el> ,
wy

1 <1 < d, needs the explicit knowledge of the weight function w;. In Chapter 4 we
present some numerical examples in two variables with specific weights.

3.4.1.2 Computing <@n,(@%>v
of classical weights

with a weight function that is a product

K

The results that we present in this section were motivated by Fernandez, Marcellan,
Pérez, Pinar, and Xu [49] as a generalization to several variables and higher-order
derivatives from their results obtained in two wariables and first-order derivatives.
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First, we construct the sequence of monic polynomials {Q,}, -, defined in (3.41)
by means of monic sequences in one variable of self-coherent polynomials, that is, we
suppose that the weight function (3.51) is a product of classical weights in one variable
(Jacobi, Hermite, Laguerre). Then, we compute <Qn, Qa>w using this construction.

Let {p,(w;x)},~, be a sequence of monic orthogonal polynomials in one variable
with respect to the weight function w. A weight function w defined on the real line
is called self-coherent if its monic orthogonal polynomials p,(w) satisfy the relation
[49, pp. 205]:

p;wrl(w? )

na 1 (WP (W) + ba(w)p, o (w; o), (3.52)

pr(w;z) =
where a,(w) and b,(w) are constants. The self-coherent orthogonal polynomials are
essentially, up to a linear change of variable, the classical orthogonal polynomials
(Jacobi, Laguerre and Hermite) [49, 76]. Equation (3.52) is a well-known structure
relation of classic orthogonal polynomials [9, Theorem 3.3.2]. We present a general-
ization of (3.52) to higher-order derivatives.

Proposition 3.13. Letl € N and let {p,(w; )}, be a sequence of monic orthogonal
polynomials which satisfies (3.52). Then p,(w) satisfies the relation:

l
po(wiz) = A (w)p (w; ), (3.53)

i=—1

where fy;l’l(w), —1 < i <, are constants such that they can be found recursively for
[ >2 by:

(71 (Wb (w), I
Vg (W) (w) + 7 (W)an-—1 (w), i=—l+1,
n,l—1
Yi—1 W nil— - .
.y 1 (' ) +7; N 1(w>an+i(7ﬂ) +7z‘frl1 1(w)bn+i+1(w), —l+2<i<l-2,
v (w) = nnl_"l‘(l )
fyl—72 w n,l—1 ]
nt+l—1 +’yl71 (w>an+l—1<w)7 Z:l_L
n,l—1
7y (w) o
’ 1=,
\ n -+ [

(3.54)

and where the initial iterations are:

1

Y () = ba(w), 75 (w) = an(w), A (w) =~ .t

Proof. We use mathematical induction on [. If [ = 1 then (3.53) reduces to:

Pu(w; @) = 2" (W)p s (w; ) + 967 (w)p (w3 ) + 1 (W)p 4 (w3 ),
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which coincides with (3.52) if we choose 7™ (w) = by(w), 70" (w) := an(w) and
A (w) == 1/(n 4 1). Let us suppose that (3.53) is valid for [ — 1, [ > 2, that is,
-1
pu(wiz) = 3 A ) (w; ).
i=—(1—1)

Then:

Pn(w; ) =

-1 ,
nd- Potirr (w3 )
> ) [P @ i) + b0
iy n+1+

(I-1)

n,l—1 l
= 9" ()b 1 (w) pl) (w5 7)
:'yZ"’l(w\)jif i=—1

n,l n,l— l .
+ (7" l+21< )on—i42(w) + 'Y—l+11(w>an—l+1(w))/p7(z)—l+1<w7 )

-~
:’yzn’l(w), if i=—1+1

nl 1
+ Z ( H?Z—l(w)anﬂ( )+ 1<w>bn+i+l<w>) P (w; )

i=—(1-2)

-~

=y w), if —(1-2)<i<i-2

n,l—1 nd—1
Ny (W) |, l Ay
(B o )it + B st

[ J/
-~

:'yi"’l(w), if i=1—1

=y (w), if i=l
This completes the proof. n

As a result of (3.54) we get recursively v (w) = 1/(n + 1);. Now we define a
sequence of polynomials {g,(w;z)}, -, Where g,(w) is a monic polynomial of degree
n such that its k-th derivative satisfies:

¢ (w; ) = (n = K+ 1)xpp—n(w; ), (3.55)

where {p,(w; )}, -, is a self-coherent monic sequence of orthogonal polynomials with
respect to w. Notice that {g,(w; )}, is not unique. The polynomial ¢, (w) and its
higher-order derivatives ¢ (w), ¢ (w), . .., g% " (w) can be obtained if we use Propo-
sition 3.13 on p,—x(w) in (3.55). By setting | = k —j, 0 < j < k — 1, we have
that:

Prw(w; ) Z Y (w)ph s (wy ),
i=—(k—j)

and (3.55) reduces to:

0 (wie) = | =kt D D0 AT @pnnwin)| L (3.56)
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Then, it is natural to define the j-th derivative of ¢,(w), 0 < j < k — 1, by the term
in parentheses of (3.56), that is:

¢ (w; ) == (n—r+1), 22 VT W)y (wix), 0<j < m—1. (3.57)
—(k—7)

Notice that, in particular for j = 0, we have the definition for g,(w):

K

Gn(w;z) = —r+1)e > % " (wW)pn—rri(w; o). (3.58)

I=—kK

Let us observe that ¢, (w) is a linear combination of p,(w), p,—1(w), ..., pp—a2x(w), and
as a consequence, the leading coefficient of ¢,(w) is (n — k + 1),y2~""(w) = 1, that
is, ¢, (w) is monic.

If {gn(wi;xi)},50, 1 <1 < d, denotes the sequence of monic polynomials defined
n (3.58), we define the product polynomial Q" (W) by:

QR (W;iX) 1= o, (015 1) oy (Wa; ¥2) - - - oy (Wa; 7a), a €NE |a| =n, (3.59)

which is a monic polynomial of total degree || = n, that is, it is of the form
Q"(W;x) = x* + R,(x), where R, € TI¢_,. We denote by Q,, the column vector
defined in (3.41).

Let 0 = (61,0,,...,03) € Nd a multi-index such that |§] = k. The derivative of
order x of Q"(W) defined in (3.59) is given by:

d
8962” W; x) Ha oy (W) T5)

d k—0;
aj—K,k—0;
= H (aj — K+ 1) Z Y (wj)paj—n—H(wjv ;)
j=1 i=—(k—0;)
= Z r%pr(w;x), la|=n, |0l=r, |v|=r,

n—(2d—1)rk<r<n—k

where I'%* are constants that are obtained by developing the product of sums from
the last expression, and which are given in terms of the constants v/ (w) defined in
(3.54), and where P} (W) is the monic product polynomial defined in (1.13) orthogonal
with respect to W. We can see that 9°Q" (W) is a linear combination of the product
polynomials (1.13) with total degrees that range from (a; —2k+61) + (g — 2Kk +65) +

+(ag—2k+04) = |a]+]0]—2dk = n—(2d—1)x to (a1 —01)+(aa—0)++ - -+ (ag—04) =
la| — 10| =n — k.

Then the entries of the matrix <Qn,@%>w, n,m > k, defined in (3.43) can be
computed by:

(@) =3 (, 5" ) (PQm.oag,om),

|0]=r
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= Z Z Z (91 92/?. Qd) I“g,a(i)rgﬂ(j) (PJ,Pj>W

|0|=k n—(2d—1)k<r<n—k m—(2d—1)k<s<m—k

S SN SN S RN L X
17 2’ ey d

|0|=k n—(2d—1)k<r<n—x m—(2d— 1)n<s<m K

0] = k&, |a |:n, |B(j)| =m, |v|=r I|o|=s.

Then <Qn, Q%>v~ is a matrix that can be computed in a closed form in terms of con-
stants that depend on the orthogonal polynomials with respect to the inner product
(-,*)w- that is, each entry of this matrix is given in terms of the constants in (1.14)
and (3.54).

For k = 1,2,3 and d = 2,3 detailed numerical examples were given in literature
[41, 42, 49, 101] for particular weight functions. In Section 4.2 we present some ex-
amples for the Hermite-Laguerre and Laguerre-Gegenbauer product weight functions
in two variables. In [42, Section 4] there is an example in three variables for the
Hermite-Hermite-Laguerre weight function.

3.4.1.3 Partial differential equations for Sobolev polynomials on some
product domains

As mentioned in Section 1.3.1, the orthogonal polynomials with respect to the product
weight function (3.51) are eigenfunctions of a second-order differential operator for
particular weights. In this subsection we consider two particular cases.

Multiple Sobolev-Hermite polynomials The space #4(W) of multiple Her-
mite polynomials on the product domain Q = R? and orthogonal with respect to the
product weight function:

2

WH(x)=e e ...c7% = IXF x e RY (3.60)

was discussed in Section 1.3.1.1. The polynomials in ¥#¢(WH) satisfy the partial
differential equation (1.17).

Let us denote by #4(S, WH) and #4(V* WH) the spaces of Sobolev orthogonal
polynomials with respect to (3.12) and (3.13), respectively, where it continuous part
(-, )on is defined on © = R? and the weight is W#. Then, we have the following corol-
lary from Proposition 3.7 concerning partial differential equations for the polynomials
in the spaces ¥4(S, WH) and ¥,¢(V*, WH).

Corollary 3.2. Let P € ¥V4(S,WH) or P € ¥4(V* WH). Then P satisfies the
partial differential equation:

[7‘[ + 2(n - K)I] (81 + 82 + -+ 8d)“P = 0, (361)

where H is the differential operator (1.18) and T is the identity operator.
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Proof. 1f n < k then (3.61) is immediate because (0 +0y+- - -+04)"P = 0. Let us sup-
pose n > k. If P € 4SS, WH) or P € ¥4(V* W) we know from Proposition 3.7
that:

(O + 0o +---+0)"Pevt (WH), n>k.
The result follows from (1.17). O

Multiple Sobolev-Laguerre polynomials The space ¥,/(W;") of multiple La-
guerre polynomials on the product domain 2 = R‘i and orthogonal with respect to
the product weight function:

WE(x) =alle ™™ aPe ™ alie ™ = xTe ™ x e RY,

7]i>_1, 1§Z§d, ‘X’:$1+$2+"'+$d, (362)
was discussed in Section 1.3.1.2. The polynomials in #,*(W,') satisfy the partial
differential equation (1.21).

Let us denote by 7,%(S, W,}) and #,/(V*,W}}) the spaces of Sobolev orthogonal
polynomials with respect to (3.12) and (3.13), respectively, where it continuous part
(-, )on is defined on ©Q = R% and the weight is WJJ Then, we have the following corol-
lary from Proposition 3.7 concerning partial differential equations for the polynomials
in the spaces #,4(S, W) and #,4(V*, W}).

Corollary 3.3. Let P € ¥}(S,W}) or P € ¥} (NV*,W}F). Then P satisfies the
partial differential equation:

L, +(n—rR)I](O1+ 0+ -+ 0q)"P =0, (3.63)
where L, is the differential operator (1.22) and T is the identity operator.
Proof. Similar to Corollary 3.2. O]

3.4.2 The simplex
We remit the reader to the results from Section 1.3.2 on the space ¥,¢(W.,) of standard

orthogonal polynomials on the simplex:
T .= {x eR?: 2y >0,29>0,...,04>0,1— x| > 0}, x| =21 +20+- -+ 4,
with respect to the weight function:
W, (x) = a]'a3® o) (1—|x|)*, xeT? ~>-1, 1<i<d+1, (3.64)

where v = (71,72, .-, 7ar1) € R¥ ! is such that 45 > —1 fori = 1,2,...,d + 1, and
Yl i=m+ e+ Y
The results in this section are mainly devoted in considering two subjects:
1. The problem of computing the matrix <Qn,Q7Tn>w, defined in (3.43), on the
simplex T¢. Because of the properties of (3.64) this problem will be approached
considering the moments of the weight function W, (see Section 3.4.2.1).

2. To present some results on partial differential equations for Sobolev orthogonal
polynomials on T¢ (see Section 3.4.2.2).
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3.4.2.1 Computing <Qn,(@ﬁ>w by means of the moments of the weight
function

Notice that the weight function W.,, defined in (3.64), is closed under products, that
is, if 74,7 € R4 then:

W’Ya (X)W% (X) = W’Ya+% <X>

In particular, for any monomial x* = z{*z3? - - - 25¢, with a = (a1, g, ..., a4) € NI,

we have that («,0) € Nit!, and therefore x*W, (x) = W 4.0)14(X), that is:
XO‘W,Y(X) — mrlx1+’y1x§2+’m . _Q;ZédJr’Yd(l _ |X|)'Yd+1’ Vi > _1’ 1<i<d+1.

This property allows us to compute the matrix <Qn, Q%>w in a simplified form by
means of the moments of W,.

As discussed in Remark 3.5, we choose Q7 (W.,) to be the monomial Q7 (W,;x) =
x%, |a| = n. We denote by Q, the column vector (3.48). Therefore, we can compute
the entries of the matrix <Qn,Q%>vm n,m > k, in a simplified form by means of

(3.49) and the moments <Xo‘(i)_9,xﬁ(j)_9> of the weight (3.64).
v

Proposition 3.14. Let n,m > k and let Q,, be defined in (3.48). Then, each entry
of the matriz <Qn, Q%>v~ of size rd x rd which is defined in (3.43), can be computed
on the simplex T? by:

(@ (W), Qo (W) )

S (0" )HW‘”Mﬁf”»xwlugw%
. 01,02,...,04 ([7] +d+ 1)nym—2x ’

|01=

Ve

0 =r, |aP=n, [V)=m, 1<i<r? 1<j<rl

Proof. Notice that by (1.28) and (1.29) we have:

a—g B _g
<x ,x? >7 = cy / ) W at486)—20,0)4~(X)dx
T

d ) .
Pl + -+ 1) LLTE + A7 =2 0+ DTG +1)

d+1 L(ja®| + 8@ = 2|0] + ||+ d + 1)

Therefore, by (3.49), with |a)| = n, |8Y| = m, 0] = k, and further simplification
we have the result. O
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3.4.2.2 Partial differential equations for Sobolev polynomials on the sim-
plex

As mentioned in Section 1.3.2, the orthogonal polynomials in the space ¥#,%(W,) are
eigenfunctions of a second-order differential operator, that is, they satisfy the partial
differential equation (1.31).

Let us denote by ¥4(S,W,) and ¥,4(V* W.) the spaces of Sobolev orthogonal
polynomials with respect to (3.12) and (3.13), respectively, where it continuous part
(-, Yo is defined on Q = T? and the weight is W,. Then, we have the following corol-
lary that is a consequence of Proposition 3.7 concerning partial differential equations
for the polynomials in the spaces #,%(S, W) and ¥#,4(V*, W.).

Corollary 3.4. Let P € ¥,%(S,W.)) or P € ¥4(V*,W,). Then P satisfies the partial
differential equation:

T+ (n—r)(n—kK+ |y +d)I] (O + 0o+ -+ 0g)"P =0, (3.65)

with y = (71,92, -+, Yas1) ERDL 3> =1, 1 <0 <d+ 1, [y =m 472+ 4 Yar1,
and where T, is the differential operator (1.32) and Z is the identity operator.

Proof. Similar to Corollary 3.2. O]

3.4.3 The unit ball

We remit the reader to the results from Section 1.3.4 on the space ¥,4(W,,) of standard
orthogonal polynomials on the unit ball:

BY:= {xeR: |x| <1},
with respect to the weight function:
W,(x) = (1—[x]**, xeBY u>-1. (3.66)
The results in this section are mainly devoted in considering two subjects:

1. The problem of computing the matrix <Qn, QZJVE, defined in (3.43), on the unit
ball BY. Because of the properties of (3.66) this problem will be approached
considering the moments of the weight function W, (see Section 3.4.3.1).

2. To present some results on partial differential equations for Sobolev orthogonal
polynomials on B? (see Section 3.4.3.2).

In addition, in Section 3.4.3.3 we present some miscellaneous results on the sphere
S,
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3.4.3.1 Computing <Qn,(@ﬁ>w by means of the moments of the weight
function

Let us recall that for x € RY, x; = (21, 29,...,7;) € RY, 1 < i < d, with x¢ := 0,
denotes a truncation of x. On the unit ball, there is an integral formula that relates
the integral on the unit ball B¢ with an integral on B?~!. This formula is given by
[44, page 143]:

1
[ Gx)ax = /B /_lf (a1 /T = et [P) V1= a1 [Pdydxa s, (3.67)

that follows from the change of variable x4 = y1/1 — ||x4-1]|?, =1 < y < 1. Using this
formula repeatedly, by reducing the dimension d by 1 at each step, it is not difficult
to show that:

2= + 1 d L1
[t =— 2 U capr (22
B r (T + p+ 1> i=1 (3.68)
a=(ay,ay,...,a0) ENL > —1.

Notice that if any entry of « is odd, then (3.68) is zero.

As discussed in Remark 3.5, we choose Q7(W,) to be the monomial Q7 (W,;x) =
x%, |a] = n. We denote by Q,, the column vector (3.48). Then, we can compute the
entries of the matrix <Qn,(@£>w in a simplified form by means of (3.49) and the

moments <xa(i)*9, Xﬁm*e> of the weight (3.66). Now, we use (3.68) on the following
I

result.

Proposition 3.15. Let n,m > k and let Q,, be defined in (3.48). Then, each entry
of the matrix <Qn, Qr >v~ of size rd x rd which is defined in (3.43), can be computed

m m’

on the unit ball B by:

d . . 1
H(_al(l))ﬂ(_ﬁl(]))@z (5) o+ )
n m B K =1 — 3 o
CRAUARCAUMEEDS (91, - ,ed) (it d/2+1

0] =k, Ja¥]=n, [P =m, 1<i<rl, 1<j<r,

Y
) n+m _
3 K

if al(i) + /@l(j) is even for alll =1,2,...,d, and <QZ(Z‘)(W,U,)7 Qgﬁj)(Wu)>V = 0 other-

wise.

Proof. By (1.40), (1.41), and (3.68) we have that:

() () — (&) L 50G) —
<x°‘ 0 xP” 9> = C,u/ x0T (x) dx
p B
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 T(p+d/2+1) 27T (u+1)
T m2T(p 41 O + 189D —2/0] +d
RN CUECUE ET Y
d . , (@) (9)
(), g0 _ o + 37 =20+ 1
1 _1 a +ﬁl 20, F l [ )
<JIa+ ) :

Therefore, by (3.49), with |a®| = n, |3Y)| = m, 0] = x, and further simplification
we have the result. O

3.4.3.2 Partial differential equations for Sobolev polynomials on the unit
ball

As mentioned in Section 1.3.4, the orthogonal polynomials in the space ¥,4(W,) are
eigenfunctions of a second-order differential operator, that is, they satisfy the partial
differential equations (1.43) and (1.45).

Let us denote by #,4(S,W,) and ¥,4(V*, W,) the spaces of Sobolev orthogonal
polynomials with respect to (3.12) and (3.13), respectively, where it continuous part
(-, )on is defined on © = B? and the weight is W,. Then, we have the following corol-
lary from Proposition 3.7 concerning partial differential equations for the polynomials

in the spaces %,4(S,W,) and ¥,4(V* W,).
Corollary 3.5. Let P € ¥,4(S,W,) or P € ¥4(NV*,W,). Then P satisfies the partial
differential equations:
B,+(n—r)n—rk+2u+d)I] (01 +02+---+04)"P =0, (3.69)
D, +(n—rk+d)(n—r+20)I) (01 + 0+ -+ 0g)"P =0, (3.70)
with > —1, and where B, and D,, are the differential operators (1.44) and (1.46),

respectively, and L is the identity operator.

Proof. Similar to Corollary 3.2. O

Notice that (3.69) and (3.70) are essentially the same because of the relation
B, =D, +2duZL.

3.4.3.3 Some miscellaneous results on the sphere

For this section, we remit the reader to Section 1.3.3 for the basic background on
harmonic polynomials and spherical harmonics.

The harmonic polynomials in the space ¢ have several properties with respect to
higher-order derivatives, and some of them can be expressed in terms of the gradient
V* of order k. For example, if Y € 7 then from Proposition 3.3, equation (3.7),
we know that:

X" VY (x) = (n—k+1).Y(x), YeH!, reN,

and this property is a consequence from the fact that Y is homogeneous. Equation
(1.36) can be also extended to higher-order derivatives. We have some other properties
of the spherical harmonics.
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Lemma 3.1. If Y € J? then 0°Y € ,%’jfl_|9|, 0 € N&, and
DY (€)) = —(n = |0])(n — |0] + d = 2)0°Y (), €S (3.71)

Proof. Since Y € % is homogeneous, we know that 9°Y is also homogeneous of
degree n — |6|. In addition,

d
0=0"(AY) = (Za2 ):Zae(af Zaz (0°Y) = A(@Y).
=1

This proves that 9°Y € ‘%Zd—IGI' Since 9°Y is homogeneous, 9°Y (x) = r" 197y (¢),
x =7 r >0, €St We have by (1.35) that:
0 =AY (x)) = A(r" 9V (€)) = (n = 18])(n — 6] = )" 207y (€)+
(d = 1)(n—0])r" 17207y (&) + 72 Ay (8°Y (€)),
which is, when restricted to the sphere, equation (3.71). O

Next, we prove a generalization to higher-order derivatives of Lemma 2.1. The
following proof uses (3.71) and the Green’s identity [24, Proposition 1.8.7] on the
sphere:

Vof(€) - Vog(§)dw(§) = — Ao f(£)g(€)dw(§). (3.72)

Sd-1 sd—1

Proposition 3.16. Let {YV” 1< < afb} be an orthonormal basis of %’jld. Let x =
ré, withr >0, £ € S, and 0 € Nd. Then we have the following:

£-Vd’Y"(x) =0, (3.73)

1
VOV (x) - VOV (x) = 5 V00"V (x) - Vod V" (x) (3.74)

1 = 0D =D oy y0ym ),

r2

and for 1 <v <al, 1<n<al, ke Ny, the following relation holds:

m’

1

Wd—1

/ VEYHE) - VY, (€)dw(E) = 2" (n—k+1)x(n— K +d/2)w0nm0uy (3.75)
§d—1

Proof. Since 9°Y" is homogeneous of degree n — |6, 3" (x) = r" 107y (¢). Then:

0 (0260 = (n — el = 21

I 0y n
(0", ; oy )

By Euler’s equation for homogeneous polynomials:

x - V'Y (x) = (n — |0))0°Y"(x).
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Therefore, by (1.34) we have:

£- VoY (x) =x- VY x) —r (”‘Tw'> IY(x) =
(n — [0)2°Y; (x) — (n — |6])°Y;* (x) = 0.

Equation (3.74) follows from (1.34), (3.73), and a straightforward computation. Now
we prove (3.75) by using induction on . The case k = 0 is (1.38) (our hypothesis).
The case k = 1 is (2.30), which was proven in [98, Lema 2.2]. Let us suppose that
(3.75) holds for k. Using (3.3) and the definition of V* we have:

VY (x) - VY (x Zavw” ) - VY (x) =

d

K n K ﬂl 6 n 6 m
Y VRO (x) - VESY, § 5 (91 0 o >a DY, (x)0°0Y;™ (x)
Py ,U9,...,

=1 |f|=

- Z ( 1,62,.._,9 )vaﬁyyn(x) : VaoYUm(X). (3.76)

161=

By (3.71), (3.72), and (3.74), we have:

V'Y (€) - V'Y (€)dw(€) = VoY (&) - VoY, (€)dw(€)+

Sd-1 Sd-1

(10D =10 [ VOPVPOd) == [ M0 VIOI Y au(e)+
(= 10D = 18D [ V2OV Odale) -

(= 6D+ m =206 +d=2) [ VIV (Edw(e). (T

Sd—1
Putting together (3.76) and (3.77), and again by (3.3) and the induction hypothesis:
VEIYE) - VY (€)dw(€) =
Sd—1

(n—kr)(n+m—2k+d—2) Z (91 0, k , ) 89YV”(§)89ynm(§)dw(§) =

=n ..., 04 gd-1
(=) +m =2+ d=2) [TV TV (Eul) =

Wi12" = K)p(n — K — 1+ d/2)x416n,m0u,1-

This completes the proof. O
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3.4.4 The cone

We remit the reader to the results from Section 1.3.5 on the space ¥4(W, ) of
standard orthogonal polynomials on the cone:

Ve = {X ER?: ||x4_1]| < 24,0 < 24 < 19} , 0<v9 <00, xq.1=(x1,29,...24-1),
with respect to the weight function:
Wou(x) = (22 — |xa1]|®)w(zg), p>—1, x=(21,20,...,74) € V4, (3.78)

where w is a non-negative weight function on the interval 0 < x4 < 9.
The results in this section are mainly devoted in considering two subjects:

1. The problem of computing the matrix <Qn,(@%>w, defined in (3.43), on the
cone V4. Because of the properties of (3.78) this problem will be approached
considering the moments of the weight function W, , (see Section 3.4.4.1).

2. To present some results on partial differential equations for Sobolev orthogonal
polynomials on V4 (see Section 3.4.4.2).

3.4.4.1 Computing <QH,Q§>W by means of the moments of the weight
function

Using the integral formula (1.50) on the cone V¢ it is not difficult to show that the
following equation holds:

/

where W, ,, is the weight function (3.78) on the cone and W), is the weight function
(3.66) on the ball. The integral on B! in (3.79) can be computed by means of (3.68).
As discussed in Remark 3.5, we choose Q7 (W, ,,) to be the monomial Q% (W, ,;x) =

x%, |a| = n. Then, we can compute the entries of the matrix <Qn, Q£>vr~ in a sim-

plified form by means of (3.49) and the moments <x“(i)*9, Xﬁm*9> of the weight
w,p
(3.78). We denote by Q,, the column vector (3.48).

9
, XMWy u(x)dx = (/ w(xd)xda|+2“+d_1dxd) (/d Yo .. .ygdeM(y)dy) ,
4 0 Bd—1

xcVl yeB™ a=(apa...,a9) ENG p>—-1, 0<9<oo, (3.79)

Proposition 3.17. Let n,m > k and let Q, be defined in (3.48). Then, each entry
of the matriz <Qn, QZ»VH of size rd x rd which is defined in (3.43), can be computed
on the cone V¢ by:

(@ (W), Q5 (W) ) =

VK
; ; d—1
Z K (_a(l))9<_ﬁ(])>9ww,n,m,n,u H 1
(91,62,...,8d d+1 - 2 M,gy
0=+ w4+ — . =1 5 i
2 ) mimeg Ay,



3.4. Computing <@n, Q%>w on different domains and other results on PDEs 7

if al(i) + Bl(j) is even for alll =1,2,...,d — 1, where @y pnmp i5:

v
/ w(t)tn+m—2n+2u+d—1dt
0
9
/ w(t)tH e at
0

and <QZ(i)(Ww7M),Qg%j)(ww”u)>vn = 0 otherwise.
Proof. By (1.48), (1.51), (3.79), and (3.68) we have that:

() — (49 — (4) 450) —
() [
w, Y%

d
9

d+1 v ol )| _
r (lH‘ ‘2F )/ w(:vd)xldmmﬁ(])' 2/0]+2p+d N
0

L ou>—1, 0<9< oo, (3.80)

ww,n,m,n,,u T

5]
W%F(u +1) / w(zy)z ' day
0

27d+11‘*(’u + 1)

X
d—1
1 i ; d+1
F<§ (®)+5p—2@%+u+—5—)
=1
d-1 , , (@) (4)
(), 500 _ o+ 537 =20+ 1
1 —1)™ -l—ﬂl 20, T l l .
<JJo+ - ) -

Therefore, by (3.49), with |a¥| = n, |3Y)| = m, and |0| = &, and further simplifica-
tion we have the result. O

Notice that, in particular, for the Jacobi and Laguerre cases with weights (1.52)
and (1.53), respectively, the constant @, , m.x, i (3.80) is given for each case by:
1. Jacobi (¥ = 1):

wwa,bvnvmvﬁﬁu T wa7b7n7m7"{7u

200+ d)ppm—2s 3.81
= (@ + 2+ d)nm—2 , n,m>k, abpu>-—1 ( )
(a+b+2”+d+1)n+m—2n

2. Laguerre (¢ = o0):
W mmpp = Tanmpp = (@+F20+d)pim—2s, n,m >k, a,p>—1. (3.82)

3.4.4.2 Partial differential equations for some Sobolev polynomials on the
cone

In Section 1.3.5 we showed that the orthogonal polynomials with respect to the weight
(3.78) are eigenfunctions of a second-order differential operator for particular cases of
w. In this subsection we consider the Jacobi (¢ = 1) and Laguerre (J = oo) cases.



3.4. Computing <@n, Q%>w on different domains and other results on PDEs 78

Sobolev-Jacobi polynomials on the bounded cone The space %%W&],b,u) of
Jacobi polynomials on the cone Q = V¢ and orthogonal with respect to the weight

function:
Wé];b,u(x) = (.7}3 - ||Xd—1||2)#xg(1 - Id)b7 X € V(liv a, b7 H = _17 (383>

was discussed in Section 1.3.5.1. When the parameter a = 0 in (3.83), the polynomials
in ¥, (Wg, ) satisfy the partial differential equation (1.56).

Let us denote by #,/(S, W, ,) and #,/(V*, W/, ) the spaces of Sobolev orthogo-
nal polynomials with respect to (3.12) and (3.13), respectively, where it continuous

part (-,-)g. is defined on Q = V¢ and the weight is W(;’ by Lhen, we have the fol-

lowing corollary from Proposition 3.7 concerning partial differential equations for the
polynomials in the spaces %,(S, Wy, ,) and ¥ (V*, W, ) (special case a = 0).

Corollary 3.6. Let P € #,/(S, Wy, ,) or P € %,{(V*, W, ). Then P satisfies the
partial differential equation:

Vi, +(n—r)(n—k+2u+b+d)I] (01 + 0o+ +0a)"P =0, (3.84)

with b, . > —1, and where Vé{u is the differential operator (1.57) and Z is the identity
operator.

Proof. Similar to Corollary 3.2. ]

Sobolev-Laguerre polynomials on the unbounded cone The space ”I/nd(W(fﬂ)
of Laguerre polynomials on the cone Q = V¢ and orthogonal with respect to the
weight function:

WaL,M(X) = (23 — ||xq_1|[*)2%e ™, x € Vgo, a, > —1, (3.85)

was discussed in Section 1.3.5.2. When the parameter a = 0 in (3.85), the polynomials
in ¥,/(W,) satisfy the partial differential equation (1.60).

Let us denote by #,4(S,W[r,) and #,/(V*, W[, the spaces of Sobolev orthogonal
polynomials with respect to (3.12) and (3.13), respectively, where it continuous part
(,-) g~ is defined on ©Q = V2 and the weight is I, Similarly, we have the following
corollary concerning partial differential equations for the polynomials in the spaces
7,1(S, Wy, and ¥,(V®, W) (special case a = 0).

Corollary 3.7. Let P € ¥,/(S,W§,) or P € (V" W{,). Then P satisfies the
partial differential equation:

VI (n—R)IZ) (01 + O+ -+ -+ 8a)"P = 0, (3.86)

with i > —1, and where Vlf is the differential operator (1.61) and I is the identity
operator.

Proof. Similar to Corollary 3.2. [



Chapter 4

Some numerical examples

Chapter 3 was devoted to study some algebraic and analytic properties of the Sobolev
orthogonal polynomials in several variables with respect to the inner product (3.12).
In order to provide a better understanding of the theory presented in Chapter 3, in
this chapter we present some numerical examples in two variables'. Each example
was constructed independently, then the reader can study each one separately without
referencing to any other section in this chapter. Some results in the following sec-
tions are corollaries in two variables of the more general results given in Chapter 3.
Therefore, we present those corollaries without a proof.

Note 4.1. For the numerical evaluations of the matrices in the following examples, we
used MATLAB® software, version 8.0.0.783 (R2012b). Therefore, some fractions at
the entries of some matrices are only approximations to the real values.

4.1 Preliminaries and notation for the examples

For later use, we need additional notation for polynomials in two variables (z,y) € R2.
Let us denote by V£, V2f, and V3 f the column vectors:

T 2 2 2"
Vi=(af. 2f)' V= (81, a6af, 2.0f. B3f) .

(4.1)
T
V3f2<aig’f, 0%82f, 818281f, 81822f7 828%]0’ aQalana 82281f7 agf) )

with 9, := 9/0x, 0y := 0/0y, 0? := 0;0;, 0} := 9;0;0;, 1 = 1,2. Let us recall that

the Taylor polynomials of first degree 7' and second degree 72 in two variables of

P € TI? at the point p = (p1,p2) € R? are given by:

TH(P,p;z,y) = P(p) + 0:P(p)(z — p1) + 0P (p)(y — p2),
T*(P,p;z,y) = P(p) + 01 P(p)(z — p1) + %:P(P)(y — p2)

+ % [01P(P)(x = p1)* + 2010, P(p) (2 — p1)(y — p2) + 3 P(P)(y — p2)*] -

n [42, Section 4] we provided one example of orthogonal polynomials in three variables that is
not presented in this chapter.

79
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In addition, for two polynomials P, @ € II? that are equal up to a polynomial of first
degree we write:

P=Q if P-Qcll (4.2)
and if P and @ are equal up to a polynomial of second degree we write:
PZQ if P-QellL. (4.3)

. 1 2 .
The relations = and = are congruence relations on the space I12.

Note 4.2. In the following examples we restrict ourselves to polynomials of lower
degrees. Mainly because polynomials of higher degrees have too many monomials
that cannot be depicted here.

4.2 Sobolev orthogonal polynomials on a product
domain

4.2.1 Hermite-Laguerre product weight

In this subsection we use the results from Section 3.3 and Section 3.4.1.2. For the
Hermite-Laguerre case, we consider the product domain

(—00,00) X [0,00) .

We construct the Sobolev orthogonal polynomials in two variables with respect to the
inner product:

(f,9)4 =ca/0 /_ V2 f(x,y) - Vg(z, y) Walz, y)dedy+

MV f(p1,p2) - Vg(pi,p2) + Mo f(p1,p2)g(p1,p2), (4.4)

where p = (p1, p2) is a given point in R?, Ao, \; > 0, Vf and V2f are given in (4.1),
W, is the Hermite-Laguerre product weight:

Wa(z,y) = ey, a>—1, (z,y)€ (—o0,00) x [0,00),

¢, is the normalization constant:

= ([ /. Wa@’y)df”dy)l airE

and the main part of (4.4) is denoted by:

(f,9)v2 = ¢a /OOO /_oo VA f(x,y) - Vig(z,y)Wa(z,y)dady. (4.5)

We denote by ¥/2(S,W,) and ¥2(V? W,) the spaces of orthogonal polynomials of
degree n with respect to (4.4) and (4.5), respectively. The following corollary is a
consequence of Theorem 3.1 and Proposition 3.9 for k = d = 2.
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Corollary 4.1. Let {Sj" :0 < j < n} denote a monic orthogonal basis of ¥,2(V?, W,).
Then, a monic orthogonal basis {SJ” 0<5 < n} of V2(S,W,) is given by:

So(z,y) =1,
801(1’,y) T — P, Sll(xay):y_p%
Sj(x,y) = Si(x,y) — TS}, pya,y), n>2,

J

where Tl(Sf,p) is the Taylor polynomial of first degree of S} at p = (p1,p2), and
where

<S([))788>S = )\07

(S5,85)s = (S1,81) = M,

<SJ7'L’SJ7’1>S <SJH’SJn>v2v 0<j<n, n=>2

Then, we need only to find a monic orthogonal basis {57 : 0 < j < n} of %2(V2, W,)
for n > 2. Let us denote by S,, the column vector of size n + 1:

T

For this construction, we consider the monic sequences of Hermite {H,(z)},, and
Laguerre {Lg{l) (y)} , a > —1, orthogonal polynomials (see [111, Chapter 5]) which
n>0

are, respectively, orthogonal with respect to the weight functions:

x a

u(z) =€, x€(-00,00), wu(y)=y'e?, a>-1, ye]l000),

that is,
(H,, Hy,) \/_/ H,( (x)u(z)dr = hy (1) m,
(L, <“>>—m / L () L (@) wa(y)dy = h(wa)S .

and where their L? norms are, respectively:

n!

hn () = (Hoy Hy) = 22,

ho(wa) = (LW, L) = nl(a + 1),,. (4.6)

By convention, we take H, = L") = 0 for n < 0, and consequently hi(u) = hp(w,) =

0 for n < 0. In addition, the Hermite and Laguerre (monic) sequences are self-coherent
with the relations [111, (5.5.10), (5.1.13), (5.1.14)]:

]' !

Hn<:L‘) = n+1 n—&-l(x)a n =0, (4'7)
LO(y) = — (@) + D) (), n>o0. (48)
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From the monic sequences {H,(x)},-, and {Lq(f) (y)} we define the product
- n>0
polynomial P;" in two variables:

PMz,y) = H,j(x)L\(y), 0<j<n, n>0. (4.9)
According to Proposition 1.1, the set { Pr:0<j< n} is a monic mutually orthogo-

nal basis for the space ¥,>(W,) of orthogonal polynomials of degree n with respect to
the inner product:

{f, 90w, = ca /OOO /_Z Fa,y)g(@, y)Walz, y)dudy,
that is,

(PR B )y = DOm0k (4.10)
where, from (4.6), we get that the L? norm of P} is:

(n— )i a+ 1),
T

= 1P, = by )y 1) = 0<j<m n>0. (411
From differential equations (1.2) and (1.4), and the polynomial (4.9), it is not difficult
to prove that the polynomials in the space ¥,?(W,) satisfy the partial differential
equation?:

10°P  9*P oP

oP
2022 VaE o T (a+1 —y)a—y =-nP, PeV2W,), a>-1. (4.12)

From Proposition 3.7, we know that if P € ¥*(S,W,) or P € ¥2(V* W,) then:

0P *P  O°P
+05)%P = + 2 + 2
(01 + 0) 0x? oxdy  0y? € Vs

(W) (4.13)

Putting (4.12) and (4.13) together, then they prove the following result.

Proposition 4.1. Let P € ¥*(S,W,) or P € ¥*(V?,W,), a > —1. Then P satisfies

the fourth-order partial differential equation:

0? 0? 0?
2

0x? * 0x0y + oy?

1 2 2
0 0 x£+(a+1—y)£+(n—2)1]{ P =0,

200 Yoy "ou Iy
where L 1s the identity operator.

In the following proposition we use the results from Section 3.4.1.2 because W, is
a product of classical weights.

2In (4.12) the factor 1/2 appears at 82 /022 because we assume e~ to be the weight function for
the Hermite polynomials. Suetin [110, page 40, equations (25)—(28)] works with the weight e=2/2,
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Proposition 4.2. The monic sequences {qn(u;)},5, and {gu(wa; y)},5, defined in
(3.58), and their derivatives up to second-order, are given for the Hermite and La-
querre cases by:

¢ (u;z) =n(n—1)H,_2(z), n >0,
¢, (u;x) =nH, 1 (x), n>0,
qn(u;x) = Hy(x), n >0,

and

Gn(wa;y) = L (y) + 2n Ly (y) +n(n — 1)Ly 5(y), n > 0.

an(u) = bn(u) = 07 an(wa) = 17 bn(wa) = 0.
Then, from Proposition 3.13 we have the following constants:

n,1

YU (u) =t (w) =0, AP (u) =

n+1’

Yy () = A2 (W) = 767 (w) =71 (w) =0, 3% (u) =

and also for the Laguerre case:

n n n, 1 n, n,
77’11(wa) =0, ’Vo’l(wa) =1 % 1<wa> = ntl’ 7722(11)(1) = 7712(wa) =0,
n,2 n,2 2 n,2 1
’ a) — 17 ’ a) — 5 ’ a) — .
The result follows from (3.55) and (3.57) with x = 2. O

From the monic sequences {g,(u; z)}, 5o and {g,(wq; y)},> We define the product
polynomial ()} in two variables:

QY (x,y) = qn—j(u; z)g;(wasy), 0<j<mn, n>0, (4.14)
where we denote by Q,, the column vector of size n + 1:
T

As a consequence, from Proposition 4.2 we have the following three results with
respect to the matrix (Q,, QZJW.
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Proposition 4.3. The second-order partial derivatives 07 7, 010.Q7 and 8%@? of
the polynomial Q7, 0 < j <n, n >0, are given by:

01Q (x,y) = (n—j)(n—j — V)PP *(z,y) + 2§ P (w,y) + (7 — VP S (z,v)],
0105Q7 (x,y) = j(n — JP} P (x,y) + (7 — 1) P[5 (2,y))],
5Q7 (x,y) =7 — V)P (2, y).

Proof. From (4.9), (4.14) and Proposition 4.2 we have that:

QN (x,y) = qh_;(u; x)q;(wae; y) =
(n = j)(n = j = DHujoa(@) L (y) + 2515 (y) + (G = DL ()] =
(n—j)(n—j = DIPF (2, y) + 2P (2, y) + 5 — VPSS (2, y))-
The expressions for 0,0,Q} and 8;@? follow similarly. m

Proposition 4.4. < i Q?>V2, 0<5<n, 0<k<m,n,m>0, is given by:

(Q}, Qi Yor = Al0nm—20j5—2 + B} pm_10;6-1 + CJ0nmbjn
+ B;L:115n7m+15j7k+1 + A?:gén,m+25j,k+2>
where,
n - , 2 4 27 n—2
Al =G+ 1) +2)(n—j)(n—j—1)°h7,
n ‘ 2 4 27 n—2 20 27 n—2
Bl =2(j+1)(n—j4)"(n—j—1)°h"+25°(j + 1)(n — j)°hj7;
+25%( + D)(n = j)*(n — j = 1)*A)7,
Cir = (n—5)*(n—j = 1)*h 2+ 25%(n — 5)*hj=7 + j°(5 — 1)*h)=3
+45%(n —j)%(n = = 1)°R}50 + 25%(5 — 1)*(n — j)*h; =5
+7°( = 1D*(n—35)*(n —j — 1)*h} 5,
and where h is given in (4.11).
Proof. From Proposition 3.4 for k = d = 2 we have:
(@7, Qi) gz = (01QF,07Q) . +2(0102Q5,01:0:,Q7),, +(5Q5,%BQ1),,,
where, for example, from (4.10) and Proposition 4.3:
(O2Q QY. = (0= 12— § = V2R mit
thj_ 5n m+153 k+1 + ]( )h? ;dn m+25j k+2 + 2(] + 1)hn 26nm 153 k— 1+

4j2h?_f(5n,m5j,k -+ 2] (] — 1) h?_éfsn,m+15j,k+1 -+ (j -+ 1)(] —+ 2)h§L 25n,m—2§j,k—2+
2727 + VI 0nm-1050-1 + 5°(F = 1?0575 0nmb; ),

and similarly for the other two expressions. We have the result by adding and sim-
plifying. O]
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Proposition 4.5. Let A7, B}, and C7, 0 < j < n, n > 0, be given in Proposition 4.4.
Then, the matrices <@n,@§>v2, <@n+1,@g>v2 and <Qn+2,@£>v2, of sizes (n+ 1) x
(n+1), (n+2)x(n+1) and (n+ 3) x (n+ 1), respectively, are diagonal matrices
of the form:

(Q,,Q7),, = diag (Cg;, oo (J;;) ,

0 0 0 N 8

%0 ;)n 8 Ar 0 0
<Qn+17 @£>V2 = I ) <@n+2> Q£>V2 = 0 A? 0

o o
Proof. Let us recall that <@n, @%>v2 = (<Q?, Q?>v2>0§j§n,0§k§m is a matrix of size

(n+1) x (m+1). By Proposition 4.4 we have that <Q?, Q?>Vz = 0 with the exception
of m=n,m=n+1m=n=42. Therefore, for m=n, m=n—1,and m =n — 2
we have:

(@ QP)gs = CP'oys, 0<j<m, 0<k<m,

<Q;‘n+17Q7]€n>V2 :B]Tfnéj,k+17 OSJ Sm+17 OS kgm?

<Q§n+27 QZZ>V2 = A?(;j,k-s-% 0<j<m+2, 0<k<m. O

Ezample 4.1 (Numerical, see Note 4.1). Let a = 1 for the Laguerre polynomials
and let p = (p1,p2) = (1,0) in the inner product (4.4). From the monic sequences

of Hermite {H,,(z)},~, and Laguerre {L%a)(x)} polynomials [111, Chapter 5] we
= n>0

have by Proposition 4.2 that {g,(u; )}, -, and {g,(wa; y)},5, are given for 0 <n < 5
by: - -

= — 1 3
w(ur) =1, q(uzr)=z, @ur)=21"- 2’ g3(u; ) = 2° — 2"
— 3 )
qa(u;2) = 2" — 32% + e gs(u;x) = 2° — b’ + =

and

w(wa;y) =1, awasy) =y, @wsy) =y" -2y, g(wsy) =y° — 6y° + 6y,
Ga(wa; y) = y' = 12¢° + 36y — 24y, g5(wa; ) = y° — 20y" + 120" — 240y° + 120y.

Therefore, from (4.14), for 0 < n < 5:
T 2 1 2 r
Q=1 Q= (L y) , Qo= ( —% TY, Y — 2y> )

T
Qs = <x3 — 57, 7'y — gy, ay’ - 2zy, yP -6y + Gy) :
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. s 2® — 52 + g
x*—3r° + 1 4 3 9 3
23y — 3ay Y —oT7Y + 7Y
2 x3y? — 223y — %ny + 3zy
lL‘2y3 _ 6£L'2y2 + 61,2,!/ _ %yi’) + 3y2 _ 3y
xyt — 12293 + 362y? — 24xy
y® — 20y* + 120y3 — 2402 + 120y

Q=22 —2%y—Lty?+y |, Q=
xy® — 6zy? + 61y
y* — 1213 + 36y% — 24y

From Proposition 3.11 and Proposition 4.5, with Kk = 2, we have:

1. First iteration: B,, o = 0 for n > 5 and

0 00 888
8§ 0 0
B3,2=<Q37 2T>V2: 04 0l B4,2=<Q4, 2T>v2= 8§ 0 0],
000 888
4 00
HY = (Q,Q])e. =10 2 0
0 4

2. Second iteration: B,, 3 = 0 for n > 6 and

0O 0 0 0
-1 36 0 0 O
B4,3 = <Q47 Q3T>V2 - B4,2 (HQV > ngz = 0 40 0 O s
0 0 48 0
0O 0 0 O
0O 0 00
0 0 0O
-1 36 0 00
Bss = (0. Q)g. —Bsx (HY) BL= |0 4 0 ol
0O 0 00
0 0 0O
18 0 0 0
2 2\ —1 0 12 0 0
HY = (Q5,Q1)g: ~Bsz (HY') Bl,=| o o 1o ¢
0O 0 0 72
3. Third iteration: B, 4 = 0 for n > 7 and
0 0 0 0 0
5 144 0O 0 0 0
2\ —1 0 162 0 0 0
B5,4 == <@57QZ>V2 - ZBE),j <H_7V ) BZ:] = 0 O 416 0 0 )
=2 0 0 0 864 0
0 0 0 0 0
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0 0 0 00
0 0 0 00
3 » 144 0 0 0 0
Bsa = (Q5, Q1 ). — > By, <va2> Bl.=| 0 216 0 0 0],
s 0 0 576 0 0
0 0 0 00
0 0 0 00
20 0 0 0
; » 0 45 0 0 0
HY = (Q1,Qf)g. ~ > Buy (HY) B, =0 0 Z 0 o0
i=2 0 0 0 28 0
0 0 0 0 1728

Therefore, from Proposition 3.11 we have:

-1 -1
Aua =Bz (HY) =0, n25 Au=Bu(H) =0, nx6

9 -1
Ay =B, (HY) =0 n>7,

and
00 0 0 0 0
v2 -1 2 0 0 V2 -1 O 0 0
Azo = B3> <H2> = 092 ol Aso =By (H2> =12 0 0],
00 0 0 0 0
0 0 0
0 O 0 0 O
(2) 8 8 8 20 0 0 0
A 0 oyl [00F 0 00
A4,3:B4,3 (H3) =10 3 0 0 7A5,4:B5,4 <H4) = 0 (o 624 0 0
8 139
00 %0
0 0 0 28 9
0 0 0 O 67
0 O 0 0 O
0 0 0O 0 0
0000 00 0 00
00 0 0 2 0 0O 0 0
—1 1
As3=DBs3 <H3V2> = (2) 2 8 8 , Aea=DBgy (H4VZ> =10 % 0 00
864
0000 0 0 755 00
000 0 0O 0 0 00
0 O 0O 00

If = denotes the congruence relation (4.2) on II? then, from Proposition 3.10, we have
for 0 <n <5:

Soé@ozla
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T
Sl é Ql - (‘T’.7 y) )
T
Sp = Qs = (332—%, xy, y2—2y> ,
T
S5 = Qs — AgpS> = (953 —jx, 2Py =22 —Jy+1, ay? —dxy, -6y + 6y) ,
xt — 322+ %
w3y — 22° — 3wy + 3w
8= Qu— AuaSs — Awafy = |y — Baly+ o 37+ 3y - F |
x> — %xzﬁ + E’g—oxy
y* — 12y + 3692 — 24y

Ss = Qs — As54Ss — A5 3S3 — As2Ss
x° — bhxd + %x

oty — 2zt — 3%y + 627 + 3y — 3

3.9 283 2.3 3.2, 42 39
1 Y= Y+ T - Syt + Ty — F
2.3 14582 92 | 36062, 1. 3 _ 18002 , 729 2 _ 1803 900
Y 130 L YT T T390 T7°Y — 3y 130 L~ T 139 130 ¥ T 39
4 10203 , 4284, 2 5208
ry o7 LY°+ G Ty 67 LY

y® — 20y* + 12012 — 24052 + 120y

Finally, let p = (p1,p2) = (1,0). The Taylor polynomials of first degree at p of
Sy, S3,S4 and Sy are given by:

T

Tl(S%p;xvy) = (2'1: - %7 Y, _2y> )
T
T'(Ss,p;2,y) = (%x —2, —dr+3y+3, —dy, 6y> :

T
T'(Se,p;2,y) = (—2x +3 Br—gy+4, Ba-3y-7, Py, —24y> :

—Lr+6
dr—%y—3
71(85, p;T,y) = 36§)$ ’ ?;i,_ %2700
Tl T 3 Y T Tag
5208,
120y

Then, from Corollary 4.1 we have a basis {S: 0 < j < n} for the space ¥,2(S,W,)
(with a = 1), together with their Sobolev L? norms, for 0 < n < 5 given by:

e For the space 732(S, W,):

So(z,y) = 1.
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e For the space 72(S, W,):

S&(Jc,y) =x—1,
Si(z,y) =v.

e For the space ¥33(S, W,):

Si(z,y) = 2° — 27 + 1,
Si(z,y) =zy — v,
Ss(z,y) = °.

e For the space #32(S, W,):

Si(z,y) =2° — 32+ 2,

Si(z,y) = 2%y — 22 + 4w —y — 2,
S3(x,y) = wy® — 4wy + 4y,
Si(a,y) = y* — 67,

e For the space ¥2(S, W,):
Sy (z,y) = 2* — 32* + 2m,

3 1
Si(z,y) = 2%y — 22° — Zay + 62 + ~y — 4,

2 2
16 14 1 28 16 14
53(9579) = 2%y’ — 39529 + §$2 — 592 — gx + gy + 3
26 50 50
Si(z,y) = zy® — St Sy = S,

Si(z,y) = y* — 12¢° + 36y°.

e For the space ¥2(S, W,):

Sh(z,y) = 2° — 5x® + 10z — 6,
Si(z,y) = 2ty — 22" — 322y + 627 — 4o + 2y,
28 . 2, 3 , 42 78 14 52

8§($7Q)ZI3QQ—E$ y+€x 5% +g$y—3$—€y+ga

1458 , 5 3606 , 1, 1800 , 729 , 3600

1
S5 _ 2,3 _ 1399 L3 2bvu
3(1,Y) =2y = g Ty ety = 5U e gl g

3606 1800
13907 139"
1020 4284 5208 5208
Si(z,y) = zy' — Wﬁcy?’ + Wﬂfzf — o W Y,

S2(z,y) = y° — 20y* + 120y — 24042

This completes our numerical example with the Hermite-Laguerre product weight.
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4.2.2 Laguerre-Gegenbauer product weight

In this subsection we use the results from Section 3.3 and Section 3.4.1.2. For the
Laguerre-Gegenbauer case, we consider the product domain:

[0,00) x [—1,1].

We present all the calculations that are needed for constructing the Sobolev orthogo-
nal polynomials of total degree n in two variables with respect to the Sobolev inner
product:

1 e’
(F.9)s = Cas / / VO£ (2, y) - Vg, y)Was . y)dedy+ NV f (p1, pa) - V2 (p1, po)
—-1J0

+ MV f(p1,p2) - Vg(p1,p2) + Aof (p1,02)9(p1,p2), (4.15)

where (p,ps) is a point in R?, \g, A\;, Ao > 0, Vf, V2f and V3f are given in (4.1),
W, is the Laguerre-Gegenbauer product weight:

Wa,b(xa y) = xaeix(l - y2)b71/27 a > _17 b> _1/27
(xay) € [0,00) X [_171]7 (416)

Cq,p 1S the normalization constant:

N - T'(b+1)
o= ([ [ wsertsts) =y 4

and the main part of (4.15) is denoted by:

1 00
(f,9)gs = Ca,b/l/o Ve f(x,y) - Vig(z, y)Wap(z, y)dady. (4.18)

We denote by ¥#,2(S, W,,) and ¥,2(V?,W,,) the spaces of orthogonal polynomials of
degree n with respect to (4.15) and (4.18), respectively, for which dim ¥/2(S, W, ) =
dim ¥?(V3, W,;) = n + 1. The following corollary is a consequence of Theorem 3.1
and Proposition 3.9 for k = 3 and d = 2.

Corollary 4.2. Let {S;1 0< 5 < n} denote a monic orthogonal basis of ¥,2(V3, Way).
Then, a monic orthogonal basis {SJ” 10 < j<n} of (S, Wayp) is given by:

So(x,y) =1,
Sol(xay) =T — D1, Sll(xay) =Y — P2,
Sy(z,y) = (x — p1)%, Stz y) = (x — p1)(y — p2), S3(z,y) = (v — p2)°,

Y)
Si(x,y) = S}z, y) — T*(S)psa,y), 0<j<n, n>3,

where 7‘2(5]”, p;x,y) denotes the Taylor polynomial of second degree in two variables
of S} at p = (p1,p2), and where

<887 S((J)>s = Ao,
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(85,80) g = (S1,81) g = A1,
(85,85)s =4Xa,  (ST,87) g =2N, (83,85), = 4Xs,
(87,87 ) = (87,55 0<j<n, n>3.

3777 ]’]>V37

Then, we need to construct a monic orthogonal basis {SJ” 0<5 < n} for the
space ¥,2(V?, W), where each S} is of the form S7(x,y) = 2" 7y + R(x,y), with
R € TI2_,. We denote by S, the column vector:

T
Su = (SB(.9), Ste.y), o Siey)

For this construction, let us consider the monic sequences of Laguerre {Lg{l) (a:)} ,
n>0

a > —1, and Gegenbauer? {CZ(y)}mo’ b > —1/2, b # 0, orthogonal polynomials
[111, Chapter 4 and 5]. These two sequences are orthogonal with respect to the inner
products:

a 1 > a a
<L7(1 )7 ngb)>wa = m/(; ng )(z)LSn)(m)wa(x)dx = I (Wa)0nm,

b oAb\ I'(b+1)
(Cn Cn)y, = L(1/2)0(b + 1/2

) / CHCH W)y = ha 1)

where w, and u;, are the Laguerre and Gegenbauer weight functions:

we(z) = 2% ", x€l0,00), a>—1,

wp(y) = (1= yel[-11], b>-1/2
and their L? norms are given, respectively, by:

n!(2b),

hn(1wa) = (L0, L40),, = ho+ Dy o) = (€1 CR),, = o T

n n

By convention, we take LY = C? = 0if n < 0, and consequently, h,(w,) = h,(up) = 0

if n < 0. The monic sequences {L%a)(x)} and {Ch(y)}, ., are self-coherent [111,
n>0 n=

(4.7.29), (5.1.13)—(5.1.14)] with the relations:

1 d d

(a) _ & 1) el 4 (O] >
1 d d
b b b
H0) = o O (®) + ) 2L a(w). m= 1, (4:20)
where
b (up) = — o n>1 (4.21)
T A+ ) n+b—1) ‘

3For b = 0 the Gegenbauer polynomials vanish identically for n > 1. This case must be treated
separately. See [111, page 80] for more details.
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From the monic sequences {L%a) (x)} and {C%(y)} -0 We define the monic
n>0 n=

product polynomials of total degree n in two variables:
n _ r(a) b .
Pl(z,y) = L, ;(x)Ci(y), 0<j<n, n=>0, (4.22)

which are mutually orthogonal with respect to the inner product:

(f:9w,, = Cab / 11 /0 y (@, y)9(z, y)Wa(z, y)dzdy, (4.23)
where W, and ¢, are given in (4.16) and (4.17), respectively. That is,

(P, le>Wa75 = h0nm0ji, (4.24)
where the L? norm is:

Wy = (B B Dy, = Dnmg (wa) () =

jtn = j)H2b);(a+1)n;
43(b);(b+1); ’

0<j<n. (4.25)

The set {Pj” 0<5< n} forms a mutually orthogonal basis [44, proposition 2.2.1]
for the space ¥,2(W,,;) of orthogonal polynomials with respect to (4.23).

Note 4.3. The Laguerre-Gegenbauer polynomials (4.22) also satisfy a partial differen-
tial equation, but the eigenvalues depend on both n and j. In this case, ¥>(W,;) is
not an eigenspace of such a differential operator. See [110, page 41] for more details.

Now, we use the results from Section 3.4.1.2 because W, is a product of classical
weights. From (3.57) and (3.58) with x = 3, the monic sequence of polynomials
{@n(w; )}, 5 is defined by:

n(w; ) = (n — 2)3[v5 > (W)pa(w; ) + 75~ (W)pp—1(w; )
P (W) Pz (w; @) + 40P (W)pas(w; ) + 47T (w)pp—a(w; )

+m
+ 45 (W)pp—s(w; ) + 7757 (W)pa—s(w; )], (4.26)

where {p,(w; )}, is a self-coherent monic sequence of orthogonal polynomials with

respect to w, and where ¢/, (w), ¢//(w) and ¢ (w) are given by:

¢, (w; ) = (n — 2)3[v 2 (W)ppi(w; ) + 47 (w)pp—o(w; T)

+90 2 (W)pns(w; @) + 97 (W)p-a(w; ) + 75> (w)pn s (w; )], (4.27)

G (w; ) = (n = 1)app_s(w;x) + (n — 2)3a5—5(w)py—s3(w; )
+ (n — 2)3bp_s(w)pp_a(w; x), (4.28)

"

@, (w;z) = (n — 2)3pp—3(w; ). (4.29)
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From (3.54) we have the following constants in (4.26) and (4.27) in terms of a,(w)
and b, (w):

W) = e 8 w) = Sl e ()

) = St o)) )| ) | ) )
(0 = Camn(0) + 200 (0)) 2 3 0) 4 (2000 + s ) 22,
) = mby () w), A5 (w) = (1= Db (w) > w),
5 ) = b (why-afw). 95 w) =

() = L) i) = g2 () 4 Deall)y Bol)

77 (w) = (an(w) + anoa(W)ba(w), "5 (W) = by(w)by-1 (w).

In particular, the Laguerre and Gegenbauer (monic) orthogonal polynomials are self-
coherent with the relations (4.19) and (4.20), respectively. From (4.19) and (4.20) we
get the following constants:

an(w,) =1, by (w,) = 0, (4.30)

anlin) =0, bafn) = = b)(Z et (4.31)

Therefore, from the previous discussion we have proved the following two propositions
for the Laguerre and Gegenbauer cases.

Proposition 4.6. The monic sequence of polynomials {q,(wa; T)},59, @ > —1, which
is defined in (3.58), and its derivatives up to third-order, are given in the Laguerre
case by:

(we; ) = LI () + 3nL{ () + 3(n — 1)2Li5(x) + (n — 2)s L, (@),
(wa; 7) V(@) 4+ 2(n — 1)2Lyy(x) + (n — 2)5 L, (),

gy (we; ) = (n — 1)2Liy(x) + (n — 2)5 L4 (),
(wa; z) = (n — 2)3L

Proposition 4.7. The monic sequence of polynomials {gn(us;y)},>e, b > —1/2,
which is defined in (3.58), and its derivatives up to third-order, are given in the
Gegenbauer case by:

o) = o) - [ D o [ 0Dy
(n—5)6 .
B [64(71 +b—6)4(n+b— 5)2} Co6(y),
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R R o ()

(n—4)s
+ [16(n+b— 4)(n+b— 5)3] OZ—s(y%

i) = (0= Do)~ | ] b,

n

@ (up; y) = (n — 2)3C)_4(y).

If {gn(wa; 2) },,50 and {gn(us; y) },>, denote the monic sequences in Proposition 4.6
and Proposition 4.7, respectively, we define the product polynomial @7 in two vari-
ables by:

QY (x,y) = qn—j(wa; 2)q;(wpsy), 0<j<n, n>0, (4.32)

which is a monic polynomial of total degree n. We denote by @Q,, the column vector:

T
Q= (Qle.y), Qwy) -, Qiwy)
We have the following proposition concerning to Q7.

Proposition 4.8. The third-order partial derivatives O3 3 8%82 (9102 6’3Q"
of the polynomial Q7, 0 < j < n, n >0, in the Laguerre—Gegenbauer case are given
by:

0Qj(x,y) = (n—j = 2P (a,y)
_:ﬂn—j—Zég;fﬁg+b—3)}Pn%xy)
e LG

- 64<(]n+_b]__62 (j(J+_b5—)65) } B (.v),
870,Q7 (x,y) = j(n — j — )2 P} (2, y) + j(n — j — 2)s P (2, y)

)

(TL—] - 1)2(j — 2)3(j +0b— 3)} Pn—5<x y)
( =
)

L 2(j+b—4)3
[(n—J —2)3(G = 2)s(i +5-3)] Lus

| 2(j +b—4)3 ]Pj—g (z,9)
(n—j—1)20 —4)s
[16(j +0—4)(j +b—5)3
[ (n=35—=2)3( —4)s n—8
16(j+b—4)(j+b— 5)3} P (2, y),

0105Q7 (z,y) = (n = J)(J — 1)2P/5 (2, y) +2(n — j = 1)a(j — 1)2P}5 (2, y)

(=g = 2l — DaPr () — [(” ) |G ?’)4} Pr3(a,y)

| Pt

4(j +b—4)
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(n—j—1)s(j — 3)4} Pr5(a, ) — {(n —J—2)3(J = 3)4 P (z,y),

20 +b—4) 4(j +b—4)2
B3Q7 (x,y) = (1 — 2)s P} (2,9) + 3(n = 1)(J — 2)sP/5 (=, y)
+3(n —j — 1)a(j — 2)3Pr 3 (w,y) + (n — j — 2)3(j — 2)sPr (2, y),
where Pl is given in (4.22).

Proof. From (4.32) we have that 0}Q% = ¢, ;(wa; 2)q;(up; y). Then, we use Proposi-
tion 4.6 and Proposition 4.7 and we express the result in terms of P} in (4.22). The
other expressions follow similarly. O]

Proposition 3.11 shows that it is necessary to know explicitly the n — 3 rectangular
matrices <Qn, QiT>v3 of size (n+1) x (i+1), 3 <i <n—1, and also the n — 3 square
matrices <Q1,Q§F>V3 of size (1 +1) x (i+ 1), 3 < i < n—1. For this purpose, it
is necessary to know explicitly their entries < ;‘,Q{”>V3 for0 <j<n 0<I]<m,
n,m > 0. These are our next two propositions.

Proposition 4.9. Let a > —1, b > —1/2 and let h} be given in (4.25). Then
(QF, Q") s 0< 5 <m, 0 < I <m, mym >0, ds given by:

<Q;L7 le>vg = w2£67j+66j,l—65n,m—6 + ¢Zﬁ5,j+45j,l—45n,m—5 + X2ﬁ4,j+45j,l—45n,m—4

+ ¢Zﬁ4 2050 20nmet + T 405140 nm— + Oers 9051 20nm—3 + Puts 010 ms

+ 7Tn+2 j+205.1-20n,m—2 + fn+2j i 10n,m—2 + anl j+2051-20nm—1 + Nn+1]5g 10n,m—1

R 505000 A 0085160+ K01 a0 m 10740 mmat + V01420 m

+ &) 50500n.m2 + WZ’I;aj 1+20n,m+2 + PZ’I;(SJ' 10n,mt3 + UZ’I;(SJ' 1+20n,m+3 + Ta’b5‘l+45n,m+3
+ G0 100 mea + X140 ma + V01 a0 s + W0 1460 m 6,

where:

0t = (n—j — 230" + [g(n = 26)(3(‘1_(, 1_)4(i+ >~ 3 } hs

(9(n —j —2)3(j — 3)3 (n—J—2)3(j - 5)3 9
h h"
T 256 10— 5)2 Tt 0060 1567207 1 b5 "
+3j2(n—j—1)h”3 2n—j—2) h?:f

+'%n—j—U%J—%(J @}hn5
i 45 +b—4)3 I3
[3(n—3j —2)5( —2)3( +b-3)"] .. 6 3(n—j—1)5(j —4) Nt
+ 4(j+b—4)3 ]h'3 {%&j+b—4ﬁ@+b—5)}f5
3(n—j—2)5(j —4)3 n—8 5
+_%&j+b—@%g+b a}h +3(n— )7 — D31

+4%n—j—UﬂJ 130575 +3(n — J—%(]—1%
m@+b—®2 Q+b—
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{3(7%—9—2) 50— 3)i
16(j + b —4)3
+9(n —j = 1)5(j — 2)5h775 + (n — j — 2)3(j — 2)3h} 5,
a,g:_{i’»(n—J) (n—j+1)2(j = 3)3 (J—l)}hn5
™ 4(5 4+ b —4)9 i

}Wx*%J—%h"§+%n—)(J—%h

u ) , e 3(n—35—22%n—-45)G—-2)2(G+b-3 -
un’,’}=3.72(n—J—2)§(n—J)hjf+[( ln = )G = 2)5 >hj7§

47 +b—4)3
3(n—j—23(n—5)0G—4)3], s N (o 2pn—4
[256(j+b—4)2(j+b—5) }h =5+ 6(n—j—1)° (n—75)(J — 1)zhi=,

W LS ESLUENI R P
8(j +b—4)2 i

T 6(n— j — 2030 — ) — 12T [

3(n—3—=235n =7 =3)i] s 27 n—4
+ [ R +b— 472 } hi—i +3(n—j)(J — 2)3hj=5

+9(n—j = 1)%(n = 5)(j — 2)3h775 +3(n — j = 2)5(n — 5)(j — 23k},
Jab _ [3(71 —j =13 —j+ D[ —2)*G — 1) +b— 3)} B

n.j 2(j +b—4)3 =
B -1in— + 1D —4)350 - 1)2] =7
32(j+b—4)2(j +b—06),
C[Bn—3)(n =i+ 1) —3)3( —1)2 }h”_f

I 2(j +b—4)
_[3n—5—-1)3 (n—J+1)(j—3)§(j—1)z} 6
I 2 +b—4) I
523223(?1—.7'—2)(” J=1)2(j — 1)3hj=5
3(n—j—2)> n—j—l j—3)3 n—7
43— — 1)) — )h”§+% j—%%n—j—nﬂj—m%ﬁé
o [3n=j—2)3( —1)e(i+b— 3)2} -
™ A(G+b—4) i

[9(n —j —2)5( — 3)3(j — 1)» ] =7
| 640 +D0—3)2(j+b—6)y | 7"
] 3(n—Jj —2)3(j —5)i(j — 1) 'hn,g
11024(j +b—6)4(j +b—5)2(j +b—T)s) 7°°

[3(n —j —1)3(j —2)*(j — 1)2(j +b—3)]

| 2(j +b—4)s3 l s
30— =230 =220 — 120 +b=3)]
! 205 +b—4)s o
_[3n =5 =150 —4)30 — 1) } nr {3(71 7 =230 =430 — 1), o

| 32(j+b—4)2(j +b—6)4 32 +b—4)%2(j +b—06)4
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- {S(n — )G = 3)50 - 1>2} 3

47+ b—4),
_{%“—J—U(J—$(J—U]hwﬁ_{%n—j—%%j—waj—Uzhw7
(] +b 4) J—4 4(j—1—b—4)2 G—d s
P = (n—j —2)3(j — 23k,
ab _ [3(n —J =250 = j)(G —2)°(j — 1)a(j +b - 3)} -
" 2(j +b—4)s -3
3= =230 = )G~ D3G —De] s
327 +b—4)2(j +b—6), J=5
30—~ D= )G =336~ Da]
I 2 +b—4), |
[ —5 =230 = ) =336 1)) s
I 2(+b—4), |
w#:[%”—j—nﬂn—j+ww—4>@—&ﬂhw&

16(j +b—4)(j +b—5)
ab _ [3(n=3=2)*(n—3j =10 —3)30 — Da] , v
O = [ G+ 4) ]hj*
ap _ [3(n—=7—=2)3 =3)a] ,ur, [30n—3—2)50 —5)5() =3)s(j +b—T)2] , o
/ { 16(j +b—5)4 ]h4+{256(g+b—6)(g+b—5)2(j+b—8) }hﬂ'ﬁ
3n—j =130 =40 —=3)a] ,nr , [300 =3 —2)30 —4)°(G —3)a] ,ns
+{ 16(j + b—4)(j + b— 5); }hfﬁ { 16(j +b—4)(j + b—5)s }@*’
,W@:[mn—j—man—ﬁ@—4fu—@ﬂhn8
& 16(j +b—4)(j +b—5)s =5

wa,bz_[ (n—j = 2)3( — 5 ]hn 9
™ 64(j +b—16)4(j +b—5)2

Proof. From (3.15), with x = 3 and d = 2, we have that:

(@3, Q) s = (B}QL Q1) | +3(020:Q0, R0uQT"),, +
3(0N02Q5 DGRy, + (DQUL Q) - (4.33)

Then, by the linearity of (-,-)y, , Proposition 4.8, (4.24) and (4.25), we compute

each term in (4.33). We have the result by adding and simplifying. O
a,b a,b a,b a,b a,b a,b
Proposition 4.10. Let 3 <1 < n and let Hnj, mgs Hnis Valis Enlis Tl pn], Tpis

a,b a,b ab .
Tolis Pnljs Xnjs wn,j and ww- be given in Proposition 4.9, with a > —1 and b > —1/2.

n,]7
Then <Qn,@f>v3 =0 for3<i<n-—17, and <Qn,Q§F>V3 is given form —6 <i<mn
by:
., n > 3, is a symmetric tridiagonal matrix of size

1' <Qna@£>v3 = (a?lb

’ >ogj,l§n
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NS

(n+1) x (n+ 1) where its entries are given by:

a,b . .
9n7i7 l_ja OS]S”?
a Keto, 1l=74+2 0<j<n-—2,
ajflb =q we / =)= (4.34)
Ko i l=5—-2, 2<53<nm,
0, otherwise.

: <Qn, £—1>v3 = (b?f) ' , n >4, is a bidiagonal matrixz of size (n +
0<j<n,0<I<n—1

1) X n where its entries are given by:

pet, =g, 0<j<n—1,

b?:lb: yol=j-2, 2<j<n

n?]’

(4.35)

Y

0, otherwise.

n > 5, is a bidiagonal matriz of size (n +

T _ al’)
. = | c;
<Qna@n—2>v«5 <]7l 0<j<n,0<l<n—2’

1) X (n — 1) where its entries are given by:

&ofol=j, 0<j<n-2
Gy =qmy 1=j-2 2<j<n, (4.36)
0, otherwise.

T _ a,b . L. . .
<Qn, n—3>v3 = (dj,l> ‘ , n > 6, is a tridiagonal matriz of size
0<j<n,0<I<n—3

(n+ 1) x (n — 2) where its entries are given by:

p2’37 l:ja 0§]§n—37
ot l=j-2 2<j<n-1,

U 4.37
M g 1=i-4 A<i<n, 0
0, otherwise.

<Qn, £_4>V3 = (e?lb) 4 , n > 17, 1s a bidiagonal matriz of size (n +
7/ 0<j<n,0<i<n—4

1) X (n — 3) where its entries are given by:

gty 1=j—2, 2<j<n-2
6?”117 _ Xf{g’ l=j—4, 4<j<n, (4.38)
0, otherwise.

n > 8, is a diagonal matriz of size (n +

T — F"b>

1) X (n — 4) where its entries are given by:

M_{wg l=j—4, 4<j<n-1,

A 4.39
T 0, otherwise. (439)
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7. QT = ( (.l’b> ,n >9, is a diagonal matriz of size (n
(@, Q”_6>V3 it 0<j<n,0<i<n—6 g / (n +

1) x (n — 5) where its entries are given by:

a,b . .
a,b wn,ja l:.]_67 6§j§n,
_ ; 4.40
95r = {O, otherwise. ( )
T _ n 7 . .
Proof. Let us recall that <@n,@i >v3 = (<QJ’Ql>V3>0§g§n,oglgz is a matrix of size

(n+1) x (i +1). By Proposition 4.9 we have that (Q, Q’>V3 =0for3<i<n-T.
By Proposition 4.9 we have for n — 6 < ¢ < n that:

(Q}, Q1) gs = wiibiuve, 0<j<n, 0<1<n—6n>09,

(QF Q") gs = ¥i0jea 0<j<n, 0<I<n—5n28,

<Q Qn 4>v3 ¢nj6]l+2+Xn]§]l+47 O<]§n70§l§n_47n277

<Q Q" 3>v3_pn35ﬂ+0n35ﬂ+2+7— (5]l+4, 0<j<n, 0<I<n—-3, n=>6,
(QF, Q) g = Gty + Tt Giue, 0<j<n, 0<I<n—2n>5,

(@QrQp- 1>V5_/“Ln] 0+ 5l+2, 0<j<n, 0<i<n-1,n>4,

(Q,Q >v3—/{nj+2jl2+0nj51+/‘fn]5l+27 0<j<n 0<I<n,n=>3.
By settingl =7+2,l=j,l=j—4, and [ = 7 — 6 we have the result. [

Ezample 4.2 (Numerical, see Note 4.1). Let a = 0 and b = 1/2 the parameters for the
Laguerre-Gegenbauer weight function W, ;, and let p = (0,1). Let us observe that

from Proposition 4.10 the matrices <Q3, Q;{>v3, <Q4, Q4T>v3> <Q4, Qg>v3a <Q5> Q§>v3a
and <@5,Q4T>v3 are given by:

56 0 0 0 0
306 102 8 8 0 228 0 0 0
(@,Q):=19 0 12 o (QQ)g=[0 0 256 0 0],
0 0 0 36 0 0 0 396 0
0O 0 0 0 192
00 0 0 0O 0 0 0
036 0 0 %0 o
<Q4,Q§>V3 =10 0 48 0 ) <@57QT> = )
0 0 0 108 0 48 0 216
00 0 0 0 0 —48 0
0O 0 0 0
0 0 0 0 0
0 432 0 0 0
~ |0 0 624 0 0
(@5, Qi) = 0 144 0 1008 0
0 0 —-192 0 576
0 0 0 0 0
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From Proposition 3.11 we have recursively the following matrices:

w00 R
0O 12 0 0
HY = (Q3,Q%), = . Bis={(Q.Qf)es=[0 0 48 0
00 120 0 0 0 108
0O 0 0 36 00 0 0
576 0 0 0 0
0O 120 0 O 0
3 3
HY =(Q4,Q])ys —Bus(Hy )"'Bi;=| 0 0 64 0 0 |,
0 0 0 72 0
0 0 0 0 192
0 0 0 0
0 0 0 0
_ T 124 0 72 0
B5,3 - <Q57 3 >v3 - 0 48 0 216 9
0 0 —48 0
0 0 0 0
0 0 0 0 0
0 432 0 0 0
T 3\ 1T 0 0 33 0 0
B54 - <Q57@4 >v3 B53 H ) B43 — O 0 O 360 0
0 0 0 0 576
0 0 0 0 0
Therefore, the matrices Ay3, As3 and As 4 are given by:
00 0 O
0 00O 00 0 0
03 00 2 0 6 0
3\ _ 3\ — 2
A3=B,3HY ) '=[00 4 0], A;3=B;3HY)"'= 8 Lo 6l
000 3
00 0 O
0 0 0 0O
0 % 0 0 0
21
A574 — B574(H4VS)_1 — 0 O 1 O O
0 0 0 5 0
0O 0 0 0 3
0O 0 0 0O

From Proposition 4.6, Proposition 4.7 and (4.32) the column vectors Q, for n =
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0,1,2,3,4,5 are give by:

3

x
2+ 2z +2 9
T+ 2 Ty + 22y + 2y
=1, = , = Ty + 2y , = ,
Q & (y) © oL Q vy’ + to 4 2y + 2
’ Yy’ +3y
ot — 423

3y
Qi= | 2*P + 32 + 22 + 30+ 22 + 3 |,
ry? + 6y + 3y + 233
y' —6y* -3
25 — 102 4 2023
xty — 42y
P + Lo
22y + 3y + 22y + 6y + 23 + 6y
ry* — 6xy? — 3x — 1292 + 2y* — 6
1048 1 5y

If = denotes the congruence relation (4.3), then by (3.42) we get recursively the
polynomials S, for n =0,1,2,3,4,5:

9 22+ 2x+2
So=Qo =1, Slé(@l:(x+)> Se = Qg = zry + 2y )
y 2 1
Yy + 3

2%y + 2xy + 2y
vyt +sx+ 27 4 2
Yy’ +3y

Ss = Qs =

xt — 43
3y — 32y — 62y — 6y
Sy = Qq— AysSs = | 2%y + 12 — 22y — 2z —6y? — 2 |,
2y’ + 3xy — 3y —y°
y' —6y° -3
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25 — 102* 4 2023
oty — 38 23y + 5412y+ 108xy+ 1g8y
. . m3y2—%x3 21x2y2 7m2+§xy +§x+?’2—9y2+%
S5 = Q5 — A5 45 — A53S3 = 9 3 3
2%y — 2%y — 3zy3 — 1Toy + 4% — Sy
xy4—2xy2—§x+14y2—y4+%

Finally, let p = (0,1). Then, the Taylor polynomials of second degree at p for each
entry in S,,, for n = 3,4, 5, are given by:

0 0
24 2y 2y —32? — 6y — 6y
TQ(SS,p) = 2y2+2xy— %x—i-% , 7-2(84,p) = %x2_;1wy+§x—6y2_2 ,
32 + 1 3y +6_xgy 2 — 1
0
B2 4 1085, 4 105,

—T2? + 9zy — 3z + Dy? + L
6z — S8y — 26xy + 3y% + 1
8y +8y — S+ 3

TQ(S57 p) =

8
3
With the previous polynomials, and by Corollary 4.2, we have a monic orthogonal
basis {S': 0 < j <n} for the space ¥,2(S,W,y) for n = 0,1,2,3,4,5, with a = 0,
b=1/2 and p = (0,1):

e For the space 752(S, W,p):

So(z,y) = 1.

e For the space ¥2(S, W,,):

Sy(x,y) = =,
Si(zy) =y -1

e For the space 752(S, W,,):
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e For the space ¥(S, Wap):

Sy(z,y) = a°,

Si(x,y) = 2%y — o,
S3(x,y) = 2y — 2ay + x,
Si(x,y) =y —3y° + 3y — 1

e For the space ¥2(S, W,,):

So(w,y) = ' —4da?,

Si(z,y) = 2’y — 32’y + 32,

Sy(z,y) = 2%y — 2* — 2xy* + 4oy — 2,
Si(z,y) = 2y + 2 — 3y — 3wy + 3y° —y° + 1,
Si(z,y) = y* — 6y* + 8y — 3.

e For the space ¥2(S, W, ,):

So(z,y) = 2° — 102" + 2023,

54 38 54
Si(x,y) =2ty + —a’y — —a’y — —a?,

5 5 5

1 21 21 9 9
S3(z,y) = 2*y* — §x3 - Zx2y2 + Zasz + Ea:yQ — 9y + 2%
Si(z,y) = 2%y* — 2%y — 3wy® + 92y — 62 +9* — 3y + 3y — 1,
Si(x,y) = ay* + 2 — 8y — 2xy”* + 6y° — y* + 3,

10 8

S3(w,y) =y — 2" + 5y — <.

This completes our example with the Laguerre-Gegenbauer product weight.

4.3 Sobolev orthogonal polynomials on the trian-
gle

The triangle of R? is the set:
T ;= {(z,y) eER*:2 >0,y > 0,2 +y < 1}.

This is a particular example in two variables of the simplex T¢. In this section we
construct the Sobolev orthogonal polynomials in two variables with respect to the
inner product:

(f.9)s =y /TZ VA f(x,y) - Vig(z,y)W, (z, y)dzdy

+ MV f(p1,p2) - Vg(pr, p2) + Ao f(p1,p2)9(p1,p2), (4.41)
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where (p1,ps) is a given point in R?, X\g, \; > 0, Vf and V2f are given in (4.1), W,
is the weight function on the triangle:

W“{<x?y) :x’Yly’}Q(l_J;_y)’B’ Y1, 72,73 > _17 (‘Tay> €T27 (442>
v = (71,72,73) € R? is such that 71, 72,73 > —1, ¢, is the normalization constant:

Ly 472 +73+3)
Y+ DI (e + 1 (y5 + 1)’

-1
Cy = W, (x,y dxdy) =
Y ( T2 'Y( ) 11(

and the main part of (4.41) is denoted by:
(f.9)ve =0y | Vf(z.y) Vig(z,y)W,(z,y)dzdy. (4.43)
T2

We denote by ¥2(S,W,) and ¥2(V? W,) the spaces of orthogonal polynomials of
degree n with respect to (4.41) and (4.43), respectively, where dim ¥#2(S,W,) =
dim 72(V2,W,) =n+ 1.

From (1.31)—(1.32), the polynomials in the space ¥,2(W,) with respect to the inner
product:

Fshw, = [ Fe.)ol )W, o y)dody, (1.49)

satisfy the partial differential equation:

52p 52p 52p
oP op
(1 +1) = (Wl + 3l + [ +1) = (1 + 35 = —n(n+ bl + 2P,

PeW,), hl=m+%+7s. (445)
From Proposition 3.7, we know that if P € ¥2(S,W.) or P € ¥,2(V* W.,) then:

o?P o?P  O*P
(81 + 82)2P = axz + anay + ayz € 7/712_2(W7).

(4.46)

Putting (4.45) and (4.46) together, then they prove the following result.

Proposition 4.11. Let P € ¥*(S,W,) or P € ¥2(V*W,), with v = (71,7%,73),
M,72,73 > —1, |Y] = 11+72+73. Then P satisfies the fourth-order partial differential
equation:

2 o? 0? 0

1—2) L 20y 4yl —y) 1) — 3)a] =
(1= 2) 7 Y 5y +y( y)ay2 +[(n +1) = (|y] + 3)z] ot

0 0? 0? 0?

1) — 3)Y|=— -2 z 2 P=0
02+ 1) = (b + 3l + (= 2000+ Z| |4 250+ ] P =0,

where L 1s the identity operator.
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The following corollary is a consequence of Theorem 3.1 and Proposition 3.9 for
k=d=2.

Corollary 4.3. Let {SJ” :0 < j < n} denote a monic orthogonal basis of ¥;2(NV?, W.,).
Then, a monic orthogonal basis {S]” 0<5 < n} of V,2(S,W,) is given by:

So(x,y) =1,
S(%(x y) T — pl> 511<x>y> =Y —DPp2,

J

where 'Tl(S;l,p) is the Taylor polynomial of first degree of ST at p = (p1,p2), and
where

<S(())78(())>S = >\07
(11, = (81810, = M,
(81,81 = (S5 S, 0<j<n n>2.

370 vz’

Then, we need only to find a monic orthogonal basis {Sj" 0<5 < n} for the
space ¥2(V2 W,) for n > 2. Let us arrange the elements of this basis in a vector
form. We denote by S,, the column vector of size n + 1:

T
Su= (S(@y), Si(@y) .., Si@y)

and by @, the column vector of size n + 1:

T
@n=<x", " ly, a2yt y”) . (4.47)

As we mentioned in Section 3.4.2.1, in order to simplify the computation of the matrix
<Qn, >v2 we only need that each entry of Q,, to be defined as a monomial. Then, we
have the following corollary that is a consequence of Proposition 3.14 with K = d = 2.

Corollary 4.4. Let n,m > 2 and let Q,, be defined in (4.47). Then, each entry of
the matriz (Qn, QL) = (( ntyt gme jyj>vg> of size (n + 1) x (m + 1)

0<i<n,0<j<m
can be computed by:

1,72 1,72 1,92
AmmalaZ g g gramayla2 | commaly

(71 + 72+ 73+ 3)ntm-a
Y1,%2,73 > —1, 0<i<n, 0<j7<m,

<xn—iyz m— ]y >v2 —

Y

172 172 172
where A7 BT and CFTT are:

7.]

An myly2 (2 - 1>2(j - 1)2(71 =+ 1>n+mfifj<ﬁ)/2 + 1)i+j747 2<1 < n, 2< .7 < m,
0, otherwise,
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ij(n =) (m — )71 + Dngm—ioj—2(2 + Digje, 1<i<n—1,
n,m,yl,y2 __ .
L0, otherwise,
(n—i—1)a(m —j — 1)o(n + Dngmizjoa(ro + )iz 0<i<n—2,
n,m,yl,y2 __ .
Cz',j - 0<j3<m-—2,
L0, otherwise.

Then, on the triangle T? the polynomials in the column vector S, can be com-
puted recursively by means of the relations in Proposition 3.10, Proposition 3.11 and
Corollary 4.4. In order to illustrate the main ideas we will show a numerical example
in the sequel.

Example 4.3 (Numerical, see Note 4.1). Let v = (v1,72,73) = (—19/20, —19/20, 3/5)
the parameters* for the weight function W, which is defined in (4.42), and let p =
(p1,p2) = (1/2,1/2) in the inner product (4.41). From (4.47) we have for 0 <n < 4:

T

T
QOZL le(xa y) ’ QZZ(J:27 ry, ?f) )
T T
Qsz(x?’, w’y, xy?, y3> : Q4=<x4, By, 2y, g’ y4>

From Proposition 3.11 and Corollary 4.4, with kK = 2, we have the following iterations:

1. First iteration:

14
w 00 i U0
17 11
2 2 153 102
— o | 17T _ N _ |1 o2 1
B3,2_<@37@2>v2_ 2 2 | B472_<Q47Q2>v2_ 153 459 153 |
0 2 2
77 0 T L
6 102 153
0 0 +
17 0 0 14
51
4 0 0
vz _ T _
H, _<Q2, 2>v2_ 0 2 0
0 0 4
2. Second iteration:
4620 140
10693 32079 0 0
160 7090 70 0
. 32079 96237 32079
_ T o \v& T _ | __170 7570 7570 __70
B473_<@4’Q3 >v2 B2 <H2> B372_ 32079 288711 288711 32079
0 10 7090 160
32079 96237 32079
140 4620
0 0 32079 10693

4The values for v were chosen to get reduced fractions at the entries of the matrix <Qn, Qﬁ)vg.
See Corollary 4.4.
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woo _ 10
289 2601
. 10 10 20
v2 T v?2 T _ 2601 867 7803
Hy = <Q37 Qs >v2 —Bsp <H2 > B;, = 0 20 110
7803 867
_ 10
0 0 2601
Therefore, from Proposition 3.11, we have:
.
3 102
50 U0 1
N N
Asa=Ba (HY') = | T || An=B,(H) = |5
o0 L 1
17 34 0
0 0 =
34
42
= 0 0 0
172 5268 99 1
. 9065 9065 18130 18130
_ v\ | 2 3 39 _ 2
Ayz=Byy <H3 ) - 555 185 185 555
1 99 5268 172
18130 18130 9065 9065
42
0 0 0 +

o O

—_
[e=]

2601
110
289

If = denotes the congruence relation (4.2) then, from Proposition 3.10, we have for

0 < n <4 that:

So = Qo =1,

Sy = Q = (L y)T,

Sy =Qy = (mQ, Ty, y2)T,
Sz = Q3 — As2S,

3
2220°Y 18130y

5591
326340

y?

L <a:3 —2a? 2ty — oy — 577, oyt — oy — 5yt YR — %gf)T,
Si= Q1 — AusSy — AySy
t — ﬁx?’ + @xQ
7%y — g’ — %x Y+ im0 18130 zy? + 18130y + 32224110 -
= vy’ + %x - T%x Y= 1ty Y — e+ 4191935‘”3/ — 1o¥
vy’ + 132 + Y — S0e Ty — %y:s — T — m Y T
y' = 59’ + oy’
Finally, let p = (p1,p2) = (1/2,1/2). The Taylor polynomials of first degree of Sy, S3

and S; at p are given by:

T!(8:p) = (v —

1 1 1
3T T 3Y — 1
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1 _ (15, 3 15,15, 31 15, 15 3 45, 31
T(S&p)_(ﬁsx 1360 317 T 6sY ~ 1360 st 34Y T 1360 6sY 136) ,

oy 17
223L 1776
11549 . 779 . 229
130536 135129 T 5328
1 _ 401 401, 1387
T (S4,p) = 3996% T 3096 15984
779 11549 . 229
13527 1 130536 5328
1, 157
2239 1 1776

Then from Corollary 4.3, the following polynomials are a monic orthogonal basis
{S]” 0<j < n} for the space #2(S, W) for 0 <n < 4:

e For the space ¥Z (S, W,):

So(z,y) = 1.

e For the space ¥/*(S, W,):

1
S(:)L(xay) :ZL'—§,
1
Si(w.y) =y =3

e For the space ¥3*(S, W,):

1
Sg(l‘7y) :'1‘2_1‘—'_1’
1 1 1
812(9@9) :l'y—gm—gy‘i‘l
1
S3(z,y) =y2—y+z

e For the space ¥3(S, W,):

45 31
83 _ 3_ <,.2 v el
0(T:y) =27 = " = v e
1 1 15 15 31
83 — 2, = -2 Y Y el
H(@y) =27y — ey = 1t — g — eyt o
1 1 15 15 31
S3 2+ L9 o Lo oSbL
2(2,Y) = 2y = I = gV~ e T ¥t g

3 45 31

5§(w7y) =y’ — 3—4y2 - @?J‘FE

e For the space ¥Z(S, W,):

42 7 71 157
St _ o4 3 0 o ML 1ol
0(T:y) =27 = g2 @+ o 55T v
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172, 5268 , 9 , 1 ., 5591

0065° ~9065" Yt 18130™ T 18130Y T 326340"
1 3, 11549 779 999

~9220%Y T 18130Y T 130536 T 13512 T 5328
2 39 39 2 1 113
St _ .22, 4 3 9 o 9 o 4 3 L 9
2(7:Y) = 7Y+ 5ot = et et 5 50 T qog5 ™Y
1, 401 d01 1387
_— — — x —
1807 T 30067 39967 " 15084’
1 99 5268 172 3
St a3+t 3, 90 o 92408 o L4 3 9 2o
30 Y) = 20 o 530" Y T o065 o065 181307
1 5591 , 779 11549 229

~ 9920 T 3963207 T 135127~ 1305367 T 5308
49 7 71 157
Sff(x,y) =y’ — ﬁy?’ + @92 + @Z/ 1776

Si(z,y) = 2%y —

This completes our numerical example on the triangle T2.

4.4 Sobolev orthogonal polynomials on the disk

The disk of R? is the set:
B? .= {(z,y) € R*: 2% +y* < 1}.

This is a particular example of the ball B? in two variables. In this section we
construct the Sobolev orthogonal polynomials in two variables with respect to the
inner product:

<f7 g>S = Cu /]BZ st(x’y) ' V3g($, 3/>Wu<$7?/)d95dy + )\2v2f<p17p2) : VQg(p17p2>

+ MV f(p1,p2) - Vg(pr,p2) + Aof (p1,p2)g(p1,p2), (4.48)

where (p1,p2) is a given point in R?, Ao, A\;, Ao > 0, Vf, V2f and V3f are given in
(4.1), W, is the weight function on the disk:

Wu<l’,y) = (1 - 1’2 - y2>/ﬁ’ % > _17 (:E,y) € BQ? (449)
¢, is the normalization constant (see (1.41)):

-1

1
Cy = ( Wu(a:,y)dxdy> = i,
B2 T

and the main part of (4.48) is denoted by:
(fs9)ws = cu | V[(2,y) - Vg(w,y)W(w, y)dudy. (4.50)
B
We denote by #2(S,W,) and ¥2(V? W,) the spaces of orthogonal polynomials of

degree n with respect to (4.48) and (4.50), respectively, where dim ¥2(S,W,) =
dim #2(V3, W,) = n + 1.
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From (1.43)—(1.44), the polynomials in the space ¥,2(W,) with respect to the inner
product:

(f 9w, = cu /2 f(@,y)g(@, )Wz, y)dady, (4.51)
B
satisfy the partial differential equation:
0*P 0*P 0? oP oP
1—2%) == -2 — )= — 2u+ 33— — 2u+3)y— =
(1 —2%) 55 —2oy5 -+ | y)ay2 2p+ 3z — (2p + )yay

—n(n+2u+2)P, Pe¥r(W,), pu>-1. (452)

From Proposition 3.7, we know that if P € #2(S,W,) or P € ¥2(V3 W,) then:
P o3P »*P PP
~ 043 * 38x28y * 38:(:(93/2 * oy?
Putting (4.52) and (4.53) together, then they prove the following result.

Proposition 4.12. Let P € ¥*(S,W,) or P € ¥2(V3 W,), with u > —1. Then P
satisfies the fifth-order partial differential equation:

(01 + 0y)°P

€ 1La(Wh). (4.53)

0? 0? 0? 0
(1—9(:)82 Qxyaxay—l—(l 2)82 (2,u+3)a:a—
0? 0? 0? 0?
ox3 * 38x28y + 38x3y2 + oy?

—(2u+3)y 88 +(n 3)(n+2u—1)2} [ P =0,

where L 1s the identity operator.

The following corollary is a consequence of Theorem 3.1 and Proposition 3.9 for
k=3and d = 2.

Corollary 4.5. Let {Sj” 0< 5 < n} denote a monic orthogonal basis of ¥,2(V3,W,,).
Then, a monic orthogonal basis {SJ” 0<5 < n} of ¥,2(S,W,,) is gien by:

So(z,y) =1,
Se(x,y) =2 —p1, Si(z,y) =y — pa,
So(x,y) = (x—p1)?,  Si(z,y)=(@—p)(y—p), S3(x,y) = (y—p)

J
where T*(S},p) is the Taylor polynomial of second degree of S at p = (p1,p2), and
where

<S(())78(())>S = )\0’

<837$&>5 = <8117811>S = A1,

(85,85)s =4, (S1,87) s =2N, (83,85), = 4Xs,

(S} S”>S (S, S 0<j<n, n>3.

3770 ]’]>V3’
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Let us arrange the elements of the basis {S}:0 < j <n} of ¥2(V* W,) in a
vector form. We denote by S,, the column vector of size n + 1:

T
Su= (S(@y), Si@y) ..., Si@y) .

and by @Q, the column vector of size n + 1:

T
Qn=<x", "Ly, a2, y") : (4.54)

As we mentioned in Section 3.4.3.1, in order to simplify the computation of the matrix
<Qn, Q%>v3 we only need that each entry of Q,, to be defined as a monomial. The
following corollary is a consequence of Proposition 3.15 with xk = 3 and d = 2.

Corollary 4.6. Let n,m > 3, u > —1, and let Q,, be defined in (4.54). Then, each
entry of the matriz <Qn, QZJW = ((:p”_"yi, xm_jyj>v3) of size (n+1) x

(m+1) can be computed for 0 <i <n and 0 < j <m by:
Ai&. +3B;;" +3C; 5" + Dy

, n+m—i—j andi+ j are even,

<xn—iyi’ l,m—]y]>v3 — (ILL + 2)71+Tm73
0, otherwise,
where
Anm (_i)3(_j>3 (%) nbmisj (%) i3 3<i1<n, 3<j<m,
" 0, otherwise,
w 0, otherwise,
onm _ ij(i —n)a(j —m), (%)Mm;i_j_2 (%)i;j_1 , 1<i<n-—1, 1<j<m-—1,
w 0, otherwise,

2

n,m_{(i_n)3(j_m>3(%)n+m2ij_3(%)i+ja 0<i<n-—-2, 0<j<m-—2,

0, otherwise.

On the disk B? the polynomials in S, can be computed recursively by means of
the relations in Proposition 3.10, Proposition 3.11 and Corollary 4.6. Next we show
a numerical example.

Ezample 4.4 (Numerical, see Note 4.1). Let u = —1/2 the parameter for the weight
function W, on the disk, which is defined in (4.49), and let p = (p1,p2) = (1,0).
From (4.54) we have for 0 < n < 5:

T

T T
@0:17 @1:(ZE, y) ) @2:<SL’2, ry, Zﬂ) ) @3:<x37 $2y7 I’yQ, y3> ’
T T
@4=<a¢4, 2y, 2*y?, xy, y4> , Q5=<x5, aty, *y?, 2%yt wyl y5> :

From Proposition 3.11 and Corollary 4.6, with k = 3, we have the following iterations:
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1. First iteration:

120 0 0 O
0 24 0 O
12 0 12 0
B4,3 = <Q47Qg>v3 = 0’ B573 = <Q5’@§>V3 - 0 12 0 12 ’
0 0 24 0
0O 0 0 120
36 0 0 0
, 0 12 0 0
HSV - <Q37@§>v3 = O O 12 0
0 0 0 36

2. Second iteration:

-1
Bs4 = <Q5> QDW —Bs3 <H3V3> BZ,?, =0,

192 0 0 0 O

\ -1 0 48 0 0 O

HY = (Q1,Q})g ~Bis (HY') Bl,=| 0 0 32 0 0

0O 0 0 48 0

O 0 0 0 192
Therefore, from Proposition 3.11, we have:

1—30 00 O
0 2 0 O
-1 -1 L0100

Ay 3=DBygs (HY,) =0, As;3=DB;3 <H3VS> =|°? e
0 10 3
0 02 0
0 00 13—0

-1
A574 = B574 (HZ?)) - O

If £ denotes the congruence relation (4.3) then, from Proposition 3.10, we have for
0 <n <5 that:

S0 ; @0 - 17
T
Slé@lz(ma y) )
T
SQ é @2 = (1:27 ry, y2) )
5 T
Sz = Qs = (x3, 2%y, xy?, y3) ,

T
S4 é Q4 - A473S3 é <$4, $397 $2927 xy?’? y4> )
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5_ 10,3
3 X

xty — 222y

T

23y? — LB gy
S5 = Qs — As54Ss — A5 3S;3 = ¥

m2y3 _ ZEQy _ %y?)

xyt — 2xy?
yo — 1043

Finally, let p = (p1,p2) = (1,0). The Taylor polynomials of second degree at p of
S3,S4 and Sy are given by:

T
TQ(Ss,p;x,y):(3x2—3x+1, 2ey —y, Y7, 0) :

T
7-2(84,13;%,3/):(61‘2—81}—’—3, 3$?J—2y7 92; Oa 0) 3

—ox —i—%
-y
1
TASspizy) = | 05T
—2xy+vy
—2y2
0

Then, from Corollary 4.5, the following polynomials are a monic orthogonal basis
{SJ’.1 : 0 < j < n} for the space ¥2(S, W,), with = —1/2, on the disk for 0 < n < 5:

e For the space ¥(S, W,):
So(x,y) = 1.

e For the space ¥;%(S, W,):
Sylr.y) =z —1,
Si(r,y) =vy.

e For the space ¥5*(S, W,):

Sg(xay) = 33'2 - 21’—|— 17
Si(z,y) =y — v,
Sy (z,y) = y°.

e For the space ¥2(S,W,):

Si(z,y) = 2° — 32° + 37 — 1,
Si(x,y) = 2’y — 2xy +y,

Sy (x,y) = zy® — ¢,

S3(x,y) =y’
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e For the space ¥2(S,W,):

Si(z,y) = 2* — 62% + 8z — 3,
Si(z,y) = 2%y — 3zy + 2y,
Sy (x,y) = 2%y — ¢,
Si(x,y) = xy’,

Si(z,y) =y*.

e For the space ¥(S,W,):

10 8
Sh(z,y) =2° — gx?’ + 5z — 3
Si(x,y) = a'y — 20%y +y,
1
S3(w,y) = 2%y — 22’ —ay’ + o

1
Si(z,y) = 2°y® — 2’y — 53/3 + 27y — v,

Si(z,y) = zy' — 2xy® + 247,

Si(z,y) =y° — v

This completes our numerical example on the disk B?.

4.5 Sobolev orthogonal polynomials on the cone

4.5.1 Jacobi weight function
The bounded cone of R? is the set:

Vii={(z,y) eR*: 2| <y,0<y < 1}.

This is a particular example of the bounded cone V¢ in two variables. In this section
we construct the Sobolev orthogonal polynomials in two variables with respect to the

inner product:

(f+9)s = Capp / VA f(z,y) - Vig(z, )W, ,
N

(z,y)dxdy

+ MV f(p1,p2) - Vg(pr,p2) + Xof (p1,p2)9(p1,p2), (4.55)

where (p1,py) is a given point in R?, X\, Ay > 0, V f and V*f are given in (4.1), W/, |

is the weight function on the cone V3:

WJ

a,b,,u(xv y) = ya(l - y)b(y2 - [E2)#, a, ba > _17 (‘Ta y) S V%a

(4.56)
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Ca,b,u 1S the normalization constant (see (1.55)):

—1
T(+3/2)T(a+ b+ 2u +3)
)dxd =
Cobn = (/‘ Wisul@:v) x”) VAL + Dl(a+ 20+ 2)T(0 + 1)

and the main part of (4.55) is denoted by:
(£:9)g2 = Capu | V2 (wy) - Vig(a,y)W, ,(x, y)dudy. (4.57)
Vl

We denote by #,2(S, W, ,) and #;2(V*, W/, ) the spaces of orthogonal polynomials
of degree n With respect to (4.55) and (4.57), respectively, where dim #,>(S, W/, ) =
dim #,2(V?, W7, ) = n+ 1. Similarly, we denote by #,>(W,/, ,) the orthogonal poly-
nomials with respect to:

9wy, = Coa [ £ 0)al )W o) dndy (4.58)
;O V%

From (1.56)—(1.57), the polynomials in the space #;(W/, ,), when the parameter
a = 0, satisfy the partial differential equation:

0*P 0*P 0*P oP
1—y) 2" +22(1 - — L outr2)
y( )a2+ x( )axaer(y x)ax2+(u+)ay
oP oP
— (2 iy == p 2)P
(u+b+3){x8$+yay} n(n+2u+b+2)P,
P e ¥ (Wgy,), bopu>—1. (459)
From Proposition 3.7, we know that if P € #2(S, W&]b#) or P € ¥2*(V?, W(;]b #) then:

P _0*P P
(01 + 0y)*P := o7 T2 527 - 57 © V2 (W) (4.60)

Putting (4.59) and (4.60) together, then they prove the following result.

Proposition 4.13. Let P € ¥ 2(S,W, ) or P € ¥V 2(NV* W, ), with b, > —1.
Then P satisfies the fourth-order partial differential equation:

% 2 i 9
0? 0?
—(2u+b+3)ya—y (n—2)(n+2u+0b) }{@jLanay—l—@ P =0,

where L 1s the identity operator.

The following corollary is a consequence of Theorem 3.1 and Proposition 3.9 for
k=d=2.
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Corollary 4.7. Let {S}1 :0 < j < n} denote a monic orthogonal basis of ¥,2(V?, Wl
Then, a monic orthogonal basis {S! : 0 < j < n} of ¥2(S, Wi,

Solx,y) =1,

So(w,y) =z —p1, Si(z,y) =y —ps,

Sj(x,y) = Sj(x,y) = TS}, pya,y), n>2

where T'(S7,p) is the Taylor polynomial of first degree of S} at p = (p1,p2), and
where

) is given by:

<8(())7S((])>S = AO:
(S5,80)g = (S1,S1) g = A,
(1.8, = (5.9

o J>V2’ = J =

Let us arrange the elements of the basis {S7:0 < j <n} of ¥2(V*, W/, )ina
vector form. We denote by S,, the column vector of size n + 1:
T
S = (S(@y), Si(wy) .., Si@y) .
and by @, the column vector of size n + 1:
T
Q, = (m”, A TR e Vo N y”) : (4.61)

As we mentioned in Section 3.4.4.1, in order to simplify the computation of the matrix
<Qn, Qf»w we only need that each entry of Q, to be defined as a monomial. The
following corollary is a consequence of Proposition 3.17 and (3.81) with k = d = 2.

Corollary 4.8. Let n,m > 2, a,b,u > —1, and let Q, be defined in (4.61). Then,

each entry of the matriz <Qn,(@;{l>v2 = ((x”_iyi,xm_jyj)v2> of size (n +

>INV S >

1) x (m+1) can be computed for 0 <i<n and 0 <j <m by:
{ (@ 201 D a (AT 4 2BL 4+ OIS

@b+ 200+ 3)mrms , m+m—1—7j 18 even,

0, otherwise,

([ (—)a(—))2 (1) o<i<n 2<j<m
A?}mﬂﬂ — (,U + 3/2)% 2 i 9 ~ ~ s < < ’

0, otherwise,

VR X
ij(n —)(m — j) (_) , 1<i<n—-1, 1<j<m-—1,
Bt = & (e 3/2)memics 4 \2) wemis

0, otherwise,

\

\

| Ul — e (1) 0<i1<n—-2, 0<535<m—2
C:‘;mvu = (/J/ + 3/2)%72 2 nbm—i—j _2 9 -~ ~ s < < 7

0, otherwise.

\
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On the bounded cone V? the polynomials in S, can be computed recursively by
means of the relations in Proposition 3.10, Proposition 3.11 and Corollary 4.8. Next
we show a numerical example.

Ezample 4.5 (Numerical, see Note 4.1). Let a = b = u = —1/2 the parameters for the

weight function W/, , on the bounded cone, which is defined in (4.56). From (4.61)

we have for 0 < n < 5:

T

T T

QO =1, Ql = (.I', y) ) Q2 = (.CIZ’2, Ty, y2> ) Q?) = <.ﬁlﬁ'3, x2y, .Z'y2, y3> )
T T

@4 = <$47 xsyv 1'2?,/2, $y37 y4> ) Q5 = <2§'5, [E4y, l'3y2, $2y3a xy4, y5)

From Proposition 3.11 and Corollary 4.8, with K = 2, we have the following iterations:

1. First iteration:

200
o 0 1 o
B3,2:<Q3a(@g>v2: 02 o0l B4,2:<Q47Qg>v2: % 0 % )
0 0 6 0 % 0
0 0 9
0O 0 O
% 0 0
0 1§5 0 . 4 0 0
B5,2:<@57Qg>v2: 5 0 15 9 HZV :<@27Qg>v2 = 020
4 8 0 0 4
0 2 0
0 0 %
2. Second iteration:
02 00
45 3
T v2\ ! T s ’ 1 ’
Bis = (Qi,Q3)y. — Buy <H2> B;o=[0 3 0 2{,
00 %2 0
0O 0 0 9
50 o
0 16945 0
T v2\ ! T 36%45 0 % 0
B5,3:<Q57Q3>v2_B5,Q <H2> B3,2: 0 5 g 13 |
4 64
0 0 & o0
0 0 0 25

16
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Z00 0
2 2\ ~1 0 200
0 00 %
3. Third iteration:
0 % 0 0 0
737
B0 o0 0 0
T - v2\ ' pr 0 % 0 _% 0
B5»4:<@57Q4>VQ_ZB5J (HJ> By, = 81 0 615 0 27
j=2 T 64 512 64
0 -2 0 20
0 0 2 0o &
o0 -2 0 0
4035 225
2 3 o 0 i 0 —56 0
HY = (@ Q). - Y By (HY) B =[-& o 2 o 3
j=2 225 45
J 0 —%¢ O = 0
0 0o & 0 3
Therefore, from Proposition 3.11, we have:
20 0
0 00 9
1 0 16 0
vz) 2 00 vz 3 3
Asa=Bi(HY) = |2 | | Aw=Bn(H) =] 0 3
9
00 2 05 0
0 0 %
0 0 O ,
5 3
v2 -1 O % 0 V2 -1 6 0 7 0
Aso = Bsp <H2> =15 15|, Asz=Bus (H3> =0 2 0o if,
v Uom ’ 27 °
0 3 0 00 5 0
00 0 2
0 0 %
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w0000
195
0 5 0 0
1 35 465
— V2 | 48 448
Ass=Ba(HT) =¥
8 32
165
0 0 = 0
25
o 0 0 2
112 35
0 15 0 el 0
26491 2336 584
30780 2565 7695
2449 505
A (m)y | Y e O w0
54 = D54\ 4 | 142 0 1131 5977
7695 5130 30780
24 356
0 == 0 V] 0
0 0 0 0 2

If = denotes the congruence relation
0 <n <5 that:

(4.2) then, from Proposition 3.10, we have for

1
S0 = @0 = ]-7
1 T
S1:(@1:(337 y) )
1 2 2 T
Szz@2z<$, xy, y) ,
1 L (3 .2 1.2 2 3 3.92\7
S3=@3—A3,2S2:($, ry —5x7, TY — Y, —§Z/> )
43,2, 3,2
z Y — 4T
3, 5.3 __ 3.2 __
Y — 6t 7ty 112my
1 N 2,,2 3,2 1,3 3,.2 2
= Qs — Ay3Ss — AysSy = | 2%y® — 2%y — 3 + 2% + P |
3
xry 14xy + xry
4
yt— 27 + zy
1
S5 = Q5 — A54S4 — A53S3 — A5 9S9
5 112,3, 35,3 53553 2 105
x 13ty 14337?/ 15767 + xy 11440Y
_ 264914 _ 2336,2 9 , 584 4 1687 16835
'y 30750 ~ 565X Yt 760sY T 345635 y+ 131328$
3,2 2449, 3 505 1597 .3 | 2277 _
1 LY — 130t Y — Ty’ + 2283L +4160 y 2288 Y
- 2,3 142 4 _ 111312, 2 5977 , 4 301 _ 1435,2
xr 7695 5130 307soy + 21695 Y+ 32 8208% y
356 4 957 353
xyt + 715x Y 143xy 143"” + 520xy 1144TY
5 4, 15,3
Yy - §y + Y — 16y

Finally, let p = (p1,p2) = (—1,1).

The Taylor polynomials of first degree at p of
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S2,S3,S4 and S; are given by:
T' (S pizy) = (20 -1, z—y+1, 2y—1)",

T
TI(S37paxay>: (31'—'—2, —x—i—y—g, —y—|—1, _%> ,

3 3
T 4Y T
1 1 115
167~ 1129 T 336
1 i _ 1 1 5
T(S47p7$7y)_ Zx_l_gy_@ )
1 3 3
s¥t 569 — 356
1 1
YT
1377 227
352L — Ti2Y 1 2288
30941 .. 5857 , 11827
984960 106992 Y ~ 656640
131 .. 753 17
TS5, p; 2, y) = 3520 38309 1 1576
5Py =1 1477 . 4 335 . 4 3101
61560 123129 T T64160
13 359 59
320 T 5720 1144
1
16

Then, from Corollary 4.7, the following polynomials are a monic orthogonal basis
{S]” 0<5< n} for the space #2(S, W&{b’#) on the bounded cone for 0 < n < 5:

e For the space Y33 (S, W/, ,):
So(x,y) = 1.
e For the space ¥*(S, W/, .):

Sy(z,y) =2+ 1,

Si(ry) =y -1
e For the space ¥,2(S, W/, ):

a,b,p

Si(z,y) = 2° + 27 + 1,
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e For the space ¥2(S, W/, ,):

3 3 3 3
Sé(x,y):$4—Z$29—Z$2+$+1y+17
5 . 3 15 1 1 115
4 3 v 3__ 2__ - T
Silw,y) =y = G2 = 2wy = ry + e el ~ gaes
3 1. 3 1 1 1 5
S _,22 92 L3 99 1 o 1 1 9
2 (T,y) =27y STY GV gt Y TtV
97 45 1 3 3
84 — 3 _ =7 2 _ o —
3(T2y) = 2y” =y spay g = Syt o
3. 1 1
4 — 4_2 3 .2 Zy— =
Si(z,y)=y" —2y T YT
e For the space ¥32(S, W/, ):
112 35 5355 . 21 105 137
5 _ 5 - 3, T 3 it 3 = 2 B -
So(w,y) = a7 = TP = R T e ® G T gt 3T
7 9297
+y - o
11447 7 2288
26491 , 2336 584 1687 16835
SP _ o4 4 2 2 4 2 2
1@y =2 = 50 T 25650 Y 7a05Y T aane” ¢t T31328”
30941 5857 11827

~ 981960" T 196092” T 656640°
2449 , 505 , 1507 , 2277 , 57

5 3.2 o _
S(@y) =2y = 70TV~ ™ oss® 1160~ 22887
131 753 17
~ 35207 T 22880 T 15767
142 11131 5977 301 9
SP _ 2.3 4 2.2 4, 9Vl 4 Y 3
3(7:Y) = 7Y = st = ey Y~ g ¥ o1t Yt Y
1435 , 8, W77 335 3191
8208”647 T 615607 123127 164160
24 356 A 957 353 13
5 . 4 el 3, i 3 - 3 s 2 Rt Y
Si(w,y) =ay’ + sty = TEay = et oty = ey — oo
359 59
~ 57207 114

> 15 5 1
S3(z,y) 295—594‘1‘@?/3—% 2_1_6'

This completes our numerical example on the bounded cone.

4.5.2 Laguerre weight function
The unbounded cone of R? is the set:
Ve, = {(z,y) €R*: |2[ < 5,0 <y < o0}

In this section we construct the Sobolev orthogonal polynomials in two variables with
respect to the inner product:
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(f.9)s = Ca,,u/ Vi f(x,y) - Vig(z,y)WE, (z,y)dxdy + AV f(p1, p2) - Vg(p1,p2)
v,

+ MV f(p1,p2) - Vg(pr,p2) + Xof (p1,p2)9(p1,p2), (4.62)

where (p1,p2) is a given point in R?, Mg, A\;, Ao > 0, Vf, V2f and V3f are given in
(4.1), Wl is the weight function on the unbounded cone:

L a2 2 2
Wa,,u,(‘rv y) =ye y<y -z ),u’ a, > _17 (;U,y) € Voo? (463>
Cay 1s the normalization constant (see (1.59)):

(e T M)
o= ([ Wteabtean) = o e

and the main part of (4.62) is denoted by:

(F:9)5s = o |

\%

V@) Vig(e, y)Wo(z, y)dady. (4.64)

We denote by #2(S,W),) and #;7(V? W} ) the spaces of orthogonal polynomials
of degree n with respect to (4.62) and (4.64), respectively, where dim ¥,2(S, W},) =
dim 7,2(V?®, Wr,) = n+ 1. Similarly, we denote by ¥;?(W.",) the orthogonal polyno-
mials with respect to:

b, = o [ Foae )W o) dedy. (1.65)

From (1.60)~(1.61), the polynomials in the space ¥;”(W,), when the parameter
a = 0, satisfy the partial differential equation:
o?P o?P 0?P or opr
AL e i out 22— = P
yax2+y8y2+ x@x@y x(‘?ij('LH_ y)ﬁy e
Pe ¥ Wy,), n>—1 (4.60)

From Proposition 3.7, we know that if P € #,2(S,W},) or P € ¥2(V?, W[,) then:
»BP +3 *P +3 PP N #BP
ox3 0x20y oxoy? Oy
Putting (4.66) and (4.67) together, then they prove the following result.

Proposition 4.14. Let P € ¥,2(S,Wy,) or P € ¥2(V*,Wy,), with u > —1. Then
P satisfies the fifth-order partial differential equation:

(O + )P = €V (W) (4.67)

Y a2 y8y2 0x0y Ox
0 03 3 ok 3
2 2—y)— —-3)Z P =
+(2p + y)ay—ir(n 3) } [8x3+38x23y+38x8y2+8y3 0,

where L 1s the identity operator.
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The following corollary is a consequence of Theorem 3.1 for kK = 3 and d = 2.
Corollary 4.9. Let {Sj” : 0 < j < n} denote a monic orthogonal basis of ¥,2(V?, Wrh,).
Then, a monic orthogonal basis {SJ" 0<5 < n} of V2(8S, WQLM) 15 given by:

Solw,y) =1,

S&(l‘,y):l’—pl, Sll<x7y):y_p2a

Solz.y)=(x—p)’, Six.y)=(—p)y—p), Sy =y-p),
Si(x,y) = Si(x,y) — T*(S}, pya,y), n>3.

where TQ(S;?, p) is the Taylor polynomial of second degree of ST at p = (p1,p2)-
Let us arrange the elements of the basis {S?:0 < j <n} of #2(V3 WL in a
vector form. We denote by S,, the column vector of size n + 1:
T
S = (S(@.), Si(wy) ..., Siwy) .

and by @, the column vector of size n + 1:

T
Q, = (x”, Ly, a2y y”) : (4.68)
The following corollary is a consequence of Proposition 3.17 and (3.82) with k = 3

and d = 2.

Corollary 4.10. Let n,m > 3, a,u > —1, and let Q, be defined in (4.68). Then,
each entry of the matriz (Qy, QF) s = ((x”_iyi,xm_jyj)vg> of size (n +

ULV RS >

1) x (m+1) can be computed for 0 <i<mn and 0 <j <m by
(@ a" Ty ) oy =

{(a + 20+ 2)nim—6 (AZ;»m’“ + 3B, + 3™ + Dlnjm“) , n+m—1i—jis even,

0, otherwise,
where
N 1
( 1)3( ])3 1 3<i<n 3<j<m,
A?’jmv/‘ — (,u + 3/2) n+m27i7j 2 ntm—i—j
\(), otherwise,
( o s s s
i UWl]XZh(ﬁ2GJ L 2<i<n-1, 2<j<m-1,
B:,;m,.“ — (/.L + 3/2) n+m27i7j 1 2 n+m2—i—j 1
0, otherwise,

\

( ol . 1
ij(i —n)a(j —m)a (_) 1<i<n-2 1<j<m-2
Cg}m,/‘ — (M + 3/2) n+m2—i—j _9 2 n+m2—7,’—j 9

\ 0, otherwise,

| (i_n)g(j_m)s (l) 0<i<n—3, 0<53<m—3
D;n;‘a]ma/‘ = (,UJ + 3/2)%73 2 I _37 -~ ~ s < < ’

0, otherwise.

\
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On the unbounded cone V2 the polynomials in S, can be computed recursively
by means of the relations in Proposition 3.10, Proposition 3.11 and Corollary 4.10.
Next we show a numerical example.

Ezample 4.6 (Numerical, see Note 4.1). Let a = p = —1/2 the parameters for the
weight function W/, on the unbounded cone, which is defined in (4.63). From (4.68)

we have forOﬁné 5:

T T T

@0 =1, @1 - (l‘, y) ) QQ = <x27 Ty, y2> ) Q?) = <£L’3, 3:23/, xy2, y3> ’
T T

@4:(934, 2y, 2y, wy’ y4) : Q5:(x5, vy, 2Py 2ty ayt y5)

From Proposition 3.11 and Corollary 4.10, with x = 3, we have the following itera-
tions:

1. First iteration:

0
18 0 0 0 \ 306 102 8 8
B4,3:<Q47Q3T>v3: 0 12 0 0 |, Hy :<Q3’Q3T>V3: 0 0 12 0|’
0 0 18 0 0 0 0 36
0 0 0 72
135 0 0 0
0 27 0 0
27 0 20 0
Bss=(Qs5 Q5 )ys = ’ 7
0 27 0 %
0 0 54 0
0 0 0 270

2. Second iteration:

0 200 0 0 0
540 0 108 0 0
-1 0 8 o9 81 0
Bs. = (Q5Qf )gs — Bsgs (Hsv ) Bis = 0 0 243 0 108
0 0 0 459 0
0 0 0 0 2160
216 0 0 0 0
3 0 2 0 0 0
HY' = (@, Q1)e, — Bus (Hgvs) Bi,=| 0 0 42 0 0
0 0 0 1 o0
0 0 0 0 288
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Therefore, from Proposition 3.11, we have:

200 0
?0 00 0 20 0
o1 3 000 o\ 1 30 % 0
A4,3:B473(H3> =101 0 0], A5,3:B573<H3> o oo 3|
0020 s
000 2 0050
0 00 ¥
0% 0 0 0
20 2 0 0
-1 (03X 0 2 0
A5,4=B5,4 (HZ3> = 8 °
00 % 0 ¢
00 0 % 0
0 0 0 2

If = denotes the congruence relation (4.3) then, from Proposition 3.10, we have for
0 < n <5 that:

SO é @0 = 17
T
S1 é Ql = ('Tu y) ;
9 T
Sy =Qy = <x2, Yy, y2) :
5 T
S3 = Q?) = (*7:37 xQZ/, xy27 y3> )

T
844@4—Auﬁyi@ﬂ By — a3, 2%y — 2Py, xyP — day?, ¢—2f>,

5_ 60,3, _ 75,3
=Bty — 5t
4 5.4 18,22 9 2
Y — 5T — TxY A+ 55Xy

3,2 57,.3 6 3 75 .3 27 2
4 34 57

Yo — Dyt 4 Ly

S5 = Qs — As4Ss — A5 3S; =

Finally, let p = (p1,p2) = (0,1). The Taylor polynomials of second degree at p of
S3,S4 and Sy are given by:

T
T%&Jx%w==@,x? Mw—x,3f—3y+1>>

T
7-2(847p;$7y):(07 07 07 —%[E, _2y+]—) )
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ZE2

o O

9 69

—31%Y + 57
T(Ss piw,y) =

SoPr) = | oz gy
49
—5xy + 15T

—ZV+ 5y -9

Then, from Corollary 4.9, the following polynomials are a monic orthogonal basis
{SJ” :0 < j < n} for the space #,2(S, W},) on the unbounded cone for 0 < n < 5:

e For the space ¥ (S, W,,):
Solz,y) = L.
e For the space ¥*(S, W/,):

So(z,y) =,
Si(z,y) =y -1

e For the space ¥52(S, W/),):

Sy(z,y) = 2%,
Sf(l’,y) =2y —x,
Sy(z,y) =y* — 2y + 1.

e For the space ¥52(S, W/),):

Sy(x,y) = 2°,

Si(x,y) = 2%y — o,
S3(x,y) = xy® — 2ay + x,
Si(z,y) =y —3y° + 3y — 1

e For the space (S, W/,):

Sy (w,y) =,

Si(z,y) = 2’y — %xS,

Sy (x,y) = v*y* — 2%y,
Si(z,y) = zy’ — ;xy? + %w
Sitzy) =y' =2 +2y—1
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e For the space ¥3*(S, W,,):

So(x,y) =a” — %cf’y - Sx?’,

S (z,y) = 2ty — gx4 — 1—78x2y2 + %ﬁy + 4x2,

S5(z,y) = 2*y* — ?—;x?’y - §$y3 + Saz?’ + z—gazgf + %xy - %x,

S3(w,y) = 2%y’ — %ﬁ?ﬁ - gy“ + Z—:ﬁy + g?f’ + Z:E? + ng - %y + z,
Si(z,y) = xy* — %wy?’ + ?—gng + by — %x,

S(zy) =y° ~ ?y“ + gﬁf + %zﬁ - §y+9~

This completes our numerical example on the unbounded cone.



Chapter 5

Open problems

In this chapter we mention some open problems related to the Sobolev orthogonal
polynomials with respect to the inner product (3.12). On the following problems, we
suppose that the reader is familiar with Chapter 3.

Problem 5.1. To find an explicit basis for the space ¥,4(V*, W), and therefore for
¥ 4(S, W), of Sobolev orthogonal polynomials of degree n in d variables with respect
to the bilinear form (3.13), without appealing to iterative methods.

Problem 5.2. To study the Sobolev orthogonal polynomials in d variables with respect
to an inner product of the form:

(fra)s = (f9) e+ (f9).

where (-, -)gx, K €N, is the bilinear form (3.13), and (-,-) is an additional term that
makes the inner product (-,-)s well-defined on I1%. In particular, we could begin this
study for a continuous-discrete inner product of the form:

—

K—

(F,9)s={f9)vx+ Y (V'[(P)"Mi(V'g(p)), (5.1)

%

Il
o

where M; is a positive definite matriz of size d* x d*, 0 < i < k — 1. Notice that the
inner product (3.12) is a particular case of (5.1) by choosing M; = NI, \; > 0, where
I is the identity matriz. Many of the results in Chapter 3 can be applied to this case.

Problem 5.3. Even though the equations (3.61), (3.63), (3.65), (3.69), (3.70), (3.84)
and (3.86), show particular examples of partial differential equations, it is still an
open problem to know if there is a differential operator for which the polynomials in
the space ¥,2(S,W) are eigenfunctions.

Problem 5.4. [t is still an open problem to study the zeros for the polynomials in
the space ¥,4(S,W).

Problem 5.5. To study Fourier orthogonal series by using the polynomials in the
space ¥,4(S, W) and related problems (for example, approzimation theory and repro-
ducing kernels).
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