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Abstract

In this work we study some algebraic and analytical properties of the orthogonal
polynomials in d real variables x = (x1, x2, . . . , xd) with respect to the continuous-
discrete Sobolev inner product:

⟨f, g⟩S = c

∫
Ω

∇κf(x) · ∇κg(x)W (x)dx+
κ−1∑
i=0

λi∇if(p) · ∇ig(p),

where W is a non-negative weight function on the domain Ω ⊆ Rd; λi > 0 for i =
0, 1, . . . , κ− 1, κ ∈ N; p = (p1, p2, . . . , pd) is a given point in Rd; ∇if , i = 0, 1, . . . , κ,
is a column vector of size di which contains all the partial derivatives of order i of f ;
and c is the normalization constant of W :

c =

(∫
Ω

W (x)dx

)−1

.

We consider the Sobolev polynomials on different domains, namely: a product domain
Ω = [a1, b1] × [a2, b2] × · · · × [ad, bd], where [ai, bi], 1 ≤ i ≤ d, is an interval of the
real line; the unit ball Ω = Bd :=

{
x ∈ Rd : x21 + x22 + · · ·+ x2d ≤ 1

}
; the simplex

Ω = Td :=
{
x ∈ Rd : x1 ≥ 0, . . . , xd ≥ 0, x1 + x2 + · · ·+ xd ≤ 1

}
; and the cone Ω =

Vd
ϑ :=

{
x ∈ Rd : x21 + x22 + · · ·+ x2d−1 ≤ x2d, 0 ≤ xd ≤ ϑ

}
, 0 < ϑ ≤ ∞. Our main

results consist of an iterative method for constructing the polynomials with respect
to ⟨·, ·⟩S, properties that involve the main (continuous) part of this inner product, a
connection formula, and some results on partial differential equations. In order to
illustrate our main ideas, at the end of this work we present some numerical examples
in two variables. In addition, we discuss some open problems.

Key words: orthogonal polynomials, Sobolev polynomials, polynomials in several
variables, inner products, Sobolev inner products, differential equations, partial dif-
ferential equations.

Mathematics Subject Classification (2020): 33C45, 33C47, 33C50, 42C05
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Resumen

En este trabajo estudiamos algunas propiedades algebraicas y anaĺıticas de los poli-
nomios ortogonales en d variables reales x = (x1, x2, . . . , xd) con respecto al producto
interno Sobolev continuo-discreto:

⟨f, g⟩S = c

∫
Ω

∇κf(x) · ∇κg(x)W (x)dx+
κ−1∑
i=0

λi∇if(p) · ∇ig(p),

donde W es una función de peso no negativa sobre el dominio Ω ⊆ Rd; λi > 0
para i = 0, 1, . . . , κ − 1, κ ∈ N; p = (p1, p2, . . . , pd) es un punto dado de Rd; ∇if ,
i = 0, 1, . . . , κ, es un vector columna de tamaño di que contiene todas las derivadas
parciales de orden i de f ; y c es la constante de normalización de W :

c =

(∫
Ω

W (x)dx

)−1

.

Consideramos los polinomios Sobolev sobre diferentes dominios, a saber: un dominio
producto Ω = [a1, b1]× [a2, b2]× · · · × [ad, bd], donde [ai, bi], 1 ≤ i ≤ d, es un intervalo
de la recta real; la bola unitaria Ω = Bd :=

{
x ∈ Rd : x21 + x22 + · · ·+ x2d ≤ 1

}
; el

simplex Ω = Td :=
{
x ∈ Rd : x1 ≥ 0, . . . , xd ≥ 0, x1 + x2 + · · ·+ xd ≤ 1

}
; y el cono

Ω = Vd
ϑ :=

{
x ∈ Rd : x21 + x22 + · · ·+ x2d−1 ≤ x2d, 0 ≤ xd ≤ ϑ

}
, 0 < ϑ ≤ ∞. Nue-

stros principales resultados consisten en un método iterativo de construcción de los
polinomios ortogonales con respecto a ⟨·, ·⟩S, propiedades que involucran su parte
principal (continua), una fórmula de conexión, y algunos resultados sobre ecuaciones
diferenciales parciales. Con el fin de ilustrar nuestras principales ideas, al final de este
trabajo presentamos varios ejemplos numéricos en dos variables. Además, discutimos
algunos problemas abiertos.

Palabras clave: polinomios ortogonales, polinomios Sobolev, polinomios en varias
variables, productos internos, productos internos Sobolev, ecuaciones diferenciales,
ecuaciones diferenciales parciales.

ii



Contents

Abstract i

Resumen ii

Introduction v

1 Basic background 1
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Orthogonal polynomials in one variable . . . . . . . . . . . . . . . . . 2

1.2.1 Classical orthogonal polynomials . . . . . . . . . . . . . . . . 4
1.3 Orthogonal polynomials in several variables . . . . . . . . . . . . . . 6

1.3.1 Orthogonal polynomials on product domains . . . . . . . . . . 9
1.3.2 Orthogonal polynomials on the simplex . . . . . . . . . . . . . 13
1.3.3 Spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.4 Orthogonal polynomials on the unit ball . . . . . . . . . . . . 15
1.3.5 Orthogonal polynomials on a cone . . . . . . . . . . . . . . . . 16

1.4 Taylor’s formula in several variables . . . . . . . . . . . . . . . . . . . 19

2 State of the art 21
2.1 Sobolev orthogonal polynomials in one variable . . . . . . . . . . . . 21

2.1.1 First publications on Sobolev polynomials . . . . . . . . . . . 22
2.1.2 Recent publications on Sobolev polynomials . . . . . . . . . . 23

2.2 Sobolev orthogonal polynomials in several variables . . . . . . . . . . 30
2.2.1 Sobolev-type orthogonal polynomials in several variables . . . 30
2.2.2 Sobolev orthogonal polynomials on the unit ball . . . . . . . . 32
2.2.3 Sobolev orthogonal polynomials on the simplex . . . . . . . . 39
2.2.4 Sobolev orthogonal polynomials on a product domain . . . . . 41

3 Main results 43
3.1 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 General properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Gradient of order κ . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Sobolev inner product . . . . . . . . . . . . . . . . . . . . . . 48
3.3.3 Some properties of the continuous part . . . . . . . . . . . . . 48

iii



Contents iv

3.3.4 Connection formula . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.5 Some consequences of the connection formula . . . . . . . . . 52
3.3.6 Construction of a basis for the space V d

n (∇κ,W ) . . . . . . . . 56
3.3.7 Some considerations for computing

〈
Qn,QT

m

〉
∇κ . . . . . . . . 61

3.4 Computing
〈
Qn,QT

m

〉
∇κ on different domains and other results on PDEs 63

3.4.1 Product domains . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.2 The simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.3 The unit ball . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4.4 The cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Some numerical examples 79
4.1 Preliminaries and notation for the examples . . . . . . . . . . . . . . 79
4.2 Sobolev orthogonal polynomials on a product domain . . . . . . . . . 80

4.2.1 Hermite-Laguerre product weight . . . . . . . . . . . . . . . . 80
4.2.2 Laguerre-Gegenbauer product weight . . . . . . . . . . . . . . 90

4.3 Sobolev orthogonal polynomials on the triangle . . . . . . . . . . . . 103
4.4 Sobolev orthogonal polynomials on the disk . . . . . . . . . . . . . . 109
4.5 Sobolev orthogonal polynomials on the cone . . . . . . . . . . . . . . 114

4.5.1 Jacobi weight function . . . . . . . . . . . . . . . . . . . . . . 114
4.5.2 Laguerre weight function . . . . . . . . . . . . . . . . . . . . . 121

5 Open problems 128

Bibliography 129



Introduction

The theory of standard orthogonal polynomials in one and several variables is well
established and documented in several books, for example, Dunkl and Xu [44] and
Szegö [111]. Properties like the three-term relation, the Favard’s theorem, or the
Christoffel-Darboux identity and their importance for the study of this kind of poly-
nomials (for example, their zeros) are well known. Conversely, orthogonal polynomials
with respect to inner products that involve derivatives are called Sobolev orthogonal
polynomials. The non-standard character of these inner products makes their study
more difficult, mainly because the three-term relation no longer holds. The lack of
this tool has motivated the study of new tools and techniques in recent years. As a
result, the theory of Sobolev polynomials is non-uniform and fragmented [86].

Sobolev orthogonal polynomials in one variable have been studied since the decade
of the 60s when the first paper was published on this topic due to Althammer [7].
This first paper was motivated by an optimization problem which was proposed by
Lewis [73] in the 40s. In the last 30 years a big number of publications have appeared.
Some authors worked on properties like asymptotic behavior [11] and zeros [33, 34] of
those polynomials. On the other hand, some applications have been considered, for
example, electrostatic models [35, 40] and generalizations for higher-order derivatives
[38, 95]. On the subject of differential equations, it is well-known that the classical
orthogonal polynomials are eigenfunctions of a second-order differential equation. Or-
thogonal polynomials which are eigenfunctions of a fourth-order differential operator
were classified by Krall [67] in the 40s, and some higher-order cases were studied by
Koornwinder [65] and Krall [66] in the 80s. In two and several variables, a similar
problem was considered by Fernández, Pérez, and Piñar [50] and Mart́ınez and Piñar
[87]. A classification of the so-called admissible equations in two variables was made
by Krall and Sheffer [68] in the 60s. In the multivariate case, there are well-known
results on second-order partial differential equations for which orthogonal polynomi-
als are eigenfunctions [44]. These cases include polynomials on product domains,
the unit ball, and the simplex. Most of these results in the theory of orthogonal
polynomials have helped to find differential equations that are satisfied by families
of Sobolev polynomials in two and several variables (see, for example, [72, 99, 113]).
Therefore, a very interesting question is to find new differential operators for Sobolev
polynomials derived from the existing ones. We remit the reader to a detailed survey
on Sobolev orthogonal polynomials by Marcellán and Xu [86], and other references
by Meijer [92] and Mart́ınez-Finkelshtein [88, 89] who give the state of the art on this
topic.

v



vi

In contrast to one variable, the study of Sobolev orthogonal polynomials in several
variables is most recent. The tools and techniques for studying this kind of polyno-
mials are even fewer than in one variable. We refer some studies [23, 30, 32, 36,
94, 98, 99, 112, 113] on the unit ball Bd :=

{
x ∈ Rd : x21 + x22 + · · ·+ x2d ≤ 1

}
, on

the unit sphere Sd−1 :=
{
x ∈ Rd : x21 + x22 + · · ·+ x2d = 1

}
, on the simplex [2, 114]

Td :=
{
x ∈ Rd : x1 ≥ 0, x2 ≥ 0, . . . , xd ≥ 0, x1 + x2 + · · ·+ xd ≤ 1

}
, and on a prod-

uct domain [a1, b1]× [a2, b2]× · · · × [ad, bd] [41, 49]. Most of the results were obtained
in two variables where the inner products involved only first-order derivatives [18].

In the case of the ball and the sphere, several results provided an explicit basis for
the spaces of orthogonal polynomials with respect to Sobolev inner products defined
on Bd and Sd−1, or they provided an approximation to functions on these domains.
For example, Xu [112] constructed the orthogonal polynomials with respect to certain
Sobolev inner product on Bd which introduced the Laplacian operator △. This study
was motivated by a paper due to Atkinson and Hansen [13], where the same inner
product was found for two variables in the numerical solution of the Poisson equation
−△u = f(·, u). Xu [113], motivated by a problem related to dwell time for polishing
tools in fabricating optical surfaces, constructed the orthogonal polynomials with
respect to an inner product involving the gradient operator ∇ on the unit ball. Pérez,
Piñar, and Xu [98] showed a similar work in this way. Piñar and Xu [99] studied a
partial differential equation with Sobolev orthogonal polynomials as eigenfunctions
involving the operators △ and ∇. The approximation by polynomials on the sphere
and the ball was studied by Dai and Xu [23], and asymptotic properties on Bd were
studied in [30, 32, 36, 94].

We found just a few studies of Sobolev orthogonal polynomials on the simplex Td

of Rd, and on a product domain [a1, b1]× [a2, b2]× · · · × [ad, bd]. Xu [114] considered
approximation problems and orthogonality on the triangle T2. Aktaş and Xu [2]
analyzed the orthogonal polynomials on the simplex with special attention to those
on the triangle T2. Recently, Fernández, Marcellán, Pérez, Piñar, and Xu [49] studied
the Sobolev orthogonal polynomials in two variables on the product domain Ω =
[a1, b1]× [a2, b2] with respect to the inner product:

⟨f, g⟩S = c

∫
Ω

∇f(x, y) · ∇g(x, y)W (x, y)dxdy + λf(p1, p2)g(p1, p2), λ > 0. (1)

Following a similar strategy, Dueñas, Pinzón-Cortés, and Salazar-Morales [41] re-
placed in (1) the gradient operator ∇ = (∂x, ∂y)

T , where T represents the transpose
operator, by the gradient of order two∇2 = (∂xx, ∂xy, ∂yx, ∂yy)

T and the corresponding
Sobolev orthogonal polynomials were discussed.

In d real variables x = (x1, x2, . . . , xd) our general study of the orthogonal poly-
nomials with respect to the Sobolev inner product:

⟨f, g⟩S = c

∫
Ω

∇κf(x) · ∇κg(x)W (x)dx+
κ−1∑
i=0

λi∇if(p) · ∇ig(p), λi > 0, (2)

started in [42] on a product domain of the form Ω = [a1, b1]×· · ·×[ad, bd], where [ai, bi]
is an interval of the real line. As mentioned above, in [41, 49, 101] some particular
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studies for specific weights W appeared for the cases d = 2 and κ = 1, 2, 3. In the
present work we study some algebraic and analytical properties of the orthogonal
polynomials with respect to (2). We also consider other domains like the simplex
Ω = Td, the unit ball Ω = Bd, and the cone Ω = Vd

ϑ. For some of these domains and
specific weights we provide some results on partial differential equations. As far as we
know, no other studies in several variables regarding this type of continuous-discrete
inner products have been reported in literature.

In contrast, in one variable inner products of the form (2) were studied in [3, 6,
8, 47, 48, 57, 70, 71, 75, 97, 105–108, 114] to name just a few. Pérez and Piñar
[97] proved that the monic generalized Laguerre polynomials, with arbitrary param-
eter α ∈ R, are orthogonal with respect to a Sobolev inner product which involved
higher-order derivatives. These authors also observed that if α ∈ {−1,−2,−3, . . .}
then the inner product reduced to the continuous-discrete case studied by Kwon and
Littlejohn [70], which had the same form as (2). Therefore, the paper [97] contains
a generalization of the results in [70]. These generalized Laguerre polynomials with
negative integer parameter were also studied in [47, 48] in spectral theory. Kwon and
Littlejohn [71] studied some particular cases of (2) with first-order derivatives and
classical weights, with additional attention to differential equations. Alfaro, Pérez,
Piñar, and Rezola [6] presented a more general study of the orthogonal polynomi-
als with respect to a bilinear form which had the same form as (2). These authors
provided examples, which included the classical cases with negative parameters: La-

guerre polynomials
{
L
(−N)
n (x)

}
n≥0

, and Jacobi polynomials
{
P

(−N,β)
n (x)

}
n≥0

and{
P

(α,−N)
n (x)

}
n≥0

, with β +N and α+N not being a negative integer and N being a

natural number. Alfaro, Álvarez de Morales, and Rezola [3] and Álvarez de Morales,
Pérez, and Piñar [8] studied the remainder cases of the Jacobi and Gegenbauer poly-

nomials
{
C

(−N+1/2)
n (x)

}
n≥0

, with N a natural number. A similar study in a general

setting, but only with first-order derivatives, was presented by Jung, Kwon, and Lee
[57]. Li and Xu [75] and Xu [114] defined the generalized Jacobi polynomials and
they proved that these polynomials are orthogonal with respect to an inner product
of the form (2). These authors used some of theirs results in one variable for studying
Sobolev polynomials in several variables on the unit ball and on the triangle. Shara-
pudinov [105–108] studied the Sobolev polynomials with respect to an inner product
of the form (2) in the spectral theory for solving differential equations, with special
attention to the Chebyshev, Legendre, and Gegenbauer cases.

This document is organized as follows. In Chapter 1 we present some basic back-
ground on standard orthogonal polynomials in one and several variables. In Chapter 2
we provide a state of the art on Sobolev polynomials in one and several variables.
Our main results are presented in Chapter 3, namely, an iterative method for con-
structing the orthogonal polynomials with respect to (2), properties that involve the
main (continuous) part of this inner product, a connection formula, and some results
on partial differential equations. In order to illustrate our main ideas, in Chapter 4
we present some numerical examples in two variables. In addition, in Chapter 5 we
state some open problems derived from the present work.



Chapter 1

Basic background

In this chapter, we introduce notation and basic background concerning standard
orthogonal polynomials in one and several variables. The results in this chapter are
well-known and they can be found in classical references by Chihara [21], Dunkl and
Xu [44], and Szegö [111]. Complementary material is due to Abramowitz and Stegun
[1], Dai and Xu [24], Duistermaat and Kolk [43], Saint Raymond [100], and Xu [115].

1.1 Notation

We use the usual symbols N, Z, Q, R, and C for the natural, integer, rational, real
and complex numbers, respectively. We also denote by N0 the set N0 := N ∪ {0},
and by R+ and R− the sets R+ := {x ∈ R : x ≥ 0} and R− := {x ∈ R : x ≤ 0}. All
functions in this work are real valued. We use the symbols δn,m and (x)n for the
Kronecker delta and the Pochhammer symbol, respectively, which are defined by:

δn,m :=

{
1, n = m,

0, n ̸= m,
n,m ∈ Z,

(x)n :=

{
x(x+ 1)(x+ 2) · · · (x+ n− 1), n ≥ 1,

1, n = 0,
x ∈ R, n ∈ N0.

For n ∈ N0, we denote by n! the factorial of n which is given by n! = (1)n. Also, we
denote by Γ(x) the gamma function which is defined by the integral:

Γ(x) =

∫ ∞

0

e−t tx−1dt, x > 0,

This function satisfies the well-known property Γ(x + 1) = xΓ(x), x > 0. And more
generally, for n ∈ N0 and x > 0 the equation Γ(x + n) = (x)nΓ(x) holds. This last
relation is used for extending the gamma function to the set R− \ {0,−1,−2,−3, . . .}
by the equation Γ(x) := Γ(x + n)/(x)n, −n < x < −n + 1, n ∈ N. Two well-known
values of Γ are Γ(1/2) =

√
π and Γ(1) = 1. See Abramowitz and Stegun [1, Chapter 6]

for more properties.

1



1.2. Orthogonal polynomials in one variable 2

Let d ∈ N. If α = (α1, α2, . . . , αd) ∈ Nd
0, is a d-tuple of non-negative integers αi,

we call α a multi-index for which |α| := α1 + α2 + · · · + αd. We say α ≤ β, where α
and β are both multi-indices, if αi ≤ βi for all i = 1, 2, . . . , d. We denote by α! and
δα,β the symbols

α! := α1!α2! · · ·αd!, δα,β := δα1,β1δα2,β2 · · · δαd,βd
,

and if β ≤ α then(
α

β

)
:=

(
α1

β1

)(
α2

β2

)
· · ·
(
αd

βd

)
,

where(
x

n

)
:=

(x− n+ 1)n
n!

, x ∈ R, n ∈ N0.

If x = (x1, x2, . . . , xd) ∈ Rd then (x)α denotes

(x)α := (x1)α1(x2)α2 · · · (xd)αd
.

Associated with x ∈ Rd, for each i define by xi a truncation of x, namely,

x0 := 0, xi = (x1, x2, . . . , xi) ∈ Ri, 1 ≤ i ≤ d.

Notice that xd = x. For two (row or column) vectors x and y, we use the usual
notation of x · y and ∥x∥ to denote the dot product x · y =

∑d
i=1 xiyi and the

Euclidean norm ∥x∥ =
√
x · x.

If α is a multi-index, and if ∂αi
i := ∂αi/∂xαi

i denotes the αi-th partial derivative
with respect to xi for 1 ≤ i ≤ d, then ∂α := ∂α1

1 ∂α2
2 · · · ∂αd

d denotes a differential
operator of order |α| where ∂(0,0,...,0)u := u. For one variable, we use the usual
symbols du/dx, d2u/dx2, d3u/dx3 (or u′, u′′, u′′′) for the first, second, third derivative
with respect to x, respectively, and dnu/dxn (or u(n)) for higher-order derivatives. For
later use, we define the following differential operators:

△i :=
i∑

j=1

∂2j , ∇i :=
(
∂1, ∂2, . . . , ∂i

)T
,
〈
xT
i ,∇i

〉
:=

i∑
j=1

xj∂j, 1 ≤ i ≤ d,

where T is the transpose operator. When i = d, we drop the subscript and we write
△ := △d, ∇ := ∇d and

〈
xT ,∇

〉
:=
〈
xT
d ,∇d

〉
instead1. The operators △ and ∇ are

known as Laplacian and gradient, respectively.

1.2 Orthogonal polynomials in one variable

Let x ∈ R and n ∈ N0. We denote by xn a monomial of degree n. A (real) polynomial
p of degree n in one variable x is a finite linear combination of monomials of the form

1Some authors use the notation ⟨x,∇⟩ when ∇ is defined to be a row vector.



1.2. Orthogonal polynomials in one variable 3

p(x) = cnx
n+ cn−1x

n−1+ · · ·+ c1x+ c0, cn ̸= 0, where ci, 0 ≤ i ≤ n, is a real number.
The number cn is called the leading coefficient. If cn = 1 the polynomial is said to
be monic. Sometimes we use the notation deg p to denote the degree of p. Let Π
denote the linear space of polynomials with real coefficients on the real line and, for
n = 0, 1, 2, . . . let Πn denote the linear subspace of polynomials of degree at most
n. A basis of Πn is the set {1, x, x2, . . . , xn}, which is known as the canonical basis.
Then dimΠn = n+ 1.

Let ⟨·, ·⟩ be a symmetric bilinear form2 defined on Π. It is an inner product if
⟨p, p⟩ > 0 for all non-zero polynomial p ∈ Π. A sequence of polynomials {pn}n≥0 is
called an orthogonal polynomial sequence (OPS) with respect to ⟨·, ·⟩ if:

1. deg pn = n,

2. ⟨pn, pm⟩ = 0 if n ̸= m, and

3. ⟨pn, pn⟩ ≠ 0, n ≥ 0.

If {pn}n≥0 is an OPS for ⟨·, ·⟩ and, in addition, we also have ⟨pn, pn⟩ = 1, n ≥ 0, then
the sequence is said to be orthonormal.

Let

Mn =


⟨1, 1⟩ ⟨1, x⟩ · · · ⟨1, xn⟩
⟨x, 1⟩ ⟨x, x⟩ · · · ⟨x, xn⟩
...

...
. . .

...

⟨xn, 1⟩ ⟨xn, x⟩ · · · ⟨xn, xn⟩

 , n ≥ 0.

If ⟨·, ·⟩ is an inner product, then Mn is definite positive, that is, detMn > 0 for
every n ∈ N0. If detMn ̸= 0 for all n ∈ N0 then a sequence of monic orthogonal
polynomials exists. In this case, the monic sequence is given by p0(x) = 1 and

pn(x) =
1

detMn−1

det


Mn−1

⟨1, xn⟩
⟨x, xn⟩

...
⟨xn−1, xn⟩

1 x · · · xn−1 xn

 , n ≥ 1.

If the multiplication operator is a symmetric operator with respect to ⟨·, ·⟩, that is,

⟨xp, q⟩ = ⟨p, xq⟩ , p, q ∈ Π, (1.1)

then there exist constants bn and cn ̸= 0 such that the monic OPS {pn}n≥0 satisfies
the three-term recurrence relation:

xpn(x) = pn+1(x) + bnpn(x) + cnpn−1(x), n ≥ 0, p−1(x) := 0.

2In a more general setting, the theory of (real) standard orthogonal polynomials in one variable
can be described in terms of a linear functional L : Π 7→ R. In this work, we restrict our study to
bilinear forms in order to get concrete results for particular domains and weight functions. A similar
comment applies for orthogonal polynomials in several variables. See [21, 44, 111] for more details
of the general theory.
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On the other hand, Kn(x, y), the n-th reproducing kernel associated with {pn}n≥0 is
defined by:

Kn(x, y) =
n∑

k=0

pk(x)pk(y)

⟨pk, pk⟩
.

The three-term recurrence relation implies a closed formula for computing Kn(x, y)
in terms of pn+1 and pn, the so-called Christoffel-Darboux identity:

Kn(x, y) =
n∑

k=0

pk(x)pk(y)

⟨pk, pk⟩
=


1

⟨pn, pn⟩
pn+1(x)pn(y)− pn(x)pn+1(y)

x− y
, x ̸= y,

p′n+1(x)pn(x)− p′n(x)pn+1(x)

⟨pn, pn⟩
, x = y.

Then, the three-term recurrence relation plays an important role in the study of
standard orthogonal polynomials. Conversely, in the theory of Sobolev polynomials
the condition (1.1), in general, is not satisfied. This fact makes the study of these
non-standard polynomials more difficult, mainly because the three-term relation no
longer holds. The lack of this tool has motivated the study of new techniques in
recent years.

1.2.1 Classical orthogonal polynomials

These polynomials are associated with inner products that involve the following
weight functions:

1. Hermite: w(x) = e−x2
, x ∈ (−∞,∞),

2. Laguerre: wa(x) = xae−x, a > −1, x ∈ [0,∞),

3. Jacobi: wa,b(x) = (1− x)a(1 + x)b, a, b > −1, x ∈ [−1, 1].

In the last case, the well-known families of Legendre (a = b = 0), Tchebichef (first
kind a = b = −1/2, second kind a = b = 1/2), and Gegenbauer (a = b) polynomials
are renormalizations of the Jacobi polynomials for particular values of the parame-
ters3 a and b. There is another family which satisfies many properties of the classical
orthogonal polynomials: the so-called Bessel polynomials. They are orthogonal with
respect to a weight function defined on the complex plane. This case involves com-
plex variable and integration on the unit circle {z ∈ C : |z| = 1}. Therefore, these
polynomials are not considered in this work. See Chihara [21, Chapter 6] for more
details.

There are several characterizations of classical orthogonal polynomials but we will
present only the most basic facts concerning them. For example, the polynomials in
each classical family are eigenfunctions of a second-order linear differential operator
with polynomial coefficients, and also, they can be expressed by a Rodrigues’ formula.
For more properties see Szegö [111, Chapters 4 and 5] and Chihara [21, Chapter 5].

3In the references is usual to find α and β to denote the parameters of the Laguerre and Jacobi
polynomials. In this work we reserve greek letters for denoting multi-indices.
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Hermite polynomials The monic sequence {Hn(x)}n≥0 of Hermite polynomials is
orthogonal with respect to the inner product:

⟨Hn, Hm⟩ =
1√
π

∫ ∞

−∞
Hn(x)Hm(x)e

−x2

dx =
n!

2n
δn,m, n,m = 0, 1, 2, 3, . . . ,

which is normalized such that ⟨1, 1⟩ = 1. This monic sequence satisfies the three-term
recurrence relation:

Hn+1(x) = xHn(x)−
n

2
Hn−1(x), n ≥ 1, H0(x) = 1, H1(x) = x.

Also, these polynomials satisfy the second-order linear differential equation:

y′′ − 2xy′ + 2ny = 0, y = Hn(x), (1.2)

that is, these polynomials are eigenfunctions of the second-order differential operator
H given by:

Hy = −2ny, H :=
d2

dx2
− 2x

d

dx
, y = Hn(x). (1.3)

For more properties and relations see Szegö [111, Section 5.5].

Laguerre polynomials The monic sequence
{
L
(a)
n (x)

}
n≥0

, a > −1, of Laguerre

polynomials is orthogonal with respect to the inner product:〈
L(a)
n , L(a)

m

〉
=

1

Γ(a+ 1)

∫ ∞

0

L(a)
n (x)L(a)

m (x)xae−xdx = n!(a+1)nδn,m, n,m = 0, 1, 2, . . . ,

which is normalized such that ⟨1, 1⟩ = 1. This monic sequence satisfies the three-term
recurrence relation:

L
(a)
n+1(x) = (x− 2n− a− 1)L(a)

n (x)− n(n+ a)L
(a)
n−1(x), n ≥ 1,

L
(a)
0 (x) = 1, L

(a)
1 (x) = x − a − 1.

Also, these polynomials satisfy the second-order linear differential equation:

xy′′ + (a+ 1− x)y′ + ny = 0, y = L(a)
n (x), (1.4)

that is, these polynomials are eigenfunctions of the second-order differential operator
La given by:

Lay = −ny, La := x
d2

dx2
+ (a+ 1− x)

d

dx
, y = L(a)

n (x). (1.5)

For more properties and relations see Szegö [111, Section 5.1].
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Jacobi polynomials The monic sequence
{
P

(a,b)
n (x)

}
n≥0

, a, b > −1, of Jacobi

polynomials is orthogonal with respect to the inner product:

〈
P (a,b)
n , P (a,b)

m

〉
=

Γ(a+ b+ 2)

2a+b+1Γ(a+ 1)Γ(b+ 1)

∫ 1

−1

P (a,b)
n (x)P (a,b)

m (x)(1− x)a(1 + x)bdx

=
4n(a+ 1)n(b+ 1)n

(n+ a+ b+ 1)n(a+ b+ 2)2n
δn,m, n,m = 0, 1, 2, 3, . . . ,

which is normalized such that ⟨1, 1⟩ = 1. This monic sequence satisfies the three-term
recurrence relation:

P
(a,b)
n+1 (x) =

(
x+

a2 − b2

(2n+ a+ b)(2n+ a+ b+ 2)

)
P (a,b)
n (x)

− 4n(a+ n)(b+ n)(a+ b+ n)

(2n+ a+ b− 1)(2n+ a+ b)2(2n+ a+ b+ 1)
P

(a,b)
n−1 (x), n ≥ 1,

P
(a,b)
0 (x) = 1, P

(a,b)
1 (x) = x +

a− b

a+ b+ 2
.

Also, these polynomials satisfy the second-order linear differential equation:

(1−x2)y′′+ [b− a− (a+ b+2)x]y′+n(n+ a+ b+1)y = 0, y = P (a,b)
n (x), (1.6)

that is, these polynomials are eigenfunctions of the second-order differential operator
Ja,b given by:

Ja,by = −n(n+ a+ b+ 1)y, y = P (a,b)
n (x),

Ja,b := (1− x2)
d2

dx2
+ [b− a− (a+ b+ 2)x]

d

dx
.

(1.7)

For more properties and relations see Szegö [111, Chapter 4].

1.3 Orthogonal polynomials in several variables

Let d ∈ N. If α is a multi-index and x = (x1, x2, . . . , xd) ∈ Rd, we denote by
xα the monomial xα1

1 x
α2
2 · · ·xαd

d which has total degree |α| = α1 + α2 + · · · + αd.
Similarly, (x−y)α denotes the shifted monomial (x1−y1)α1(x2−y2)α2 · · · (xd−yd)αd .
A polynomial P in d real variables x1, x2, . . . , xd is a finite linear combination of
monomials in the form P (x) =

∑
α cαx

α, where cα is a real number. The total degree
of P is defined as the highest degree of its monomials. We denote the linear space
of polynomials in d variables by Πd, and the subspace of polynomials of degree at
most n by Πd

n. When d = 1, we drop the superscript and we write Π and Πn instead.
A basis of Πd

n is the set {xα : |α| ≤ n}, which is known as the canonical basis. It is
known [44] that:

dimΠd
n =

(
n+ d

n

)
.
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A polynomial P ∈ Πd
n is said to be monic if it is of the form P (x) = xα +Q(x), with

Q ∈ Πd
n−1, |α| = n.

A polynomial is called homogeneous if all its monomials have the same total
degree. We denote by Pd

n the linear space of homogeneous polynomials of degree n
in d variables, that is,

Pd
n =

P ∈ Πd
n : P (x) =

∑
|α|=n

cαx
α

 .

A basis of Pd
n is the set {xα : |α| = n}, hence, dimPd

n = #
{
α ∈ Nd

0 : |α| = n
}
. It is

known [44] that:

rdn := dimPd
n =

(
n+ d− 1

n

)
.

Let ⟨·, ·⟩ be a symmetric bilinear form defined on Πd. It is an inner product if
⟨P, P ⟩ > 0 for all non-zero polynomial P ∈ Πd. Two polynomials P and Q are said
to be orthogonal to each other with respect to the bilinear form if ⟨P,Q⟩ = 0. A
polynomial P is called an orthogonal polynomial if it is orthogonal to all polynomials
of lower degree, that is, if ⟨P,Q⟩ = 0 for all Q ∈ Πd such that degQ < degP . We
denote by V d

n the linear space of orthogonal polynomials of degree exactly n with
respect to ⟨·, ·⟩, that is,

V d
n =

{
P ∈ Πd

n : ⟨P,Q⟩ = 0,∀Q ∈ Πd
n−1

}
.

When ⟨·, ·⟩ is defined in terms of a weight function W , we write V d
n (W ). It is known

[44] that:

dimV d
n = rdn =

(
n+ d− 1

n

)
.

Since rdn = #
{
α ∈ Nd

0 : |α| = n
}
, it is natural to use a multi-index to index the

elements of an orthogonal basis of V d
n . Let {P n

α : |α| = n} denote a basis of V d
n . If

the elements of the basis are orthogonal to each other, that is,
〈
P n
α , P

n
β

〉
= 0 whenever

α ̸= β, we call the basis mutually orthogonal. A basis is said to be monic if each P n
α

is a monic polynomial. If, in addition, ⟨P n
α , P

n
α ⟩ = 1, we call the basis orthonormal.

It is common to write a basis {P n
α : |α| = n} of V d

n as the column vector:

Pn(x) :=
(
P n
α(1)(x), P

n
α(2)(x), . . . , P

n

α(rdn)
(x)
)T

,

where α(1), α(2), . . . , α(rdn) is the arrangement of elements in
{
α ∈ Nd

0 : |α| = n
}

ac-
cording to the reverse lexicographical order4. We will say that {Pn}n≥0 is an ortho-
gonal polynomial system (OPS). With this notation, the orthogonality of {Pn}n≥0

4Sometimes the lexicographical order is used (see [44, page 61]). In this work we use the reverse
lexicographical order as usual in literature.
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can be expressed as
〈
Pn,PT

m

〉
= 0 if n ̸= m, and

〈
Pn,PT

n

〉
= Hn, where Hn =(〈

P n
α(i) , P

n
α(j)

〉)rdn
i,j=1

is a symmetric non-singular matrix of size rdn × rdd. In addition,

Hn is positive definite if ⟨·, ·⟩ is an inner product.

Let Xn :=
(
xα(1)

,xα(2)
, . . . ,xα(rdn)

)T
and let

Mn,d =


〈
X0,XT

0

〉 〈
X0,XT

1

〉
· · ·

〈
X0,XT

n

〉〈
X1,XT

0

〉 〈
X1,XT

1

〉
· · ·

〈
X1,XT

n

〉
...

...
. . .

...〈
Xn,XT

0

〉 〈
Xn,XT

1

〉
· · ·

〈
Xn,XT

n

〉

 , n ≥ 0.

We call Mn,d a moment matrix, and its elements are
〈
xα,xβ

〉
for |α| ≤ n and |β| ≤ n.

This matrix preserves several properties like in the univariate case. If ⟨·, ·⟩ is an inner
product, then Mn,d is definite positive, that is, detMn,d > 0 for every n ∈ N0. If
detMn,d ̸= 0 for all n ∈ N0 then a sequence of monic orthogonal polynomials in
several variables exists. This monic sequence is given by P 0

0 (x) = 1 and

P n
α (x) =

1

detMn−1,d

det


Mn−1,d

⟨X0,x
α⟩

⟨X1,x
α⟩

...
⟨Xn−1,x

α⟩
XT

0 XT
1 · · · XT

n−1 xα

 , |α| = n ≥ 1.

As in the univariate case, if the multiplication operator is a symmetric operator with
respect to ⟨·, ·⟩, that is,

⟨xiP,Q⟩ = ⟨P, xiQ⟩ , P,Q ∈ Πd, 1 ≤ i ≤ d, (1.8)

then there exist matrices An,i, Bn,i and Cn,i, of sizes r
d
n× rdn+1, r

d
n× rdn and rdn× rdn−1,

respectively, such that {Pn}n≥0 satisfies the three-term relation:

xiPn(x) = An,iPn+1(x)+Bn,iPn(x)+Cn,iPn−1(x), n ≥ 0, 1 ≤ i ≤ d, P−1 := 0.

The matrices An,i, Bn,i and Cn,i have several additional properties that can be found
in [44, Sections 3.3 and 3.5].

On the other hand, Kn(x,y), the n-th reproducing kernel associated with {Pn}n≥0

is defined by:

Kn(x,y) =
n∑

k=0

PT
k (x)(Hk)

−1Pk(y), x,y ∈ Rd.

It is known [44, Theorem 3.6.1] that Kn(·, ·) depends only on V d
k rather than a

particular basis of V d
k . Therefore, it is usual to work with an orthonormal basis of

V d
k for which Hk = Irdk , the identity matrix of size rdk × rdk. In this case Kn(·, ·) takes
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a simpler form. The three-term relation implies that the corresponding Christoffel-
Darboux identity for several variables is:

Kn(x,y) =
n∑

k=0

PT
k (x)(Hk)

−1Pk(y)

=


[An,iPn+1(x)]

T (Hn)
−1Pn(y)− PT

n (x)(Hn)
−1[An,iPn+1(y)]

xi − yi
, x ̸= y,

PT
n (x)(Hn)

−1[An,i∂iPn+1(x)]− [An,iPn+1(x)]
T (Hn)

−1∂iPn(x), x = y.

Even though for each of the above formula the right-hand side seems to depend on i,
the left-hand side shows that it does not.

The three-term relation is essential in understanding the structure of standard
orthogonal polynomials in several variables. The lack of (1.8) (and consequently of
the three-term relation) in the theory of Sobolev polynomials has motivated new tools
and techniques for this type of non-standard polynomials.

1.3.1 Orthogonal polynomials on product domains

We consider the product domain:

Ω := [a1, b1]× [a2, b2]× · · · × [ad, bd] ,

where [ai, bi], i = 1, 2, . . . , d, is an interval of R, and where |ai| and |bi| can be infinity.
Let wi(xi) be a non-negative weight function defined on the interval [ai, bi], i =

1, 2, . . . , d, . Let {pn(wi;xi)}n≥0, 1 ≤ i ≤ d be a sequence of polynomials that are
orthogonal with respect to wi, that is,

⟨pn, pm⟩wi
= ci

∫ bi

ai

pn(xi)pm(xi)wi(xi)dxi = hn(wi)δn,m,

ci :=

(∫ bi

ai

wi(xi)dxi

)−1

,

(1.9)

where hn(wi) is the L
2 norm:

hn(wi) := ⟨pn, pn⟩wi
, (1.10)

and ci is the normalization constant of wi such that ⟨1, 1⟩wi
= 1.

Let W be the product weight function:

W (x) = w1(x1)w2(x2) · · ·wd(xd), x =
(
x1, x2, . . . , xd

)
∈ Ω, (1.11)

and the inner product:

⟨f, g⟩W = c

∫
Ω

f(x)g(x)W (x)dx, c =

(∫
Ω

W (x)dx

)−1

, (1.12)
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where c is a normalization constant of W such that ⟨1, 1⟩W = 1 and dx = dx1 · · · dxd.
We denote by V d

n (W ) the space of orthogonal polynomials of total degree n in d
variables with respect to (1.12), and by ∥ · ∥W :=

√
⟨·, ·⟩W the norm induced by the

inner product ⟨·, ·⟩W . Notice that if ci is given in (1.9), then c in (1.12) can be written
as c = c1c2 · · · cd. The product structure implies that:

P n
α (W ;x) := pα1(w1;x1)pα2(w2;x2) · · · pαd

(wd;xd), α ∈ Nd
0, |α| = n, (1.13)

is an orthogonal polynomial of degree |α| = n with respect to W on the product
domain Ω. We have the following proposition for the polynomials in (1.13).

Proposition 1.1. [44, Theorem 5.1.1] For n = 0, 1, 2, . . ., the set {P n
α (W ) : |α| = n}

is a mutually orthogonal basis of V d
n (W ). More precisely,〈

P n
α , P

m
β

〉
W

= hα(W )δα,β,

where, with hαi
(wi) given in (1.10),

hα(W ) = hα1(w1)hα2(w2) · · ·hαd
(wd). (1.14)

From Proposition 1.1 it follows that if the polynomials pαi
(wi) are orthonormal

(hαi
(wi) = 1) with respect to wi for each i = 1, 2, . . . , d then the polynomials P n

α (W )
in (1.13) are also orthonormal with respect to W . In addition, if the polynomials
pαi

(wi) are monic for each i = 1, 2, . . . , d then the polynomials P n
α (W ) are also monic,

that is, P n
α (W ) is of the form P n

α (W ;x) = xα +Q(x), with Q ∈ Πd
n−1.

In a matrix form,〈
Pn,PT

m

〉
W

=

(〈
P n
α(i) , P

m
β(j)

〉
W

)
1≤i≤rdn,1≤j≤rdm

is matrix of size rdn × rdm such that
〈
Pn,PT

m

〉
W

= 0 if n ̸= m and
〈
Pn,PT

n

〉
W

= HW
n

where

HW
n = diag

(
hα(1)(W ), hα(2)(W ), . . . , h

α(rdn)(W )
)

is a diagonal positive definite matrix. Since detHW
n =

∏rdn
i=1 hα(i)(W ) > 0, it follows

that HW
n is a non-singular matrix.

Several examples of polynomials on a product domain can be obtained from well-
known families of orthogonal polynomials on the real line. Next, we show some
important examples obtained from the classical orthogonal polynomials. See [44,
Sections 5.1.3 and 5.1.4] for more details.

1.3.1.1 Multiple Hermite polynomials

The multiple5 Hermite polynomials are orthogonal on the product domain Rd with
respect to the product weight function:

WH(x) = e−x2
1e−x2

2 · · · e−x2
d = e−∥x∥2 , x ∈ Rd,

5The word multiple was extracted directly from Dunkl and Xu [44, pages 139–141].
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that is, with respect to the inner product:

⟨f, g⟩WH = c

∫
Rd

f(x)g(x)e−∥x∥2dx, c =

(∫
Rd

e−∥x∥2dx

)−1

=
1

πd/2
. (1.15)

From Proposition 1.1, a monic mutually orthogonal basis of V d
n (W

H), the space of
orthogonal polynomials with respect to (1.15), is given by

{
P n
α (W

H) : |α| = n
}
, where

P n
α (W

H ;x) = Hα1(x1)Hα2(x2) · · ·Hαd
(xd), |α| = n,

hα(W
H) = ∥P n

α ∥2WH =
α!

2n
,

(1.16)

and where Hαi
(xi), 1 ≤ i ≤ d, is the monic Hermite polynomial of degree αi. The

polynomials in V d
n (W

H) are eigenfunctions of a second-order differential operator H:

HP = −2nP, P ∈ V d
n (W

H), (1.17)

where

H := △−2
〈
xT ,∇

〉
. (1.18)

This fact follows from the product structure (1.16) and the differential equation (1.2)
(or differential operator (1.3)) satisfied by the Hermite polynomials.

1.3.1.2 Multiple Laguerre polynomials

The multiple Laguerre polynomials, with parameter η = (η1, η2, . . . , ηd) ∈ Rd, ηi >
−1, 1 ≤ i ≤ d, are orthogonal on the product domain Rd

+ with respect to the product
weight function:

WL
η (x) = xη11 e

−x1xη22 e
−x2 · · ·xηdd e

−xd = xηe−|x|, x ∈ Rd
+,

ηi > −1, 1 ≤ i ≤ d, |x| = x1 + x2 + · · · + xd,

that is, with respect to the inner product:

⟨f, g⟩WL
η
= cη

∫
Rd
+

f(x)g(x)xηe−|x|dx,

cη =

(∫
Rd
+

xηe−|x|dx

)−1

=
1∏d

i=1 Γ(ηi + 1)
.

(1.19)

From Proposition 1.1, a monic mutually orthogonal basis of V d
n (W

L
η ), the space of

orthogonal polynomials with respect to (1.19), is given by
{
P n
α (W

L
η ) : |α| = n

}
, where

P n
α (W

L
η ;x) = L(η1)

α1
(x1)L

(η2)
α2

(x2) · · ·L(ηd)
αd

(xd), |α| = n,

hα(W
L
η ) = ∥P n

α ∥2WL
η
= α!(η + 1)α, 1 = (1, 1, . . . , 1),

(1.20)
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and where L
(ηi)
αi (xi), 1 ≤ i ≤ d, is the monic Laguerre polynomial of degree αi

and parameter ηi. The polynomials in V d
n (W

L
η ) are eigenfunctions of a second-order

differential operator Lη:

LηP = −nP, P ∈ V d
n (W

L
η ), (1.21)

where

Lη :=
d∑

i=1

xi
∂2

∂x2i
+

d∑
i=1

(ηi + 1− xi)
∂

∂xi
, ηi > −1, 1 ≤ i ≤ d. (1.22)

This fact follows from the product structure (1.20) and the differential equation (1.4)
(or differential operator (1.5)) satisfied by the Laguerre polynomials.

1.3.1.3 Multiple Jacobi polynomials

The multiple Jacobi polynomials, with parameters ζ = (ζ1, ζ2, . . . , ζd) ∈ Rd, η =
(η1, η2, . . . , ηd) ∈ Rd, ζi, ηi > −1, 1 ≤ i ≤ d, are orthogonal on the product domain
[−1, 1]d with respect to the product weight function:

W J
ζ,η(x) =

d∏
i=1

(1− xi)
ζi(1 + xi)

ηi = (1− x)ζ(1+ x)η,

x ∈ [−1, 1]d , ζi, ηi > −1, 1 ≤ i ≤ d,

that is, with respect to the inner product:

⟨f, g⟩WJ
ζ,η

= cζ,η

∫
[−1,1]d

f(x)g(x)(1− x)ζ(1+ x)ηdx,

cζ,η =

(∫
[−1,1]d

(1− x)ζ(1+ x)ηdx

)−1

=
d∏

i=1

Γ(ζi + ηi + 2)

2ζi+ηi+1Γ(ζi + 1)Γ(ηi + 1)
.

(1.23)

From Proposition 1.1, a monic mutually orthogonal basis of V d
n (W

J
ζ,η), the space

of orthogonal polynomials with respect to (1.23), is given by
{
P n
α (W

J
ζ,η) : |α| = n

}
,

where

P n
α (W

J
ζ,η;x) = P (ζ1,η1)

α1
(x1)P

(ζ2,η2)
α2

(x2) · · ·P (ζd,ηd)
αd

(xd), |α| = n,

hα(W
J
ζ,η) = ∥P n

α ∥2WJ
ζ,η

=
4n(ζ + 1)α(η + 1)α

(α + ζ + η + 1)α(ζ + η + 2)2α
, 2 = (2, 2, . . . , 2),

(1.24)

and where P
(ζi,ηi)
αi (xi), 1 ≤ i ≤ d, is the monic Jacobi polynomial of degree αi and

parameters ζi, ηi.
Each polynomial in the basis

{
P n
α (W

J
ζ,η) : |α| = n

}
satisfies the second-order par-

tial differential equation:

Jζ,ηP
n
α = −

d∑
i=1

αi(αi + ζi + ηi + 1)P n
α , (1.25)
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where

Jζ,η :=
d∑

i=1

(1−x2i )
∂2

∂x2i
+

d∑
i=1

[ηi−ζi− (ζi+ηi+2)xi]
∂

∂xi
, ζi, ηi > −1, 1 ≤ i ≤ d.

(1.26)

This fact follows from (1.24) and the differential equation (1.6) (or differential operator
(1.7)) satisfied by the Jacobi polynomials.

Remark 1.1. Notice that equations (1.17) and (1.21) are of the form HP = λnP
and LηP = λnP , respectively, with n = degP , and where λn is a number, called an
eigenvalue, which depends on n only. But this is not the case for the Multiple Jacobi
polynomials in (1.25).

1.3.2 Orthogonal polynomials on the simplex

The simplex of Rd is the set:

Td :=
{
x ∈ Rd : x1 ≥ 0, x2 ≥ 0, . . . , xd ≥ 0, 1− |x| ≥ 0

}
, |x| := x1+x2+ · · ·+xd.

Orthogonal polynomials on the simplex [44, Section 5.3] are orthogonal with re-
spect to the weight function:

Wγ(x) := xγ11 x
γ2
2 · · ·xγdd (1− |x|)γd+1 , x ∈ Td, γi > −1, 1 ≤ i ≤ d+1, (1.27)

where γ = (γ1, γ2, . . . , γd+1) ∈ Rd+1 is such that γi > −1 for i = 1, 2, . . . , d+ 1. That
is, these polynomials are orthogonal with respect to the inner product:

⟨f, g⟩γ := cγ

∫
Td

f(x)g(x)Wγ(x)dx, (1.28)

cγ :=

(∫
Td

Wγ(x)dx

)−1

=
Γ(|γ|+ d+ 1)
d+1∏
i=1

Γ(γi + 1)

, |γ| := γ1 + γ2 + · · ·+ γd+1, (1.29)

and where cγ is the normalization constant ofWγ such that ⟨1, 1⟩γ = 1. We denote by

V d
n (Wγ) the space of orthogonal polynomials in d variables of degree n with respect

to (1.28).
For α ∈ Nd

0 and |α| = n, a monic orthogonal basis of V d
n (Wγ) is given by the

polynomials:

V n
α (Wγ;x) =

∑
0≤β≤α

(−1)n+|β|
(
α

β

) d∏
i=1

(γi + 1)αi

(γi + 1)βi

(|γ|+ d)n+|β|

(|γ|+ d)n+|α|
xβ. (1.30)

Proposition 1.2. [44, Proposition 5.3.2] Let V n
α (Wγ) be defined in (1.30), then the

set {V n
α (Wγ) : |α| = n} forms a monic orthogonal basis of V d

n (Wγ).
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It is known [44] that the orthogonal polynomials P ∈ V d
n (Wγ) with respect to Wγ

are eigenfunctions of a second-order differential operator Tγ, that is,

TγP = −n(n+ |γ|+ d)P, P ∈ V d
n (Wγ), (1.31)

where

Tγ :=
d∑

i=1

xi(1− xi)
∂2

∂x2i
− 2

∑
1≤i<j≤d

xixj
∂2

∂xi∂xj

+
d∑

i=1

[(γi + 1)− (|γ|+ d+ 1)xi]
∂

∂xi
. (1.32)

1.3.3 Spherical harmonics

The unit ball Bd and the unit sphere Sd−1 are the sets:

Bd :=
{
x ∈ Rd : ∥x∥ ≤ 1

}
, Sd−1 :=

{
ξ ∈ Rd : ∥ξ∥ = 1

}
.

The volume of Bd and the surface area of Sd−1, denoted by vol(Bd) and ωd−1, respec-
tively, are given [44] by:

vol(Bd) =
ωd−1

d
, ωd−1 =

2πd/2

Γ(d/2)
. (1.33)

A harmonic polynomial P is a homogeneous polynomial that satisfies the Laplace
equation △P = 0 [24]. We denote by H d

n the space of harmonic polynomials in d
variables of total degree n, that is,

H d
n =

{
P ∈ Pd

n : △P = 0
}
.

It is known [24, 44] that:

adn := dimH d
n =

(
n+ d− 1

d− 1

)
−
(
n+ d− 3

d− 1

)
.

Spherical harmonics are the restriction of harmonic polynomials on the unit sphere
Sd−1. In spherical-polar coordinates x = rξ, x ∈ Rd, r ≥ 0, ξ ∈ Sd−1, we use the
notation Y (x) for harmonic polynomials and Y (ξ) for spherical harmonics. Since
Y ∈ H d

n is homogeneous then Y (x) = rnY (ξ).
In spherical-polar coordinates x = rξ, x ∈ Rd, r ≥ 0, ξ ∈ Sd−1, the differential

operators ∇ and △ can be decomposed6 as follows [24]:

∇ =
1

r
∇0 + ξT

∂

∂r
, (1.34)

△ =
∂2

∂r2
+
d− 1

r

∂

∂r
+

1

r2
△0 . (1.35)

6ξ is used in (1.34) instead of ξT when ∇ is defined to be a row vector.
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The operators ∇0 and △0 are the spherical parts of the gradient and the Laplacian,
respectively. The operator △0 is the Laplace-Beltrami operator, and it has spherical
harmonics as its eigenfunctions [24, Theorem 1.4.5], that is, for Y ∈ H d

n :

△0 Y (ξ) = −n(n+ d− 2)Y (ξ), ξ ∈ Sd−1. (1.36)

Spherical harmonics of different degrees are orthogonal with respect to the inner
product on the sphere [24, Theorem 1.1.2]:

⟨f, g⟩Sd−1 :=
1

ωd−1

∫
Sd−1

f(ξ)g(ξ)dω(ξ), (1.37)

where dω is the surface area measure. We use the notation
{
Y n
ν : 1 ≤ ν ≤ adn

}
to

denote an orthonormal basis for H d
n with respect to (1.37), that is,

1

ωd−1

∫
Sd−1

Y n
ν (ξ)Y

m
η (ξ)dω(ξ) = δn,mδν,η. (1.38)

1.3.4 Orthogonal polynomials on the unit ball

The orthogonal polynomials on the unit ball Bd [44, Section 5.2] are orthogonal with
respect to the weight function:

Wµ(x) := (1− ∥x∥2)µ, x ∈ Bd, µ > −1, (1.39)

that is, with respect to the inner product:

⟨f, g⟩µ = cµ

∫
Bd

f(x)g(x)Wµ(x)dx, (1.40)

cµ :=

(∫
Bd

Wµ(x)dx

)−1

=
Γ(µ+ d/2 + 1)

πd/2Γ(µ+ 1)
, (1.41)

and where cµ is a normalization constant such that ⟨1, 1⟩µ = 1. We denote by V d
n (Wµ)

the space of orthogonal polynomials in d variables of degree n with respect to (1.40).
A mutually orthogonal basis of V d

n (Wµ) is given in terms of the Jacobi polynomi-

als7 P
(a,b)
n and harmonic polynomials.

Proposition 1.3. [44, Proposition 5.2.1] For n = 0, 1, 2, 3, . . . and 0 ≤ j ≤ n/2, let{
Y n−2j
ν : 1 ≤ ν ≤ adn−2j

}
denote an orthonormal basis of H d

n−2j. The polynomials:

P n
j,ν(Wµ;x) = P

(µ,n−2j+ d−2
2

)

j (2∥x∥2 − 1)Y n−2j
ν (x), (1.42)

form a mutually orthogonal basis of V d
n (Wµ). More precisely,〈

P n
j,ν , P

m
k,η

〉
µ
= hµj,nδn,mδj,kδν,η,

where hµj,n is given by:

hµj,n =
(µ+ 1)j(d/2)n−j(n− j + µ+ d/2)

j!(µ+ 1 + d/2)n−j(n+ µ+ d/2)
.

7Proposition 1.3 assumes that the Jacobi polynomials are non-monic. Therefore, hµ
j,n was com-

puted under this assumption.
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It is known [44, 99] that the orthogonal polynomials P ∈ V d
n (Wµ) with respect to

Wµ are eigenfunctions of a second-order differential operator Bµ, that is,

BµP = −n(n+ 2µ+ d)P, µ > −1, P ∈ V d
n (Wµ), (1.43)

where

Bµ := △−
〈
xT ,∇

〉2 − (2µ+ d)
〈
xT ,∇

〉
, (1.44)

Another second-order differential operator Dµ that appears in literature [44, Sec-
tion 5.2] for which the polynomials P ∈ V d

n (Wµ) are eigenfunctions is:

DµP = −(n+ d)(n+ 2µ)P, µ > −1, P ∈ V d
n (Wµ), (1.45)

where

Dµ := △−
d∑

j=1

∂

∂xj
xj

[
2µ+

d∑
i=1

xi
∂

∂xi

]
(1.46)

It is not difficult to show that (1.44) and (1.46) satisfy the relation:

Bµ = Dµ + 2dµI, I is the identity operator.

1.3.5 Orthogonal polynomials on a cone

Let us recall that for x ∈ Rd, the symbol xi = (x1, x2, . . . , xi) ∈ Ri, 1 ≤ i ≤ d, with
x0 := 0, denotes a truncation of x. The solid cone8 (or simply the cone) of Rd is the
set:

Vd
ϑ :=

{
x ∈ Rd : ∥xd−1∥ ≤ xd, 0 ≤ xd ≤ ϑ

}
, 0 < ϑ ≤ ∞.

If ϑ is finite then we have a bounded cone, otherwise we have an unbounded cone. In
literature [115] we found the cases ϑ = 1 and ϑ = ∞ as we will show in the sequel.

Orthogonal polynomials on Vd
ϑ are orthogonal with respect to the weight function:

Ww,µ(x) := (x2d −∥xd−1∥2)µw(xd), µ > −1, x = (x1, x2, . . . , xd) ∈ Vd
ϑ, (1.47)

where w is a non-negative weight function on the interval 0 ≤ xd ≤ ϑ, that is, with
respect to the inner product:

⟨f, g⟩w,µ := cw,µ

∫
Vd
ϑ

f(x)g(x)Ww,µ(x)dx, (1.48)

cw,µ :=

(∫
Vd
ϑ

Ww,µ(x)dx

)−1

, (1.49)

8In [115] all the theory on the cone Vd+1 :=
{
(x, t) ∈ Rd+1 : ∥x∥ ≤ t, 0 ≤ t ≤ ϑ

}
was presented.

In order to fit notation and theory to d variables, in this work we use the cone Vd. It is just a matter
of changing d+ 1 by d.
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and where cw,µ is the normalization constant of Ww,µ such that ⟨1, 1⟩w,µ = 1. We

denote by V d
n (Ww,µ) the space of orthogonal polynomials in d variables of degree n

with respect to (1.48).
Xu [115] showed that under the change of variables xd−1 = xdy, y ∈ Bd−1, we

have dxd−1 = xd−1
d dy, and therefore, the following integral formula on the cone holds:∫

Vd
ϑ

f(x)dx =

∫ ϑ

0

∫
∥xd−1∥≤xd

f(xd−1, xd)dxd−1dxd

=

∫ ϑ

0

xd−1
d

∫
Bd−1

f(xdy, xd)dydxd.

(1.50)

In particular, by (1.41), (1.49) and (1.50), the normalization constant cw,µ is given
by:

cw,µ =

(∫ ϑ

0

w(xd)x
2µ+d−1
d dxd

)−1(∫
Bd−1

(1− ∥y∥2)µdy
)−1

=
Γ
(
µ+ d−1

2
+ 1
)

π
d−1
2 Γ(µ+ 1)

(∫ ϑ

0

w(xd)x
2µ+d−1
d dxd

)−1

.

(1.51)

Particular examples presented by Xu [115, section 3] for the weight function w include
Jacobi and Laguerre cases:

wa,b(t) = ta(1− t)b, a, b > −1, 0 ≤ t ≤ 1 = ϑ, (1.52)

wa(t) = tae−t, a > −1, 0 ≤ t <∞ = ϑ. (1.53)

From (1.51), in these two cases the normalization constants are given in (1.55) and
(1.59), respectively.

1.3.5.1 Jacobi polynomials on the bounded cone (ϑ = 1)

The Jacobi polynomials on the cone are orthogonal on the set

Vd
1 =

{
x ∈ Rd : ∥xd−1∥ ≤ xd, 0 ≤ xd ≤ 1

}
with respect to the weight function:

W J
a,b,µ(x) = (x2d − ∥xd−1∥2)µxad(1− xd)

b, x ∈ Vd
1, a, b, µ > −1,

that is, with respect to the inner product:

⟨f, g⟩WJ
a,b,µ

= ca,b,µ

∫
Vd
1

f(x)g(x)W J
a,b,µ(x)dx, (1.54)

ca,b,µ =

(∫
Vd
1

W J
a,b,µ(x)dx

)−1

=
Γ
(
µ+ d+1

2

)
Γ(a+ b+ 2µ+ d+ 1)

π
d−1
2 Γ(µ+ 1)Γ(a+ 2µ+ d)Γ(b+ 1)

. (1.55)

An orthogonal basis of V d
n (W

J
a,b,µ), the space of orthogonal polynomials with respect

to (1.54), is given in terms of Jacobi polynomials in one variable and an orthonormal
basis in d− 1 variables on the unit ball Bd−1.
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Proposition 1.4. [115, Proposition 3.1] For m = 0, 1, 2, 3, . . ., let{
Pm
α (Wµ) : |α| = m,α ∈ Nd−1

0

}
denote an orthonormal basis of V d−1

m (Wµ) on the unit ball Bd−1. Define

Qn
m,α(W

J
a,b,µ;x) = P

(2µ+2m+a+d−1,b)
n−m (1− 2xd)x

m
d P

m
α

(
Wµ;

xd−1

xd

)
.

Then
{
Qn

m,α(W
J
a,b,µ) : |α| = m,α ∈ Nd−1

0 , 0 ≤ m ≤ n
}

is an orthogonal basis of the

space V d
n (W

J
a,b,µ).

There is an important case that arises when the parameter a = 0. It is known
[115, Theorem 3.2] that the orthogonal polynomials P ∈ V d

n (W
J
0,b,µ) with respect to

W J
0,b,µ are eigenfunctions of a second-order partial differential operator VJ

b,µ, that is,

VJ
b,µP = −n(n+ 2µ+ b+ d)P, b, µ > −1, P ∈ V d

n (W
J
0,b,µ), (1.56)

where9

VJ
b,µ := xd(1− xd)

∂2

∂x2d
+ 2(1− xd)

〈
xT
d−1,∇d−1

〉 ∂

∂xd
+ xd △d−1−

〈
xT
d−1,∇d−1

〉2
+ (2µ + d)

∂

∂xd
− (2µ + b + d + 1)

〈
xT ,∇

〉
+
〈
xT
d−1,∇d−1

〉
. (1.57)

Remark 1.2. Accordingly with Xu [115, remark 3.1], when the parameter a ̸= 0, the
Jacobi polynomials Qn

m,α on the cone with respect to W J
a,b,µ also satisfy a differential

equation, but the eigenvalues depend on both m and n. In this case, V d
n (W

J
a,b,µ) is

not an eigenspace of such a differential operator.

1.3.5.2 Laguerre polynomials on the unbounded cone (ϑ = ∞)

The Laguerre polynomials on the cone are orthogonal on the set

Vd
∞ =

{
x ∈ Rd : ∥xd−1∥ ≤ xd, 0 ≤ xd <∞

}
with respect to the weight function:

WL
a,µ(x) = (x2d − ∥xd−1∥2)µxad e−xd , x ∈ Vd

∞, a, µ > −1,

that is, with respect to the inner product:

⟨f, g⟩WL
a,µ

= ca,µ

∫
Vd
∞

f(x)g(x)WL
a,µ(x)dx, (1.58)

ca,µ =

(∫
Vd
∞

WL
a,µ(x)dx

)−1

=
Γ
(
µ+ d+1

2

)
π

d−1
2 Γ(µ+ 1)Γ(a+ 2µ+ d)

. (1.59)

An orthogonal basis of V d
n (W

L
a,µ), the space of orthogonal polynomials with respect to

(1.58), is given in terms of Laguerre polynomials in one variable and an orthonormal
basis in d− 1 variables on the unit ball Bd−1.

9The operator VJ
b,µ was written for fitting to our notation. See [115, pages 12–13] for more details.
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Proposition 1.5. [115, Proposition 3.3] For m = 0, 1, 2, 3, . . ., let{
Pm
α (Wµ) : |α| = m,α ∈ Nd−1

0

}
denote an orthonormal basis of V d−1

m (Wµ) on the unit ball Bd−1. Define

Ln
m,α(W

L
a,µ;x) = L

(2µ+2m+a+d−1)
n−m (xd)x

m
d P

m
α

(
Wµ;

xd−1

xd

)
.

Then
{
Ln
m,α(W

L
a,µ) : |α| = m,α ∈ Nd−1

0 , 0 ≤ m ≤ n
}
is an orthogonal basis of V d

n (W
L
a,µ).

As in the Jacobi case, when the parameter a = 0 [115, Theorem 3.4] the orthogonal
polynomials P ∈ V d

n (W
L
0,µ) with respect to WL

0,µ are eigenfunctions of a second-order
partial differential operator VL

µ , that is,

VL
µP = −nP, µ > −1, P ∈ V d

n (W
L
0,µ), (1.60)

where10

VL
µ := xd △+2

〈
xT
d−1,∇d−1

〉 ∂

∂xd
−
〈
xT
d−1,∇d−1

〉
+ (2µ+ d− xd)

∂

∂xd
. (1.61)

Remark 1.3. Accordingly with Xu [115, remark 3.2], when the parameter a ̸= 0, the
Laguerre polynomials Ln

m,α on the cone with respect to WL
a,µ also satisfy a differential

equation, but the eigenvalues depend on both m and n. In this case, V d
n (W

L
a,µ) is not

an eigenspace of such a differential operator.

1.4 Taylor’s formula in several variables

Let us recall that a function u(x) is said to be of class C κ if it has continuous
derivatives up to order κ, and these derivatives do not depend on the order used to
achieve the differentiations. The following classic result known as Taylor’s formula
can be found in [100, Theorem 1.1].

Theorem 1.1 (Taylor’s formula). [100, theorem 1.1] Let u be a C κ function defined
on Rd. Then for x,y ∈ Rd:

u(x+ y) =
∑

|β|≤κ−1

yβ

β!
∂βu(x) +

∑
|β|=κ

yβ

β!

∫ 1

0

κ(1− t)κ−1∂βu(x+ ty)dt. (1.62)

The first sum in (1.62) is the well-known Taylor polynomial of degree κ − 1 of u
at x ∈ Rd, and the second sum is the remainder term.

For our purposes, let p ∈ Rd be a fixed point in Rd. If P ∈ Πd is a polynomial
(a C ∞ function) in d variables, we denote by T κ−1(P,p;x) the Taylor polynomial of

10The operator VL
µ was written for fitting to our notation. See [115, page 15] for more details.
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degree κ− 1 of P at p, and by Rκ(P,p;x) its remainder term. Then by (1.62), and
by setting x = p and y = x− p, we have:

P (x) = T κ−1(P,p;x) +Rκ(P,p;x),

where

T κ−1(P,p;x) =
∑

|β|≤κ−1

∂βP (p)

β!
(x− p)β, (1.63)

Rκ(P,p;x) =
∑
|β|=κ

(x− p)β

β!

∫ 1

0

κ(1− t)κ−1∂βP (p+ t(x− p))dt. (1.64)

A well-known property of the Taylor polynomial (1.63) is that, at the point p ∈ Rd,
it satisfies:

(∂αP )(p) = (∂αT κ−1(P,p))(p), |α| ≤ κ− 1,

which implies that

(∂αRκ(P,p))(p) = 0, |α| ≤ κ− 1.



Chapter 2

State of the art

Chapter 1 was devoted to the main topics for the so-called standard orthogonal poly-
nomials. In this chapter we focus our attention to a type of non-standard polynomials,
which are known in literature as Sobolev orthogonal polynomials. In contrast to the
standard case, the theory of Sobolev polynomials is non-uniform and fragmented.
This chapter is not comprehensive. Conversely, we only mention some well-known
results in literature and we remit the reader to a detailed survey by Marcellán and
Xu [86], and some other references by Meijer [92] and Mart́ınez-Finkelshtein [88, 89]
who give the state of the art on this topic.

2.1 Sobolev orthogonal polynomials in one vari-

able

Sobolev orthogonal polynomials in one variable have been studied since the decade
of the 60s when the first paper on this topic was published by Althammer [7]. This
first paper was motivated by an optimization problem proposed by Lewis [73] in the
40s. The Lewis’ problem consists in finding a polynomial Pn, of degree at most n,
such that it minimizes:

p∑
k=0

∫ b

a

[f (k)(x)− P (k)
n (x)]2dαk(x),

where α0(x), α1(x), . . . , αp(x) are p + 1 monotonic non-decreasing functions defined
for a ≤ x ≤ b, and f is a function of class C p−1 over an interval A ≤ x ≤ B, where
A ≤ a < b ≤ B, such that its p-th derivative f (p)(x) exists almost everywhere with
respect to αp and is such that the Lebesgue-Stieltjes integral,∫ b

a

[f (p)(x)]2dαp(x),

exists. More than fifty years have passed and a big number of publications have
appeared. In the next sections we present a survey of some references on Sobolev
polynomials.

21
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2.1.1 First publications on Sobolev polynomials

Initial studies showed that many properties of the standard polynomials were not pre-
served on Sobolev polynomials. Althammer [7], for example, considered the sequence
{Sn(λ;x)}n≥0 of Sobolev-Legendre orthogonal polynomials with respect to the inner
product:

⟨f, g⟩S =

∫ 1

−1

f(x)g(x)dx+ λ

∫ 1

−1

f ′(x)g′(x)dx, λ > 0. (2.1)

This author gave an example in which dx is replaced in the second integral of (2.1)
by w(x)dx, where w(x) = 10 for −1 ≤ x < 0 and w(x) = 1 for 0 ≤ x ≤ 1, and he
observed that S2(λ;x) = K(x2 + 27x/35− 1/3), with K a real constant, for this new
inner product has a zero at x = −1.08, which is outside1 the interval [−1, 1]. Schäfke
[103] made important simplifications to the calculations presented by Althammer,
and in particular, he observed that the normalization Sn(λ; 1) = 1 simplified many
results. Gröbner [51] also studied the Sobolev-Legendre polynomials on the interval
[0, 1], and he found a generalized Rodrigues’ formula for these polynomials. Cohen
[22] studied the zeros of Sn(λ; ·) and he proved that they interlace with those of the
Legendre polynomial Pn−1 if λ ≥ 2/n, among other results. Brenner [19] also studied
the Sobolev orthogonal polynomials with respect to the inner product:

⟨f, g⟩S =

∫ ∞

0

f(x)g(x)e−xdx+ λ

∫ ∞

0

f ′(x)g′(x)e−xdx, λ > 0, (2.2)

with similar results to those of Althammer.
Schäfke and Wolf [104] considered a family of inner products of the form:

⟨f, g⟩S =
∞∑

j,k=0

∫ b

a

f (j)(x)g(k)(x)vj,k(x)w(x)dx, (2.3)

where w(x) and (a, b) are one of the three classical cases (Hermite, Laguerre or Jacobi),
and where vj,k are polynomials that satisfy vj,k = vk,j, j, k = 0, 1, 2, . . ., and other
additional restrictions. With their study, Schäfke and Wolf showed eight classes
of Sobolev orthogonal polynomials, which they called a generalization of classical
orthogonal polynomials. In addition, through their study they extended known results
to the Sobolev case. Recently, analytical and algebraic properties were studied for
particular cases of (2.3). See for example [4, 11, 37–39, 84, 96].

After the Schäfke and Wolf’s paper, the theory remained without significant con-
tributions for about two decades until the coherent pairs appeared in a paper due to
Iserles, Koch, Norsett, and Sanz-Serna [56] when they studied the polynomials with
respect to the inner product:

⟨f, g⟩λ =

∫ ∞

−∞
f(x)g(x)dφ(x) + λ

∫ ∞

−∞
f ′(x)g′(x)dψ(x), λ ≥ 0, (2.4)

1It is well-known [111, Theorem 3.3.1] that a standard orthogonal polynomial has all its zeros
inside the interval of orthogonality.
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where dφ and dψ are two Borel measures. They showed, among several results and
under certain conditions, that the orthogonal polynomials with respect to (2.4) can
be expanded in terms of the orthogonal polynomials with respect to dφ. According
with [56, Theorem 3], the pair {dφ, dψ} is coherent if there exist non-zero constants
a1, a2, a3, . . . such that:

Pn(dψ;x) = an+1P
′
n+1(dφ;x)− anP

′
n(dφ;x), n ≥ 1, (2.5)

where Pn(dφ; ·) and Pn(dψ; ·) are the orthogonal polynomials with respect to dφ and
dψ, respectively. If both measures dφ and dψ are symmetric (that is, invariant under
the transformation x 7→ −x), then the pair {dφ, dψ} is symmetrically coherent [56,
Theorem 4] if there exist non-zero constants a1, a2, a3, . . . such that:

Pn(dψ;x) = an+1P
′
n+1(dφ;x)− an−1P

′
n−1(dφ;x), n ≥ 2.

Inner products like (2.1) and (2.2), which involve derivatives, do not satisfy the
symmetry property (1.1). This fact makes that the three-term recurrence relation no
longer holds, and as a consequence, many properties (their zeros, for example) of the
corresponding Sobolev polynomials become more difficult to study. Many techniques
have been developed through the years to balance the lack of this tool as we will show
in the sequel. In next sections we present some references that have appeared in the
last thirty years.

2.1.2 Recent publications on Sobolev polynomials

After the notion of coherent pair appeared in 1991, this idea was incorporated by
some authors to the study of some sequences of Sobolev orthogonal polynomials.

Meijer [90] derived general results for the zero distribution of {Sn(λ;x)}n≥0, the
sequence of orthogonal polynomials with respect to (2.4), when {dφ, dψ} is a coherent
pair. Meijer showed that, for n ≥ 2 and if λ is large enough, the polynomial Sn(λ; ·)
has n different, real zeros, and these zeros interlace with those of Pn−1(dφ; ·) and
Pn−1(dψ; ·). This author also studied the case when {dφ, dψ} is a symmetrically
coherent pair. This last situation is more complicated, even leading to complex zeros
of Sn(λ; ·) when n is an even number.

The results in [90] were generalized by De Bruin and Meijer [26]. They showed
that, under certain conditions, the polynomials {Sn(λ;x)}n≥0 satisfy a 5-term recur-
rence relation. Marcellán, Pérez, and Piñar [78–80] deduced some properties con-
cerning the localization and separation of the zeros of these polynomials in the La-
guerre case (dφ(x) = dψ(x) = xαe−xdx, α > −1) and Gegenbauer case (dφ(x) =
dψ(x) = (1 − x2)α−1/2dx, α > −1/2), and a similar work was carried out by Kim,
Kwon, Marcellán, and Yoon [59] in the Jacobi case (dφ(x) = (1 − x)α(1 + x)βdx,
dψ(x) = (1− x)α+1(1 + x)βdx, α > −1, −1 < β ≤ 0).

Marcellán and Petronilho [81] extended the notion of coherent pair to linear func-
tionals {Φ,Ψ}. These authors found all the coherent pairs when one of the measures
is classical. Meijer [93] proved that if {Φ,Ψ} is a coherent pair, then at least one of
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them has to be classical (Hermite, Laguerre, Jacobi, or Bessel). A similar result was
derived for symmetrically coherent pairs.

The generalized coherent pairs appeared in a paper due to Kim, Kwon, Mar-
cellán, and Yoon [58] when they solved an inverse problem concerning coherent pairs.
According with [58], the pair {dφ, dψ} is called a generalized coherent pair if the
following relation holds for all n ≥ 1:

Pn(dψ;x) + bn−1Pn−1(dψ;x) =
P ′
n+1(dφ;x)

n+ 1
+ an

P ′
n(dφ;x)

n
, n ≥ 1,

which is a more general relation than (2.5). In this case Pn(dφ; ·) and Pn(dψ; ·) are
monic polynomials. These authors also extended the definition to linear functionals
{Φ,Ψ}. Alfaro, Marcellán, Peña, and Rezola [5] identified all the generalized coherent
pairs when Φ is a classical linear functional. Delgado and Marcellán [31] made a
complete identification of generalized coherent pairs, and they found that either Φ or
Ψ must be a semiclassical linear functional. Berti, Bracciali, and Sri Ranga [16] and
Berti and Sri Ranga [17] provided two examples of generalized coherent pairs in the
Jacobi case:

dφ(x) = (1− x)α(1 + x)βdx,

dψ(x) =
x− ξ0
x− ξ1

(1− x)α+1(1 + x)β+1dx+Mδξ1 ,
α, β > −1, |ξ0|, |ξ1| ≥ 1,

and Laguerre case:

dφ(x) = xαe−xdx, dψ(x) =
x− ξ0
x− ξ

xα+1e−xdx+Mδξ, α > −1, |ξ0| ≥ 1, ξ ≤ 0,

where δξ is the Dirac delta at ξ.
A further generalization of coherent pair is the so-called (M,K)-coherent pair of

order (m, k), where M,K,m, k are non-negative integers. A pair of linear functionals
{Φ,Ψ} is said to be a (M,K)-coherent pair of order (m, k) if {Pn(Φ;x)}n≥0 and
{Pn(Ψ;x)}n≥0, the monic sequences of orthogonal polynomials with respect to Φ and
Ψ, respectively, satisfy a linear algebraic structure relation of the form:

M∑
i=0

ri,nP
(m)
n−i+m(Φ;x) =

K∑
i=0

si,nP
(k)
n−i+k(Ψ;x), (2.6)

where ri,n and si,n are complex numbers satisfying some conditions. The relation
(2.6) was studied by de Jesus and Petronilho [28] in the context of an inverse problem
in the theory of orthogonal polynomials. Kwon, Lee, and Marcellán [69] considered
the (2, 0)-coherent pair of order (1, 0) when they studied the Sobolev orthogonal
polynomials with respect to (2.4). These authors provided [69, section 5] an efficient
way for computing the Sobolev-Fourier coefficients at the Fourier’s series expansion.
Delgado and Marcellán [31] characterized all the pairs of linear functionals {Φ,Ψ} that
are (1, 1)-coherent of order (1, 0). The (M,K)-coherence of order (1, 0) was studied by
de Jesus and Petronilho [29] and the Sobolev orthogonal polynomials with respect to
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(2.4) were considered. In this case, these authors also gave an an efficient algorithm for
computing the coefficients at the Fourier’s series expansion with respect to (2.4). The
case (M, 0)-coherent of order (1, 0) was studied by Marcellán, Mart́ınez-Finkelshtein,
and Moreno-Balcázar [77], where several examples of non-trivial measures were given
by these authors. The more general case of (M,K)-coherence of order (m, k) was
studied by de Jesus, Marcellán, Petronilho, and Pinzón-Cortés [27]. In particular,
in their paper they studied the Sobolev orthogonal polynomials with respect to the
inner product:

⟨f, g⟩λ =

∫ ∞

−∞
f(x)g(x)dφ(x) + λ

∫ ∞

−∞
f (m)(x)g(m)(x)dψ(x), λ > 0, (2.7)

where {dφ, dψ} is a (M,K)-coherent pair of measures of order (m, 0), m ≥ 1. The
inner product (2.7) was also studied by Marcellán and Pinzón-Cortés [82]. The notion
of coherent pairs has been also extended to complex domains with the corresponding
study of the associated Sobolev orthogonal polynomials. See, for example, Marcellán
and Pinzón-Cortés [83]. At the time of writing this document, the research on coher-
ent pairs still continues.

It is known that the classical polynomials (with parameters greater than minus
one) are also Sobolev orthogonal polynomials with respect to a certain non-standard
inner products [86, Section 6]. More generally, when their parameters are taken
to be real numbers, it is also known that the Laguerre and Jacobi polynomials are
orthogonal with respect to a Sobolev inner product. For example, Pérez and Piñar
[97] proved that the monic generalized Laguerre polynomials :

L(α)
n (x) = (−1)nn!

n∑
j=0

(α + j + 1)n−j

j!(n− j)!
(−x)j, α ∈ R,

are orthogonal with respect to the Sobolev inner product:

⟨f, g⟩(k,α+k)
S =

∫ ∞

0

F(x)M(k)G(x)Txα+ke−xdx,

k = max {0, ⌊−α⌋} , α ∈ R,
(2.8)

where:

F(x) =
(
f(x), f ′(x), . . . , f (k)(x)

)
, G(x) =

(
g(x), g′(x), . . . , g(k)(x)

)
,

and M(k) =
(
mij(k)

)k
i,j=0

is a positive definite matrix of size (k+1)× (k+1) whose

entries are given by:

mij(k) =

min{i,j}∑
l=0

(−1)i+j

(
k − l

i− l

)(
k − l

j − l

)
, 0 ≤ i, j ≤ k,

and where ⌊x⌋ denotes the greatest integer less than or equal to x. These authors also
observed that if α ∈ {−1,−2,−3, . . .} then the inner product (2.8), taking integration
by parts, reduces to:
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⟨f, g⟩(k,0)S =

∫ ∞

0

f (k)(x)g(k)(x)e−xdx+

k−1∑
i=0

i∑
j=0

mij(k)

2
[f (i)(0)g(j)(0) + f (j)(0)g(i)(0)]. (2.9)

This last inner product was also studied by Kwon and Littlejohn [70], and the par-
ticular case k = 1 was also considered by the same authors in [71].

In addition, Alfaro, Pérez, Piñar, and Rezola [6] studied the Sobolev polynomials
with respect to the bilinear form:

⟨f, g⟩(N)
S = L (f (N)g(N)) + F(c)AG(c)T , (2.10)

which is more general than (2.9), where L is a quasi-definite linear functional on Π,
c is a real number, N is a positive integer number, A is a symmetric N×N real matrix

such that each of its principal submatrices is regular, F(c) =
(
f(c), f ′(c), . . . , f (N−1)(c)

)
,

and G(c) =
(
g(c), g′(c), . . . , g(N−1)(c)

)
. These authors provided examples of or-

thogonal polynomials with respect to (2.10), with an adequate choice of c. These

examples are the Laguerre polynomials
{
L
(−N)
n (x)

}
n≥0

with c = 0, Jacobi polyno-

mials
{
P

(−N,β)
n (x)

}
n≥0

with c = 1 and β + N not being a negative integer, and{
P

(α,−N)
n (x)

}
n≥0

with c = −1 and α +N not being a negative integer.

In a similar way, the Sobolev orthogonality with respect an inner product like
(2.10) was studied by Alfaro, Álvarez de Morales, and Rezola [3] for the remainder
cases of the Jacobi polynomials, and by Álvarez de Morales, Pérez, and Piñar [8] for

the Gegenbauer polynomials
{
C

(−N+1/2)
n (x)

}
n≥0

, with N ≥ 1 being a non-negative in-

teger. Jung, Kwon, and Lee [57] made a similar study for the orthogonal polynomials
with respect to (2.10) in a general setting, but only for first-order derivatives.

Xu [113, section 2.3] used some of the results in [57] to deduce that the sequence
{qn(x)}n≥0 of orthogonal polynomials with respect to the Sobolev inner product:

⟨f, g⟩ = 22−d/2λ

∫ 1

−1

f ′(x)g′(x)(1 + x)d/2dx+ f(−1)g(−1), λ > 0, (2.11)

where d is a non-negative integer, is defined by:

q0(x) = 1, qn(x) =
2

n+ d−2
2

(
P

(−1, d−2
2

)
n (x)− (−1)n

(d/2)n
n!

)
, n ≥ 1, (2.12)

where P
(α,β)
n is the Jacobi Polynomial of degree n.

Pérez, Piñar, and Xu [98, Section 4] studied the Sobolev orthogonal polynomials
with respect to the inner product:

⟨f, g⟩α,β :=

∫ 1

−1

f(x)g(x)wα,β(x)dx+
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2λ

∫ 1

−1

(
f, f ′

)( β(2β − d+ 2) (2β − d+ 2)(1 + x)

(2β − d+ 2)(1 + x) 4(1 + x)2

)(
g

g′

)
wα,β−1(x)dx,

(2.13)

where d ∈ N, λ > 0, α > −1, β > max {0, (d− 2)/2}, and wα,β(x) = (1− x)α(1+ x)β

is the Jacobi weight function. The restriction β > max {0, (d− 2)/2} guarantees that
the 2 × 2 matrix in (2.13) is positive definite, and consequently, (2.13) is indeed an
inner product. This inner product appeared naturally when these authors studied a
family of Sobolev orthogonal polynomials in several variables on the unit ball (see
Theorem 2.13 below).

Sobolev polynomials also have been used in the spectral theory for solving dif-
ferential equations. For example, Sharapudinov [105–108] considered the Sobolev
orthogonal polynomials with respect to the inner product:

⟨f, g⟩S =

∫ b

a

f (r)(x)g(r)(x)w(x)dx+
r−1∑
i=0

f (i)(a)g(i)(a), r ∈ N, (2.14)

where w is a weight function on [a, b]. This author studied the approximation prop-
erties of Fourier series with weights for the Haar functions and Jacobi polynomials
(with special attention to the Chebyshev, Legendre and Gegenbauer cases), and he
showed that the Fourier series and sums of orthogonal polynomials with respect to
(2.14) are an efficient tool for the approximate solution of the Cauchy problem for
ordinary differential equations.

The generalized Jacobi polynomials (with arbitrary parameters α, β ∈ R) also
have been used in spectral methods. See, for example, [52, 74, 75, 109]. Li and Xu
[75] and Xu [114] defined the generalized Jacobi polynomial by the equation:

Jα,β
n (x) :=

n∑
k=ι0

(k + α + 1)n−k

(n− k)!k!(n+ α + β + k + 1)n−k

(
x− 1

2

)k

,

α, β ∈ R, n ∈ N0, (2.15)

where ι0 = ια,β0 (n) := −n−α−β if −n−α−β ∈ {1, 2, 3, . . . , n} and ι0 = 0 otherwise.
This extends the definition of the Jacobi polynomials to all α, β ∈ R avoiding the
problem of a degree reduction. Indeed, if α, β > −1 then Jα,β

n is a renormalization of

the ordinary Jacobi polynomial P
(α,β)
n because ια,β0 (n) = 0 and the following relation

holds [114, proposition 2.2]:

Jα,β
n (x) =

1

(n+ α + β + 1)n
P (α,β)
n (x), if ια,β0 (n) = 0.

Many other identities [114, Section 2] for the ordinary Jacobi polynomials were ex-
tended to the generalized polynomials. From these generalized polynomials, Xu [114]

defined the polynomials Ĵα,−m
n , J̃α,−m

n , Ĵ−l,β
n , and J̃−l,β

n , with n ∈ N0, m, l ∈ N,
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α, β ∈ R, and α♯ := max {0, ⌊−α⌋}, by the following relations:

Ĵα,−m
n (x) =


Jα,−m
n (2x− 1), n ≥ m+ α♯,

Jα,−m
n (2x− 1) +

min{n,m}−1∑
k=0

Jα+k,−m+k
n−k (−1)

xk

k!
, n < m+ α♯,

J̃α,−m
n (x) =


(−1)nJα,−m

n (1− 2x), n ≥ m+ α♯,

(−1)nJα,−m
n (1− 2x)−

n−1∑
k=0

(−1)n−kJα+k,−m+k
n−k (−1)

(x− 1)k

k!
, n < m+ α♯,

Ĵ−l,β
n (x) =


J−l,β
n (2x− 1), n ≥ l,

J−l,β
n (2x− 1) +

n−1∑
k=0

J−l+k,β+k
n−k (1)

(x− 1)k

k!
, n < l,

J̃−l,β
n (x) =


(−1)nJ−l,β

n (1− 2x), n ≥ l,

(−1)nJ−l,β
n (1− 2x)−

n−1∑
k=0

(−1)n−kJ−l+k,β+k
n−k (1)

xk

k!
, n < l,

and he also defined the Sobolev inner products:

⟨f, g⟩α,−m :=

∫ 1

0

f (m)(x)g(m)(x)(1− x)α+mdx+
m−1∑
k=0

λkf
(k)(0)g(k)(0), (2.16)

λk > 0, k = 0, 1, . . .m− 1, α+m > −1,

⟨f, g⟩−l,β :=

∫ 1

0

f (l)(x)g(l)(x)xβ+ldx+
l−1∑
k=0

λkf
(k)(1)g(k)(1), (2.17)

λk > 0, k = 0, 1, . . . l − 1, β + l > −1.

Then, Xu [114, Propositions 3.1 to 3.4] proved the following results.

1. The sequence
{
Ĵα,−m
n

}
n≥0

, with m = 1, 2, 3, . . . and α+m > −1, is orthogonal

with respect to the inner product ⟨·, ·⟩α,−m defined in (2.16).

2. The sequence
{
J̃α,−m
n

}
n≥0

, with m = 1, 2, 3, . . . and α+m > −1, is orthogonal

with respect to the inner product ⟨·, ·⟩−m,α defined in (2.17).

3. The sequence
{
Ĵ−l,β
n

}
n≥0

, with l = 1, 2, 3, . . . and β + l > −1, is orthogonal

with respect to the inner product ⟨·, ·⟩−l,β defined in (2.17).

4. The sequence
{
J̃−l,β
n

}
n≥0

, with l = 1, 2, 3, . . . and β + l > −1, is orthogonal

with respect to the inner product ⟨·, ·⟩β,−l defined in (2.16).
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The so-called Sobolev-type inner products, for which the derivatives appear only
on function evaluations on a finite discrete set, also have considered in literature.
They have the form:

⟨f, g⟩S =

∫
R
f(x)g(x)dµ+

m∑
k=0

∫
R
f (k)(x)g(k)(x)dµk,

where dµ is a positive Borel measure supported on an infinite subset of R, and
dµk, k = 0, 1, . . . ,m, are Borel measures supported on finite subsets of R. Koekoek
[62] studied the Laguerre case dµ = xαe−xdx/Γ(α + 1), x ∈ R+, α > −1, and
dµk =Mkδ0,Mk ≥ 0, k = 0, 1, 2, . . . ,m, where δc is the Dirac delta measure supported
at c ∈ R. Bavinck and Meijer [14, 15] studied the Gegenbauer case dµ = Γ(2α +
2)(1 − x2)αdx/(22α+1Γ2(α + 1)), x ∈ [−1, 1], α > −1, and dµ0 = M(δ−1 + δ1),
dµ1 = N(δ−1 + δ1), M,N ≥ 0. The case dµ = w(x)dx, where w is a weight function,
dµk = 0, k = 0, 1, . . . ,m − 1, dµm = λ−1δc, λ > 0, c ∈ R, was studied by Marcellán
and Ronveaux [85].

The well-known Favard’s theorem for standard polynomials, which guarantees
the orthogonality of a sequence of polynomials if it satisfies a three-term recurrence
relation, was generalized by Durán [45]. A similar work in this direction is due to
Evans, Littlejohn, Marcellán, Markett, and Ronveaux [46].

Koekoek [63] studied the sequence
{
Pα,β,N,M
n (x)

}
n≥0

of orthogonal polynomials
with respect to the inner product:

⟨f, g⟩ = Γ(α + β + 2)

2α+β+1Γ(α + 1)Γ(β + 1)

∫ 1

−1

f(x)g(x)(1− x)α(1 + x)βdx+

Mf(−1)g(−1) + Nf(1)g(1),

with α, β > −1 and M,N ≥ 0. This author found that
{
Pα,β,N,M
n (x)

}
n≥0

satisfied a
differential equation of the form:

M
∞∑
i=0

ai(x)y
(i)(x) +N

∞∑
i=0

bi(x)y
(i)(x) +MN

∞∑
i=0

ci(x)y
(i)(x)+

(1− x2)y′′(x) + [β − α− (α + β + 2)x]y′(x) + n(n+ α + β + 1)y(x) = 0,

where ai(x), bi(x), ci(x) are polynomials, independent of n. Similarly, in [63], a study
for the polynomials

{
Lα,N,M
n (x)

}
n≥0

with respect to the Sobolev inner product:

⟨f, g⟩ = 1

Γ(α + 1)

∫ ∞

0

f(x)g(x)xαe−xdx+Mf(0)g(0) +Nf ′(0)g′(0),

with α > −1 and M,N ≥ 0, was carried out. This author also found that the
sequence

{
Lα,N,M
n (x)

}
n≥0

satisfied a differential equation of the form:

M

∞∑
i=0

ai(x)y
(i)(x) +N

∞∑
i=0

bi(x)y
(i)(x) +MN

∞∑
i=0

ci(x)y
(i)(x)+
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xy′′(x) + (α + 1 − x)y′(x) + ny(x) = 0,

where ai(x), bi(x), ci(x) are again polynomials. Complementary results on these gen-
eralized Jacobi and Laguerre polynomials can be found in [60, 61, 64]. Some other
results on differential equations for Sobolev-type orthogonal polynomials are due
to Arvesú, Álvarez-Nodarse, Marcellán, and Pan [12], Dueñas and Garza [35], and
Dueñas and Marcellán [39].

The zeros of the Sobolev polynomials also have been studied in recent years.
Contrary to the standard polynomials on the real line, for which their zeros are all
real, simple, interlace, and they lie at the interior of the interval of orthogonality,
in the Sobolev setting some of these properties are lost. On this subject, we could
reference the works [4, 10, 12, 15, 22, 25, 26, 33, 34, 59, 84, 90, 91] to name just a
few. And more recently, over the last ten years, the works by Dueñas and Garza [35],
Huertas, Marcellán, and Rafaeli [55], and Molano-Molano [96].

2.2 Sobolev orthogonal polynomials in several vari-

ables

In contrast to one variable, the study of Sobolev orthogonal polynomials in several
variables is recent. Most of the results were obtained in two variables and where the
inner products introduced only first-order derivatives [18]. Next, we show a summary
in regards to Sobolev orthogonal polynomials of several variables on different domains.

2.2.1 Sobolev-type orthogonal polynomials in several vari-
ables

Mello, Paschoa, Pérez, and Piñar [94] studied the Sobolev-type orthogonal polyno-
mials with respect to the inner product:

⟨f, g⟩S = ⟨f, g⟩G + λ∇f(p) · ∇g(p), λ > 0, (2.18)

where ⟨·, ·⟩G is the inner product:

⟨f, g⟩G =

∫
G

f(x)g(x)dµ(x), (2.19)

and where G ⊂ Rd is a domain having a non-empty interior, dµ is a positive measure
defined on the domain G, and p is a given point in Rd.

Let {P n
α : |α| = n} be an orthonormal basis of V d

n (G), the space of orthogonal
polynomials with respect to (2.19), and let Pn denote the column vector:

Pn(x) :=
(
P n
α(1)(x), P

n
α(2)(x), · · · , P n

α(rdn)
(x)
)T

,

where α(1), α(2), . . . , α(rdn) is the arrangement of elements in
{
α ∈ Nd

0 : |α| = n
}
accord-

ing to the reverse lexicographical order. In addition, let ∇Pn(x) denote the matrix of
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size rdn × d given by:

∇Pn(x) =
(
∂1Pn(x), ∂2Pn(x), · · · , ∂dPn(x)

)
and the kernel function of Πd

n by:

Kn(x,y) =
n∑

j=0

PT
j (x)(Hj)

−1Pj(y), Hj =
〈
Pj,PT

j

〉
G
,

for which K
(1,0)
n , K

(0,1)
n and K

(1,1)
n are matrices of sizes d × 1, 1 × d, and d × d,

respectively, given by:

K(1,0)
n (x,y) =

n∑
j=0

(∇Pj(x))
T (Hj)

−1Pj(y), K(0,1)
n (x,y) =

n∑
j=0

PT
j (x)(Hj)

−1∇Pj(y),

K(1,1)
n (x,y) =

(
∂xi
∂yjKn(x,y)

)d
i,j=1

.

Then the following result was proved in [94].

Theorem 2.1. [94, Theorem 3.1] Let {Pn}n≥0 be an orthonormal polynomial system
associated with (2.19). We define the polynomial system {Qn}n≥0 by means of

Q0(x) := P0(x),

Qn(x) := Pn(x)− λ∇Pn(p)[Id + λK
(1,1)
n−1 (p,p)]

−1K
(1,0)
n−1 (p,x), n ≥ 1.

(2.20)

Then {Qn}n≥0 is a sequence of orthogonal polynomials with respect to ⟨·, ·⟩S defined
in (2.18). Reciprocally, any sequence of orthogonal polynomials with respect to (2.18)
can be expressed as in (2.20).

Additional results [94, Lemma 2.1, Proposition 3.2, Theorem 3.3] showed that

Id+λK
(1,1)
n (p,p), λ > 0, n ≥ 0, is a symmetric and non-singular matrix of size d× d,

and explicit expressions were given for Gn =
〈
Qn,QT

n

〉
S
and its inverse G−1

n , and for

the kernel function K̂n(x,y) associated with ⟨·, ·⟩S which is given by:

K̂n(x,y) =
n∑

j=0

QT
j (x)G

−1
j Qj(y).

As a generalization from the previous result, Dueñas, Garza, and Piñar [36] studied
the Sobolev-type polynomials with respect to:

⟨f, g⟩S = ⟨f, g⟩σ +M∇(j)f(ξ)(∇(j)g(ξ))T , ⟨f, g⟩σ :=

∫
G

f(x)g(x)dσ(x). (2.21)

where σ is a measure defined on the domain G ⊆ Rd with a non-empty interior,
ξ ∈ Rd, ∇(j)f is the row vector which contains all the partial derivatives of order j
of f , and M ∈ R+. The main result we found in [36] is the following.
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Theorem 2.2. [36, Theorem 1] Let {Pn}n≥0 be an orthonormal polynomial system
(OPS) associated with the inner product ⟨·, ·⟩σ. Define a Sobolev-type inner product
as in (2.21). Then, if we denote by {Qn}n≥0 its corresponding OPS, normalized in

such a way that Qn−Pn is a rdn dimensional vector whose components are polynomials
of total degree lower than n, we have

Qn(x) =

{
Pn(x), n < j,

Pn(x)−M∇(j)Pn(ξ)(Idj +MK
(j,j)
n−1(ξ, ξ))

−1K
(j,0)
n−1(ξ,x), n ≥ j,

(2.22)

Conversely, if we define {Qn}n≥0 as in (2.22), then they are an OPS with respect to
(2.21).

In (2.22), ∇(j)Pn is a matrix of size rdn × dj which contains the partial derivatives

of order j of Pn, Kn(x,y) is the kernel polynomial of Πd
n, K

(j,j)
n (x,y) is a matrix of

size dj × dj with all the partial derivatives of order j of Kn(x,y), and

K(j,0)
n (x,y) =

n∑
j=0

(∇(j)Pj(x))
T (Hj)

−1Pj(y), K(0,j)
n (x,y) =

n∑
j=0

PT
j (x)(Hj)

−1∇(j)Pj(y).

2.2.2 Sobolev orthogonal polynomials on the unit ball

At this moment, Sobolev orthogonal polynomials on the unit ball Bd are the most
studied polynomials in several variables [86].

Xu [112] considered the Sobolev orthogonal polynomials in d variables on the unit
ball with respect to the inner product:

⟨f, g⟩△ =
1

4d2 vol(Bd)

∫
Bd

△
[
(1− ∥x∥2)f(x)

]
△
[
(1− ∥x∥2)g(x)

]
dx, (2.23)

where △ is the Laplacian operator, and where vol(Bd) is the volume of Bd given in
(1.33). This work was motivated by a study due to Atkinson and Hansen [13], where
they found the same inner product (2.23) for the case d = 2, in the numerical solution
of the Poisson equation −△u = f(·, u). The main result in [112, Theorem 2.4]
showed an explicit construction for a mutually orthogonal basis of V d

n (△), the space
of orthogonal polynomials with respect to (2.23), in terms of the Jacobi polynomials

P
(a,b)
n (t), which are orthogonal on [−1, 1] with respect to the weight (1− t)a(1 + t)b,

and harmonic polynomials. That is,

Theorem 2.3. [112, Theorem 2.4] A mutually orthogonal basis for V d
n (△) is given

by:

Qn
0,ν(x) = Y n

ν (x),

Qn
j,ν(x) = (1− ∥x∥2)P (2,n−2j+ d−2

2
)

j−1 (2∥x∥2 − 1)Y n−2j
ν (x), 1 ≤ j ≤ n/2,

where
{
Y n−2j
ν : 1 ≤ ν ≤ adn−2j

}
is an orthonormal basis of H d

n−2j. Furthermore,〈
Qn

0,ν , Q
n
0,ν

〉
△ =

2n+ d

d
,
〈
Qn

j,ν , Q
n
j,ν

〉
△ =

8j2(j + 1)2

d(n+ d/2)
.
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Similarly, Xu [113] considered the Sobolev orthogonal polynomials on the unit ball
with respect to the inner products:

⟨f, g⟩I =
λ

ωd−1

∫
Bd

∇f(x) · ∇g(x)dx+
1

ωd−1

∫
Sd−1

f(ξ)g(ξ)dω(ξ), (2.24)

⟨f, g⟩∥ =
λ

ωd−1

∫
Bd

∇f(x) · ∇g(x)dx+ f(0)g(0), (2.25)

where λ > 0,∇ is the gradient operator, and ωd−1 is the area of the unit sphere given in
(1.33). Similar results [113, Theorem 2.3 and 2.6] showed an explicit construction for
mutually orthogonal bases for V d

n (I) and V d
n (∥), the spaces of orthogonal polynomials

with respect to (2.24) and (2.25), respectively.

Theorem 2.4. [113, Theorem 2.3] A mutually orthogonal basis{
Un
j,ν : 0 ≤ j ≤ n/2, 1 ≤ ν ≤ adn−2j

}
for V d

n (I) is given by:

Un
0,ν(x) = Y n

ν (x),

Un
j,ν(x) = (1− ∥x∥2)P (1,n−2j+ d−2

2
)

j−1 (2∥x∥2 − 1)Y n−2j
ν (x), 1 ≤ j ≤ n/2,

where
{
Y n−2j
ν : 1 ≤ ν ≤ adn−2j

}
is an orthonormal basis of H d

n−2j. Furthermore,

〈
Un
0,ν , U

n
0,ν

〉
I
= nλ+ 1,

〈
Un
j,ν , U

n
j,ν

〉
I
=

2j2

n+ d−2
2

λ.

Theorem 2.5. [113, Theorem 2.6] A mutually orthogonal basis{
V n
j,ν : 0 ≤ j ≤ n/2, 1 ≤ ν ≤ adn−2j

}
for V d

n (∥) is given by:

V n
j,ν(x) = Un

j,ν(x), 0 ≤ j ≤
⌊
n− 1

2

⌋
,

V n
n/2(x) =

4

n+ d− 2

(
P

(−1, d−2
2

)

n/2 (2∥x∥2 − 1)− (−1)n/2
(d/2)n/2
(n/2)!

)
,

where V n
n/2(x) := V n

n/2,ν(x) holds only when n is even. Furthermore,

〈
V n
j,ν , V

n
j,ν

〉
∥ =

〈
Un
j,ν , U

n
j,ν

〉
I
, 0 ≤ j ≤

⌊
n− 1

2

⌋
,〈

V n
n/2, V

n
n/2

〉
∥
=

8λ

n+ d−2
2

.

Piñar and Xu [99] studied the second-order differential operator Bµ given in (1.43)
for µ = −1,−2,−3,−4, . . .. One result [99, Theorem 3.3] showed that the orthogonal
polynomials with respect to ⟨·, ·⟩I in (2.24) satisfy the equation (1.43) for µ = −1,
that is,
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Theorem 2.6. [99, Theorem 3.3] Elements of V d
n (I) satisfy B−1P = −n(n+d−2)P .

In particular, the eigenfunctions of the operator B−1 consist of a complete polynomial
basis.

For µ = −k, k = 2, 3, . . . Piñar and Xu defined:

U d
n (W−k) := H d

n ∪

(
k−1⋃
j=1

[
j∑

ν=0

anj,ν(1− ∥x∥2)ν
]

H d
n−2j

)
∪ (1−∥x∥2)kV d

n−2k(Wk),

where, for 1 ≤ j ≤ k − 1,

anj,ν :=
(−1)j−νj!(−k + 1)j(n− j − k + d/2)ν
ν!(j − ν)!(−k + 1)ν(n− j − k + d/2)j

, 0 ≤ ν ≤ j,

and where anj,ν is well-defined if n−j−k+ν+d/2 ̸= 0. Piñar and Xu [99, Theorem 3.4]
showed the following result.

Theorem 2.7. [99, Theorem 3.4] If µ = −k and k = 2, 3, . . ., then the polynomials in
U d

n (W−k) satisfy equation (1.43); that is, B−kP = −n(n−2k+d)P for P ∈ U d
n (W−k).

Furthermore,

dimU d
n = dimPd

n, if n− 2k − 1 + d/2 ̸= 0.

In particular, the operator B−k has a complete polynomial basis of eigenfunctions if
the dimension d is odd.

Piñar and Xu [99, Theorem 4.1] observed that for µ = −2, the polynomials in

V d
n (W−2) := H d

n ∪ (1− ∥x∥2)H d
n−2 ∪ (1− ∥x∥2)2V d

n−4(W2),

are orthogonal with respect to the inner product:

⟨f, g⟩−2 =
λ

ωd−1

∫
Bd

△ f(x)△ g(x)dx+
1

ωd−1

∫
Sd−1

f(x)g(x)dω(x), λ > 0.

Theorem 2.8. [99, Theorem 4.1] The elements in V d
n (W−2) are orthogonal polyno-

mials with respect to ⟨·, ·⟩−2. Moreover, they contain an orthonormal basis; in other
words,

V d
n (W−2) = H d

n ⊕ (1− ∥x∥2)H d
n−2 ⊕ (1− ∥x∥2)2V d

n−4(W2).

With respect to the inner product:

⟨f, g⟩∗n =
λ1
ωd−1

∫
Bd

△ f(x)△ g(x)dx+
1

ωd−1

∫
Sd−1

f(x)g(x)dω(x)

+
λ2
ωd−1

∫
Sd−1

d

dr
[rn−4−df(x)]

d

dr
[rn−4−dg(x)]dω(x), λ1, λ2 > 0,

where d/dr is the normal derivative, another result is the following.
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Theorem 2.9. [99, Theorem 4.2] The elements of V d
n (W−2) are orthogonal polyno-

mials with respect to the inner product ⟨f, g⟩∗n.

Li and Xu [75] studied the polynomials in V d
n (W−s), s ∈ N, the space of Sobolev

orthogonal polynomials with respect to the inner product:

⟨f, g⟩−s = ⟨∇sf,∇sg⟩Bd +

⌈s/2⌉−1∑
i=0

λi
〈
△i f,△i g

〉
Sd−1 , s = 1, 2, 3 . . . , (2.26)

where λi > 0 for i = 0, 1, . . . , ⌈s/2⌉ − 1,

∇2m := △m, and ∇2m+1 := ∇△m, m = 1, 2, 3, . . . ,

and where ⟨·, ·⟩Bd := ⟨·, ·⟩0, with2 ⟨·, ·⟩µ given in (1.40), and where ⟨·, ·⟩Sd−1 is given
in (1.37). For s = 1 the inner product (2.26) is essentially ⟨·, ·⟩I in (2.24). The
motivation for introducing this inner product was to study the orthogonal structure
in the Sobolev space3 W s

p (Bd). In fact, (2.26) is an inner product on W s
2 (Bd) [75,

Definition 3.1].
Li and Xu [75, Proposition 2.1, Definition A.2] extended the polynomials in Propo-

sition 1.3 to the following definition:

P µ,n
j,l (x) := (n− j + d/2)jJ

µ,n−2j+ d−2
2

j (2∥x∥2 − 1)Y n−2j
l (x),

µ ∈ R, n ∈ N0, 0 ≤ j ≤ n/2, 1 ≤ l ≤ adn−2j,

where Jα,β
j , α, β ∈ R, is the generalized Jacobi polynomial (2.15) of degree j [75,

(A.3)], and
{
Y n−2j
l : 1 ≤ l ≤ adn−2j

}
is an orthonormal basis for H d

n−2j. Then the

set
{
P µ,n
j,l (x) : 0 ≤ j ≤ n/2, 1 ≤ l ≤ adn−2j

}
is an orthogonal basis of V d

n (Wµ) when-

ever µ > −1, and for s = 1, 2, 3, . . . the polynomial P−s,n
j,l can be expressed as [75,

Lemma 3.2]:

P−s,n
j,l (x) :=

(1− n− d/2)j
(−j)s(1− n− d/2 + 2s)j−s

(∥x∥2 − 1)sP s,n−2s
j−s,l (x),

s ∈ N, n ∈ N0, s ≤ j ≤ n/2, 1 ≤ l ≤ adn−2j.

From these definitions, and for s ∈ N, n ∈ N0, 0 ≤ j ≤ n/2, 1 ≤ l ≤ adn−2j, x ∈ Bd,
and ξ ∈ Sd−1, define:

Q−s,n
j,l (x) =


P−s,n
j,l (x), j ≥ s,

P−s,n
j,l (x)−

⌈s/2⌉−1∑
k=0

△k P−s,n
j,l (ξ)

Y n−2j
l (ξ)

Y n−2j,k
l (x), ⌈s/2⌉ ≤ j ≤ s− 1,

Y n−2j,j
l (x), 0 ≤ j ≤ ⌈s/2⌉ − 1,

2In [75, Sections 2.1 and 2.2] the definition of ⟨f, g⟩µ and ⟨f, g⟩Sd−1 assumes complex variable.
Therefore, at their definitions, g appears instead of g.

3In [75] the Sobolev space W s
p (Wµ,Bd) is defined to the space of functions whose derivatives up

to the s-th order are all in L p(Wµ,Bd), 1 ≤ p ≤ ∞. For p = ∞, L p is replaced by the space C (Bd)
of continuous functions. The space W s

p (Bd) is defined to be W s
p (Wµ,Bd) when µ = 0.
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where for any n, j ∈ N0, Y
n,j
l (x) := 0 if j < 0 and, if j ≥ 0,

Y n,j
l (x) :=

j∑
i=0

cn,ji (1− ∥x∥2)iY n
l (x), 1 ≤ l ≤ adn,

and cn,ji , 0 ≤ i ≤ j, is the unique solution of the system of linear equations:

4k
j∑

i=k

(−i)k(−k)i−k
(n+ d/2)k
(n+ d/2)i−k

cn,ji = δk,j, 0 ≤ k ≤ j.

Among several results in [75], most of them on approximation theory on the unit
sphere, we have the following concerning the inner product (2.26):

Theorem 2.10. [75, Theorem 3.7] The polynomials in{
Q−s,n

j,l (x) : 0 ≤ j ≤ n/2, 1 ≤ l ≤ adn−2j

}
form an orthogonal basis of V d

n (W−s). More precisely,
〈
Q−s,n

j,l , Q−s,m
i,k

〉
−s

= h−s
j,l δn,mδj,iδl,k

for ⟨·, ·⟩−s defined in (2.26), where:

h−s
j,l =


22s−1d(n+ d/2− s)s(n+ d/2− s+ 1)s−1, j ≥ ⌈s/2⌉ ,
d(n− 2j) + λj, j = (s− 1)/2,

λj, 0 ≤ j ≤ (s− 1)/2.

Another Sobolev inner product on the unit ball was considered by Pérez, Piñar,
and Xu [98, Definition 3.2]. It is given for µ > −1 by:

⟨f, g⟩∇,Wµ
:=

λ

ωd−1

∫
Bd

∇f(x) ·∇g(x)Wµ+1(x)dx+
1

ωd−1

∫
Sd−1

f(ξ)g(ξ)dω(ξ), (2.27)

whereWµ is the weight function (1.39). The inner product ⟨·, ·⟩I in (2.24) corresponds
to the limiting case of (2.27) when µ → −1. A result by Pérez, Piñar, and Xu [98,
Theorem 3.4] showed an explicit mutually orthogonal basis of V d

n (∇,Wµ), the space
of orthogonal polynomials with respect to (2.27), that is,

Theorem 2.11. [98, Theorem 3.4] For 0 ≤ j ≤ n/2, let
{
Y n−2j
ν : 1 ≤ ν ≤ adn−2j

}
be

an orthonormal basis of H d
n−2j. Define

Rn
0,ν(x) = Y n

ν (x),

Rn
j,ν(x) =

[
P

(µ,n−2j+ d−2
2

)

j (2∥x∥2 − 1)− P
(µ,n−2j+ d−2

2
)

j (1)
]
Y n−2j
ν (x), 1 ≤ j ≤ n/2,

Then
{
Rn

j,ν : 0 ≤ j ≤ n/2, 1 ≤ ν ≤ adn−2j

}
forms a mutually orthogonal basis of V d

n (∇,Wµ).
Furthermore,〈

Rn
0,ν , R

n
0,ν

〉
∇,Wµ

= λn
Γ(µ+ 2)Γ(n+ d/2)

Γ(n+ µ+ 1 + d/2)
+ 1,
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〈
Rn

j,ν , R
n
j,ν

〉
∇,Wµ

= λ(n(2j + µ+ 1)− j(2j − d+ 2))

× Γ(µ+ j + 1)Γ(n− j + d/2)(n+ µ− j + d/2)

j!Γ(n+ µ+ 1− j + d/2)(n+ µ+ d/2)

+ λ(n− 2j)
Γ(µ+ 2)Γ(n− 2j + d/2)(µ+ 1)2j

j2Γ(n− 2j + µ+ d/2)
, 1 ≤ j ≤ n/2.

Another result we found in Pérez, Piñar, and Xu [98, Theorem 3.5] is the following.

Theorem 2.12. [98, Theorem 3.5] Let µ > −1 and let P n
j,ν be the mutually orthogonal

polynomials in V d
n (Wµ), defined in (1.42). Then they are also mutually orthogonal

with respect to the Sobolev inner product:

⟨f, g⟩ = cµ

[∫
Bd

f(x)g(x)Wµ(x)dx+ λ

∫
Bd

∇f(x) · ∇g(x)Wµ+1(x)dx

]
, (2.28)

where λ > 0 is a fixed constant.

Notice that the parameters of the weight functions in (2.28) are µ and µ + 1.
According to Pérez, Piñar, and Xu [98], the orthogonal structure becomes far more
complicated if we want the weight functions have the same parameter. The main
result in [98, Theorem 5.2] showed a mutually orthogonal basis for V d

n (∇,Wµ,Bd),
the space of Sobolev orthogonal polynomials with respect to the inner product:

⟨f, g⟩∇,Wµ,Bd = cµ

[∫
Bd

f(x)g(x)Wµ(x)dx+ λ

∫
Bd

∇f(x) · ∇g(x)Wµ(x)dx

]
, (2.29)

with λ > 0 and µ > −1.

Theorem 2.13. [98, Theorem 5.2] Let λ > 0. For 0 ≤ j ≤ n/2, let βj := n−2j+ d−2
2

and let q
(µ,βj)
k (t) be the k-th Sobolev orthogonal polynomial associated with the inner

product ⟨·, ·⟩µ,βj
in (2.13). Let

{
Y n−2j
ν : 1 ≤ ν ≤ adn−2j

}
be an orthonormal basis of

H d
n−2j. Define

T n
j,ν(x) := q

(µ,βj)
j (2∥x∥2 − 1)Y n−2j

ν (x).

Then the set
{
T n
j,ν : 0 ≤ j ≤ n/2, 1 ≤ ν ≤ adn−2j

}
is a mutually orthogonal basis of

V d
n (∇,Wµ,Bd). Moreover,

〈
T n
j,ν , T

n
j,ν

〉
∇,Wµ,Bd :=

Γ(µ+ 1 + d/2)

Γ(µ+ 1)Γ(d/2)2βj+µ

〈
q
(µ,βj)
j , q

(µ,βj)
j

〉
µ,βj

.

Among several results on spherical harmonics, Pérez, Piñar, and Xu [98, Lemma 2.2]
provided the following result, with ∇0 the spherical part of the gradient (see equation
(1.34)).

Lemma 2.1. [98, Lemma 2.2] Let
{
Y n
ν : 1 ≤ ν ≤ adn

}
be an orthonormal basis of

H d
n . Let x = rξ, with r > 0 and ξ ∈ Sd−1. Then we have the following:
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1. ξ · ∇0Y
n
ν (x) = 0.

2. ∇Y n
ν (x) · ∇Y m

η (x) = 1
r2
∇0Y

n
ν (x) · ∇0Y

m
η (x) + nm

r2
Y n
ν (x)Y

m
η (x).

3. For 1 ≤ ν ≤ adn and 1 ≤ η ≤ adm, the following relation holds:

1

ωd−1

∫
Sd−1

∇Y n
ν (ξ) · ∇Y m

η (ξ)dω(ξ) = n(2n+ d− 2)δn,mδν,η. (2.30)

Delgado, Pérez, and Piñar [32] studied the Sobolev-type orthogonal polynomials
on the unit ball with respect to the inner product:

⟨f, g⟩S = ⟨f, g⟩µ + λ
N∑
k=0

∂f(sk)

∂n

∂g(sk)

∂n
, λ > 0, (2.31)

where ⟨·, ·⟩µ is the inner product (1.40) on the unit ball, N ∈ N, S = {s0, s1, . . . , sN}
is a set of N + 1 points on Sd−1, and ∂f/∂n is the normal derivative on Sd−1 given
by:

∂f(x)

∂n
= x1

∂f(x)

∂x1
+ x2

∂f(x)

∂x2
+ · · ·+ xd

∂f(x)

∂xd
.

In addition, ∂f(S)/∂n denotes the row vector of dimension N + 1:

∂f(S)

∂n
:=

(
∂f(s0)

∂n
,
∂f(s1)

∂n
, · · · , ∂f(sN)

∂n

)
.

If Kn(x,y), n ≥ 0, is the kernel function of Πd
n associated with the inner product

(1.40) defined by:

Kn(x,y) =
n∑

m=0

∑
|α|=m

Pm
α (x)Pm

α (y),

where {P n
α (x) : |α| = n}n≥0 is an orthonormal polynomial system on the unit ball

with respect to (1.40), and for n ≥ 1,

K(1,0)
n (x,y) =

n∑
m=0

∑
|α|=m

∂Pm
α (x)

∂n
Pm
α (y), (2.32)

K(1,1)
n (x,y) =

n∑
m=0

∑
|α|=m

∂Pm
α (x)

∂n

∂Pm
α (y)

∂n
, (2.33)

K(1,0)
n (S,y) =

(
K

(1,0)
n (s0,y), K

(1,0)
n (s1,y), · · · , K(1,0)

n (sN ,y)
)
, (2.34)

K(1,1)
n := K(1,1)

n (S, S) =
(
K

(1,1)
n (si, sj)

)N
i,j=0

, (2.35)

where K
(1,1)
n is a symmetric matrix of size (N+1)×(N+1), then a result with respect

to the inner product (2.31) is the following.
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Theorem 2.14. [32, Theorem 3.1] Let {P n
α (x) : |α| = n}n≥0 denote an orthonormal

polynomial system on the unit ball with respect to (1.40), and let K
(1,0)
n−1 (S,x) and K

(1,1)
n

be as in (2.34) and (2.35), respectively. Define the polynomials {Qn
α(x) : |α| = n}n≥0

by means of:

Q0
0(x) = P 0

0 (x),

Q1
α(x) = P 1

α(x), |α| = 1,

Qn
α(x) = P n

α (x)− λ
∂P n

α (S)

∂n
[I+ λK

(1,1)
n−1 ]

−1K
(1,0)
n−1 (S,x)

T , n ≥ 2, |α| = n,

there the superscript T denotes the transpose. Then {Qn
α(x) : |α| = n}n≥0 is a se-

quence of polynomials satisfying the following weak orthogonality with respect to the
Sobolev-type inner product (2.31):〈

Qn
α, Q

m
β

〉
S
= hnα,αδn,m, n,m ≥ 0, hnα,α > 0.

Additional results [32, Lemmas 4.1 and 4.2, Corollary 4.3] give explicit expressions

for computing the matrix K
(1,1)
n in terms of the Jacobi polynomials. These results on

the matrixK
(1,1)
n allowed the authors deduce asymptotics for the Christoffel functions,

which are the reciprocal of the kernel functions (see [32, Section 5]).

2.2.3 Sobolev orthogonal polynomials on the simplex

In two variables, Xu [114] studied in a extensive paper the approximation by poly-
nomials on the triangle T2 = {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ 1} in the Sobolev space
W r

2 , which consists of functions whose derivatives of up to r-th order have bounded
L2 norm. His work was motivated by the fact that with respect to the inner product:

⟨f, g⟩γ1,γ2,γ3 =
∫
T2

f(x, y)g(x, y)Wγ1,γ2,γ3(x, y)dxdy, (2.36)

with Wγ1,γ2,γ3(x, y) = xγ1yγ2(1 − x − y)γ3 , γ1, γ2, γ3 > −1, a mutually orthogonal
basis

{
P γ1,γ2,γ3
k,n : 0 ≤ k ≤ n

}
of V 2

n (Wγ1,γ2,γ3), the space of orthogonal polynomials
with respect to (2.36), is given by:

P γ1,γ2,γ3
k,n (x, y) := (x+y)kP

(γ1,γ2)
k

(
y − x

x+ y

)
P

(2k+γ1+γ2+1,γ3)
n−k (1−2x−2y), 0 ≤ k ≤ n,

where P
(α,β)
n denotes the Jacobi polynomial of degree n. Therefore, with respect to

this basis, the best polynomial approximation (Hilbert spaces theory) for a function
f ∈ L2(Wγ1,γ2,γ3) is given by its Fourier orthogonal expansion:

Sγ1,γ2,γ3
n f :=

n∑
m=0

m∑
k=0

f̂γ1,γ2,γ3
k,m P γ1,γ2,γ3

k,m , f̂γ1,γ2,γ3
k,m =

〈
f, P γ1,γ2,γ3

k,m

〉
γ1,γ2,γ3〈

P γ1,γ2,γ3
k,m , P γ1,γ2,γ3

k,m

〉
γ1,γ2,γ3

.

More precisely, the standard Hilbert space result shows that:

En(f)γ1,γ2,γ3 := inf
P∈Π2

n

∥f − P∥L2(Wγ1,γ2,γ3 )
= ∥f − Sγ1,γ2,γ3

n f∥L2(Wγ1,γ2,γ3 )
.
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Xu motivated with finding similar results on the Sobolev space W r
2 , in the first part

of his work he extended P γ1,γ2,γ3
k,n to negative parameters, by using the generalized

Jacobi polynomials Jα,β
n defined in (2.15), to the following definitions:

Jγ1,γ2,γ3
k,n (x, y) := (x+ y)kJγ1,γ2

k

(
y − x

x+ y

)
J2k+γ1+γ2+1,γ3
n−k (1− 2x− 2y), 0 ≤ k ≤ n,

Kγ1,γ2,γ3
k,n (x, y) := (1− y)kJγ3,γ1

k

(
2x

1− y
− 1

)
J2k+γ1+γ3+1,γ2
n−k (2y − 1), 0 ≤ k ≤ n,

Lγ1,γ2,γ3
k,n (x, y) := (1− x)kJγ2,γ3

k

(
1− 2y

1− x

)
J2k+γ2+γ3+1,γ1
n−k (2x− 1), 0 ≤ k ≤ n.

For γ1, γ2, γ3 ∈ R and n = 0, 1, 2, . . . , let V 2
n (Wγ1,γ2,γ3)J be the space spanned by{

Jγ1,γ2,γ3
k,n : 0 ≤ k ≤ n

}
. The spaces V 2

n (Wγ1,γ2,γ3)K and V 2
n (Wγ1,γ2,γ3)L are defined in

a similar way.

Proposition 2.1. [114, Proposition 4.2] If γ1, γ2, γ3 > −1 or −γ1,−γ2,−γ3 /∈ N then
V 2
n (Wγ1,γ2,γ3)J = V 2

n (Wγ1,γ2,γ3)K = V 2
n (Wγ1,γ2,γ3)L =: V 2

n (Wγ1,γ2,γ3), where =: means
we remove the subscript J,K, L when they are equal4.

Xu proved that the subspace V 2
n (Wγ1,γ2,−1)J is the space of orthogonal polynomials

for three different Sobolev inner products as shown in the propositions below.
For γ1, γ2 > −1, let the inner products:

⟨f, g⟩Jγ1,γ2,−1 =

∫
T2

[x∂xf(x, y)∂xg(x, y) + y∂yf(x, y)∂yg(x, y)]Wγ1,γ2,0(x, y)dxdy

+ λ

∫ 1

0

f(x, 1− x)g(x, 1− x)Wγ1,γ2,0(x, 1− x)dx, λ > 0,

⟨f, g⟩Kγ1,γ2,−1 =

∫
T2

x∂xf(x, y)∂xg(x, y)Wγ1,γ2,0(x, y)dxdy

+ λ

∫ 1

0

f(x, 1− x)g(x, 1− x)Wγ1,γ2,0(x, 1− x)dx, λ > 0,

⟨f, g⟩Lγ1,γ2,−1 =

∫
T2

y∂yf(x, y)∂yg(x, y)Wγ1,γ2,0(x, y)dxdy

+ λ

∫ 1

0

f(x, 1− x)g(x, 1− x)Wγ1,γ2,0(x, 1− x)dx, λ > 0.

Proposition 2.2. [114, Proposition 5.1] The space V 2
n (Wγ1,γ2,−1)J consists of ortho-

gonal polynomials of degree n with respect to ⟨·, ·⟩Jγ1,γ2,−1 and
{
Jγ1,γ2,−1
k,n : 0 ≤ k ≤ n

}
is a mutually orthogonal basis of this space.

Proposition 2.3. [114, Proposition 5.2] The set
{
Kγ1,γ2,−1

k,n : 0 ≤ k ≤ n
}
is a basis

of V 2
n (Wγ1,γ2,−1)J , and so is

{
Lγ1,γ2,−1
k,n : 0 ≤ k ≤ n

}
.

4In [114] the symbol V 2
n (Wγ1,γ2,γ3

) is used to denote the space of polynomials with respect
to (2.36) and, at the same time, to denote the equality between the spaces V 2

n (Wγ1,γ2,γ3
)J ,

V 2
n (Wγ1,γ2,γ3)K and V 2

n (Wγ1,γ2,γ3)L. Such an equality also holds for some triplets γ1, γ2, γ3 that
contain negative integers, but does not hold for all such triplets.
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Proposition 2.4. [114, Proposition 5.3] The set
{
Kγ1,γ2,−1

k,n : 0 ≤ k ≤ n
}
consists of

a mutually orthogonal basis of V 2
n (Wγ1,γ2,−1)J under the inner product ⟨·, ·⟩Kγ1,γ2,−1.

Proposition 2.5. [114, Proposition 5.4] The set
{
Lγ1,γ2,−1
k,n : 0 ≤ k ≤ n

}
consists of

a mutually orthogonal basis of V 2
n (Wγ1,γ2,−1)J under the inner product ⟨·, ·⟩Lγ1,γ2,−1.

He also defined suitable inner products for W r
2 , and he formally extended Sγ1,γ2,γ3

n f
to γ1, γ2, γ3 being −1 or −2. The main results on approximation are given in [114,
Theorem 1.2 and 1.3] where the extended polynomials S−1,−1,−1

n f and S−2,−2,−2
n f

appear.

2.2.4 Sobolev orthogonal polynomials on a product domain

Recently Fernández, Marcellán, Pérez, Piñar, and Xu [49] studied the orthogonal
polynomials in two variables with respect to the Sobolev inner product:

⟨f, g⟩S = c

∫
Ω

∇f(x, y) · ∇g(x, y)W (x, y)dxdy + λf(c1, c2)g(c1, c2), (2.37)

where ∇f =
(
∂xf, ∂yf

)T
is the gradient vector, (c1, c2) is a given point in R2,

Ω := [a1, b1] × [a2, b2] is a product domain, W (x, y) = w1(x)w2(y) is a non-negative
weight function which is obtained as a product of two weights in one variable, c =
1/
∫
Ω
W (x, y)dxdy is the normalization constant of W , and λ > 0. These authors

proposed a strategy for constructing the Sobolev polynomials with respect to (2.37),
which includes the definition of the product polynomials:

Qn
k(x, y) = qn−k(w1;x)qk(w2; y), 0 ≤ k ≤ n, n = 0, 1, 2, . . . , (2.38)

where qn(wi), i = 1, 2, is a monic polynomial of degree n in one variable defined by:

qn(wi;x) = pn(wi;x) + nan−1(wi)pn−1(wi;x) + nbn−1(wi)pn−2(wi;x), n ≥ 1,

which satisfies the property q′n(wi) = npn−1(wi), and {pn(wi;x)}n≥0 is a sequence of
self-coherent monic orthogonal polynomials with respect to the weight wi, that is,
this sequence satisfies also the relation:

pn(wi;x) =
p′n+1(wi;x)

n+ 1
+ an(wi)p

′
n(wi;x) + bn(wi)p

′
n−1(wi;x), n ≥ 1, (2.39)

where an(wi) and bn(wi) are real constants. Marcellán, Branquinho, and Petronilho
[76] proved that the only families of self-coherent polynomials on the real line are, up
to a linear change of variable, Hermite, Laguerre and Jacobi.

Let ⟨·, ·⟩∇ denote the bilinear form:

⟨f, g⟩∇ = c

∫
Ω

∇f(x, y) · ∇g(x, y)W (x, y)dxdy. (2.40)

If V 2
n (S) and V 2

n (∇) denote the space of orthogonal polynomials of degree n with
respect to (2.37) and (2.40), respectively, then the following result is given in [49].
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Proposition 2.6. [49, Proposition 2.3] For n ≥ 1, let {Sn
k : 0 ≤ k ≤ n} denote a

monic orthogonal basis of V 2
n (∇). Then, the monic orthogonal basis {Sn

k : 0 ≤ k ≤ n}
of V 2

n (S) is given by S0
0 (x, y) = 1 and

Sn
k (x, y) = Sn

k (x, y)− Sn
k (c1, c2), n ≥ 1.

The previous proposition justified working with (2.40) only. In order to find a
basis {Sn

k : 0 ≤ k ≤ n} for the space V 2
n (∇), the authors denoted by Qn the col-

umn vector Qn =
(
Qn

0 (x, y), Q
n
1 (x, y), . . . , Q

n
n(x, y)

)T
, where Qn

k(x, y) is defined in

(2.38), and by Sn =
(
Sn
0 (x, y), S

n
1 (x, y), . . . , S

n
n(x, y)

)T
the polynomials in the basis

{Sn
k : 0 ≤ k ≤ n}. Then, they proved [49, theorem 2.5] that there exist matrices An

and Bn such that:

Qn
c
= Sn +An−1Sn−1 +Bn−2Sn−2, (2.41)

where
c
= denotes a congruence relation on Π2, where two polynomials P and Q are

equal up to a generic constant c, that is, P (x, y)
c
= Q(x, y) if P (x, y) − Q(x, y) = c.

Equation (2.41) provided an iterative method for computing the polynomials in Sn in
the form Sn

c
= Qn−An−1Sn−1−Bn−2Sn−2. Then, two particular cases were discussed

by these authors: Laguerre-Laguerre weightWα,β(x, y) = xαe−xyβe−y, α, β > −1, and
Gegenbauer-Gegenbauer weight Wα,β(x, y) = (1−x2)α−1/2(1−y2)β−1/2, α, β > −1/2.

Following a similar strategy, Dueñas, Pinzón-Cortés, and Salazar-Morales [41]
studied the Sobolev orthogonal polynomials with respect to the bilinear form:

⟨f, g⟩S = c

∫
Ω

∇2f(x, y) · ∇2g(x, y)W (x, y)dxdy + λf(c1, c2)g(c1, c2), (2.42)

where ∇2f =
(
∂xxf, ∂xyf, ∂yxf, ∂yyf

)T
is the gradient or order two, and where the

remaining symbols in (2.42) have the same meaning that in (2.37). In this case,
similar results like those in [49] were obtained.



Chapter 3

Main results

3.1 List of publications

The results in Chapter 3 and Chapter 4 were considered for publication at different
journals. The following papers form a list of publications until February, 2022.

� Dueñas, Herbert A., Salazar-Morales, Omar, and Piñar, Miguel A. “Sobolev
orthogonal polynomials of several variables on product domains”. In: Mediterr.
J. Math. 18.5 (2021). Article 227, pp. 1–21

� Salazar-Morales, Omar and Dueñas, Herbert A. “Laguerre-Gegenbauer-Sobolev
orthogonal polynomials in two variables on product domains”. In: Rev. Colom-
biana Mat. (2021). Accepted. To appear

� Salazar-Morales, Omar and Dueñas, Herbert A. “Partial differential equations
for some families of Sobolev orthogonal polynomials”. Submitted to journal.
2022

3.2 Introduction

Chapter 1 was devoted for a basic background on standard orthogonal polynomials
in one and several variables. In Chapter 2 a state of the art on Sobolev polynomials
was presented. In this chapter we study some algebraic and analytic properties of the
Sobolev orthogonal polynomials in several variables with respect to the inner product
(2) that involves higher-order derivatives.

In order to get a better understanding of this chapter, the results of our study
were divided into sections that can be summarized as follows:

1. In a similar way that the gradient vector ∇f contains all the first-order partial
derivatives of a function f , in Section 3.3.1 we introduce a column vector, de-
noted by ∇κf , which contains all the partial derivatives of order κ ∈ N of f . In
this same section, we present some of its properties and related results.

43



3.2. Introduction 44

2. Our Sobolev inner product (2), denoted by ⟨·, ·⟩S, is presented in Section 3.3.2
and it is divided into a continuous (main) part and a discrete part. The contin-
uous part is denoted by ⟨·, ·⟩∇κ and it includes a non-negative weight function
W .

3. Some properties of ⟨·, ·⟩∇κ are developed in Section 3.3.3. In particular, we
will show that ⟨·, ·⟩∇κ is a positive semi-definite bilinear form, and therefore,
the orthogonal polynomials with respect to ⟨·, ·⟩∇κ can be determined up to a
polynomial of degree at most κ− 1. Even though this seems to be a drawback,
in Section 3.3.4 we will show that the orthogonal polynomials with respect to
⟨·, ·⟩S can be uniquely determined by means of the orthogonal polynomials with
respect to ⟨·, ·⟩∇κ and through a connection formula. Some additional properties
of this connection formula are presented in Section 3.3.5.

4. Since most of the work is reduced at studying the orthogonal polynomials with
respect to ⟨·, ·⟩∇κ , in Section 3.3.6 and Section 3.3.7 we present an iterative
method for constructing the polynomials with respect to this bilinear form.
This method requires explicit computation for the entries of some matrices that
are involved. This is performed for particular weight functions in Section 3.4.1
to Section 3.4.4.

5. Finally, in Section 3.4.1 to Section 3.4.4 we consider additional properties (in-
cluding partial differential equations) on each one of the following domains:

� A product domain:

Ω = [a1, b1]× [a2, b2]× · · · × [ad, bd] ,

where [ai, bi], i = 1, 2, . . . , d, is an interval of R.
� The simplex:

Ω = Td :=
{
x ∈ Rd : x1 ≥ 0, x2 ≥ 0, . . . , xd ≥ 0, 1− |x| ≥ 0

}
,

where |x| := x1 + x2 + · · ·+ xd.

� The unit ball:

Ω = Bd :=
{
x ∈ Rd : ∥x∥ ≤ 1

}
.

� The cone:

Ω = Vd
ϑ :=

{
x ∈ Rd : ∥xd−1∥ ≤ xd, 0 ≤ xd ≤ ϑ

}
, 0 < ϑ ≤ ∞,

where xd−1 = (x1, . . . , xd−1).
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3.3 General properties

The definition of our Sobolev inner product involves higher-order partial derivatives.
In addition, many of its properties are independent of the domain Ω where its con-
tinuous part is defined. In this section we present some of these properties. We begin
our study with the introduction of a column vector which contains all the partial
derivatives of order κ of a function f .

3.3.1 Gradient of order κ

Let f be a real-valued function of d variables x1, x2, . . . , xd, and let∇ =
(
∂1, ∂2, . . . , ∂d

)T
be the gradient operator. We define recursively the gradient of order κ ∈ N, which is
denoted by ∇κf , as the column vector:

∇κf :=


∂1(∇κ−1f)

∂2(∇κ−1f)

...

∂d(∇κ−1f)

 , κ ≥ 1, where ∇0f := f. (3.1)

Notice that ∇1f := ∇f . It is not difficult to show that ∇κ is a linear operator and
∇κf is a column vector of size dκ which contains all the partial derivatives of order
κ. Let us recall that if f has derivatives of all orders then the order of differentiation
does not matter. This is our case because we work with polynomials. Therefore,
∂i(∇κf) = ∇κ(∂if), i = 1, 2, . . . , d. We will use this property in the sequel.

Similarly, let x = (x1, x2, . . . , xd) ∈ Rd and y = (y1, y2, . . . , yd) ∈ Rd. We define
recursively the column vector (x− y)[κ], κ ∈ N, by:

(x− y)[κ] :=


(x1 − y1)(x− y)[κ−1]

(x2 − y2)(x− y)[κ−1]

...

(xd − yd)(x− y)[κ−1]

 , κ ≥ 1, where (x− y)[0] := 1. (3.2)

Notice that (x − y)[1] =
(
x1 − y1, x2 − y2, . . . , xd − yd

)T
, and therefore, (3.2) can be

written in terms of the Kronecker product [54, section 4.2], denoted by ⊗, in the
form (x − y)[κ] = (x − y)[1] ⊗ (x − y)[κ−1]. Let us observe that (x − y)[κ] is a
column vector of size dκ which contains all the possible products of the differences
x1 − y1, x2 − y2, . . . , xd − yd.

Proposition 3.1. Let κ ≥ 0, and let f and g be real-valued functions of d variables
with partial derivatives up to order κ. Then

∇κf · ∇κg =
∑
|α|=κ

(
κ

α1, α2, . . . , αd

)
∂αf∂αg, (3.3)
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where(
κ

α1, α2, . . . , αd

)
=

κ!

α1!α2! · · ·αd!
=
κ!

α!
, |α| = α1 + α2 + · · ·+ αd = κ,

denotes the multinomial coefficient.

Proof. We use mathematical induction on κ. The result is immediate for κ = 0. Let
us suppose that (3.3) holds for κ − 1, κ ≥ 1. Now, we use the induction hypothesis
on ∇κ−1(∂if) · ∇κ−1(∂ig), 1 ≤ i ≤ d, that is,

∇κ−1(∂if) · ∇κ−1(∂ig) =
∑

|α|=κ−1

(
κ− 1

α1, α2, . . . , αd

)
∂α(∂if)∂

α(∂ig).

Then, by its definition

∇κf · ∇κg =
d∑

i=1

∂i(∇κ−1f) · ∂i(∇κ−1g) =
d∑

i=1

∇κ−1(∂if) · ∇κ−1(∂ig),

and the property:

d∑
i=1

(
κ− 1

α1, α2, . . . , αi − 1, . . . αd

)
=

(
κ

α1, α2, . . . , αd

)
, α1 + α2 + · · ·+ αd = κ,

of the multinomial coefficients follows the result.

The proof of the following proposition is similar. Therefore, we omit it.

Proposition 3.2. Let κ ≥ 0, and let f be a real-valued function of d variables with
partial derivatives up to order κ with respect to x. Then

(x− y)[κ] · ∇κf =
∑
|α|=κ

(
κ

α1, α2, . . . , αd

)
(x− y)α∂αf.

It is well-known [44] that if P ∈ Pd
n is homogeneous polynomial of degree n then

its partial derivative ∂θP ∈ Pd
n−|θ|, θ ∈ Nd

0, is also a homogeneous polynomial of

degree n − |θ|. That is, if P (x) =
∑

|α|=n cαx
α then ∂θP (x) =

∑
|α|=n cα∂

θxα =∑
|α|=n cα(−1)|θ|(−α)θxα−θ is a linear combination of monomials of degree |α − θ| =

(α1−θ1)+ · · ·+(αd−θd) = n−|θ|. Some other properties that include ∇κ, when it is
applied to polynomials, are generalizations of well-known properties of the gradient
∇. For example, if P is a homogeneous polynomial of degree n, it is known [44] the
Euler’s equation:

d∑
i=1

xi∂iP (x) = nP (x), P ∈ Pd
n. (3.4)
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Therefore, homogeneous polynomials are eigenfunctions of the differential operator∑d
i=1 xi∂i. With our notation, the equation (3.4) can be written in the form (with

κ = 1 and y = 0):

x[1] · ∇P (x) = nP (x), P ∈ Pd
n. (3.5)

Now we present a generalization of (3.5) to higher-order derivatives.

Proposition 3.3. Let κ ≥ 0 and let p = (p1, p2, . . . , pd) be a given point in Rd. Then,
if P ∈ Πd

n is a polynomial of the form P (x) =
∑

|β|=n cβ(x − p)β, where cβ is a real
constant, then the following equation holds:

(x− p)[κ] · ∇κP (x) = (n− κ+ 1)κP (x). (3.6)

In particular, if P is a homogeneous polynomial then we have the following generalized
Euler’s equation:

x[κ] · ∇κP (x) = (n− κ+ 1)κP (x), P ∈ Pd
n. (3.7)

Proof. First notice that if P is of the form P (x) =
∑

|β|=n cβ(x − p)β, then ∂iP ,
1 ≤ i ≤ d, has the same form, that is:

∂iP (x) =
∑
|β|=n

cββi(x1 − p1)
β1 · · · (xi − pi)

βi−1 · · · (xd − pd)
βd (3.8)

=
∑

|ηi|=n−1

ĉηi(x− p)ηi ∈ Πd
n−1, ĉηi = cββi, ηi = (β1, . . . , βi − 1, . . . , βd).

(3.9)

For κ = 0 the equation (3.6) is immediate. For κ = 1, by (3.8) we have that:

(x− p)[1] · ∇P (x) =
d∑

i=1

(xi − pi)∂iP (x) = nP (x), (3.10)

and (3.6) also holds in this case. Let us suppose that the proposition holds for κ− 1,
κ ≥ 1. By the induction hypothesis applied to ∂iP ∈ Πd

n−1 we have that:

(x− p)[κ−1] · ∇κ−1∂iP (x) = (n− κ+ 1)κ−1∂iP (x), 1 ≤ i ≤ d. (3.11)

Then by (3.1), (3.2), (3.10) and (3.11):

(x− p)[κ] · ∇κP (x) =
d∑

i=1

(xi − pi)(x− p)[κ−1] · ∇κ−1∂iP (x)

= (n− κ+ 1)κ−1

d∑
i=1

(xi − pi)∂iP (x) = (n− κ+ 1)κP (x).

Finally, equation (3.7) follows with P ∈ Pd
n and p = 0.
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3.3.2 Sobolev inner product

Let κ ∈ N be a fixed number. We denote by V d
n (S,W ) the linear space of Sobolev

orthogonal polynomials of total degree n in d variables with respect to the inner
product:

⟨f, g⟩S = c

∫
Ω

∇κf(x) · ∇κg(x)W (x)dx+
κ−1∑
i=0

λi∇if(p) · ∇ig(p), (3.12)

with Ω ⊆ Rd being a domain having a non-empty interior, and where1 λi > 0 for
i = 0, 1, . . . , κ− 1, W is a non-negative weight function on Ω, c is the normalization
constant of W , that is,

c :=

(∫
Ω

W (x)dx

)−1

,

and p = (p1, p2, . . . , pd) is a given point in Rd, typically on the boundary of Ω. The
sum in (3.12) is added to make the inner product well-defined on Πd. For ⟨·, ·⟩S we
denote its continuous (main) part by:

⟨f, g⟩∇κ := c

∫
Ω

∇κf(x) · ∇κg(x)W (x)dx, (3.13)

where we observe that ⟨·, ·⟩∇κ can be defined for κ = 0 by ⟨·, ·⟩∇0 := ⟨·, ·⟩W , where
⟨·, ·⟩W is the inner product:

⟨f, g⟩W := c

∫
Ω

f(x)g(x)W (x)dx. (3.14)

We denote by ∥·∥W :=
√
⟨·, ·⟩W the norm induced by (3.14). In addition, we denote by

V d
n (W ) the space of orthogonal polynomials with respect to (3.14), and by V d

n (∇κ,W )
the linear space of orthogonal polynomials of total degree n with respect to (3.13).
Then ⟨·, ·⟩S can be written as:

⟨f, g⟩S = ⟨f, g⟩∇κ +
κ−1∑
i=0

λi∇if(p) · ∇ig(p).

We will give some properties of (3.13) in order to find a connection formula between
polynomials in the spaces V d

n (∇κ,W ) and V d
n (S,W ).

3.3.3 Some properties of ⟨·, ·⟩∇κ

Observe that the recursive definition of ∇κf implies for κ ≥ 1 that:

⟨f, g⟩∇κ = c

∫
Ω

(
d∑

i=1

∇κ−1(∂if) · ∇κ−1(∂ig)

)
W (x)dx

1If we choose λ0 = 1, then we get the normalization ⟨1, 1⟩S = 1 for this Sobolev inner product.
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=
d∑

i=1

c

∫
Ω

∇κ−1(∂if) · ∇κ−1(∂ig)W (x)dx =
d∑

i=1

⟨∂if, ∂ig⟩∇κ−1 ,

and more generally we have the following proposition.

Proposition 3.4. Let κ ≥ 0. Then ⟨·, ·⟩∇κ is a symmetric bilinear form which is
positive semidefinite and it is related to the inner product ⟨·, ·⟩W by:

⟨f, g⟩∇κ =
∑
|α|=κ

(
κ

α1, α2, . . . , αd

)
⟨∂αf, ∂αg⟩W , α = (α1, α2, . . . , αd) ∈ Nd

0. (3.15)

Proof. That ⟨·, ·⟩∇κ is a symmetric bilinear form which is positive semidefinite follows
from its definition. Equation (3.15) follows by (3.13), (3.14) and (3.3).

The bilinear form ⟨·, ·⟩∇κ is not an inner product on Πd, except for κ = 0. To see
this, if κ ≥ 1 and P ∈ Πd

0, P ̸= 0, then ⟨P, P ⟩∇κ = 0 but P ̸= 0. As a consequence the
orthogonal polynomials with respect to ⟨·, ·⟩∇κ can be determined up to a polynomial
of degree at most κ− 1 as we will show in the sequel.

For κ ≥ 1 we adopt the following notation for two polynomials P and Q of d
variables that are equal up to a polynomial of degree at most κ− 1:

P
κ−1
= Q if P −Q ∈ Πd

κ−1.

The relation
κ−1
= is a congruence relation2 on Πd. We denote by ∥ · ∥∇κ the seminorm

∥ · ∥∇κ :=
√

⟨·, ·⟩∇κ induced by ⟨·, ·⟩∇κ . Next we show a characterization of
κ−1
= in

terms of ∇κ, ⟨·, ·⟩∇κ and ∥ · ∥∇κ .

Proposition 3.5. Let P,Q ∈ Πd and κ ≥ 1. The following statements are equivalent.

1. P
κ−1
= Q,

2. ⟨P,R⟩∇κ = ⟨Q,R⟩∇κ for all R ∈ Πd,

3. ∥P −Q∥∇κ = 0,

4. ∇κP = ∇κQ.

Proof. If P
κ−1
= Q then P − Q ∈ Πd

κ−1. Then ∇κ(P − Q) = 0 and as a consequence
⟨P −Q,R⟩∇κ = 0, that is, ⟨P,R⟩∇κ = ⟨Q,R⟩∇κ for all R ∈ Πd.

If ⟨P,R⟩∇κ = ⟨Q,R⟩∇κ for all R ∈ Πd then, in particular, for R = P −Q ∈ Πd we
have:

0 = ⟨P,R⟩∇κ − ⟨Q,R⟩∇κ = ⟨P −Q,R⟩∇κ = ⟨P −Q,P −Q⟩∇κ = ∥P −Q∥2∇κ .

2A congruence relation is an equivalence relation (reflexivity, symmetry, transitivity) which sat-
isfies the compatibility property [20, Definition 5.1] with the operations of the linear space Πd: if
P,Q,R, S ∈ Πd then P

κ−1
= Q implies (aP )

κ−1
= (aQ), a ∈ R, and P

κ−1
= Q and R

κ−1
= S imply

(P +R)
κ−1
= (Q+ S).
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If ∥P −Q∥∇κ = 0 then by (3.15):

0 = ∥P −Q∥2∇κ = ⟨P −Q,P −Q⟩∇κ =
∑
|α|=κ

(
κ

α1, . . . , αd

)
∥∂α(P −Q)∥2W ,

which implies that ∂αP = ∂αQ for all α ∈ Nd
0 such that |α| = κ, that is, ∇κP = ∇κQ.

Finally, if ∇κP = ∇κQ then ∇κ(P − Q) = 0. Therefore, P − Q is a polynomial
of degree at most κ− 1, that is, P

κ−1
= Q.

Let [P ] denote the equivalence class that contains P ∈ Πd due to the congruence
relation

κ−1
= . The equivalence class that contains the zero polynomial is exactly the

subspace Πd
κ−1, that is:

[0] =
{
P ∈ Πd : P

κ−1
= 0

}
= Πd

κ−1.

Let us observe that if P is any polynomial in Πd
κ−1 (that is, ∇κP = 0) and if S is a

polynomial in V d
n (∇κ,W ) (that is, ⟨S,Q⟩∇κ = 0 for all Q ∈ Πd

n−1) then S + P is also
in V d

n (∇κ,W ) because of the equality ⟨S + P,Q⟩∇κ = ⟨S,Q⟩∇κ = 0 for all Q ∈ Πd
n−1.

Then the polynomials in V d
n (∇κ,W ) are determined up to a polynomial of degree at

most κ− 1. This remark is important and it seems to be a drawback but, as we will
see later, the polynomials in the space V d

n (S,W ) do not depend on the representative
we choose of each equivalence class.

3.3.4 Connection formula between polynomials in the spaces
V d
n (∇κ,W ) and V d

n (S,W )

Let us recall (see [43, pp. 51] and Section 1.4) that the Taylor polynomial T κ−1(P,p;x)
of total degree κ− 1 in d variables of P ∈ Πd at p = (p1, p2, . . . , pd) ∈ Rd is given by:

T κ−1(P,p;x) =
∑

|β|≤κ−1

(∂βP )(p)

β!
(x− p)β (3.16)

=
κ−1∑
i=0

1

i!
(∇iP )(p) · (x− p)[i], (3.17)

and the corresponding remainder term (and its integral form) in the Taylor’s formula
is:

Rκ(P,p;x) = P (x)− T κ−1(P,p;x) (3.18)

=
∑
|β|=κ

(x− p)β

β!

∫ 1

0

κ(1− t)κ−1(∂βP )(p+ t(x− p))dt (3.19)

=

∫ 1

0

(1− t)κ−1

(κ− 1)!
(x− p)[κ] · (∇κP )(p+ t(x− p))dt, (3.20)
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where the expressions (3.17) and (3.20) follow from Proposition 3.2. Notice that,
because of the linearity of ∂β, if P,Q ∈ Πd and a, b ∈ R then:

T κ−1(aP + bQ,p;x) = aT κ−1(P,p;x) + bT κ−1(Q,p;x),

Rκ(aP + bQ,p;x) = aRκ(P,p;x) + bRκ(Q,p;x),

that is,

Πd 7→ Πd : P 7→ T κ−1(P,p), (3.21)

Πd 7→ Πd : P 7→ Rκ(P,p), (3.22)

are linear operators. A well-known property of the Taylor polynomial (3.16) is that,
at the point p ∈ Rd, it satisfies:

(∂θP )(p) = (∂θT κ−1(P,p))(p), |θ| ≤ κ− 1,

which implies that:

(∂θRκ(P,p))(p) = 0, |θ| ≤ κ− 1,

or the latter in a vector form:

(∇iRκ(P,p))(p) = 0, 0 ≤ i ≤ κ− 1.

Therefore, if P,Q ∈ Πd, and since ∇κT κ−1(P,p;x) = 0, then:

⟨Rκ(P,p), Q⟩S = ⟨Rκ(P,p), Q⟩∇κ +
κ−1∑
i=0

λi (∇iRκ(P,p))(p)︸ ︷︷ ︸
=0

·(∇iQ)(p) = ⟨P,Q⟩∇κ . (3.23)

From the last equation, in particular, if P ∈ V d
n (∇κ,W ), Q ∈ Πd

n−1, n ≥ κ, then
by (3.18), Rκ(P,p) is a polynomial of degree n for which ⟨Rκ(P,p), Q⟩S = 0 for all
Q ∈ Πd

n−1, that is, Rκ(P,p) ∈ V d
n (S,W ). This shows that the linear operator:

Rκ,p : V d
n (∇κ,W ) 7→ V d

n (S,W ) : P 7→ Rκ(P,p), n ≥ κ,

is well-defined. Based on these properties, we have the following theorem.

Theorem 3.1. Let {Sn
α : |α| = n} denote a monic orthogonal basis of V d

n (∇κ,W ).
Then, a monic orthogonal basis {Sn

α : |α| = n} of V d
n (S,W ) is given by:

Sn
α(x) = (x− p)α, 0 ≤ |α| = n < κ, (3.24)

Sn
α(x) = Sn

α(x)− T κ−1(Sn
α,p;x), |α| = n ≥ κ, (3.25)

where (x−p)α denotes the shifted monomial (x1−p1)
α1(x2−p2)

α2 · · · (xd−pd)
αd and

T κ−1(Sn
α,p;x) denotes the Taylor polynomial of total degree κ − 1 in d variables of

Sn
α at p = (p1, p2, . . . , pd).
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Proof. It is not difficult to see that (3.24) and (3.25) are monic of degree exactly n,
that is, Sn

α is of the form Sn
α(x) = xα + Rα(x), |α| = n, Rα ∈ Πd

n−1, if S
n
α is monic.

Now we prove the orthogonality of Sn
α with respect to ⟨·, ·⟩S. We consider two cases.

Case 0 ≤ |α| = n < κ in (3.24): If n = 0 we have nothing to prove. Let
n ≥ 1 and Q ∈ Πd

n−1. If n < i ≤ κ then ∇iSn
α = 0, and also ∇nQ = 0 and

∇0Sn
α(p) := Sn

α(p) = 0. Therefore ⟨Sn
α , Q⟩S in (3.12) reduces to:

⟨Sn
α , Q⟩S =

n−1∑
i=1

λi∇iSn
α(p) · ∇iQ(p).

Now for 1 ≤ i ≤ n−1 let us observe that each entry in the vector ∇iSn
α = ∇i(x−p)α

is a polynomial of total degree n − i > 0, therefore each entry in ∇iSn
α has at least

one factor of the form (xj −pj) for some j ∈ {1, 2, . . . , d}, where we get ∇iSn
α(p) = 0.

Consequently, ⟨Sn
α , Q⟩S = 0 for all Q ∈ Πd

n−1.
Case |α| = n ≥ κ in (3.25): By hypothesis ⟨Sn

α, Q⟩∇κ = 0 for all Q ∈ Πd
n−1. Since

(∇iSn
α)(p) = (∇iT κ−1(Sn

α,p))(p) for all i = 0, 1, . . . , κ−1, and also ∇κT κ−1(Sn
α,p) =

0 then:

⟨Sn
α , Q⟩S =

〈
Sn
α − T κ−1(Sn

α,p), Q
〉
∇κ +

κ−1∑
i=0

λi ∇i(Sn
α − T κ−1(Sn

α,p))(p)︸ ︷︷ ︸
=0

·∇iQ(p)

=
〈
Sn
α − T κ−1(Sn

α,p), Q
〉
∇κ = ⟨Sn

α, Q⟩∇κ = 0,

for all Q ∈ Πd
n−1.

Remark 3.1. Notice that if P ∈ Πd
κ−1 then T κ−1(P,p;x) = P (x) for all x. As a

consequence, if S ∈ Πd is such that S
κ−1
= Sn

α, that is, S(x) = Sn
α(x) + P (x) where

P ∈ Πd
κ−1, then:

S(x)− T κ−1(S,p;x) = (Sn
α + P )(x)− T κ−1(Sn

α + P,p;x)

= Sn
α(x) + P (x)− T κ−1(Sn

α,p;x)− T κ−1(P,p;x)

= Sn
α(x)− T κ−1(Sn

α,p;x).

Therefore, the polynomial Sn
α in (3.25) does not depend on the representative we

choose of each equivalence class due to the congruence relation
κ−1
= .

Theorem 3.1 shows it is only necessary to work with the bilinear form ⟨·, ·⟩∇κ and
on the set Πd\Πd

κ−1 (polynomials of degree at least κ). Notice that the polynomials in
V d
n (∇κ,W ) are determined up to a polynomial of degree at most κ−1, but according

to Theorem 3.1 and the previous remark, this issue does not affect the polynomials
in V d

n (S,W ).

3.3.5 Some consequences of the connection formula

In this section we present some consequences of (3.25) in the case n ≥ κ. Let us
observe that for any polynomial in several variables P ∈ Πd, the Taylor polynomial
of P at p satisfies the following relation:

∂θT k−1(P,p;x) = T k−|θ|−1(∂θP,p;x), θ ∈ Nd
0, |θ| ≤ κ− 1. (3.26)
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Equation (3.26) can be proved directly from (3.16) and it implies, by (3.18), that:

∂θRκ(P,p;x) = Rκ−|θ|(∂
θP,p;x), |θ| ≤ κ− 1, (3.27)

∂θRκ(P,p;x) = ∂θP (x), |θ| > κ− 1. (3.28)

Then, for the monic orthogonal basis {Sn
α : |α| = n} of V d

n (S,W ) given in Theo-
rem 3.1 we have that the partial derivatives of Sn

α are given for the case |α| = n ≥ κ
by:

∂θSn
α(x) = ∂θSn

α(x)− T k−|θ|−1(∂θSn
α,p;x) = Rκ−|θ|(∂

θSn
α,p;x), |α| = n ≥ k > |θ|,

∂θSn
α(x) = ∂θSn

α(x), |α| = n ≥ k, |θ| ≥ k.

These two last equations and the Taylor’s formula prove the following result.

Proposition 3.6. Let P ∈ V d
n (S,W ). Then, the partial derivative ∂θP , θ ∈ Nd

0,
satisfies the equation:

Rκ−|θ|(∂
θP,p) = ∂θP, n ≥ κ > |θ|.

And moreover, (∂θP )(p) = 0, n ≥ κ > |θ|, or the latter in a vector form:

(∇iP )(p) = 0, n ≥ κ > i. (3.29)

In particular, for θ = (0, 0, . . . , 0), the polynomial P satisfies the equation:

Rκ(P,p) = P, n ≥ κ. (3.30)

Proof. Let n ≥ κ and let {Sn
α : |α| = n} and {Sn

α : |α| = n} be monic orthogonal bases
of V d

n (S,W ) and V d
n (∇κ,W ), respectively, as in Theorem 3.1. Let us observe that

Sn
α , given in (3.25), is Sn

α = Rκ(S
n
α,p). Then, by (3.27) and (3.19), we have that:

∂θSn
α(x) = ∂θRκ(S

n
α,p;x) = Rκ−|θ|(∂

θSn
α,p;x) =∑

|η|=κ−|θ|

(x− p)η

η!

∫ 1

0

(κ− |θ|)(1− t)κ−|θ|−1(∂η+θSn
α)(p+ t(x−p))dt, |θ| < κ.

(3.31)

Since the multi-index η + θ in (3.31) satisfies |η + θ| = |η| + |θ| = κ, we have
again by (3.25) that ∂η+θSn

α = ∂η+θSn
α. Therefore, the right-hand side of (3.31)

is equal to Rκ−|θ|(∂
θSn

α ,p), that is, we have the equality ∂θSn
α = Rκ−|θ|(∂

θSn
α ,p).

Now, (∂θSn
α)(p) = 0 because the remainder term Rκ−|θ|(∂

θSn
α ,p;x) vanishes at

x = p. The result follows by the linearity of Rκ−|θ|(·,p) on its first argument
and because P ∈ V d

n (S,W ) is a linear combination of the polynomials in the ba-
sis {Sn

α : |α| = n}.

Notice that (3.29) implies that if P ∈ V d
n (S,W ), n ≥ κ, then

0 = ⟨P,Q⟩S = ⟨P,Q⟩∇κ +
κ−1∑
i=0

λi (∇iP )(p)︸ ︷︷ ︸
=0

·(∇iQ)(p), Q ∈ Πd
n−1,
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that is, P ∈ V d
n (∇κ,W ). Then, by (3.30), the linear operator Rκ,p is surjective. It

is not difficult to prove that kerRκ,p = Πd
κ−1. Therefore, by the first isomorphism

theorem [20, theorem 6.12], there is an isomorphism Sκ,p from the linear quotient
space V d

n (∇κ,W )/Πd
κ−1 to the linear space V d

n (S,W ) defined by Rκ,p = Sκ,p ◦ N ,
where N is the natural mapping defined by N (P ) = [P ], P ∈ V d

n (∇κ,W ), such that
the following diagram commutes.

V d
n (∇κ,W ) V d

n (S,W )

V d
n (∇κ,W )/Πd

κ−1

N

Rκ,p

Sκ,p

Recall that on the linear space V d
n (∇κ,W )/Πd

κ−1 the operations [P ]+[Q] := [P+Q]
and a[P ] := [aP ], a ∈ R, P,Q ∈ V d

n (∇κ,W ), are well-defined. On the quotient space
V d
n (∇κ,W )/Πd

κ−1 there is a well-defined inner product (that is, it does not depend on
the representative we choose of each equivalence class), induced by the bilinear form
⟨·, ·⟩∇κ , defined by

⟨[P ], [Q]⟩V d
n (∇κ,W )/Πd

κ−1
:= ⟨P,Q⟩∇κ , P,Q ∈ V d

n (∇κ,W ).

Moreover, (3.23) implies that

⟨[P ], [Q]⟩V d
n (∇κ,W )/Πd

κ−1
= ⟨Sκ,p([P ]),Sκ,p([Q])⟩S , P,Q ∈ V d

n (∇κ,W ),

that is, V d
n (∇κ,W )/Πd

κ−1 and V d
n (S,W ), n ≥ κ, are isomorphic inner product spaces.

Remark 3.2. The multinomial theorem [1, Section 24.1.2] in d variables:

(x1 + x2 + · · ·+ xd)
κ =

∑
|θ|=κ

(
κ

θ1, θ2, . . . , θd

)
xθ, xθ = xθ11 x

θ2
2 · · · xθdd , (3.32)

proves the factored form of the differential operator:

(∂1 + ∂2 + · · ·+ ∂d)
κ =

∑
|θ|=κ

(
κ

θ1, θ2, . . . , θd

)
∂θ, ∂θ = ∂θ11 ∂

θ2
2 · · · ∂θdd , (3.33)

which appears in Proposition 3.7.

Proposition 3.7. Let n ≥ κ, and let P ∈ V d
n (S,W ) or let P ∈ V d

n (∇κ,W ). Then:

(∂1 + ∂2 + · · ·+ ∂d)
κP ∈ V d

n−κ(W ). (3.34)

Proof. Notice that for any monomial xβ we have:

∂θxβ =


β!

(β − θ)!
xβ−θ, θ ≤ β,

0, θ ≰ β,
θ, β ∈ Nd

0,
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and for a fixed multi-index θ ∈ Nd
0 we have the equality of sets:{

β ∈ Nd
0 : |β| ≤ n− 1, θ ≤ β

}
=
{
η + θ ∈ Nd

0 : |η| ≤ n− |θ| − 1
}
.

If P ∈ V d
n (∇κ,W ), and since

{
xβ

β!
: |β| ≤ n− 1

}
is a basis of Πd

n−1, then by (3.15)

and the orthogonality of P with respect to ⟨·, ·⟩∇κ , we have that:

0 =

〈
P,

xβ

β!

〉
∇κ

=
∑
|θ|=κ

(
κ

θ1, . . . , θd

)〈
∂θP, ∂θ

(
xβ

β!

)〉
W

=
∑
|θ|=κ

(
κ

θ1, . . . , θd

)〈
∂θP,

xβ−θ

(β − θ)!︸ ︷︷ ︸
|β|≤n−1, θ≤β

〉
W

=
∑
|θ|=κ

(
κ

θ1, . . . , θd

)〈
∂θP,

xη

η!︸︷︷︸
|η|≤n−κ−1

〉
W

=

〈∑
|θ|=κ

(
κ

θ1, . . . , θd

)
∂θP,

xη

η!

〉
W

,

where we conclude that (∂1+∂2+ · · ·+∂d)κP =
∑
|θ|=κ

(
κ

θ1, . . . , θd

)
∂θP is a polynomial

of degree n−κ that is orthogonal to all polynomials in Πd
n−κ−1 with respect to ⟨·, ·⟩W ,

that is, we have (3.34). If P ∈ V d
n (S,W ) then by (3.29) we have that:

0 =

〈
P,

xβ

β!

〉
S

=

〈
P,

xβ

β!

〉
∇κ

+
κ−1∑
i=0

λi (∇iP )(p)︸ ︷︷ ︸
=0

·
(
∇ixβ/β!

)
(p), |β| ≤ n− 1.

We follow the same steps as above and again we conclude (3.34).

Notice that if the polynomials in the space V d
n (W ) are eigenfunctions of some

differential operator L, that is,

LP = λnP, P ∈ V d
n (W ), (3.35)

where λn is an eigenvalue which depends on the degree n only, then Proposition 3.7
implies that the polynomials in the space V d

n (S,W ) (or V d
n (∇κ,W )) satisfy a partial

differential equation of the form:

[L − λn−κI](∂1 + ∂2 + · · ·+ ∂d)
κP = 0, (I is the identity operator).

Equations (1.17), (1.21), (1.31), (1.43), (1.45), (1.56), and (1.60) are examples of the
more general equation (3.35). Therefore, for those equations we have some corollaries
in Section 3.4.1 to Section 3.4.4.
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3.3.6 Construction of a basis for the space V d
n (∇κ,W )

Theorem 3.1 shows that we only need to know a basis for the space V d
n (∇κ,W ) for

n ≥ κ. In this section we present an iterative method for constructing such a basis.
As in Theorem 3.1, let us denote by {Sn

α : |α| = n} and {Sn
α : |α| = n}monic ortho-

gonal bases of V d
n (∇κ,W ) and V d

n (S,W ), respectively. We know that dimV d
n (∇κ,W ) =

dimV d
n (S,W ) = rdn. The elements of these two bases can be arranged in a vector

form. We denote by Sn and Sn the column vectors:

Sn(x) =
(
Sn
α(1)(x), S

n
α(2)(x), . . . , S

n

α(rdn)
(x)
)T

,

Sn(x) =
(
Sn
α(1)(x),Sn

α(2)(x), . . . ,Sn

α(rdn)
(x)
)T

,

where α(1), α(2), . . . , α(rdn) is the arrangement of elements in
{
α ∈ Nd

0 : |α| = n
}

ac-
cording to the reverse lexicographical order. Then, by Theorem 3.1 we have that:

Sn(x) =
(
(x− p)α

(1)
, (x− p)α

(2)
, . . . , (x− p)α

(rdn)

)T
, 0 ≤ n < κ,

Sn(x) = Sn(x)− T κ−1(Sn,p;x), n ≥ κ,

where T κ−1(Sn,p) denotes the column vector:

T κ−1(Sn,p) =
(
T κ−1(Sn

α(1) ,p), T κ−1(Sn
α(2) ,p), . . . , T κ−1(Sn

α(rdn)
,p)
)T

.

In addition, with this notation
〈
Sn,ST

m

〉
∇κ and

〈
Sn,S

T
m

〉
S
are both matrices of

size rdn × rdm such that

〈
Sn, ST

m

〉
∇κ =

(〈
Sn
α(i) , S

m
β(j)

〉
∇κ

)
1≤i≤rdn,1≤j≤rdm

=

{
0, n ̸= m,

H∇κ

n , n = m,〈
Sn,S

T
m

〉
S
=

(〈
Sn
α(i) ,Sm

β(j)

〉
S

)
1≤i≤rdn,1≤j≤rdm

=

{
0, n ̸= m,

HS
n, n = m,

where H∇κ

n and HS
n are both symmetric matrices.

Remark 3.3. Even though the polynomials in the space V d
n (∇κ,W ) are determined

up to a polynomial of degree κ − 1, notice that the matrix
〈
Sn,ST

m

〉
∇κ is well-

defined. If P n
α(i) , Q

m
β(j) ∈ Πd are such that Sn

α(i)

κ−1
= P n

α(i) and Sm
β(j)

κ−1
= Qm

β(j) , that

is, Sn
α(i)(x) = P n

α(i)(x) + Q(x) and Sm
β(j)(x) = Qm

β(j)(x) + R(x), with Q,R ∈ Πd
κ−1,

then
〈
Sn
α(i) , S

m
β(j)

〉
∇κ

=
〈
P n
α(i) , Q

m
β(j)

〉
∇κ

, because ∇κQ = ∇κR = 0. Then, each entry

in
〈
Sn,ST

m

〉
∇κ does not depend on the representative we choose of each equivalence

class. In particular, H∇κ

n is well-defined.

Let us observe that H∇κ

n and HS
n are given by:

H∇κ

n :=
〈
Sn,ST

n

〉
∇κ =

(〈
Sn
α(i) , S

n
α(j)

〉
∇κ

)rdn
i,j=1

, (3.36)
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HS
n :=

〈
Sn,S

T
n

〉
S
=
(〈

Sn
α(i) ,Sn

α(j)

〉
S

)rdn
i,j=1

, (3.37)

that is, (3.36) and (3.37) are Gram matrices [53, pp. 407]. Therefore, they are always

positive semi-definite. To see this in the case of H∇κ

n , let a =
(
a1, a2, . . . , ardn

)T
be a

non-null column vector in Rrdn , then

aTH∇κ

n a =

rdn∑
i=1

rdn∑
j=1

aiaj
〈
Sn
α(i) , S

n
α(j)

〉
∇κ =

rdn∑
i=1

rdn∑
j=1

〈
aiS

n
α(i) , ajS

n
α(j)

〉
∇κ =

〈
rdn∑
i=1

aiS
n
α(i) ,

rdn∑
j=1

ajS
n
α(j)

〉
∇κ

=

∥∥∥∥∥∥
rdn∑
i=1

aiS
n
α(i)

∥∥∥∥∥∥
2

∇κ

≥ 0.

(3.38)

In fact, since ⟨·, ·⟩S is an inner product then HS
n is positive definite, but this is not

always the case for H∇κ

n as we will show in the following proposition.

Proposition 3.8. H∇κ

n =
〈
Sn,ST

n

〉
∇κ is positive definite if, and only if, n ≥ κ.

Proof. If n < κ then every polynomial in the set {Sn
α : |α| = n} has degree at most

κ−1. Then, ∇κSn
α = 0 and as a consequence ⟨Sn

α, Q⟩∇κ = 0 for all Q ∈ Πd. Therefore,

H∇κ

n =
〈
Sn, ST

n

〉
∇κ =

(〈
Sn
α(i) , S

n
α(j)

〉
∇κ

)rdn
i,j=1

= 0 and H∇κ

n is not positive definite.

Conversely, let us suppose n ≥ κ. Since the polynomial
∑rdn

i=1 aiS
n
α(i) = aTSn in

(3.38) has degree n, a ∈ Rrdn , a ̸= 0, then aTSn /∈ Πd
κ−1 = [0(x)], where 0(x) is the

zero polynomial, that is, aTSn

κ−1

̸= 0(x). By Proposition 3.5 we have that:∥∥∥∥∥∥
rdn∑
i=1

aiS
n
α(i)(x)− 0(x)

∥∥∥∥∥∥
∇κ

=

∥∥∥∥∥∥
rdn∑
i=1

aiS
n
α(i)

∥∥∥∥∥∥
∇κ

̸= 0.

Therefore, from (3.38) we have that H∇κ

n is positive definite.

Corollary 3.1. H∇κ

n =
〈
Sn,ST

n

〉
∇κ is non-singular if, and only if, n ≥ κ.

Proof. Let us denote by λ(H∇κ

n ) an eigenvalue of H∇κ

n . In the proof of Proposition 3.8
we showed that if n < κ then H∇κ

n = 0 and, therefore, H∇κ

n is singular.
Conversely, if n ≥ κ thenH∇κ

n is positive definite by Proposition 3.8, and therefore

λi(H
∇κ

n ) > 0 for all i = 1, 2, . . . , rdn. As a consequence det(H∇κ

n ) =
∏rdn

i=1 λi(H
∇κ

n ) > 0
and we conclude that H∇κ

n is non-singular.

The following proposition shows a relation between the matrices HS
n and H∇κ

n .

Proposition 3.9. Let λi > 0, i = 0, 1, . . . , κ − 1 be the positive constants in the
Sobolev inner product (3.12), and let H∇κ

n and HS
n be defined in (3.36) and (3.37),

respectively. Then:

HS
n = λnn! diag

(
α(1)!, α(2)!, . . . , α(rdn)!

)
, |α(i)| = n, 1 ≤ i ≤ rdn, 0 ≤ n < κ,

HS
n = H∇κ

n , n ≥ κ.
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Proof. Case 0 ≤ |α| = n < κ in (3.24): Since ∇iSn
α = ∇i(x − p)α = 0 if n < i ≤ κ,

then by (3.3) and for all Q ∈ Πd the inner product ⟨Sn
α , Q⟩S in (3.12) reduces to:

⟨Sn
α , Q⟩S =

n∑
i=0

λi∇iSn
α(p) · ∇iQ(p) =

n∑
i=0

λi
∑
|θ|=i

(
i

θ1, . . . , θd

)
∂θSn

α(p)∂
θQ(p). (3.39)

But ∂θSn
α(x) = ∂θ(x−p)α =

∏d
i=1(αi−θi+1)θi(xi−pi)αi−θi , where we get ∂θSn

α(p) =
α!δα,θ. Therefore, (3.39) reduces even more to:

⟨Sn
α , Q⟩S = λn

(
n

α1, α2, . . . , αd

)
α!∂αQ(p) = λnn!∂

αQ(p),

and, in particular, the entries of HS
n are given by:〈

Sn
α(i) ,Sn

α(j)

〉
S
= λnn!∂

α(i)Sn
α(j)(p) = λnn!α

(i)!δα(i),α(j) , 1 ≤ i, j ≤ rdn.

Case |α| = n ≥ κ in (3.25): Since (∇iSn
α)(p) = (∇iT κ−1(Sn

α,p))(p) for all i =
0, 1, . . . , κ− 1, and also ∇κT κ−1(Sn

α,p) = 0 then for all Q ∈ Πd:

⟨Sn
α , Q⟩S =

〈
Sn
α − T κ−1(Sn

α,p), Q
〉
∇κ +

κ−1∑
i=0

λi ∇i(Sn
α − T κ−1(Sn

α,p))(p)︸ ︷︷ ︸
=0

·∇iQ(p)

=
〈
Sn
α − T κ−1(Sn

α,p), Q
〉
∇κ = ⟨Sn

α, Q⟩∇κ ,

and, in particular, the entries of HS
n are given by:〈

Sn
α(i) ,Sn

α(j)

〉
S
=
〈
Sn
α(i) , S

n
α(j)

〉
∇κ , 1 ≤ i, j ≤ rdn.

In view of Proposition 3.9, HS
n can be computed in a closed form for 0 ≤ n < κ.

In Proposition 3.11 we will show an iterative method for computing the matrix H∇κ

n

(and therefore HS
n) for n ≥ κ. In addition, HS

n inherits all the properties of H∇κ

n for
n ≥ κ. In particular, we can confirm that for all n ≥ 0:

1. HS
n is positive definite. This follows from Proposition 3.8 and Proposition 3.9.

2. HS
n is non-singular. This follows from Corollary 3.1 and Proposition 3.9.

3. If H∇κ

n is a diagonal matrix then HS
n so is. This implies that if {Sn

α : |α| = n}
is a mutually orthogonal basis of V d

n (∇κ,W ) then {Sn
α : |α| = n} is a mutually

orthogonal basis of V d
n (S,W ).

In order to construct a monic orthogonal basis {Sn
α : |α| = n} for the space V d

n (∇κ,W ),
we expand each Sn

α in terms of well-known polynomials Qm
β of degree m, |β| = m,

0 ≤ m ≤ n, in the form:

Sn
α(x) =

n∑
m=0

∑
|β|=m

cα,βQ
m
β (x), (3.40)
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and then we determine the coefficients cα,β of such an expansion by orthogonality.
Since each polynomial in the space V d

n (∇κ,W ) is determined up to a polynomial of
degree κ−1, the equality in (3.40) must be replaced by the relation

κ−1
= . The choice of

Qm
β clearly matters, mainly because in our construction method we need to compute

explicitly some matrices where the polynomials Qm
β are involved (see Proposition 3.10,

Proposition 3.11, and Section 3.3.7). In addition, many computations involve higher-
order derivatives of Qm

β . Then, our choice criteria for Qm
β depend on the domain

Ω (product domain, ball, simplex, or cone) where the ⟨·, ·⟩∇κ is defined and the
simplification of several computations.

Definition 3.1. Let P,Q ∈ Πd
n, with n = degP = degQ. We say P and Q have the

same leading coefficient if P −Q ∈ Πd
n−1

Let Qn
α ∈ Πd

n, |α| = n, be a polynomial that has the same leading coefficient than
Sn
α. Notice that our assumption that Sn

α is a monic polynomial leads to that Qn
α is

also monic. We denote by Qn the column vector:

Qn =
(
Qn

α(1)(x), Q
n
α(2)(x), . . . , Q

n

α(rdn)
(x)
)T

, (3.41)

where α(1), α(2), . . . , α(rdn) is the arrangement of elements in
{
α ∈ Nd

0 : |α| = n
}

ac-
cording to the reverse lexicographical order. We have the following proposition that
relates the sequences {Sn}n≥0 and {Qn}n≥0.

Proposition 3.10. There exist real matrices An,i of size r
d
n× rdi , κ ≤ i ≤ n−1, such

that:

Qn
κ−1
= Sn, n ≤ κ, and Qn

κ−1
= Sn +

n−1∑
i=κ

An,iSi, n > κ.

Proof. If n ≤ κ then Qn
α − Sn

α ∈ Πd
n−1 is a polynomial of degree at most κ − 1 and

therefore ∇κ(Qn
α−Sn

α) = 0, that is, ∇κQn
α = ∇κSn

α. By Proposition 3.5 we have that
Qn

α
κ−1
= Sn

α and as a consequence:

Qn =
(
Qn

α(1) , Q
n
α(2) , . . . , Q

n

α(rdn)

)T
κ−1
=
(
Sn
α(1) , S

n
α(2) , . . . , S

n

α(rdn)

)T
= Sn.

Now, let us suppose n > κ. If Qn =
∑n

j=0An,jSj then we have:

〈
Qn,ST

i

〉
∇κ =

n∑
j=0

An,j

〈
Sj,ST

i

〉
∇κ = An,i

〈
Si, ST

i

〉
∇κ = An,iH

∇κ

i , 0 ≤ i ≤ n.

By Corollary 3.1, H∇κ

i is non-singular if, and only if, i ≥ κ. Therefore:

An,i =
〈
Qn,ST

i

〉
∇κ (H

∇κ

i )−1, κ ≤ i ≤ n,

andQn−
∑n

j=κ

〈
Qn,ST

j

〉
∇κ (H

∇κ

j )−1Sj =
∑κ−1

j=0 An,jSj is a column vector whose entries
are polynomials of degree at most κ− 1, that is,

Qn
κ−1
=

n∑
j=κ

〈
Qn,ST

j

〉
∇κ (H

∇κ

j )−1Sj.
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Now, since each entry in the column vector Qn − Sn is a polynomial of degree at
most n − 1 we have that

〈
Qn − Sn,ST

n

〉
∇κ = 0, that is,

〈
Qn,ST

n

〉
∇κ =

〈
Sn,ST

n

〉
∇κ =

H∇κ

n . Therefore, An,n =
〈
Qn,ST

n

〉
∇κ (H

∇κ

n )−1 = H∇κ

n (H∇κ

n )−1 = In, and we have the
result.

As a consequence of Proposition 3.10, for n > κ the polynomials in Sn can be
found recursively, up to a vector of polynomials of degree at most κ− 1, in terms of
Sκ,Sκ+1, . . . ,Sn−1 of lower degrees by means of the relation:

Sn
κ−1
= Qn −

n−1∑
i=κ

An,iSi, n > κ, with Sκ
κ−1
= Qκ. (3.42)

In addition, Proposition 3.10 shows that {Sn}n≥0 can be expressed, up to a vector of
polynomials of degree at most κ− 1, in terms of {Qn}n≥0 as follows:

1. Sn
κ−1
= Qn, n ≤ κ,

2. Sκ+1
κ−1
= Qκ+1 −Aκ+1,κQκ,

3. Sκ+2
κ−1
= Qκ+2 −Aκ+2,κ+1(Qκ+1 −Aκ+1,κQκ)−Aκ+2,κQκ,

4. etc.

Then, all we need is to compute the matrices An,i that appear in Proposition 3.10.
Since we cannot calculate directly the n − κ matrices An,i =

〈
Qn,ST

i

〉
∇κ (H

∇κ

i )−1,
κ ≤ i ≤ n − 1, because we do not know explicitly the polynomials Sn, we must
proceed inductively in the sequel.

We define the matrix Bn,i :=
〈
Qn,ST

i

〉
∇κ , κ ≤ i ≤ n− 1, of size rdn × rdi such that

we can write An,i in the form An,i = Bn,i(H
∇κ

i )−1. By Proposition 3.10 we have that:

H∇κ

κ =
〈
Sκ,ST

κ

〉
∇κ =

〈
Qκ,QT

κ

〉
∇κ , Bn,κ =

〈
Qn, ST

κ

〉
∇κ =

〈
Qn,QT

κ

〉
∇κ .

Therefore, for i = κ we have that:

An,κ = Bn,κ(H
∇κ

κ )−1 =
〈
Qn,QT

κ

〉
∇κ (

〈
Qκ,QT

κ

〉
∇κ)

−1.

We need to find An,i only for κ < i ≤ n− 1. By Proposition 3.10, the orthogonality
of {Sn}n≥0 with respect to ⟨·, ·⟩∇κ , and Corollary 3.1 we have that:

H∇κ

i =
〈
Si,ST

i

〉
∇κ =

〈
Qi −

i−1∑
j=κ

Ai,jSj, (Qi −
i−1∑
l=κ

Ai,lSl)
T

〉
∇κ

=
〈
Qi,QT

i

〉
∇κ −

i−1∑
j=κ

Ai,j

〈
Sj,QT

i

〉
∇κ −

i−1∑
l=κ

〈
Qi,ST

l

〉
∇κ A

T
i,l

+
i−1∑
j=κ

i−1∑
l=κ

Ai,j

〈
Sj, ST

l

〉
∇κ A

T
i,l
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=
〈
Qi,QT

i

〉
∇κ −

i−1∑
j=κ

Ai,jH
∇κ

j AT
i,j −

i−1∑
l=κ

Ai,lH
∇κ

l AT
i,l +

i−1∑
l=κ

Ai,lH
∇κ

l AT
i,l

=
〈
Qi,QT

i

〉
∇κ −

i−1∑
j=κ

Bi,j(H
∇κ

j )−1BT
i,j, κ < i ≤ n− 1,

and also we have:

Bn,i =
〈
Qn,ST

i

〉
∇κ =

〈
Qn, (Qi −

i−1∑
j=κ

Ai,jSj)
T

〉
∇κ

=
〈
Qn,QT

i

〉
∇κ −

i−1∑
j=κ

〈
Qn,ST

j

〉
∇κ A

T
i,j =

〈
Qn,QT

i

〉
∇κ −

i−1∑
j=κ

An,jH
∇κ

j AT
i,j

=
〈
Qn,QT

i

〉
∇κ −

i−1∑
j=κ

Bn,j(H
∇κ

j )−1BT
i,j, κ < i ≤ n− 1.

Therefore, we have proved the following proposition.

Proposition 3.11. Let n > κ. The n−κ real matrices An,i, κ ≤ i ≤ n−1, are given
by An,i = Bn,i(H

∇κ

i )−1, where Bn,i and H∇κ

i , of size rdn × rdi and rdi × rdi respectively,
satisfy the recursive relations:

Bn,i =

{〈
Qn,QT

κ

〉
∇κ , i = κ,〈

Qn,QT
i

〉
∇κ −

∑i−1
j=κ Bn,j(H

∇κ

j )−1BT
i,j, i > κ,

H∇κ

i =

{〈
Qκ,QT

κ

〉
∇κ , i = κ,〈

Qi,QT
i

〉
∇κ −

∑i−1
j=κ Bi,j(H

∇κ

j )−1BT
i,j, i > κ.

In order to find recursively the polynomials {Sn}n≥0 by means of (3.42), Propo-
sition 3.11 shows us it is necessary to know explicitly the n− κ rectangular matrices〈
Qn,QT

i

〉
∇κ of size rdn × rdi , κ ≤ i ≤ n − 1, and also the n − κ square matrices〈

Qi,QT
i

〉
∇κ of size rdi × rdi , κ ≤ i ≤ n − 1. In the next subsection we present some

considerations for computing these matrices. In Section 3.4.1 to Section 3.4.4 we
present computations for particular domains Ω (product domain, the simplex, the
unit ball and the cone). Chapter 4 presents some examples in two variables on dif-
ferent domains. In addition, in [42, Section 4] there is an example in three variables
on a product domain.

3.3.7 Some considerations for computing
〈
Qn,QT

m

〉
∇κ

As mentioned above, our recursive method (Proposition 3.10 and Proposition 3.11)
for computing a monic orthogonal basis for the space V d

n (∇κ,W ) requires the explicit
computation of the matrix

〈
Qn,QT

m

〉
∇κ , n,m ≥ κ, of size rdn × rdm, given by:〈

Qn,QT
m

〉
∇κ =

(〈
Qn

α(i) , Q
m
β(j)

〉
∇κ

)
1≤i≤rdn,1≤j≤rdm

, (3.43)
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where Qn
α(x) = xα + Rα(x), |α| = n, Rα ∈ Πd

n−1, that is, Q
n
α is monic, and Qn is the

column vector defined in (3.41).

Remark 3.4. Notice that the matrix
〈
Qn,QT

m

〉
∇κ is well-defined. If Rn

α(i) , T
m
β(j) ∈

Πd are such that Qn
α(i)

κ−1
= Rn

α(i) and Qm
β(j)

κ−1
= Tm

β(j) , that is, Qn
α(i)(x) = Rn

α(i)(x) +

U(x) and Qm
β(j)(x) = Tm

β(j)(x) + V (x), with U, V ∈ Πd
κ−1, then

〈
Qn

α(i) , Q
m
β(j)

〉
∇κ

=〈
Rn

α(i) , T
m
β(j)

〉
∇κ

, because ∇κU = ∇κV = 0. Then, each entry in
〈
Qn,QT

m

〉
∇κ does

not depend on the representative we choose of each equivalence class.

From equation (3.15), each entry of the matrix
〈
Qn,QT

m

〉
∇κ can be computed in

terms of the inner product ⟨·, ·⟩W and partial derivatives ∂θ = ∂θ11 ∂
θ2
2 · · · ∂θdd of order

|θ| = κ by:〈
Qn

α(i) , Q
m
β(j)

〉
∇κ

=
∑
|θ|=κ

(
κ

θ1, θ2, . . . , θd

)〈
∂θQn

α(i) , ∂
θQm

β(j)

〉
W
. (3.44)

Therefore, the computation of (3.44) depends significantly on the weight function W
(see Remark 3.5), the domain Ω, and a suitable choice of Qn

α. An obvious choice is
the basis of orthogonal polynomials with respect to ⟨·, ·⟩W . This basis, however, is
not a good choice because we need to work with higher-order derivatives of the basis
elements. Our choice of Qn

α depends basically on the following criteria:

1. that Qn
α is monic, and

2. that a reduction of a big amount of calculations for computing (3.44) is desirable,
depending on the weight function W and the domain Ω.

Then, in order to get additional results we will work with specific weight functions in
the next sections.

Remark 3.5. If Qn
α is expanded in terms of the canonical basis:

Qn
α(x) =

∑
|ϕ|≤n

cα,ϕx
ϕ, cα,ϕ ∈ R, cα,ϕ = δα,ϕ if |α| = |ϕ| = n, (3.45)

then we have:

∂θQn
α(x) =

∑
κ≤|ϕ|≤n

cα,ϕ∂
θxϕ =

∑
κ≤|ϕ|≤n

cα,ϕ(−1)κ(−ϕ)θxϕ−θ, |θ| = κ, (3.46)

where by properties of the Pochhammer symbol:

(−1)κ(−ϕ)θ = (−1)|θ|
d∏

i=1

(−ϕi)θi =
d∏

i=1

(ϕi − θi + 1)θi .

Therefore, (3.44) reduces to:
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〈
Qn

α(i) , Q
m
β(j)

〉
∇κ

=∑
|θ|=κ

∑
κ≤|ϕ|≤n

∑
κ≤|φ|≤m

(
κ

θ1, . . . , θd

)
cα(i),ϕcβ(j),φ(−ϕ)θ(−φ)θ

〈
xϕ−θ,xφ−θ

〉
W
. (3.47)

Equation (3.47) shows that the entries of the matrix
〈
Qn,QT

m

〉
∇κ depend on the

moments
〈
xϕ−θ,xφ−θ

〉
W

of the weight function W . In addition, notice that the ex-
pression (3.47) can be reduced even more if we choose Qn

α as a monomial, that is,
Qn

α(x) = xα, |α| = n. In this last case, Qn is defined to be the column vector:

Qn = Xn =
(
xα(1)

,xα(2)
, . . . ,xα(rdn)

)T
, (3.48)

where α(1), α(2), . . . , α(rdn) is the arrangement of the elements in
{
α ∈ Nd

0 : |α| = n
}

according to the reverse lexicographical order, and (3.47) can be simplified even more
to:〈

Qn
α(i) , Q

m
β(j)

〉
∇κ

=
∑
|θ|=κ

(
κ

θ1, θ2, . . . , θd

)
(−α(i))θ(−β(j))θ

〈
xα(i)−θ,xβ(j)−θ

〉
W
. (3.49)

A direct comparison of (3.47) and (3.49) shows that choosing Qn
α as a monomial then

we get a considerable reduction of calculations.

3.4 Computing
〈
Qn,QT

m

〉
∇κ on different domains and

other results on partial differential equations

3.4.1 Product domains

For this section we remit the reader to the results from Section 1.3.1 on the space
V d
n (W ) of standard orthogonal polynomials on the product domain:

Ω := [a1, b1]× [a2, b2]× · · · × [ad, bd] , (3.50)

where [ai, bi], i = 1, 2, . . . , d, is an interval of R (|ai| and |bi| can be infinite), with
respect to the product weight function:

W (x) = w1(x1)w2(x2) · · ·wd(xd), x =
(
x1, x2, . . . , xd

)
∈ Ω, (3.51)

and where wi(xi) is a non-negative weight function on [ai, bi].
The results in this section are mainly devoted in considering two subjects:

1. The problem of computing the matrix
〈
Qn,QT

m

〉
∇κ , defined in (3.43), on the

product domain (3.50). Because of the properties of (3.50) and (3.51) this
problem will be approached in two different ways:

(a) Considering the moments of the product weight function W (see Sec-
tion 3.4.1.1).



3.4. Computing
〈
Qn,QT

m

〉
∇κ on different domains and other results on PDEs 64

(b) Considering classical weight functions (Jacobi, Hermite, Laguerre) on each
interval [ai, bi], i = 1, 2, . . . , d (see Section 3.4.1.2). This second case was
motivated by the paper [49] as a generalization to several variables and
higher-order derivatives. Our results in this case were published in [42].

2. To present some results on partial differential equations for Sobolev orthogonal
polynomials on specific product domains (see Section 3.4.1.3).

3.4.1.1 Computing
〈
Qn,QT

m

〉
∇κ by means of the moments of the weight

function

As mentioned in Remark 3.5, the entries of the matrix
〈
Qn,QT

m

〉
∇κ , n,m ≥ κ, can be

computed in a simplified form by means of (3.49) if we choose Qn
α(W ) as the monomial

Qn
α(W ;x) = xα, |α| = n. We need to compute the moments

〈
xα(i)−θ,xβ(j)−θ

〉
W

of the

product weight function (3.51). Let Qn denote the column vector defined in (3.48).
Then, we have the following proposition.

Proposition 3.12. Let n,m ≥ κ and let Qn be defined in (3.48). Then, each entry
of the matrix

〈
Qn,QT

m

〉
∇κ of size rdn× rdm, which is defined in (3.43), can be computed

on the product domain (3.50) by:〈
Qn

α(i)(W ), Qm
β(j)(W )

〉
∇κ

=

∑
|θ|=κ

(
κ

θ1, θ2, . . . , θd

) d∏
l=1

(−α(i)
l )θl(−β

(j)
l )θl

〈
x
α
(i)
l −θl

l , x
β
(j)
l −θl

l

〉
wl

,

|θ| = κ, |α(i)| = n, |β(j)| = m, 1 ≤ i ≤ rdn, 1 ≤ j ≤ rdm.

Proof. Since W is a product of non-negative weight functions wl, 1 ≤ l ≤ d, the
product structure implies by (1.11) and (1.12) that the moments of (3.51) are given
by: 〈

xα(i)−θ,xβ(j)−θ
〉
W

=
d∏

l=1

〈
x
α
(i)
l −θl

l , x
β
(j)
l −θl

l

〉
wl

,

where ⟨·, ·⟩wl
, 1 ≤ l ≤ d, is the inner product (1.9). The result follows from (3.49).

In view of Proposition 3.12, the calculation of the moments

〈
x
α
(i)
l −θl

l , x
β
(j)
l −θl

l

〉
wl

,

1 ≤ l ≤ d, needs the explicit knowledge of the weight function wl. In Chapter 4 we
present some numerical examples in two variables with specific weights.

3.4.1.2 Computing
〈
Qn,QT

m

〉
∇κ with a weight function that is a product

of classical weights

The results that we present in this section were motivated by Fernández, Marcellán,
Pérez, Piñar, and Xu [49] as a generalization to several variables and higher-order
derivatives from their results obtained in two wariables and first-order derivatives.
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First, we construct the sequence of monic polynomials {Qn}n≥0 defined in (3.41)
by means of monic sequences in one variable of self-coherent polynomials, that is, we
suppose that the weight function (3.51) is a product of classical weights in one variable
(Jacobi, Hermite, Laguerre). Then, we compute

〈
Qn,QT

m

〉
∇κ using this construction.

Let {pn(w;x)}n≥0 be a sequence of monic orthogonal polynomials in one variable
with respect to the weight function w. A weight function w defined on the real line
is called self-coherent if its monic orthogonal polynomials pn(w) satisfy the relation
[49, pp. 205]:

pn(w;x) =
p′n+1(w;x)

n+ 1
+ an(w)p

′
n(w;x) + bn(w)p

′
n−1(w;x), (3.52)

where an(w) and bn(w) are constants. The self-coherent orthogonal polynomials are
essentially, up to a linear change of variable, the classical orthogonal polynomials
(Jacobi, Laguerre and Hermite) [49, 76]. Equation (3.52) is a well-known structure
relation of classic orthogonal polynomials [9, Theorem 3.3.2]. We present a general-
ization of (3.52) to higher-order derivatives.

Proposition 3.13. Let l ∈ N and let {pn(w;x)}n≥0 be a sequence of monic orthogonal
polynomials which satisfies (3.52). Then pn(w) satisfies the relation:

pn(w;x) =
l∑

i=−l

γn,li (w)p
(l)
n+i(w;x), (3.53)

where γn,li (w), −l ≤ i ≤ l, are constants such that they can be found recursively for
l ≥ 2 by:

γn,li (w) =



γn,l−1
−l+1 (w)bn−l+1(w), i = −l,
γn,l−1
−l+2 (w)bn−l+2(w) + γn,l−1

−l+1 (w)an−l+1(w), i = −l + 1,

γn,l−1
i−1 (w)

n+ i
+ γn,l−1

i (w)an+i(w) + γn,l−1
i+1 (w)bn+i+1(w), −l + 2 ≤ i ≤ l − 2,

γn,l−1
l−2 (w)

n+ l − 1
+ γn,l−1

l−1 (w)an+l−1(w), i = l − 1,

γn,l−1
l−1 (w)

n+ l
, i = l,

(3.54)

and where the initial iterations are:

γn,1−1 (w) := bn(w), γn,10 (w) := an(w), γn,11 (w) :=
1

n+ 1
.

Proof. We use mathematical induction on l. If l = 1 then (3.53) reduces to:

pn(w;x) = γn,1−1 (w)p
′
n−1(w;x) + γn,10 (w)p′n(w;x) + γn,11 (w)p′n+1(w;x),



3.4. Computing
〈
Qn,QT

m

〉
∇κ on different domains and other results on PDEs 66

which coincides with (3.52) if we choose γn,1−1 (w) := bn(w), γ
n,1
0 (w) := an(w) and

γn,11 (w) := 1/(n+ 1). Let us suppose that (3.53) is valid for l − 1, l ≥ 2, that is,

pn(w;x) =
l−1∑

i=−(l−1)

γn,l−1
i (w)p

(l−1)
n+i (w;x).

Then:

pn(w;x) =

l−1∑
i=−(l−1)

γn,l−1
i (w)

[
p′n+i+1(w;x)

n+ i+ 1
+ an+i(w)p

′
n+i(w;x) + bn+i(w)p

′
n+i−1(w;x)

](l−1)

= γn,l−1
−l+1 (w)bn−l+1(w)︸ ︷︷ ︸

=γn,l
i (w), if i=−l

p
(l)
n−l(w;x)

+ (γn,l−1
−l+2 (w)bn−l+2(w) + γn,l−1

−l+1 (w)an−l+1(w))︸ ︷︷ ︸
=γn,l

i (w), if i=−l+1

p
(l)
n−l+1(w;x)

+
l−2∑

i=−(l−2)

(
γn,l−1
i−1 (w)

n+ i
+ γn,l−1

i (w)an+i(w) + γn,l−1
i+1 (w)bn+i+1(w)

)
︸ ︷︷ ︸

=γn,l
i (w), if −(l−2)≤i≤l−2

p
(l)
n+i(w;x)

+

(
γn,l−1
l−2 (w)

n+ l − 1
+ γn,l−1

l−1 (w)an+l−1(w)

)
︸ ︷︷ ︸

=γn,l
i (w), if i=l−1

p
(l)
n+l−1(w;x) +

γn,l−1
l−1 (w)

n+ l︸ ︷︷ ︸
=γn,l

i (w), if i=l

p
(l)
n+l(w;x).

This completes the proof.

As a result of (3.54) we get recursively γn,ll (w) = 1/(n + 1)l. Now we define a
sequence of polynomials {qn(w;x)}n≥0, where qn(w) is a monic polynomial of degree
n such that its κ-th derivative satisfies:

q(κ)n (w;x) := (n− κ+ 1)κpn−κ(w;x), (3.55)

where {pn(w;x)}n≥0 is a self-coherent monic sequence of orthogonal polynomials with
respect to w. Notice that {qn(w;x)}n≥0 is not unique. The polynomial qn(w) and its

higher-order derivatives q′n(w), q
′′
n(w), . . . , q

(κ−1)
n (w) can be obtained if we use Propo-

sition 3.13 on pn−κ(w) in (3.55). By setting l = κ − j, 0 ≤ j ≤ κ − 1, we have
that:

pn−κ(w;x) =

κ−j∑
i=−(κ−j)

γn−κ,κ−j
i (w)p

(κ−j)
n−κ+i(w;x),

and (3.55) reduces to:

q(κ)n (w;x) =

(n− κ+ 1)κ

κ−j∑
i=−(κ−j)

γn−κ,κ−j
i (w)pn−κ+i(w;x)

(κ−j)

. (3.56)
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Then, it is natural to define the j-th derivative of qn(w), 0 ≤ j ≤ κ− 1, by the term
in parentheses of (3.56), that is:

q(j)n (w;x) := (n−κ+1)κ

κ−j∑
i=−(κ−j)

γn−κ,κ−j
i (w)pn−κ+i(w;x), 0 ≤ j ≤ κ−1. (3.57)

Notice that, in particular for j = 0, we have the definition for qn(w):

qn(w;x) := (n− κ+ 1)κ

κ∑
i=−κ

γn−κ,κ
i (w)pn−κ+i(w;x). (3.58)

Let us observe that qn(w) is a linear combination of pn(w), pn−1(w), . . . , pn−2κ(w), and
as a consequence, the leading coefficient of qn(w) is (n − κ + 1)κγ

n−κ,κ
κ (w) = 1, that

is, qn(w) is monic.
If {qn(wi;xi)}n≥0, 1 ≤ i ≤ d, denotes the sequence of monic polynomials defined

in (3.58), we define the product polynomial Qn
α(W ) by:

Qn
α(W ;x) := qα1(w1;x1)qα2(w2;x2) · · · qαd

(wd;xd), α ∈ Nd
0, |α| = n, (3.59)

which is a monic polynomial of total degree |α| = n, that is, it is of the form
Qn

α(W ;x) = xα + Rα(x), where Rα ∈ Πd
n−1. We denote by Qn the column vector

defined in (3.41).
Let θ = (θ1, θ2, . . . , θd) ∈ Nd

0 a multi-index such that |θ| = κ. The derivative of
order κ of Qn

α(W ) defined in (3.59) is given by:

∂θQn
α(W ;x) =

d∏
j=1

∂
θj
j qαj

(wj;xj)

=
d∏

j=1

(αj − κ+ 1)κ

κ−θj∑
i=−(κ−θj)

γ
αj−κ,κ−θj
i (wj)pαj−κ+i(wj;xj)


=

∑
n−(2d−1)κ≤r≤n−κ

Γθ,α
ν P r

ν (W ;x), |α| = n, |θ| = κ, |ν| = r,

where Γθ,α
ν are constants that are obtained by developing the product of sums from

the last expression, and which are given in terms of the constants γn,li (w) defined in
(3.54), and where P r

ν (W ) is the monic product polynomial defined in (1.13) orthogonal
with respect to W . We can see that ∂θQn

α(W ) is a linear combination of the product
polynomials (1.13) with total degrees that range from (α1−2κ+θ1)+(α2−2κ+θ2)+
· · ·+(αd−2κ+θd) = |α|+|θ|−2dκ = n−(2d−1)κ to (α1−θ1)+(α2−θ2)+· · ·+(αd−θd) =
|α| − |θ| = n− κ.

Then the entries of the matrix
〈
Qn,QT

m

〉
∇κ , n,m ≥ κ, defined in (3.43) can be

computed by:〈
Qn

α(i)(W ), Qm
β(j)(W )

〉
∇κ

=
∑
|θ|=κ

(
κ

θ1, θ2, . . . , θd

)〈
∂θQn

α(i)(W ), ∂θQm
β(j)(W )

〉
W
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=
∑
|θ|=κ

∑
n−(2d−1)κ≤r≤n−κ

∑
m−(2d−1)κ≤s≤m−κ

(
κ

θ1, θ2, . . . , θd

)
Γθ,α(i)

ν Γθ,β(j)

σ ⟨P r
ν , P

s
σ⟩W

=
∑
|θ|=κ

∑
n−(2d−1)κ≤r≤n−κ

∑
m−(2d−1)κ≤s≤m−κ

(
κ

θ1, θ2, . . . , θd

)
Γθ,α(i)

ν Γθ,β(j)

σ hν(W )δν,σ,

|θ| = κ, |α(i)| = n, |β(j)| = m, |ν| = r, |σ| = s.

Then
〈
Qn,QT

m

〉
∇κ is a matrix that can be computed in a closed form in terms of con-

stants that depend on the orthogonal polynomials with respect to the inner product
⟨·, ·⟩W , that is, each entry of this matrix is given in terms of the constants in (1.14)
and (3.54).

For κ = 1, 2, 3 and d = 2, 3 detailed numerical examples were given in literature
[41, 42, 49, 101] for particular weight functions. In Section 4.2 we present some ex-
amples for the Hermite-Laguerre and Laguerre-Gegenbauer product weight functions
in two variables. In [42, Section 4] there is an example in three variables for the
Hermite-Hermite-Laguerre weight function.

3.4.1.3 Partial differential equations for Sobolev polynomials on some
product domains

As mentioned in Section 1.3.1, the orthogonal polynomials with respect to the product
weight function (3.51) are eigenfunctions of a second-order differential operator for
particular weights. In this subsection we consider two particular cases.

Multiple Sobolev-Hermite polynomials The space V d
n (W

H) of multiple Her-
mite polynomials on the product domain Ω = Rd and orthogonal with respect to the
product weight function:

WH(x) = e−x2
1e−x2

2 · · · e−x2
d = e−∥x∥2 , x ∈ Rd, (3.60)

was discussed in Section 1.3.1.1. The polynomials in V d
n (W

H) satisfy the partial
differential equation (1.17).

Let us denote by V d
n (S,W

H) and V d
n (∇κ,WH) the spaces of Sobolev orthogonal

polynomials with respect to (3.12) and (3.13), respectively, where it continuous part
⟨·, ·⟩∇κ is defined on Ω = Rd and the weight isWH . Then, we have the following corol-
lary from Proposition 3.7 concerning partial differential equations for the polynomials
in the spaces V d

n (S,W
H) and V d

n (∇κ,WH).

Corollary 3.2. Let P ∈ V d
n (S,W

H) or P ∈ V d
n (∇κ,WH). Then P satisfies the

partial differential equation:

[H + 2(n− κ)I] (∂1 + ∂2 + · · ·+ ∂d)
κP = 0, (3.61)

where H is the differential operator (1.18) and I is the identity operator.
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Proof. If n < κ then (3.61) is immediate because (∂1+∂2+· · ·+∂d)κP = 0. Let us sup-
pose n ≥ κ. If P ∈ V d

n (S,W
H) or P ∈ V d

n (∇κ,WH), we know from Proposition 3.7
that:

(∂1 + ∂2 + · · ·+ ∂d)
κP ∈ V d

n−κ(W
H), n ≥ κ.

The result follows from (1.17).

Multiple Sobolev-Laguerre polynomials The space V d
n (W

L
η ) of multiple La-

guerre polynomials on the product domain Ω = Rd
+ and orthogonal with respect to

the product weight function:

WL
η (x) = xη11 e

−x1xη22 e
−x2 · · ·xηdd e

−xd = xηe−|x|, x ∈ Rd
+,

ηi > −1, 1 ≤ i ≤ d, |x| = x1 + x2 + · · · + xd, (3.62)

was discussed in Section 1.3.1.2. The polynomials in V d
n (W

L
η ) satisfy the partial

differential equation (1.21).
Let us denote by V d

n (S,W
L
η ) and V d

n (∇κ,WL
η ) the spaces of Sobolev orthogonal

polynomials with respect to (3.12) and (3.13), respectively, where it continuous part
⟨·, ·⟩∇κ is defined on Ω = Rd

+ and the weight isWL
η . Then, we have the following corol-

lary from Proposition 3.7 concerning partial differential equations for the polynomials
in the spaces V d

n (S,W
L
η ) and V d

n (∇κ,WL
η ).

Corollary 3.3. Let P ∈ V d
n (S,W

L
η ) or P ∈ V d

n (∇κ,WL
η ). Then P satisfies the

partial differential equation:

[Lη + (n− κ)I] (∂1 + ∂2 + · · ·+ ∂d)
κP = 0, (3.63)

where Lη is the differential operator (1.22) and I is the identity operator.

Proof. Similar to Corollary 3.2.

3.4.2 The simplex

We remit the reader to the results from Section 1.3.2 on the space V d
n (Wγ) of standard

orthogonal polynomials on the simplex:

Td :=
{
x ∈ Rd : x1 ≥ 0, x2 ≥ 0, . . . , xd ≥ 0, 1− |x| ≥ 0

}
, |x| := x1+x2+ · · ·+xd,

with respect to the weight function:

Wγ(x) := xγ11 x
γ2
2 · · ·xγdd (1− |x|)γd+1 , x ∈ Td, γi > −1, 1 ≤ i ≤ d+1, (3.64)

where γ = (γ1, γ2, . . . , γd+1) ∈ Rd+1 is such that γi > −1 for i = 1, 2, . . . , d + 1, and
|γ| := γ1 + γ2 + · · ·+ γd+1.

The results in this section are mainly devoted in considering two subjects:

1. The problem of computing the matrix
〈
Qn,QT

m

〉
∇κ , defined in (3.43), on the

simplex Td. Because of the properties of (3.64) this problem will be approached
considering the moments of the weight function Wγ (see Section 3.4.2.1).

2. To present some results on partial differential equations for Sobolev orthogonal
polynomials on Td (see Section 3.4.2.2).
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3.4.2.1 Computing
〈
Qn,QT

m

〉
∇κ by means of the moments of the weight

function

Notice that the weight function Wγ, defined in (3.64), is closed under products, that
is, if γa, γb ∈ Rd+1 then:

Wγa(x)Wγb(x) = Wγa+γb(x).

In particular, for any monomial xα = xα1
1 x

α2
2 · · ·xαd

d , with α = (α1, α2, . . . , αd) ∈ Nd
0,

we have that (α, 0) ∈ Nd+1
0 , and therefore xαWγ(x) = W(α,0)+γ(x), that is:

xαWγ(x) = xα1+γ1
1 xα2+γ2

2 · · ·xαd+γd
d (1− |x|)γd+1 , γi > −1, 1 ≤ i ≤ d+ 1.

This property allows us to compute the matrix
〈
Qn,QT

m

〉
∇κ in a simplified form by

means of the moments of Wγ.
As discussed in Remark 3.5, we choose Qn

α(Wγ) to be the monomial Qn
α(Wγ;x) =

xα, |α| = n. We denote by Qn the column vector (3.48). Therefore, we can compute
the entries of the matrix

〈
Qn,QT

m

〉
∇κ , n,m ≥ κ, in a simplified form by means of

(3.49) and the moments
〈
xα(i)−θ,xβ(j)−θ

〉
γ
of the weight (3.64).

Proposition 3.14. Let n,m ≥ κ and let Qn be defined in (3.48). Then, each entry
of the matrix

〈
Qn,QT

m

〉
∇κ of size rdn× rdm, which is defined in (3.43), can be computed

on the simplex Td by:〈
Qn

α(i)(Wγ), Q
m
β(j)(Wγ)

〉
∇κ

=

∑
|θ|=κ

(
κ

θ1, θ2, . . . , θd

) d∏
l=1

(−α(i)
l )θl(−β

(j)
l )θl(γl + 1)

α
(i)
l +β

(j)
l −2θl

(|γ|+ d+ 1)n+m−2κ

,

|θ| = κ, |α(i)| = n, |β(j)| = m, 1 ≤ i ≤ rdn, 1 ≤ j ≤ rdm.

Proof. Notice that by (1.28) and (1.29) we have:〈
xα(i)−θ,xβ(j)−θ

〉
γ
= cγ

∫
Td

W(α(i)+β(j)−2θ,0)+γ(x)dx

=
Γ(|γ|+ d+ 1)
d+1∏
l=1

Γ(γl + 1)

d∏
l=1

Γ(α
(i)
l + β

(j)
l − 2θl + γl + 1)Γ(γd+1 + 1)

Γ(|α(i)|+ |β(j)| − 2|θ|+ |γ|+ d+ 1)
.

Therefore, by (3.49), with |α(i)| = n, |β(j)| = m, |θ| = κ, and further simplification
we have the result.
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3.4.2.2 Partial differential equations for Sobolev polynomials on the sim-
plex

As mentioned in Section 1.3.2, the orthogonal polynomials in the space V d
n (Wγ) are

eigenfunctions of a second-order differential operator, that is, they satisfy the partial
differential equation (1.31).

Let us denote by V d
n (S,Wγ) and V d

n (∇κ,Wγ) the spaces of Sobolev orthogonal
polynomials with respect to (3.12) and (3.13), respectively, where it continuous part
⟨·, ·⟩∇κ is defined on Ω = Td and the weight is Wγ. Then, we have the following corol-
lary that is a consequence of Proposition 3.7 concerning partial differential equations
for the polynomials in the spaces V d

n (S,Wγ) and V d
n (∇κ,Wγ).

Corollary 3.4. Let P ∈ V d
n (S,Wγ) or P ∈ V d

n (∇κ,Wγ). Then P satisfies the partial
differential equation:

[Tγ + (n− κ)(n− κ+ |γ|+ d)I] (∂1 + ∂2 + · · ·+ ∂d)
κP = 0, (3.65)

with γ = (γ1, γ2, . . . , γd+1) ∈ Rd+1, γi > −1, 1 ≤ i ≤ d+ 1, |γ| = γ1 + γ2 + · · ·+ γd+1,
and where Tγ is the differential operator (1.32) and I is the identity operator.

Proof. Similar to Corollary 3.2.

3.4.3 The unit ball

We remit the reader to the results from Section 1.3.4 on the space V d
n (Wµ) of standard

orthogonal polynomials on the unit ball:

Bd :=
{
x ∈ Rd : ∥x∥ ≤ 1

}
,

with respect to the weight function:

Wµ(x) := (1− ∥x∥2)µ, x ∈ Bd, µ > −1. (3.66)

The results in this section are mainly devoted in considering two subjects:

1. The problem of computing the matrix
〈
Qn,QT

m

〉
∇κ , defined in (3.43), on the unit

ball Bd. Because of the properties of (3.66) this problem will be approached
considering the moments of the weight function Wµ (see Section 3.4.3.1).

2. To present some results on partial differential equations for Sobolev orthogonal
polynomials on Bd (see Section 3.4.3.2).

In addition, in Section 3.4.3.3 we present some miscellaneous results on the sphere
Sd−1.
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3.4.3.1 Computing
〈
Qn,QT

m

〉
∇κ by means of the moments of the weight

function

Let us recall that for x ∈ Rd, xi = (x1, x2, . . . , xi) ∈ Ri, 1 ≤ i ≤ d, with x0 := 0,
denotes a truncation of x. On the unit ball, there is an integral formula that relates
the integral on the unit ball Bd with an integral on Bd−1. This formula is given by
[44, page 143]:∫

Bd

f(x)dx =

∫
Bd−1

∫ 1

−1

f
(
xd−1, y

√
1− ∥xd−1∥2

)√
1− ∥xd−1∥2dydxd−1, (3.67)

that follows from the change of variable xd = y
√

1− ∥xd−1∥2, −1 ≤ y ≤ 1. Using this
formula repeatedly, by reducing the dimension d by 1 at each step, it is not difficult
to show that:∫

Bd

xαWµ(x)dx =
2−dΓ(µ+ 1)

Γ

(
|α|+ d

2
+ µ+ 1

) d∏
i=1

(1 + (−1)αi)Γ

(
αi + 1

2

)
,

α = (α1, α2, . . . , αd) ∈ Nd
0, µ > −1.

(3.68)

Notice that if any entry of α is odd, then (3.68) is zero.
As discussed in Remark 3.5, we choose Qn

α(Wµ) to be the monomial Qn
α(Wµ;x) =

xα, |α| = n. We denote by Qn the column vector (3.48). Then, we can compute the
entries of the matrix

〈
Qn,QT

m

〉
∇κ in a simplified form by means of (3.49) and the

moments
〈
xα(i)−θ,xβ(j)−θ

〉
µ
of the weight (3.66). Now, we use (3.68) on the following

result.

Proposition 3.15. Let n,m ≥ κ and let Qn be defined in (3.48). Then, each entry
of the matrix

〈
Qn,QT

m

〉
∇κ of size rdn× rdm, which is defined in (3.43), can be computed

on the unit ball Bd by:

〈
Qn

α(i)(Wµ), Q
m
β(j)(Wµ)

〉
∇κ

=
∑
|θ|=κ

(
κ

θ1, . . . , θd

) d∏
l=1

(−α(i)
l )θl(−β

(j)
l )θl

(
1

2

)
α
(i)
l

+β
(j)
l

2
−θl

(µ+ d/2 + 1)n+m
2

−κ

,

|θ| = κ, |α(i)| = n, |β(j)| = m, 1 ≤ i ≤ rdn, 1 ≤ j ≤ rdm,

if α
(i)
l + β

(j)
l is even for all l = 1, 2, . . . , d, and

〈
Qn

α(i)(Wµ), Q
m
β(j)(Wµ)

〉
∇κ

= 0 other-

wise.

Proof. By (1.40), (1.41), and (3.68) we have that:〈
xα(i)−θ,xβ(j)−θ

〉
µ
= cµ

∫
Bd

xα(i)+β(j)−2θWµ(x)dx
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=
Γ(µ+ d/2 + 1)

πd/2Γ(µ+ 1)

2−dΓ(µ+ 1)

Γ

(
|α(i)|+ |β(j)| − 2|θ|+ d

2
+ µ+ 1

)
×

d∏
l=1

(1 + (−1)α
(i)
l +β

(j)
l −2θl)Γ

(
α
(i)
l + β

(j)
l − 2θl + 1

2

)
.

Therefore, by (3.49), with |α(i)| = n, |β(j)| = m, |θ| = κ, and further simplification
we have the result.

3.4.3.2 Partial differential equations for Sobolev polynomials on the unit
ball

As mentioned in Section 1.3.4, the orthogonal polynomials in the space V d
n (Wµ) are

eigenfunctions of a second-order differential operator, that is, they satisfy the partial
differential equations (1.43) and (1.45).

Let us denote by V d
n (S,Wµ) and V d

n (∇κ,Wµ) the spaces of Sobolev orthogonal
polynomials with respect to (3.12) and (3.13), respectively, where it continuous part
⟨·, ·⟩∇κ is defined on Ω = Bd and the weight is Wµ. Then, we have the following corol-
lary from Proposition 3.7 concerning partial differential equations for the polynomials
in the spaces V d

n (S,Wµ) and V d
n (∇κ,Wµ).

Corollary 3.5. Let P ∈ V d
n (S,Wµ) or P ∈ V d

n (∇κ,Wµ). Then P satisfies the partial
differential equations:

[Bµ + (n− κ)(n− κ+ 2µ+ d)I] (∂1 + ∂2 + · · ·+ ∂d)
κP = 0, (3.69)

[Dµ + (n− κ+ d)(n− κ+ 2µ)I] (∂1 + ∂2 + · · ·+ ∂d)
κP = 0, (3.70)

with µ > −1, and where Bµ and Dµ are the differential operators (1.44) and (1.46),
respectively, and I is the identity operator.

Proof. Similar to Corollary 3.2.

Notice that (3.69) and (3.70) are essentially the same because of the relation
Bµ = Dµ + 2dµI.

3.4.3.3 Some miscellaneous results on the sphere

For this section, we remit the reader to Section 1.3.3 for the basic background on
harmonic polynomials and spherical harmonics.

The harmonic polynomials in the space H d
n have several properties with respect to

higher-order derivatives, and some of them can be expressed in terms of the gradient
∇κ of order κ. For example, if Y ∈ H d

n then from Proposition 3.3, equation (3.7),
we know that:

x[κ] · ∇κY (x) = (n− κ+ 1)κY (x), Y ∈ H d
n , κ ∈ N0,

and this property is a consequence from the fact that Y is homogeneous. Equation
(1.36) can be also extended to higher-order derivatives. We have some other properties
of the spherical harmonics.
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Lemma 3.1. If Y ∈ H d
n then ∂θY ∈ H d

n−|θ|, θ ∈ Nd
0, and

△0(∂
θY (ξ)) = −(n− |θ|)(n− |θ|+ d− 2)∂θY (ξ), ξ ∈ Sd−1. (3.71)

Proof. Since Y ∈ H d
n is homogeneous, we know that ∂θY is also homogeneous of

degree n− |θ|. In addition,

0 = ∂θ(△Y ) = ∂θ

(
d∑

i=1

∂2i Y

)
=

d∑
i=1

∂θ(∂2i Y ) =
d∑

i=1

∂2i (∂
θY ) = △(∂θY ).

This proves that ∂θY ∈ H d
n−|θ|. Since ∂θY is homogeneous, ∂θY (x) = rn−|θ|∂θY (ξ),

x = rξ, r ≥ 0, ξ ∈ Sd−1. We have by (1.35) that:

0 = △(∂θY (x)) = △(rn−|θ|∂θY (ξ)) = (n− |θ|)(n− |θ| − 1)rn−|θ|−2∂θY (ξ)+

(d − 1)(n − |θ|)rn−|θ|−2∂θY (ξ) + rn−|θ|−2△0(∂
θY (ξ)),

which is, when restricted to the sphere, equation (3.71).

Next, we prove a generalization to higher-order derivatives of Lemma 2.1. The
following proof uses (3.71) and the Green’s identity [24, Proposition 1.8.7] on the
sphere:∫

Sd−1

∇0f(ξ) · ∇0g(ξ)dω(ξ) = −
∫
Sd−1

△0 f(ξ)g(ξ)dω(ξ). (3.72)

Proposition 3.16. Let
{
Y n
ν : 1 ≤ ν ≤ adn

}
be an orthonormal basis of H d

n . Let x =
rξ, with r > 0 , ξ ∈ Sd−1, and θ ∈ Nd

0. Then we have the following:

ξ · ∇0∂
θY n

ν (x) = 0, (3.73)

∇∂θY n
ν (x) · ∇∂θY m

η (x) =
1

r2
∇0∂

θY n
ν (x) · ∇0∂

θY m
η (x)

+
(n− |θ|)(m− |θ|)

r2
∂θY n

ν (x)∂
θY m

η (x),

(3.74)

and for 1 ≤ ν ≤ adn, 1 ≤ η ≤ adm, κ ∈ N0, the following relation holds:

1

ωd−1

∫
Sd−1

∇κY n
ν (ξ) ·∇κY m

η (ξ)dω(ξ) = 2κ(n−κ+1)κ(n−κ+d/2)κδn,mδν,η. (3.75)

Proof. Since ∂θY n
ν is homogeneous of degree n−|θ|, ∂θY n

ν (x) = rn−|θ|∂θY n
ν (ξ). Then:

∂

∂r
(∂θY n

ν (x)) = (n− |θ|)rn−|θ|−1∂θY n
ν (ξ) =

n− |θ|
r

∂θY n
ν (x).

By Euler’s equation for homogeneous polynomials:

x · ∇∂θY n
ν (x) = (n− |θ|)∂θY n

ν (x).
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Therefore, by (1.34) we have:

ξ · ∇0∂
θY n

ν (x) = x · ∇∂θY n
ν (x)− r

(
n− |θ|
r

)
∂θY n

ν (x) =

(n − |θ|)∂θY n
ν (x) − (n − |θ|)∂θY n

ν (x) = 0.

Equation (3.74) follows from (1.34), (3.73), and a straightforward computation. Now
we prove (3.75) by using induction on κ. The case κ = 0 is (1.38) (our hypothesis).
The case κ = 1 is (2.30), which was proven in [98, Lema 2.2]. Let us suppose that
(3.75) holds for κ. Using (3.3) and the definition of ∇κ we have:

∇κ+1Y n
ν (x) · ∇κ+1Y m

η (x) =
d∑

i=1

∂i∇κY n
ν (x) · ∂i∇κY m

η (x) =

d∑
i=1

∇κ∂iY
n
ν (x) · ∇κ∂iY

m
η (x) =

d∑
i=1

∑
|θ|=κ

(
κ

θ1, θ2, . . . , θd

)
∂θ∂iY

n
ν (x)∂

θ∂iY
m
η (x)

=
∑
|θ|=κ

(
κ

θ1, θ2, . . . , θd

)
∇∂θY n

ν (x) · ∇∂θY m
η (x). (3.76)

By (3.71), (3.72), and (3.74), we have:∫
Sd−1

∇∂θY n
ν (ξ) · ∇∂θY m

η (ξ)dω(ξ) =

∫
Sd−1

∇0∂
θY n

ν (ξ) · ∇0∂
θY m

η (ξ)dω(ξ)+

(n− |θ|)(m− |θ|)
∫
Sd−1

∂θY n
ν (ξ)∂

θY m
η (ξ)dω(ξ) = −

∫
Sd−1

△0 ∂
θY n

ν (ξ)∂
θY m

η (ξ)dω(ξ)+

(n− |θ|)(m− |θ|)
∫
Sd−1

∂θY n
ν (ξ)∂

θY m
η (ξ)dω(ξ) =

(n− |θ|)(n +m− 2|θ| + d− 2)

∫
Sd−1

∂θY n
ν (ξ)∂

θY m
η (ξ)dω(ξ). (3.77)

Putting together (3.76) and (3.77), and again by (3.3) and the induction hypothesis:∫
Sd−1

∇κ+1Y n
ν (ξ) · ∇κ+1Y m

η (ξ)dω(ξ) =

(n− κ)(n+m− 2κ+ d− 2)
∑
|θ|=κ

(
κ

θ1, θ2, . . . , θd

)∫
Sd−1

∂θY n
ν (ξ)∂

θY m
η (ξ)dω(ξ) =

(n− κ)(n+m− 2κ+ d− 2)

∫
Sd−1

∇κY n
ν (ξ) · ∇κY m

η (ξ)dω(ξ) =

ωd−12
κ+1(n − κ)k+1(n − κ − 1 + d/2)κ+1δn,mδν,η.

This completes the proof.
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3.4.4 The cone

We remit the reader to the results from Section 1.3.5 on the space V d
n (Ww,µ) of

standard orthogonal polynomials on the cone:

Vd
ϑ :=

{
x ∈ Rd : ∥xd−1∥ ≤ xd, 0 ≤ xd ≤ ϑ

}
, 0 < ϑ ≤ ∞, xd−1 = (x1, x2, . . . xd−1),

with respect to the weight function:

Ww,µ(x) = (x2d − ∥xd−1∥2)µw(xd), µ > −1, x = (x1, x2, . . . , xd) ∈ Vd
ϑ, (3.78)

where w is a non-negative weight function on the interval 0 ≤ xd ≤ ϑ.
The results in this section are mainly devoted in considering two subjects:

1. The problem of computing the matrix
〈
Qn,QT

m

〉
∇κ , defined in (3.43), on the

cone Vd
ϑ. Because of the properties of (3.78) this problem will be approached

considering the moments of the weight function Ww,µ (see Section 3.4.4.1).

2. To present some results on partial differential equations for Sobolev orthogonal
polynomials on Vd

ϑ (see Section 3.4.4.2).

3.4.4.1 Computing
〈
Qn,QT

m

〉
∇κ by means of the moments of the weight

function

Using the integral formula (1.50) on the cone Vd
ϑ it is not difficult to show that the

following equation holds:∫
Vd
ϑ

xαWw,µ(x)dx =

(∫ ϑ

0

w(xd)x
|α|+2µ+d−1
d dxd

)(∫
Bd−1

yα1
1 yα2

2 · · · yαd−1

d−1 Wµ(y)dy

)
,

x ∈ Vd
ϑ, y ∈ Bd−1, α = (α1, α2, . . . , αd) ∈ Nd

0, µ > −1, 0 < ϑ ≤ ∞, (3.79)

where Ww,µ is the weight function (3.78) on the cone and Wµ is the weight function
(3.66) on the ball. The integral on Bd−1 in (3.79) can be computed by means of (3.68).

As discussed in Remark 3.5, we chooseQn
α(Ww,µ) to be the monomialQn

α(Ww,µ;x) =
xα, |α| = n. Then, we can compute the entries of the matrix

〈
Qn,QT

m

〉
∇κ in a sim-

plified form by means of (3.49) and the moments
〈
xα(i)−θ,xβ(j)−θ

〉
w,µ

of the weight

(3.78). We denote by Qn the column vector (3.48).

Proposition 3.17. Let n,m ≥ κ and let Qn be defined in (3.48). Then, each entry
of the matrix

〈
Qn,QT

m

〉
∇κ of size rdn× rdm, which is defined in (3.43), can be computed

on the cone Vd
ϑ by:〈

Qn
α(i)(Ww,µ), Q

m
β(j)(Ww,µ)

〉
∇κ

=

∑
|θ|=κ

(
κ

θ1, θ2, . . . , θd

)
(−α(i))θ(−β(j))θϖw,n,m,κ,µ(
µ+

d+ 1

2

)
n+m−α

(i)
d

−β
(j)
d

2
−κ+θd

d−1∏
l=1

(
1

2

)
α
(i)
l

+β
(j)
l

2
−θl

,
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|θ| = κ, |α(i)| = n, |β(j)| = m, 1 ≤ i ≤ rdn, 1 ≤ j ≤ rdm,

if α
(i)
l + β

(j)
l is even for all l = 1, 2, . . . , d− 1, where ϖw,n,m,κ,µ is:

ϖw,n,m,κ,µ :=

∫ ϑ

0

w(t)tn+m−2κ+2µ+d−1dt∫ ϑ

0

w(t)t2µ+d−1dt

, µ > −1, 0 < ϑ ≤ ∞, (3.80)

and
〈
Qn

α(i)(Ww,µ), Q
m
β(j)(Ww,µ)

〉
∇κ

= 0 otherwise.

Proof. By (1.48), (1.51), (3.79), and (3.68) we have that:〈
xα(i)−θ,xβ(j)−θ

〉
w,µ

= cw,µ

∫
Vd
ϑ

xα(i)+β(j)−2θWw,µ(x)dx

=

Γ

(
µ+

d+ 1

2

)∫ ϑ

0

w(xd)x
|α(i)|+|β(j)|−2|θ|+2µ+d−1
d dxd

π
d−1
2 Γ(µ+ 1)

∫ ϑ

0

w(xd)x
2µ+d−1
d dxd

× 2−d+1Γ(µ+ 1)

Γ

(
1

2

d−1∑
l=1

(α
(i)
l + β

(j)
l − 2θl) + µ+

d+ 1

2

)

×
d−1∏
l=1

(1 + (−1)α
(i)
l +β

(j)
l −2θl)Γ

(
α
(i)
l + β

(j)
l − 2θl + 1

2

)
.

Therefore, by (3.49), with |α(i)| = n, |β(j)| = m, and |θ| = κ, and further simplifica-
tion we have the result.

Notice that, in particular, for the Jacobi and Laguerre cases with weights (1.52)
and (1.53), respectively, the constant ϖw,n,m,κ,µ in (3.80) is given for each case by:

1. Jacobi (ϑ = 1):

ϖwa,b,n,m,κ,µ := ϖa,b,n,m,κ,µ

=
(a+ 2µ+ d)n+m−2κ

(a+ b+ 2µ+ d+ 1)n+m−2κ

, n,m ≥ κ, a, b, µ > −1.
(3.81)

2. Laguerre (ϑ = ∞):

ϖwa,n,m,κ,µ := ϖa,n,m,κ,µ = (a+2µ+d)n+m−2κ, n,m ≥ κ, a, µ > −1. (3.82)

3.4.4.2 Partial differential equations for some Sobolev polynomials on the
cone

In Section 1.3.5 we showed that the orthogonal polynomials with respect to the weight
(3.78) are eigenfunctions of a second-order differential operator for particular cases of
w. In this subsection we consider the Jacobi (ϑ = 1) and Laguerre (ϑ = ∞) cases.
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Sobolev-Jacobi polynomials on the bounded cone The space V d
n (W

J
a,b,µ) of

Jacobi polynomials on the cone Ω = Vd
1 and orthogonal with respect to the weight

function:

W J
a,b,µ(x) = (x2d − ∥xd−1∥2)µxad(1− xd)

b, x ∈ Vd
1, a, b, µ > −1, (3.83)

was discussed in Section 1.3.5.1. When the parameter a = 0 in (3.83), the polynomials
in V d

n (W
J
0,b,µ) satisfy the partial differential equation (1.56).

Let us denote by V d
n (S,W

J
a,b,µ) and V d

n (∇κ,W J
a,b,µ) the spaces of Sobolev orthogo-

nal polynomials with respect to (3.12) and (3.13), respectively, where it continuous
part ⟨·, ·⟩∇κ is defined on Ω = Vd

1 and the weight is W J
a,b,µ. Then, we have the fol-

lowing corollary from Proposition 3.7 concerning partial differential equations for the
polynomials in the spaces V d

n (S,W
J
0,b,µ) and V d

n (∇κ,W J
0,b,µ) (special case a = 0).

Corollary 3.6. Let P ∈ V d
n (S,W

J
0,b,µ) or P ∈ V d

n (∇κ,W J
0,b,µ). Then P satisfies the

partial differential equation:[
VJ
b,µ + (n− κ)(n− κ+ 2µ+ b+ d)I

]
(∂1 + ∂2 + · · ·+ ∂d)

κP = 0, (3.84)

with b, µ > −1, and where VJ
b,µ is the differential operator (1.57) and I is the identity

operator.

Proof. Similar to Corollary 3.2.

Sobolev-Laguerre polynomials on the unbounded cone The space V d
n (W

L
a,µ)

of Laguerre polynomials on the cone Ω = Vd
∞ and orthogonal with respect to the

weight function:

WL
a,µ(x) = (x2d − ∥xd−1∥2)µxad e−xd , x ∈ Vd

∞, a, µ > −1, (3.85)

was discussed in Section 1.3.5.2. When the parameter a = 0 in (3.85), the polynomials
in V d

n (W
L
0,µ) satisfy the partial differential equation (1.60).

Let us denote by V d
n (S,W

L
a,µ) and V d

n (∇κ,WL
a,µ) the spaces of Sobolev orthogonal

polynomials with respect to (3.12) and (3.13), respectively, where it continuous part
⟨·, ·⟩∇κ is defined on Ω = Vd

∞ and the weight is WL
a,µ. Similarly, we have the following

corollary concerning partial differential equations for the polynomials in the spaces
V d
n (S,W

L
0,µ) and V d

n (∇κ,WL
0,µ) (special case a = 0).

Corollary 3.7. Let P ∈ V d
n (S,W

L
0,µ) or P ∈ V d

n (∇κ,WL
0,µ). Then P satisfies the

partial differential equation:[
VL
µ + (n− κ)I

]
(∂1 + ∂2 + · · ·+ ∂d)

κP = 0, (3.86)

with µ > −1, and where VL
µ is the differential operator (1.61) and I is the identity

operator.

Proof. Similar to Corollary 3.2.



Chapter 4

Some numerical examples

Chapter 3 was devoted to study some algebraic and analytic properties of the Sobolev
orthogonal polynomials in several variables with respect to the inner product (3.12).
In order to provide a better understanding of the theory presented in Chapter 3, in
this chapter we present some numerical examples in two variables1. Each example
was constructed independently, then the reader can study each one separately without
referencing to any other section in this chapter. Some results in the following sec-
tions are corollaries in two variables of the more general results given in Chapter 3.
Therefore, we present those corollaries without a proof.

Note 4.1. For the numerical evaluations of the matrices in the following examples, we
used MATLAB® software, version 8.0.0.783 (R2012b). Therefore, some fractions at
the entries of some matrices are only approximations to the real values.

4.1 Preliminaries and notation for the examples

For later use, we need additional notation for polynomials in two variables (x, y) ∈ R2.
Let us denote by ∇f , ∇2f , and ∇3f the column vectors:

∇f =
(
∂1f, ∂2f

)T
, ∇2f =

(
∂21f, ∂1∂2f, ∂2∂1f, ∂22f

)T
,

∇3f =
(
∂31f, ∂21∂2f, ∂1∂2∂1f, ∂1∂

2
2f, ∂2∂

2
1f, ∂2∂1∂2f, ∂22∂1f, ∂32f

)T
,

(4.1)

with ∂1 := ∂/∂x, ∂2 := ∂/∂y, ∂2i := ∂i∂i, ∂
3
i := ∂i∂i∂i, i = 1, 2. Let us recall that

the Taylor polynomials of first degree T 1 and second degree T 2 in two variables of
P ∈ Π2 at the point p = (p1, p2) ∈ R2 are given by:

T 1(P,p;x, y) = P (p) + ∂1P (p)(x− p1) + ∂2P (p)(y − p2),

T 2(P,p;x, y) = P (p) + ∂1P (p)(x− p1) + ∂2P (p)(y − p2)

+
1

2

[
∂21P (p)(x− p1)

2 + 2∂1∂2P (p)(x− p1)(y − p2) + ∂22P (p)(y − p2)
2
]
.

1In [42, Section 4] we provided one example of orthogonal polynomials in three variables that is
not presented in this chapter.
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In addition, for two polynomials P,Q ∈ Π2 that are equal up to a polynomial of first
degree we write:

P
1
= Q if P −Q ∈ Π2

1, (4.2)

and if P and Q are equal up to a polynomial of second degree we write:

P
2
= Q if P −Q ∈ Π2

2. (4.3)

The relations
1
= and

2
= are congruence relations on the space Π2.

Note 4.2. In the following examples we restrict ourselves to polynomials of lower
degrees. Mainly because polynomials of higher degrees have too many monomials
that cannot be depicted here.

4.2 Sobolev orthogonal polynomials on a product

domain

4.2.1 Hermite-Laguerre product weight

In this subsection we use the results from Section 3.3 and Section 3.4.1.2. For the
Hermite-Laguerre case, we consider the product domain

(−∞,∞)× [0,∞) .

We construct the Sobolev orthogonal polynomials in two variables with respect to the
inner product:

⟨f, g⟩S = ca

∫ ∞

0

∫ ∞

−∞
∇2f(x, y) · ∇2g(x, y)Wa(x, y)dxdy+

λ1∇f(p1, p2) · ∇g(p1, p2) + λ0f(p1, p2)g(p1, p2), (4.4)

where p = (p1, p2) is a given point in R2, λ0, λ1 > 0, ∇f and ∇2f are given in (4.1),
Wa is the Hermite-Laguerre product weight:

Wa(x, y) = e−x2

yae−y, a > −1, (x, y) ∈ (−∞,∞)× [0,∞) ,

ca is the normalization constant:

ca :=

(∫ ∞

0

∫ ∞

−∞
Wa(x, y)dxdy

)−1

=
1

Γ(a+ 1)
√
π
,

and the main part of (4.4) is denoted by:

⟨f, g⟩∇2 = ca

∫ ∞

0

∫ ∞

−∞
∇2f(x, y) · ∇2g(x, y)Wa(x, y)dxdy. (4.5)

We denote by V 2
n (S,Wa) and V 2

n (∇2,Wa) the spaces of orthogonal polynomials of
degree n with respect to (4.4) and (4.5), respectively. The following corollary is a
consequence of Theorem 3.1 and Proposition 3.9 for κ = d = 2.
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Corollary 4.1. Let
{
Sn
j : 0 ≤ j ≤ n

}
denote a monic orthogonal basis of V 2

n (∇2,Wa).

Then, a monic orthogonal basis
{
Sn
j : 0 ≤ j ≤ n

}
of V 2

n (S,Wa) is given by:

S0
0 (x, y) = 1,

S1
0 (x, y) = x− p1, S1

1 (x, y) = y − p2,

Sn
j (x, y) = Sn

j (x, y)− T 1(Sn
j ,p;x, y), n ≥ 2,

where T 1(Sn
j ,p) is the Taylor polynomial of first degree of Sn

j at p = (p1, p2), and
where〈

S0
0 ,S0

0

〉
S
= λ0,〈

S1
0 ,S1

0

〉
S
=
〈
S1
1 ,S1

1

〉
S
= λ1,〈

Sn
j ,Sn

j

〉
S
=
〈
Sn
j , S

n
j

〉
∇2 , 0 ≤ j ≤ n, n ≥ 2.

Then, we need only to find a monic orthogonal basis
{
Sn
j : 0 ≤ j ≤ n

}
of V 2

n (∇2,Wa)
for n ≥ 2. Let us denote by Sn the column vector of size n+ 1:

Sn =
(
Sn
0 (x, y), Sn

1 (x, y), . . . , Sn
n(x, y)

)T
.

For this construction, we consider the monic sequences of Hermite {Hn(x)}n≥0 and

Laguerre
{
L
(a)
n (y)

}
n≥0

, a > −1, orthogonal polynomials (see [111, Chapter 5]) which

are, respectively, orthogonal with respect to the weight functions:

u(x) = e−x2

, x ∈ (−∞,∞) , wa(y) = yae−y, a > −1, y ∈ [0,∞) ,

that is,

⟨Hn, Hm⟩ =
1√
π

∫ ∞

−∞
Hn(x)Hm(x)u(x)dx = hn(u)δn,m,〈

L(a)
n , L(a)

m

〉
=

1

Γ(a+ 1)

∫ ∞

0

L(a)
n (y)L(a)

m (y)wa(y)dy = hn(wa)δn,m,

and where their L2 norms are, respectively:

hn(u) = ⟨Hn, Hn⟩ =
n!

2n
, hn(wa) =

〈
L(a)
n , L(a)

n

〉
= n!(a+ 1)n. (4.6)

By convention, we take Hn = L
(a)
n = 0 for n < 0, and consequently hn(u) = hn(wa) =

0 for n < 0. In addition, the Hermite and Laguerre (monic) sequences are self-coherent
with the relations [111, (5.5.10), (5.1.13), (5.1.14)]:

Hn(x) =
1

n+ 1
H ′

n+1(x), n ≥ 0, (4.7)

L(a)
n (y) =

1

n+ 1
(L

(a)
n+1)

′(y) + (L(a)
n )′(y), n ≥ 0. (4.8)
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From the monic sequences {Hn(x)}n≥0 and
{
L
(a)
n (y)

}
n≥0

we define the product

polynomial P n
j in two variables:

P n
j (x, y) = Hn−j(x)L

(a)
j (y), 0 ≤ j ≤ n, n ≥ 0. (4.9)

According to Proposition 1.1, the set
{
P n
j : 0 ≤ j ≤ n

}
is a monic mutually orthogo-

nal basis for the space V 2
n (Wa) of orthogonal polynomials of degree n with respect to

the inner product:

⟨f, g⟩Wa
= ca

∫ ∞

0

∫ ∞

−∞
f(x, y)g(x, y)Wa(x, y)dxdy,

that is,〈
P n
j , P

m
k

〉
Wa

= hnj δn,mδj,k, (4.10)

where, from (4.6), we get that the L2 norm of P n
j is:

hnj = ∥P n
j ∥2Wa

= hn−j(u)hj(wa) =
(n− j)!j!(a+ 1)j

2n−j
, 0 ≤ j ≤ n, n ≥ 0. (4.11)

From differential equations (1.2) and (1.4), and the polynomial (4.9), it is not difficult
to prove that the polynomials in the space V 2

n (Wa) satisfy the partial differential
equation2:

1

2

∂2P

∂x2
+ y

∂2P

∂y2
−x

∂P

∂x
+(a+1− y)

∂P

∂y
= −nP, P ∈ V 2

n (Wa), a > −1. (4.12)

From Proposition 3.7, we know that if P ∈ V 2
n (S,Wa) or P ∈ V 2

n (∇2,Wa) then:

(∂1 + ∂2)
2P :=

∂2P

∂x2
+ 2

∂2P

∂x∂y
+
∂2P

∂y2
∈ V 2

n−2(Wa). (4.13)

Putting (4.12) and (4.13) together, then they prove the following result.

Proposition 4.1. Let P ∈ V 2
n (S,Wa) or P ∈ V 2

n (∇2,Wa), a > −1. Then P satisfies
the fourth-order partial differential equation:[

1

2

∂2

∂x2
+ y

∂2

∂y2
− x

∂

∂x
+ (a+ 1− y)

∂

∂y
+ (n− 2)I

] [
∂2

∂x2
+ 2

∂2

∂x∂y
+

∂2

∂y2

]
P = 0,

where I is the identity operator.

In the following proposition we use the results from Section 3.4.1.2 because Wa is
a product of classical weights.

2In (4.12) the factor 1/2 appears at ∂2/∂x2 because we assume e−x2

to be the weight function for

the Hermite polynomials. Suetin [110, page 40, equations (25)–(28)] works with the weight e−x2/2.
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Proposition 4.2. The monic sequences {qn(u;x)}n≥0 and {qn(wa; y)}n≥0 defined in
(3.58), and their derivatives up to second-order, are given for the Hermite and La-
guerre cases by:

q′′n(u;x) = n(n− 1)Hn−2(x), n ≥ 0,

q′n(u;x) = nHn−1(x), n ≥ 0,

qn(u;x) = Hn(x), n ≥ 0,

and

q′′n(wa; y) = n(n− 1)L
(a)
n−2(y), n ≥ 0,

q′n(wa; y) = nL
(a)
n−1(y) + n(n− 1)L

(a)
n−2(y), n ≥ 0,

qn(wa; y) = L(a)
n (y) + 2nL

(a)
n−1(y) + n(n− 1)L

(a)
n−2(y), n ≥ 0.

Proof. By comparing coefficients in (3.52), (4.7) and (4.8) we have for each case:

an(u) = bn(u) = 0, an(wa) = 1, bn(wa) = 0.

Then, from Proposition 3.13 we have the following constants:

γn,1−1 (u) = γn,10 (u) = 0, γn,11 (u) =
1

n+ 1
,

γn,2−2 (u) = γn,2−1 (u) = γn,20 (u) = γn,21 (u) = 0, γn,22 (u) =
1

(n+ 1)(n+ 2)
,

and also for the Laguerre case:

γn,1−1 (wa) = 0, γn,10 (wa) = 1, γn,11 (wa) =
1

n+ 1
, γn,2−2 (wa) = γn,2−1 (wa) = 0,

γn,20 (wa) = 1, γn,21 (wa) =
2

n+ 1
, γn,22 (wa) =

1

(n+ 1)(n+ 2)
.

The result follows from (3.55) and (3.57) with κ = 2.

From the monic sequences {qn(u;x)}n≥0 and {qn(wa; y)}n≥0 we define the product
polynomial Qn

j in two variables:

Qn
j (x, y) = qn−j(u;x)qj(wa; y), 0 ≤ j ≤ n, n ≥ 0, (4.14)

where we denote by Qn the column vector of size n+ 1:

Qn =
(
Qn

0 (x, y), Qn
1 (x, y), . . . , Qn

n(x, y)
)T

.

As a consequence, from Proposition 4.2 we have the following three results with
respect to the matrix

〈
Qn,QT

m

〉
∇2 .
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Proposition 4.3. The second-order partial derivatives ∂21Q
n
j , ∂1∂2Q

n
j and ∂22Q

n
j of

the polynomial Qn
j , 0 ≤ j ≤ n, n ≥ 0, are given by:

∂21Q
n
j (x, y) = (n− j)(n− j − 1)[P n−2

j (x, y) + 2jP n−3
j−1 (x, y) + j(j − 1)P n−4

j−2 (x, y)],

∂1∂2Q
n
j (x, y) = j(n− j)[P n−2

j−1 (x, y) + (j − 1)P n−3
j−2 (x, y)],

∂22Q
n
j (x, y) = j(j − 1)P n−2

j−2 (x, y).

Proof. From (4.9), (4.14) and Proposition 4.2 we have that:

∂21Q
n
j (x, y) = q′′n−j(u;x)qj(wa; y) =

(n− j)(n− j − 1)Hn−j−2(x)[L
(a)
j (y) + 2jL

(a)
j−1(y) + j(j − 1)L

(a)
j−2(y)] =

(n− j)(n− j − 1)[P n−2
j (x, y) + 2jP n−3

j−1 (x, y) + j(j − 1)P n−4
j−2 (x, y)].

The expressions for ∂1∂2Q
n
j and ∂22Q

n
j follow similarly.

Proposition 4.4.
〈
Qn

j , Q
m
k

〉
∇2, 0 ≤ j ≤ n, 0 ≤ k ≤ m, n,m ≥ 0, is given by:〈

Qn
j , Q

m
k

〉
∇2 = An

j δn,m−2δj,k−2 +Bn
j δn,m−1δj,k−1 + Cn

j δn,mδj,k

+ Bn−1
j−1 δn,m+1δj,k+1 + An−2

j−2 δn,m+2δj,k+2,

where,

An
j = (j + 1)(j + 2)(n− j)2(n− j − 1)2hn−2

j ,

Bn
j = 2(j + 1)(n− j)2(n− j − 1)2hn−2

j + 2j2(j + 1)(n− j)2hn−2
j−1

+ 2j2(j + 1)(n− j)2(n− j − 1)2hn−3
j−1 ,

Cn
j = (n− j)2(n− j − 1)2hn−2

j + 2j2(n− j)2hn−2
j−1 + j2(j − 1)2hn−2

j−2

+ 4j2(n− j)2(n− j − 1)2hn−3
j−1 + 2j2(j − 1)2(n− j)2hn−3

j−2

+ j2(j − 1)2(n− j)2(n− j − 1)2hn−4
j−2 ,

and where hnj is given in (4.11).

Proof. From Proposition 3.4 for κ = d = 2 we have:〈
Qn

j , Q
m
k

〉
∇2 =

〈
∂21Q

n
j , ∂

2
1Q

m
k

〉
Wa

+ 2
〈
∂1∂2Q

n
j , ∂1∂2Q

m
k

〉
Wa

+
〈
∂22Q

n
j , ∂

2
2Q

m
k

〉
Wa
,

where, for example, from (4.10) and Proposition 4.3:〈
∂21Q

n
j , ∂

2
1Q

m
k

〉
Wa

= (n− j)2(n− j − 1)2[hn−2
j δn,mδj,k+

2jhn−3
j−1 δn,m+1δj,k+1 + j(j − 1)hn−4

j−2 δn,m+2δj,k+2 + 2(j + 1)hn−2
j δn,m−1δj,k−1+

4j2hn−3
j−1 δn,mδj,k + 2j(j − 1)2hn−4

j−2 δn,m+1δj,k+1 + (j + 1)(j + 2)hn−2
j δn,m−2δj,k−2+

2j2(j + 1)hn−3
j−1 δn,m−1δj,k−1 + j2(j − 1)2hn−4

j−2 δn,mδj,k],

and similarly for the other two expressions. We have the result by adding and sim-
plifying.
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Proposition 4.5. Let An
j , B

n
j , and C

n
j , 0 ≤ j ≤ n, n ≥ 0, be given in Proposition 4.4.

Then, the matrices
〈
Qn,QT

n

〉
∇2,

〈
Qn+1,QT

n

〉
∇2 and

〈
Qn+2,QT

n

〉
∇2, of sizes (n+ 1)×

(n + 1), (n + 2) × (n + 1) and (n + 3) × (n + 1), respectively, are diagonal matrices
of the form:〈
Qn,QT

n

〉
∇2 = diag

(
Cn

0 , Cn
1 , . . . , Cn

n

)
,

〈
Qn+1,QT

n

〉
∇2 =


0 0 · · · 0

Bn
0 0 · · · 0

0 Bn
1 · · · 0

...
...

. . .
...

0 0 · · · Bn
n

 ,
〈
Qn+2,QT

n

〉
∇2 =



0 0 · · · 0
0 0 · · · 0

An
0 0 · · · 0

0 An
1 · · · 0

...
...

. . .
...

0 0 · · · An
n


.

Proof. Let us recall that
〈
Qn,QT

m

〉
∇2 =

(〈
Qn

j , Q
m
k

〉
∇2

)
0≤j≤n,0≤k≤m

is a matrix of size

(n+1)×(m+1). By Proposition 4.4 we have that
〈
Qn

j , Q
m
k

〉
∇2 = 0 with the exception

of m = n,m = n ± 1,m = n ± 2. Therefore, for m = n, m = n − 1, and m = n − 2
we have:〈

Qm
j , Q

m
k

〉
∇2 = Cm

k δj,k, 0 ≤ j ≤ m, 0 ≤ k ≤ m,〈
Qm+1

j , Qm
k

〉
∇2 = Bm

k δj,k+1, 0 ≤ j ≤ m+ 1, 0 ≤ k ≤ m,〈
Qm+2

j , Qm
k

〉
∇2 = Am

k δj,k+2, 0 ≤ j ≤ m+ 2, 0 ≤ k ≤ m.

Example 4.1 (Numerical, see Note 4.1). Let a = 1 for the Laguerre polynomials
and let p = (p1, p2) = (1, 0) in the inner product (4.4). From the monic sequences

of Hermite {Hn(x)}n≥0 and Laguerre
{
L
(a)
n (x)

}
n≥0

polynomials [111, Chapter 5] we

have by Proposition 4.2 that {qn(u;x)}n≥0 and {qn(wa; y)}n≥0 are given for 0 ≤ n ≤ 5
by:

q0(u;x) = 1, q1(u;x) = x, q2(u;x) = x2 − 1

2
, q3(u;x) = x3 − 3

2
x,

q4(u;x) = x4 − 3x2 +
3

4
, q5(u;x) = x5 − 5x3 +

15

4
x,

and

q0(wa; y) = 1, q1(wa; y) = y, q2(wa; y) = y2 − 2y, q3(wa; y) = y3 − 6y2 + 6y,

q4(wa; y) = y4 − 12y3 + 36y2 − 24y, q5(wa; y) = y5 − 20y4 + 120y3 − 240y2 + 120y.

Therefore, from (4.14), for 0 ≤ n ≤ 5:

Q0 = 1, Q1 =
(
x, y

)T
, Q2 =

(
x2 − 1

2
, xy, y2 − 2y

)T
,

Q3 =
(
x3 − 3

2
x, x2y − 1

2
y, xy2 − 2xy, y3 − 6y2 + 6y

)T
,
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Q4 =


x4 − 3x2 + 3

4

x3y − 3
2
xy

x2y2 − 2x2y − 1
2
y2 + y

xy3 − 6xy2 + 6xy

y4 − 12y3 + 36y2 − 24y

 , Q5 =



x5 − 5x3 + 15
4
x

x4y − 3x2y + 3
4
y

x3y2 − 2x3y − 3
2
xy2 + 3xy

x2y3 − 6x2y2 + 6x2y − 1
2
y3 + 3y2 − 3y

xy4 − 12xy3 + 36xy2 − 24xy

y5 − 20y4 + 120y3 − 240y2 + 120y


.

From Proposition 3.11 and Proposition 4.5, with κ = 2, we have:

1. First iteration: Bn,2 = 0 for n ≥ 5 and

B3,2 =
〈
Q3,QT

2

〉
∇2 =


0 0 0
8 0 0
0 4 0
0 0 0

 , B4,2 =
〈
Q4,QT

2

〉
∇2 =


0 0 0
0 0 0
8 0 0
0 0 0
0 0 0

 ,

H∇2

2 =
〈
Q2,QT

2

〉
∇2 =

4 0 0
0 2 0
0 0 4

 .

2. Second iteration: Bn,3 = 0 for n ≥ 6 and

B4,3 =
〈
Q4,QT

3

〉
∇2 −B4,2

(
H∇2

2

)−1

BT
3,2 =


0 0 0 0
36 0 0 0
0 40 0 0
0 0 48 0
0 0 0 0

 ,

B5,3 =
〈
Q5,QT

3

〉
∇2 −B5,2

(
H∇2

2

)−1

BT
3,2 =


0 0 0 0
0 0 0 0
36 0 0 0
0 48 0 0
0 0 0 0
0 0 0 0

 ,

H∇2

3 =
〈
Q3,QT

3

〉
∇2 −B3,2

(
H∇2

2

)−1

BT
3,2 =


18 0 0 0
0 12 0 0
0 0 18 0
0 0 0 72

 .

3. Third iteration: Bn,4 = 0 for n ≥ 7 and

B5,4 =
〈
Q5,QT

4

〉
∇2 −

3∑
j=2

B5,j

(
H∇2

j

)−1

BT
4,j =


0 0 0 0 0
144 0 0 0 0
0 162 0 0 0
0 0 416 0 0
0 0 0 864 0
0 0 0 0 0

 ,
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B6,4 =
〈
Q6,QT

4

〉
∇2 −

3∑
j=2

B6,j

(
H∇2

j

)−1

BT
4,j =



0 0 0 0 0
0 0 0 0 0
144 0 0 0 0
0 216 0 0 0
0 0 576 0 0
0 0 0 0 0
0 0 0 0 0


,

H∇2

4 =
〈
Q4,QT

4

〉
∇2 −

3∑
j=2

B4,j

(
H∇2

j

)−1

BT
4,j =


72 0 0 0 0
0 45 0 0 0

0 0 278
3

0 0

0 0 0 268 0
0 0 0 0 1728

 .

Therefore, from Proposition 3.11 we have:

An,2 = Bn,2

(
H∇2

2

)−1

= 0, n ≥ 5, An,3 = Bn,3

(
H∇2

3

)−1

= 0, n ≥ 6,

An,4 = Bn,4

(
H∇2

4

)−1

= 0, n ≥ 7,

and

A3,2 = B3,2

(
H∇2

2

)−1
=


0 0 0
2 0 0
0 2 0
0 0 0

 , A4,2 = B4,2

(
H∇2

2

)−1
=


0 0 0
0 0 0
2 0 0
0 0 0
0 0 0

 ,

A4,3 = B4,3

(
H∇2

3

)−1
=


0 0 0 0
2 0 0 0

0 10
3 0 0

0 0 8
3 0

0 0 0 0

 , A5,4 = B5,4

(
H∇2

4

)−1
=



0 0 0 0 0
2 0 0 0 0

0 18
5 0 0 0

0 0 624
139 0 0

0 0 0 216
67 0

0 0 0 0 0


,

A5,3 = B5,3

(
H∇2

3

)−1
=



0 0 0 0
0 0 0 0
2 0 0 0
0 4 0 0
0 0 0 0
0 0 0 0

 , A6,4 = B6,4

(
H∇2

4

)−1
=



0 0 0 0 0
0 0 0 0 0
2 0 0 0 0

0 24
5 0 0 0

0 0 864
139 0 0

0 0 0 0 0
0 0 0 0 0


.

If
1
= denotes the congruence relation (4.2) on Π2 then, from Proposition 3.10, we have

for 0 ≤ n ≤ 5:

S0
1
= Q0 = 1,
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S1
1
= Q1 =

(
x, y

)T
,

S2
1
= Q2 =

(
x2 − 1

2
, xy, y2 − 2y

)T
,

S3
1
= Q3 −A3,2S2

1
=
(
x3 − 3

2
x, x2y − 2x2 − 1

2
y + 1, xy2 − 4xy, y3 − 6y2 + 6y

)T
,

S4
1
= Q4 −A4,3S3 −A4,2S2

1
=



x4 − 3x2 + 3
4

x3y − 2x3 − 3
2
xy + 3x

x2y2 − 16
3
x2y + 14

3
x2 − 1

2
y2 + 8

3
y − 7

3

xy3 − 26
3
xy2 + 50

3
xy

y4 − 12y3 + 36y2 − 24y


,

S5
1
= Q5 −A5,4S4 −A5,3S3 −A5,2S2

1
=



x5 − 5x3 + 15
4
x

x4y − 2x4 − 3x2y + 6x2 + 3
4
y − 3

2

x3y2 − 28
5
x3y + 26

5
x3 − 3

2
xy2 + 42

5
xy − 39

5
x

x2y3 − 1458
139

x2y2 + 3606
139

x2y − 1
2
y3 − 1800

139
x2 + 729

139
y2 − 1803

139
y + 900

139

xy4 − 1020
67
xy3 + 4284

67
xy2 − 5208

67
xy

y5 − 20y4 + 120y3 − 240y2 + 120y


.

Finally, let p = (p1, p2) = (1, 0). The Taylor polynomials of first degree at p of
S2,S3,S4 and S5 are given by:

T 1(S2,p;x, y) =
(
2x− 3

2
, y, −2y

)T
,

T 1(S3,p;x, y) =
(

3
2
x− 2, −4x+ 1

2
y + 3, −4y, 6y

)T
,

T 1(S4,p;x, y) =
(
−2x+ 3

4
, −3x− 1

2
y + 4, 28

3
x− 8

3
y − 7, 50

3
y, −24y

)T
,

T 1(S5,p;x, y) =



−25
4
x+ 6

4x− 5
4
y − 3

2

39
5
x+ 14

5
y − 52

5

−3600
139

x+ 1803
139

y + 2700
139

−5208
67
y

120y


.

Then, from Corollary 4.1 we have a basis
{
Sn
j : 0 ≤ j ≤ n

}
for the space V 2

n (S,Wa)
(with a = 1), together with their Sobolev L2 norms, for 0 ≤ n ≤ 5 given by:

� For the space V 2
0 (S,Wa):

S0
0 (x, y) = 1.
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� For the space V 2
1 (S,Wa):

S1
0 (x, y) = x− 1,

S1
1 (x, y) = y.

� For the space V 2
2 (S,Wa):

S2
0 (x, y) = x2 − 2x+ 1,

S2
1 (x, y) = xy − y,

S2
2 (x, y) = y2.

� For the space V 2
3 (S,Wa):

S3
0 (x, y) = x3 − 3x+ 2,

S3
1 (x, y) = x2y − 2x2 + 4x− y − 2,

S3
2 (x, y) = xy2 − 4xy + 4y,

S3
3 (x, y) = y3 − 6y2.

� For the space V 2
4 (S,Wa):

S4
0 (x, y) = x4 − 3x2 + 2x,

S4
1 (x, y) = x3y − 2x3 − 3

2
xy + 6x+

1

2
y − 4,

S4
2 (x, y) = x2y2 − 16

3
x2y +

14

3
x2 − 1

2
y2 − 28

3
x+

16

3
y +

14

3
,

S4
3 (x, y) = xy3 − 26

3
xy2 +

50

3
xy − 50

3
y,

S4
4 (x, y) = y4 − 12y3 + 36y2.

� For the space V 2
5 (S,Wa):

S5
0 (x, y) = x5 − 5x3 + 10x− 6,

S5
1 (x, y) = x4y − 2x4 − 3x2y + 6x2 − 4x+ 2y,

S5
2 (x, y) = x3y2 − 28

5
x3y +

26

5
x3 − 3

2
xy2 +

42

5
xy − 78

5
x− 14

5
y +

52

5
,

S5
3 (x, y) = x2y3 − 1458

139
x2y2 +

3606

139
x2y − 1

2
y3 − 1800

139
x2 +

729

139
y2 +

3600

139
x

− 3606

139
y − 1800

139
,

S5
4 (x, y) = xy4 − 1020

67
xy3 +

4284

67
xy2 − 5208

67
xy +

5208

67
y,

S5
5 (x, y) = y5 − 20y4 + 120y3 − 240y2.

This completes our numerical example with the Hermite-Laguerre product weight.
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4.2.2 Laguerre-Gegenbauer product weight

In this subsection we use the results from Section 3.3 and Section 3.4.1.2. For the
Laguerre-Gegenbauer case, we consider the product domain:

[0,∞)× [−1, 1] .

We present all the calculations that are needed for constructing the Sobolev orthogo-
nal polynomials of total degree n in two variables with respect to the Sobolev inner
product:

⟨f, g⟩S = ca,b

∫ 1

−1

∫ ∞

0

∇3f(x, y) ·∇3g(x, y)Wa,b(x, y)dxdy+λ2∇2f(p1, p2) ·∇2g(p1, p2)

+ λ1∇f(p1, p2) · ∇g(p1, p2) + λ0f(p1, p2)g(p1, p2), (4.15)

where (p1, p2) is a point in R2, λ0, λ1, λ2 > 0, ∇f , ∇2f and ∇3f are given in (4.1),
Wa,b is the Laguerre-Gegenbauer product weight:

Wa,b(x, y) = xae−x(1− y2)b−1/2, a > −1, b > −1/2,

(x, y) ∈ [0,∞) × [−1, 1] , (4.16)

ca,b is the normalization constant:

ca,b =

(∫ 1

−1

∫ ∞

0

Wa,b(x, y)dxdy

)−1

=
Γ(b+ 1)

Γ(a+ 1)Γ(1/2)Γ(b+ 1/2)
, (4.17)

and the main part of (4.15) is denoted by:

⟨f, g⟩∇3 = ca,b

∫ 1

−1

∫ ∞

0

∇3f(x, y) · ∇3g(x, y)Wa,b(x, y)dxdy. (4.18)

We denote by V 2
n (S,Wa,b) and V 2

n (∇3,Wa,b) the spaces of orthogonal polynomials of
degree n with respect to (4.15) and (4.18), respectively, for which dimV 2

n (S,Wa,b) =
dimV 2

n (∇3,Wa,b) = n + 1. The following corollary is a consequence of Theorem 3.1
and Proposition 3.9 for κ = 3 and d = 2.

Corollary 4.2. Let
{
Sn
j : 0 ≤ j ≤ n

}
denote a monic orthogonal basis of V 2

n (∇3,Wa,b).

Then, a monic orthogonal basis
{
Sn
j : 0 ≤ j ≤ n

}
of V 2

n (S,Wa,b) is given by:

S0
0 (x, y) = 1,

S1
0 (x, y) = x− p1, S1

1 (x, y) = y − p2,

S2
0 (x, y) = (x− p1)

2, S2
1 (x, y) = (x− p1)(y − p2), S2

2 (x, y) = (y − p2)
2,

Sn
j (x, y) = Sn

j (x, y)− T 2(Sn
j ,p;x, y), 0 ≤ j ≤ n, n ≥ 3,

where T 2(Sn
j ,p;x, y) denotes the Taylor polynomial of second degree in two variables

of Sn
j at p = (p1, p2), and where〈

S0
0 ,S0

0

〉
S
= λ0,



4.2. Sobolev orthogonal polynomials on a product domain 91

〈
S1
0 ,S1

0

〉
S
=
〈
S1
1 ,S1

1

〉
S
= λ1,〈

S2
0 ,S2

0

〉
S
= 4λ2,

〈
S2
1 ,S2

1

〉
S
= 2λ2,

〈
S2
2 ,S2

2

〉
S
= 4λ2,〈

Sn
j ,Sn

j

〉
S
=
〈
Sn
j , S

n
j

〉
∇3 , 0 ≤ j ≤ n, n ≥ 3.

Then, we need to construct a monic orthogonal basis
{
Sn
j : 0 ≤ j ≤ n

}
for the

space V 2
n (∇3,Wa,b), where each Sn

j is of the form Sn
j (x, y) = xn−jyj + R(x, y), with

R ∈ Π2
n−1. We denote by Sn the column vector:

Sn =
(
Sn
0 (x, y), Sn

1 (x, y), . . . , Sn
n(x, y)

)T
.

For this construction, let us consider the monic sequences of Laguerre
{
L
(a)
n (x)

}
n≥0

,

a > −1, and Gegenbauer3
{
Cb

n(y)
}
n≥0

, b > −1/2, b ̸= 0, orthogonal polynomials

[111, Chapter 4 and 5]. These two sequences are orthogonal with respect to the inner
products:〈

L(a)
n , L(b)

m

〉
wa

=
1

Γ(a+ 1)

∫ ∞

0

L(a)
n (x)L(a)

m (x)wa(x)dx = hn(wa)δn,m,〈
Cb

n, C
b
m

〉
ub

=
Γ(b+ 1)

Γ(1/2)Γ(b+ 1/2)

∫ 1

−1

Cb
n(y)C

b
m(y)ub(y)dy = hn(ub)δn,m,

where wa and ub are the Laguerre and Gegenbauer weight functions:

wa(x) = xae−x, x ∈ [0,∞) , a > −1,

ub(y) = (1− y2)b−1/2, y ∈ [−1, 1] , b > −1/2,

and their L2 norms are given, respectively, by:

hn(wa) =
〈
L(a)
n , L(a)

n

〉
wa

= n!(a+ 1)n, hn(ub) =
〈
Cb

n, C
b
n

〉
ub

=
n!(2b)n

4n(b)n(b+ 1)n
.

By convention, we take L
(a)
n = Cb

n = 0 if n < 0, and consequently, hn(wa) = hn(ub) = 0

if n < 0. The monic sequences
{
L
(a)
n (x)

}
n≥0

and
{
Cb

n(y)
}
n≥0

are self-coherent [111,

(4.7.29), (5.1.13)–(5.1.14)] with the relations:

L(a)
n (x) =

1

n+ 1

d

dx
L
(a)
n+1(x) +

d

dx
L(a)
n (x), n ≥ 0, (4.19)

Cb
n(y) =

1

n+ 1

d

dy
Cb

n+1(y) + bn(ub)
d

dy
Cb

n−1(y), n ≥ 1, (4.20)

where

bn(ub) = − n

4(n+ b)(n+ b− 1)
, n ≥ 1. (4.21)

3For b = 0 the Gegenbauer polynomials vanish identically for n ≥ 1. This case must be treated
separately. See [111, page 80] for more details.
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From the monic sequences
{
L
(a)
n (x)

}
n≥0

and
{
Cb

n(y)
}
n≥0

we define the monic

product polynomials of total degree n in two variables:

P n
j (x, y) = L

(a)
n−j(x)C

b
j (y), 0 ≤ j ≤ n, n ≥ 0, (4.22)

which are mutually orthogonal with respect to the inner product:

⟨f, g⟩Wa,b
= ca,b

∫ 1

−1

∫ ∞

0

f(x, y)g(x, y)Wa,b(x, y)dxdy, (4.23)

where Wa,b and ca,b are given in (4.16) and (4.17), respectively. That is,〈
P n
j , P

m
l

〉
Wa,b

= hnj δn,mδj,l, (4.24)

where the L2 norm is:

hnj =
〈
P n
j , P

n
j

〉
Wa,b

= hn−j(wa)hj(ub) =

j!(n− j)!(2b)j(a+ 1)n−j

4j(b)j(b+ 1)j
, 0 ≤ j ≤ n. (4.25)

The set
{
P n
j : 0 ≤ j ≤ n

}
forms a mutually orthogonal basis [44, proposition 2.2.1]

for the space V 2
n (Wa,b) of orthogonal polynomials with respect to (4.23).

Note 4.3. The Laguerre-Gegenbauer polynomials (4.22) also satisfy a partial differen-
tial equation, but the eigenvalues depend on both n and j. In this case, V 2

n (Wa,b) is
not an eigenspace of such a differential operator. See [110, page 41] for more details.

Now, we use the results from Section 3.4.1.2 because Wa,b is a product of classical
weights. From (3.57) and (3.58) with κ = 3, the monic sequence of polynomials
{qn(w;x)}n≥0 is defined by:

qn(w;x) = (n− 2)3[γ
n−3,3
3 (w)pn(w;x) + γn−3,3

2 (w)pn−1(w;x)

+ γn−3,3
1 (w)pn−2(w;x) + γn−3,3

0 (w)pn−3(w;x) + γn−3,3
−1 (w)pn−4(w;x)

+ γn−3,3
−2 (w)pn−5(w;x) + γn−3,3

−3 (w)pn−6(w;x)], (4.26)

where {pn(w;x)}n≥0 is a self-coherent monic sequence of orthogonal polynomials with
respect to w, and where q′n(w), q

′′
n(w) and q

′′′
n (w) are given by:

q′n(w;x) = (n− 2)3[γ
n−3,2
2 (w)pn−1(w;x) + γn−3,2

1 (w)pn−2(w;x)

+ γn−3,2
0 (w)pn−3(w;x) + γn−3,2

−1 (w)pn−4(w;x) + γn−3,2
−2 (w)pn−5(w;x)], (4.27)

q′′n(w;x) = (n− 1)2pn−2(w;x) + (n− 2)3an−3(w)pn−3(w;x)

+ (n − 2)3bn−3(w)pn−4(w;x), (4.28)

q′′′n (w;x) = (n− 2)3pn−3(w;x). (4.29)
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From (3.54) we have the following constants in (4.26) and (4.27) in terms of an(w)
and bn(w):

γn,33 (w) =
1

(n+ 1)3
, γn,32 (w) =

an+2(w) + an+1(w) + an(w)

(n+ 1)2
,

γn,31 (w) =
a2n+1(w) + an+1(w)an(w) + a2n(w)

n+ 1
+
bn+2(w)

(n+ 1)2
+
bn+1(w)

(n+ 1)2
+
bn(w)

(n)2
,

γn,30 (w) = (an+1(w) + 2an(w))
bn+1(w)

n+ 1
+ a3n(w) + (2an(w) + an−1(w))

bn(w)

n
,

γn,3−1 (w) = nbn(w)γ
n−1,3
1 (w), γn,3−2 (w) = (n− 1)2bn(w)bn−1(w)γ

n−2,3
2 (w),

γn,3−3 (w) = bn(w)bn−1(w)bn−2(w), γn,22 (w) =
1

(n+ 1)2
,

γn,21 (w) =
an+1(w) + an(w)

n+ 1
, γn,20 (w) = a2n(w) +

bn+1(w)

n+ 1
+
bn(w)

n
,

γn,2−1 (w) = (an(w) + an−1(w))bn(w), γn,2−2 (w) = bn(w)bn−1(w).

In particular, the Laguerre and Gegenbauer (monic) orthogonal polynomials are self-
coherent with the relations (4.19) and (4.20), respectively. From (4.19) and (4.20) we
get the following constants:

an(wa) = 1, bn(wa) = 0, (4.30)

an(ub) = 0, bn(ub) = − n

4(n+ b)(n+ b− 1)
. (4.31)

Therefore, from the previous discussion we have proved the following two propositions
for the Laguerre and Gegenbauer cases.

Proposition 4.6. The monic sequence of polynomials {qn(wa;x)}n≥0, a > −1, which
is defined in (3.58), and its derivatives up to third-order, are given in the Laguerre
case by:

qn(wa;x) = L(a)
n (x) + 3nL

(a)
n−1(x) + 3(n− 1)2L

(a)
n−2(x) + (n− 2)3L

(a)
n−3(x),

q′n(wa;x) = nL
(a)
n−1(x) + 2(n− 1)2L

(a)
n−2(x) + (n− 2)3L

(a)
n−3(x),

q′′n(wa;x) = (n− 1)2L
(a)
n−2(x) + (n− 2)3L

(a)
n−3(x),

q′′′n (wa;x) = (n− 2)3L
(a)
n−3(x).

Proposition 4.7. The monic sequence of polynomials {qn(ub; y)}n≥0, b > −1/2,
which is defined in (3.58), and its derivatives up to third-order, are given in the
Gegenbauer case by:

qn(ub; y) = Cb
n(y)−

[
3(n− 1)2(n+ b− 3)2

4(n+ b− 4)4

]
Cb

n−2(y) +

[
3(n− 3)4

16(n+ b− 5)4

]
Cb

n−4(y)

−
[

(n− 5)6
64(n+ b− 6)4(n+ b− 5)2

]
Cb

n−6(y),
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q′n(ub; y) = nCb
n−1(y)−

[
(n− 2)3(n+ b− 3)

2(n+ b− 4)3

]
Cb

n−3(y)

+

[
(n− 4)5

16(n+ b− 4)(n+ b− 5)3

]
Cb

n−5(y),

q′′n(ub; y) = (n− 1)2C
b
n−2(y)−

[
(n− 3)4

4(n+ b− 4)2

]
Cb

n−4(y),

q′′′n (ub; y) = (n− 2)3C
b
n−3(y).

If {qn(wa;x)}n≥0 and {qn(ub; y)}n≥0 denote the monic sequences in Proposition 4.6
and Proposition 4.7, respectively, we define the product polynomial Qn

j in two vari-
ables by:

Qn
j (x, y) = qn−j(wa;x)qj(ub; y), 0 ≤ j ≤ n, n ≥ 0, (4.32)

which is a monic polynomial of total degree n. We denote by Qn the column vector:

Qn =
(
Qn

0 (x, y), Qn
1 (x, y), . . . , Qn

n(x, y)
)T

.

We have the following proposition concerning to Qn
j .

Proposition 4.8. The third-order partial derivatives ∂31Q
n
j , ∂

2
1∂2Q

n
j , ∂1∂

2
2Q

n
j , ∂

3
2Q

n
j

of the polynomial Qn
j , 0 ≤ j ≤ n, n ≥ 0, in the Laguerre-Gegenbauer case are given

by:

∂31Q
n
j (x, y) = (n− j − 2)3P

n−3
j (x, y)

−
[
3(n− j − 2)3(j − 1)2(j + b− 3)2

4(j + b− 4)4

]
P n−5
j−2 (x, y)

+

[
3(n− j − 2)3(j − 3)4

16(j + b− 5)4

]
P n−7
j−4 (x, y)

−
[

(n− j − 2)3(j − 5)6
64(j + b− 6)4(j + b− 5)2

]
P n−9
j−6 (x, y),

∂21∂2Q
n
j (x, y) = j(n− j − 1)2P

n−3
j−1 (x, y) + j(n− j − 2)3P

n−4
j−1 (x, y)

−
[
(n− j − 1)2(j − 2)3(j + b− 3)

2(j + b− 4)3

]
P n−5
j−3 (x, y)

−
[
(n− j − 2)3(j − 2)3(j + b− 3)

2(j + b− 4)3

]
P n−6
j−3 (x, y)

+

[
(n− j − 1)2(j − 4)5

16(j + b− 4)(j + b− 5)3

]
P n−7
j−5 (x, y)

+

[
(n− j − 2)3(j − 4)5

16(j + b− 4)(j + b− 5)3

]
P n−8
j−5 (x, y),

∂1∂
2
2Q

n
j (x, y) = (n− j)(j − 1)2P

n−3
j−2 (x, y) + 2(n− j − 1)2(j − 1)2P

n−4
j−2 (x, y)

+ (n− j − 2)3(j − 1)2P
n−5
j−2 (x, y)−

[
(n− j)(j − 3)4
4(j + b− 4)2

]
P n−5
j−4 (x, y)
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−
[
(n− j − 1)2(j − 3)4

2(j + b− 4)2

]
P n−6
j−4 (x, y)−

[
(n− j − 2)3(j − 3)4

4(j + b− 4)2

]
P n−7
j−4 (x, y),

∂32Q
n
j (x, y) = (j − 2)3P

n−3
j−3 (x, y) + 3(n− j)(j − 2)3P

n−4
j−3 (x, y)

+ 3(n− j − 1)2(j − 2)3P
n−5
j−3 (x, y) + (n− j − 2)3(j − 2)3P

n−6
j−3 (x, y),

where P n
j is given in (4.22).

Proof. From (4.32) we have that ∂31Q
n
j = q′′′n−j(wa;x)qj(ub; y). Then, we use Proposi-

tion 4.6 and Proposition 4.7 and we express the result in terms of P n
j in (4.22). The

other expressions follow similarly.

Proposition 3.11 shows that it is necessary to know explicitly the n−3 rectangular
matrices

〈
Qn,QT

i

〉
∇3 of size (n+1)× (i+1), 3 ≤ i ≤ n− 1, and also the n− 3 square

matrices
〈
Qi,QT

i

〉
∇3 of size (i + 1) × (i + 1), 3 ≤ i ≤ n − 1. For this purpose, it

is necessary to know explicitly their entries
〈
Qn

j , Q
m
l

〉
∇3 for 0 ≤ j ≤ n, 0 ≤ l ≤ m,

n,m ≥ 0. These are our next two propositions.

Proposition 4.9. Let a > −1, b > −1/2 and let hnj be given in (4.25). Then〈
Qn

j , Q
m
l

〉
∇3, 0 ≤ j ≤ n, 0 ≤ l ≤ m, n,m ≥ 0, is given by:〈

Qn
j , Q

m
l

〉
∇3 = ωa,b

n+6,j+6δj,l−6δn,m−6 + ψa,b
n+5,j+4δj,l−4δn,m−5 + χa,b

n+4,j+4δj,l−4δn,m−4

+ ϕa,b
n+4,j+2δj,l−2δn,m−4 + τa,bn+3,j+4δj,l−4δn,m−3 + σa,b

n+3,j+2δj,l−2δn,m−3 + ρa,bn+3,jδj,lδn,m−3

+ πa,b
n+2,j+2δj,l−2δn,m−2 + ξa,bn+2,jδj,lδn,m−2 + νa,bn+1,j+2δj,l−2δn,m−1 + µa,b

n+1,jδj,lδn,m−1

+ κa,bn,j+2δj,l−2δn,m + θa,bn,jδj,lδn,m + κa,bn,jδj,l+2δn,m + µa,b
n,jδj,lδn,m+1 + νa,bn,jδj,l+2δn,m+1

+ ξa,bn,jδj,lδn,m+2 + πa,b
n,jδj,l+2δn,m+2 + ρa,bn,jδj,lδn,m+3 + σa,b

n,jδj,l+2δn,m+3 + τa,bn,jδj,l+4δn,m+3

+ ϕa,b
n,jδj,l+2δn,m+4 + χa,b

n,jδj,l+4δn,m+4 + ψa,b
n,jδj,l+4δn,m+5 + ωa,b

n,jδj,l+6δn,m+6,

where:

θa,bn,j = (n− j − 2)23h
n−3
j +

[
9(n− j − 2)23(j − 1)22(j + b− 3)22

16(j + b− 4)24

]
hn−5
j−2

+

[
9(n− j − 2)23(j − 3)24

256(j + b− 5)24

]
hn−7
j−4 +

[
(n− j − 2)23(j − 5)26

4096(j + b− 6)24(j + b− 5)22

]
hn−9
j−6

+ 3j2(n− j − 1)22h
n−3
j−1 + 3j2(n− j − 2)23h

n−4
j−1

+

[
3(n− j − 1)22(j − 2)23(j + b− 3)2

4(j + b− 4)23

]
hn−5
j−3

+

[
3(n− j − 2)23(j − 2)23(j + b− 3)2

4(j + b− 4)23

]
hn−6
j−3 +

[
3(n− j − 1)22(j − 4)25

256(j + b− 4)2(j + b− 5)23

]
hn−7
j−5

+

[
3(n− j − 2)23(j − 4)25

256(j + b− 4)2(j + b− 5)23

]
hn−8
j−5 + 3(n− j)2(j − 1)22h

n−3
j−2

+ 12(n− j − 1)22(j − 1)22h
n−4
j−2 + 3(n− j − 2)23(j − 1)22h

n−5
j−2

+

[
3(n− j)2(j − 3)24
16(j + b− 4)22

]
hn−5
j−4 +

[
3(n− j − 1)22(j − 3)24

4(j + b− 4)22

]
hn−6
j−4
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+

[
3(n− j − 2)23(j − 3)24

16(j + b− 4)22

]
hn−7
j−4 + (j − 2)23h

n−3
j−3 + 9(n− j)2(j − 2)23h

n−4
j−3

+ 9(n− j − 1)22(j − 2)23h
n−5
j−3 + (n− j − 2)23(j − 2)23h

n−6
j−3 ,

κa,bn,j = −
[
3(n− j)2(n− j + 1)2(j − 3)22(j − 1)2

4(j + b− 4)2

]
hn−5
j−4 ,

µa,b
n,j = 3j2(n− j − 2)22(n− j)hn−4

j−1 +

[
3(n− j − 2)22(n− j)(j − 2)23(j + b− 3)2

4(j + b− 4)23

]
hn−6
j−3

+

[
3(n− j − 2)22(n− j)(j − 4)25
256(j + b− 4)2(j + b− 5)23

]
hn−8
j−5 + 6(n− j − 1)2(n− j)(j − 1)22h

n−4
j−2

+ 6(n− j − 2)22(n− j)(j − 1)22h
n−5
j−2 +

[
3(n− j − 1)2(n− j)(j − 3)24

8(j + b− 4)22

]
hn−6
j−4

+

[
3(n− j − 2)22(n− j)(j − 3)24

8(j + b− 4)22

]
hn−7
j−4 + 3(n− j)(j − 2)23h

n−4
j−3

+ 9(n− j − 1)2(n− j)(j − 2)23h
n−5
j−3 + 3(n− j − 2)22(n− j)(j − 2)23h

n−6
j−3 ,

νa,bn,j = −
[
3(n− j − 1)22(n− j + 1)(j − 2)2(j − 1)2(j + b− 3)

2(j + b− 4)3

]
hn−5
j−3

−
[
3(n− j − 1)22(n− j + 1)(j − 4)23(j − 1)2

32(j + b− 4)2(j + b− 6)4

]
hn−7
j−5

−
[
3(n− j)2(n− j + 1)(j − 3)22(j − 1)2

2(j + b− 4)2

]
hn−5
j−4

−
[
3(n− j − 1)22(n− j + 1)(j − 3)22(j − 1)2

2(j + b− 4)2

]
hn−6
j−4 ,

ξa,bn,j = 3(n− j − 2)2(n− j − 1)2(j − 1)22h
n−5
j−2

+

[
3(n− j − 2)2(n− j − 1)2(j − 3)24

16(j + b− 4)22

]
hn−7
j−4

+ 3(n− j − 1)2(j − 2)23h
n−5
j−3 + 3(n− j − 2)2(n− j − 1)2(j − 2)23h

n−6
j−3 ,

πa,b
n,j = −

[
3(n− j − 2)23(j − 1)2(j + b− 3)2

4(j + b− 4)4

]
hn−5
j−2

−
[
9(n− j − 2)23(j − 3)22(j − 1)2
64(j + b− 3)2(j + b− 6)4

]
hn−7
j−4

−
[

3(n− j − 2)23(j − 5)24(j − 1)2
1024(j + b− 6)4(j + b− 5)2(j + b− 7)4

]
hn−9
j−6

−
[
3(n− j − 1)22(j − 2)2(j − 1)2(j + b− 3)

2(j + b− 4)3

]
hn−5
j−3

−
[
3(n− j − 2)23(j − 2)2(j − 1)2(j + b− 3)

2(j + b− 4)3

]
hn−6
j−3

−
[
3(n− j − 1)22(j − 4)23(j − 1)2
32(j + b− 4)2(j + b− 6)4

]
hn−7
j−5 −

[
3(n− j − 2)23(j − 4)23(j − 1)2
32(j + b− 4)2(j + b− 6)4

]
hn−8
j−5
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−
[
3(n− j)2(j − 3)22(j − 1)2

4(j + b− 4)2

]
hn−5
j−4

−
[
3(n− j − 1)22(j − 3)22(j − 1)2

(j + b− 4)2

]
hn−6
j−4 −

[
3(n− j − 2)23(j − 3)22(j − 1)2

4(j + b− 4)2

]
hn−7
j−4 ,

ρa,bn,j = (n− j − 2)3(j − 2)23h
n−6
j−3 ,

σa,b
n,j = −

[
3(n− j − 2)22(n− j)(j − 2)2(j − 1)2(j + b− 3)

2(j + b− 4)3

]
hn−6
j−3

−
[
3(n− j − 2)22(n− j)(j − 4)23(j − 1)2

32(j + b− 4)2(j + b− 6)4

]
hn−8
j−5

−
[
3(n− j − 1)2(n− j)(j − 3)22(j − 1)2

2(j + b− 4)2

]
hn−6
j−4

−
[
3(n− j − 2)22(n− j)(j − 3)22(j − 1)2

2(j + b− 4)2

]
hn−7
j−4 ,

τa,bn,j =

[
3(n− j − 1)22(n− j + 1)(j − 4)2(j − 3)4

16(j + b− 4)(j + b− 5)3

]
hn−7
j−5 ,

ϕa,b
n,j = −

[
3(n− j − 2)2(n− j − 1)2(j − 3)22(j − 1)2

4(j + b− 4)2

]
hn−7
j−4 ,

χa,b
n,j =

[
3(n− j − 2)23(j − 3)4

16(j + b− 5)4

]
hn−7
j−4 +

[
3(n− j − 2)23(j − 5)22(j − 3)4(j + b− 7)2
256(j + b− 6)4(j + b− 5)2(j + b− 8)4

]
hn−9
j−6

+

[
3(n− j − 1)22(j − 4)2(j − 3)4
16(j + b− 4)(j + b− 5)3

]
hn−7
j−5 +

[
3(n− j − 2)23(j − 4)2(j − 3)4
16(j + b− 4)(j + b− 5)3

]
hn−8
j−5 ,

ψa,b
n,j =

[
3(n− j − 2)22(n− j)(j − 4)2(j − 3)4

16(j + b− 4)(j + b− 5)3

]
hn−8
j−5 ,

ωa,b
n,j = −

[
(n− j − 2)23(j − 5)6

64(j + b− 6)4(j + b− 5)2

]
hn−9
j−6 .

Proof. From (3.15), with κ = 3 and d = 2, we have that:〈
Qn

j , Q
m
l

〉
∇3 =

〈
∂31Q

n
j , ∂

3
1Q

m
l

〉
Wa,b

+ 3
〈
∂21∂2Q

n
j , ∂

2
1∂2Q

m
l

〉
Wa,b

+

3
〈
∂1∂

2
2Q

n
j , ∂1∂

2
2Q

m
l

〉
Wa,b

+
〈
∂32Q

n
j , ∂

3
2Q

m
l

〉
Wa,b

. (4.33)

Then, by the linearity of ⟨·, ·⟩Wa,b
, Proposition 4.8, (4.24) and (4.25), we compute

each term in (4.33). We have the result by adding and simplifying.

Proposition 4.10. Let 3 ≤ i ≤ n and let θa,bn,j, κ
a,b
n,j, µ

a,b
n,j, ν

a,b
n,j, ξ

a,b
n,j, π

a,b
n,j, ρ

a,b
n,j, σ

a,b
n,j,

τa,bn,j , ϕ
a,b
n,j, χ

a,b
n,j, ψ

a,b
n,j and ω

a,b
n,j be given in Proposition 4.9, with a > −1 and b > −1/2.

Then
〈
Qn,QT

i

〉
∇3 = 0 for 3 ≤ i ≤ n− 7, and

〈
Qn,QT

i

〉
∇3 is given for n− 6 ≤ i ≤ n

by:

1.
〈
Qn,QT

n

〉
∇3 =

(
aa,bj,l

)
0≤j,l≤n

, n ≥ 3, is a symmetric tridiagonal matrix of size
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(n+ 1)× (n+ 1) where its entries are given by:

aa,bj,l =


θa,bn,j, l = j, 0 ≤ j ≤ n,

κa,bn,j+2, l = j + 2, 0 ≤ j ≤ n− 2,

κa,bn,j, l = j − 2, 2 ≤ j ≤ n,

0, otherwise.

(4.34)

2.
〈
Qn,QT

n−1

〉
∇3 =

(
ba,bj,l

)
0≤j≤n,0≤l≤n−1

, n ≥ 4, is a bidiagonal matrix of size (n +

1)× n where its entries are given by:

ba,bj,l =


µa,b
n,j, l = j, 0 ≤ j ≤ n− 1,

νa,bn,j, l = j − 2, 2 ≤ j ≤ n,

0, otherwise.

(4.35)

3.
〈
Qn,QT

n−2

〉
∇3 =

(
ca,bj,l

)
0≤j≤n,0≤l≤n−2

, n ≥ 5, is a bidiagonal matrix of size (n +

1)× (n− 1) where its entries are given by:

ca,bj,l =


ξa,bn,j, l = j, 0 ≤ j ≤ n− 2,

πa,b
n,j, l = j − 2, 2 ≤ j ≤ n,

0, otherwise.

(4.36)

4.
〈
Qn,QT

n−3

〉
∇3 =

(
da,bj,l

)
0≤j≤n,0≤l≤n−3

, n ≥ 6, is a tridiagonal matrix of size

(n+ 1)× (n− 2) where its entries are given by:

da,bj,l =


ρa,bn,j, l = j, 0 ≤ j ≤ n− 3,

σa,b
n,j, l = j − 2, 2 ≤ j ≤ n− 1,

τa,bn,j , l = j − 4, 4 ≤ j ≤ n,

0, otherwise.

(4.37)

5.
〈
Qn,QT

n−4

〉
∇3 =

(
ea,bj,l

)
0≤j≤n,0≤l≤n−4

, n ≥ 7, is a bidiagonal matrix of size (n +

1)× (n− 3) where its entries are given by:

ea,bj,l =


ϕa,b
n,j, l = j − 2, 2 ≤ j ≤ n− 2,

χa,b
n,j, l = j − 4, 4 ≤ j ≤ n,

0, otherwise.

(4.38)

6.
〈
Qn,QT

n−5

〉
∇3 =

(
fa,b
j,l

)
0≤j≤n,0≤l≤n−5

, n ≥ 8, is a diagonal matrix of size (n +

1)× (n− 4) where its entries are given by:

fa,b
j,l =

{
ψa,b
n,j, l = j − 4, 4 ≤ j ≤ n− 1,

0, otherwise.
(4.39)
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7.
〈
Qn,QT

n−6

〉
∇3 =

(
ga,bj,l

)
0≤j≤n,0≤l≤n−6

, n ≥ 9, is a diagonal matrix of size (n +

1)× (n− 5) where its entries are given by:

ga,bj,l =

{
ωa,b
n,j, l = j − 6, 6 ≤ j ≤ n,

0, otherwise.
(4.40)

Proof. Let us recall that
〈
Qn,QT

i

〉
∇3 =

(〈
Qn

j , Q
i
l

〉
∇3

)
0≤j≤n,0≤l≤i

is a matrix of size

(n+ 1)× (i+ 1). By Proposition 4.9 we have that
〈
Qn

j , Q
i
l

〉
∇3 = 0 for 3 ≤ i ≤ n− 7.

By Proposition 4.9 we have for n− 6 ≤ i ≤ n that:〈
Qn

j , Q
n−6
l

〉
∇3 = ωa,b

n,jδj,l+6, 0 ≤ j ≤ n, 0 ≤ l ≤ n− 6, n ≥ 9,〈
Qn

j , Q
n−5
l

〉
∇3 = ψa,b

n,jδj,l+4, 0 ≤ j ≤ n, 0 ≤ l ≤ n− 5, n ≥ 8,〈
Qn

j , Q
n−4
l

〉
∇3 = ϕa,b

n,jδj,l+2 + χa,b
n,jδj,l+4, 0 ≤ j ≤ n, 0 ≤ l ≤ n− 4, n ≥ 7,〈

Qn
j , Q

n−3
l

〉
∇3 = ρa,bn,jδj,l + σa,b

n,jδj,l+2 + τa,bn,jδj,l+4, 0 ≤ j ≤ n, 0 ≤ l ≤ n− 3, n ≥ 6,〈
Qn

j , Q
n−2
l

〉
∇3 = ξa,bn,jδj,l + πa,b

n,jδj,l+2, 0 ≤ j ≤ n, 0 ≤ l ≤ n− 2, n ≥ 5,〈
Qn

j , Q
n−1
l

〉
∇3 = µa,b

n,jδj,l + νa,bn,jδj,l+2, 0 ≤ j ≤ n, 0 ≤ l ≤ n− 1, n ≥ 4,〈
Qn

j , Q
n
l

〉
∇3 = κa,bn,j+2δj,l−2 + θa,bn,jδj,l + κa,bn,jδj,l+2, 0 ≤ j ≤ n, 0 ≤ l ≤ n, n ≥ 3.

By setting l = j ± 2, l = j, l = j − 4, and l = j − 6 we have the result.

Example 4.2 (Numerical, see Note 4.1). Let a = 0 and b = 1/2 the parameters for the
Laguerre-Gegenbauer weight function Wa,b, and let p = (0, 1). Let us observe that
from Proposition 4.10 the matrices

〈
Q3,QT

3

〉
∇3 ,
〈
Q4,QT

4

〉
∇3 ,
〈
Q4,QT

3

〉
∇3 ,
〈
Q5,QT

3

〉
∇3 ,

and
〈
Q5,QT

4

〉
∇3 are given by:

〈
Q3,QT

3

〉
∇3 =


36 0 0 0
0 12 0 0
0 0 12 0
0 0 0 36

 ,
〈
Q4,QT

4

〉
∇3 =


576 0 0 0 0
0 228 0 0 0
0 0 256 0 0
0 0 0 396 0
0 0 0 0 192

 ,

〈
Q4,QT

3

〉
∇3 =


0 0 0 0
0 36 0 0
0 0 48 0
0 0 0 108
0 0 0 0

 ,
〈
Q5,QT

3

〉
∇3 =


0 0 0 0
0 0 0 0
24 0 72 0
0 48 0 216
0 0 −48 0
0 0 0 0

 ,

〈
Q5,QT

4

〉
∇3 =


0 0 0 0 0
0 432 0 0 0
0 0 624 0 0
0 144 0 1008 0
0 0 −192 0 576
0 0 0 0 0

 .
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From Proposition 3.11 we have recursively the following matrices:

H∇3

3 =
〈
Q3,QT

3

〉
∇3 =


36 0 0 0
0 12 0 0
0 0 12 0
0 0 0 36

 , B4,3 =
〈
Q4,QT

3

〉
∇3 =


0 0 0 0
0 36 0 0
0 0 48 0
0 0 0 108
0 0 0 0

 ,

H∇3

4 =
〈
Q4,QT

4

〉
∇3 −B4,3(H

∇3

3 )−1BT
4,3 =


576 0 0 0 0
0 120 0 0 0
0 0 64 0 0
0 0 0 72 0
0 0 0 0 192

 ,

B5,3 =
〈
Q5,QT

3

〉
∇3 =


0 0 0 0
0 0 0 0
24 0 72 0
0 48 0 216
0 0 −48 0
0 0 0 0

 ,

B5,4 =
〈
Q5,QT

4

〉
∇3 −B5,3(H

∇3

3 )−1BT
4,3 =


0 0 0 0 0
0 432 0 0 0
0 0 336 0 0
0 0 0 360 0
0 0 0 0 576
0 0 0 0 0

 .

Therefore, the matrices A4,3, A5,3 and A5,4 are given by:

A4,3 = B4,3(H
∇3

3 )−1 =


0 0 0 0
0 3 0 0
0 0 4 0
0 0 0 3
0 0 0 0

 , A5,3 = B5,3(H
∇3

3 )−1 =



0 0 0 0
0 0 0 0
2
3

0 6 0

0 4 0 6
0 0 −4 0
0 0 0 0


,

A5,4 = B5,4(H
∇3

4 )−1 =



0 0 0 0 0

0 18
5

0 0 0

0 0 21
4

0 0

0 0 0 5 0
0 0 0 0 3
0 0 0 0 0


.

From Proposition 4.6, Proposition 4.7 and (4.32) the column vectors Qn for n =
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0, 1, 2, 3, 4, 5 are give by:

Q0 = 1, Q1 =

(
x+ 2
y

)
, Q2 =

x2 + 2x+ 2
xy + 2y

y2 + 1
3

 , Q3 =


x3

x2y + 2xy + 2y

xy2 + 1
3
x+ 2y2 + 2

3

y3 + 3y

 ,

Q4 =


x4 − 4x3

x3y

x2y2 + 1
3
x2 + 2xy2 + 2

3
x+ 2y2 + 2

3

xy3 + 6y + 3xy + 2y3

y4 − 6y2 − 3

 ,

Q5 =



x5 − 10x4 + 20x3

x4y − 4x3y

x3y2 + 1
3
x3

x2y3 + 3x2y + 2xy3 + 6xy + 2y3 + 6y

xy4 − 6xy2 − 3x− 12y2 + 2y4 − 6

y5 − 10
3
y3 + 5y


.

If
2
= denotes the congruence relation (4.3), then by (3.42) we get recursively the

polynomials Sn for n = 0, 1, 2, 3, 4, 5:

S0
2
= Q0 = 1, S1

2
= Q1 =

(
x+ 2
y

)
, S2

2
= Q2 =

x2 + 2x+ 2
xy + 2y

y2 + 1
3

 ,

S3
2
= Q3 =


x3

x2y + 2xy + 2y

xy2 + 1
3
x+ 2y2 + 2

3

y3 + 3y

 ,

S4
2
= Q4 −A4,3S3

2
=


x4 − 4x3

x3y − 3x2y − 6xy − 6y

x2y2 + 1
3
x2 − 2xy2 − 2

3
x− 6y2 − 2

xy3 + 3xy − 3y − y3

y4 − 6y2 − 3

 ,
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S5
2
= Q5 −A5,4S4 −A5,3S3

2
=



x5 − 10x4 + 20x3

x4y − 38
5
x3y + 54

5
x2y + 108

5
xy + 108

5
y

x3y2 − 1
3
x3 − 21

4
x2y2 − 7

4
x2 + 9

2
xy2 + 3

2
x+ 39

2
y2 + 13

2

x2y3 − x2y − 3xy3 − 17xy + y3 − 5y

xy4 − 2xy2 − 5
3
x+ 14y2 − y4 + 17

3

y5 − 10
3
y3 + 5y


.

Finally, let p = (0, 1). Then, the Taylor polynomials of second degree at p for each
entry in Sn, for n = 3, 4, 5, are given by:

T 2(S3,p) =


0

x2 + 2xy + 2y

2y2 + 2xy − 2
3
x+ 2

3

3y2 + 1

 , T 2(S4,p) =


0

−3x2 − 6xy − 6y
4
3
x2 − 4xy + 4

3
x− 6y2 − 2

−3y2 + 6xy − 2x− 1

−8y

 ,

T 2(S5,p) =



0
54
5
x2 + 108

5
xy + 108

5
y

−7x2 + 9xy − 3x+ 39
2
y2 + 13

2

6x− 8y − 26xy + 3y2 + 1

8y2 + 8y − 8
3
x+ 8

3

8
3


.

With the previous polynomials, and by Corollary 4.2, we have a monic orthogonal
basis

{
Sn
j : 0 ≤ j ≤ n

}
for the space V 2

n (S,Wa,b) for n = 0, 1, 2, 3, 4, 5, with a = 0,
b = 1/2 and p = (0, 1):

� For the space V 2
0 (S,Wa,b):

S0
0 (x, y) = 1.

� For the space V 2
1 (S,Wa,b):

S1
0 (x, y) = x,

S1
1 (x, y) = y − 1.

� For the space V 2
2 (S,Wa,b):

S2
0 (x, y) = x2,

S2
1 (x, y) = xy − x,

S2
2 (x, y) = y2 − 2y + 1.
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� For the space V 2
3 (S,Wa,b):

S3
0 (x, y) = x3,

S3
1 (x, y) = x2y − x2,

S3
2 (x, y) = xy2 − 2xy + x,

S3
3 (x, y) = y3 − 3y2 + 3y − 1.

� For the space V 2
4 (S,Wa,b):

S4
0 (x, y) = x4 − 4x3,

S4
1 (x, y) = x3y − 3x2y + 3x2,

S4
2 (x, y) = x2y2 − x2 − 2xy2 + 4xy − 2x,

S4
3 (x, y) = xy3 + 2x− 3y − 3xy + 3y2 − y3 + 1,

S4
4 (x, y) = y4 − 6y2 + 8y − 3.

� For the space V 2
5 (S,Wa,b):

S5
0 (x, y) = x5 − 10x4 + 20x3,

S5
1 (x, y) = x4y +

54

5
x2y − 38

5
x3y − 54

5
x2,

S5
2 (x, y) = x3y2 − 1

3
x3 − 21

4
x2y2 +

21

4
x2 +

9

2
xy2 − 9xy +

9

2
x,

S5
3 (x, y) = x2y3 − x2y − 3xy3 + 9xy − 6x+ y3 − 3y2 + 3y − 1,

S5
4 (x, y) = xy4 + x− 8y − 2xy2 + 6y2 − y4 + 3,

S5
5 (x, y) = y5 − 10

3
y3 + 5y − 8

3
.

This completes our example with the Laguerre-Gegenbauer product weight.

4.3 Sobolev orthogonal polynomials on the trian-

gle

The triangle of R2 is the set:

T2 :=
{
(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x+ y ≤ 1

}
.

This is a particular example in two variables of the simplex Td. In this section we
construct the Sobolev orthogonal polynomials in two variables with respect to the
inner product:

⟨f, g⟩S = cγ

∫
T2

∇2f(x, y) · ∇2g(x, y)Wγ(x, y)dxdy

+ λ1∇f(p1, p2) · ∇g(p1, p2) + λ0f(p1, p2)g(p1, p2), (4.41)
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where (p1, p2) is a given point in R2, λ0, λ1 > 0, ∇f and ∇2f are given in (4.1), Wγ

is the weight function on the triangle:

Wγ(x, y) = xγ1yγ2(1− x− y)γ3 , γ1, γ2, γ3 > −1, (x, y) ∈ T2, (4.42)

γ = (γ1, γ2, γ3) ∈ R3 is such that γ1, γ2, γ3 > −1, cγ is the normalization constant:

cγ :=

(∫
T2

Wγ(x, y)dxdy

)−1

=
Γ(γ1 + γ2 + γ3 + 3)

Γ(γ1 + 1)Γ(γ2 + 1)Γ(γ3 + 1)
,

and the main part of (4.41) is denoted by:

⟨f, g⟩∇2 = cγ

∫
T2

∇2f(x, y) · ∇2g(x, y)Wγ(x, y)dxdy. (4.43)

We denote by V 2
n (S,Wγ) and V 2

n (∇2,Wγ) the spaces of orthogonal polynomials of
degree n with respect to (4.41) and (4.43), respectively, where dimV 2

n (S,Wγ) =
dimV 2

n (∇2,Wγ) = n+ 1.
From (1.31)–(1.32), the polynomials in the space V 2

n (Wγ) with respect to the inner
product:

⟨f, g⟩Wγ
= cγ

∫
T2

f(x, y)g(x, y)Wγ(x, y)dxdy, (4.44)

satisfy the partial differential equation:

x(1− x)
∂2P

∂x2
− 2xy

∂2P

∂x∂y
+ y(1− y)

∂2P

∂y2
+

[(γ1 + 1)− (|γ|+ 3)x]
∂P

∂x
+ [(γ2 + 1)− (|γ|+ 3)y]

∂P

∂y
= −n(n+ |γ|+ 2)P,

P ∈ V 2
n (Wγ), |γ| = γ1 + γ2 + γ3. (4.45)

From Proposition 3.7, we know that if P ∈ V 2
n (S,Wγ) or P ∈ V 2

n (∇2,Wγ) then:

(∂1 + ∂2)
2P :=

∂2P

∂x2
+ 2

∂2P

∂x∂y
+
∂2P

∂y2
∈ V 2

n−2(Wγ). (4.46)

Putting (4.45) and (4.46) together, then they prove the following result.

Proposition 4.11. Let P ∈ V 2
n (S,Wγ) or P ∈ V 2

n (∇2,Wγ), with γ = (γ1, γ2, γ3),
γ1, γ2, γ3 > −1, |γ| = γ1+γ2+γ3. Then P satisfies the fourth-order partial differential
equation:[

x(1− x)
∂2

∂x2
− 2xy

∂2

∂x∂y
+ y(1− y)

∂2

∂y2
+ [(γ1 + 1)− (|γ|+ 3)x]

∂

∂x
+

[(γ2 + 1)− (|γ|+ 3)y]
∂

∂y
+ (n− 2)(n+ |γ|)I

] [
∂2

∂x2
+ 2

∂2

∂x∂y
+

∂2

∂y2

]
P = 0,

where I is the identity operator.
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The following corollary is a consequence of Theorem 3.1 and Proposition 3.9 for
κ = d = 2.

Corollary 4.3. Let
{
Sn
j : 0 ≤ j ≤ n

}
denote a monic orthogonal basis of V 2

n (∇2,Wγ).

Then, a monic orthogonal basis
{
Sn
j : 0 ≤ j ≤ n

}
of V 2

n (S,Wγ) is given by:

S0
0 (x, y) = 1,

S1
0 (x, y) = x− p1, S1

1 (x, y) = y − p2,

Sn
j (x, y) = Sn

j (x, y)− T 1(Sn
j ,p;x, y), n ≥ 2.

where T 1(Sn
j ,p) is the Taylor polynomial of first degree of Sn

j at p = (p1, p2), and
where〈

S0
0 ,S0

0

〉
S
= λ0,〈

S1
0 ,S1

0

〉
S
=
〈
S1
1 ,S1

1

〉
S
= λ1,〈

Sn
j ,Sn

j

〉
S
=
〈
Sn
j , S

n
j

〉
∇2 , 0 ≤ j ≤ n, n ≥ 2.

Then, we need only to find a monic orthogonal basis
{
Sn
j : 0 ≤ j ≤ n

}
for the

space V 2
n (∇2,Wγ) for n ≥ 2. Let us arrange the elements of this basis in a vector

form. We denote by Sn the column vector of size n+ 1:

Sn =
(
Sn
0 (x, y), Sn

1 (x, y), . . . , Sn
n(x, y)

)T
,

and by Qn the column vector of size n+ 1:

Qn =
(
xn, xn−1y, xn−2y2, . . . , yn

)T
. (4.47)

As we mentioned in Section 3.4.2.1, in order to simplify the computation of the matrix〈
Qn,QT

m

〉
∇2 we only need that each entry ofQn to be defined as a monomial. Then, we

have the following corollary that is a consequence of Proposition 3.14 with κ = d = 2.

Corollary 4.4. Let n,m ≥ 2 and let Qn be defined in (4.47). Then, each entry of

the matrix
〈
Qn,QT

m

〉
∇2 =

(
⟨xn−iyi, xm−jyj⟩∇2

)
0≤i≤n,0≤j≤m

of size (n + 1) × (m + 1)

can be computed by:

〈
xn−iyi, xm−jyj

〉
∇2 =

An,m,γ1,γ2
i,j + 2Bn,m,γ1,γ2

i,j + Cn,m,γ1,γ2
i,j

(γ1 + γ2 + γ3 + 3)n+m−4

,

γ1, γ2, γ3 > −1, 0 ≤ i ≤ n, 0 ≤ j ≤ m,

where An,m,γ1,γ2
i,j , Bn,m,γ1,γ2

i,j , and Cn,m,γ1,γ2
i,j are:

An,m,γ1,γ2
i,j =

{
(i− 1)2(j − 1)2(γ1 + 1)n+m−i−j(γ2 + 1)i+j−4, 2 ≤ i ≤ n, 2 ≤ j ≤ m,

0, otherwise,
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Bn,m,γ1,γ2
i,j =


ij(n− i)(m− j)(γ1 + 1)n+m−i−j−2(γ2 + 1)i+j−2, 1 ≤ i ≤ n− 1,

1 ≤ j ≤ m− 1,

0, otherwise,

Cn,m,γ1,γ2
i,j =


(n− i− 1)2(m− j − 1)2(γ1 + 1)n+m−i−j−4(γ2 + 1)i+j, 0 ≤ i ≤ n− 2,

0 ≤ j ≤ m− 2,

0, otherwise.

Then, on the triangle T2 the polynomials in the column vector Sn can be com-
puted recursively by means of the relations in Proposition 3.10, Proposition 3.11 and
Corollary 4.4. In order to illustrate the main ideas we will show a numerical example
in the sequel.

Example 4.3 (Numerical, see Note 4.1). Let γ = (γ1, γ2, γ3) = (−19/20,−19/20, 3/5)
the parameters4 for the weight function Wγ, which is defined in (4.42), and let p =
(p1, p2) = (1/2, 1/2) in the inner product (4.41). From (4.47) we have for 0 ≤ n ≤ 4:

Q0 = 1, Q1 =
(
x, y

)T
, Q2 =

(
x2, xy, y2

)T
,

Q3 =
(
x3, x2y, xy2, y3

)T
, Q4 =

(
x4, x3y, x2y2, xy3, y4

)T
.

From Proposition 3.11 and Corollary 4.4, with κ = 2, we have the following iterations:

1. First iteration:

B3,2 =
〈
Q3,QT

2

〉
∇2 =


6
17

0 0
2
17

2
17

0

0 2
17

2
17

0 0 6
17

 , B4,2 =
〈
Q4,QT

2

〉
∇2 =



14
51

0 0
1

153
7

102
0

7
153

2
459

7
153

0 7
102

1
153

0 0 14
51


,

H∇2

2 =
〈
Q2,QT

2

〉
∇2 =

4 0 0
0 2 0
0 0 4

 .

2. Second iteration:

B4,3 =
〈
Q4,QT

3

〉
∇2 −B4,2

(
H∇2

2

)−1

BT
3,2 =



4620
10693

− 140
32079

0 0
160

32079
7090
96237

− 70
32079

0

− 70
32079

7570
288711

7570
288711

− 70
32079

0 − 70
32079

7090
96237

160
32079

0 0 − 140
32079

4620
10693


,

4The values for γ were chosen to get reduced fractions at the entries of the matrix
〈
Qn,QT

m

〉
∇2 .

See Corollary 4.4.
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H∇2

3 =
〈
Q3,QT

3

〉
∇2 −B3,2

(
H∇2

2

)−1

BT
3,2 =


110
289

− 10
2601

0 0

− 10
2601

110
867

− 20
7803

0

0 − 20
7803

110
867

− 10
2601

0 0 − 10
2601

110
289

 .

Therefore, from Proposition 3.11, we have:

A3,2 = B3,2

(
H∇2

2

)−1

=


3
34

0 0
1
34

1
17

0

0 1
17

1
34

0 0 3
34

 , A4,2 = B4,2

(
H∇2

2

)−1

=



7
102

0 0
1

612
7

204
0

7
612

1
459

7
612

0 7
204

1
612

0 0 7
102


,

A4,3 = B4,3

(
H∇2

3

)−1

=



42
37

0 0 0
172
9065

5268
9065

− 99
18130

− 1
18130

− 2
555

39
185

39
185

− 2
555

− 1
18130

− 99
18130

5268
9065

172
9065

0 0 0 42
37


.

If
1
= denotes the congruence relation (4.2) then, from Proposition 3.10, we have for

0 ≤ n ≤ 4 that:

S0
1
= Q0 = 1,

S1
1
= Q1 =

(
x, y

)T
,

S2
1
= Q2 =

(
x2, xy, y2

)T
,

S3
1
= Q3 −A3,2S2

1
=
(
x3 − 3

34
x2, x2y − 1

17
xy − 1

34
x2, xy2 − 1

17
xy − 1

34
y2, y3 − 3

34
y2
)T

,

S4
1
= Q4 −A4,3S3 −A4,2S2

1
=



x4 − 42
37
x3 + 7

222
x2

x3y − 172
9065

x3 − 5268
9065

x2y + 99
18130

xy2 + 1
18130

y3 + 5591
326340

x2 − 1
2220

xy − 3
18130

y2

x2y2 + 2
555
x3 − 39

185
x2y − 39

185
xy2 + 2

555
y3 − 1

180
x2 + 113

4995
xy − 1

180
y2

xy3 + 1
18130

x3 + 99
18130

x2y − 5268
9065

xy2 − 172
9065

y3 − 3
18130

x2 − 1
2220

xy + 5591
326340

y2

y4 − 42
37
y3 + 7

222
y2


.

Finally, let p = (p1, p2) = (1/2, 1/2). The Taylor polynomials of first degree of S2, S3

and S4 at p are given by:

T 1(S2,p) =
(
x− 1

4
, 1

2
x+ 1

2
y − 1

4
, y − 1

4

)T
,
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T 1(S3,p) =
(

45
68
x− 31

136
, 15

34
x+ 15

68
y − 31

136
, 15

68
x+ 15

34
y − 31

136
, 45

68
y − 31

136

)T
,

T 1(S4,p) =



− 71
222
x+ 157

1776

11549
130536

x− 779
43512

y − 229
5328

401
3996

x+ 401
3996

y − 1387
15984

− 779
43512

x+ 11549
130536

y − 229
5328

− 71
222
y + 157

1776


.

Then from Corollary 4.3, the following polynomials are a monic orthogonal basis{
Sn
j : 0 ≤ j ≤ n

}
for the space V 2

n (S,Wγ) for 0 ≤ n ≤ 4:

� For the space V 2
0 (S,Wγ):

S0
0 (x, y) = 1.

� For the space V 2
1 (S,Wγ):

S1
0 (x, y) = x− 1

2
,

S1
1 (x, y) = y − 1

2
.

� For the space V 2
2 (S,Wγ):

S2
0 (x, y) = x2 − x+

1

4
,

S2
1 (x, y) = xy − 1

2
x− 1

2
y +

1

4
,

S2
2 (x, y) = y2 − y +

1

4
.

� For the space V 2
3 (S,Wγ):

S3
0 (x, y) = x3 − 3

34
x2 − 45

68
x+

31

136
,

S3
1 (x, y) = x2y − 1

17
xy − 1

34
x2 − 15

34
x− 15

68
y +

31

136
,

S3
2 (x, y) = xy2 − 1

17
xy − 1

34
y2 − 15

68
x− 15

34
y +

31

136
,

S3
3 (x, y) = y3 − 3

34
y2 − 45

68
y +

31

136
.

� For the space V 2
4 (S,Wγ):

S4
0 (x, y) = x4 − 42

37
x3 +

7

222
x2 +

71

222
x− 157

1776
,
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S4
1 (x, y) = x3y − 172

9065
x3 − 5268

9065
x2y +

99

18130
xy2 +

1

18130
y3 +

5591

326340
x2

− 1

2220
xy − 3

18130
y2 − 11549

130536
x+

779

43512
y +

229

5328
,

S4
2 (x, y) = x2y2 +

2

555
x3 − 39

185
x2y − 39

185
xy2 +

2

555
y3 − 1

180
x2 +

113

4995
xy

− 1

180
y2 − 401

3996
x− 401

3996
y +

1387

15984
,

S4
3 (x, y) = xy3 +

1

18130
x3 +

99

18130
x2y − 5268

9065
xy2 − 172

9065
y3 − 3

18130
x2

− 1

2220
xy +

5591

326340
y2 +

779

43512
x− 11549

130536
y +

229

5328
,

S4
4 (x, y) = y4 − 42

37
y3 +

7

222
y2 +

71

222
y − 157

1776
.

This completes our numerical example on the triangle T2.

4.4 Sobolev orthogonal polynomials on the disk

The disk of R2 is the set:

B2 :=
{
(x, y) ∈ R2 : x2 + y2 ≤ 1

}
.

This is a particular example of the ball Bd in two variables. In this section we
construct the Sobolev orthogonal polynomials in two variables with respect to the
inner product:

⟨f, g⟩S = cµ

∫
B2

∇3f(x, y) · ∇3g(x, y)Wµ(x, y)dxdy + λ2∇2f(p1, p2) · ∇2g(p1, p2)

+ λ1∇f(p1, p2) · ∇g(p1, p2) + λ0f(p1, p2)g(p1, p2), (4.48)

where (p1, p2) is a given point in R2, λ0, λ1, λ2 > 0, ∇f , ∇2f and ∇3f are given in
(4.1), Wµ is the weight function on the disk:

Wµ(x, y) = (1− x2 − y2)µ, µ > −1, (x, y) ∈ B2, (4.49)

cµ is the normalization constant (see (1.41)):

cµ :=

(∫
B2

Wµ(x, y)dxdy

)−1

=
µ+ 1

π
,

and the main part of (4.48) is denoted by:

⟨f, g⟩∇3 = cµ

∫
B2

∇3f(x, y) · ∇3g(x, y)Wµ(x, y)dxdy. (4.50)

We denote by V 2
n (S,Wµ) and V 2

n (∇3,Wµ) the spaces of orthogonal polynomials of
degree n with respect to (4.48) and (4.50), respectively, where dimV 2

n (S,Wµ) =
dimV 2

n (∇3,Wµ) = n+ 1.
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From (1.43)–(1.44), the polynomials in the space V 2
n (Wµ) with respect to the inner

product:

⟨f, g⟩Wµ
= cµ

∫
B2

f(x, y)g(x, y)Wµ(x, y)dxdy, (4.51)

satisfy the partial differential equation:

(1− x2)
∂2P

∂x2
− 2xy

∂2P

∂x∂y
+ (1− y2)

∂2P

∂y2
− (2µ+ 3)x

∂P

∂x
− (2µ+ 3)y

∂P

∂y
=

− n(n + 2µ + 2)P, P ∈ V 2
n (Wµ), µ > −1. (4.52)

From Proposition 3.7, we know that if P ∈ V 2
n (S,Wµ) or P ∈ V 2

n (∇3,Wµ) then:

(∂1 + ∂2)
3P :=

∂3P

∂x3
+ 3

∂3P

∂x2∂y
+ 3

∂3P

∂x∂y2
+
∂3P

∂y3
∈ V 2

n−3(Wµ). (4.53)

Putting (4.52) and (4.53) together, then they prove the following result.

Proposition 4.12. Let P ∈ V 2
n (S,Wµ) or P ∈ V 2

n (∇3,Wµ), with µ > −1. Then P
satisfies the fifth-order partial differential equation:[

(1− x2)
∂2

∂x2
− 2xy

∂2

∂x∂y
+ (1− y2)

∂2

∂y2
− (2µ+ 3)x

∂

∂x

−(2µ+ 3)y
∂

∂y
+ (n− 3)(n+ 2µ− 1)I

] [
∂3

∂x3
+ 3

∂3

∂x2∂y
+ 3

∂3

∂x∂y2
+

∂3

∂y3

]
P = 0,

where I is the identity operator.

The following corollary is a consequence of Theorem 3.1 and Proposition 3.9 for
κ = 3 and d = 2.

Corollary 4.5. Let
{
Sn
j : 0 ≤ j ≤ n

}
denote a monic orthogonal basis of V 2

n (∇3,Wµ).

Then, a monic orthogonal basis
{
Sn
j : 0 ≤ j ≤ n

}
of V 2

n (S,Wµ) is given by:

S0
0 (x, y) = 1,

S1
0 (x, y) = x− p1, S1

1 (x, y) = y − p2,

S2
0 (x, y) = (x− p1)

2, S2
1 (x, y) = (x− p1)(y − p2), S2

2 (x, y) = (y − p2)
2,

Sn
j (x, y) = Sn

j (x, y)− T 2(Sn
j ,p;x, y), n ≥ 3.

where T 2(Sn
j ,p) is the Taylor polynomial of second degree of Sn

j at p = (p1, p2), and
where〈

S0
0 ,S0

0

〉
S
= λ0,〈

S1
0 ,S1

0

〉
S
=
〈
S1
1 ,S1

1

〉
S
= λ1,〈

S2
0 ,S2

0

〉
S
= 4λ2,

〈
S2
1 ,S2

1

〉
S
= 2λ2,

〈
S2
2 ,S2

2

〉
S
= 4λ2,〈

Sn
j ,Sn

j

〉
S
=
〈
Sn
j , S

n
j

〉
∇3 , 0 ≤ j ≤ n, n ≥ 3.

.
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Let us arrange the elements of the basis
{
Sn
j : 0 ≤ j ≤ n

}
of V 2

n (∇3,Wµ) in a
vector form. We denote by Sn the column vector of size n+ 1:

Sn =
(
Sn
0 (x, y), Sn

1 (x, y), . . . , Sn
n(x, y)

)T
,

and by Qn the column vector of size n+ 1:

Qn =
(
xn, xn−1y, xn−2y2, . . . , yn

)T
. (4.54)

As we mentioned in Section 3.4.3.1, in order to simplify the computation of the matrix〈
Qn,QT

m

〉
∇3 we only need that each entry of Qn to be defined as a monomial. The

following corollary is a consequence of Proposition 3.15 with κ = 3 and d = 2.

Corollary 4.6. Let n,m ≥ 3, µ > −1, and let Qn be defined in (4.54). Then, each

entry of the matrix
〈
Qn,QT

m

〉
∇3 =

(
⟨xn−iyi, xm−jyj⟩∇3

)
0≤i≤n,0≤j≤m

of size (n+ 1)×
(m+ 1) can be computed for 0 ≤ i ≤ n and 0 ≤ j ≤ m by:

〈
xn−iyi, xm−jyj

〉
∇3 =


An,m

i,j + 3Bn,m
i,j + 3Cn,m

i,j +Dn,m
i,j

(µ+ 2)n+m
2

−3

, n+m− i− j and i+ j are even,

0, otherwise,

where

An,m
i,j =

{
(−i)3(−j)3

(
1
2

)
n+m−i−j

2

(
1
2

)
i+j
2

−3
, 3 ≤ i ≤ n, 3 ≤ j ≤ m,

0, otherwise,

Bn,m
i,j =

{
(n− i)(m− j)(−i)2(−j)2

(
1
2

)
n+m−i−j

2
−1

(
1
2

)
i+j
2

−2
, 2 ≤ i < n, 2 ≤ j < m,

0, otherwise,

Cn,m
i,j =

{
ij(i− n)2(j −m)2

(
1
2

)
n+m−i−j

2
−2

(
1
2

)
i+j
2

−1
, 1 ≤ i < n− 1, 1 ≤ j < m− 1,

0, otherwise,

Dn,m
i,j =

{
(i− n)3(j −m)3

(
1
2

)
n+m−i−j

2
−3

(
1
2

)
i+j
2

, 0 ≤ i < n− 2, 0 ≤ j < m− 2,

0, otherwise.

On the disk B2 the polynomials in Sn can be computed recursively by means of
the relations in Proposition 3.10, Proposition 3.11 and Corollary 4.6. Next we show
a numerical example.

Example 4.4 (Numerical, see Note 4.1). Let µ = −1/2 the parameter for the weight
function Wµ on the disk, which is defined in (4.49), and let p = (p1, p2) = (1, 0).
From (4.54) we have for 0 ≤ n ≤ 5:

Q0 = 1, Q1 =
(
x, y

)T
, Q2 =

(
x2, xy, y2

)T
, Q3 =

(
x3, x2y, xy2, y3

)T
,

Q4 =
(
x4, x3y, x2y2, xy3, y4

)T
, Q5 =

(
x5, x4y, x3y2, x2y3, xy4, y5

)T
.

From Proposition 3.11 and Corollary 4.6, with κ = 3, we have the following iterations:
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1. First iteration:

B4,3 =
〈
Q4,QT

3

〉
∇3 = 0, B5,3 =

〈
Q5,QT

3

〉
∇3 =


120 0 0 0
0 24 0 0
12 0 12 0
0 12 0 12
0 0 24 0
0 0 0 120

 ,

H∇3

3 =
〈
Q3,QT

3

〉
∇3 =


36 0 0 0
0 12 0 0
0 0 12 0
0 0 0 36

 .

2. Second iteration:

B5,4 =
〈
Q5,QT

4

〉
∇3 −B5,3

(
H∇3

3

)−1

BT
4,3 = 0,

H∇3

4 =
〈
Q4,QT

4

〉
∇3 −B4,3

(
H∇3

3

)−1

BT
4,3 =


192 0 0 0 0
0 48 0 0 0
0 0 32 0 0
0 0 0 48 0
0 0 0 0 192

 .

Therefore, from Proposition 3.11, we have:

A4,3 = B4,3

(
H∇3

3

)−1

= 0, A5,3 = B5,3

(
H∇3

3

)−1

=



10
3

0 0 0

0 2 0 0
1
3

0 1 0

0 1 0 1
3

0 0 2 0

0 0 0 10
3


,

A5,4 = B5,4

(
H∇3

4

)−1

= 0.

If
2
= denotes the congruence relation (4.3) then, from Proposition 3.10, we have for

0 ≤ n ≤ 5 that:

S0
2
= Q0 = 1,

S1
2
= Q1 =

(
x, y

)T
,

S2
2
= Q2 =

(
x2, xy, y2

)T
,

S3
2
= Q3 =

(
x3, x2y, xy2, y3

)T
,

S4
2
= Q4 −A4,3S3

2
=
(
x4, x3y, x2y2, xy3, y4

)T
,
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S5
2
= Q5 −A5,4S4 −A5,3S3

2
=



x5 − 10
3
x3

x4y − 2x2y

x3y2 − 1
3
x3 − xy2

x2y3 − x2y − 1
3
y3

xy4 − 2xy2

y5 − 10
3
y3


.

Finally, let p = (p1, p2) = (1, 0). The Taylor polynomials of second degree at p of
S3,S4 and S5 are given by:

T 2(S3,p;x, y) =
(
3x2 − 3x+ 1, 2xy − y, y2, 0

)T
,

T 2(S4,p;x, y) =
(
6x2 − 8x+ 3, 3xy − 2y, y2, 0, 0

)T
,

T 2(S5,p;x, y) =



−5x+ 8
3

−y
−x2 + x− 1

3

−2xy + y

−2y2

0


.

Then, from Corollary 4.5, the following polynomials are a monic orthogonal basis{
Sn
j : 0 ≤ j ≤ n

}
for the space V 2

n (S,Wµ), with µ = −1/2, on the disk for 0 ≤ n ≤ 5:

� For the space V 2
0 (S,Wµ):

S0
0 (x, y) = 1.

� For the space V 2
1 (S,Wµ):

S1
0 (x, y) = x− 1,

S1
1 (x, y) = y.

� For the space V 2
2 (S,Wµ):

S2
0 (x, y) = x2 − 2x+ 1,

S2
1 (x, y) = xy − y,

S2
2 (x, y) = y2.

� For the space V 2
3 (S,Wµ):

S3
0 (x, y) = x3 − 3x2 + 3x− 1,

S3
1 (x, y) = x2y − 2xy + y,

S3
2 (x, y) = xy2 − y2,

S3
3 (x, y) = y3.
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� For the space V 2
4 (S,Wµ):

S4
0 (x, y) = x4 − 6x2 + 8x− 3,

S4
1 (x, y) = x3y − 3xy + 2y,

S4
2 (x, y) = x2y2 − y2,

S4
3 (x, y) = xy3,

S4
4 (x, y) = y4.

� For the space V 2
5 (S,Wµ):

S5
0 (x, y) = x5 − 10

3
x3 + 5x− 8

3
,

S5
1 (x, y) = x4y − 2x2y + y,

S5
2 (x, y) = x3y2 − 1

3
x3 − xy2 + x2 − x+

1

3
,

S5
3 (x, y) = x2y3 − x2y − 1

3
y3 + 2xy − y,

S5
4 (x, y) = xy4 − 2xy2 + 2y2,

S5
5 (x, y) = y5 − 10

3
y3.

This completes our numerical example on the disk B2.

4.5 Sobolev orthogonal polynomials on the cone

4.5.1 Jacobi weight function

The bounded cone of R2 is the set:

V2
1 :=

{
(x, y) ∈ R2 : |x| ≤ y, 0 ≤ y ≤ 1

}
.

This is a particular example of the bounded cone Vd
1 in two variables. In this section

we construct the Sobolev orthogonal polynomials in two variables with respect to the
inner product:

⟨f, g⟩S = ca,b,µ

∫
V2
1

∇2f(x, y) · ∇2g(x, y)W J
a,b,µ(x, y)dxdy

+ λ1∇f(p1, p2) · ∇g(p1, p2) + λ0f(p1, p2)g(p1, p2), (4.55)

where (p1, p2) is a given point in R2, λ0, λ1 > 0, ∇f and ∇2f are given in (4.1), W J
a,b,µ

is the weight function on the cone V2
1:

W J
a,b,µ(x, y) = ya(1− y)b(y2 − x2)µ, a, b, µ > −1, (x, y) ∈ V2

1, (4.56)
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ca,b,µ is the normalization constant (see (1.55)):

ca,b,µ :=

(∫
V2
1

W J
a,b,µ(x, y)dxdy

)−1

=
Γ(µ+ 3/2)Γ(a+ b+ 2µ+ 3)√
πΓ(µ+ 1)Γ(a+ 2µ+ 2)Γ(b+ 1)

,

and the main part of (4.55) is denoted by:

⟨f, g⟩∇2 = ca,b,µ

∫
V2
1

∇2f(x, y) · ∇2g(x, y)W J
a,b,µ(x, y)dxdy. (4.57)

We denote by V 2
n (S,W

J
a,b,µ) and V 2

n (∇2,W J
a,b,µ) the spaces of orthogonal polynomials

of degree n with respect to (4.55) and (4.57), respectively, where dimV 2
n (S,W

J
a,b,µ) =

dimV 2
n (∇2,W J

a,b,µ) = n+ 1. Similarly, we denote by V 2
n (W

J
a,b,µ) the orthogonal poly-

nomials with respect to:

⟨f, g⟩WJ
a,b,µ

= ca,b,µ

∫
V2
1

f(x, y)g(x, y)W J
a,b,µ(x, y)dxdy. (4.58)

From (1.56)–(1.57), the polynomials in the space V 2
n (W

J
0,b,µ), when the parameter

a = 0, satisfy the partial differential equation:

y(1− y)
∂2P

∂y2
+ 2x(1− y)

∂2P

∂x∂y
+ (y − x2)

∂2P

∂x2
+ (2µ+ 2)

∂P

∂y

− (2µ+ b+ 3)

[
x
∂P

∂x
+ y

∂P

∂y

]
= −n(n+ 2µ+ b+ 2)P,

P ∈ V 2
n (W

J
0,b,µ), b, µ > −1. (4.59)

From Proposition 3.7, we know that if P ∈ V 2
n (S,W

J
a,b,µ) or P ∈ V 2

n (∇2,W J
a,b,µ) then:

(∂1 + ∂2)
2P :=

∂2P

∂x2
+ 2

∂2P

∂x∂y
+
∂2P

∂y2
∈ V 2

n−2(W
J
a,b,µ). (4.60)

Putting (4.59) and (4.60) together, then they prove the following result.

Proposition 4.13. Let P ∈ V 2
n (S,W

J
0,b,µ) or P ∈ V 2

n (∇2,W J
0,b,µ), with b, µ > −1.

Then P satisfies the fourth-order partial differential equation:[
y(1− y)

∂2

∂y2
+ 2x(1− y)

∂2

∂x∂y
+ (y − x2)

∂2

∂x2
+ (2µ+ 2)

∂

∂y
− (2µ+ b+ 3)x

∂

∂x

−(2µ+ b+ 3)y
∂

∂y
+ (n− 2)(n+ 2µ+ b)I

] [
∂2

∂x2
+ 2

∂2

∂x∂y
+

∂2

∂y2

]
P = 0,

where I is the identity operator.

The following corollary is a consequence of Theorem 3.1 and Proposition 3.9 for
κ = d = 2.
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Corollary 4.7. Let
{
Sn
j : 0 ≤ j ≤ n

}
denote a monic orthogonal basis of V 2

n (∇2,W J
a,b,µ).

Then, a monic orthogonal basis
{
Sn
j : 0 ≤ j ≤ n

}
of V 2

n (S,W
J
a,b,µ) is given by:

S0
0 (x, y) = 1,

S1
0 (x, y) = x− p1, S1

1 (x, y) = y − p2,

Sn
j (x, y) = Sn

j (x, y)− T 1(Sn
j ,p;x, y), n ≥ 2,

where T 1(Sn
j ,p) is the Taylor polynomial of first degree of Sn

j at p = (p1, p2), and
where〈

S0
0 ,S0

0

〉
S
= λ0,〈

S1
0 ,S1

0

〉
S
=
〈
S1
1 ,S1

1

〉
S
= λ1,〈

Sn
j ,Sn

j

〉
S
=
〈
Sn
j , S

n
j

〉
∇2 , 0 ≤ j ≤ n, n ≥ 2.

.

Let us arrange the elements of the basis
{
Sn
j : 0 ≤ j ≤ n

}
of V 2

n (∇2,W J
a,b,µ) in a

vector form. We denote by Sn the column vector of size n+ 1:

Sn =
(
Sn
0 (x, y), Sn

1 (x, y), . . . , Sn
n(x, y)

)T
,

and by Qn the column vector of size n+ 1:

Qn =
(
xn, xn−1y, xn−2y2, . . . , yn

)T
. (4.61)

As we mentioned in Section 3.4.4.1, in order to simplify the computation of the matrix〈
Qn,QT

m

〉
∇2 we only need that each entry of Qn to be defined as a monomial. The

following corollary is a consequence of Proposition 3.17 and (3.81) with κ = d = 2.

Corollary 4.8. Let n,m ≥ 2, a, b, µ > −1, and let Qn be defined in (4.61). Then,

each entry of the matrix
〈
Qn,QT

m

〉
∇2 =

(
⟨xn−iyi, xm−jyj⟩∇2

)
0≤i≤n,0≤j≤m

of size (n+

1)× (m+ 1) can be computed for 0 ≤ i ≤ n and 0 ≤ j ≤ m by:

〈
xn−iyi, xm−jyj

〉
∇2 =


(a+ 2µ+ 2)n+m−4(A

n,m,µ
i,j + 2Bn,m,µ

i,j + Cn,m,µ
i,j )

(a+ b+ 2µ+ 3)n+m−4
, n+m− i− j is even,

0, otherwise,

where

An,m,µ
i,j =


(−i)2(−j)2

(µ+ 3/2)n+m−i−j
2

(
1

2

)
n+m−i−j

2

, 2 ≤ i ≤ n, 2 ≤ j ≤ m,

0, otherwise,

Bn,m,µ
i,j =


ij(n− i)(m− j)

(µ+ 3/2)n+m−i−j
2

−1

(
1

2

)
n+m−i−j

2
−1

, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m− 1,

0, otherwise,

Cn,m,µ
i,j =


(i− n)2(j −m)2

(µ+ 3/2)n+m−i−j
2

−2

(
1

2

)
n+m−i−j

2
−2

, 0 ≤ i ≤ n− 2, 0 ≤ j ≤ m− 2,

0, otherwise.
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On the bounded cone V2
1 the polynomials in Sn can be computed recursively by

means of the relations in Proposition 3.10, Proposition 3.11 and Corollary 4.8. Next
we show a numerical example.

Example 4.5 (Numerical, see Note 4.1). Let a = b = µ = −1/2 the parameters for the
weight function W J

a,b,µ on the bounded cone, which is defined in (4.56). From (4.61)
we have for 0 ≤ n ≤ 5:

Q0 = 1, Q1 =
(
x, y

)T
, Q2 =

(
x2, xy, y2

)T
, Q3 =

(
x3, x2y, xy2, y3

)T
,

Q4 =
(
x4, x3y, x2y2, xy3, y4

)T
, Q5 =

(
x5, x4y, x3y2, x2y3, xy4, y5

)T
.

From Proposition 3.11 and Corollary 4.8, with κ = 2, we have the following iterations:

1. First iteration:

B3,2 =
〈
Q3,QT

2

〉
∇2 =


0 0 0
2 0 0
0 2 0
0 0 6

 , B4,2 =
〈
Q4,QT

2

〉
∇2 =



9
2

0 0

0 9
8

0
3
2

0 3
4

0 9
4

0

0 0 9

 ,

B5,2 =
〈
Q5,QT

2

〉
∇2 =



0 0 0
15
4

0 0

0 15
8

0
5
4

0 15
8

0 5
2

0

0 0 25
2


, H∇2

2 =
〈
Q2,QT

2

〉
∇2 =

4 0 0
0 2 0
0 0 4

 .

2. Second iteration:

B4,3 =
〈
Q4,QT

3

〉
∇2 −B4,2

(
H∇2

2

)−1

BT
3,2 =


0 3

2
0 0

45
8

0 3
4

0

0 3 0 3
4

0 0 27
8

0

0 0 0 9

 ,

B5,3 =
〈
Q5,QT

3

〉
∇2 −B5,2

(
H∇2

2

)−1

BT
3,2 =



1575
128

0 0 0

0 195
64

0 0
315
64

0 465
256

0

0 15
4

0 135
64

0 0 165
32

0

0 0 0 225
16


,
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H∇2

3 =
〈
Q3,QT

3

〉
∇2 −B3,2

(
H∇2

2

)−1

BT
3,2 =


27
4

0 0 0

0 2 0 0

0 0 7
4

0

0 0 0 9
2

 .

3. Third iteration:

B5,4 =
〈
Q5,QT

4

〉
∇2 −

3∑
j=2

B5,j

(
H∇2

j

)−1

BT
4,j =



0 105
128

0 0 0
1737
256

0 − 9
128

0 0

0 6513
3584

0 − 135
1792

0

−81
64

0 615
512

0 27
64

0 −297
448

0 225
112

0

0 0 15
64

0 45
16


,

H∇2

4 =
〈
Q4,QT

4

〉
∇2 −

3∑
j=2

B4,j

(
H∇2

j

)−1

BT
4,j =



549
64

0 −21
32

0 0

0 4035
3584

0 −225
896

0

−21
32

0 141
256

0 3
32

0 −225
896

0 45
56

0

0 0 3
32

0 9
8


.

Therefore, from Proposition 3.11, we have:

A3,2 = B3,2

(
H∇2

2

)−1

=


0 0 0
1
2

0 0

0 1 0

0 0 3
2

 , A4,2 = B4,2

(
H∇2

2

)−1

=



9
8

0 0

0 9
16

0
3
8

0 3
16

0 9
8

0

0 0 9
4


,

A5,2 = B5,2

(
H∇2

2

)−1

=



0 0 0
15
16

0 0

0 15
16

0
5
16

0 15
32

0 5
4

0

0 0 25
8


, A4,3 = B4,3

(
H∇2

3

)−1

=


0 3

4
0 0

5
6

0 3
7

0

0 3
2

0 1
6

0 0 27
14

0

0 0 0 2

 ,
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A5,3 = B5,3

(
H∇2

3

)−1

=



175
96

0 0 0

0 195
128

0 0
35
48

0 465
448

0

0 15
8

0 15
32

0 0 165
56

0

0 0 0 25
8


,

A5,4 = B5,4

(
H∇2

4

)−1

=



0 112
143

0 35
143

0
26491
30780

0 2336
2565

0 − 584
7695

0 2449
1430

0 505
1144

0
142
7695

0 11131
5130

0 5977
30780

0 − 24
715

0 356
143

0

0 0 0 0 5
2


.

If
1
= denotes the congruence relation (4.2) then, from Proposition 3.10, we have for

0 ≤ n ≤ 5 that:

S0
1
= Q0 = 1,

S1
1
= Q1 =

(
x, y

)T
,

S2
1
= Q2 =

(
x2, xy, y2

)T
,

S3
1
= Q3 −A3,2S2

1
=
(
x3, x2y − 1

2
x2, xy2 − xy, y3 − 3

2
y2
)T

,

S4
1
= Q4 −A4,3S3 −A4,2S2

1
=



x4 − 3
4
x2y − 3

4
x2

x3y − 5
6
x3 − 3

7
xy2 − 15

112
xy

x2y2 − 3
2
x2y − 1

6
y3 + 3

8
x2 + 1

16
y2

xy3 − 27
14
xy2 + 45

56
xy

y4 − 2y3 + 3
4
y2


,

S5
1
= Q5 −A5,4S4 −A5,3S3 −A5,2S2

1
=



x5 − 112
143
x3y − 35

143
xy3 − 5355

4576
x3 + 21

26
xy2 − 105

1144
xy

x4y − 26491
30780

x4 − 2336
2565

x2y2 + 584
7695

y4 + 1687
3456

x2y + 16835
131328

x2

x3y2 − 2449
1430

x3y − 505
1144

xy3 + 1597
2288

x3 + 2277
4160

xy2 − 57
2288

xy

x2y3 − 142
7695

x4 − 11131
5130

x2y2 − 5977
30780

y4 + 301
216
x2y + 9

32
y3 − 1435

8208
x2 − 3

64
y2

xy4 + 24
715
x3y − 356

143
xy3 − 4

143
x3 + 957

520
xy2 − 353

1144
xy

y5 − 5
2
y4 + 15

8
y3 − 5

16
y2


.

Finally, let p = (p1, p2) = (−1, 1). The Taylor polynomials of first degree at p of
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S2,S3,S4 and S5 are given by:

T 1(S2,p;x, y) =
(
−2x− 1, x− y + 1, 2y − 1

)T
,

T 1(S3,p;x, y) =
(
3x+ 2, −x+ y − 3

2
, −y + 1, −1

2

)T
,

T 1(S4,p;x, y) =



−x− 3
4
y − 3

4

− 1
16
x− 1

112
y + 115

336

1
4
x+ 1

8
y − 5

48

−1
8
x+ 3

56
y − 3

56

−1
2
y + 1

4


,

T 1(S5,p;x, y) =



−137
352
x− 7

1144
y + 227

2288

30941
984960

x− 5857
196992

y − 11827
656640

131
3520

x− 753
22880

y + 17
4576

− 1477
61560

x+ 335
12312

y + 3191
164160

13
220
x+ 359

5720
y − 59

1144

1
16


.

Then, from Corollary 4.7, the following polynomials are a monic orthogonal basis{
Sn
j : 0 ≤ j ≤ n

}
for the space V 2

n (S,W
J
a,b,µ) on the bounded cone for 0 ≤ n ≤ 5:

� For the space V 2
0 (S,W

J
a,b,µ):

S0
0 (x, y) = 1.

� For the space V 2
1 (S,W

J
a,b,µ):

S1
0 (x, y) = x+ 1,

S1
1 (x, y) = y − 1.

� For the space V 2
2 (S,W

J
a,b,µ):

S2
0 (x, y) = x2 + 2x+ 1,

S2
1 (x, y) = xy − x+ y − 1,

S2
2 (x, y) = y2 − 2y + 1.

� For the space V 2
3 (S,W

J
a,b,µ):

S3
0 (x, y) = x3 − 3x− 2,

S3
1 (x, y) = x2y − 1

2
x2 + x− y +

3

2
,

S3
2 (x, y) = xy2 − xy + y − 1,

S3
3 (x, y) = y3 − 3

2
y2 +

1

2
.
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� For the space V 2
4 (S,W

J
a,b,µ):

S4
0 (x, y) = x4 − 3

4
x2y − 3

4
x2 + x+

3

4
y +

3

4
,

S4
1 (x, y) = x3y − 5

6
x3 − 3

7
xy2 − 15

112
xy +

1

16
x+

1

112
y − 115

336
,

S4
2 (x, y) = x2y2 − 3

2
x2y − 1

6
y3 +

3

8
x2 +

1

16
y2 − 1

4
x− 1

8
y +

5

48
,

S4
3 (x, y) = xy3 − 27

14
xy2 +

45

56
xy +

1

8
x− 3

56
y +

3

56
,

S4
4 (x, y) = y4 − 2y3 +

3

4
y2 +

1

2
y − 1

4
.

� For the space V 2
5 (S,W

J
a,b,µ):

S5
0 (x, y) = x5 − 112

143
x3y − 35

143
xy3 − 5355

4576
x3 +

21

26
xy2 − 105

1144
xy +

137

352
x

+
7

1144
y − 227

2288
,

S5
1 (x, y) = x4y − 26491

30780
x4 − 2336

2565
x2y2 +

584

7695
y4 +

1687

3456
x2y +

16835

131328
x2

− 30941

984960
x+

5857

196992
y +

11827

656640
,

S5
2 (x, y) = x3y2 − 2449

1430
x3y − 505

1144
xy3 +

1597

2288
x3 +

2277

4160
xy2 − 57

2288
xy

− 131

3520
x+

753

22880
y − 17

4576
,

S5
3 (x, y) = x2y3 − 142

7695
x4 − 11131

5130
x2y2 − 5977

30780
y4 +

301

216
x2y +

9

32
y3

− 1435

8208
x2 − 3

64
y2 +

1477

61560
x− 335

12312
y − 3191

164160
,

S5
4 (x, y) = xy4 +

24

715
x3y − 356

143
xy3 − 4

143
x3 +

957

520
xy2 − 353

1144
xy − 13

220
x

− 359

5720
y +

59

1144
,

S5
5 (x, y) = y5 − 5

2
y4 +

15

8
y3 − 5

16
y2 − 1

16
.

This completes our numerical example on the bounded cone.

4.5.2 Laguerre weight function

The unbounded cone of R2 is the set:

V2
∞ :=

{
(x, y) ∈ R2 : |x| ≤ y, 0 ≤ y <∞

}
.

In this section we construct the Sobolev orthogonal polynomials in two variables with
respect to the inner product:
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⟨f, g⟩S = ca,µ

∫
V2
∞

∇3f(x, y) · ∇3g(x, y)WL
a,µ(x, y)dxdy + λ2∇2f(p1, p2) · ∇2g(p1, p2)

+ λ1∇f(p1, p2) · ∇g(p1, p2) + λ0f(p1, p2)g(p1, p2), (4.62)

where (p1, p2) is a given point in R2, λ0, λ1, λ2 > 0, ∇f , ∇2f and ∇3f are given in
(4.1), WL

a,µ is the weight function on the unbounded cone:

WL
a,µ(x, y) = yae−y(y2 − x2)µ, a, µ > −1, (x, y) ∈ V2

∞, (4.63)

ca,µ is the normalization constant (see (1.59)):

ca,µ :=

(∫
V2
∞

WL
a,µ(x, y)dxdy

)−1

=
Γ(µ+ 3/2)√

πΓ(µ+ 1)Γ(a+ 2µ+ 2)
,

and the main part of (4.62) is denoted by:

⟨f, g⟩∇3 = ca,µ

∫
V2
∞

∇3f(x, y) · ∇3g(x, y)WL
a,µ(x, y)dxdy. (4.64)

We denote by V 2
n (S,W

L
a,µ) and V 2

n (∇3,WL
a,µ) the spaces of orthogonal polynomials

of degree n with respect to (4.62) and (4.64), respectively, where dimV 2
n (S,W

L
a,µ) =

dimV 2
n (∇3,WL

a,µ) = n+ 1. Similarly, we denote by V 2
n (W

L
a,µ) the orthogonal polyno-

mials with respect to:

⟨f, g⟩WL
a,µ

= ca,µ

∫
V2
∞

f(x, y)g(x, y)WL
a,µ(x, y)dxdy. (4.65)

From (1.60)–(1.61), the polynomials in the space V 2
n (W

L
0,µ), when the parameter

a = 0, satisfy the partial differential equation:

y
∂2P

∂x2
+ y

∂2P

∂y2
+ 2x

∂2P

∂x∂y
− x

∂P

∂x
+ (2µ+ 2− y)

∂P

∂y
= −nP,

P ∈ V 2
n (W

L
0,µ), µ > −1. (4.66)

From Proposition 3.7, we know that if P ∈ V 2
n (S,W

L
a,µ) or P ∈ V 2

n (∇3,WL
a,µ) then:

(∂1 + ∂2)
3P :=

∂3P

∂x3
+ 3

∂3P

∂x2∂y
+ 3

∂3P

∂x∂y2
+
∂3P

∂y3
∈ V 2

n−3(W
L
a,µ). (4.67)

Putting (4.66) and (4.67) together, then they prove the following result.

Proposition 4.14. Let P ∈ V 2
n (S,W

L
0,µ) or P ∈ V 2

n (∇3,WL
0,µ), with µ > −1. Then

P satisfies the fifth-order partial differential equation:[
y
∂2

∂x2
+ y

∂2

∂y2
+ 2x

∂2

∂x∂y
− x

∂

∂x

+(2µ+ 2− y)
∂

∂y
+ (n− 3)I

] [
∂3

∂x3
+ 3

∂3

∂x2∂y
+ 3

∂3

∂x∂y2
+

∂3

∂y3

]
P = 0,

where I is the identity operator.
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The following corollary is a consequence of Theorem 3.1 for κ = 3 and d = 2.

Corollary 4.9. Let
{
Sn
j : 0 ≤ j ≤ n

}
denote a monic orthogonal basis of V 2

n (∇3,WL
a,µ).

Then, a monic orthogonal basis
{
Sn
j : 0 ≤ j ≤ n

}
of V 2

n (S,W
L
a,µ) is given by:

S0
0 (x, y) = 1,

S1
0 (x, y) = x− p1, S1

1 (x, y) = y − p2,

S2
0 (x, y) = (x− p1)

2, S2
1 (x, y) = (x− p1)(y − p2), S2

2 (x, y) = (y − p2)
2,

Sn
j (x, y) = Sn

j (x, y)− T 2(Sn
j ,p;x, y), n ≥ 3.

where T 2(Sn
j ,p) is the Taylor polynomial of second degree of Sn

j at p = (p1, p2).

Let us arrange the elements of the basis
{
Sn
j : 0 ≤ j ≤ n

}
of V 2

n (∇3,WL
a,µ) in a

vector form. We denote by Sn the column vector of size n+ 1:

Sn =
(
Sn
0 (x, y), Sn

1 (x, y), . . . , Sn
n(x, y)

)T
,

and by Qn the column vector of size n+ 1:

Qn =
(
xn, xn−1y, xn−2y2, . . . , yn

)T
. (4.68)

The following corollary is a consequence of Proposition 3.17 and (3.82) with κ = 3
and d = 2.

Corollary 4.10. Let n,m ≥ 3, a, µ > −1, and let Qn be defined in (4.68). Then,

each entry of the matrix
〈
Qn,QT

m

〉
∇3 =

(
⟨xn−iyi, xm−jyj⟩∇3

)
0≤i≤n,0≤j≤m

of size (n+

1)× (m+ 1) can be computed for 0 ≤ i ≤ n and 0 ≤ j ≤ m by〈
xn−iyi, xm−jyj

〉
∇3 ={

(a+ 2µ+ 2)n+m−6

(
An,m,µ

i,j + 3Bn,m,µ
i,j + 3Cn,m,µ

i,j +Dn,m,µ
i,j

)
, n+m− i− j is even,

0, otherwise,

where

An,m,µ
i,j =


(−i)3(−j)3

(µ+ 3/2)n+m−i−j
2

(
1

2

)
n+m−i−j

2

, 3 ≤ i ≤ n, 3 ≤ j ≤ m,

0, otherwise,

Bn,m,µ
i,j =


(n− i)(m− j)(−i)2(−j)2

(µ+ 3/2)n+m−i−j
2

−1

(
1

2

)
n+m−i−j

2
−1

, 2 ≤ i ≤ n− 1, 2 ≤ j ≤ m− 1,

0, otherwise,

Cn,m,µ
i,j =


ij(i− n)2(j −m)2
(µ+ 3/2)n+m−i−j

2
−2

(
1

2

)
n+m−i−j

2
−2

, 1 ≤ i ≤ n− 2, 1 ≤ j ≤ m− 2,

0, otherwise,

Dn,m,µ
i,j =


(i− n)3(j −m)3

(µ+ 3/2)n+m−i−j
2

−3

(
1

2

)
n+m−i−j

2
−3

, 0 ≤ i ≤ n− 3, 0 ≤ j ≤ m− 3,

0, otherwise.
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On the unbounded cone V2
∞ the polynomials in Sn can be computed recursively

by means of the relations in Proposition 3.10, Proposition 3.11 and Corollary 4.10.
Next we show a numerical example.

Example 4.6 (Numerical, see Note 4.1). Let a = µ = −1/2 the parameters for the
weight function WL

a,µ on the unbounded cone, which is defined in (4.63). From (4.68)
we have for 0 ≤ n ≤ 5:

Q0 = 1, Q1 =
(
x, y

)T
, Q2 =

(
x2, xy, y2

)T
, Q3 =

(
x3, x2y, xy2, y3

)T
,

Q4 =
(
x4, x3y, x2y2, xy3, y4

)T
, Q5 =

(
x5, x4y, x3y2, x2y3, xy4, y5

)T
.

From Proposition 3.11 and Corollary 4.10, with κ = 3, we have the following itera-
tions:

1. First iteration:

B4,3 =
〈
Q4,QT

3

〉
∇3 =


0 0 0 0
18 0 0 0
0 12 0 0
0 0 18 0
0 0 0 72

 , H∇3

3 =
〈
Q3,QT

3

〉
∇3 =


36 0 0 0
0 12 0 0
0 0 12 0
0 0 0 36

 ,

B5,3 =
〈
Q5,QT

3

〉
∇3 =



135 0 0 0
0 27 0 0

27 0 27
2 0

0 27 0 27
2

0 0 54 0
0 0 0 270


.

2. Second iteration:

B5,4 =
〈
Q5,QT

4

〉
∇3 −B5,3

(
H∇3

3

)−1

BT
4,3 =



0 270 0 0 0
540 0 108 0 0

0 513
2

0 81 0

0 0 243 0 108
0 0 0 459 0
0 0 0 0 2160


,

H∇3

4 =
〈
Q4,QT

4

〉
∇3 −B4,3

(
H∇3

3

)−1

BT
4,3 =


216 0 0 0 0

0 117
2

0 0 0

0 0 42 0 0

0 0 0 135
2

0

0 0 0 0 288

 .
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Therefore, from Proposition 3.11, we have:

A4,3 = B4,3

(
H∇3

3

)−1

=


0 0 0 0
1
2

0 0 0

0 1 0 0

0 0 3
2

0

0 0 0 2

 , A5,3 = B5,3

(
H∇3

3

)−1

=



15
4

0 0 0

0 9
4

0 0
3
4

0 9
8

0

0 9
4

0 3
8

0 0 9
2

0

0 0 0 15
2


,

A5,4 = B5,4

(
H∇3

4

)−1

=



0 60
13

0 0 0
5
2

0 18
7

0 0

0 57
13

0 6
5

0

0 0 81
14

0 3
8

0 0 0 34
5

0

0 0 0 0 15
2


.

If
2
= denotes the congruence relation (4.3) then, from Proposition 3.10, we have for

0 ≤ n ≤ 5 that:

S0
2
= Q0 = 1,

S1
2
= Q1 =

(
x, y

)T
,

S2
2
= Q2 =

(
x2, xy, y2

)T
,

S3
2
= Q3 =

(
x3, x2y, xy2, y3

)T
,

S4
2
= Q4 −A4,3S3

2
=
(
x4, x3y − 1

2
x3, x2y2 − x2y, xy3 − 3

2
xy2, y4 − 2y3

)T
,

S5
2
= Q5 −A5,4S4 −A5,3S3

2
=



x5 − 60
13
x3y − 75

52
x3

x4y − 5
2
x4 − 18

7
x2y2 + 9

28
x2y

x3y2 − 57
13
x3y − 6

5
xy3 + 75

52
x3 + 27

40
xy2

x2y3 − 81
14
x2y2 − 3

8
y4 + 99

28
x2y + 3

8
y3

xy4 − 34
5
xy3 + 57

10
xy2

y5 − 15
2
y4 + 15

2
y3


.

Finally, let p = (p1, p2) = (0, 1). The Taylor polynomials of second degree at p of
S3,S4 and S5 are given by:

T 2(S3,p;x, y) =
(
0, x2, 2xy − x, 3y2 − 3y + 1

)T
,

T 2(S4,p;x, y) =
(
0, 0, 0, −1

2
x, −2y + 1

)T
,
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T 2(S5,p;x, y) =



0

−9
4
x2

−9
4
xy + 69

40
x

−5
4
x2 − 9

8
y2 + 15

8
y − 3

4

−5xy + 49
10
x

−25
2
y2 + 45

2
y − 9


.

Then, from Corollary 4.9, the following polynomials are a monic orthogonal basis{
Sn
j : 0 ≤ j ≤ n

}
for the space V 2

n (S,W
L
a,µ) on the unbounded cone for 0 ≤ n ≤ 5:

� For the space V 2
0 (S,W

L
a,µ):

S0
0 (x, y) = 1.

� For the space V 2
1 (S,W

L
a,µ):

S1
0 (x, y) = x,

S1
1 (x, y) = y − 1.

� For the space V 2
2 (S,W

L
a,µ):

S2
0 (x, y) = x2,

S2
1 (x, y) = xy − x,

S2
2 (x, y) = y2 − 2y + 1.

� For the space V 2
3 (S,W

L
a,µ):

S3
0 (x, y) = x3,

S3
1 (x, y) = x2y − x2,

S3
2 (x, y) = xy2 − 2xy + x,

S3
3 (x, y) = y3 − 3y2 + 3y − 1.

� For the space V 2
4 (S,W

L
a,µ):

S4
0 (x, y) = x4,

S4
1 (x, y) = x3y − 1

2
x3,

S4
2 (x, y) = x2y2 − x2y,

S4
3 (x, y) = xy3 − 3

2
xy2 +

1

2
x,

S4
4 (x, y) = y4 − 2y3 + 2y − 1.
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� For the space V 2
5 (S,W

L
a,µ):

S5
0 (x, y) = x5 − 60

13
x3y − 75

52
x3,

S5
1 (x, y) = x4y − 5

2
x4 − 18

7
x2y2 +

9

28
x2y +

9

4
x2,

S5
2 (x, y) = x3y2 − 57

13
x3y − 6

5
xy3 +

75

52
x3 +

27

40
xy2 +

9

4
xy − 69

40
x,

S5
3 (x, y) = x2y3 − 81

14
x2y2 − 3

8
y4 +

99

28
x2y +

3

8
y3 +

5

4
x2 +

9

8
y2 − 15

8
y +

3

4
,

S5
4 (x, y) = xy4 − 34

5
xy3 +

57

10
xy2 + 5xy − 49

10
x,

S5
5 (x, y) = y5 − 15

2
y4 +

15

2
y3 +

25

2
y2 − 45

2
y + 9.

This completes our numerical example on the unbounded cone.



Chapter 5

Open problems

In this chapter we mention some open problems related to the Sobolev orthogonal
polynomials with respect to the inner product (3.12). On the following problems, we
suppose that the reader is familiar with Chapter 3.

Problem 5.1. To find an explicit basis for the space V d
n (∇κ,W ), and therefore for

V d
n (S,W ), of Sobolev orthogonal polynomials of degree n in d variables with respect

to the bilinear form (3.13), without appealing to iterative methods.

Problem 5.2. To study the Sobolev orthogonal polynomials in d variables with respect
to an inner product of the form:

⟨f, g⟩S = ⟨f, g⟩∇κ + ⟨f, g⟩ ,

where ⟨·, ·⟩∇κ, κ ∈ N, is the bilinear form (3.13), and ⟨·, ·⟩ is an additional term that
makes the inner product ⟨·, ·⟩S well-defined on Πd. In particular, we could begin this
study for a continuous-discrete inner product of the form:

⟨f, g⟩S = ⟨f, g⟩∇κ +
κ−1∑
i=0

(∇if(p))TMi(∇ig(p)), (5.1)

where Mi is a positive definite matrix of size di × di, 0 ≤ i ≤ κ− 1. Notice that the
inner product (3.12) is a particular case of (5.1) by choosing Mi = λiI, λi > 0, where
I is the identity matrix. Many of the results in Chapter 3 can be applied to this case.

Problem 5.3. Even though the equations (3.61), (3.63), (3.65), (3.69), (3.70), (3.84)
and (3.86), show particular examples of partial differential equations, it is still an
open problem to know if there is a differential operator for which the polynomials in
the space V d

n (S,W ) are eigenfunctions.

Problem 5.4. It is still an open problem to study the zeros for the polynomials in
the space V d

n (S,W ).

Problem 5.5. To study Fourier orthogonal series by using the polynomials in the
space V d

n (S,W ) and related problems (for example, approximation theory and repro-
ducing kernels).
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[104] Schäfke, Friedrich Wilhelm and Wolf, Gerhard. “Einfache verallgemeinerte
klassische Orthogonalpolynome”. In: J. Reine Angew. Math. 262/263 (1973),
pp. 339–355.

[105] Sharapudinov, Idris Idrisovich. “Sobolev orthogonal polynomials associated
with Chebyshev polynomials of the first kind and the Cauchy problem for
ordinary differential equations”. In: Differ. Equ. 54.12 (2018), pp. 1602–1619.

[106] Sharapudinov, Idris Idrisovich. “Sobolev orthogonal polynomials generated by
Jacobi and Legendre polynomials, and special series with the sticking property
for their partial sums”. In: Sb. Math. 209.9 (2018), pp. 1390–1417.

[107] Sharapudinov, Idris Idrisovich. “Sobolev-orthogonal systems of functions as-
sociated with an orthogonal system”. In: Izv. Math. 82.1 (2018), pp. 212–
244.



Bibliography 137

[108] Sharapudinov, Idris Idrisovich. “Sobolev-orthogonal systems of functions and
the Cauchy problem for ODEs”. In: Izv. Math. 83.2 (2019), pp. 391–412.

[109] Shen, Jie, Wang, Li-Lian, and Li, Huiyuan. “A triangular spectral element
method using fully tensorial rational basis functions”. In: SIAM J. Numer.
Anal. 47.3 (2009), pp. 1619–1650.

[110] Suetin, P. K. Orthogonal polynomials in two variables. Vol. 3. Analytical
Methods and Special Functions. Gordon and Breach Science Publishers, 1988.
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