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Abstract

For my thesis I seek to implement a programming framework which can be used to model and solve plan
recognition problems. My primary goal for this system is for it to be able to easily handle continuous
probability spaces as well as discrete ones. My framework is based primarily on the probabilistic situation
calculus developed by Belle and Levesque, and is an extension of a programming language developed by
Levesque called Ergo. The system I have built allows one to specify complex domains and dynamic models
at a high-level and is written in a language which is user-friendly and easy to understand. It has strong
formal foundations, can be used to compare multiple different plan recognition methods, and makes it easier
to perform plan recognition in tandem with other forms of reasoning, such as threat assessment, reasoning
about action, and planning to respond to the actions performed by the observed agent.
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1 Introduction

1.1 Overview

Plan/goal recognition is a sub-field of Artificial Intelligence focussed on identifying an observed AI agent’s

intention, based on the behaviour observed so far. Plan recognition has many useful applications, including

computer games and security. Plan recognition problems (and AI problems in general) can be modelled

in both continuous and discrete spaces, but as it stands, most of the existing work in the field of artificial

intelligence is focussed primarily on discrete spaces. The system I have developed seeks to provide a frame-

work in which plan recognition problems can be easily modelled and solved, regardless of whether or not the

problem features a discrete or a continuous space. This framework allows one to specify complex domains

and dynamic models at a high-level and in a user-friendly, easy-to-understand language. It has strong formal

foundations and can be used to compare the performance of multiple different methods of plan recognition.

It also makes it easy to perform plan recognition in tandem with other forms of reasoning, including threat

assessment, reasoning about action, and making plans to respond to the actions performed by the observed

agent. For example, one could design a system representing a parking lot where each car is an AI agent,

with one car being the ”primary agent”; in such a situation, my system could be used to model observing

the behaviour of other cars as a plan recognition problem, and the system’s beliefs regarding the other cars’

intentions could then fuel the primary car’s planner, using those predicted intentions to plan its own path

through the lot.

1.2 Contributions

The contributions of this thesis are as follows:

1. A framework for modelling both plan and goal recognition problems in the probabilistic situation

calculus developed by Hector J. Levesque and Vaishak Belle [3, 4] which can handle both continuous

and discrete probability spaces with equal ease. This framework views plan/goal recognition as a

form of Bayesian belief update, and can specify complex stochastic domains at a high level through
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a user-friendly language. An observed agent’s plan library can be specified in this framework using a

high-level non-deterministic programming language.

2. An implementation of said framework built on top of Ergo, a variant of the agent programming language

Golog. This implementation can be used to perform plan/goal recognition, and uses Ergo to perform

approximate Bayesian inference through Monte Carlo sampling.

3. Various experimental problems and benchmarks featuring both discrete and continuous distributions

as a sort of showcase of what kinds of problems can be modelled and solved in my system, including one

in which the observed agent is a customer in a jewelry store and the system is tasked with predicting

whether or not they are there to steal something, buy something, or just browsing the store; one in

which the observed agent is a robot moving through an environment and the system is tasked with

predicting which of several potential goal destinations is the robot’s actual target destination; and

one in which the observed agent is a car approaching an intersection and the system is tasked with

predicting both where they are planning on going after passing through the intersection and whether

they plan on speeding up, slowing down, or continuing at a constant speed to get there.

4. Various statistical evaluations of the system, primarily for the purposes of measuring how different

parameters affect the system’s running time and accuracy, whilst also comparing the system’s perfor-

mance to existing work.

Ergo, the language my system is largely built on top of, was developed by Hector J. Levesque [22] and

is based heavily on the probabilistic situation calculus developed by him and Vaishak Belle [3, 4]. I have

received a significant amount of assistance in building my system from my supervisors, Petros Faloutsos and

Yves Lespérance. Yves in particular has been very directly involved in the creation of many of the sample

problems I have modelled in my system, and has also developed some new execution modes for Ergo which

my system heavily relies on. Some of the strategies I have used to solve sample plan recognition problems

were also partially inspired by work done by Gal A. Kaminka, Mor Vered, and Noah Agmon [19].

1.3 Outline

Chapter 2 features some necessary background information clarifying just what the field of plan recognition

is, the distinction between continuous and discrete spaces, and how that distinction relates to my thesis.

The chapter then also features a discussion of existing work in the field and how my work expands on that
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existing work. Chapter 3 features a discussion of the syntax and semantics of Ergo, the language upon

which my system is built. It is divided into the three sections; the first discusses the semantics of what’s

called a ”Basic Action Theory” (a formalism for representing dynamic domains that Ergo is built around),

the second discusses the semantics of Ergo programs themselves, and the third discusses the syntax of Ergo

programs. Chapter 4 goes into detail on the syntax and semantics of my own system, Ergo4PPR, explaining

how some of the relevant functions behave by way of example. Chapter 5 discusses various sample problems

that I have already modelled and solved in Ergo4PPR, then provides statistical data I gathered on the

performance of the system on these problems, primarily in terms of runtime and accuracy. I also replicate

an algorithm developed by Kaminka et al and run a statistical evaluation on it similar to their own for the

sake of comparison. Finally, chapter 6 summarizes some final thoughts on the system and discusses various

ways my work could hypothetically be expanded upon in the future.
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2 Plan Recognition

Plan Recognition is a sub-field of Artificial Intelligence wherein the focus is primarily on predicting the

intended actions of an AI agent, rather than planning out a sequence of actions for an AI agent to follow.

Keyhole plan recognition is a specific type of plan recognition wherein the system is observing an agent which

is unaware that it is being observed, as if the agent is being observed from another room through a keyhole;

as a result, the information gleaned from said agent’s behaviour is non-interactive and frequently incomplete.

Every plan recognition problem discussed in this paper is technically a keyhole plan recognition problem.

Goal recognition, also known as intention recognition, is a related field and a special case; the primary

distinction between plan recognition and goal recognition is that goal recognition is specifically focussed

on predicting the agent’s goal, while plan recognition is instead more generally focussed on predicting the

entirety of the observed agent’s intended plan. For example, if the agent in question were a car trying to

find a space in a parking lot, goal recognition would be focussed on predicting which parking space the car

will ultimately park in, while plan recognition would instead concern itself with predicting the car’s entire

path through the parking lot including the final destination. For the sake of simplicity, in this paper the

term “plan recognition” will be used as a blanket term including the field of goal recognition.

The input to a plan recognition problem consists of a) a set of possible plans or goals that the observed

may follow/try to achieve, or alternatively a prior probability distribution over the set of possible plans/goals;

b) some beliefs about the initial state of the world (including information which is known to be true with

100% certainty); c) an outline of every action the observed agent can perform, including information about

pre-conditions that must be met for that action to be performed and the possible outcomes of performing

that action, with those outcomes potentially including how that action affects the probability distributions

representing the system’s current beliefs; and d) a sequence of observations (which may or not be noisy)

representing the specific sequence of actions performed by the observed agent. Using this information, the

system’s goal is to determine which of the possible plans/goals the observed agent is most likely follow-

ing/aiming for; this output would constitute the posterior probability distribution over the plans/goals if the
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system were formulated as a Bayesian inference problem, and would typically be provided and updated after

every observed action is processed by the system. For example, going off the parking lot example described

above, the input might be a) either a list of every parking space in the lot (potentially along with the initial

likelihood of that space being the observed car’s desired space), or a list of every path the observed car

might take through the lot (again, potentially along with an initial likelihood for each path); b) the location

of every car and parking space currently in the lot, including their location and information about which

parking spaces are already occupied and which aren’t; c) information about what actions the observed car

may perform as they manoeuvre through the lot (driving forward, honking the horn, turning, etc.) and their

effects on the world; and d) the sequence of actions performed by the observed car as it tries to find a parking

space, while the output might be a probability value for each parking space representing the likelihood of

that parking space being the one the observed car is trying to get to, or the same for a set of paths the

observed car may be intending to follow.

Plan Recognition is a very active research area [29, 16] and has many applications. These include

human robot interaction [30], cognitive assistance [10], computer games [6], and security [18]. In many plan

recognition problems, noise and uncertainty play a major role. Most obviously, there is uncertainty in regards

to the plans/goals the observed agent has chosen to pursue, but there can also be noise in the observations

themselves, such as due to imperfect motors on the observed agent’s part (i.e. say the agent intends to move

5 feet forward but winds up moving 5 and a half feet instead by mistake) or due to inaccurate sensors on

the observer’s part that can’t measure observations with 100% precision.

2.1 Related Work

2.1.1 Early Work

Much of the early work in the field of plan recognition was not probabilistic in nature, instead being focussed

on determining an agent’s goal or plan without estimating the likelihood of the hypothesis [21, 20, 1].

However, over time, probabilistic approaches became more and more common. Some of these include [9],

who argued that plan recognition was an abductive reasoning problem and could be solved using Bayesian

probabilistic inference, and [8], who showed that plan recognition could also be solved using Hidden Markov

Models (HMM, often used in signal processing). These days, much of the work has shifted to probabilistic

models, such as [13], who presented an algorithm for solving plan recognition problems based on a model of

plan execution, and [12], who defined what it means for an agent to be in the process of performing an action.

One particularly notable development was that of [26, 27], who developed a ”plan-recognition-as-planning”
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approach. The basic idea of this is that, for every goal an agent could possibly have, a pre-existing AI

planner is used to generate an optimal plan taking the observed agent to that goal. Then, as the agent

begins performing actions, the sequence of actions it has performed so far is compared to the sequences

corresponding to these optimal plans, and probability values are generated for each goal based on the degree

to which the agent’s actions matches each plan, with the most likely goal being the one for which the agent’s

actions comes closest to matching those of that goal’s optimal plan.

2.1.2 Plan Recognition in Continuous Domains

Today, most of the existing work in the field focusses specifically on plan recognition in discrete domains,

where every aspect of the world (including the probability distribution functions in particular) is given a

discrete representation. However, many application areas (such as robotics and autonomous vehicles) in-

volve either continuous spaces or spaces with both discrete and continuous elements. In a continuous space,

aspects of the world are instead represented with an uncountably infinite range of values. Mathematically,

probability distribution functions in discrete domains are summed over a range of possible values to produce

the probability that a random variable falls within that range; by contrast, continuous domains use integra-

tion over probability density functions to accomplish the same thing. This can be challenging to represent

perfectly via a computer program, and often some level of discretization (i.e. converting a continuous model

to a discrete one) must be used. At present, though, very little work exists in the field of plan recognition

in continuous spaces compared to discrete spaces.

Most of the notable pre-existing work that does exist in the field of plan recognition in continuous spaces

was conducted by Gal Kaminka, Mor Vered, and Noa Agmon [19, 31] who developed a method for plan

recognition (including goal recognition) in continuous spaces which involves comparing the actions an agent

has executed to plans generated using pre-computed off-the-shelf planners. This is in turn based heavily off of

the “plan-recognition-as-planning” approach of Ramı́rez and Geffner [26, 27]. While Ramı́rez and Geffner’s

method was designed specifically for systems using discrete probability distributions, Kaminka et al. worked

to adapt it to allow for continuous distributions as well. Another result of Kaminka et al.’s work on plan

recognition in continuous spaces is the discovery that any plan recognition problem in a continuous space can

be sufficiently represented by an equivalent problem in a discrete space so long as the discretization level is

sufficiently small [19]. Therefore, one can feel free to represent the continuous probability space of any plan

recognition problem as a discrete space without worrying about information being lost in the discretization
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process, provided their system can adapt its discretization level to the specific problem it has been given.

The primary factor distinguishing my work from that of Kaminka et al. is that my work is focussed on

developing a general system in which plan recognition problems can be easily modelled and solved using

continuous and discrete probability spaces, whereas the work done by Kaminka et al. is focussed more on

developing specific methods for solving plan recognition problems in continuous spaces. One could easily use

my system to model a plan recognition problem and then solve it using the methods developed by Kaminka

et al., or one could solve it using another method entirely if they so chose.

2.1.3 Modelling Uncertainty and Change in the Situation Calculus

Another thing worth noting is much of the existing work in the field of plan recognition has focussed more

on algorithms than it has representation; this is the case with the work done by Kaminka et al. Many

simplifying assumptions are also typically made about domains and plan structure. As an example, it is

often assumed that events in the world happen sequentially, i.e. no two events happen concurrently. In the

more general field of reasoning about action, meanwhile, a lot more work has been done on crafting logical

frameworks for representing and reasoning about dynamic domains. Much of this work is set in the situation

calculus [25, 28] and addresses issues such as solving the frame problem, concurrency, sensing, and more

[28]. High-level agent programming languages such as Golog [23] and ConGolog [14] have been developed

(and will be discussed more thoroughly in the next section), and the situation calculus has been extended

to take into account noisy sensors and actuators and to support reasoning about uncertainty using Bayesian

probabilistic models. This framework supports both discrete domains [2] and hybrid discrete-and-continuous

domains [5], is based on first-order logic, and can handle infinite domains. It also supports complex noisy

action models with effects that depend on context.

The system I have built is very heavily based on pre-existing planning systems built by Hector J. Levesque

and Vaishak Belle. While the work done by Belle and Levesque is not specifically focussed on the field of

plan recognition, it nonetheless serves as solid base for my work due to their work being heavily focussed

on modelling uncertainty in the situation calculus with both discrete and continuous probabilistic spaces.

All of the languages developed by Belle and Levesque were built on top of Racket Scheme. The first lan-

guage they developed was called Prego [3]. Prego modelled uncertainty using fluents (effectively variables

which represent values that can change over time) and actions which can affect the values of fluents. More

specifically, any given fluent would be given an initial, either discrete or continuous, set of possible values
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according to some probability distribution (note that it can be such that a given fluent simply has a 100%

chance of being given some specific value). Every action would then affect the probability distributions of

some number of fluents, as appropriate. Belief updates in Prego were computed using something called

“logical regression”; given a situation-suppressed expression e (which could possibly be a belief expression)

and an action sequence σ, an equivalent expression e′ can be obtained such that the value of e′ in the initial

situation is equal to value of e in the situation resulting from executing σ in the initial situation.

2.1.4 Agent Programming in the Situation Calculus

Another important language in the field of plan recognition is Golog. Golog was an agent programming

language developed by Hector J. Levesque et al. in the late 1990s [23], originally implemented in Prolog.

Golog was built to model a dynamic world which an AI agent could interact with, and the main point of in-

terest distinguishing Golog from similar languages was that it allowed agent behaviour to be described using

programs at a higher-level of abstraction than what existed previously. These programs contained high-level

actions whose pre-conditions and effects were specified by an action theory, and the Golog interpreter could

reason about the effects of these actions to find successful executions of non-deterministic programs. Con-

Golog [14], meanwhile, is an extension of Golog which incorporates concurrency, allowing multiple different

actions to occur simultaneously. Another extension of Golog called DTGolog exists [7], which, when given a

non-deterministic program, determines the optimal method of executing that program.

Golog was an instrumental component in the next language Belle and Levesque worked on, known as Allegro

[4]. By including the agent programming functionality of Golog wherein the program’s tests are evaluated

against the agent’s beliefs, Allegro extended Prego with the ability to use its uncertainty models in the pro-

gramming of actual, physical, robots. Allegro also improved on how Prego computed belief updates by using

progression and Monte Carlo sampling (in which a number of samples are generated representing different

possible world states, with each sample having a different value for all probabilistic elements and a weighting

representing the liklihood of that sample being the true world state). By calculating belief updates in this

manner, Allegro could keep track of an agent’s current beliefs in real-time. In a sense, Prego ran offline,

producing probability values for belief statements given a hypothetical world state, while Allegro ran online,

being able to determine the current probability of any given belief statement based on which specific actions

have occurred so far.
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The language my system is primarily built on is known as Ergo. Ergo is an implementation of Golog

in Scheme by Hector J. Levesque alone [22]. Though Ergo pre-dates Prego and Allegro, much of the func-

tionality for computing uncertainty featured in Prego and Allegro was added into Ergo at a later date.

Ergo features the probabilistic aspects of Prego and Allegro as well as Allegro’s ability to use Golog-like

programs (in this case called “Ergo Programs”) to describe agent behaviour, producing a robust and easy-

to-understand tool for modelling AI environments with noise and uncertainty regarding an agent’s actions

and beliefs. Ergo also provides the ability to directly update sample weights as if they were fluents; if a

sample’s weight is set to 0, then the world-state described by that sample is officially considered impossible.

If every sample is given a weight of zero, the system shuts down entirely. Employing this system allows users

to define the likelihood with which any scenario occurs with ease.

2.1.5 Plan Recognition in the Situation Calculus

Some prior work on Plan Recognition exists which incorporates the situation calculus. [12] presents a

formalization wherein plans are represented as Golog programs which feature two additional constructs: σ,

which can match any sequence of actions, and α1 − α2, which only matches to executions of plan α1 which

do not match with an execution of plan α2. The second of those two constructs is quite powerful due to

its ability to allow one to specify plans both in regards to what can happen and in regards to what must

not happen. This allows programs in the plan library to effectively serve as “plan recognition templates”

(rather than serving as actual plans an agent would follow), which cannot be done in most plan recognition

frameworks. This can be useful for monitoring applications in which one wants to both represent policies

and also detect violations of those policies.

[12]’s approach is reformulated and extended by [17] in two main ways. The first is that their formulation

supports hierarchical plans by making note in the plan recognition hypothesis when a sub-plan or sub-

procedure started and finished its execution, which helps to clarify the structure of the observed agent’s

behaviour and aids in predicting its future actions. The second is that their formulation incorporates the

transition semantics of ConGolog and supports incremental plan recognition, wherein the set of hypotheses

is updated after each new action is observed.

[12]’s approach is also given a probabilistic extension in [11] which assigns probabilities to plan recognition

hypotheses; this approach only handles discrete probability distributions, however.
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3 Syntax and Semantics of Ergo

As my system is an extension of Ergo, the mathematical foundations upon which is built are the same as

those of Ergo, using the same basic syntax and semantics. Ergo is founded on top of the situation calculus

[25, 28] and its probabilistic extensions [2, 5]. The semantics of the Ergo programs are based on Golog [23]

and ConGolog [14].

3.1 BAT Semantics

The situation calculus is a dialect of predicate logic that features the means to represent many different types

of ”sorts” (i.e. categories), including actions, situations, and objects. Situations represent possible world

histories, with the initial situation being represented by the constant S0. The functional symbol do is used to

represent sequences of actions, with do(a, s) representing the situations which results from performing action

a in situation s. Fluents, meanwhile, are functions which vary in value depending on the situation, and can

represented as a function taking a situation as an argument (for example, robot-pos(s)). There is a finite

number of fluents, f1, . . . , fk, and their values may range over any set, including the set of real numbers. The

formulas appearing in the initial belief state and action declaration of Ergo are situation calculus formulas

φ, sans the situation argument of the fluents involved (this is called a situation suppressed formula). φ[s]

denotes the same formula φ with the situation argument restored by some situation s.

Dynamic domains are represented using Basic Action Theories (BAT) [5] using four special predicates:

Poss (which indicates whether or not an action is possible in a given situation), p (which indicates the

probability that doing some action a in some situation s will yield some situation s′), l (which indicates the

probability that some action a will occur in some situation s), and alt (which represents possible alternate

actions for noisy actions). To go into more a detail, a BAT consists of the following:

• An initial state theory D0 which specifies the probability distribution over the initial set of possible
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world states using an axiom of the form:

p(s, S0) ≡ INIT (f1, . . . , fn)[s]

• action precondition axioms which specify wether an action is possible in a given situations:

Poss(a, s) ≡ APAa(~x)[s]

• likelihood and alternate actions axioms which describe the outcomes of executing noisy actions:

l(a(~x), s) = LHa(~x)[s]

alt(a, u) = a′

• successor state axioms (SSA) which specify how actions alter the values of fluents (note that this

includes Reiter’s solution to the frame problem):

f(do(a, s)) = SSAf (a)[s]

To clarify the definition of the alternate action axiom, a is some noisy action, u is the term replacing the

action’s noisy argument, and a′ is the action the agent knows was executed as a result. For example, say we

have the action nfwd(x, y) representing a mobile agent attempting to move forward, where x is the distance

the agent intends to move while y is the distance the agent actually moves. alt(nfwd(x, y), z) = nfwd(x, z)

specifies that if nfwd(2, 2.79) occurs, all the agent actually knows is that nfwd(2, z) occurred for some

unknown value of z (and similarly for other values of x and y) – or, put another way, the agent only knows

that it intended to move forward 2 units; it does not know precisely how many units it actually travelled.

A special SSA for the p fluent exists which specifies the value of p is generated from a given pair of sit-

uations and an action, namely by multiplying the p-value of the first situation by the likelihood of the given

action occurring:
p(s′, do(a, s)) = u ≡
∃s′′[s′ = do(a, s′′) ∧ Poss(a, s′′) ∧
u = p(s′′, s)× l(a, s′′)]
∨ ¬∃s′′[s′ = do(a, s′′) ∧ Poss(a, s′′)] ∧ u = 0

Given a BAT as described above, the degree of belief in a situation suppressed formula φ in situation s

is calculated as follows:

Bel(φ, s)
def
= 1

γ

∫
f1,...,fn

∫
u1,...,uk

Density(φ, s∗)

The normalization factor γ is the value of the numerator after a) replacing φ with True and b) setting

s∗ = do([alt(a1, u1), . . . , alt(ai, uk)], S0) (if s = do([a1, . . . , ak], S0)). The full definition of the Density
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function has been omitted here, but roughly what it does is apply the successor state axiom for p to any

situation term produced by a noisy action (i.e. the various possible outputs of alt(a, u), for some action a).

For a given situation-suppressed formula φ, Density will either output the p-value of its situation argument

(if φ holds) or 0 (if φ does not hold). Ultimately, the degree of belief formula integrates over the possible

initial values of the fluents and the possible outcomes of noisy actions. For discrete distribution, the integral

in this formula will be replaced by a sum.

3.2 Program Semantics

Ergo uses an implementation of ConGolog [14] to construct Ergo programs which can be used to control the

behaviour of one or more agents. The following is a list of constructs present in ConGolog:

δ ::= nil | α | ϕ? | δ1; δ2 | δ1|δ2 | πx.δ | δ∗ | δ1‖δ2

Each of the above terms is described as follows:

1. nil - the empty program, which does nothing and is terminated by default.

2. α - an atomic action, possibly with parameters.

3. ϕ? - a situation-suppressed formula whose truth-value is being tested (with ϕ[s] denoting the formula

obtained upon restoring the situation argument s as before).

4. δ1; δ2 - A set of two programs executed in sequence.

5. δ1|δ2 - A nondeterministic choice between two programs, only one of which is executed.

6. πx.δ - A program executed with the variable x bound to some value chosen nondeterministically.

7. δ∗ - A program executed zero or more times, with the number chosen nondeterministically.

8. δ1‖δ2 - Two program executed concurrently by way of interleaving.

More complex programs, such as those featuring conditionals or loops, can be defined in terms of the

above constructs. The semantics of ConGolog are specified in terms of single-step transitions using two

predicates:

1. Trans(δ, s, δ′, s′) - A predicate which holds is if one step of the program δ in situation s yields s′ as

the new situation and δ′ as the remaining program.
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2. Final(δ, s) - A predicate which holds if δ is capable of legally terminating in situation s.

The definitions of Trans and Final used here are as they are used in [15], which differs from [14] in

that the term ϕ? does not yield a transition (i.e. Trans(ϕ?, s, δ′, s′) only holds if δ′ = ϕ? and s′ = s), but

nonetheless satisfies Final when it is also satisfied. Combining Trans and Final produces the predicate

Do(δ, s, s′), which holds as long as executing the program δ in situation s produces s′ as a legal terminating

situation. This predicate is defined as Do(δ, s, s′)
.
= ∃δ′.T rans∗(δ, s, δ′, s′) ∧ Final(δ′, s′) (note that Trans∗

is the reflexive transitive closure of Trans).

Finally, it is also useful to introduce the idea of a ConGolog program being situation-determined (SD).

This means that for any possible sequence of transitions produced by the program, the remaining pro-

gram can be uniquely determined using the resulting situation. This is represented by the predicate

SituationDetermined(δ, s). Formally,

SituationDetermined(δ, s)
.
= ∀s′, δ′, δ′′.Trans∗(δ, s, δ′, s′) ∧ Trans∗(δ, s, δ′′, s′) ⊃ δ′ = δ′′

To give an example, the program a; (b | c) is SD in situation S0 (i.e. the initial situation) as there is a unique

remaining program (b | c) in do(a, S0). However, the program (a; b) | (a; c) is not SD in the same situation,

since there are multiple possible remaining programs after executing do(a, S0) (i.e. either b or c).

3.3 Syntax of Ergo Programs

Next let’s discuss the specific syntax Ergo uses in the construction of programs, which as mentioned is built

directly on top of the pre-existing semantics of ConGolog. Every Ergo program either ultimately succeeds

or fails depending on the circumstances, and there are a wide variety of different expressions that can be

used in an Ergo program. The full list of available expressions are as follows [22]:

1. :nil - Corresponds to nil above, and always succeeds.

2. :fail - Like :nil, except that it always fails.

3. (:test fexpr) - Corresponds to ϕ?, succeeding or failing based on the truth value of fexpr.

4. (:act action) - Corresponds to α. Fails only if the action has a prerequisite that is not satisfied when

this action is reached, and succeeds otherwise.
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5. (:begin pgm1 ... pgmn) - Corresponds to δ1; δ2, executing each Ergo program in sequence. Succeeds if

every program succeeds and fails otherwise.

6. (:choose pgm1 ... pgmn) - Corresponds to δ1|δ2, nodeterministically choosing a single program and

executing it. Succeeds if the chosen program succeeds and fails otherwise.

7. (:if fexpr pgm1 pgm2 ) - Executes pgm1 if fexpr evaluates to True and pgm2 otherwise. Succeeds if the

chosen program succeeds and fails otherwise.

8. (:when fexpr pgm1 ... pgmn) - Behaves the same as (:if fexpr (:begin pgm1 ... pgmn) :nil)

9. (:unless fexpr pgm1 ... pgmn) - Behaves the same as (:when (not fexpr) pgm1 ... pgmn)

10. (:until fexpr pgm1 ... pgmn) - Repeatedly executes (:begin pgm1 ... pgmn) until fexpr becomes true.

Succeeds and fails under the same circumstances as :begin.

11. (:while fexpr pgm1 ... pgmn) - Behaves the same as (:until (not fexpr)pgm1 ... pgmn)

12. (:star pgm1 ... pgmn) - Corresponds to δ∗, except that it executes a sequence of programs zero or more

times instead of a single program. Succeeds and fails under the same circumstances as :begin.

13. (:for-all var list pgm1 ... pgmn) - Repeatedly executes (:begin pgm1 ... pgmn) once for every value in

the list list. Each run will set the value of the variable var to the current value from list. Succeeds and

fails under the same circumstances as :begin.

14. (:for-some var list pgm1 ... pgmn) - Corresponds to πx.δ, choosing the value of var nondeterministically

from the values of list. Succeeds and fails under the same circumstances as :begin.

15. (:conc pgm1 ... pgmn) - Corresponds to δ1‖δ2, concurrently executing all the programs in the given list.

Single steps are nondeterministically interleaved. Succeeds and fails under the same circumstances as

:begin.

16. (:atomic pgm1 ... pgmn) - Behaves the same as (:begin pgm1 ... pgmn), except without interleaving

concurrent programs if any exist. Succeeds and fails under the same circumstances as :begin.

17. (:monitor pgm1 pgm2 ... pgmn) - Execute pgm1 before every step of pgm2 and do the same for all

subsequent programs. Succeeds and fails under the same circumstances as :begin.

18. (:<< fexpr1 ... fexprn) - Evaluate all the expressions, then succeed.
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19. (:>> fexpr1 ... fexprn) - Evaluate all the expressions, then fail.

20. (:let ((var1 fexpr1 ) ... (varn fexprn) pgm1 ... pgmn) - Behaves the same as (:begin pgm1 ... pgmn),

except in an environment where every vari is set to the value of fexpri. Succeeds and fails under the

same circumstances as :begin.

21. (:wait) - Pause until an exogenous action occurs, then succeed.

22. (:search pgm1 ... pgmn) - Behaves the same as (:begin pgm1 ... pgmn), except it guards against failure

by looking ahead for instances of nondeterminism and ensuring that the choice made leads to successful

termination.

In order to execute an Ergo program, the Ergo command ergo-do must be called. The syntax of ergo-do

is (ergo-do mode pgm), where pgm is the program being executed and mode is the execution mode, typically

either ’online (meaning the program interacts with an external source by sending it endogenous actions, by

receiving exogenous actions from it, or both) or ’offline (meaning the program does not interact with an

external source).

Any other Ergo syntax relevant to my system will be discussed in the following section, specifically in

regards to how it is is relevant to my system.
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4 Ergo4PPR

The system I have been working on with my supervisors is an extension of Ergo tentatively entitled

Ergo4PPR. The main factor by which systems built in Ergo4PPR differ from those built in base Ergo

is that they are more focussed specifically on plan recognition, while base Ergo is more focussed on planning

in general (as well as high-level program execution). A system built in Ergo is typically meant to represent

a single AI agent, with fluents representing information known to the agent and the agent’s behaviour being

described by an Ergo program as outlined above. Ergo4PPR, however, provides a simple means by which

one can describe an entire world containing one or more agents, with fluents being global information. A

major factor in the ability to do this is a new execution mode for Ergo programs which can be used to update

a program by sending it a single action, whereupon the remaining program after that action’s execution will

be returned. It is assumed that all programs are situation-determined, as described above. By using this

execution mode, Ergo programs representing an agent’s behaviour can be to stored in fluents which can then

be updated accordingly with each action taken by the observed agent (or agents as the case may be). It

is also possible to have multiple different subprograms each containing a different possible “plan” a given

agent may follow. Ergo4PPR also generally provides a convenient, easy-to-use framework for describing tools

which the system may use to observe each agent’s actions, particularly in regards to the ability to introduce

noise and uncertainty both into the actions themselves and into the observations of those actions.

4.1 Implementation Details

One of the primary benefits of Ergo and Ergo4PPR is in its ability to use Monte Carlo sampling to compute

belief updates. Essentially, the system works by generating some number of samples, each representing a

possible world-state, with a weighting representing the probability of that sample being the “true” world

state. The degree of belief that a fluent had a given value was ultimately calculated as the weighted average

number of samples wherein that fluent had that value. The number of samples to use is something which the

programmer could set whilst designing the system, and the more samples there were, the more likely it was
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that the system’s degree of belief in the value of each fluent would be close to the correct value. Calculating

belief updates in this manner makes it easy to efficiently maintain an estimate of the belief state in real-time

as observations are acquired.

The main extensions that Ergo4PPR makes to Ergo are the introduction of two new execution modes for

Ergo programs. By default, Ergo has two main execution modes, online and offline. In online execution,

the system receives exogenous actions from an external source (such as a sensor) which it then uses to update

the world state, sending the endogenous actions out to effectors. offline execution, meanwhile, means that

the program is executed internally without interacting with the environment. The two new execution modes

are essentially extensions of the paradigms used in the online and offline modes. The first new execution

mode is the onlineSynchronized mode, which repeatedly alternates between processing exogenous actions

and progressing through the Ergo program, in a way which removes the need for complex synchronization

between the two. The second new execution mode is the offlineStepMatch mode, which takes an action as

an argument and tries to execute it on the Ergo program, returning either a pair containing that action and

the remaining program after its execution (in the case where the action can be executed by the program), or

an empty list (in the case where the action cannot be executed by the program). If more than one possible

remaining program exists, it returns the first it finds; if the program is situation-determined, though, there

won’t be more than one remaining program. Situation-determined programs like these are used to model

the possible behaviours of the observed agent.

4.2 Syntax

In the Ergo4PPR system a domain is specified using a BAT, as described above. A sample of some of the

syntax used by Ergo is summarized in Table 4.1. As previously mentioned, a fluent is essentially a variable

whose value can change over time.

To illustrate how this works specifically in the context of Ergo4PPR, let us examine a simple example

involving targets and an agent which shoots at those targets. The agent is capable of changing its aiming

angle and firing at a target; there are multiple targets of varying sizes and point values, with smaller targets

being worth more but being harder to hit. In the specific example described in this paper, there are three

targets: a target located at 30◦ of size 10◦ and of value 30, a target located at 60◦ of size 30◦ and of value

10, and a target located at 90◦ of size 20◦ and of value 20. Note that target sizes are measured in degrees,

centred on their position value; i.e. the first target spans a range from 25◦ to 35◦. This system’s initial state

is specified using fluents, as follows:
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Table 4.1: Sample Ergo Syntax

Syntax Definition

(define-states ((i num)) fluent1 val1 ... fluentn valn) Defines the initial value of fluent1 to be val1 and
similarly for the other fluents. Also sets the number
of samples used for Monte Carlo sampling to num.

(define-action action #:args fluent1 val1 ... fluentn valn) Defines an exogenous action called action which up-
dates the value of fluent1 to be val1 and similarly
for the other fluents. Optional arguments such as
pre-conditions are specified using args.

(GAUSSIAN-GEN mu sigma) Represents a gaussian random variable of mean mu
and standard deviation sigma.

(GAUSSIAN val mu sigma) Returns the probability of a gaussian random variable
of mean mu and standard deviation sigma having the
value val.

(UNIFORM-GEN low high) Represents a uniform random variable whose value
ranges from low to high.

(UNIFORM val low high) Returns the probability of a uniform random variable
whose value ranges from low to high having the value
va1.

(DISCRETE-GEN v1 p1 ... vn pn) Represents a discrete random variable whose value is
v1 with probability p1, v2 with probability p2, etc.
The sum p1 + ... + pn must add to 1.

(DISCRETE val v1 p1 ... vn pn) Returns the probability of a discrete random variable
whose value is v1 with probability p1, v2 with prob-
ability p2, etc. having the value val. Again, the sum
p1 + pn must add to 1.

(UNIFORM-DISCRETE-GEN n) Represents a random variable whose value is any of
the integers from 1 to n, with each value having a
1/n probability of being that variable’s value.

(UNIFORM-DISCRETE val n) Returns the probability of a random variable whose
value is any of the integers from 1 to n (with each
value having a 1/n probability of being that variable’s
value) having the value val.

(BINARY-GEN p) Represents a random variable whose value is #t with
probability p and #f with probability 1 - p.

(BINARY val p) Returns the probability of a random variable whose
value is #t with probability p and #f with probabil-
ity 1 - p having the value val.

(ergo-do #:mode mode program) Executes the Ergo program program in the execution
mode mode.
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( de f ine−s t a t e s ( ( i 1000000) )
dec i s i onP lan ’ notDecided
dec i s i onTarge t ’ notDecided
aim 0 .0
someObservedAim ’ notSet
t a rg e tH i t ( vec to r #f #f #f )
ha l t ed #f
exoProg ( : begin

( : act choosePlan ! )
( : i f ( eq ? dec i s i onP lan ’ greedy )

( greedy−plan )
( : i f ( eq ? dec i s i onP lan ’ s a f e )

( sa f e−plan )
( optimal−plan ) ) )

( : choose ( : for−some t ’ (0 1 2)
( : act ( obsHit ! t ) ) )

( : act obsNoHit ! ) )
( : act ha l t ! ) )

)

In the above example, there are six fluents – decisionPlan, representing the agent’s chosen plan,

decisionTarget, representing the agent’s chosen target; aim, representing the angle at which the agent

is aiming; someObservedAim, representing the angle the system observes; targetHit, a vector of boolean

values representing whether or not each target has been hit by the agent; halted, which indicates whether

or not my system has finished its execution; and exoProg, which outlines which behaviours are possible for

the observed robot (and which also incorporates the system’s own sensing capabilities). These behaviours

are specified using Ergo programs. In the above example, exoProg specifies the agent’s behaviour as follows:

first, the agent chooses a plan according to some probability distribution, either a “greedy” plan where it

aims and shoots at the most valuable target, a “safe” plan where it aims and shoots at the largest target,

or an “optimal” plan where it aims and shoots at the target with the largest value × size. Due to the way

the three targets are set up in this specific example, each plan will directly correspond to a different specific

target. After deciding which target to aim at, the agent executes the plan; afterwards, the system observes

which target is hit if any, and then halts.

The three plans are themselves also specified using Ergo programs. The “greedy” plan is defined as

follows:

( d e f i n e ( greedy−plan )
( : begin

( : act chooseTarget ! )
( : act setAim ! )
( : choose : n i l ( : act setAim ! ) )
( : starDFS ( : act ( obsAim ! someObservedAim ) ) )
( : act shoot ! )
)
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)

First, the agent chooses a target (determined by the adopted plan), then aims at the target either once or

twice (to increase its chances of aiming at the correct target). Next, the system obtains zero or more noisy

observations of the agent’s aim (:starDFS is a function defined in the target shooting program itself which

recursively executes its argument zero or more times), and then finally the agent shoots. The “safe” and

“optimal” plans are the same except that in the former the agent aims one to three times and in the latter

it aims only once.

In addition to initializing all the fluents as described above, I have also set the system to use 1000000

states when doing Monte Carlo Sampling under define-states above. Since the process by which fluents are

assigned their initial values is deterministic, all states will have the same fluent values initially. Each state

implicitly has a weight which is initialized to 1/1000000. This weight is represented using a special fluent

(appropriately called weight) which does not need to be outlined under ”define-states”. As the system

progresses and more and more noisy actions/observations are processed and observed, the states will be

updated by sampling the probability distributions associated with those actions. Using weight, certain

states deemed ”impossible” following a sequence of observations can also be ruled out by setting the value

of weight in those states to zero.

There are four types of actions that can impact the system: accurate actions performed by the agent,

noisy actions performed by the agent, accurate sensing actions performed by the system, and noisy sensing

actions performed by the system. Actions performed by the agent are exactly as they sound: actions the

observed agent performs itself. If these are accurate, then the observed agent does exactly what it intends

to do (for example, the setAim action causes the agent to aim exactly at its chosen target); meanwhile, if

these are noisy, then the observed agent may be off from its intentions by some degree (for example, the

nSetAim action causes the agent to try and aim at the centre of its chosen target within some margin of

error). Meanwhile, sensing actions are ones my system performs to gather information about the world. If

these are accurate, then the system can be confident that the information it retrieves is exactly as it appears

(for example, the obsHit action indicates that a certain target was hit with 100% certainty); if these are

noisy, then the system cannot be completely confident that the information it retrieves is exact (for example,

the angle returned by obsAim indicates that the observed agent is likely aiming within a certain range around

the returned angle, but it is not a given that it is aiming exactly at the returned angle). To give an example

of the syntax of an action, let us consider the choosePlan! action, an internal decision action performed

by the observed agent. When this action occurs, the system detects that a decision has been made but is
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unable observe the result of the decision. choosePlan! is defined as follows:

( de f ine−ac t i on choosePlan ! #: s e q u e n t i a l ? #t
dec i s i onP lan (DISCRETE−GEN ’ greedy (/ 1 .0 3 . 0 )

’ s a f e (/ 1 .0 3 . 0 ) ’ opt imal ( / 1 . 0 3 . 0 ) )
exoProg ( l e t ( ( r e s ( ergo−do #:mode

’ o f f l i neStepMatch #:matchAct ’ choosePlan !
exoProg ) ) ) ( i f r e s ( cadr r e s ) : f a i l ) )

weight ( i f ( equal ? exoProg : f a i l ) 0 . 0 weight )
)

This action has no pre-conditions. When this action occurs, the system first sets the decisionPlan fluent

to one of three values, according to a uniform distribution: greedy, safe or optimal. Then, the exoProg fluent

is updated; the value used to update this fluent is a fair bit more complicated, but to put it simply, exoProg is

updated by calling ergo-do in offlineStepMatch mode, passing in the action choosePlan! to be processed.

If the action being called on the system doesn’t match up with the next action as specified by exoProg, then

exoProg is set to :fail; otherwise, it is set to the remaining program. By using the offlineStepMatch

mode, the program can easily be advanced by a single step for each action. Finally, the weight of the current

sample is set to 0 if exoProg has been set to :fail, remaining unchanged otherwise. Updating the weight in

this manner is necessary so as to account for the possibility of a given sample assuming the agent has chosen a

specific plan, only to observe an action which is incompatible with that plan; for example, if decisionPlan

were set to optimal, only for multiple setAim! actions to be observed. The chooseTarget! action is

defined similarly (though it behaves deterministically), with the system setting the decisionTarget fluent

to a target determined by the chosen plan.

The setAim! action is a deterministic, non-noisy action performed by the agent which sets the value of

the aim fluent to the centre of the selected target. If it is defined as follows:

( de f ine−ac t i on setAim ! #: s e q u e n t i a l ? #t
aim ( vector−r e f t a r g e t P o s i t i o n dec i s i onTarge t )
exoProg ( l e t

( ( r e s ( ergo−do #:mode ’ o f f l i neStepMatch #:matchAct ’ setAim ! exoProg
) ) )

( i f r e s ( cadr r e s ) : f a i l ) )
weight ( i f ( equal ? exoProg : f a i l ) 0 . 0 weight )
)

Note that the system does not directly observe what the agent sets its aim to; it just knows the logic

by which the agent operates (i.e. that it always sets its aim to the centre of its chosen target with 100%

accuracy). Next we have the nSetAim! action, which the noisy counterpart of setAim!:

( de f ine−ac t i on nSetAim ! #: s e q u e n t i a l ? #t
aim (GAUSSIAN−GEN ( vector−r e f t a r g e t P o s i t i o n dec i s i onTarge t ) 5 . 0 )
exoProg ( l e t

21



( ( r e s ( ergo−do #:mode ’ o f f l i neStepMatch #:matchAct ’ nSetAim !
exoProg ) ) )

( i f r e s ( cadr r e s ) : f a i l ) )
weight ( i f ( equal ? exoProg : f a i l ) 0 . 0 weight )
)

Both the setAim! and nSetAim! actions produce the same results, except that nSetAim! specifies

that the aim fluent should be set to (GAUSSIAN-GEN decisionTargetPosition sd); rather, it should be

set according to a Gaussian probability distribution whose mean is the centre of the selected target (with a

standard deviation of sd) instead of being set to the exact centre.

Another action worth examining in more detail is the obsAim! action, a noise sensing action in which

the system gathers information about the observed agent’s current aim:

( de f ine−ac t i on ( obsAim ! a ) #: s e q u e n t i a l ? #t
someObservedAim a
exoProg ( l e t ( ( r e s ( ergo−do

#:mode ’ o f f l i neStepMatch
#:matchAct ( l i s t ’ obsAim ! a )

exoProg ) ) ) ( i f r e s ( cadr r e s ) : f a i l ) )
weight ( i f ( equal ? exoProg : f a i l ) 0 . 0

(∗ weight (GAUSSIAN ( remainder a 360 . 0 )
aim 1 0 . 0 ) ) )

)

Here, the someObservedAim fluent is set to the observed angle a to ensure that the agent program can

execute the action (obsAim! someObservedAim), given any real angle as the argument. Next, exoProg is

updated as normal. Finally, the weight of the sample is multiplied by the probability with which the system

would observe the agent aiming at an angle of a (wrapping around from 360◦ if necessary), according to

a Gaussian distribution where the current value of the aim fluent is the mean value, while the standard

deviation is 10◦.

In order to run the system, (ergo-do #:mode ’onlineSynchronized observeUpdtLoop) is called;

observeUpdtLoop is an Ergo program which repeatedly processes observed actions/observations, updates

the system’s beliefs as needed, the displays the results of some queries about the system’s current beliefs.

This runs continuously until the agent halts. This is run in onlineSynchronized mode, allowing the system

to easily alternate between processing actions and updating the agent program and displaying the results of

belief queries accordingly.

Ergo also provides functionality which allows the user the define input and output interfaces through

which actions and observations can be sent and received over TCP-IP. The method typically used in my

benchmarks/case studies was to simply list the actions in a plaintext file which the input interface would
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then read from, outputting the results of processing those actions to the standard output.

Information about the system’s beliefs can be retrieved using one of two commands. ”(sample-mean

number)” returns the weighted average value across every sample of number (provided that number evaluates

to some numerical value). Meanwhile, ”(belief boolean)” returns the proportion of the samples in which the

boolean statement boolean is true. The system can return information in this way whenever appropriate. For

example, using my above example, “(sample-mean aim)” could be used to return the average value of the

observed agent’s aim, while “(belief (eq? decisionTarget 0))” could be used to return the probability/degree

of belief that the decisionTarget fluent currently has a value of zero.

Finally, a sample of some the system’s output during a run of the target shooting example is shown

below. First, after processing the observations choosePlan! and chooseTarget!, the system outputs the

following:

( b e l i e f ( eq ? dec i s i onP lan greedy ) ) r e tu rn s 0 .331045
( b e l i e f ( eq ? dec i s i onP lan s a f e ) ) r e tu rn s 0 .32939
( b e l i e f ( eq ? dec i s i onP lan optimal ) ) r e tu rn s 0 .339565
( b e l i e f ( eq ? dec i s i onTarge t 0) ) r e tu rn s 0 .331045
( b e l i e f ( eq ? dec i s i onTarge t 1) ) r e tu rn s 0 .32939
( b e l i e f ( eq ? dec i s i onTarge t 2) ) r e tu rn s 0 .339565

At this stage, each plan and target is equally likely. Next, the system observes two executions of the

setAim! action. Following the first setAim! action, the system is equally likely to be aiming at any of the

three targets; however the second execution produces the following beliefs instead:

( b e l i e f ( eq ? dec i s i onTarge t 0) ) r e tu rn s 0.5012529620628828
( b e l i e f ( eq ? dec i s i onTarge t 1) ) r e tu rn s 0.4987470379371172
( b e l i e f ( eq ? dec i s i onTarge t 2) ) r e tu rn s 0 .0
( b e l i e f ( aiming at t a r g e t 0) ) r e tu rn s 0.5012529620628828
( b e l i e f ( aiming at t a r g e t 1) ) r e tu rn s 0.4987470379371172
( b e l i e f ( aiming at t a r g e t 2) ) r e tu rn s 0 .0

Since the agent never executes the setAim! action twice in the optimal plan, the target chosen by that

plan is no longer considered a possible target, and as a result only the other two targets are considered

possible, each with a roughly equal probability. Next, the system processes the observation (obsAim!

39.0), producing the following:

( b e l i e f ( aiming at t a r g e t 0) ) r e tu rn s 0.706824678506833
( b e l i e f ( aiming at t a r g e t 1) ) r e tu rn s 0.2931753214919648
( b e l i e f ( aiming at t a r g e t 2) ) r e tu rn s 0 .0

Now the system believes it to be far more likely that the agent is aiming at target 0 than target 1. Finally,

the observations shoot! and (obsHit! 1) are processed, producing:

( b e l i e f ( aiming at t a r g e t 0) ) r e tu rn s 0 .0
( b e l i e f ( aiming at t a r g e t 1) ) r e tu rn s 1 .0
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( b e l i e f ( aiming at t a r g e t 2) ) r e tu rn s 0 .0

At this stage, the system now knows with 100% certainty that target 1 has been hit (and, in turn, that

target is the one the observed agent was aiming at), thereby concluding the system’s execution.

The entirety of this example program’s code can be found in the appendix.
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5 Case Studies

Various plan recognition problems have already been modelled and solved in the Ergo4PPR System. These

examples were crafted to demonstrate the power, expressiveness, and utility of the system. Each of these

systems work as intended, demonstrating the ease with which the system can be used to represent plan

recognition problems in either continuous or discrete spaces. The complete code for all three of these

examples can be found in the appendix; note that some examples features multiple code files and have been

separated accordingly.

5.1 Examples

Each of the following examples was written as a sort of proof-of-concept to show the variety of different kinds

of plan recognition problems that can be modelled and solved in my system. There are three such examples;

one exclusively featuring discrete probability distributions, one exclusively featuring continuous probability

distributions, and one featuring both. In each case, the probability values generated by the system were as

expected.

5.1.1 Example 1 - Jewelry Store

The first example I developed is perhaps the simplest one, featuring an entirely discrete probability space.

In this example, the agent being observed is an individual within a jewelry store. There are three main goals

that this agent may have: steal (in which the agent steals an item from the store), browse (in which the

agent examines an item from the store, but puts it back before leaving), and buy (in which the agent makes

a purchase). Each of these three possible behaviours are quite similar, but have subtle differences between

them which the system uses to try and predict which goal the observed agent has in mind, and as each of

the observed agent’s actions are observed, the beliefs are updated accordingly. Additionally, the observed

agent also has a choice of which of three pieces of jewelry to interact with – a bracelet, a necklace, and a

ring. The chances of which item the agent would interact with are different depending on whether or not the

agent is planning on stealing the item, buying the item, or simply examining the item, and as such which
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item the agent chooses also has a impact on the likelihood of each plan. The agent will also look around the

room some number of times; specifically, the agent is guaranteed to look around the room at least once no

matter what, has a low chance of looking around a second time when browsing or buying and item, and has

a guaranteed chance of looking around a second time when planning on stealing an item.

5.1.2 Example 2 - Robot with Multiple Goals

The second example problem I built is a somewhat more complicated one primarily featuring continuous

distributions. This problem is also notable for being somewhat of a template from which other, even

more detailed problems may be built. In this problem, the observed agent is a mobile robot trying to

manoeuvre its way through an environment featuring various obstacles, ultimately hoping to reach one of

four destinations. The objective of the system is to use information about the robot’s path to try and

predict which destination the robot is heading towards. Note that the robot cannot execute any actions

other than choosing a destination and turning and moving throughout the environment. Various different

methods of calculating the probability of each destination being the true destination were considered and

tested. The first and most complicated method was to discretize the environment and then use the A*

algorithm [32] to calculate the optimal path to each destination – note that this is a very similar strategy

for plan recognition as the one derived by [31], though this is largely a coincidence. At each time step, the

robot’s current path would be compared to these optimal paths and for each destination a probability value

would be generated as the (normalized) degree to which the robot’s path matches that destination’s optimal

path. The optimal paths would also be recalculated if the robot’s path deviated too far from any of them.

The second and third methods used to calculate the probability for each goal, meanwhile, were significantly

simpler, but also less effective. The second method calculated the distance between the robot and each goal

both before and after every move action. The probabilities were then calculated as the (again, normalized)

degree of difference between the robot’s initial distance from the goal and its distance after moving, with the

goal whose distance decreased the most being seen as the most likely goal. Finally, the last method used to

calculate the probabilities measured the probability for any given goal as a weighted sum of a) the degree to

which the robot’s angle matched the angle necessary for the robot to be looking directly at that goal, and

b) how close the robot was to that goal. Note that for all three of the above-described methods, the prior

probabilities for each destination also factored into the new probability calculated at each time step, so if

the system were convinced the robot was going after, say, destination 1 for most of the system’s run, the

robot suddenly making a movement which most strongly corresponds to destination 2 wouldn’t necessarily
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cause the system to abandon its prior belief that destination 1 was the robot’s target destination. Exactly

how quickly the system would shift its beliefs regarding the robot’s chosen destination varies depending on

a number of factors, such as how long the robot had been moving towards one destination before switching,

the locations of each possible destination, and more.

After testing each of the three methods described above, it was determined that the A* method cor-

rectly predicted the robot’s actual chosen goal the fastest, the maximum distance difference method

ultimately made the correct prediction but took longer to do so than the A* method, and the orienta-

tion/distance method was almost completely ineffective at predicting the targeted goal. However, the A*

method also had a much longer execution time than any of the other methods. Each individual execution of

the A* algorithm on its own took a non-insignificant amount of time to compute, and since it not only had

to be computed once for each goal, but also possibly re-computed every time to robot strays too far from

each of the generated optimal paths, a full run of the system using the A* method was quite slow compared

to the other two methods.

As mentioned, this example problem can be expanded into many other, more specific problems. A

wide variety of different environments can be used, along with a wide variety of different kinds of cost

functions for different kinds of terrain. While the specific example I used featured exactly four goals,

it would be relatively easy to write an example with an arbitrarily large number of goals. One specific

application that could be generated using my code as a base would be a parking lot scenario, with the

possible goals being the various parking spaces and the observed agent being a vehicle which is trying to

park in one of them. This problem could also be expanded to include additional functionality, such as by

adding multiple robots each with their own goal, or by adding the possibility that the observed agent’s true

goal is not any of the known possible goals.

As a final aside, note that when writing the code for this example I used a scheme implementation

of the A* algorithm I found online, with some minor alterations made by myself to suit my purposes [24].

5.1.3 Example 3 - Intersection

The final example problem I addressed was a relatively simple one which nonetheless featured both continuous

and discrete probability distributions and a fairly complicated program describing the agent’s behaviour.
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Here, the observed agent is a car approaching a 4-way intersection. Another car, controlled by the system, is

also approaching the intersection at the same time, and the two cars will crash if they continue at the same

pace at which they are currently moving. See Figure 5.1 for a diagram showing the layout of the intersection

and the locations of every relevant party.

The observed agent, in this case, has three possible goal destinations and three possible strategies it may

follow to get to those destinations. Specifically the three goal destinations are for the observed agent to turn

right, turn left, and to travel straight ahead, while the three strategies are for the observed agent to speed

up so as to pass through the intersection before the user car does, to slow down so as to allow the user car

to pass through the intersection first, and to continue at the same speed at which it is already travelling

(representing the scenario wherein the driver of the other car has not yet noticed the impending collision).

Each goal and strategy has its own probability of occurring, and the goal of the system is to predict both

the other car’s goal and the other car’s strategy (a total of nine different possible behaviours) so that the

user can decide how to best respond to the situation (effectively, this is predicting both the goal and part

of the plan to achieve it). There are various factors about the world that the system can observe to better

determine which goal/strategy is the most likely, such as the possible presence of a pedestrian crossing the

road, the possible presence of a stop sign, and the possible presence of traffic lights and their state. Each

has a different probability of occurring in each of the nine possible scenarios and therefore learning this

information about the world will impact the probability distributions across the nine scenarios. Meanwhile,

the other car also has to make a choice of whether or not it wants to be the right lane or the left lane. Both

turns can occur in either lane, but left turns are more likely in the left lane and vice versa, so the other

car’s choice of lane impacts the probability distribution over the three goal destinations. As an aside, note

that for the sake of simplicity, the system does not currently model the need to slow down to make a turn.

Finally, outside of changing lanes, the observed car also has the ability to either accelerate or decelerate

as it approaches the intersection. Each of three strategies has an acceleration value it expects to see (for

example the “continue” strategy expects an acceleration of 0.0), so the acceleration that the system observes

will impact the probability distributions for the three strategies. For the sake of simplicity, there is no noise

in the observed agent’s actions or my observations, though this is one way in which this example could

theoretically be expanded.

To help illustrate how this example works, here is a sample of the code used to define the observed agent’s

behaviour:

( : begin
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Figure 5.1: Diagram of the Intersection Example
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( : act obsChooseGoal ! ) ; ; Wil l the other car be turn ing l e f t , r i ght , or
t r a v e l l i n g s t r a i g h t ?

( : act obsChooseTactic ! ) ; ; Wil l the other car be speed ing up , s lowing down ,
or cont inu ing at the speed l i m i t ?

( : act ( obsPedest r ian ! pedestr ianAnswer ) ) ; ; I s the re a pede s t r i an ?
( : act ( obsStopSign ! stopSignAnswer ) ) ; ; I s the re a stop s i gn ?
( : act ( o b s T r a f f i c L i g h t ! t r a f f i cL i gh tAnswer ) ) ; ; I s the re a t r a f f i c l i g h t ?
( : when ( eq ? t ra f f i cL i gh tAnswer ’ yes )

( : act ( obsTra f f i cL ightCo lour ! t ra f f i cL ightCo lourAnswer ) ) ) ; ; What i s the
t r a f f i c l i g h t ’ s co l ou r ?

( : act ( obsAcce l e ra t e ! accelAmount ) )
( : act obsChooseLane ! ) ; ; Wil l the car be changing l ane s ?
( : act ( obsAcce l e ra t e ! accelAmount ) )
( : i f ( eq ? dec i s i onLane ’ l e f t )

( : begin
( : act obsLeftTurnSignal ! )
( : act ( o b s S h i f t ! shiftAmount ) )
( : act obsLeftTurnSignal ! ) )

( : act ( o b s S h i f t ! shiftAmount ) ) )
( : u n t i l (<= ( car otherCar−pos ) 6 . 0 ) ; ; Repeatedly a c c e l e r a t e u n t i l the

i n t e r s e c t i o n i s reached .
( : act ( obsAcce l e ra t e ! accelAmount ) ) )

( : i f ( eq ? dec i s i onGoa l ’ turnRight )
( : act obsRightTurnSignal ! )
( : when ( eq ? dec i s i onGoa l ’ turnLe f t )

( : act obsLeftTurnSignal ! ) ) )
( : i f ( eq ? dec i s i onGoa l ’ turnRight ) ; ; Turn u n t i l the i n t e r s e c t i o n i s passed

( : u n t i l (>= ( cdr otherCar−pos ) 6 . 0 )
( : act obsTurn ! ) )

( i f ( eq ? dec i s i onGoa l ’ turnLe f t )
( : u n t i l (<= ( cdr otherCar−pos ) 4 . 0 )

( : act obsTurn ! ) )
( : u n t i l (<= ( car otherCar−pos ) 4 . 0 )

( : act obsTurn ! ) ) ) ) ) )

5.2 Experimental Evaluation

In order to test the behaviour of my system, I chose to measure how my system’s running time scales

as various parameters change. I also measured how accurate my system’s predictions were and how that

accuracy varied as the number of states changed. I also adapted some of the experiments conducted by

Kaminka et al. so as to compare how my system performs to theirs.

5.2.1 Computational Performance

5.2.1.1 Testing Protocol

In order to test the running time of my system, I used a modified version of the Robot with Multiple Goals

example which features randomly-generated environments. These environments are generated according to

some simple rules. First, it should be noted that each environment is represented as a continuous 2D space
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with a square-shaped border of length 10, with the lower-left corner of the world being at (0, 0) (though

the system doesn’t limit the robot to only exploring within those borders). The discretization done by

the A* star algorithm in the calculation of the optimal path makes each cell a size of 0.2, resulting in a

total of 2500 cells, with any cell more than half-containing an obstacle being considered an ”obstacle” cell.

The obstacles themselves are generated as follows. The obstacles are represented as circles, and are given

a randomly-chosen centre point along with a randomly-chosen radius. The centre points are constrained

to be within the 10x10 border (though the rest of the circle can extend outside of it), while the radii are

constrained to be no longer than 2.5. Once the obstacles are generated, the system automatically generates

some number of goals. Goals are represented as being single points in 2D space, and like obstacles centres,

are constrained to be within the 10x10 box. They also cannot overlap with obstacles. After generating the

randomized environment, the system would then automatically generate an action sequence using one of

three simulated robots – a robot which only computes random actions (up to a maximum of 100), a robot

which follows the optimal path to its chosen goal (as calculated by the A* algorithm), and a robot which

follows the optimal path with some degree of noise in its movements (specifically, the robot was set to always

turn at an angle within a 20◦ range, centred on the angle the optimal robot would follow). Theoretically,

further robots could derived from the optimal robot with noise simply by changing the amount of noise

present in the robot’s turn angle. After an action sequence is generated, the system uses that action

sequence in its testing, trying to predict what the robot’s chosen goal is based on the movements generated

by the simulated robot. For the sake of simplicity, I have also chosen to run my first set of tests without re-

computing the optimal path, as re-computing the path has a major affect on the running time of the system.

Later tests did re-compute the path, however, to see just how significantly doing so impacts the running time.

The parameters I chose to vary were the number of goals NG, the number of obstacles NO, and

the number of states NS. How the running time scales with some of these parameters can already be shown

theoretically using the following (roughly-described) formula:

TR = m ∗NG ∗ E + u ∗NS +NG ∗ b ∗NS

TR is the total running time of the system. The full formula is split into three sections: pre-processing,
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belief query, and belief update. The pre-processing running time is the time taken by the system to compute

optimal paths using the A* algorithm (and also to generate the environment, though that had a negligible

impact on the overall time), the belief update running time is the time taken by the system to update the

values of each fluent after the system receives a new action, and the belief query running time is the time

taken by the system to display its current beliefs in the values of the fluents. In the pre-processing section,

m is the number of times the path is calculated per goal and E is the number of edges in the graph used

by the A* algorithm to calculate the optimal path. For the first handful of tests, m = 1 (and note that

this parameter cannot be directly controlled when path re-calculation is active). Meanwhile, E and NG

are constants (E could theoretically not be a constant if I chose to vary the size of the environment in my

tests). Ultimately, this portion of the formula is according to the running time of the A* algorithm, which

is linear in the number of edges and vertices in the graph being used provided that the heuristic function

h satisfies the condition that |h(x) − h∗(x)| = O(log h∗(x)) [32]. The heuristic function I use satisfies this

condition. It is as follows:

h(x, y) =

{
|x−GX| ∗

√
2 + ||x−GX| − |y −GY || |x−GX| < |y −GY |

|y −GY | ∗
√

2 + ||x−GX| − |y −GY || |x−GX| ≥ |y −GY |

Where GX and GY are the x and y coordinates of the goal node. Note that the A* calculations

are done independently of any Monte Carlo sampling – in other words, the A* algorithm is only run once

per goal (and once per re-calculation), not once per state, and thus the running time of any work done per

state can be separated from the running time of the A* algorithm in the running time formula. Next, in

the belief update section, u is the amount of work done to update a single state. Finally, in the belief query

section, b is the amount of work done per state and per goal; NG has to be used again here since every belief

query outputs a probability value for every goal. From the formula, it can be seen that the running time of

the system should increase linearly as the number of goals increases and as the number of states increases.

However, there is no clearly-defined formula describing how NO would impact the running time of the

system. Intuitively, it seems likely that more obstacles should increase the running time of the system, as

more obstacles will result in more complicated generated paths. Thus, the hypothesis that I hope to prove

is that the running time of the system will increase linearly as the number of obstacles increases. I also hope

to confirm the above-shown relationship between the running time and the number of goals/number of states.

32



As a brief aside, note the each robot got it its own distinct set of randomly-generated environments;

also note this had no impact on how each robot’s performance varied with each parameter.

I ultimately did twenty runs of the system for each of the three robots and for each value of each

parameter being tested, calculating the average running time across those twenty runs. I chose to do twenty

because, through experimentation, I discovered that it was roughly after twenty runs that the average

running time levelled out; additional tests had little impact on the average running time. I did four sets of

tests on NG, using 4, 8, 10 and 20 goals, and I did the same for NO. For NS, I did tests with 100 states,

1000 states, 10000 states, 100000 and 1000000 states. The default values used for each parameter when

it was not being tested was 4 goals, 4 obstacles, and 1000000 states. Finally, in addition to including the

average pre-processing, belief update, and belief query times, I also included the total average running time

of each set of twenty tests (which includes the pre-processing time in addition to the total belief update and

belief query times).

5.2.1.2 Results

The results of my testing are summarized in Tables 5.1-5.9 and Figures 5.2-5.7. “Avg PreProcessing Time”

refers to the average amount of time taken to perform pre-processing (per test), “Avg Update Time” refers

to the average amount of time taken to perform belief updates (per update), “Avg Query Time” refers to

the average amount of time taken to perform belief queries (per query), and “Total Avg Time” refers to

the overall average amount of time taken by the system to perform a single test. Note again that the total

number of belief updates and queries depends on the number of observed actions, which cannot be easily

controlled; overall, there should be just as many belief updates as there are belief state queries. In addition

to calculating the average time, I have also calculated the standard deviation for each collection of tests run

under a given robot and a given number of goals/obstacles/states. In the graphs, the standard deviation is

noted using a bar with three lines; the middle line is the mean, and the top and bottom lines are the mean

plus-or-minus the standard deviation. The standard deviation values given in the tables have been rounded

to the nearest integer number.

Ultimately, the trends seen in the results are largely as expected. Increasing the number of goals in

particular increases the pre-processing, belief query, and total times at a roughly linear rate (the average

belief update time is unaffected since belief updates do not do work for every goal). Increasing the number
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(a) Effect of Number of Goals on Preprocess Running Time

(b) Effect of Number of Goals on Belief Update Running Time

Figure 5.2: Effects of Number of Goals, Part 1
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(a) Effect of Number of Goals on Belief Query Running Time

(b) Effect of Number of Goals on Total Running Time

Figure 5.3: Effects of Number of Goals, Part 2
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(a) Effect of Number of Obstacles on Preprocess Running Time

(b) Effect of Number of Obstacles on Belief Update Running Time

Figure 5.4: Effects of Number of Obstacles, Part 1
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(a) Effect of Number of Obstacles on Belief Query Running Time

(b) Effect of Number of Obstacles on Total Running Time

Figure 5.5: Effects of Number of Obstacles, Part 2
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(a) Effect of Number of States on Preprocess Running Time

(b) Effect of Number of States on Belief Update Running Time

Figure 5.6: Effects of Number of States, Part 1
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(a) Effect of Number of States on Belief Query Running Time

(b) Effect of Number of States on Total Running Time

Figure 5.7: Effects of Number of States, Part 2
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Table 5.1: Effect of Goals on Running Time (Random Robot)

# Goals Avg Pre-Processing Time Avg Update Time Avg Query Time Total Avg Time

4 Goals 54906ms± 70284ms 4945ms± 317ms 1384ms± 215ms 605933ms± 101275ms

8 Goals 131656ms± 95104ms 4935ms± 276ms 1842ms± 198ms 740984ms± 1000780ms

20 Goals 225682ms± 88111ms 4931ms± 266ms 2995ms± 349ms 950939ms± 100036ms

100 Goals 1139149ms± 324212ms 5129ms± 574ms 10647ms± 216ms 2611157ms± 324212ms

Table 5.2: Effect of Goals on Running Time (Optimal Robot)

# Goals Avg Pre-Processing Time Avg Update Time Avg Query Time Total Avg Time

4 Goals 42995ms± 23597ms 5094ms± 436ms 1171ms± 190ms 184518ms± 84480ms

8 Goals 98873ms± 772525ms 5014ms± 384ms 1694ms± 214ms 243151ms± 126379ms

20 Goals 322528ms± 182989ms 5142ms± 312ms 2772ms± 207ms 525547ms± 223196ms

100 Goals 1365873ms± 354183ms 5487ms± 998ms 10452ms± 218ms 1762076ms± 433389ms

Table 5.3: Effect of Goals on Running Time (Optimal Robot (± 10 Degrees Noise))

# Goals Avg Pre-Processing Time Avg Update Time Avg Query Time Total Avg Time

4 Goals 39454ms± 15979ms 4973ms± 396ms 1292ms± 214ms 205855ms± 66731ms

8 Goals 86673ms± 62684ms 5179ms± 425ms 1574ms± 197ms 238870ms± 98507ms

20 Goals 294631ms± 167953ms 5221ms± 341ms 2771ms± 202ms 484439ms± 201342ms

100 Goals 1374230ms± 584950ms 5455ms± 970ms 10439ms± 208ms 1788383ms± 711617ms

Table 5.4: Effect of Obstacles on Running Time (Random Robot)

# Obstacles Avg Pre-Processing Time Avg Update Time Avg Query Time Total Avg Time

4 Obstacles 62935ms± 73173ms 4950ms± 309ms 1417ms± 214ms 627510ms± 87173ms

8 Obstacles 68351ms± 55162ms 5040ms± 326ms 1407ms± 214ms 633902ms± 58469ms

20 Obstacles 130782ms± 150388ms 4941ms± 314ms 1418ms± 216ms 674244ms± 160428ms

100 Obstacles 282077ms± 307378ms 4863ms± 313ms 1458ms± 201ms 761602ms± 323504ms

Table 5.5: Effect of Obstacles on Running Time (Optimal Robot)

# Obstacles Avg Pre-Processing Time Avg Update Time Avg Query Time Total Avg Time

4 Obstacles 64689ms± 69847ms 5034ms± 437ms 1216ms± 199ms 218131ms± 110123ms

8 Obstacles 98708ms± 118673ms 4862ms± 376ms 1375ms± 207ms 256966ms± 181959ms

20 Obstacles 167943ms± 163768ms 5028ms± 444ms 1156ms± 189ms 279502ms± 180089ms

100 Obstacles 267739ms± 215294ms 5063ms± 461ms 1121ms± 167ms 372140ms± 280426ms

Table 5.6: Effect of Obstacles on Running Time (Optimal Robot (± 10 Degrees Noise))

# Obstacles Avg Pre-Processing Time Avg Update Time Avg Query Time Total Avg Time

4 Obstacles 40276ms± 21804ms 4987ms± 407ms 1235ms± 204ms 170642ms± 54667ms

8 Obstacles 118886ms± 99237ms 5014ms± 413ms 1287ms± 217ms 281167ms± 160340ms

20 Obstacles 82592ms± 75015ms 4978ms± 425ms 1286ms± 216ms 211689ms± 120351ms

100 Obstacles 144933ms± 176264ms 4990ms± 484ms 1165ms± 191ms 214744ms± 225747ms

Table 5.7: Effect of States on Running Time (Random Robot)

# Obstacles Avg Pre-Processing Time Avg Update Time Avg Query Time Total Avg Time

100 States 43476ms± 11417ms 0ms± 0ms 0ms± 1ms 345514ms± 11393ms

1000 States 64927ms± 68784ms 0ms± 1ms 1ms± 2ms 66995ms± 68672ms

10000 States 41628ms± 16807ms 43ms± 20ms 16ms± 13ms 46586ms± 16968ms

100000 States 50941ms± 61011ms 459ms± 78ms 129ms± 36ms 100660ms± 57776ms

1000000 States 43983ms± 26077ms 4947ms± 303ms 1443ms± 216ms 604468ms± 51743ms
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Table 5.8: Effect of States on Running Time (Optimal Robot)

# States Avg Pre-Processing Time Avg Update Time Avg Query Time Total Avg Time

100 States 58893ms± 50809ms 0ms± 0ms 0ms± 0ms 59497ms± 50889ms

1000 States 53840ms± 41668ms 0ms± 1ms 1ms± 2ms 54386ms± 41587ms

10000 States 51693ms± 52108ms 39ms± 18ms 15ms± 8ms 53002ms± 52247ms

100000 States 58076ms± 52608ms 444ms± 75ms 133ms± 43ms 71976ms± 54101ms

1000000 States 53131ms± 50165ms 5093ms± 422ms 1190ms± 192ms 203878ms± 74396ms

Table 5.9: Effect of States on Running Time (Optimal Robot (± 10 Degrees Noise))

# States Avg Pre-Processing Time Avg Update Time Avg Query Time Total Avg Time

100 States 36992ms± 17376ms 0ms± 0ms 0ms± 0ms 37507ms± 17444ms

1000 States 42708ms± 15516ms 0ms± 1ms 1ms± 0ms 43232ms± 15558ms

10000 States 73566ms± 90213ms 38ms± 15ms 16ms± 10ms 74803ms± 90383ms

100000 States 63074ms± 66721ms 39ms± 16ms 15ms± 6ms 64478ms± 66981ms

1000000 States 37549ms± 16080ms 5087ms± 447ms 1187ms± 196ms 165167ms± 77074ms

of obstacles, meanwhile, also increased the pre-processing time at a roughly linear rate, albeit not to the

same degree as with the goals. This is understandable, as while changing the number of obstacles has less of

a direct impact on the running time, it does nonetheless produce more complex paths while requiring more

time to generate the environment. Notably, altering the number of obstacles had no impact on the average

belief update and belief query time. The belief query time was also consistently lower than the belief update

time for small numbers of goals, most likely because the process of simply querying the values of the fluents

is less complex than updating them. It’s worth noting how the belief update and belief query times were

only affected by the number of states and the number of goals, and even then the number of goals only

affected the belief update time in a minor way. Furthermore, the average time for both belief updates and

belief queries remained consistently low, maxing out at roughly 12 seconds per belief query for 100 goals and

5 seconds per belief update for 1 million states. These running times are not terribly high, but may need

to be improved if the system is to be run in real-time (though the large running time is partly down to the

complexity of the problem). It’s also worth noting that the different agent behaviours had very little impact

on the results; the only notable difference is that the random robot took a significantly larger amount of

total time than the other two due to it taking significantly longer for it to reach its target. In most cases

the difference in total running time between the random robot and the other two robots was constant, but

its worth noting that that this difference actually scaled in the case of states, being almost nonexistent for

small quantities of states and rather large for large quantities of states; this is most likely a combination of

the belief query and belief update times scaling directly as the number of states scales (note that the longer

it takes for the robot to reach its target destination, the more belief queries and belief updates occur) and

41



also the fact that I tested much larger quantities of states compared to goals and obstacles (100-1000000

states vs. 4-100 goals/obstacles).

Regarding the standard deviation, it is admittedly the case that the standard deviation is relatively high

when calculating the average pre-processing time. Examining the output of each test more carefully revealed

that the pre-processing time was abnormally high in a few specific cases. What seems to be the most likely

explanation for this is that it occurred during the generation of the random environment. The random

environment generator was built to discard and regenerate an obstacle if it overlapped with a goal, since the

idea was that obstacles were impassable – perhaps there were a few runs wherein this wound up happening

more often than usual. The fact that the standard deviation is highest in the tests wherein I increased the

number of obstacles (and thereby increased the frequency with which a generated obstacle would have to be

discarded), and second-highest in the tests wherein I increased the number of goals (thereby increasing the

chances of a generated obstacle overlapping a goal) heavily supports this theory.

5.2.2 Accuracy Tests

For my accuracy experiments, I used the target shooting example defined in Chapter 4 and fed it a simple

action sequence wherein the observed agent chooses a plan and a target, aims at its chosen target, and fires.

Prior to the agent firing a shot, I made it so that my system would observe it aiming at a 45◦ angle. I

also made it such that the action used to represent the agent aiming its shot was noisy as I felt that would

produce more interesting results. I then measured the system’s beliefs in: a) which target the agent was

intending to aim at and b) which target the agent was actually aiming at (which might not be the same

target given the use of noisy aiming) after the agent fires its shot but before said shot actually hits a target.

5.2.2.1 Testing Protocol

After measuring my systems beliefs, I calculated what those beliefs should be at that point in time, and

compared these “correct” values to my system’s outputs to see if there were any discrepancies. Since the

system is a simple one where all the probability distributions involved are known quantities, calculating

these correct beliefs was a relatively simple process, and comparing this pre-calculated correct beliefs to the

system’s actual beliefs is more valuable than comparing how quickly the system can correctly predict the

observed agent’s plan because that is largely dependant on the quality of the sensors used to gather data and

on the quality of the model used to formulate these predictions, which my system cannot directly control

(essentially, the onus is on the person using my system to ensure that the model/sensors they are using are
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Table 5.10: Degree of Belief that the Agent is Intending to Aim at Target 1

# States Correct Belief My System’s Belief Difference

1 State 37.75% 35%± 14.53% −2.75%

10 States 37.75% 44.10%± 6.222% +6.346%

100 State 37.75% 39.53%± 0.3943% +1.774%

1000 States 37.75% 38.61%± 0.7857% +0.8537%

10000 States 37.75% 37.58%± 0.2810% −0.1747%

100000 States 37.75% 37.64%± 0.008301% −0.1176%

1000000 States 37.75% 37.74%± 0.01331% −0.009855%

Table 5.11: Degree of Belief that the Agent is Intending to Aim at Target 2

# States Correct Belief My System’s Belief Difference

1 State 62.24% 20%± 40% −42.25%

10 States 62.24% 55.88%± 18.60% −6.364%

100 State 62.24% 60.45%± 9.161% −1.800%

1000 States 62.24% 61.36%± 2.180% −0.8844%

10000 States 62.24% 62.39%± 0.5956% +0.1466%

100000 States 62.24% 62.34%± 0.2208% +0.08932%

1000000 States 62.24% 62.23%± 0.06504% −0.01835%

Table 5.12: Degree of Belief that the Agent is Intending to Aim at Target 3

# States Correct Belief My System’s Belief Difference

1 State 2.619e− 7% 45%± 49.75% +45.00%

10 States 2.619e− 7% 0.01889%± 0.02163% +0.01889%

100 State 2.619e− 7% 0.02524%± 0.01307% +0.02524%

1000 States 2.619e− 7% 0.03073%± 0.007416% +0.03073%

10000 States 2.619e− 7% 0.02808%± 0.001853% +0.02808%

100000 States 2.619e− 7% 0.02825%± 0.0005711% +0.02825%

1000000 States 2.619e− 7% 0.02821%± 0.0001742% +0.02821%

Table 5.13: Degree of Belief that the Agent is Aiming at Target 1

# States Correct Belief My System’s Belief Difference

1 State 24.01% 25%± 43.30% +0.9934%

10 States 24.01% 26.95%± 17.41% +2.940%

100 State 24.01% 25.49%± 6.158% +1.480%

1000 States 24.01% 24.35%± 1.627% +0.3480%

10000 States 24.01% 23.91%± 0.3910% −0.09274%

100000 States 24.01% 23.97%± 0.1704% −0.03433%

1000000 States 24.01% 24.00%± 0.04686% −0.01042%

Table 5.14: Degree of Belief that the Agent is Aiming at Target 2

# States Correct Belief My System’s Belief Difference

1 State 64.35% 20%± 40% −44.35%

10 States 64.35% 60.40%± 18.92% −3.943%

100 State 64.35% 62.84%± 8.703% −1.511%

1000 States 64.35% 63.70%± 2.043% −0.6483%

10000 States 64.35% 64.53%± 0.5341% −0.1841%

100000 States 64.35% 64.41%± 0.2327% +0.05932%

1000000 States 64.35% 64.32%± 0.06104% 0.02420%
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Table 5.15: Degree of Belief that the Agent is Aiming at Target 3

# States Correct Belief My System’s Belief Difference

1 State 0.01659% 45%± 49.75% +44.98%

10 States 0.01659% 0.01889%± 0.02163% +0.002300%

100 State 0.01659% 0.01571%± 0.006210% −0.0008755%

1000 States 0.01659% 0.01676%± 0.001576% +0.0001686%

10000 States 0.01659% 0.01644%± 0.0006767% −0.0001450%

100000 States 0.01659% 0.01657%± 0.0002113% −1.868e− 5%

1000000 States 0.01659% 0.01659%± 4.139e− 5% +5.063e− 6%

ones which can produce accurate predictions). So instead, I measured on system’s accuracy by determining

how many states are necessary for Monte Carlo Sampling to produce the “correct” predictions for a given

model/set of sensors. The way these “correct” predictions were calculated was as follows:

To calculate the likelihood that the observed agent was intending to aim at a given target (given

the 45◦ observation), I first calculated the probability of the system observing the agent aiming at

a 45◦ angle in the scenario where the agent was intending to aim at the first target (call this

P (45◦ Observed | Intending to aim at target 1)) by integrating over the product of the gaussian ran-

dom variable representing the probability of the agent’s aim being some value given that they were

intending to aim at the first target and the gaussian random variable representing the probability

of observing the agent aiming at a 45◦ angle given the agent’s actual aim (with the agent’s actual

aim being the variable being integrated over in a range spanning the entire field). I then did the

same for the other two targets, then calculated the general probability of observing an aim of 45◦ as

P (45◦ Observed | Intending to aim at target 1) ∗ 1/3 + P (45◦ Observed | Intending to aim at target 2) ∗

1/3 + P (45◦ Observed | Intending to aim at target 3) ∗ 1/3 (since the target the agent intends to aim

at is directly determined by which plan its following and all three plans are equally likely); this gives us

P (45◦ Observed). Finally, I calculated the likelihood that the observed agent was intending to aim at the first

target as (P (45◦ Observed | Intending to aim at target 1) / P (45◦ Observed)) ∗ 1/3) as per Bayesian rules,

then did the same for the other two targets. To calculate the likelihood of the agent actually aiming at a given

target given the 45◦ observation, I next calculated the probability of both the system observing the agent

aiming at a 45◦ angle and the agent aiming at the first target in the scenario where the agent was intending to

aim at the first target (call this P (45◦ Observed & Aiming at target 1 | Intending to aim at target 1)) by in-

tegrating over the same product as before, but this time only over the range of angles at which the agent would

be aiming at target 1. After performing the same calculation for the scenarios wherein the agent was intend-

ing to aim at targets 2 and 3, I calculated the general probability of the system observing a 45◦ angle while
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the agent was aiming at target 1 as P (45◦ Observed & Aiming at target 1 | Intending to aim at target 1) ∗

1/3 + P (45◦ Observed & Aiming at target 1 | Intending to aim at target 2) ∗ 1/3 +

P (45◦ Observed & Aiming at target 1 | Intending to aim at target 3) ∗ 1/3; this gives us

P (45◦ Observed & Aiming at target 1). Finally, I calculated the probability of the agent actually aim-

ing at target 1 given the 45◦ observation as P (45◦ Observed & Aiming at target 1) / P (45◦ Observed),

then repeated the whole process for the other two targets.

Once again, I have included the standard deviation in my results. I measured my results using 1, 10,

100, 1000, 10000, 100000, and 1000000 states. Note that all of my results have been rounded to the nearest

integer.

5.2.2.2 Results

The results I obtained are summarized in Tables 5.10-5.15. As before, I averaged the results over 20 runs of

the system for each number of states. To keep the tables uncluttered, I split each query being evaluated. As

you can see from the tables, it didn’t take many states for my system to begin reporting percentages that

were quite close to the correct values; 1000 states was consistently enough to produce results within less than

1% of the correct result, and the standard deviation of my data steadily decreased with time. While it is

true that the number of samples needed to produce accurate data depends on the specific scenario, the fact

that I was able to produce accurate results at such a significantly smaller number of sample states than I

used in many of my other examples suggests that I can safely reduce the number of states used in modelling

plan recognition problems in my system without significantly sacrificing accuracy, which will have benefits

in regards to the running time of the system.

5.2.3 Additional Tests

As mentioned, I also adapted and ran some of the tests conducted by Kaminka et al. so as to better compare

the results of my work to theirs. Specifically, I adapted the goal recognition algorithm they developed into

my system, and ran it under similar conditions. Their algorithm, again as mentioned, was coincidentally

very similar to the one I used in the example featuring the robot with multiple goals, though the method

they used to compare the robot’s path to the optimal path for a given potential goal was different from

mine; while I calculated the “ideal” orientation for the robot at each time step (i.e. the orientation which

would have the robot pointing directly at the next node in the optimal path) and then compared it to the

robot’s actual orientation, Kaminka et al. estimated the robot’s complete path to the goal (using both the
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robot’s current path and an optimal path from the robot’s current position), then compared the length of

this estimated path to the length of the optimal path from robot’s original starting position. Additionally,

Kaminka et al.’s method featured various heuristic strategies which could be used to alter the base algorithm

to improve performance. The base version of their algorithm recomputed the optimal path for each goal

at every time step, but they also formulated a version using a heuristic strategy called “RECOMPUTE”

which would only recompute the path under certain conditions (specifically, whenever the goal with the

highest probability of being the actual target goal is not the one whose path the robot is in closest proximity

to); otherwise, the system instead estimated the complete path to each goal by removing a portion of the

current estimated path (up to whichever node in the path would be the robot’s next target, were it following

the path exactly) and then connecting the path the robot has followed so far to this “shortened” version

of the optimal path. The other heuristic strategy they formulated, called “PRUNE”, was to prune certain

potential goals (i.e. removed them from consideration) whenever they were deemed no longer likely to be the

true goal, specifically by checking if the angle between the robot’s current trajectory and the hypothetical

trajectory which would lead it directly to the optimal path to be greater than some threshold angle whose

value would be determined by how strict or lenient one wishes the pruning process to be. When evaluating

their algorithm, they specifically used a threshold of 120◦. Provided that the actual target goal never gets

pruned by mistake, pruning goals in this manner would ideally improve the efficiency of the algorithm, as

goals that have been pruned would never need to have their optimal paths recomputed [31].

5.2.3.1 Test Domain.

For these tests, I once again used a randomly-generated environment. However, for these tests, I used one

single randomly-generated environment across every run of the system, rather than changing it every time.

This environment featured 11 possible goals and four obstacles.

5.2.3.2 Testing Protocol.

The experiment analysis I conducted on this version of the robot with multiple goals was similar to the

analysis conducted by Kaminka et al, though I didn’t gather statistics in quite the same way as they did,

admittedly due to a misunderstanding on my part (i.e. I was trying to gather statistics in the same way

they did, but I misunderstood their explanation of how they gathered statistics). This should not have

significantly affected the trends, however. For each run of the system, I used one of the 11 possible goals as

the starting point, with the actual target goal being randomly chosen from among the remaining 10 possible
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goals. I then did two runs of the system using each possible starting point (with a different random target

goal for each run), and then generated four values, each averaged across the 22 runs of the system: the time

to end (i.e. the number of actions remaining once the system accurately ranks the correct goal as the most

likely goal and never changes that prediction again, as a percent of the total number of actions), the number

of times the system correctly ranked the actual target goal as the most likely goal (again, as a percent of

the total number of actions), the amount of time spent planning, and the number of planner calls. I then

generated these averages across 5 different approaches to the algorithm based on different combinations of

“RECOMPUTE” and “PRUNE”: one in which the optimal paths to each goal are recomputed every time the

robot moves and no goals are pruned, one in which the paths were only recomputed as in “RECOMPUTE”,

one in which goals were pruned as in “PRUNE”, one in which both the “RECOMPUTE” and the “PRUNE”

heuristic strategies were used, and one in which the paths were never recomputed under any circumstances

(and no pruning was done). For the sake of simplicity, let’s call these approaches “Baseline”, “Recompute”,

“Prune”, “Both”, and “No Recompute” (which are the terms Kaminka et al. used), respectively.

Examining the data I got after running one batch of tests, I found that the data did not seem to be converging.

In order to check this, I ran statistics under the same conditions a second time, then averaged the results

from both the first set of statistics and the second. I then repeated this procedure multiple times until the

data appeared to converge; this specifically happened after running statistics nine times, for a total of 198

samples for each approach (11 starting points * 2 runs to a random target goal * 9 total sets of statistics).

For clarity’s sake, Kaminka et al.’s statistics were gather similarly, except rather than only doing two runs

per starting point each with a randomly chosen target goal, they instead did two runs for each starting

point AND potential target goal, resulting in a total of 220 runs per approach (11 starting points * 10

potential target goals * 2 runs per each starting point and target goal). They also did not need to run their

experiments additional times to get the data to converge. So to summarize, the key difference between how

they gathered statistics and how I gathered statistics were a) the number of data points per approach (220

in their case, 198 in mine), and b) the fact that Kaminka et al.’s data points very strictly consisted of two

runs for every possible starting point-target goal pair, whereas mine consisted 18 runs for every starting

point with a random target goal for each run (meaning that some starting point-target goal pairs may have

had more than two runs while others may have had less).
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Table 5.16: Comparison Test Results

Planning Time Planner Calls Time to End Correct Ranking

Baseline 3065789.93939 289.141414141 47.4033372358% 54.9834013582%

Recompute 2167598.87374 207.525252525 40.6477307982% 53.5540098302%

Prune 1844673.07576 178.621212121 49.1695010491% 57.5980983843%

Both 1275578.73737 123.752525253 42.2374053338% 55.5128665457%

No Recompute 136932.363636 10.0 22.6588122726% 37.1053543378%

5.2.3.3 Results.

The results I generated were largely as expected; they can be found in Table 5.16. Interestingly, the results

don’t quite match up with those of Kaminka et al., but regardless they are largely as expected. In terms

of planning time and planner calls, the “Recompute” and “Prune” approaches both reduced the number of

planner calls and, in turn, the planning time. Why this happened is obvious in the case of “Recompute”;

in the case of “Prune” this happened because there is no need to continue computing paths for goals that

have been pruned. Between the two, “Prune” outperformed “Recompute”, since the paths still needed to be

recomputed fairly often under the “Recompute” approach, whereas pruning a goal meant that goal’s path

never needed to recomputed again under any circumstances. Naturally, combining both strategies under the

“Both” approach produces an even smaller number of calls. The “No Recompute” approach, meanwhile,

had the best running time out of all the approaches, since it only ever computed a path once for each goal.

Finally, the “Baseline” approach had the worst performance in terms of both planning time and number of

planning calls, as expected.

In regards to accuracy (in terms of time to end and the frequency of correct rankings), the “Baseline” ap-

proach outperformed the “Recompute” approach; this is the most notable deviation my results had compared

to those of Kaminka et al. However, I do not think this is surprising, as it is only natural that you get more

accurate results by actually computing the optimal path from the robot’s current position than you would

making an educated guess as to what that path is. Thus, the “Recompute” approach sacrifices a small

degree of accuracy in favour of improving the running time of the system. The “Prune” approach, mean-

while, was more accurate than “Baseline”, which makes sense since removing a goal from the proceedings

makes all the remaining goals (including the actual target goal) slightly more likely, assuming the goal being

removed isn’t the actual target goal. “Both”, meanwhile, was slightly more accurate than “Recompute” due

to the pruning being done and slightly less accurate than “Prune” due to only recomputing the path under

certain conditions, and was also roughly on par with ”Baseline”, having a worse average time to end but
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a slightly better average frequency of correct rankings. Finally, “No Recompute” was naturally by far the

least accurate of all the approaches.
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6 Conclusion and Future Work

I have discussed in detail the framework I have developed for modelling plan and goal recognition problems in

Belle and Levesque’s situation calculus [3, 4], particularly in regards to the equal ease with which it can handle

discrete and continuous probability spaces. I have also heavily discussed the Ergo-based implementation of

said framework that I have developed. I have outlined various experimental problems and benchmarks I have

used to demonstrate the variety of problems that can be modelled and solved in this framework, and also

outlined various statistical evaluations I used evaluate the system’s performance in terms of both running

time and accuracy. Overall, the versatility of the framework has been clearly established, as has the ease

with which it can be used.

There are definitely more ways my system could be expanded in the future, however. One task I was

working on which I never quite completed involved projection, i.e. getting my system to display the likelihood

of any given action being the next action to be performed by the observed agent, or the likelihood of a given

sequence of actions being the next sequence of actions to be performed. For the most part, this is actually

a fairly simple task, were it not for one roadblock I have not yet overcome. The method I used to calculate

these predictions was to simply process the given action sequence the same way as I would normally (using

another new Ergo execution mode called offlineStepColl that was later replaced by offlineStepMatch; rather

than returning a list containing the remaining program and the action that was processed, offlineStepColl

instead returns a list containing all possible first actions and the remaining program), except without actually

updating the exoProg fluent (which is necessary since the likelihood of a future action may be affected by

the current program state); while this works for the most part, there is one issue in that fluents are not

updated directly in the program, and thus aren’t updated when processing an action sequence. This causes

trouble when the program expects certain fluents to have certain values that they would have by that point

under normal conditions, but wouldn’t have when “looking ahead”. Being able to process queries about the

likelihood future actions would be a very valuable feature for the system, and would thus be an ideal task

to look into completing in the future.
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There are also numerous ways the robot with multiple goals experiment could be expanded on. These

include:

• Giving the goals a prior probability distribution. This would be a very simple matter of changing the

initial distribution based on the problem specification.

• Allowing for a wider variety of different kinds of terrain, with different costs for traversing them.

Making this change would be a bit more complex, but ultimately still fairly simple. First, a new

obstacle function with a wider range of possible return values (one for each type of terrain) would have

to be created. Second, the A* algorithm’s cost function would itself have to be updated with the new

costs for each type of terrain.

• Allowing the system to deal with a robot whose movement speed does not match the discretization

procedure used for the A* version of the system. This could be dealt with by updating the discretization

procedure so that the number of cells always matches up the robot’s speed (i.e. such that the robot

always travel exactly one cell every time step), but depending on the exact speed of the robot, this may

not be feasible. Alternatively, the same discretization procedure as before could be used, but rather

than always retrieving the next node in the optimal path, the system could instead ”jump ahead”

based on the speed of the robot – i.e. if the robot’s speed is such that the robot would cover roughly 5

cells per time step, the system would always jump ahead five nodes when retrieving the next node in

the optimal path.

• Related to the above, the system could be re-built to no longer assume that the robot travels with

constant speed in the first place. In order to accommodate for this, the system could simply keep

track of how the robot’s speed changes over time and use the current movement speed to determine

how many nodes to jump over when determining the next target node (i.e. with the number of nodes

being skipped changing as the robot’s speed changes). For the version of the system using maximum

distance differences, the system would be largely the same, except the maximum and minimum values

used to convert the differences to probability values would be constantly updated to account for the

changes in the robot’s speed. Meanwhile, for the version of the system using the robot’s orientation

and position, the changing speed could be used to potentially allow the system to refine its probability

calculations. This could be done by also using the robot’s acceleration as a component of the overall

calculation.
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• Allowing for the possibility that the robot’s true goal is not any of the known potential goals. This

would be a fairly complicated change; in order to allow for such a possibility, not only would the system

have to determine an adequate initial probability that the goal is not any of the known potential goals,

but there would also have to be a way to update this value accordingly. The best way to accomplish this

would most likely be to find some means of determining that the robot’s actions are not conducive to

any of the known goals and updating the probability values when this happens, but actually quantifying

which actions should trigger a scenario such as this is tricky. One possible idea would be to, in samples

where the chosen goal is ”unknown” (i.e. the system decides that the robot’s intended goal is not one

of the known ones), determine what the returned probability value would would be for each known

goal; if each value is low, the weight of this sample should be made higher; alternatively, if one or

more of these values are high, the weight of this sample should be made lower. This would ensure that

sample which chose ”unknown” as the robot’s intended goal would only have high weights when the

robot’s actions do not seem conducive to any of the known goals.

• Building the system to allow for the possibility of moving obstacles; this would also be very tricky to

accomplish. The maximum distance difference and orientation/position methods would be unaffected,

but the only way to ensure accuracy with the A* method would be to constantly re-compute the

path as the obstacles move about the environment. This would obviously be extremely inefficient, so

alternative means of updating the optimal path calculation would have to be developed.

• Allowing for additional uncertainty in regards to the system’s observations. This could be interesting

and would allow for modelling of a system which cannot determine the robot’s location/orientation

with 100% accuracy. Building the system in this way would be a simple matter of using additional

probability distributions to represent information such as the robot’s position or observed turn angles.

• Allowing for multiple robots. Ultimately, the simplest means of having multiple robots in the system

would be to simply execute the system for each robot separately. However, this would potentially

cause problems in environments with narrow entrances that both robots pass through simultaneously.

Each additional robot could be treated as a moving obstacle relative to the others, but this would

run into the efficiency problems outlined above. More complex strategies could also be developed

under the assumption that the robots have the ability to communicate with each other, with the

system attempting to predict how the robots would behave in response to this communication to avoid

running into each other. Other factors which may further complicate things are whether or not the
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robots are all controlled by a single agent and whether or not there’s any uncertainty in the other

robots/agent’s knowledge.

• A 3-Dimensional version of the system could be examined. This would be a fairly simple extension

to deal with, as all the calculations done by the system could be pretty easily extended to three

dimensions. The trickiest matter would be adapting the A* algorithm, particularly in a way which

represents the system with sufficient granularity without drastically increasing the running time of the

system.

• Finally, it might also be interesting to investigate other methods for calculating the optimal path to

the goal. As has been mentioned, there are many different means of planning out a path from a start

position to a goal. It might be interesting to re-run this system with different path planning algorithms

to try and see which algorithm produces the best results.
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A.1 Complete Code of the Target Shooting Example

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ;
; ; author : YL, with minor a l t e r a t i o n s by A l i s t a i r Scheuhammer
; ; date : 24 Nov 2019
; ;
; ; This i s an Ergo implementation o f a s imple plan r e c o gn i t i o n example
; ; i nvo l v i ng d i s c r e t e and cont inuous d i s t r i b u t i o n s . The observed agent
; ; s e l e c t s a target , aims at i t , and shoots . I n i t i a l l y the t a r g e t i s
; ; unknown , but a f t e r making no i sy obs e rva t i on s o f the aim , we get more
; ; accurate knowledge o f the s e l e c t e d t a r g e t .
; ;
; ; Here , ERGO i s used in on l ineSynchron ized mode where :
; ; − a c t i on s / b e l i e f s query r e s u l t s generated by the program
; ; are s imply pr in ted
; ; − exogenous a c t i on s are read from a f i l e targetShootObs3 . txt
; ;
; ; To run :
; ; In a te rmina l ente r ” racke t − l ergoExt − i −f targetShootwExoProgV6 . ergo . scm”
; ; and then run the program by en t e r i ng ”(main ) ”
; ;
; ; The f i l e targetShootObs1 . txt ( in the same d i r e c t o r y ) should conta in
; ; the f o l l ow i n g :
; ; chooseTarget !
; ; setAim ! or nSetAim !
; ; ( obsAim ! <angle>) e . g . ( obsAim ! 75 . 0 ) ze ro or more t imes
; ; shoot !
; ; ( obsHit ! <target >) or obsNoHit !
; ; ha l t !
; ;
; ; In the terminal , Ergo d i s p l a y s the updated b e l i e f s , which evo lve as expected .
; ;
; ; Af ter ( obsAim ! 75 . 0 ) i s entered , the agent th inks that i t i s equa l l y
; ; l i k e l y that t a r g e t 1 and 2 are aimed at , and ta r g e t 0 i s extremely un l i k e l y .
; ; After ( obsHit ! 2) i s entered , the agent i s c e r t a i n that t a r g e t 2 was
; ; aimed at and h i t .
; ;
; ; I f one en t e r s nSetAim ! in s t ead o f setAim ! , the degree o f b e l i e f that t a r g e t 0
; ; was aimed at a f t e r ( obsAim ! 75 . 0 ) i s g r e a t e r than in the prev ious case
; ; because the aiming i s i nac cu ra t e .
; ;

; ; Aux i l i a ry d e f i n i t i o n s i n c l ud ing non−f l u e n t s

( d e f i n e ( remainder n m)
(− n (∗ ( f l o o r (/ n m) ) m) ) )

( d e f i n e nTargets 3)

( d e f i n e t a r g e tPo s i t i o n ( vec to r 30 .0 55 .0 90 . 0 ) )

( d e f i n e t a r g e t S i z e ( vec to r 10 .0 30 .0 20 . 0 ) )

( d e f i n e targetValue ( vec to r 30 .0 10 .0 20 . 0 ) )

; ; Aux i l i a ry d e f i n i t i o n s

( d e f i n e ( aimedAtTarget )
( l e t loop ( ( t 0) )

( i f (>= t nTargets ) #f
( i f ( and (>= aim (− ( vector−r e f t a r g e tPo s i t i o n t )

(/ ( vector−r e f t a r g e t S i z e t ) 2) ) )
(<= aim (+ ( vector−r e f t a r g e tPo s i t i o n t )
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(/ ( vector−r e f t a r g e t S i z e t ) 2) ) ) )
t
( loop (+ t 1) ) ) ) ) )

( d e f i n e (max−vec−elem−index vec )
( l e t loop ( ( i 1) (maxIndex 0) )

( i f (>= i ( vector−l ength vec ) )
maxIndex
( i f (> ( vector−r e f vec i ) ( vector−r e f vec maxIndex ) )

( loop (+ 1 i ) i )
( loop (+ 1 i ) maxIndex ) ) ) ) )

; ; we use an a l t e r n a t i v e ve r s i on o f non−d e t e rm i n i s t i c i t e r a t i o n
; ; de f i ned as f o l l ow s

( d e f i n e ( : starDFS prog )
( : choose : n i l ( : begin prog ( : starDFS prog ) ) ) )

; ; Plans

( d e f i n e ( greedy−plan )
( : begin
( : act chooseTarget ! )
( : act nSetAim ! )
( : choose : n i l ( : act nSetAim ! ) )
( : starDFS ( : act ( obsAim ! someObservedAim ) ) )
( : act shoot ! )
)

)

( d e f i n e ( sa f e−plan )
( : begin
( : act chooseTarget ! )
( : act nSetAim ! )
( : choose : n i l ( : act nSetAim ! ) )
( : choose : n i l ( : act nSetAim ! ) )
( : starDFS ( : act ( obsAim ! someObservedAim ) ) )
( : act shoot ! )
)

)

( d e f i n e ( optimal−plan )
( : begin
( : act chooseTarget ! )
( : act nSetAim ! )
( : starDFS ( : act ( obsAim ! someObservedAim ) ) )
( : act shoot ! )
)

)

; ; S ta t e s and ac t i on s

( de f ine−s t a t e s ( ( i 1000000) )
dec i s i onP lan ’ notDecided
dec i s i onTarge t ’ notDecided
aim 0 .0
someObservedAim ’ notSet
t a rg e tH i t ( vec to r #f #f #f )
ha l t ed #f
exoProg ( : begin ( : act choosePlan ! )

( : i f ( eq ? dec i s i onP lan ’ greedy ) ( greedy−plan )
( : i f ( eq ? dec i s i onP lan ’ s a f e ) ( sa f e−plan )
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( optimal−plan ) ) )
( : choose ( : fo r−some t ’ (0 1 2) ( : act ( obsHit ! t ) ) )

( : act obsNoHit ! ) )
( : act ha l t ! )
)

)

( de f ine−ac t i on ha l t ! #: s e qu en t i a l ? #t
ha l ted #t
exoProg ( l e t ( ( r e s ( ergo−do #:mode ’ o f f l i neStepMatch #:matchAct ’ ha l t ! exoProg ) ) ) ( i f

r e s ( cadr r e s ) : f a i l ) )
weight ( i f ( equal ? exoProg : f a i l ) 0 . 0 weight )
)

; ; accurate d e c i s i o n ac t i on
( de f ine−ac t i on choosePlan ! #: s e qu en t i a l ? #t

dec i s i onP lan (DISCRETE−GEN ’ greedy 0 .33 ’ s a f e 0 .33 ’ opt imal 0 . 34 )
exoProg ( l e t ( ( r e s ( ergo−do #:mode ’ o f f l i neStepMatch #:matchAct ’ choosePlan ! exoProg )

) ) ( i f r e s ( cadr r e s ) : f a i l ) )
weight ( i f ( equal ? exoProg : f a i l ) 0 . 0 weight )
)

; ; accurate d e c i s i o n ac t i on
( de f ine−ac t i on chooseTarget ! #: s e qu en t i a l ? #t

dec i s i onTarge t ( i f ( eq? dec i s i onP lan ’ greedy )
(max−vec−elem−index targetValue )
( i f ( eq? dec i s i onP lan ’ s a f e )

(max−vec−elem−index t a r g e t S i z e )
(max−vec−elem−index ( vector−map ∗ targetValue t a r g e t S i z e ) ) )

)
exoProg ( l e t ( ( r e s ( ergo−do #:mode ’ o f f l i neStepMatch #:matchAct ’ chooseTarget !

exoProg ) ) ) ( i f r e s ( cadr r e s ) : f a i l ) )
weight ( i f ( equal ? exoProg : f a i l ) 0 . 0 weight )
)

; ; accurate unobservable ac tuat ion ac t i on
( de f ine−ac t i on setAim ! #: s e qu en t i a l ? #t

aim ( vector−r e f t a r g e tPo s i t i o n dec i s i onTarge t )
exoProg ( l e t ( ( r e s ( ergo−do #:mode ’ o f f l i neStepMatch #:matchAct ’ setAim ! exoProg ) ) ) (

i f r e s ( cadr r e s ) : f a i l ) )
weight ( i f ( equal ? exoProg : f a i l ) 0 . 0 weight )
)

; ; no i sy unobservable ac tuat ion ac t i on
( de f ine−ac t i on nSetAim ! #: s e qu en t i a l ? #t

aim (GAUSSIAN−GEN ( vector−r e f t a r g e tPo s i t i o n dec i s i onTarge t ) 5 . 0 )
exoProg ( l e t ( ( r e s ( ergo−do #:mode ’ o f f l i neStepMatch #:matchAct ’ nSetAim ! exoProg ) ) )

( i f r e s ( cadr r e s ) : f a i l ) )
weight ( i f ( equal ? exoProg : f a i l ) 0 . 0 weight )
)

; ; no i sy cont inuous s enso r
( de f ine−ac t i on ( obsAim ! a ) #: s e qu en t i a l ? #t

; ; #: prereq ( and (>= a 0 . 0 ) (< a 360 . 0 ) )
someObservedAim a ; ; f l u e n t someObservedAim i s s e t to argument ang le a

; ; ensur ing the exoProg can run to match the ac t i on
exoProg ( l e t ( ( r e s ( ergo−do #:mode ’ o f f l i neStepMatch

#:matchAct ( l i s t ’ obsAim ! a ) exoProg ) ) )
( i f r e s ( cadr r e s ) : f a i l ) )

weight ( i f ( equal ? exoProg : f a i l )
0 . 0
(∗ weight (GAUSSIAN ( remainder a 360 . 0 ) aim 10 . 0 ) ) )

)
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; ; a ccurate unobservable ac tuat ion ac t i on
( de f ine−ac t i on shoot ! #: s e qu en t i a l ? #t

ta rg e tH i t ( l e t ( ( aat ( aimedAtTarget ) ) )
( i f ( not aat ) t a rg e tH i t

( vector−s e t t a rg e tH i t aat #t ) ) )
exoProg ( l e t ( ( r e s ( ergo−do #:mode ’ o f f l i neStepMatch #:matchAct ’ shoot ! exoProg ) ) ) (

i f r e s ( cadr r e s ) : f a i l ) )
weight ( i f ( equal ? exoProg : f a i l ) 0 . 0 weight )
)

; ; accurate d i s c r e t e s enso r
( de f ine−ac t i on ( obsHit ! t ) #: s e qu en t i a l ? #t

exoProg ( l e t ( ( r e s ( ergo−do #:mode ’ o f f l i neStepMatch
#:matchAct ( l i s t ’ obsHit ! t ) exoProg ) ) )

( i f r e s ( cadr r e s ) : f a i l ) )
weight ( i f ( and ( vector−r e f t a r g e tH i t t )

( not ( equal ? exoProg : f a i l ) ) )
weight
0 . 0 )

)

; ; accurate d i s c r e t e s enso r
( de f ine−ac t i on obsNoHit ! #: s e qu en t i a l ? #t

exoProg ( l e t ( ( r e s ( ergo−do #:mode ’ o f f l i neStepMatch #:matchAct ’ obsNoHit ! exoProg ) ) )
( i f r e s ( cadr r e s ) : f a i l ) )

weight ( i f ( and ( not ( or−map ( lambda ( i ) ( vector−r e f t a r g e tH i t i ) )
( i o t a nTargets ) ) )

( not ( equal ? exoProg : f a i l ) ) )
weight
0 .0
)

)

( d e f i n e ( d i s p l a yB e l i e f s )
( p r i n t f ”( b e l i e f l ( eq ? dec i s i onP lan notDecided ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

dec i s i onP lan ’ notDecided ) ) )
( p r i n t f ”( b e l i e f ( eq? dec i s i onP lan greedy ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq? dec i s i onP lan

’ greedy ) ) )
( p r i n t f ”( b e l i e f ( eq? dec i s i onP lan s a f e ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq? dec i s i onP lan ’

s a f e ) ) )
( p r i n t f ”( b e l i e f ( eq? dec i s i onP lan optimal ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq? dec i s i onP lan

’ opt imal ) ) )
( p r i n t f ”( b e l i e f l ( eq ? dec i s i onTarge t notDecided ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

dec i s i onTarge t ’ notDecided ) ) )
( p r i n t f ”( b e l i e f ( eq? dec i s i onTarge t 0) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq? dec i s i onTarge t

0) ) )
( p r i n t f ”( b e l i e f ( eq? dec i s i onTarge t 1) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq? dec i s i onTarge t

1) ) )
( p r i n t f ”( b e l i e f ( eq? dec i s i onTarge t 2) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq? dec i s i onTarge t

2) ) )

( p r i n t f ”( b e l i e f ( aiming at t a r g e t 0) ) r e tu rn s ˜ s ˜n”
( b e l i e f ( and (>= aim (− ( vector−r e f t a r g e tPo s i t i o n 0)

(/ ( vector−r e f t a r g e t S i z e 0) 2) ) )
(<= aim (+ ( vector−r e f t a r g e tPo s i t i o n 0)

(/ ( vector−r e f t a r g e t S i z e 0) 2) ) ) ) )
)

( p r i n t f ”( b e l i e f ( aiming at t a r g e t 1) ) r e tu rn s ˜ s ˜n”
( b e l i e f ( and (>= aim (− ( vector−r e f t a r g e tPo s i t i o n 1)

(/ ( vector−r e f t a r g e t S i z e 1) 2) ) )
(<= aim (+ ( vector−r e f t a r g e tPo s i t i o n 1)

(/ ( vector−r e f t a r g e t S i z e 1) 2) ) ) ) )
)
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( p r i n t f ”( b e l i e f ( aiming at t a r g e t 2) ) r e tu rn s ˜ s ˜n”
( b e l i e f ( and (>= aim (− ( vector−r e f t a r g e tPo s i t i o n 2)

(/ ( vector−r e f t a r g e t S i z e 2) 2) ) )
(<= aim (+ ( vector−r e f t a r g e tPo s i t i o n 2)

(/ ( vector−r e f t a r g e t S i z e 2) 2) ) ) ) )
)

( p r i n t f ”( b e l i e f ( vector−r e f t a r g e tH i t 0) ) r e tu rn s ˜ s ˜n”
( b e l i e f ( vector−r e f t a r g e tH i t 0) )
)

( p r i n t f ”( b e l i e f ( vector−r e f t a r g e tH i t 1) ) r e tu rn s ˜ s ˜n”
( b e l i e f ( vector−r e f t a r g e tH i t 1) )
)

( p r i n t f ”( b e l i e f ( vector−r e f t a r g e tH i t 2) ) r e tu rn s ˜ s ˜n”
( b e l i e f ( vector−r e f t a r g e tH i t 2) )
)

)

( d e f i n e buStartTime 0)

( d e f i n e observeUpdtLoop
( : begin
(:>> ( l e t ( ( s t a r t ( current−mi l l i s e c ond s ) ) )

( d i s p l a yB e l i e f s )
( p r i n t f ”Elapsed time f o r b e l i e f qu e r i e s and d i sp l ay ˜a ms\n”

(− ( current−mi l l i s e c ond s ) s t a r t ) ) ) )
( : whi l e (< ( b e l i e f ( eq? ha l ted #t ) ) 0 . 9 )

(:>> ( s e t ! buStartTime ( current−mi l l i s e c ond s ) ) )
( : t e s t #t )
(:>> ( p r i n t f ”Elapsed time f o r b e l i e f update ˜a ms\n”

(− ( current−mi l l i s e c ond s ) buStartTime ) ) )
(:>> ( l e t ( ( s t a r t ( current−mi l l i s e c ond s ) ) )

( d i s p l a yB e l i e f s )
( p r i n t f ”Elapsed time f o r b e l i e f qu e r i e s and d i sp l ay ˜a ms\n”

(− ( current−mi l l i s e c ond s ) s t a r t ) ) ) )

)
)

)

( de f ine−i n t e r f a c e ’ out write−endogenous )

( de f ine−i n t e r f a c e ’ in
( l e t ( ( i p o r t ( open−input− f i l e ”BatchActions . txt ”) ) )

( d i s p l a y l n ”Opening f i l e BatchActions . txt to r e c e i v e exogenous a c t i on s ! ” )
( lambda ( ) ( l e t ( ( exog ( read i p o r t ) ) )

exog ) ) ) )

( d e f i n e (main ) ( l e t ( ( runStartTime ( current−mi l l i s e c ond s ) ) )
( ergo−do #:mode ’ on l ineSynchron ized observeUpdtLoop )
( p r i n t f ”Total time f o r run ˜a ms\n”

(− ( current−mi l l i s e c ond s ) runStartTime ) )
) )
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A.2 Complete Code of the Jewelry Store Example

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ;
; ; author : A l i s t a i r Scheuhammer
; ;
; ; This i s an Ergo implementation o f a very s imple plan r e c o gn i t i o n
; ; example . The observed agent i s an i nd i v i dua l who has entered a
; ; j ewe l ry s t o r e . Their i n t e n t i o n s are not yet known , and i t i s the goa l
; ; o f the systems to p r ed i c t those i n t e n t i o n s : s p e c i f i c a l l y , whether
; ; they are the re to s t e a l something , to buy something , or s imply
; ; to browse the s tore ’ s s e l e c t i o n . S t e a l i n g i s the l e a s t common
; ; cho ice , whi l e browsing and buying are equa l l y l i k e l y The s t o r e
; ; o f f e r s three items f o r s a l e : a r ing , a neck lace , and a b r a c e l e t . A
; ; s imple Ergo program models the observed agent ’ s behaviour .
; ; F i r s t , they choose which o f the three p o s s i b l e goa l s ( s t e a l ,
; ; browse , or buy ) they are in tend ing to pursue . Then , they ente r the
; ; shop and look around f o r a moment . Then , they approach the
; ; counter and choose which o f the three items o f j ewe l ry they are
; ; p lanning on t a r g e t i n g ; they are more l i k e l y to p ick the r ing than
; ; the neck lace or the b r a c e l e t i f t h e i r goa l i s to s t e a l the object ,
; ; but othe rwi s e a l l th ree ob j e c t s have an equal p r obab i l i t y o f be ing
; ; s e l e c t e d . Next , they dec ide whether or not to look around again ;
; ; they have a f a i r l y low chance o f doing so when browsing or
; ; buying , but are guaranteed to do so when s t e a l i n g . F ina l ly , i f the
; ; agent in tends to buy the object , they w i l l pay f o r i t and l eave . I f
; ; they intend to browse , they w i l l s e t the ob j e c t down and then
; ; l e ave . I f they intend to s t e a l the object , they w i l l l e ave without
; ; doing anything e l s e .
; ;
; ; Here , ERGO i s used with TCP in a ba s i c way s im i l a r to that
; ; in the standard example r ea c t i v e−e l eva to r−tcp1 . scm :
; ; − a c t i on s generated by the program are simply pr in ted
; ; − exogenous a c t i on s a r r i v e over TCP port 8678
; ;
; ; To run :
; ; In te rmina l 1 ente r ” racke t − l ergoExt − i −f j ewe l rys toreProgramFina l . scm”
; ; and then run the program by en t e r i ng ”(main ) ”
; ;
; ; In te rmina l 2 ente r ” t e l n e t l o c a l h o s t 8345”
; ; and then ente r the exogenous a c t i on s / obs e rva t i on s at the prompt
; ; chooseGoal !
; ; lookAround !
; ; ( take ! r i ng )
; ; e t c .
; ;
; ; In te rmina l 1 , Ergo d i s p l a y s the updated b e l i e f s , which evo lve as expected .
; ;
; ; To stop , k i l l the racke t p roce s s by en t e r i ng ˆC in te rmina l 1 .

( de f ine−s t a t e s ( ( i 1000000) )
goa lChoice (DISCRETE−GEN ’1 0 .2 ’2 0 . 4 ’3 0 . 4 )
dec i s i onGoa l ’ notDecided
objChoice (DISCRETE−GEN ’1 1 . 0 ) ; ; Doesn ’ t get s e t u n t i l the observed agent dec ide s

which po t e n t i a l goa l to pursue
dec i s i onObj ’ notDecided
lookChoice (DISCRETE−GEN ’1 1 . 0 ) ; ; Doesn ’ t get s e t u n t i l the observed agent dec ide s

which po t e n t i a l goa l to pursue
dec i s ionLook ’ notDecided
exoProg

( : begin
( : act chooseGoal ! )
( : act enterShop ! )
( : act lookAround ! )
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( : act approachCounter ! )
( : act chooseObj ! )
( : fo r−some o ( l i s t ’ r i ng ’ neck lace ’ b r a c e l e t )

( : t e s t ( eq? o dec i s i onObj ) ) ; ; F a i l s i f o doesn ’ t match with the ob j e c t the
observed agent chose

( : act ( take ! o ) )
( : act chooseLook ! )
( : i f ( eq ? dec i s ionLook ’ yes )

( : begin
( : act lookAround ! )
( : i f ( eq ? dec i s i onGoa l ’ s t e a l )

( : begin
( : act leaveShop ! ) )

( : i f ( eq ? dec i s i onGoa l ’ browse )
( : begin

( : act (putDown ! o ) )
( : act leaveShop ! ) )

( : i f ( eq ? dec i s i onGoa l ’ buy )
( : begin

( : act ( pay ! o ) )
( : act leaveShop ! ) )

( : f a i l ) ) ) ) )
( : i f ( eq ? dec i s ionLook ’ no )

( : begin
( : act wait ! )
( : i f ( eq ? dec i s i onGoa l ’ s t e a l )

( : begin
( : act leaveShop ! ) )

( : i f ( eq ? dec i s i onGoa l ’ browse )
( : begin

( : act (putDown ! o ) )
( : act leaveShop ! ) )

( : i f ( eq ? dec i s i onGoa l ’ buy )
( : begin

( : act ( pay ! o ) )
( : act leaveShop ! ) )

( : f a i l ) ) ) ) )
( : f a i l ) ) ) ) ) )

( de f ine−ac t i on chooseGoal ! #: s e qu en t i a l ? #t
dec i s i onGoa l ( i f ( eq? goalChoice ’1 )

’ s t e a l
( i f ( eq? goalChoice ’2 )

’ browse
( i f ( eq? goalChoice ’3 )

’ buy
dec i s i onGoa l ) ) )

objChoice ( i f ( eq? dec i s i onGoa l ’ s t e a l )
(DISCRETE−GEN ’1 0 .5 ’2 0 .25 ’3 0 . 25 )
( i f ( or ( eq? dec i s i onGoa l ’ browse ) ( eq? dec i s i onGoa l ’ buy ) )

(DISCRETE−GEN ’1 0 .33 ’2 0 .335 ’3 0 . 335 )
objChoice ) )

lookChoice ( i f ( or ( eq? dec i s i onGoa l ’ browse ) ( eq? dec i s i onGoa l ’ buy ) )
(DISCRETE−GEN ’1 0 .2 ’2 0 . 8 )
lookChoice )

exoProg ( l e t ∗ ( ( act ’ chooseGoal ! )
( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l exoProg ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( equal ? exoProg : f a i l )
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0 .0
weight ) )

( de f ine−ac t i on chooseObj ! #: s e qu en t i a l ? #t
dec i s i onObj ( i f ( eq? objChoice ’1 )

’ r i ng
( i f ( eq? objChoice ’2 )

’ neck lace
( i f ( eq? objChoice ’3 )

’ b r a c e l e t
dec i s i onObj ) ) )

exoProg ( l e t ∗ ( ( act ’ chooseObj ! )
( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l exoProg ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( equal ? exoProg : f a i l )
0 . 0
weight ) )

( de f ine−ac t i on chooseLook ! #: s e qu en t i a l ? #t
dec i s ionLook ( i f ( eq? lookChoice ’1 )

’ yes
( i f ( eq? lookChoice ’2 )

’ no
dec i s ionLook ) )

exoProg ( l e t ∗ ( ( act ’ chooseLook ! )
( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l exoProg ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( equal ? exoProg : f a i l )
0 . 0
weight ) )

( de f ine−ac t i on enterShop ! #: s e qu en t i a l ? #t
exoProg ( l e t ∗ ( ( act ’ enterShop ! )

( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l exoProg ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( eq? exoProg : f a i l )
0 . 0
weight ) )

( de f ine−ac t i on lookAround ! #: s e qu en t i a l ? #t
exoProg ( l e t ∗ ( ( act ’ lookAround ! )

( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l exoProg ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( eq? exoProg : f a i l )
0 . 0
weight ) )

( de f ine−ac t i on approachCounter ! #: s e qu en t i a l ? #t
exoProg ( l e t ∗ ( ( act ’ approachCounter ! )

( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l exoProg ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( eq? exoProg : f a i l )
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0 .0
weight ) )

( de f ine−ac t i on ( take ! o ) #: s e qu en t i a l ? #t
exoProg ( l e t ∗ ( ( act ( l i s t ’ take ! o ) )

( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l exoProg ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( eq? exoProg : f a i l )
0 . 0
weight ) )

( de f ine−ac t i on leaveShop ! #: s e qu en t i a l ? #t
exoProg ( l e t ∗ ( ( act ’ leaveShop ! )

( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l exoProg ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( eq? exoProg : f a i l )
0 . 0
weight ) )

( de f ine−ac t i on wait ! #: s e qu en t i a l ? #t
exoProg ( l e t ∗ ( ( act ’ wait ! )

( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l exoProg ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( eq? exoProg : f a i l )
0 . 0
weight ) )

( de f ine−ac t i on (putDown ! o ) #: s e qu en t i a l ? #t
exoProg ( l e t ∗ ( ( act ( l i s t ’putDown ! o ) )

( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l exoProg ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( eq? exoProg : f a i l )
0 . 0
weight ) )

( de f ine−ac t i on ( pay ! o ) #: s e qu en t i a l ? #t
exoProg ( l e t ∗ ( ( act ( l i s t ’ pay ! o ) )

( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l exoProg ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( eq? exoProg : f a i l )
0 . 0
weight ) )

( d e f i n e ( d i s p l a yB e l i e f s )
( p r i n t f ”( b e l i e f ( eq? dec i s i onGoa l ’ notDecided ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

dec i s i onGoa l ’ notDecided ) ) )
( p r i n t f ”( b e l i e f ( eq? dec i s i onGoa l ’ s t e a l ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq? dec i s i onGoa l

’ s t e a l ) ) )
( p r i n t f ”( b e l i e f ( eq? dec i s i onGoa l ’ browse ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq? dec i s i onGoa l

’ browse ) ) )
( p r i n t f ”( b e l i e f ( eq? dec i s i onGoa l ’ buy ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq? dec i s i onGoa l ’

buy ) ) )
( p r i n t f ”( b e l i e f ( eq? dec i s i onObj ’ notDecided ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

dec i s i onObj ’ notDecided ) ) )
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( p r i n t f ”( b e l i e f ( eq? dec i s i onObj ’ r i ng ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq? dec i s i onObj ’
r i ng ) ) )

( p r i n t f ”( b e l i e f ( eq? dec i s i onObj ’ neck lace ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq? dec i s i onObj
’ neck lace ) ) )

( p r i n t f ”( b e l i e f ( eq? dec i s i onObj ’ b r a c e l e t ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq? dec i s i onObj
’ b r a c e l e t ) ) )

( p r i n t f ”( b e l i e f ( eq? dec i s ionLook ’ notDecided ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?
dec i s ionLook ’ notDecided ) ) )

( p r i n t f ”( b e l i e f ( eq? dec i s ionLook ’ yes ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq? dec i s ionLook ’
yes ) ) )

( p r i n t f ”( b e l i e f ( eq? dec i s ionLook ’ no ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq? dec i s ionLook ’ no
) ) )

)

( d e f i n e observeUpdtLoop
( : whi l e #t

(:>> ( d i s p l a yB e l i e f s ) )
( : wait )
(:>> ( p r i n t f ”Exogenous Action Received ˜n”) ) ) )

( de f ine−i n t e r f a c e ’ out write−endogenous )

( de f ine−i n t e r f a c e ’ in
( l e t ( ( por t s ( open−tcp−s e r v e r 8345) ) )

( d i s p l a y l n ”Ready to r e c e i v e exogenous a c t i on s ! ” ( cadr por t s ) )
( lambda ( ) ( d i sp l ay ”Act : ” ( cadr por t s ) ) ( read ( car por t s ) ) ) ) )

( d e f i n e (main ) ( ergo−do #:mode ’ on l i n e observeUpdtLoop ) )
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A.3 Complete Code of the Robot with Multiple Goals Example

A.3.1 Utils.scm

( d e f i n e ( remainder n m) ; ; Returns the the d i f f e r e n c e between m and the nea r e s t
mu l t ip l e o f n that s l e s s than m

(− n (∗ ( f l o o r (/ n m) ) m) ) )

( d e f i n e ( approx−eq? x y e r r ) ; ; Returns t rue i f x i s between y − e r r and y + err ,
i n c l u s i v e

( and (<= x (+ y e r r ) ) (>= x (− y e r r ) ) ) )

( de f ine−syntax i n c f ; ; I n c r e a s e s the numerica l va lue o f a va r i ab l e
( syntax−r u l e s ( )

( ( x ) ( begin ( s e t ! x (+ x 1) ) x ) )
( ( x n) ( begin ( s e t ! x (+ x n) ) x ) ) ) )

( de f ine−syntax dec f ; ; Decreases the numerica l va lue o f a va r i ab l e
( syntax−r u l e s ( )

( ( x ) ( i n c f x −1) )
( ( x n) ( i n c f x (− n) ) ) ) )

( de f ine−syntax r e s e t f ; ; Resets the numerica l va lue o f a va r i ab l e to 0
( syntax−r u l e s ( )

( ( x ) ( i n c f x (− x ) ) ) ) )

A.3.2 RandomEnvironmentGen.scm

( ( r e qu i r e dyoo−while−loop )

( i n c lude ” U t i l s . scm”)

( d e f i n e numGoals 4)
( d e f i n e numObstacles 100)

( d e f i n e s ta r tPos ( cons 5 .0 2 . 0 ) )

( d e f i n e genCoord ( cons 0 .0 0 . 0 ) ) ; ; Used to temporar i ly s t o r e a generated coord inate
( d e f i n e genRadius 0 . 0 ) ; ; Used to temporar i ly s t o r e a generated rad iu s

( d e f i n e ( ove r l apsObstac l e ? coord obstac leCoord obstac l eRad ius ) ; ; Returns t rue i f the
g iven coord inate i s i n s i d e the g iven ob s t a c l e

( l e t
( ( xD i f f ( abs (− ( car coord ) ( car obstac leCoord ) ) ) )
( yD i f f ( abs (− ( cdr coord ) ( cdr obstac leCoord ) ) ) ) )

( l e t
( ( d i s t ( s q r t (+ ( expt xD i f f 2) ( expt yD i f f 2) ) ) ) )

( or (< d i s t obstac l eRad ius ) ( approx−eq? d i s t obstac l eRad ius 0 . 05 ) ) ) ) )

( d e f i n e ( ove r l ap sObs tac l e s ? coord ) ; ; Returns t rue i f the g iven coord inate ove r l ap s any
ob s t a c l e

( f o r / or ( [ i ( in−range numObstacles ) ] )
( ove r l apsObstac l e ? coord ( vector−r e f o b s t a c l ePo s i t i o n s i ) ( vector−r e f

ob s t a c l eRad i i i ) ) ) )

( d e f i n e ( over lapsGoa l s ? coord ) ; ; Returns t rue i f the g iven coord ina te i s with in a 0 .1
x0 . 1 box centred on the goa l coo rd inate f o r any goa l

( f o r / or ( [ i ( in−range numGoals ) ] )
( and ( approx−eq? ( car coord ) ( car ( vector−r e f g o a lPo s i t i o n s i ) ) 0 . 05 ) ( approx−eq?

( car coord ) ( car ( vector−r e f g o a lPo s i t i o n s i ) ) 0 . 05 ) ) ) )
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( d e f i n e ( ov e r l ap sS t a r t ? coord ) ; ; Returns t rue i f the g iven coord inate i s with in a 0 .1
x0 . 1 box centred on the s t a r t coo rd ina te

( and ( approx−eq? ( car coord ) ( car s ta r tPos ) 0 . 2 ) ( approx−eq? ( car coord ) ( car
s ta r tPos ) 0 . 2 ) ) )

( d e f i n e g oa lPo s i t i o n s
(make−vec to r numGoals ( cons 0 .0 0 . 0 ) ) )

( d e f i n e ob s t a c l ePo s i t i o n s
(make−vec to r numObstacles ( cons 0 .0 0 . 0 ) ) )

( d e f i n e ob s t a c l eRad i i
(make−vec to r numObstacles 0 . 0 ) )

( d e f i n e ( genEnvironment )
( begin

( f o r ( [ i ( in−range numObstacles ) ] )
( begin

( s e t ! genCoord ( cons (∗ ( random) 10 . 0 ) (∗ ( random) 10 . 0 ) ) )
( s e t ! genRadius (∗ ( random) 2 . 5 ) )
( whi l e ( ove r l apsObs tac l e ? s ta r tPos genCoord genRadius )

( begin
( s e t ! genCoord ( cons (∗ ( random) 10 . 0 ) (∗ ( random) 10 . 0 ) ) )
( s e t ! genRadius (∗ ( random) 2 . 5 ) ) ) )

( vector−s e t ! o b s t a c l ePo s i t i o n s i genCoord )
( vector−s e t ! ob s t a c l eRad i i i genRadius ) ) )

( f o r ( [ i ( in−range numGoals ) ] )
( begin

( s e t ! genCoord ( cons (∗ ( random) 10 . 0 ) (∗ ( random) 10 . 0 ) ) )
( whi l e ( or ( ove r l ap sObs tac l e s ? genCoord ) ( ov e r l ap sS t a r t ? genCoord ) )

( s e t ! genCoord ( cons (∗ ( random) 10 . 0 ) (∗ ( random) 10 . 0 ) ) ) )
( vector−s e t ! g o a lPo s i t i o n s i genCoord ) ) ) ) )

( d e f i n e ( envFunc x y ) ; ; A func t i on which r e tu rn s 1 f the coo rd ina te de f ined by the x
and y arguments ove r l ap s any ob s t a c l e and 0 otherwi se

( i f ( ove r l ap sObs tac l e s ? ( cons x y ) )
1
0) )

A.3.3 AStarFinal.scm

( r e qu i r e rackun i t
math/matrix
racke t / un i t
racke t /match
racke t / l i s t
data/heap
2htdp/ image
racke t / runtime−path
racke t / in c lude
dyoo−while−loop )

; ; This i s an implementation o f the A∗ a lgor i thm by Jay McCarthy , found on l i n e at https
: // raw . g i thubuse rcontent . com/ jeapos t rophe / j eapos t rophe . g ithub . com/ source / pos t s
/2013−04−15− a s ta r . rkt and ed i t ed s l i g h t l y by myse l f ( A l i s t a i r Scheuhammer )

( de f ine−s i gna tu r e graphˆ
( node? edge ? node−edges edge−s r c edge−co s t edge−dest ) )

( d e f i n e (make−map N func )
( bui ld−matrix N N func ) )

( s t r u c t map−node (M x y) #: t ransparent )
( s t r u c t map−edge ( s r c dx dy dest ) )

68



( de f ine−uni t map@
( import ) ( export graph ˆ)

( d e f i n e node? map−node ?)
( d e f i n e edge ? map−edge ?)
( d e f i n e edge−s r c map−edge−s r c )
( d e f i n e edge−dest map−edge−dest )

( d e f i n e ( edge−co s t e )
(match−de f i n e (map−edge (map−node sM sx sy ) (map−node dM dx dy ) ) e )
( l e t

( ( baseCost (match (matrix−r e f dM dx dy )
[ 0 1 ]
[ 1 1000 ] ) ) )

( i f ( not ( or (= sx dx ) (= sy dy ) ) )
(∗ baseCost ( s q r t 2) )
baseCost ) ) )

( d e f i n e ( node−edges n)
(match−de f i n e (map−node M x y) n)
( append∗
( f o r ∗/ l i s t ( [ dx ( in− l i s t ’ (1 0 −1) ) ]

[ dy ( in− l i s t ’ (1 0 −1) ) ]
#:when
( not ( and ( zero ? dx ) ( zero ? dy ) ) ) )

( cond
[ ( and (<= 0 (+ dx x ) ( sub1 (matrix−num−c o l s M) ) )

(<= 0 (+ dy y ) ( sub1 (matrix−num−rows M) ) ) )
( d e f i n e dest (map−node M (+ dx x ) (+ dy y ) ) )
( l i s t (map−edge n dx dy dest ) ) ]

[ e l s e
empty ] ) ) ) ) )

( d e f i n e (A∗ graph@ i n i t i a l node−co s t )
( de f ine−va lue s / invoke−uni t graph@ ( import ) ( export graph ˆ) )
( d e f i n e count 0)
( d e f i n e node−>best−path (make−hash ) )
( d e f i n e node−>best−path−co s t (make−hash ) )

( hash−s e t ! node−>best−path i n i t i a l empty )
( hash−s e t ! node−>best−path−co s t i n i t i a l 0)
( d e f i n e ( node−t o ta l−est imate−co s t n)

(+ ( node−co s t n) ( hash−r e f node−>best−path−co s t n) ) )
( d e f i n e ( node−cmp x y )

(<= (node−t o ta l−est imate−co s t x )
( node−t o ta l−est imate−co s t y ) ) )

( d e f i n e open−s e t (make−heap node−cmp) )
( heap−add ! open−s e t i n i t i a l )

( begin0
( l e t / ec e sc

( whi l e ( not (= ( heap−count open−s e t ) 0) )
( d e f i n e x ( heap−min open−s e t ) )
( heap−remove ! open−s e t x )
( s e t ! count ( add1 count ) )
( d e f i n e h−x ( node−co s t x ) )
( d e f i n e path−x ( hash−r e f node−>best−path x ) )

(when ( zero ? h−x )
( e s c ( r e v e r s e path−x ) ) )

( d e f i n e g−x ( hash−r e f node−>best−path−co s t x ) )
( f o r ( [ x−>y ( in− l i s t ( node−edges x ) ) ] )

( d e f i n e y ( edge−dest x−>y ) )
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( d e f i n e new−g−y (+ g−x ( edge−co s t x−>y ) ) )
( d e f i n e old−g−y

( hash−r e f node−>best−path−co s t y +i n f . 0 ) )
(when (< new−g−y old−g−y )

( hash−s e t ! node−>best−path−co s t y new−g−y )
( hash−s e t ! node−>best−path y ( cons x−>y path−x ) )
( heap−add ! open−s e t y ) ) ) )

#f )

( p r i n t f ” v i s i t e d ˜a nodes\n” count ) ) )

( d e f i n e ( (make−node−co s t GX GY) n)
(match−de f i n e (map−node M x y) n)
( l e t

( ( xDist ( abs (− x GX) ) )
( yDist ( abs (− y GY) ) ) )

( i f (< xDist yDist )
(+ (∗ xDist ( s q r t 2) ) ( abs (− xDist yDist ) ) )
(+ (∗ yDist ( s q r t 2) ) ( abs (− xDist yDist ) ) ) ) ) )

( d e f i n e N 51)
( d e f i n e (my−M func )

(make−map N func ) )
( d e f i n e (my−path sx sy gx gy func )

( l e t
( ( r e s u l t

( time
(A∗ map@

(map−node (my−M func ) sx sy )
(make−node−co s t gx gy ) ) ) ) )

( p r i n t f ”path i s ˜a long \n” ( l ength r e s u l t ) )
r e s u l t ) )

A.3.4 Discretize.scm

( d e f i n e ( d i s c r e t i z e 5 num)
( exact−round (∗ num 5) ) )

( d e f i n e ( d i s c r e t i z e 5−inv num)
(/ num 5) )

( d e f i n e ( d i s c r e t i z e 5−biFunc func ) ; ; Converts a func t i on to one whose output i s equal
to 5 t imes the o r i g i n a l funct ion , rounded to the nea r e s t i n t e g e r

(? (x y ) ( func ( d i s c r e t i z e 5−inv x ) ( d i s c r e t i z e 5−inv y ) ) ) )

A.3.5 OptimalPathProbability.scm

( r e qu i r e racke t / in c lude )

( i n c lude ”AStarFinal . scm”)
( in c lude ” D i s c r e t i z e . scm”)
( in c lude ” U t i l s . scm”)

( d e f i n e ( sa f e− l i s t −r e f l s t pos ) ; ; Re t r i eve s an item sto r ed in a l i s t us ing pos an
index in to that l i s t , guarding aga in s t an i n v a l i d index argument by e i t h e r
r e t r i e v i n g the f i r s t element in the l i s t ( i f pos i s too smal l ) or the l a s t element
in the l i s t ( i f pos i s too l a r g e )

( i f (>= pos ( l ength l s t ) )
( l i s t −r e f l s t ( sub1 ( l ength l s t ) ) )
( i f (< pos 0)

( l i s t −r e f l s t 0)
( l i s t −r e f l s t pos ) ) ) )
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( d e f i n e ( pathGoal s t a r t−pos goal−pos func ) ; ; Generates a sequence o f edges
r ep r e s en t i ng the path from star−pos to goal−pos us ing the A∗ a lgor i thm

( l e t
( ( sx ( d i s c r e t i z e 5 ( car s ta r t−pos ) ) )
( sy ( d i s c r e t i z e 5 ( cdr s ta r t−pos ) ) )
( gx ( d i s c r e t i z e 5 ( car goal−pos ) ) )
( gy ( d i s c r e t i z e 5 ( cdr goal−pos ) ) )
( obsFunc ( d i s c r e t i z e 5−biFunc func ) ) )

(my−path sx sy gx gy obsFunc ) ) )

( d e f i n e index 0) ; ; Used to keep track o f how many s t ep s along each goa l path we ’ ve
taken

( d e f i n e path−cache (make−hash ) ) ; ; Hash s e t s t o r i n g a l l the generated goa l paths

( d e f i n e ( set−path key s ta r t−pos goal−pos func ) ; ; S to r e s a generated goa l path in the
hash s e t

( hash−s e t ! path−cache key ( pathGoal s t a r t−pos goal−pos func ) ) )

( d e f i n e ( get−cur−node−s r c cho i c e ) ; ; Gets the l a s t v i s i t e d node in the goa l path
s p e c i f i e d by cho i c e

( cons (/ (map−node−x (map−edge−s r c ( sa f e− l i s t −r e f ( hash−r e f ! path−cache cho i c e nu l l )
index ) ) ) 5 . 0 ) (/ (map−node−y (map−edge−s r c ( sa f e− l i s t −r e f ( hash−r e f ! path−cache
cho i c e nu l l ) index ) ) ) 5 . 0 ) ) )

( d e f i n e ( get−cur−node−dest cho i c e ) ; ; Gets the next node in the goa l path s p e c i f i e d by
cho i c e

( cons (/ (map−node−x (map−edge−dest ( sa f e− l i s t −r e f ( hash−r e f ! path−cache cho i c e nu l l
) index ) ) ) 5 . 0 ) (/ (map−node−y (map−edge−dest ( sa f e− l i s t −r e f ( hash−r e f ! path−
cache cho i c e nu l l ) index ) ) ) 5 . 0 ) ) )

( d e f i n e ( get−f u l l −path cho i c e ) ; ; Returns the f u l l sequence o f nodes f o r the goa l path
s p e c i f i e d by cho i c e

(map ( lambda (x ) ( cons (/ (map−node−x (map−edge−dest x ) ) 5) (/ (map−node−y (map−edge
−dest x ) ) 5) ) ) ( hash−r e f ! path−cache cho i c e nu l l ) ) )

( d e f i n e ( pr int−path cho i c e ) ; ; Pr in t s the f u l l sequence o f nodes f o r the goa l path
s p e c i f i e d by cho i c e

( p r i n t f ”Path : ˜ s ” ( cons (/ (map−node−x (map−edge−s r c ( sa f e− l i s t −r e f ( hash−r e f ! path
−cache cho i c e nu l l ) 0) ) ) 5) (/ (map−node−y (map−edge−s r c ( sa f e− l i s t −r e f ( hash−
r e f ! path−cache cho i c e nu l l ) 0) ) ) 5) ) )

( p r i n t f ”˜ s ˜n” ( get−f u l l −path cho i c e ) ) )

( d e f i n e ( get−d i s t r i b u t i o n cho i c e pos ang le ) ; ; Returns the degree to which ang le
matches the o r i e n t a t i o n one standing at pos would need to have in order to be
d i r e c t l y f a c i n g the next node in the goa l path s p e c i f i e d by cho i c e

( l e t
( ( intermediateGoal−pos ( get−cur−node−dest cho i c e ) ) )
( l e t

( ( idea lAng l e ( remainder (+ 360 .0 ( radians−>degree s ( atan (− ( cdr
intermediateGoal−pos ) ( cdr pos ) ) (− ( car intermediateGoal−pos ) ( car pos ) ) )
) ) 360 . 0 ) ) )

(GAUSSIAN angle idea lAng l e 40 . 0 ) ) ) )

A.3.6 MaximumDistanceProbability.scm

( r e qu i r e racke t / in c lude )

( i n c lude ” U t i l s . scm”)

( d e f i n e max
100 .0 )

( d e f i n e (min )
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(− max) )

( d e f i n e ( set−new−max va l )
( s e t ! max va l ) )

( d e f i n e ( a )
(/ (− 1 .0 0 . 0 ) (− max (min ) ) ) )

( d e f i n e (b)
(− 1 .0 (∗ ( a ) max) ) )

( d e f i n e ( normal ize va lue )
(+ (∗ ( a ) va lue ) (b) ) )

( d e f i n e old−pos ; ; The prev ious po s i t i o n o f the agent
( cons −1.0 −1.0) )

( d e f i n e ( set−old−pos va l )
( s e t ! old−pos va l ) )

( d e f i n e d i f f e r e n c e−hash
(make−hash ) )

( d e f i n e ( set−d i f f e r e n c e key d i f f )
( hash−s e t ! d i f f e r e n c e−hash key d i f f ) )

( d e f i n e ( get−d i f f e r e n c e pos goal−pos ) ; ; Returns the d i f f e r e n c e between the agent ’ s
cur r ent d i s t ance from goal−pos and the same d i s t anc e be f o r e the agent ’ s most r e c en t
move ac t i on

( l e t
( ( o ldXDi f f ( abs (− ( car goal−pos ) ( car old−pos ) ) ) )
( o ldYDi f f ( abs (− ( cdr goal−pos ) ( cdr old−pos ) ) ) )
( newXDiff ( abs (− ( car goal−pos ) ( car pos ) ) ) )
( newYDiff ( abs (− ( cdr goal−pos ) ( cdr pos ) ) ) ) )
( l e t

( ( oldLength ( sq r t (+ ( expt o ldXDi f f 2) ( expt o ldYDi f f 2) ) ) )
( newLength ( sq r t (+ ( expt newXDiff 2) ( expt newYDiff 2) ) ) ) )
(− oldLength newLength ) ) ) )

( d e f i n e ( get−d i s t r i b u t i o n pos cho i c e goa l s ) ; ; Se t s a normal ized d i f f e r e n c e ( i . e .
normal ized to be a percentage based on where that d i f f e r e n c e f a l l s in the range
from min to max) f o r every goa l based on the observed agent ’ s cur r ent and prev ious
po s i t i on s , then r e tu rn s the d i f f e r e n c e f o r the goa l s p e c i f i e d by cho i c e

( begin
( d e f i n e count 1)
( f o r ( [ goa l goa l s ] )

( l e t
( ( d i f f e r e n c e ( get−d i f f e r e n c e pos goa l ) ) )
( set−d i f f e r e n c e count ( normal ize d i f f e r e n c e ) ) )

( s e t ! count ( add1 count ) ) )
( hash−r e f d i f f e r e n c e−hash cho i c e ) ) )

A.3.7 OrientationDistanceProbability.scm

( r e qu i r e racke t / in c lude )

( i n c lude ” U t i l s . scm”)

( d e f i n e ( get−d i s t r i b u t i o n pos ang le goal−pos ) ; ; Returns 80\% times the degree to which
pos matches goal−pos p lus 20\% times the degree to which ang le matches the

o r i e n t a t i o n one at pos would need to be d i r e c t l y f a c i n g goal−pos
( l e t

( ( x d i f f (− ( car goal−pos ) ( car pos ) ) )
( y d i f f (− ( cdr goal−pos ) ( cdr pos ) ) ) )
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( l e t ( ( distanceFromGoal ( s q r t (+ ( expt x d i f f 2) ( expt y d i f f 2) ) ) ) )
( l e t ( ( probPos i t i on (GAUSSIAN distanceFromGoal 0 . 0 2 . 5 ) ) )

( i f ( and (< x d i f f 0 . 1 ) (< y d i f f 0 . 1 ) )
probPos i t i on
( l e t ( ( idea lAng l e ( remainder (+ 360 .0 ( radians−>degree s ( atan y d i f f

x d i f f ) ) ) 360 . 0 ) ) )
( l e t ( ( probDirec t ion (GAUSSIAN angle idea lAng l e 20 . 0 ) ) )

(+ (∗ probDirec t ion 0 . 8 ) (∗ probPos i t i on 0 . 2 ) ) ) ) ) ) ) ) )

A.3.8 robotOptimal.scm

( r e qu i r e racke t / in c lude
racke t / format )

( d e f i n e curPos ( cons 5 .0 2 . 0 ) )
( d e f i n e d i r e c t i o n 90 . 0 )
( d e f i n e speed 0 . 2 )

( d e f i n e ( runRobot path goalPos f i l ename ) ; ; Manoeuvres the robot through path and
outputs the sequence o f a c t i on s cor re spond ing to t h i s movement to f i l ename

( l e t ( ( ou tF i l e ( open−output− f i l e f i l ename #: e x i s t s ’ r ep l a c e ) ) )
( d i s p l a y l n ”( chooseGoal ! ) ” ou tF i l e )
( f o r / l i s t ( [ intermediateGoal−pos path ] )

( l e t ( ( idea lAng l e ( remainder (+ 360 .0 ( radians−>degree s ( atan (− ( cdr
intermediateGoal−pos ) ( cdr curPos ) ) (− ( car intermediateGoal−pos ) ( car
curPos ) ) ) ) ) 360 . 0 ) ) ) ; ; The o r i e n t a t i o n the robot needs to f a c e to be
f a c i n g d i r e c t l y at the next t a r g e t node

( l e t ( ( turnAngle ( remainder (− i dea lAng l e d i r e c t i o n ) 360 . 0 ) ) ) ; ; How much
the robot needs to turn by to o r i en t ed at idea lAng l e

( l e t ( ( a c t i on ( s t r i ng−append ”( turnAndMove ! ” (˜ a turnAngle ) ”) ”) ) )
( d i s p l a y l n ac t i on ou tF i l e ) )

( s e t ! d i r e c t i o n ( remainder (+ d i r e c t i o n turnAngle ) 360 . 0 ) )
( l e t

( ( x−speed (∗ speed ( cos ( degrees−>rad ians d i r e c t i o n ) ) ) )
(y−speed (∗ speed ( s i n ( degrees−>rad ians d i r e c t i o n ) ) ) ) )

( s e t ! curPos ( cons (+ x−speed ( car curPos ) ) (+ y−speed ( cdr curPos
) ) ) ) ) ) ) )

( f lu sh−output ou tF i l e ) ) )

A.3.9 robotOptimalNoise.scm

( r e qu i r e racke t / in c lude
racke t / format )

( d e f i n e curPos ( cons 5 .0 2 . 0 ) )
( d e f i n e d i r e c t i o n 90 . 0 )
( d e f i n e speed 0 . 2 )
( d e f i n e no i s e 10 . 0 ) ; ; The amount o f no i s e in the robot ’ s turn a c t i on s

( d e f i n e ( runRobot path goalPos f i l ename ) ; ; Manoeuvres the robot through path and
outputs the sequence o f a c t i on s cor re spond ing to t h i s movement to f i l ename

( l e t ( ( ou tF i l e ( open−output− f i l e f i l ename #: e x i s t s ’ r ep l a c e ) ) )
( d i s p l a y l n ” chooseGoal ! ” ou tF i l e )
( f o r / l i s t ( [ intermediateGoal−pos path ] )

( l e t ( ( idea lAng l e ( remainder (+ 360 .0 ( radians−>degree s ( atan (− ( cdr
intermediateGoal−pos ) ( cdr curPos ) ) (− ( car intermediateGoal−pos ) ( car
curPos ) ) ) ) ) 360 . 0 ) ) ) ; ; The o r i e n t a t i o n the robot needs to f a c e to be
f a c i n g d i r e c t l y at the next t a r g e t node

( l e t ( ( turnAngle (+ ( remainder (− i dea lAng l e d i r e c t i o n ) 360 . 0 ) (− (∗ (
random) no i s e 2) no i s e ) ) ) )

( l e t ( ( a c t i on ( s t r i ng−append ”( turnAndMove ! ” (˜ a turnAngle ) ”) ”) ) )
( d i s p l a y l n ac t i on ou tF i l e ) )

( s e t ! d i r e c t i o n ( remainder (+ d i r e c t i o n turnAngle ) 360 . 0 ) )
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( l e t
( ( x−speed (∗ speed ( cos ( degrees−>rad ians d i r e c t i o n ) ) ) )
(y−speed (∗ speed ( s i n ( degrees−>rad ians d i r e c t i o n ) ) ) ) )

( s e t ! curPos ( cons (+ x−speed ( car curPos ) ) (+ y−speed ( cdr curPos
) ) ) ) ) ) ) )

( f lu sh−output ou tF i l e ) ) )

A.3.10 robotRandom.scm

( r e qu i r e racke t / in c lude
racke t / format )

( d e f i n e curPos ( cons 5 .0 2 . 0 ) )
( d e f i n e d i r e c t i o n 90 . 0 )
( d e f i n e speed 1 . 0 )

( d e f i n e ( onGoal goalPos )
( and ( approx−eq? ( car curPos ) ( car goalPos ) 0 . 1 ) ( approx−eq? ( cdr curPos ) ( cdr

goalPos ) 0 . 1 ) ) )

( d e f i n e ( runRobot path goalPos f i l ename ) ; ; Manoeuvres the robot through the
environment un t i l i t r eaches goalPos or un t i l i t has performed 100 move a c t i on s (
with path only being inc luded in the arguments f o r c on s i s t ency with the other robot
types ) ; outputs the sequence o f a c t i on s cor re spond ing to t h i s movement to f i l ename
throughout t h i s p roce s s

( l e t ( ( ou tF i l e ( open−output− f i l e f i l ename #: e x i s t s ’ r ep l a c e ) ) )
( d i s p l a y l n ”( chooseGoal ! ) ” ou tF i l e )
( f o r ( [ i ( in−range 100) ] #:break ( onGoal goalPos ) )

( l e t ( ( ang le (∗ ( random) 360 . 0 ) ) )
( l e t ( ( a c t i on ( s t r i ng−append ”( turnAndMove ! ” (˜ a ang le ) ”) ”) ) )

( d i s p l a y l n ac t i on ou tF i l e ) )
( s e t ! d i r e c t i o n ( remainder (+ d i r e c t i o n ang le ) 360 . 0 ) )
( l e t

( ( x−speed (∗ speed ( cos ( degrees−>rad ians d i r e c t i o n ) ) ) )
(y−speed (∗ speed ( s i n ( degrees−>rad ians d i r e c t i o n ) ) ) ) )

( s e t ! curPos ( cons (+ x−speed ( car curPos ) ) (+ y−speed ( cdr curPos ) )
) ) ) ) )

( f lu sh−output ou tF i l e ) ) )

A.3.11 Main Program

( r e qu i r e racke t / in c lude )

( i n c lude ”RandomEnvironmentGen . scm”)
( in c lude ”OptimalPathProbabi l i ty . scm”) ; ; Or MaximumDistanceProbability . scm , or

Or i en ta t i onD i s t anceProbab i l i t y . scm
( inc lude ” robotOptimal . scm”) ; ; Or robotOptimalNoise . scm , or robotRandom . scm
( inc lude ” U t i l s . scm”)

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ;
; ; author : A l i s t a i r Scheuhammer
; ;
; ; This i s an Ergo implementation o f a plan r e c o gn i t i o n
; ; example f e a t u r i n g a mobile robot and a randomly
; ; generated environment . The randomly generated
; ; environment i s de f ined in ”RandomEnvironmentGen . scm”
; ; Throughout the environment are var i ous randomly−placed
; ; po in t s s e rv ing as p o t e n t i a l t a r g e t l o c a t i o n s f o r the
; ; robot ; as the robot exp l o r e s the environment , the
; ; system ’ s job i s to ana lyze the robot ’ s movements
; ; and make p r e d i c t i o n s regard ing how l i k e l y each
; ; p o t e n t i a l t a r g e t goa l i s to be the robot ’ s a c tua l t a r g e t
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; ; goa l . The environment a l s o f e a t u r e s va r i ous ob s t a c l e s
; ; f o r the robot to avoid . These ob s t a c l e s are r ep re s en ted
; ; as c i r c l e s o f vary ing the s i z e s and are a l s o p laced
; ; randomly throughout the environment . Note : Al l
; ; ang l e s are measured in degree s with 0 degree s
; ; r e p r e s en t i ng f a c i n g exac t l y to the r i g h t .
; ;
; ; There are three d i f f e r e n t methods used f o r c a l c u l a t i n g
; ; the p r obab i l i t y o f a g iven goa l be ing the ac tua l t a r g e t
; ; goa l . The f i r s t uses the A∗ a lgor i thm to c a l c u l a t e the
; ; opt imal path to each d e s t i n a t i on and compares the
; ; robot ’ s path to each o f these optimal paths , with the
; ; p o t e n t i a l goa l who ’ s optimal path most c l o s e l y
; ; matches the ac tua l path being t r ea t ed as the most
; ; l i k e l y goa l . The second method c a l c u l a t e s the
; ; d i f f e r e n c e between the robot ’ s d i s t ance from each
; ; p o t e n t i a l goa l be f o r e and a f t e r every move act ion , with
; ; the p o t e n t i a l goa l with the sma l l e s t d i f f e r e n c e being
; ; seen as the most l i k e l y goa l . F ina l ly , the l a s t method
; ; measures the p r obab i l i t y f o r any given goa l as a
; ; weighted sum of a ) the degree to which the robot ’ s
; ; ang le matches the ang le nece s sa ry f o r the robot to be
; ; l ook ing d i r e c t l y at that goal , and b) how c l o s e the robot
; ; i s to that goa l . For a l l th ree o f the above−desc r ibed
; ; methods , the p r i o r p r o b a b i l i t i e s f o r each d e s t i n a t i on are
; ; a l s o f a c t o r ed in to the new p r obab i l i t y c a l c u l a t ed at each
; ; time step , so i f the system were convinced the robot
; ; was going a f t e r , say , d e s t i n a t i on 1 f o r most o f the
; ; system ’ s run , the robot suddenly making a movement
; ; which most s t r ong l y corresponds to d e s t i n a t i on 2
; ; wouldn ’ t n e c e s s a r i l y cause the system to abandon i t s
; ; p r i o r b e l i e f that d e s t i n a t i on 1 was the robot ’ s target ’
; ; d e s t i n a t i on . Which o f the three methods i s used by the
; ; depends on which o f th ree ex t e rna l f i l e s i s inc luded in
; ; the header : OptimalPathProbabi l i ty . scm ,
; ; MaximumDistanceProbability . scm , or
; ; Or i en ta t i onD i s t anceProbab i l i t y . scm .
; ;
; ; There are a l s o three d i f f e r e n t types o f robots used in
; ; t h i s example : a robot which always f o l l ow s the optimal
; ; path to i t s d e s i r ed de s t i na t i on , a robot who f o l l ow s an
; ; near−optimal path but with some degree o f no i s e in
; ; every move act ion , and a robot that f o l l ow s a
; ; complete ly random path . Once again , which robot i s
; ; used i s determined by which ex t e rna l f i l e i s inc luded
; ; in the header : robotOptimal . scm , robotOptimalNoise . scm ,
; ; or robotRandom . scm .
; ;
; ; In t h i s example , the p roce s s i s e n t i r e l y automated ;
; ; running the program w i l l cause i t to s e l e c t a random
; ; p o t e n t i a l goa l to be the ac tua l t a r g e t goal , a f t e r which
; ; i t w i l l s imulate the robot ’ s movement through the
; ; environment , gene ra t ing a sequence o f a c t i on s which
; ; i t w i l l then output to a text f i l e . I t w i l l then use t h i s t ex t
; ; f i l e as input , read ing each ac t i on in turn and us ing i t
; ; to update i t s b e l i e f s .
; ;
; ; To run :
; ; In a te rmina l ente r ” racke t − l ergoExt − i −f robot−

GoalsObstaclesRandomEnvironmentAutomated . scm”
; ; and then run the program by en t e r i ng ”(main ) ”
; ;
; ; In the terminal , Ergo d i s p l a y s the updated b e l i e f s , which evo lve as expected

automat i ca l l y .
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; ;
; ; To stop , k i l l the racke t p roce s s by en t e r i ng ˆC in the te rmina l . The program w i l l

automat i ca l l y
; ; end once the observed robot ’ s e n t i r e ac t i on sequence has been proces sed .

( d e f i n e robot−pos− i n i t s ta r tPos )
( d e f i n e robot−speed 0 . 2 )
( d e f i n e chosenGoal 0)

( de f ine−s t a t e s ( ( i 1000000) )
robot−pos robot−pos− i n i t
robot−d i r e c t i o n 90 .0
dec i s i onGoa l ’ notDecided
dec i s ionGoal−pos ( cons −1.0 −1.0)
turnAngle 0 . 0
robot−prog

( : begin
( : act chooseGoal ! )
( : whi l e #t

( : act ( turnAndMove ! turnAngle ) ) ) ) )

( de f ine−ac t i on chooseGoal ! #: s e qu en t i a l ? #t
dec i s i onGoa l (UNIFORM−DISCRETE−GEN numGoals ) ; ; Each o f the po t e n t i a l t a r g e t goa l s

i s equa l l y l i k e l y to be chosen

dec i s ionGoal−pos ( vector−r e f g o a lPo s i t i o n s (− dec i s i onGoa l 1) )

robot−prog ( l e t ∗ ( ( act ’ chooseGoal ! )
( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l robot−prog ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( equal ? robot−prog : f a i l )
0 . 0
weight ) )

( de f ine−ac t i on ( turnAndMove ! ang le ) #: s e qu en t i a l ? #t ; ; Turn by the g iven the angle ,
then move one step

turnAngle ang le

robot−d i r e c t i o n ( remainder (+ robot−d i r e c t i o n turnAngle ) 360 . 0 )

robot−pos ( l e t
( ( x−speed (∗ robot−speed ( cos ( degrees−>rad ians robot−d i r e c t i o n ) ) ) )
(y−speed (∗ robot−speed ( s i n ( degrees−>rad ians robot−d i r e c t i o n ) ) ) ) )

( cons (+ x−speed ( car robot−pos ) ) (+ y−speed ( cdr robot−pos ) ) ) )

robot−prog ( l e t ∗ ( ( act ( l i s t ’ turnAndMove ! ang le ) )
( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l robot−prog ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( equal ? robot−prog : f a i l )
0 . 0
(∗ weight ( get−d i s t r i b u t i o n dec i s i onGoa l robot−pos ( remainder (+ robot−

d i r e c t i o n ang le ) 360 . 0 ) ) ) ) )

( d e f i n e ( d i sp l ayVa l s )
( p r i n t f ”( sample−mean robot−pos .X) r e tu rn s ˜ s ˜n” ( sample−mean ( car robot−pos ) ) )
( p r i n t f ”( sample−mean robot−pos .Y) r e tu rn s ˜ s ˜n” ( sample−mean ( cdr robot−pos ) ) )
( p r i n t f ”( sample−mean robot−speed ) r e tu rn s ˜ s ˜n” ( sample−mean robot−speed ) )
( p r i n t f ”( sample−mean robot−d i r e c t i o n ) r e tu rn s ˜ s ˜n” ( sample−mean robot−d i r e c t i o n ) )
( p r i n t f ”( sample−mean turnAngle ) r e tu rn s ˜ s ˜n” ( sample−mean turnAngle ) )
( p r i n t f ”( b e l i e f ( eq? dec i s i onGoa l ’ notDecided ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?
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dec i s i onGoa l ’ notDecided ) ) )
( p r i n t f ( g o a lB e l i e f s S t r i n g numGoals ) ) )

( d e f i n e ( g o a lB e l i e f s S t r i n g n) ; ; Recurs ive func t i on to generate a s t r i n g conta in ing
in fo rmat ion about how l i k e l y the system th inks each po t en t i a l goa l i s to be the
t rue t a r g e t goa l

( i f (> n 1)
( s t r i ng−append ( g o a lB e l i e f s S t r i n g (− n 1) ) ( format ”( b e l i e f ( eq? dec i s i onGoa l ˜ s )

) r e tu rn s ˜ s ˜n” n ( b e l i e f ( eq? dec i s i onGoa l n) ) ) )
( format ”( b e l i e f ( eq? dec i s i onGoa l ˜ s ) ) r e tu rn s ˜ s ˜n” n ( b e l i e f ( eq? dec i s i onGoa l

n) ) ) ) )

( d e f i n e ( checkUpdateNeeded ) ; ; Checks to see i f the optimal path to each goa l needs to
be recomputed ,

( l e t
( ( posX ( sample−mean ( car robot−pos ) ) )
( posY ( sample−mean ( cdr robot−pos ) ) ) )
(when ( f o r /and ( [ i ( in−range numGoals ) ] ) ; ; Recompute the optimal path to each

goa l ( s t a r t i n g from the robot ’ s cur r ent po s i t i o n ) i f the robot ’ s cur r ent
po s i t i o n dev i a t e s s i g n i f i c a n t l y from a l l o f the e x i s t i n g optimal paths .

( or ( not ( approx−eq? posX ( car ( get−cur−node−dest (+ i 1) ) ) 1 . 0 ) ) ( not (
approx−eq? posY ( cdr ( get−cur−node−dest (+ i 1) ) ) 1 . 0 ) ) ) )

( begin
( f o r ( [ i ( in−range numGoals ) ] )

( set−path (+ i 1) ( cons posX posY) ( vector−r e f g o a lPo s i t i o n s i ) envFunc )
)

( r e s e t f index ) ) ) ) )

( d e f i n e buStartTime 0) ; ; The time at which the system beg ins updating i t s b e l i e f s

( d e f i n e observeUpdtLoop
( : whi l e #t

(:>> ( l e t ( ( s t a r t ( current−mi l l i s e c ond s ) ) )
( d i sp l ayVa l s )
( p r i n t f ”Elapsed time f o r b e l i e f qu e r i e s and d i sp l ay ˜a ms˜n” (− ( current−

mi l l i s e c ond s ) s t a r t ) ) ) )
(:>> ( s e t ! buStartTime ( current−mi l l i s e c ond s ) ) )
( : t e s t #t ) ; ; Process the next input ac t i on
(:>> ( p r i n t f ”Exogenous Action Received ˜n”) )
(:>> ( p r i n t f ”Elapsed time f o r b e l i e f update ˜a ms˜n” (− ( current−

mi l l i s e c ond s ) buStartTime ) ) )
(:>> ( i n c f index ) ) ) ) ; ; Increment the index used to determine what the next

node to t r a v e l to in each optimal path i s
(:>> ( checkUpdateNeeded ) ) ) )

( de f ine−i n t e r f a c e ’ out write−endogenous )

( de f ine−i n t e r f a c e ’ in
( l e t ( ( i p o r t ( open−input− f i l e ” batchAct ions . txt ”) ) )

( d i s p l a y l n ”Opening f i l e batchAct ions . txt to r e c e i v e exogenous a c t i on s ! ” )
( lambda ( ) ( l e t ( ( exog ( read i p o r t ) ) )

( p r i n t f ”<<< Exogenous act : ˜a\n” exog )
exog ) ) ) )

( d e f i n e (main )
( genEnvironment )
( p r i n t f ”Goal Po s i t i on s : ˜ s ˜n” goa lPo s i t i o n s )
( p r i n t f ”Obstac le Po s i t i on s : ˜ s ˜n” ob s t a c l ePo s i t i o n s )
( p r i n t f ”Obstac le Radi i ˜ s ˜n” obs t a c l eRad i i )
( l e t ( ( preProcess ingStartTime ( current−mi l l i s e c ond s ) ) )

( f o r ( [ i ( in−range numGoals ) ] )
( set−path (+ i 1) robot−pos− i n i t ( vector−r e f g o a lPo s i t i o n s i ) envFunc ) )

( p r i n t f ”Total time f o r pre−pro c e s s i ng ˜a ms\n” (− ( current−mi l l i s e c ond s )
preProcess ingStartTime ) ) )
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( l e t ( ( goa lChoice ( exact−round (+ (∗ ( random) 3 . 0 ) 1) ) ) )
( s e t ! chosenGoal goa lChoice )
( p r i n t f ”Chosen goa l : ˜ s ˜n” goalChoice )
( runRobot ( get−f u l l −path goalChoice ) ( vector−r e f g o a lPo s i t i o n s (− goalChoice 1) )

” batchAct ions3 . txt ”) )
( l e t ( ( runStartTime ( current−mi l l i s e c ond s ) ) )

( ergo−do #:mode ’ on l ineSynchron ized observeUpdtLoop )
( p r i n t f ”Total time f o r run ˜a ms\n” (− ( current−mi l l i s e c ond s ) runStartTime ) ) ) )
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A.4 Complete Code of the Intersection Example

A.4.1 Utils.scm

( d e f i n e ( remainder n m) ; ; Returns the the d i f f e r e n c e between m and the nea r e s t
mu l t ip l e o f n that s l e s s than m

(− n (∗ ( f l o o r (/ n m) ) m) ) )

( d e f i n e ( approx−eq? x y e r r ) ; ; Returns t rue i f x i s between y − e r r and y + err ,
i n c l u s i v e

( and (<= x (+ y e r r ) ) (>= x (− y e r r ) ) ) )

( de f ine−syntax i n c f ; ; I n c r e a s e s the numerica l va lue o f a va r i ab l e
( syntax−r u l e s ( )

( ( x ) ( begin ( s e t ! x (+ x 1) ) x ) )
( ( x n) ( begin ( s e t ! x (+ x n) ) x ) ) ) )

( de f ine−syntax dec f ; ; Decreases the numerica l va lue o f a va r i ab l e
( syntax−r u l e s ( )

( ( x ) ( i n c f x −1) )
( ( x n) ( i n c f x (− n) ) ) ) )

( de f ine−syntax r e s e t f ; ; Resets the numerica l va lue o f a va r i ab l e to 0
( syntax−r u l e s ( )

( ( x ) ( i n c f x (− x ) ) ) ) )

A.4.2 Splines.scm

( r e qu i r e racke t / in c lude )

( i n c lude ” U t i l s . scm”)

; ; This i s a s imple u t i l i t y program f o r handl ing s p l i n e s and c a l c u l a t i n g motion along a
curved t r a j e c t o r y

( d e f i n e y0 0)
( d e f i n e y1 0)
( d e f i n e s0 0)
( d e f i n e s1 0)

( d e f i n e t ab l e (make−hash ) )

( d e f i n e ( d i s t ance cp1 cp2 )
( l e t

( ( xd i s t ( abs (− ( car cp2 ) ( car cp1 ) ) ) )
( yd i s t ( abs (− ( cdr cp2 ) ( cdr cp1 ) ) ) ) )

( s q r t (+ ( expt xd i s t 2) ( expt yd i s t 2) ) ) ) )

( d e f i n e ( sp l i n e−func−x t )
( l e t

( ( sum1 (∗ ( expt t 3) (+ (∗ −2 (− ( car y1 ) ( car y0 ) ) ) ( car s0 ) ( car s1 ) ) ) )
( sum2 (∗ ( expt t 2) (− (∗ 3 (− ( car y1 ) ( car y0 ) ) ) (∗ 2 ( car s0 ) ) ( car s1 ) ) ) )
( sum3 (∗ t ( car s0 ) ) )
( sum4 ( car y0 ) ) )

(+ sum1 sum2 sum3 sum4) ) )

( d e f i n e ( sp l i n e−func−y t )
( l e t

( ( sum1 (∗ ( expt t 3) (+ (∗ −2 (− ( cdr y1 ) ( cdr y0 ) ) ) ( cdr s0 ) ( cdr s1 ) ) ) )
( sum2 (∗ ( expt t 2) (− (∗ 3 (− ( cdr y1 ) ( cdr y0 ) ) ) (∗ 2 ( cdr s0 ) ) ( cdr s1 ) ) ) )
( sum3 (∗ t ( cdr s0 ) ) )
( sum4 ( cdr y0 ) ) )
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(+ sum1 sum2 sum3 sum4) ) )

( d e f i n e ( sp l i n e−func t )
( cons ( sp l i n e−func−x t ) ( sp l i n e−func−y t ) ) )

( d e f i n e ( i n t e r p o l a t e va l )
( l e t

( ( keys ( hash−keys t ab l e ) ) )
( begin

( d e f i n e c l o s e s t ( l i s t −r e f keys 0) )
( f o r ( [ i ( in−range 1 ( l ength keys ) ) ] )

(when (> ( abs (− va l c l o s e s t ) ) ( abs (− va l ( l i s t −r e f keys i ) ) ) )
( s e t ! c l o s e s t ( l i s t −r e f keys i ) ) ) )

c l o s e s t ) ) )

( d e f i n e ( i n i t i a l i z e −s p l i n e a−y0 a−y1 a−s0 a−s1 )
( begin

( s e t ! y0 a−y0 )
( s e t ! y1 a−y1 )
( s e t ! s0 a−s0 )
( s e t ! s1 a−s1 )
( d e f i n e distSum 0)
( f o r ( [ i ( in−range 5) ] )

( hash−s e t ! t ab l e distSum (/ i 4) )
( i n c f distSum ( d i s t ance ( sp l i n e−func (/ i 4) ) ( sp l i n e−func (/ (+ i 1) 4) ) ) ) ) ) )

( d e f i n e ( get−point a r c l eng th )
( l e t

( ( t ( hash−r e f t ab l e ( i n t e r p o l a t e a r c l eng th ) 0) ) )
( sp l i n e−func t ) ) )

A.4.3 Main Program

( r e qu i r e racke t / in c lude )

( i n c lude ” Sp l i n e s . scm”)

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; ;
; ; author : A l i s t a i r Scheuhammer
; ;
; ; This i s an Ergo implementation o f a very s imple plan r e c o gn i t i o n
; ; example . Two car s are at an i n t e r s e c t i o n , a r r i v i n g at approximately the
; ; same time . One car r ep r e s en t s the user ( i . e . ”we” are t h i s car ) , whi l e
; ; the other car r ep r e s en t s an observed agent . The goa l o f the system i s
; ; to use the other car ’ s behaviour , as we l l as known in fo rmat ion about
; ; the world , to t ry and p r ed i c t which o f th ree cour s e s o f a c t i on the other
; ; car w i l l undertake : ”speedUp” ( i . e . the other car s e e s us and speeds up
; ; to get through the i n t e r s e c t i o n be f o r e we do ) , ”slowDown” ( i . e . the
; ; o ther car s ee us and s lows down to l e t us through f i r s t ) , and ” cont inue ”
; ; ( i . e . the other car does not s ee us and ob l i v i o u s l y cont inues through
; ; the i n t e r s e c t i o n without changing i t s speed ) ; l e t ’ s c a l l t h i s the other
; ; car ’ s ” t a c t i c ” . Add i t iona l ly , we would a l s o l i k e to p r ed i c t whether or
; ; not the other car p lans on turn ing l e f t , turn ing r ight , or t r a v e l l i n g
; ; s t r a i g h t through the i n t e r s e c t i o n ; l e t ’ s c a l l t h i s the other car ’ s
; ; ” goa l ” . Taking a behaviour as being the combination o f a goa l and a
; ; t a c t i c , the r e are a t o t a l o f 9 p o s s i b l e behaviours .
; ;
; ; The system s t a r t s with an i n i t i a l po s i t i on , v e l o c i t y , and a c c e l e r a t i o n
; ; f o r both veh i c l e s , which get updated as time goes on . The system
; ; p rov ide s no means f o r d i r e c t l y updating the ” user ” car ’ s a c c e l e r a t i on ,
; ; as that i s not the po int o f t h i s system ; t h i s system i s intended to
; ; make p r e d i c t i o n s about the other car ’ s i n t e n t i o n s based on t h e i r
; ; behaviour , and as such i t only r e t a i n s the in fo rmat ion about the ” user ”
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; ; car nece s sa ry f o r i t to make i t s p r e d i c t i o n s . D i r e c t l y updating the
; ; ” user ” car ’ s motion beyond those changes which a r i s e na tu r a l l y from
; ; i t s i n i t i a l a c c e l e r a t i o n and v e l o c i t y would be the task o f an ex t e rna l
; ; t o o l .
; ;
; ; There are var i ous other f a c t o r s which s e rve to compl i cate the system .
; ; Each o f the se f a c t o r s a f f e c t our degree o f b e l i e f r egard ing the other
; ; car ’ s behaviour . Three a spec t s o f the world which i n f l u e n c e t h i s
; ; degree o f b e l i e f ( each being po s i t i on ed so as to be in the way o f the
; ; observed car ) i n c lude the presence o f a stop s ign , the presence o f a
; ; t r a f f i c l i gh t , and the presence o f a pede s t r i an . I f the re i s a stop
; ; s ign , we are more con f i d en t the other car w i l l t ry to slow down . I f
; ; the r e i s a t r a f f i c l i gh t , the car i s more l i k e l y to slow down on red
; ; or amber l i g h t s and more l i k e l y to speed up or cont inue on green l i g h t s
; ; ( with amber l i g h t s a l s o having a g r e a t e r chance o f r e s u l t i n g in the
; ; car speed ing up or cont inu ing than red ones ) . In genera l , the r e i s
; ; always a 50/50 chance o f t h e i r be ing a t r a f f i c l i g h t . F ina l ly , the car
; ; i s a l s o more l i k e l y to slow down i f the re i f a pede s t r i an ; note that
; ; the pede s t r i an themse lves i s only model led to t r a v e l forward at a
; ; constant speed i f they e x i s t . As f o r the other car ’ s d e c i s i o n as to
; ; whether they are going to turn ( and in which d i r e c t i o n i f they do ) ,
; ; the r e are two lanes , and r i gh t and l e f t turns are only p o s s i b l e in the
; ; r i g h t and l e f t lanes , r e s p e c t i v e l y . So , i f we see the other car move
; ; i n to the l e f t lane , we know they aren ’ t turn ing r i g h t .
; ;
; ; The other car ’ s behaviour i s model led as an Ergo program con s i s t i n g o f
; ; mu l t ip l e s t ep s . F i r s t , the other car chooses one o f the nine
; ; a forement ioned s e t s o f behaviours . Next , we observe other in fo rmat ion
; ; about the world ( i . e . the presence o f t r a f f i c l i g h t s , stop s igns , and
; ; p ed e s t r i an s ) , and update our b e l i e f s a c co rd ing ly by mul t ip ly ing the
; ; weight o f each sample by some appropr ia t e p r obab i l i t y va lue . The other
; ; car then beg ins a c c e l e r a t i n g . The chosen behaviour a f f e c t s the v e l o c i t y
; ; the system expect s to see ( natura l l y , i f ”speedUp” i s the chosen
; ; behaviour , then system expect s the other car to speed up , and s im i l a r l y
; ; f o r the other two behaviours ) . The weight o f each sample i s updated by
; ; how c l o s e l y the observed behaviour matches the expected behaviour f o r
; ; that sample ’ s chosen goa l . Next the other car chooses which lane i t
; ; wants to be in ( e i t h e r s tay ing in the r i g h t lane as i t i s i n i t i a l l y or
; ; moving in to the l e f t l ane ) . I f the car chooses to move , i t a c t i v a t e s i t s
; ; turn s i g n a l and s h i f t s a c co rd ing ly . There i s some no i s e in t h i s s h i f t i n g
; ; in that the re i s an amount the system expect s to see , but the system w i l l
; ; accept any amount ; again , the sample wights are updated based on how
; ; c l o s e l y the car ’ s s h i f t i n g matches the expected amount . After the car
; ; s h i f t s lanes , i t cont inues a c c e l e r a t i n g as de s c r ibed above under i t
; ; r eaches the edge o f the i n t e r s e c t i o n , at which po int i t t r a v e l s in the
; ; d i r e c t i o n o f i t s chosen d e s t i n a t i on . In the event that the other car
; ; chose to turn , s p l i n e s are used to con t r o l the turn ing motion o f the car .
; ;
; ; As t h i s i s a pre l im inary ve r s i on o f the system , a number o f assumptions
; ; are made to s imp l i f y the system . F i r s t , we assume that we can p e r f e c t l y
; ; observe the other car ’ s behaviour ; i . e . i f the other car a c c e l e r a t e s by
; ; exac t l y 3 m/ s ˆ2 , then we observe an a c c e l e r a t i o n o f exac t l y 3 m/ s ˆ2 .
; ; Second , we assume that the v e h i c l e s are ou t s id e the i n t e r s e c t i o n as long
; ; as they are a meter or more away from the cent r e o f the i n t e r s e c t i o n . We
; ; a l s o heav i l y s imp l i f y how the other car ’ s i d e a l v e l o c i t y i s determined
; ; us ing a constant ” speed l im i t ” parameter . I f the other car i s speed ing up ,
; ; i t s i d e a l v e l o c i t y w i l l be equal to the speed l im i t p lus 2 ; i f i t i s
; ; s lowing down , i t s i d e a l v e l o c i t y w i l l be equal to the speed l im i t minus 2 ;
; ; i f i t i s cont inuing , i t s i d e a l v e l o c i t y w i l l be equal to the speed l im i t
; ; exac t l y . F ina l ly , we a l s o assume that each behaviour i s equa l l y l i k e l y
; ; i n i t i a l l y .
; ;
; ; Note that the ” user ” car i s cons ide r ed to be moving along the p o s i t i v e y
; ; d i r e c t i o n whi l e the other car i s moving along the negat ive x d i r e c t i o n .
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; ; In p a r t i c u l a r l y note that due the other car ’ s motion a l r eady being
; ; negat ive , i t i s negat ive a c c e l e r a t i o n that i s nece s sa ry to produce
; ; ”speedUp” behaviour . I t i s a l s o worth not ing that the only a c t i on s the
; ; o ther car undertakes which cause the world to update are the ” a c c e l e r a t e ” ,
; ; ” s h i f t ” , and ” turn ” act ions , and these a c t i on s w i l l cause the user car
; ; and the pede s t r i an to t r a v e l forward at a constant speed . I f the other
; ; car does not change i t s i n i t i a l behaviour , i t w i l l c o l l i d e with both the
; ; p ede s t r i an and the user car . F ina l ly , a l s o note that by de f au l t the
; ; c en t r e o f the i n t e r s e c t i o n i s assumed to be at coord ina te (5 , 5) .
; ;
; ; Here , ERGO i s used with TCP in a ba s i c way s im i l a r to that
; ; in the standard example r ea c t i v e−e l eva to r−tcp1 . scm :
; ; − a c t i on s generated by the program are simply pr in ted
; ; − exogenous a c t i on s a r r i v e over TCP port 8678
; ;
; ; To run :
; ; In te rmina l 1 ente r ” racke t − l ergoExt − i −f i n t e r s e c t i o n 4 . scm”
; ; and then run the program by en t e r i ng ”(main ) ”
; ;
; ; In te rmina l 2 ente r ” t e l n e t l o c a l h o s t 8678”
; ; and then ente r the exogenous a c t i on s / obs e rva t i on s at the prompt
; ; obsChooseGoal !
; ; ( obsPedest r ian ! yes )
; ; ( obsAcce l e ra t e ! 2 . 0 )
; ;
; ; In te rmina l 1 , Ergo d i s p l a y s the updated b e l i e f s , which evo lve as expected .
; ;
; ; To stop , k i l l the racke t p roce s s by en t e r i ng ˆC in te rmina l 1 .

( d e f i n e ( so lve−quadrat ic−equation− f i r s t a b c ) ; ; Returns one s o l u t i o n to the quadrat i c
equat ion model led by a , b , and c ( s p e c i f i c a l l y , the one produced by adding the

square root ) .
( d e f i n e d i s c ( s q r t (− (∗ b b)

(∗ 4 .0 a c ) ) ) )
(/ (+ (− b) d i s c )

(∗ 2 .0 a ) ) )

( d e f i n e ( so lve−quadrat ic−equation−second a b c ) ; ; Returns one s o l u t i o n to the
quadrat i c equat ion model led by a , b , and c ( s p e c i f i c a l l y , the one produced by
subt ra c t i ng the square root ) .

( d e f i n e d i s c ( s q r t (− (∗ b b)
(∗ 4 .0 a c ) ) ) )

(/ (− (− b) d i s c )
(∗ 2 .0 a ) ) )

( d e f i n e ( so lve−quadrat ic−equat ion a b c ) ; ; Returns the non−negat ive s o l u t i o n to a
quadrat i c equat ion model led by a , b , and c .

( i f ( eq? a 0 . 0 ) ; ; I f a i s 0 , r e turn the s o l u t i o n to the equat ion 0 = c + bx
(/ (− c ) b)
( l e t

( ( posResult ( so lve−quadrat ic−equation− f i r s t a b c ) ) )
( i f (< posResult 0)

( so lve−quadrat ic−equation−second a b c )
posResult ) ) ) )

; ; I n i t i a l va lue s f o r the po s i t i on , v e l o c i t y , the a c c e l e r a t i o n o f both cars , and speed
l im i t s

( d e f i n e otherCar−pos− i n i t ( cons 9 .5 5 . 5 ) )
( d e f i n e otherCar−vel− i n i t ( cons −1.0 0 . 0 ) )
( d e f i n e otherCar−acc− i n i t ( cons 0 .0 0 . 0 ) )
( d e f i n e ourCar−pos− i n i t ( cons 5 .5 0 . 5 ) )
( d e f i n e ourCar−vel− i n i t ( cons 0 .0 1 . 0 ) )
( d e f i n e ourCar−acc− i n i t ( cons 0 .0 0 . 0 ) )
( d e f i n e pedes t r ian−pos− i n i t ( cons 6 .25 3 . 75 ) )
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( d e f i n e pedes t r ian−vel− i n i t ( cons 0 .0 0 . 25 ) )
( d e f i n e pedes t r ian−acc− i n i t ( cons 0 .0 0 . 0 ) )
( d e f i n e speedLimit 1 . 0 )

( d e f i n e ( id ea l−acc cur−pos cur−ve l goal−pos time )
(/ (− cur−pos ( car other−pos ) ) time ) ) ; ; Use the equat ion p = p0 + vt to s o l v e f o r

the i d e a l v e l o c i t y

( de f ine−s t a t e s ( ( i 1000000) )
otherCar−pos otherCar−pos− i n i t
otherCar−ve l otherCar−vel− i n i t
otherCar−acc otherCar−acc− i n i t
ourCar−pos ourCar−pos− i n i t
ourCar−ve l ourCar−vel− i n i t
ourCar−acc ourCar−acc− i n i t
pedes t r ian−pos pedes t r ian−pos− i n i t
pedes t r ian−ve l pedes t r ian−vel− i n i t
pedes t r ian−acc pedes t r ian−acc− i n i t
accelAmount 0 .0 ; ; The value used to update the other car ’ s a c c e l e r a t i o n
shiftAmount 0 .0 ; ; The value used to update the other car ’ s y−po s i t i o n when changing

l ane s
dec i s i onGoa l ’ notDecided
de c i s i onTac t i c ’ notDecided
pedestr ianAnswer ’unknown
stopSignAnswer ’unknown
t ra f f i cL i gh tAnswer ’unknown
tra f f i cL ightCo lourAnswer ’unknown
dec i s i onLane ’ notDecided
lTurnSigna l ’ o f f
rTurnSignal ’ o f f
turn ing ’ f a l s e
a r c l eng th 0 .0
otherCar−prog

( : begin
( : act obsChooseGoal ! ) ; ; Wil l the other car be turn ing l e f t , r i ght , or

t r a v e l l i n g s t r a i g h t ?
( : act obsChooseTactic ! ) ; ; Wil l the other car be speed ing up , s lowing down , or

cont inu ing at the speed l im i t ?
( : act ( obsPedest r ian ! pedestr ianAnswer ) ) ; ; I s the re a pede s t r i an ?
( : act ( obsStopSign ! stopSignAnswer ) ) ; ; I s the re a stop s i gn ?
( : act ( ob sTra f f i cL i gh t ! t r a f f i cL i gh tAnswer ) ) ; ; I s the re a t r a f f i c l i g h t ?
( : when ( eq? t ra f f i cL i gh tAnswer ’ yes )

( : act ( obsTra f f i cL ightCo lour ! t ra f f i cL ightCo lourAnswer ) ) ) ; ; What i s the
t r a f f i c l i gh t ’ s co l ou r ?

( : act ( obsAcce l e ra t e ! accelAmount ) )
( : act obsChooseLane ! ) ; ; Wil l the car be changing l ane s ?
( : act ( obsAcce l e ra t e ! accelAmount ) )
( : i f ( eq ? dec i s i onLane ’ l e f t )

( : begin
( : act obsLeftTurnSignal ! )
( : act ( ob sSh i f t ! shiftAmount ) )
( : act obsLeftTurnSignal ! ) )

( : act ( ob sSh i f t ! shiftAmount ) ) )
( : u n t i l (<= ( car otherCar−pos ) 6 . 0 ) ; ; Repeatedly a c c e l e r a t e un t i l the

i n t e r s e c t i o n i s reached .
( : act ( obsAcce l e ra t e ! accelAmount ) ) )

( : i f ( eq ? dec i s i onGoa l ’ turnRight )
( : act obsRightTurnSignal ! )
( : when ( eq? dec i s i onGoa l ’ turnLe f t )

( : act obsLeftTurnSignal ! ) ) )
( : i f ( eq ? dec i s i onGoa l ’ turnRight ) ; ; Turn un t i l the i n t e r s e c t i o n i s passed

( : u n t i l (>= ( cdr otherCar−pos ) 6 . 0 )
( : act obsTurn ! ) )

( i f ( eq? dec i s i onGoa l ’ turnLe f t )
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( : u n t i l (<= ( cdr otherCar−pos ) 4 . 0 )
( : act obsTurn ! ) )

( : u n t i l (<= ( car otherCar−pos ) 4 . 0 )
( : act obsTurn ! ) ) ) ) ) )

( de f ine−ac t i on obsChooseGoal ! #: s e qu en t i a l ? #t
dec i s i onGoa l (DISCRETE−GEN ’ forward 0 .33 ’ turnRight 0 .335 ’ turnLe f t 0 . 335 ) ; ; A l l

th ree behaviours are assumed to be equa l l y l i k e l y i n i t i a l l y

otherCar−prog ( l e t ∗ ( ( act ’ obsChooseGoal ! )
( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l otherCar−prog ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( equal ? otherCar−prog : f a i l )
0 . 0
weight ) )

( de f ine−ac t i on obsChooseTactic ! #: s e qu en t i a l ? #t
de c i s i onTac t i c (DISCRETE−GEN ’ speedUp 0 .33 ’ cont inue 0 .335 ’ slowDown 0 .335 ) ; ; A l l

th ree behaviours are assumed to be equa l l y l i k e l y i n i t i a l l y

otherCar−prog ( l e t ∗ ( ( act ’ obsChooseTactic ! )
( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l otherCar−prog ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( equal ? otherCar−prog : f a i l )
0 . 0
weight ) )

( de f ine−ac t i on ( obsPedest r ian ! answer ) #: s e qu en t i a l ? #t
pedestr ianAnswer answer

otherCar−prog ( l e t ∗ ( ( act ( l i s t ’ obsPedest r ian ! answer ) )
( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l otherCar−prog ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( equal ? otherCar−prog : f a i l ) ; ; Update sample weights based on the chosen
t a c t i c and whether or not a pede s t r i an was observed .

0 . 0
( i f ( eq? d e c i s i onTac t i c ’ speedUp )

(∗ weight (DISCRETE answer ’ yes 0 . 2 ’ no 0 . 8 ) )
( i f ( eq? d e c i s i onTac t i c ’ slowDown)

(∗ weight (DISCRETE answer ’ yes 0 .7 ’ no 0 . 3 ) )
( i f ( eq? d e c i s i onTac t i c ’ cont inue )

(∗ weight (DISCRETE answer ’ yes 0 . 1 ’ no 0 . 9 ) )
weight ) ) ) ) )

( de f ine−ac t i on ( obsStopSign ! answer ) #: s e qu en t i a l ? #t
stopSignAnswer answer

otherCar−prog ( l e t ∗ ( ( act ( l i s t ’ obsStopSign ! answer ) )
( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l otherCar−prog ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( equal ? otherCar−prog : f a i l ) ; ; Update sample weights based on the chosen
t a c t i c and whether or not a stop s i gn was observed .

0 . 0
( i f ( eq? d e c i s i onTac t i c ’ speedUp )

(∗ weight (DISCRETE answer ’ yes 0 .05 ’ no 0 . 95 ) )
( i f ( eq? d e c i s i onTac t i c ’ slowDown)
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(∗ weight (DISCRETE answer ’ yes 0 .9 ’ no 0 . 1 ) )
( i f ( eq? d e c i s i onTac t i c ’ cont inue )

(∗ weight (DISCRETE answer ’ yes 0 .05 ’ no 0 . 95 ) )
weight ) ) ) ) )

( de f ine−ac t i on ( ob sTra f f i cL i gh t ! answer ) #: s e qu en t i a l ? #t
t ra f f i cL i gh tAnswer answer

otherCar−prog ( l e t ∗ ( ( act ( l i s t ’ ob sTra f f i cL i gh t ! answer ) )
( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l otherCar−prog ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( equal ? otherCar−prog : f a i l )
0 . 0
(∗ weight (DISCRETE answer ’ yes 0 . 5 ’ no 0 . 5 ) ) ) ) ; ; There i s always a 50−50

chance o f the re being a t r a f f i c l i g h t

( de f ine−ac t i on ( obsTra f f i cL ightCo lour ! answer ) #: s e qu en t i a l ? #t
t ra f f i cL ightCo lourAnswer answer

otherCar−prog ( l e t ∗ ( ( act ( l i s t ’ ob sTra f f i cL ightCo lour ! answer ) )
( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l otherCar−prog ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( equal ? otherCar−prog : f a i l ) ; ; Update sample weights based on the chosen
t a c t i c and what co l ou r was observed from the t r a f f i c l i g h t .

0 . 0
( i f ( eq? d e c i s i onTac t i c ’ speedUp )

(∗ weight (DISCRETE answer ’ green 0 .75 ’ red 0 .05 ’ amber 0 . 2 ) )
( i f ( eq? d e c i s i onTac t i c ’ slowDown)

(∗ weight (DISCRETE answer ’ green 0 .05 ’ red 0 .5 ’ amber 0 . 45 ) )
( i f ( eq? d e c i s i onTac t i c ’ cont inue )

(∗ weight (DISCRETE answer ’ green 0 .85 ’ red 0 .05 ’ amber
0 . 1 ) )

weight ) ) ) ) )

( de f ine−ac t i on ( obsAcce l e ra t e ! amount ) #: s e qu en t i a l ? #t
accelAmount amount

otherCar−prog ( l e t ∗ ( ( act ( l i s t ’ obsAcce l e ra t e ! amount ) )
( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l otherCar−prog ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

otherCar−acc ( cons (+ ( car otherCar−acc ) accelAmount ) ( cdr otherCar−acc ) ) ; ;
I n c r e a s e the other car ’ s a c c e l e r a t i o n by accelAmount

otherCar−ve l ( cons (+ ( car otherCar−ve l ) ( car otherCar−acc ) ) (+ ( cdr otherCar−ve l ) (
cdr otherCar−acc ) ) )

otherCar−pos ( cons (+ ( car otherCar−pos ) ( car otherCar−ve l ) ) (+ ( cdr otherCar−pos ) (
cdr otherCar−ve l ) ) )

ourCar−ve l ( cons (+ ( car ourCar−ve l ) ( car ourCar−acc ) ) (+ ( cdr ourCar−ve l ) ( cdr
ourCar−acc ) ) )

ourCar−pos ( cons (+ ( car ourCar−pos ) ( car ourCar−ve l ) ) (+ ( cdr ourCar−pos ) ( cdr
ourCar−ve l ) ) )

pedes t r ian−ve l ( cons (+ ( car pedes t r ian−ve l ) ( car pedes t r ian−acc ) ) (+ ( cdr
pedes t r ian−ve l ) ( cdr pedes t r ian−acc ) ) )
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pedest r ian−pos ( cons (+ ( car pedes t r ian−pos ) ( car pedes t r ian−ve l ) ) (+ ( cdr
pedes t r ian−pos ) ( cdr pedes t r ian−ve l ) ) )

weight ( i f ( equal ? otherCar−prog : f a i l ) ; ; Update the sample weight us ing a Gaussian
d i s t r i b u t i o n centred on the expected v e l o c i t y f o r that sample ’ s chosen goa l

0 . 0
( i f ( eq? d e c i s i onTac t i c ’ speedUp )

(∗ weight (GAUSSIAN ( car otherCar−ve l ) (− (+ speedLimit 2 . 0 ) ) 0 . 5 ) ) ; ;
Taking the negat ive o f the speed l im i t formula due to the car
t r a v e l l i n g in the negat ive d i r e c t i o n .

( i f ( eq? d e c i s i onTac t i c ’ cont inue )
(∗ weight (GAUSSIAN ( car otherCar−ve l ) (− speedLimit ) 0 . 5 ) )
( i f ( eq? d e c i s i onTac t i c ’ slowDown)

(∗ weight (GAUSSIAN ( car otherCar−ve l ) (− (− speedLimit 2 . 0 ) )
0 . 5 ) )

weight ) ) ) ) )

( de f ine−ac t i on obsChooseLane ! #: s e qu en t i a l ? #t
dec i s i onLane ( i f ( eq? dec i s i onGoa l ’ forward ) ; ; Each lane has a d i f f e r e n t p r obab i l i t y

depending on the chosen goa l
(DISCRETE−GEN ’ l e f t 0 . 6 ’ r i g h t 0 . 4 )
( i f ( eq? dec i s i onGoa l ’ turnLe f t )

(DISCRETE−GEN ’ l e f t 0 .95 ’ r i g h t 0 . 05 )
( i f ( eq? dec i s i onGoa l ’ turnRight )

(DISCRETE−GEN ’ l e f t 0 .05 ’ r i g h t 0 . 95 )
dec i s i onLane ) ) )

otherCar−prog ( l e t ∗ ( ( act ’ obsChooseLane ! )
( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l otherCar−prog ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( equal ? otherCar−prog : f a i l )
0 . 0
weight ) )

( de f ine−ac t i on obsLeftTurnSignal ! #: s e qu en t i a l ? #t ; ; Switch the l e f t turn s i g n a l
between the ”on” and ” o f f ” p o s i t i o n s

lTurnSigna l ( i f ( eq? lTurnSigna l ’ on )
’ o f f
’ on )

otherCar−prog ( l e t ∗ ( ( act ’ obsLeftTurnSignal ! )
( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l otherCar−prog ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( equal ? otherCar−prog : f a i l )
0 . 0
weight ) )

( de f ine−ac t i on obsRightTurnSignal ! #: s e qu en t i a l ? #t ; ; Switch the r i g h t turn s i g n a l
between the ”on” and ” o f f ” p o s i t i o n s

rTurnSignal ( i f ( eq? rTurnSignal ’ on )
’ o f f
’ on )

otherCar−prog ( l e t ∗ ( ( act ’ obsRightTurnSignal ! )
( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l otherCar−prog ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

weight ( i f ( equal ? otherCar−prog : f a i l )
0 . 0
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weight ) )

( de f ine−ac t i on ( ob sSh i f t ! amount ) #: s e qu en t i a l ? #t
shiftAmount amount

otherCar−prog ( l e t ∗ ( ( act ( l i s t ’ ob sSh i f t ! amount ) )
( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l otherCar−prog ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

otherCar−ve l ( cons (+ ( car otherCar−ve l ) ( car otherCar−acc ) ) (+ ( cdr otherCar−ve l ) (
cdr otherCar−acc ) ) )

otherCar−pos ( cons (+ ( car otherCar−pos ) ( car otherCar−ve l ) ) (+ ( cdr otherCar−pos ) (
cdr otherCar−ve l ) amount ) )

ourCar−ve l ( cons (+ ( car ourCar−ve l ) ( car ourCar−acc ) ) (+ ( cdr ourCar−ve l ) ( cdr
ourCar−acc ) ) )

ourCar−pos ( cons (+ ( car ourCar−pos ) ( car ourCar−ve l ) ) (+ ( cdr ourCar−pos ) ( cdr
ourCar−ve l ) ) )

pedes t r ian−ve l ( cons (+ ( car pedes t r ian−ve l ) ( car pedes t r ian−acc ) ) (+ ( cdr
pedes t r ian−ve l ) ( cdr pedes t r ian−acc ) ) )

pedes t r ian−pos ( cons (+ ( car pedes t r ian−pos ) ( car pedes t r ian−ve l ) ) (+ ( cdr
pedes t r ian−pos ) ( cdr pedes t r ian−ve l ) ) )

weight ( i f ( equal ? otherCar−prog : f a i l ) ; ; Update the sample weight us ing a Gaussian
d i s t r i b u t i o n centred on the expected po s i t i o n o f the other car , based on the

chosen lane
0 .0
( i f ( eq? dec i s i onLane ’ l e f t )

(∗ weight (GAUSSIAN ( cdr otherCar−pos ) 4 . 5 0 . 125 ) )
( i f ( eq? dec i s i onLane ’ r i g h t )

(∗ weight (GAUSSIAN ( cdr otherCar−pos ) 5 . 5 0 . 125 ) )
weight ) ) ) )

( de f ine−ac t i on obsTurn ! #: s e qu en t i a l ? #t ; ; Use s p l i n e s to t r a n s i t i o n the other car
through the i n t e r s e c t i o n

otherCar−prog ( l e t ∗ ( ( act ’ obsTurn ! )
( possConf ig s ( ergo−do #:mode ’ o f f l i n e S t e pCo l l otherCar−prog ) )
( c on f i g ( a s soc act possConf ig s ) ) )
( i f c on f i g ( cadr c on f i g ) : f a i l ) )

otherCar−ve l ( cons (+ ( car otherCar−ve l ) ( car otherCar−acc ) ) (+ ( cdr otherCar−ve l ) (
cdr otherCar−acc ) ) ) ; Note that s i n c e the s imu la t i on ends once the car has
f i n i s h e d turning , we don ’ t need to concern ou r s e l v e s with updating the d i r e c t i o n
o f the other car ’ s v e l o c i t y / a c c e l e r a t i o n

a r c l eng th (+ arc l eng th ( abs ( car otherCar−ve l ) ) ) ; ; Travel a long the s p l i n e at a
constant speed

otherCar−pos ( i f ( not ( eq? weight 0 . 0 ) )
( i f ( eq? dec i s i onGoa l ’ turnRight )

( begin
(when ( eq? turn ing ’ f a l s e )

( i n i t i a l i z e −s p l i n e otherCar−pos ( cons 5 .5 6 . 0 ) ( cons −1.0
0 . 0 ) ( cons 0 .0 1 . 0 ) ) ) ; ; I n i t i a l i z e the s t a r t and end
po in t s o f the s p l i n e f o r turn ing r i g h t

( get−point a r c l eng th ) ) ; ; Travel a long the s p l i n e
( i f ( eq? dec i s i onGoa l ’ turnLe f t )

( begin
(when ( eq? turn ing ’ f a l s e )
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( i n i t i a l i z e −s p l i n e otherCar−pos ( cons 4 .5 4 . 0 ) ( cons
−1.0 0 . 0 ) ( cons 0 .0 −1.0) ) ) ; ; I n i t i a l i z e the s t a r t
and end po in t s o f the s p l i n e f o r turn ing l e f t

( get−point a r c l eng th ) ) ; ; Travel a long the s p l i n e
( cons (+ ( car otherCar−pos ) ( car otherCar−ve l ) ) (+ ( cdr

otherCar−pos ) ( cdr otherCar−ve l ) ) ) ) ) ; ; I f the car i sn ’ t
turning , s imply have i t move forward at i t s cur r ent speed

otherCar−pos )

turn ing ’ t rue ; ; Used to prevent the s p l i n e from being i n i t i a l i z e d at every time
step

ourCar−ve l ( cons (+ ( car ourCar−ve l ) ( car ourCar−acc ) ) (+ ( cdr ourCar−ve l ) ( cdr
ourCar−acc ) ) )

ourCar−pos ( cons (+ ( car ourCar−pos ) ( car ourCar−ve l ) ) (+ ( cdr ourCar−pos ) ( cdr
ourCar−ve l ) ) )

pedes t r ian−ve l ( cons (+ ( car pedes t r ian−ve l ) ( car pedes t r ian−acc ) ) (+ ( cdr
pedes t r ian−ve l ) ( cdr pedes t r ian−acc ) ) )

pedes t r ian−pos ( cons (+ ( car pedes t r ian−pos ) ( car pedes t r ian−ve l ) ) (+ ( cdr
pedes t r ian−pos ) ( cdr pedes t r ian−ve l ) ) )

weight ( i f ( equal ? otherCar−prog : f a i l )
0 . 0
weight ) )

( d e f i n e ( d i sp l ayVa l s )
( p r i n t f ”( sample−mean otherCar−pos .X) r e tu rn s ˜ s ˜n” ( sample−mean ( car otherCar−pos ) )

)
( p r i n t f ”( sample−mean otherCar−pos .Y) r e tu rn s ˜ s ˜n” ( sample−mean ( cdr otherCar−pos ) )

)
( p r i n t f ”( sample−mean otherCar−ve l .X) r e tu rn s ˜ s ˜n” ( sample−mean ( car otherCar−ve l ) )

)
( p r i n t f ”( sample−mean otherCar−ve l .Y) r e tu rn s ˜ s ˜n” ( sample−mean ( cdr otherCar−ve l ) )

)
( p r i n t f ”( sample−mean otherCar−acc .X) r e tu rn s ˜ s ˜n” ( sample−mean ( car otherCar−acc ) )

)
( p r i n t f ”( sample−mean otherCar−acc .Y) r e tu rn s ˜ s ˜n” ( sample−mean ( cdr otherCar−acc ) )

)
( p r i n t f ”( sample−mean ourCar−pos .X) r e tu rn s ˜ s ˜n” ( sample−mean ( car ourCar−pos ) ) )
( p r i n t f ”( sample−mean ourCar−pos .Y) r e tu rn s ˜ s ˜n” ( sample−mean ( cdr ourCar−pos ) ) )
( p r i n t f ”( sample−mean ourCar−ve l .X) r e tu rn s ˜ s ˜n” ( sample−mean ( car ourCar−ve l ) ) )
( p r i n t f ”( sample−mean ourCar−ve l .Y) r e tu rn s ˜ s ˜n” ( sample−mean ( cdr ourCar−ve l ) ) )
( p r i n t f ”( sample−mean ourCar−acc .X) r e tu rn s ˜ s ˜n” ( sample−mean ( car ourCar−acc ) ) )
( p r i n t f ”( sample−mean ourCar−acc .Y) r e tu rn s ˜ s ˜n” ( sample−mean ( cdr ourCar−acc ) ) )
( p r i n t f ”( sample−mean pedes t r ian−pos .X) r e tu rn s ˜ s ˜n” ( sample−mean ( car pedes t r ian−

pos ) ) )
( p r i n t f ”( sample−mean pedes t r ian−pos .Y) r e tu rn s ˜ s ˜n” ( sample−mean ( cdr pedes t r ian−

pos ) ) )
( p r i n t f ”( sample−mean pedes t r ian−ve l .X) r e tu rn s ˜ s ˜n” ( sample−mean ( car pedes t r ian−

ve l ) ) )
( p r i n t f ”( sample−mean pedes t r ian−ve l .Y) r e tu rn s ˜ s ˜n” ( sample−mean ( cdr pedes t r ian−

ve l ) ) )
( p r i n t f ”( sample−mean pedes t r ian−acc .X) r e tu rn s ˜ s ˜n” ( sample−mean ( car pedes t r ian−

acc ) ) )
( p r i n t f ”( sample−mean pedes t r ian−acc .Y) r e tu rn s ˜ s ˜n” ( sample−mean ( cdr pedes t r ian−

acc ) ) )
( p r i n t f ”( b e l i e f ( eq? dec i s i onGoa l ’ notDecided ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

dec i s i onGoa l ’ notDecided ) ) )
( p r i n t f ”( b e l i e f ( eq? dec i s i onGoa l ’ turnRight ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

dec i s i onGoa l ’ turnRight ) ) )
( p r i n t f ”( b e l i e f ( eq? dec i s i onGoa l ’ turnLe f t ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?
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dec i s i onGoa l ’ tu rnLe f t ) ) )
( p r i n t f ”( b e l i e f ( eq? dec i s i onGoa l ’ forward ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

dec i s i onGoa l ’ forward ) ) )
( p r i n t f ”( b e l i e f ( eq? d e c i s i onTac t i c ’ notDecided ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

d e c i s i onTac t i c ’ notDecided ) ) )
( p r i n t f ”( b e l i e f ( eq? d e c i s i onTac t i c ’ speedUp ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

d e c i s i onTac t i c ’ speedUp ) ) )
( p r i n t f ”( b e l i e f ( eq? d e c i s i onTac t i c ’ cont inue ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

d e c i s i onTac t i c ’ cont inue ) ) )
( p r i n t f ”( b e l i e f ( eq? d e c i s i onTac t i c ’ slowDown) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

d e c i s i onTac t i c ’ slowDown) ) )
( p r i n t f ”( b e l i e f ( eq? pedestr ianAnswer ’unknown) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

pedestr ianAnswer ’unknown) ) )
( p r i n t f ”( b e l i e f ( eq? pedestr ianAnswer ’ yes ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

pedestr ianAnswer ’ yes ) ) )
( p r i n t f ”( b e l i e f ( eq? pedestr ianAnswer ’ no ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

pedestr ianAnswer ’ no ) ) )
( p r i n t f ”( b e l i e f ( eq? stopSignAnswer ’unknown) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

stopSignAnswer ’unknown) ) )
( p r i n t f ”( b e l i e f ( eq? stopSignAnswer ’ yes ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

stopSignAnswer ’ yes ) ) )
( p r i n t f ”( b e l i e f ( eq? stopSignAnswer ’ no ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq? stopSignAnswer

’ no ) ) )
( p r i n t f ”( b e l i e f ( eq? t r a f f i cL i gh tAnswer ’unknown) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

t ra f f i cL i gh tAnswer ’unknown) ) )
( p r i n t f ”( b e l i e f ( eq? t r a f f i cL i gh tAnswer ’ yes ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

t ra f f i cL i gh tAnswer ’ yes ) ) )
( p r i n t f ”( b e l i e f ( eq? t r a f f i cL i gh tAnswer ’ no ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

t ra f f i cL i gh tAnswer ’ no ) ) )
( p r i n t f ”( b e l i e f ( eq? t ra f f i cL ightCo lourAnswer ’unknown) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

t ra f f i cL ightCo lourAnswer ’unknown) ) )
( p r i n t f ”( b e l i e f ( eq? t ra f f i cL ightCo lourAnswer ’ red ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

t ra f f i cL ightCo lourAnswer ’ red ) ) )
( p r i n t f ”( b e l i e f ( eq? t ra f f i cL ightCo lourAnswer ’ green ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

t ra f f i cL ightCo lourAnswer ’ green ) ) )
( p r i n t f ”( b e l i e f ( eq? t ra f f i cL ightCo lourAnswer ’ amber ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

t ra f f i cL ightCo lourAnswer ’ amber ) ) )
( p r i n t f ”( b e l i e f ( eq? dec i s i onLane ’ notDecided ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq?

dec i s i onLane ’ notDecided ) ) )
( p r i n t f ”( b e l i e f ( eq? dec i s i onLane ’ l e f t ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq? dec i s i onLane ’

l e f t ) ) )
( p r i n t f ”( b e l i e f ( eq? dec i s i onLane ’ r i g h t ) ) r e tu rn s ˜ s ˜n” ( b e l i e f ( eq? dec i s i onLane

’ r i g h t ) ) ) )

( d e f i n e observeUpdtLoop
( : whi l e #t

(:>> ( d i sp l ayVa l s ) )
( : wait )
(:>> ( p r i n t f ”Exogenous Action Received ˜n”) ) ) )

( de f ine−i n t e r f a c e ’ out write−endogenous )

( de f ine−i n t e r f a c e ’ in
( l e t ( ( por t s ( open−tcp−s e r v e r 8678) ) )

( d i s p l a y l n ”Ready to r e c e i v e exogenous a c t i on s ! ” ( cadr por t s ) )
( lambda ( ) ( d i sp l ay ”Act : ” ( cadr por t s ) ) ( read ( car por t s ) ) ) ) )

( d e f i n e (main )
( ergo−do #:mode ’ on l i n e observeUpdtLoop ) )
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