A SYSTEM FOR PLAN RECOGNITION IN DISCRETE AND CONTINUOUS DOMAINS

ALISTAIR SCHEUHAMMER

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

GRADUATE PROGRAM IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
YORK UNIVERSITY
TORONTO, ONTARIO
JANUARY 2022

(© Alistair Scheuhammer, 2022

Abstract

For my thesis I seek to implement a programming framework which can be used to model and solve plan
recognition problems. My primary goal for this system is for it to be able to easily handle continuous
probability spaces as well as discrete ones. My framework is based primarily on the probabilistic situation
calculus developed by Belle and Levesque, and is an extension of a programming language developed by
Levesque called Ergo. The system I have built allows one to specify complex domains and dynamic models
at a high-level and is written in a language which is user-friendly and easy to understand. It has strong
formal foundations, can be used to compare multiple different plan recognition methods, and makes it easier
to perform plan recognition in tandem with other forms of reasoning, such as threat assessment, reasoning
about action, and planning to respond to the actions performed by the observed agent.

ii

Table of Contents

Abstract

Table of Contents

List of Tables

List of Figures

1

Introduction

1.1 Overview o o o

1.2 Contributions

1.3 Outline e

Plan Recognition

2.1 Related Work e
2.1.1 Early Work e
2.1.2 Plan Recognition in Continuous Domains
2.1.3 Modelling Uncertainty and Change in the Situation Calculus
2.1.4 Agent Programming in the Situation Calculus.
2.1.5 Plan Recognition in the Situation Calculus

Syntax and Semantics of Ergo

3.1 BAT Semantics o o e e

3.2 Program Semantics e e

3.3 Syntax of Ergo Programs

Ergo4PPR

4.1 Implementation Details e

4.2 Syntax . ..o e

Case Studies

5.1 Examples e
5.1.1 Example 1 - Jewelry Store
5.1.2 Example 2 - Robot with Multiple Goals
5.1.3 Example 3 - Intersectiono

5.2 Experimental Evaluation L L
5.2.1 Computational Performance o
5.2.2 Accuracy Tests
5.2.3 Additional Tests

Conclusion and Future Work

iii

ii

iii

vi

RSy

© 00~ O UL U

16
16
17

25
25
25
26
27
30
30
42
45

50

Bibliography 54

A Appendices 56
A.1 Complete Code of the Target Shooting Example 57
A.2 Complete Code of the Jewelry Store Example 62
A.3 Complete Code of the Robot with Multiple Goals Example 67

A31 Utilsisscm . .o o oo e 67
A.3.2 RandomEnvironmentGen.scm oL oL 67
A.3.3 AStarFinal.scm L e e 68
A.3.4 Discretize.SCcm e e e e 70
A.3.5 OptimalPathProbability.scm 70
A.3.6 MaximumDistanceProbability.scm Lo 71
A.3.7 OrientationDistanceProbability.sem oo o 72
A.3.8 robotOptimal.scm 73
A.3.9 robotOptimalNoise.Scm e e e 73
A.3.10 robotRandom.scim e 74
A.3.11 Main Program L 74
A.4 Complete Code of the Intersection Example 79
A4l Utils.scm o e e e e e 79
A42 Splines.scmo e 79
A43 Main Program e 80

iv

List of Tables

4.1

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

Sample Ergo Syntax 18
Effect of Goals on Running Time (Random Robot), 40
Effect of Goals on Running Time (Optimal Robot), 40
Effect of Goals on Running Time (Optimal Robot (£ 10 Degrees Noise)) 40
Effect of Obstacles on Running Time (Random Robot) 40
Effect of Obstacles on Running Time (Optimal Robot) 40
Effect of Obstacles on Running Time (Optimal Robot (£ 10 Degrees Noise)) 40
Effect of States on Running Time (Random Robot) 40
Effect of States on Running Time (Optimal Robot) 41
Effect of States on Running Time (Optimal Robot (£ 10 Degrees Noise)) 41
Degree of Belief that the Agent is Intending to Aim at Target 1 43
Degree of Belief that the Agent is Intending to Aim at Target 2 43
Degree of Belief that the Agent is Intending to Aim at Target 3 43
Degree of Belief that the Agent is Aiming at Target 1 43
Degree of Belief that the Agent is Aiming at Target 2 43
Degree of Belief that the Agent is Aiming at Target 3 44
Comparison Test Results e 48

List of Figures

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Diagram of the Intersection Example oo 29
Effects of Number of Goals, Part 1 34
Effects of Number of Goals, Part 2 35
Effects of Number of Obstacles, Part 1 36
Effects of Number of Obstacles, Part 2 37
Effects of Number of States, Part 1 o 38
Effects of Number of States, Part 2 39

vi

1 Introduction

1.1 Overview

Plan/goal recognition is a sub-field of Artificial Intelligence focussed on identifying an observed Al agent’s
intention, based on the behaviour observed so far. Plan recognition has many useful applications, including
computer games and security. Plan recognition problems (and AI problems in general) can be modelled
in both continuous and discrete spaces, but as it stands, most of the existing work in the field of artificial
intelligence is focussed primarily on discrete spaces. The system I have developed seeks to provide a frame-
work in which plan recognition problems can be easily modelled and solved, regardless of whether or not the
problem features a discrete or a continuous space. This framework allows one to specify complex domains
and dynamic models at a high-level and in a user-friendly, easy-to-understand language. It has strong formal
foundations and can be used to compare the performance of multiple different methods of plan recognition.
It also makes it easy to perform plan recognition in tandem with other forms of reasoning, including threat
assessment, reasoning about action, and making plans to respond to the actions performed by the observed
agent. For example, one could design a system representing a parking lot where each car is an Al agent,
with one car being the ”primary agent”; in such a situation, my system could be used to model observing
the behaviour of other cars as a plan recognition problem, and the system’s beliefs regarding the other cars’
intentions could then fuel the primary car’s planner, using those predicted intentions to plan its own path

through the lot.

1.2 Contributions
The contributions of this thesis are as follows:

1. A framework for modelling both plan and goal recognition problems in the probabilistic situation
calculus developed by Hector J. Levesque and Vaishak Belle [3, 4] which can handle both continuous
and discrete probability spaces with equal ease. This framework views plan/goal recognition as a

form of Bayesian belief update, and can specify complex stochastic domains at a high level through

a user-friendly language. An observed agent’s plan library can be specified in this framework using a

high-level non-deterministic programming language.

2. An implementation of said framework built on top of Ergo, a variant of the agent programming language
Golog. This implementation can be used to perform plan/goal recognition, and uses Ergo to perform

approximate Bayesian inference through Monte Carlo sampling.

3. Various experimental problems and benchmarks featuring both discrete and continuous distributions
as a sort of showcase of what kinds of problems can be modelled and solved in my system, including one
in which the observed agent is a customer in a jewelry store and the system is tasked with predicting
whether or not they are there to steal something, buy something, or just browsing the store; one in
which the observed agent is a robot moving through an environment and the system is tasked with
predicting which of several potential goal destinations is the robot’s actual target destination; and
one in which the observed agent is a car approaching an intersection and the system is tasked with
predicting both where they are planning on going after passing through the intersection and whether

they plan on speeding up, slowing down, or continuing at a constant speed to get there.

4. Various statistical evaluations of the system, primarily for the purposes of measuring how different
parameters affect the system’s running time and accuracy, whilst also comparing the system’s perfor-

mance to existing work.

Ergo, the language my system is largely built on top of, was developed by Hector J. Levesque [22] and
is based heavily on the probabilistic situation calculus developed by him and Vaishak Belle [3, 4]. T have
received a significant amount of assistance in building my system from my supervisors, Petros Faloutsos and
Yves Lespérance. Yves in particular has been very directly involved in the creation of many of the sample
problems I have modelled in my system, and has also developed some new execution modes for Ergo which
my system heavily relies on. Some of the strategies I have used to solve sample plan recognition problems

were also partially inspired by work done by Gal A. Kaminka, Mor Vered, and Noah Agmon [19].
1.3 Outline

Chapter 2 features some necessary background information clarifying just what the field of plan recognition
is, the distinction between continuous and discrete spaces, and how that distinction relates to my thesis.

The chapter then also features a discussion of existing work in the field and how my work expands on that

existing work. Chapter 3 features a discussion of the syntax and semantics of Ergo, the language upon
which my system is built. It is divided into the three sections; the first discusses the semantics of what’s
called a "Basic Action Theory” (a formalism for representing dynamic domains that Ergo is built around),
the second discusses the semantics of Ergo programs themselves, and the third discusses the syntax of Ergo
programs. Chapter 4 goes into detail on the syntax and semantics of my own system, ErgodPPR, explaining
how some of the relevant functions behave by way of example. Chapter 5 discusses various sample problems
that I have already modelled and solved in ErgodPPR, then provides statistical data I gathered on the
performance of the system on these problems, primarily in terms of runtime and accuracy. I also replicate
an algorithm developed by Kaminka et al and run a statistical evaluation on it similar to their own for the
sake of comparison. Finally, chapter 6 summarizes some final thoughts on the system and discusses various

ways my work could hypothetically be expanded upon in the future.

2 Plan Recognition

Plan Recognition is a sub-field of Artificial Intelligence wherein the focus is primarily on predicting the
intended actions of an AI agent, rather than planning out a sequence of actions for an Al agent to follow.
Keyhole plan recognition is a specific type of plan recognition wherein the system is observing an agent which
is unaware that it is being observed, as if the agent is being observed from another room through a keyhole;
as a result, the information gleaned from said agent’s behaviour is non-interactive and frequently incomplete.
Every plan recognition problem discussed in this paper is technically a keyhole plan recognition problem.
Goal recognition, also known as intention recognition, is a related field and a special case; the primary
distinction between plan recognition and goal recognition is that goal recognition is specifically focussed
on predicting the agent’s goal, while plan recognition is instead more generally focussed on predicting the
entirety of the observed agent’s intended plan. For example, if the agent in question were a car trying to
find a space in a parking lot, goal recognition would be focussed on predicting which parking space the car
will ultimately park in, while plan recognition would instead concern itself with predicting the car’s entire
path through the parking lot including the final destination. For the sake of simplicity, in this paper the
term “plan recognition” will be used as a blanket term including the field of goal recognition.

The input to a plan recognition problem consists of a) a set of possible plans or goals that the observed
may follow/try to achieve, or alternatively a prior probability distribution over the set of possible plans/goals;
b) some beliefs about the initial state of the world (including information which is known to be true with
100% certainty); c) an outline of every action the observed agent can perform, including information about
pre-conditions that must be met for that action to be performed and the possible outcomes of performing
that action, with those outcomes potentially including how that action affects the probability distributions
representing the system’s current beliefs; and d) a sequence of observations (which may or not be noisy)
representing the specific sequence of actions performed by the observed agent. Using this information, the
system’s goal is to determine which of the possible plans/goals the observed agent is most likely follow-

ing/aiming for; this output would constitute the posterior probability distribution over the plans/goals if the

system were formulated as a Bayesian inference problem, and would typically be provided and updated after
every observed action is processed by the system. For example, going off the parking lot example described
above, the input might be a) either a list of every parking space in the lot (potentially along with the initial
likelihood of that space being the observed car’s desired space), or a list of every path the observed car
might take through the lot (again, potentially along with an initial likelihood for each path); b) the location
of every car and parking space currently in the lot, including their location and information about which
parking spaces are already occupied and which aren’t; ¢) information about what actions the observed car
may perform as they manoeuvre through the lot (driving forward, honking the horn, turning, etc.) and their
effects on the world; and d) the sequence of actions performed by the observed car as it tries to find a parking
space, while the output might be a probability value for each parking space representing the likelihood of
that parking space being the one the observed car is trying to get to, or the same for a set of paths the
observed car may be intending to follow.

Plan Recognition is a very active research area [29, 16] and has many applications. These include
human robot interaction [30], cognitive assistance [10], computer games [6], and security [18]. In many plan
recognition problems, noise and uncertainty play a major role. Most obviously, there is uncertainty in regards
to the plans/goals the observed agent has chosen to pursue, but there can also be noise in the observations
themselves, such as due to imperfect motors on the observed agent’s part (i.e. say the agent intends to move
5 feet forward but winds up moving 5 and a half feet instead by mistake) or due to inaccurate sensors on

the observer’s part that can’t measure observations with 100% precision.

2.1 Related Work

2.1.1 Early Work

Much of the early work in the field of plan recognition was not probabilistic in nature, instead being focussed
on determining an agent’s goal or plan without estimating the likelihood of the hypothesis [21, 20, 1].
However, over time, probabilistic approaches became more and more common. Some of these include [9],
who argued that plan recognition was an abductive reasoning problem and could be solved using Bayesian
probabilistic inference, and [8], who showed that plan recognition could also be solved using Hidden Markov
Models (HMM, often used in signal processing). These days, much of the work has shifted to probabilistic
models, such as [13], who presented an algorithm for solving plan recognition problems based on a model of
plan execution, and [12], who defined what it means for an agent to be in the process of performing an action.

One particularly notable development was that of [26, 27], who developed a ”plan-recognition-as-planning”

approach. The basic idea of this is that, for every goal an agent could possibly have, a pre-existing Al
planner is used to generate an optimal plan taking the observed agent to that goal. Then, as the agent
begins performing actions, the sequence of actions it has performed so far is compared to the sequences
corresponding to these optimal plans, and probability values are generated for each goal based on the degree
to which the agent’s actions matches each plan, with the most likely goal being the one for which the agent’s

actions comes closest to matching those of that goal’s optimal plan.

2.1.2 Plan Recognition in Continuous Domains

Today, most of the existing work in the field focusses specifically on plan recognition in discrete domains,
where every aspect of the world (including the probability distribution functions in particular) is given a
discrete representation. However, many application areas (such as robotics and autonomous vehicles) in-
volve either continuous spaces or spaces with both discrete and continuous elements. In a continuous space,
aspects of the world are instead represented with an uncountably infinite range of values. Mathematically,
probability distribution functions in discrete domains are summed over a range of possible values to produce
the probability that a random variable falls within that range; by contrast, continuous domains use integra-
tion over probability density functions to accomplish the same thing. This can be challenging to represent
perfectly via a computer program, and often some level of discretization (i.e. converting a continuous model
to a discrete one) must be used. At present, though, very little work exists in the field of plan recognition

in continuous spaces compared to discrete spaces.

Most of the notable pre-existing work that does exist in the field of plan recognition in continuous spaces
was conducted by Gal Kaminka, Mor Vered, and Noa Agmon [19, 31] who developed a method for plan
recognition (including goal recognition) in continuous spaces which involves comparing the actions an agent
has executed to plans generated using pre-computed off-the-shelf planners. This is in turn based heavily off of
the “plan-recognition-as-planning” approach of Ramirez and Geffner [26, 27]. While Ramirez and Geffner’s
method was designed specifically for systems using discrete probability distributions, Kaminka et al. worked
to adapt it to allow for continuous distributions as well. Another result of Kaminka et al.’s work on plan
recognition in continuous spaces is the discovery that any plan recognition problem in a continuous space can
be sufficiently represented by an equivalent problem in a discrete space so long as the discretization level is
sufficiently small [19]. Therefore, one can feel free to represent the continuous probability space of any plan

recognition problem as a discrete space without worrying about information being lost in the discretization

process, provided their system can adapt its discretization level to the specific problem it has been given.
The primary factor distinguishing my work from that of Kaminka et al. is that my work is focussed on
developing a general system in which plan recognition problems can be easily modelled and solved using
continuous and discrete probability spaces, whereas the work done by Kaminka et al. is focussed more on
developing specific methods for solving plan recognition problems in continuous spaces. One could easily use
my system to model a plan recognition problem and then solve it using the methods developed by Kaminka

et al., or one could solve it using another method entirely if they so chose.

2.1.3 Modelling Uncertainty and Change in the Situation Calculus

Another thing worth noting is much of the existing work in the field of plan recognition has focussed more
on algorithms than it has representation; this is the case with the work done by Kaminka et al. Many
simplifying assumptions are also typically made about domains and plan structure. As an example, it is
often assumed that events in the world happen sequentially, i.e. no two events happen concurrently. In the
more general field of reasoning about action, meanwhile, a lot more work has been done on crafting logical
frameworks for representing and reasoning about dynamic domains. Much of this work is set in the situation
calculus [25, 28] and addresses issues such as solving the frame problem, concurrency, sensing, and more
[28]. High-level agent programming languages such as Golog [23] and ConGolog [14] have been developed
(and will be discussed more thoroughly in the next section), and the situation calculus has been extended
to take into account noisy sensors and actuators and to support reasoning about uncertainty using Bayesian
probabilistic models. This framework supports both discrete domains [2] and hybrid discrete-and-continuous
domains [5], is based on first-order logic, and can handle infinite domains. It also supports complex noisy

action models with effects that depend on context.

The system I have built is very heavily based on pre-existing planning systems built by Hector J. Levesque
and Vaishak Belle. While the work done by Belle and Levesque is not specifically focussed on the field of
plan recognition, it nonetheless serves as solid base for my work due to their work being heavily focussed
on modelling uncertainty in the situation calculus with both discrete and continuous probabilistic spaces.
All of the languages developed by Belle and Levesque were built on top of Racket Scheme. The first lan-
guage they developed was called Prego [3]. Prego modelled uncertainty using fluents (effectively variables
which represent values that can change over time) and actions which can affect the values of fluents. More

specifically, any given fluent would be given an initial, either discrete or continuous, set of possible values

according to some probability distribution (note that it can be such that a given fluent simply has a 100%
chance of being given some specific value). Every action would then affect the probability distributions of
some number of fluents, as appropriate. Belief updates in Prego were computed using something called
“logical regression”; given a situation-suppressed expression e (which could possibly be a belief expression)
and an action sequence o, an equivalent expression €’ can be obtained such that the value of €’ in the initial

situation is equal to value of e in the situation resulting from executing ¢ in the initial situation.

2.1.4 Agent Programming in the Situation Calculus

Another important language in the field of plan recognition is Golog. Golog was an agent programming
language developed by Hector J. Levesque et al. in the late 1990s [23], originally implemented in Prolog.
Golog was built to model a dynamic world which an AT agent could interact with, and the main point of in-
terest distinguishing Golog from similar languages was that it allowed agent behaviour to be described using
programs at a higher-level of abstraction than what existed previously. These programs contained high-level
actions whose pre-conditions and effects were specified by an action theory, and the Golog interpreter could
reason about the effects of these actions to find successful executions of non-deterministic programs. Con-
Golog [14], meanwhile, is an extension of Golog which incorporates concurrency, allowing multiple different
actions to occur simultaneously. Another extension of Golog called DTGolog exists [7], which, when given a

non-deterministic program, determines the optimal method of executing that program.

Golog was an instrumental component in the next language Belle and Levesque worked on, known as Allegro
[4]. By including the agent programming functionality of Golog wherein the program’s tests are evaluated
against the agent’s beliefs, Allegro extended Prego with the ability to use its uncertainty models in the pro-
gramming of actual, physical, robots. Allegro also improved on how Prego computed belief updates by using
progression and Monte Carlo sampling (in which a number of samples are generated representing different
possible world states, with each sample having a different value for all probabilistic elements and a weighting
representing the liklihood of that sample being the true world state). By calculating belief updates in this
manner, Allegro could keep track of an agent’s current beliefs in real-time. In a sense, Prego ran offline,
producing probability values for belief statements given a hypothetical world state, while Allegro ran online,
being able to determine the current probability of any given belief statement based on which specific actions

have occurred so far.

The language my system is primarily built on is known as Ergo. Ergo is an implementation of Golog
in Scheme by Hector J. Levesque alone [22]. Though Ergo pre-dates Prego and Allegro, much of the func-
tionality for computing uncertainty featured in Prego and Allegro was added into Ergo at a later date.
Ergo features the probabilistic aspects of Prego and Allegro as well as Allegro’s ability to use Golog-like
programs (in this case called “Ergo Programs”) to describe agent behaviour, producing a robust and easy-
to-understand tool for modelling Al environments with noise and uncertainty regarding an agent’s actions
and beliefs. Ergo also provides the ability to directly update sample weights as if they were fluents; if a
sample’s weight is set to 0, then the world-state described by that sample is officially considered impossible.
If every sample is given a weight of zero, the system shuts down entirely. Employing this system allows users

to define the likelihood with which any scenario occurs with ease.

2.1.5 Plan Recognition in the Situation Calculus

Some prior work on Plan Recognition exists which incorporates the situation calculus. [12] presents a
formalization wherein plans are represented as Golog programs which feature two additional constructs: o,
which can match any sequence of actions, and a; — aip, which only matches to executions of plan a; which
do not match with an execution of plan ay. The second of those two constructs is quite powerful due to
its ability to allow one to specify plans both in regards to what can happen and in regards to what must
not happen. This allows programs in the plan library to effectively serve as “plan recognition templates”
(rather than serving as actual plans an agent would follow), which cannot be done in most plan recognition
frameworks. This can be useful for monitoring applications in which one wants to both represent policies
and also detect violations of those policies.

[12]’s approach is reformulated and extended by [17] in two main ways. The first is that their formulation
supports hierarchical plans by making note in the plan recognition hypothesis when a sub-plan or sub-
procedure started and finished its execution, which helps to clarify the structure of the observed agent’s
behaviour and aids in predicting its future actions. The second is that their formulation incorporates the
transition semantics of ConGolog and supports incremental plan recognition, wherein the set of hypotheses
is updated after each new action is observed.

[12]’s approach is also given a probabilistic extension in [11] which assigns probabilities to plan recognition

hypotheses; this approach only handles discrete probability distributions, however.

3 Syntax and Semantics of Ergo

As my system is an extension of Ergo, the mathematical foundations upon which is built are the same as
those of Ergo, using the same basic syntax and semantics. Ergo is founded on top of the situation calculus
[25, 28] and its probabilistic extensions [2, 5]. The semantics of the Ergo programs are based on Golog [23]
and ConGolog [14].

3.1 BAT Semantics

The situation calculus is a dialect of predicate logic that features the means to represent many different types
of "sorts” (i.e. categories), including actions, situations, and objects. Situations represent possible world
histories, with the initial situation being represented by the constant Sy. The functional symbol do is used to
represent sequences of actions, with do(a, s) representing the situations which results from performing action
a in situation s. Fluents, meanwhile, are functions which vary in value depending on the situation, and can
represented as a function taking a situation as an argument (for example, robot-pos(s)). There is a finite
number of fluents, f1,..., fi, and their values may range over any set, including the set of real numbers. The
formulas appearing in the initial belief state and action declaration of Ergo are situation calculus formulas
¢, sans the situation argument of the fluents involved (this is called a situation suppressed formula). ¢[s]

denotes the same formula ¢ with the situation argument restored by some situation s.

Dynamic domains are represented using Basic Action Theories (BAT) [5] using four special predicates:
Poss (which indicates whether or not an action is possible in a given situation), p (which indicates the
probability that doing some action a in some situation s will yield some situation s’), I (which indicates the
probability that some action a will occur in some situation s), and alt (which represents possible alternate

actions for noisy actions). To go into more a detail, a BAT consists of the following:

e An initial state theory Dy which specifies the probability distribution over the initial set of possible

10

world states using an axiom of the form:
p(s,80) = INIT(f1,---, [n)s]

e action precondition arioms which specify wether an action is possible in a given situations:

Poss(a,s) = APA,(Z)[s]

e [ikelihood and alternate actions axioms which describe the outcomes of executing noisy actions:
l(a(T),s) = LHq(Z)]s]
alt(a,u) = o

e successor state axioms (SSA) which specify how actions alter the values of fluents (note that this

includes Reiter’s solution to the frame problem):
f(do(a, 5)) = 55A;(a)[s]

To clarify the definition of the alternate action axiom, a is some noisy action, u is the term replacing the
action’s noisy argument, and o’ is the action the agent knows was executed as a result. For example, say we
have the action nfwd(z,y) representing a mobile agent attempting to move forward, where z is the distance
the agent intends to move while y is the distance the agent actually moves. alt(nfwd(z,y), z) = nfwd(x, 2)
specifies that if nfwd(2,2.79) occurs, all the agent actually knows is that nfwd(2,z) occurred for some
unknown value of z (and similarly for other values of 2 and y) — or, put another way, the agent only knows

that it intended to move forward 2 units; it does not know precisely how many units it actually travelled.

A special SSA for the p fluent exists which specifies the value of p is generated from a given pair of sit-
uations and an action, namely by multiplying the p-value of the first situation by the likelihood of the given
action occurring:

p(s’,do(a,s)) = uE
3s"[s' = do(a, s /\Poss(as)/\

w=p(s",s) x l(a, ")
Vv —3s"[s" = do(a, s)/\Poss(a,s”)]/\uz()

Given a BAT as described above, the degree of belief in a situation suppressed formula ¢ in situation s
is calculated as follows:
def .
Bel(®:8) = 5 Sy ot Jussn Density(:7)
The normalization factor v is the value of the numerator after a) replacing ¢ with True and b) setting

s* = do(lalt(ar,u1), ..., alt(a;, ug)], So) (if s = do([ai,...,ax],S0)). The full definition of the Density

11

function has been omitted here, but roughly what it does is apply the successor state axiom for p to any
situation term produced by a noisy action (i.e. the various possible outputs of alt(a,u), for some action a).
For a given situation-suppressed formula ¢, Density will either output the p-value of its situation argument
(if ¢ holds) or 0 (if ¢ does not hold). Ultimately, the degree of belief formula integrates over the possible
initial values of the fluents and the possible outcomes of noisy actions. For discrete distribution, the integral

in this formula will be replaced by a sum.
3.2 Program Semantics

Ergo uses an implementation of ConGolog [14] to construct Ergo programs which can be used to control the
behaviour of one or more agents. The following is a list of constructs present in ConGolog:

§u=mnil | a|p?| 61502 | 61|02 | 3.8 | 5% | 61|02
Each of the above terms is described as follows:
1. nil - the empty program, which does nothing and is terminated by default.
2. « - an atomic action, possibly with parameters.

3. 7 - a situation-suppressed formula whose truth-value is being tested (with ¢[s] denoting the formula

obtained upon restoring the situation argument s as before).
4. 01; 02 - A set of two programs executed in sequence.
5. §1]|d2 - A nondeterministic choice between two programs, only one of which is executed.
6. mx.d - A program executed with the variable x bound to some value chosen nondeterministically.

7. 0" - A program executed zero or more times, with the number chosen nondeterministically.

[e 2]

. 01]|02 - Two program executed concurrently by way of interleaving.

More complex programs, such as those featuring conditionals or loops, can be defined in terms of the
above constructs. The semantics of ConGolog are specified in terms of single-step transitions using two

predicates:

1. Trans(d,s,8’,s") - A predicate which holds is if one step of the program § in situation s yields s as

the new situation and 4’ as the remaining program.

12

2. Final(d,s) - A predicate which holds if § is capable of legally terminating in situation s.

The definitions of Trans and Final used here are as they are used in [15], which differs from [14] in
that the term ? does not yield a transition (i.e. Trans(p?,s,d’,s") only holds if & = ¢? and s’ = s), but
nonetheless satisfies Final when it is also satisfied. Combining T'rans and F'inal produces the predicate
Do(d, s, s"), which holds as long as executing the program § in situation s produces s’ as a legal terminating
situation. This predicate is defined as Do(d, s, s’) = 38" Trans*(4,s,8',s') A Final(d',s") (note that Trans*

is the reflexive transitive closure of T'rans).

Finally, it is also useful to introduce the idea of a ConGolog program being situation-determined (SD).
This means that for any possible sequence of transitions produced by the program, the remaining pro-
gram can be uniquely determined using the resulting situation. This is represented by the predicate

SituationDetermined(d, s). Formally,
SituationDetermined (6, s) = Vs', 8", 8". Trans* (3, s,0",8") A Trans*(d,s,0",s') D & =¢§"

To give an example, the program a; (b | ¢) is SD in situation Sy (i.e. the initial situation) as there is a unique
remaining program (b | ¢) in do(a, Sp). However, the program (a;b) | (a;c¢) is not SD in the same situation,

since there are multiple possible remaining programs after executing do(a, Sp) (i.e. either b or c).
3.3 Syntax of Ergo Programs

Next let’s discuss the specific syntax Ergo uses in the construction of programs, which as mentioned is built
directly on top of the pre-existing semantics of ConGolog. Every Ergo program either ultimately succeeds
or fails depending on the circumstances, and there are a wide variety of different expressions that can be

used in an Ergo program. The full list of available expressions are as follows [22]:

1. :nil - Corresponds to nil above, and always succeeds.
2. :fail - Like :nil, except that it always fails.
3. (:test fexpr) - Corresponds to 7, succeeding or failing based on the truth value of fexpr.

4. (act action) - Corresponds to «. Fails only if the action has a prerequisite that is not satisfied when

this action is reached, and succeeds otherwise.

13

10.

11.

12.

13.

14.

15.

16.

17.

18.

(:begin pgmI ... pgmn) - Corresponds to d;; d2, executing each Ergo program in sequence. Succeeds if

every program succeeds and fails otherwise.

(:choose pgm1 ... pgmn) - Corresponds to d1|d2, nodeterministically choosing a single program and

executing it. Succeeds if the chosen program succeeds and fails otherwise.

(:if fexpr pgm1 pgm2) - Executes pgm1 if fexpr evaluates to True and pgm2 otherwise. Succeeds if the

chosen program succeeds and fails otherwise.
(:when fexpr pgml ... pgmn) - Behaves the same as (:if fexpr (:begin pgm1 ... pgmn) :nil)
(:unless fexpr pgm1 ... pgmn) - Behaves the same as (:when (not fexpr) pgml ... pgmn)

(-until fezpr pgm1 ... pgmn) - Repeatedly executes (:begin pgm1 ... pgmn) until fexpr becomes true.

Succeeds and fails under the same circumstances as :begin.
(:while fezpr pgm1 ... pgmn) - Behaves the same as (:until (not fexpr)pgml ... pgmn)

(:star pgm1 ... pgmn) - Corresponds to 6*, except that it executes a sequence of programs zero or more

times instead of a single program. Succeeds and fails under the same circumstances as :begin.

(:for-all var list pgm1 ... pgmn) - Repeatedly executes (:begin pgmI ... pgmn) once for every value in
the list list. Each run will set the value of the variable var to the current value from list. Succeeds and

fails under the same circumstances as :begin.

(:for-some wvar list pgm1 ... pgmn) - Corresponds to wz.d, choosing the value of var nondeterministically

from the values of list. Succeeds and fails under the same circumstances as :begin.

(:conc pgm1 ... pgmn) - Corresponds to 01|02, concurrently executing all the programs in the given list.
Single steps are nondeterministically interleaved. Succeeds and fails under the same circumstances as

:begin.

(:atomic pgm1 ... pgmn) - Behaves the same as (:begin pgmI ... pgmn), except without interleaving

concurrent programs if any exist. Succeeds and fails under the same circumstances as :begin.

(:monitor pgmI pgm2 ... pgmn) - Execute pgm1 before every step of pgm2 and do the same for all

subsequent programs. Succeeds and fails under the same circumstances as :begin.

(:<< fexprl ... fexprn) - Evaluate all the expressions, then succeed.

14

19.

20.

21.

22.

(:>> fexprl ... fexprn) - Evaluate all the expressions, then fail.

(:let ((varl fexprl) ... (varn fexprn) pgml ... pgmn) - Behaves the same as (:begin pgm1 ... pgmn),
except in an environment where every wvari is set to the value of fexpri. Succeeds and fails under the

same circumstances as :begin.
(:wait) - Pause until an exogenous action occurs, then succeed.

(:search pgmI ... pgmn) - Behaves the same as (:begin pgm1 ... pgmn), except it guards against failure
by looking ahead for instances of nondeterminism and ensuring that the choice made leads to successful

termination.

In order to execute an Ergo program, the Ergo command ergo-do must be called. The syntax of ergo-do

is (ergo-do mode pgm), where pgm is the program being executed and mode is the execution mode, typically

either ’online (meaning the program interacts with an external source by sending it endogenous actions, by

receiving exogenous actions from it, or both) or ’offline (meaning the program does not interact with an

external source).

Any other Ergo syntax relevant to my system will be discussed in the following section, specifically in

regards to how it is is relevant to my system.

15

4 Ergo4PPR

The system I have been working on with my supervisors is an extension of Ergo tentatively entitled
ErgodPPR. The main factor by which systems built in Ergo4PPR differ from those built in base Ergo
is that they are more focussed specifically on plan recognition, while base Ergo is more focussed on planning
in general (as well as high-level program execution). A system built in Ergo is typically meant to represent
a single Al agent, with fluents representing information known to the agent and the agent’s behaviour being
described by an Ergo program as outlined above. Ergo4PPR, however, provides a simple means by which
one can describe an entire world containing one or more agents, with fluents being global information. A
major factor in the ability to do this is a new execution mode for Ergo programs which can be used to update
a program by sending it a single action, whereupon the remaining program after that action’s execution will
be returned. It is assumed that all programs are situation-determined, as described above. By using this
execution mode, Ergo programs representing an agent’s behaviour can be to stored in fluents which can then
be updated accordingly with each action taken by the observed agent (or agents as the case may be). It
is also possible to have multiple different subprograms each containing a different possible “plan” a given
agent may follow. Ergo4dPPR also generally provides a convenient, easy-to-use framework for describing tools
which the system may use to observe each agent’s actions, particularly in regards to the ability to introduce

noise and uncertainty both into the actions themselves and into the observations of those actions.
4.1 Implementation Details

One of the primary benefits of Ergo and Ergo4PPR is in its ability to use Monte Carlo sampling to compute
belief updates. Essentially, the system works by generating some number of samples, each representing a
possible world-state, with a weighting representing the probability of that sample being the “true” world
state. The degree of belief that a fluent had a given value was ultimately calculated as the weighted average
number of samples wherein that fluent had that value. The number of samples to use is something which the

programmer could set whilst designing the system, and the more samples there were, the more likely it was

16

that the system’s degree of belief in the value of each fluent would be close to the correct value. Calculating
belief updates in this manner makes it easy to efficiently maintain an estimate of the belief state in real-time
as observations are acquired.

The main extensions that ErgodPPR makes to Ergo are the introduction of two new execution modes for
Ergo programs. By default, Ergo has two main execution modes, online and offline. In online execution,
the system receives exogenous actions from an external source (such as a sensor) which it then uses to update
the world state, sending the endogenous actions out to effectors. offline execution, meanwhile, means that
the program is executed internally without interacting with the environment. The two new execution modes
are essentially extensions of the paradigms used in the online and offline modes. The first new execution
mode is the onlineSynchronized mode, which repeatedly alternates between processing exogenous actions
and progressing through the Ergo program, in a way which removes the need for complex synchronization
between the two. The second new execution mode is the offlineStepMatch mode, which takes an action as
an argument and tries to execute it on the Ergo program, returning either a pair containing that action and
the remaining program after its execution (in the case where the action can be executed by the program), or
an empty list (in the case where the action cannot be executed by the program). If more than one possible
remaining program exists, it returns the first it finds; if the program is situation-determined, though, there
won’t be more than one remaining program. Situation-determined programs like these are used to model

the possible behaviours of the observed agent.
4.2 Syntax

In the Ergo4dPPR system a domain is specified using a BAT, as described above. A sample of some of the
syntax used by Ergo is summarized in Table 4.1. As previously mentioned, a fluent is essentially a variable
whose value can change over time.

To illustrate how this works specifically in the context of Ergo4dPPR, let us examine a simple example
involving targets and an agent which shoots at those targets. The agent is capable of changing its aiming
angle and firing at a target; there are multiple targets of varying sizes and point values, with smaller targets
being worth more but being harder to hit. In the specific example described in this paper, there are three
targets: a target located at 30° of size 10° and of value 30, a target located at 60° of size 30° and of value
10, and a target located at 90° of size 20° and of value 20. Note that target sizes are measured in degrees,
centred on their position value; i.e. the first target spans a range from 25° to 35°. This system’s initial state

is specified using fluents, as follows:

17

Table 4.1: Sample Ergo Syntax

Syntax

Definition

(define-states ((i num)) fluent! vall ... fluentn valn)

Defines the initial value of fluent! to be wall and
similarly for the other fluents. Also sets the number
of samples used for Monte Carlo sampling to num.

(define-action action #:args fluentl vall ... fluentn valn)

Defines an exogenous action called action which up-
dates the value of fluent! to be wall and similarly
for the other fluents. Optional arguments such as
pre-conditions are specified using args.

(GAUSSIAN-GEN mu sigma)

Represents a gaussian random variable of mean mu
and standard deviation sigma.

(GAUSSIAN wal mu sigma)

Returns the probability of a gaussian random variable
of mean mu and standard deviation sigma having the
value val.

(UNIFORM-GEN low high)

Represents a uniform random variable whose value
ranges from low to high.

(UNIFORM wval low high)

Returns the probability of a uniform random variable
whose value ranges from low to high having the value
val.

(DISCRETE-GEN v! pI ... vn pn)

Represents a discrete random variable whose value is
vl with probability pI, v2 with probability p2, etc.
The sum p! + ... + pn must add to 1.

(DISCRETE wal vl pl ... vn pn)

Returns the probability of a discrete random variable
whose value is v! with probability p1, v2 with prob-
ability p2, etc. having the value val. Again, the sum
pl + pn must add to 1.

(UNIFORM-DISCRETE-GEN n)

Represents a random variable whose value is any of
the integers from 1 to m, with each value having a
1/n probability of being that variable’s value.

(UNIFORM-DISCRETE val n)

Returns the probability of a random variable whose
value is any of the integers from 1 to n (with each
value having a 1/n probability of being that variable’s
value) having the value val.

(BINARY-GEN p)

Represents a random variable whose value is #t with
probability p and #f with probability 1 - p.

(BINARY wal p)

Returns the probability of a random variable whose
value is #t with probability p and #f with probabil-
ity 1 - p having the value val.

(ergo-do #:mode mode program)

Executes the Ergo program program in the execution
mode mode.

18

(define—states ((i 1000000))
decisionPlan ’'notDecided
decisionTarget ’'notDecided
aim 0.0
someObservedAim ’'notSet
targetHit (vector #f #f #f)
halted #f
exoProg (:begin

(:act choosePlan!)
(:if (eq? decisionPlan ’greedy)

(greedy—plan)

(:if (eq? decisionPlan ’safe)
(safe—plan)
(optimal—plan)))

(: choose (:for—some t (0 1 2)

(:act (obsHit! t)))

(:act obsNoHit!))
(ract halt!))

)

In the above example, there are six fluents — decisionPlan, representing the agent’s chosen plan,
decisionTarget, representing the agent’s chosen target; aim, representing the angle at which the agent
is aiming; someObservedAim, representing the angle the system observes; targetHit, a vector of boolean
values representing whether or not each target has been hit by the agent; halted, which indicates whether
or not my system has finished its execution; and exoProg, which outlines which behaviours are possible for
the observed robot (and which also incorporates the system’s own sensing capabilities). These behaviours
are specified using Ergo programs. In the above example, exoProg specifies the agent’s behaviour as follows:
first, the agent chooses a plan according to some probability distribution, either a “greedy” plan where it
aims and shoots at the most valuable target, a “safe” plan where it aims and shoots at the largest target,
or an “optimal” plan where it aims and shoots at the target with the largest value x size. Due to the way
the three targets are set up in this specific example, each plan will directly correspond to a different specific
target. After deciding which target to aim at, the agent executes the plan; afterwards, the system observes
which target is hit if any, and then halts.

The three plans are themselves also specified using Ergo programs. The “greedy” plan is defined as

follows:

(define (greedy—plan)
(: begin
:act chooseTarget!)
cact setAim!)
:choose :nil (:act setAim!))
:starDFS (:act (obsAim! someObservedAim)))
:act shoot!)

~— N~~~

19

)

First, the agent chooses a target (determined by the adopted plan), then aims at the target either once or
twice (to increase its chances of aiming at the correct target). Next, the system obtains zero or more noisy
observations of the agent’s aim (:starDFS is a function defined in the target shooting program itself which
recursively executes its argument zero or more times), and then finally the agent shoots. The “safe” and
“optimal” plans are the same except that in the former the agent aims one to three times and in the latter
it aims only once.

In addition to initializing all the fluents as described above, I have also set the system to use 1000000
states when doing Monte Carlo Sampling under define-states above. Since the process by which fluents are
assigned their initial values is deterministic, all states will have the same fluent values initially. Each state
implicitly has a weight which is initialized to 1/1000000. This weight is represented using a special fluent
(appropriately called weight) which does not need to be outlined under ”define-states”. As the system
progresses and more and more noisy actions/observations are processed and observed, the states will be
updated by sampling the probability distributions associated with those actions. Using weight, certain
states deemed ”impossible” following a sequence of observations can also be ruled out by setting the value
of weight in those states to zero.

There are four types of actions that can impact the system: accurate actions performed by the agent,
noisy actions performed by the agent, accurate sensing actions performed by the system, and noisy sensing
actions performed by the system. Actions performed by the agent are exactly as they sound: actions the
observed agent performs itself. If these are accurate, then the observed agent does exactly what it intends
to do (for example, the setAim action causes the agent to aim exactly at its chosen target); meanwhile, if
these are noisy, then the observed agent may be off from its intentions by some degree (for example, the
nSetAim action causes the agent to try and aim at the centre of its chosen target within some margin of
error). Meanwhile, sensing actions are ones my system performs to gather information about the world. If
these are accurate, then the system can be confident that the information it retrieves is exactly as it appears
(for example, the obsHit action indicates that a certain target was hit with 100% certainty); if these are
noisy, then the system cannot be completely confident that the information it retrieves is exact (for example,
the angle returned by obsAim indicates that the observed agent is likely aiming within a certain range around
the returned angle, but it is not a given that it is aiming exactly at the returned angle). To give an example
of the syntax of an action, let us consider the choosePlan! action, an internal decision action performed

by the observed agent. When this action occurs, the system detects that a decision has been made but is

20

unable observe the result of the decision. choosePlan! is defined as follows:

(define—action choosePlan! #:sequential? #t
decisionPlan (DISCRETE-GEN ’greedy (/ 1.0 3.0)
"safe (/ 1.0 3.0) ’optimal (/1.0 3.0))
exoProg (let ((res (ergo—do #:mode
"offlineStepMatch #:matchAct ’'choosePlan!
exoProg))) (if res (cadr res) :fail))
weight (if (equal? exoProg :fail) 0.0 weight)

)

This action has no pre-conditions. When this action occurs, the system first sets the decisionPlan fluent
to one of three values, according to a uniform distribution: greedy, safe or optimal. Then, the exoProg fluent
is updated; the value used to update this fluent is a fair bit more complicated, but to put it simply, exoProg is
updated by calling ergo-do in offlineStepMatch mode, passing in the action choosePlan! to be processed.
If the action being called on the system doesn’t match up with the next action as specified by exoProg, then
exoProg is set to :fail; otherwise, it is set to the remaining program. By using the offlineStepMatch
mode, the program can easily be advanced by a single step for each action. Finally, the weight of the current
sample is set to 0 if exoProg has been set to :fail, remaining unchanged otherwise. Updating the weight in
this manner is necessary so as to account for the possibility of a given sample assuming the agent has chosen a
specific plan, only to observe an action which is incompatible with that plan; for example, if decisionPlan
were set to optimal, only for multiple setAim! actions to be observed. The chooseTarget! action is
defined similarly (though it behaves deterministically), with the system setting the decisionTarget fluent
to a target determined by the chosen plan.

The setAim! action is a deterministic, non-noisy action performed by the agent which sets the value of

the aim fluent to the centre of the selected target. If it is defined as follows:

(define—action setAim! #:sequential? #t
aim (vector—ref targetPosition decisionTarget)
exoProg (let
((res (ergo—do #:mode ’offlineStepMatch #:matchAct ’setAim! exoProg

)))
(if res (cadr res) :fail))
weight (if (equal? exoProg :fail) 0.0 weight)

)

Note that the system does not directly observe what the agent sets its aim to; it just knows the logic
by which the agent operates (i.e. that it always sets its aim to the centre of its chosen target with 100%

accuracy). Next we have the nSetAim! action, which the noisy counterpart of setAim!:

(define—action nSetAim! #:sequential? #t
aim (GAUSSIAN-GEN (vector—ref targetPosition decisionTarget) 5.0)
exoProg (let

21

((res (ergo—do #:mode ’offlineStepMatch #:matchAct 'nSetAim!
exoProg)))
(if res (cadr res) :fail))
weight (if (equal? exoProg :fail) 0.0 weight)

)

Both the setAim! and nSetAim! actions produce the same results, except that nSetAim! specifies
that the aim fluent should be set to (GAUSSIAN-GEN decisionTargetPosition sd); rather, it should be
set according to a Gaussian probability distribution whose mean is the centre of the selected target (with a
standard deviation of sd) instead of being set to the exact centre.

Another action worth examining in more detail is the obsAim! action, a noise sensing action in which

the system gathers information about the observed agent’s current aim:

(define—action (obsAim! a) #:sequential? #t
someObservedAim a
exoProg (let ((res (ergo—do
#:mode ’offlineStepMatch
#:matchAct (list ’obsAim! a)
exoProg))) (if res (cadr res) :fail))
weight (if (equal? exoProg :fail) 0.0
(* weight (GAUSSIAN (remainder a 360.0)
aim 10.0)))

Here, the someObservedAim fluent is set to the observed angle a to ensure that the agent program can
execute the action (obsAim! someObservedAim), given any real angle as the argument. Next, exoProg is
updated as normal. Finally, the weight of the sample is multiplied by the probability with which the system
would observe the agent aiming at an angle of a (wrapping around from 360° if necessary), according to
a Gaussian distribution where the current value of the aim fluent is the mean value, while the standard
deviation is 10°.

In order to run the system, (ergo-do #:mode ’onlineSynchronized observeUpdtLoop) is called,;
observeUpdtLoop is an Ergo program which repeatedly processes observed actions/observations, updates
the system’s beliefs as needed, the displays the results of some queries about the system’s current beliefs.
This runs continuously until the agent halts. This is run in onlineSynchronized mode, allowing the system
to easily alternate between processing actions and updating the agent program and displaying the results of
belief queries accordingly.

Ergo also provides functionality which allows the user the define input and output interfaces through
which actions and observations can be sent and received over TCP-IP. The method typically used in my

benchmarks/case studies was to simply list the actions in a plaintext file which the input interface would

22

then read from, outputting the results of processing those actions to the standard output.

Information about the system’s beliefs can be retrieved using one of two commands. ”(sample-mean
number)” returns the weighted average value across every sample of number (provided that number evaluates
to some numerical value). Meanwhile, ” (belief boolean)” returns the proportion of the samples in which the
boolean statement boolean is true. The system can return information in this way whenever appropriate. For
example, using my above example, “(sample-mean aim)” could be used to return the average value of the
observed agent’s aim, while “(belief (eq? decisionTarget 0))” could be used to return the probability /degree
of belief that the decisionTarget fluent currently has a value of zero.

Finally, a sample of some the system’s output during a run of the target shooting example is shown
below. First, after processing the observations choosePlan! and chooseTarget!, the system outputs the

following:

belief (eq? decisionPlan greedy)) returns 0.331045

((

(belief (eq? decisionPlan safe)) returns 0.32939
(belief (eq? decisionPlan optimal)) returns 0.339565
(belief (eq? decisionTarget 0)) returns 0.331045
(belief (eq? decisionTarget 1)) returns 0.32939
(belief (eq? decisionTarget 2)) returns 0.339565

At this stage, each plan and target is equally likely. Next, the system observes two executions of the
setAim! action. Following the first setAim! action, the system is equally likely to be aiming at any of the

three targets; however the second execution produces the following beliefs instead:

(belief (eq? decisionTarget 0)) returns 0.5012529620628828
(belief (eq? decisionTarget 1)) returns 0.4987470379371172
(belief (eq? decisionTarget 2)) returns 0.0

(belief (aiming at target 0)) returns 0.5012529620628828
(belief (aiming at target 1)) returns 0.4987470379371172
(belief (aiming at target 2)) returns 0.0

Since the agent never executes the setAim! action twice in the optimal plan, the target chosen by that
plan is no longer considered a possible target, and as a result only the other two targets are considered
possible, each with a roughly equal probability. Next, the system processes the observation (obsAim!

39.0), producing the following:

(belief (aiming at target 0)) returns 0.706824678506833
(belief (aiming at target 1)) returns 0.2931753214919648
(belief (aiming at target 2)) returns 0.0

Now the system believes it to be far more likely that the agent is aiming at target 0 than target 1. Finally,

the observations shoot! and (obsHit! 1) are processed, producing:

(belief (aiming at target 0)) returns 0.0
(belief (aiming at target 1)) returns 1.0

23

(belief (aiming at target 2)) returns 0.0

At this stage, the system now knows with 100% certainty that target 1 has been hit (and, in turn, that
target is the one the observed agent was aiming at), thereby concluding the system’s execution.

The entirety of this example program’s code can be found in the appendix.

24

5 Case Studies

Various plan recognition problems have already been modelled and solved in the ErgodPPR System. These
examples were crafted to demonstrate the power, expressiveness, and utility of the system. Each of these
systems work as intended, demonstrating the ease with which the system can be used to represent plan
recognition problems in either continuous or discrete spaces. The complete code for all three of these
examples can be found in the appendix; note that some examples features multiple code files and have been

separated accordingly.
5.1 Examples

Each of the following examples was written as a sort of proof-of-concept to show the variety of different kinds
of plan recognition problems that can be modelled and solved in my system. There are three such examples;
one exclusively featuring discrete probability distributions, one exclusively featuring continuous probability
distributions, and one featuring both. In each case, the probability values generated by the system were as

expected.

5.1.1 Example 1 - Jewelry Store

The first example I developed is perhaps the simplest one, featuring an entirely discrete probability space.
In this example, the agent being observed is an individual within a jewelry store. There are three main goals
that this agent may have: steal (in which the agent steals an item from the store), browse (in which the
agent examines an item from the store, but puts it back before leaving), and buy (in which the agent makes
a purchase). Each of these three possible behaviours are quite similar, but have subtle differences between
them which the system uses to try and predict which goal the observed agent has in mind, and as each of
the observed agent’s actions are observed, the beliefs are updated accordingly. Additionally, the observed
agent also has a choice of which of three pieces of jewelry to interact with — a bracelet, a necklace, and a
ring. The chances of which item the agent would interact with are different depending on whether or not the

agent is planning on stealing the item, buying the item, or simply examining the item, and as such which

25

item the agent chooses also has a impact on the likelihood of each plan. The agent will also look around the
room some number of times; specifically, the agent is guaranteed to look around the room at least once no
matter what, has a low chance of looking around a second time when browsing or buying and item, and has

a guaranteed chance of looking around a second time when planning on stealing an item.

5.1.2 Example 2 - Robot with Multiple Goals

The second example problem I built is a somewhat more complicated one primarily featuring continuous
distributions. This problem is also notable for being somewhat of a template from which other, even
more detailed problems may be built. In this problem, the observed agent is a mobile robot trying to
manoeuvre its way through an environment featuring various obstacles, ultimately hoping to reach one of
four destinations. The objective of the system is to use information about the robot’s path to try and
predict which destination the robot is heading towards. Note that the robot cannot execute any actions
other than choosing a destination and turning and moving throughout the environment. Various different
methods of calculating the probability of each destination being the true destination were considered and
tested. The first and most complicated method was to discretize the environment and then use the A*
algorithm [32] to calculate the optimal path to each destination — note that this is a very similar strategy
for plan recognition as the one derived by [31], though this is largely a coincidence. At each time step, the
robot’s current path would be compared to these optimal paths and for each destination a probability value
would be generated as the (normalized) degree to which the robot’s path matches that destination’s optimal
path. The optimal paths would also be recalculated if the robot’s path deviated too far from any of them.
The second and third methods used to calculate the probability for each goal, meanwhile, were significantly
simpler, but also less effective. The second method calculated the distance between the robot and each goal
both before and after every move action. The probabilities were then calculated as the (again, normalized)
degree of difference between the robot’s initial distance from the goal and its distance after moving, with the
goal whose distance decreased the most being seen as the most likely goal. Finally, the last method used to
calculate the probabilities measured the probability for any given goal as a weighted sum of a) the degree to
which the robot’s angle matched the angle necessary for the robot to be looking directly at that goal, and
b) how close the robot was to that goal. Note that for all three of the above-described methods, the prior
probabilities for each destination also factored into the new probability calculated at each time step, so if
the system were convinced the robot was going after, say, destination 1 for most of the system’s run, the

robot suddenly making a movement which most strongly corresponds to destination 2 wouldn’t necessarily

26

cause the system to abandon its prior belief that destination 1 was the robot’s target destination. Exactly
how quickly the system would shift its beliefs regarding the robot’s chosen destination varies depending on
a number of factors, such as how long the robot had been moving towards one destination before switching,

the locations of each possible destination, and more.

After testing each of the three methods described above, it was determined that the A* method cor-
rectly predicted the robot’s actual chosen goal the fastest, the maximum distance difference method
ultimately made the correct prediction but took longer to do so than the A* method, and the orienta-
tion/distance method was almost completely ineffective at predicting the targeted goal. However, the A*
method also had a much longer execution time than any of the other methods. Each individual execution of
the A* algorithm on its own took a non-insignificant amount of time to compute, and since it not only had
to be computed once for each goal, but also possibly re-computed every time to robot strays too far from
each of the generated optimal paths, a full run of the system using the A* method was quite slow compared

to the other two methods.

As mentioned, this example problem can be expanded into many other, more specific problems. A
wide variety of different environments can be used, along with a wide variety of different kinds of cost
functions for different kinds of terrain. While the specific example I used featured exactly four goals,
it would be relatively easy to write an example with an arbitrarily large number of goals. One specific
application that could be generated using my code as a base would be a parking lot scenario, with the
possible goals being the various parking spaces and the observed agent being a vehicle which is trying to
park in one of them. This problem could also be expanded to include additional functionality, such as by
adding multiple robots each with their own goal, or by adding the possibility that the observed agent’s true

goal is not any of the known possible goals.

As a final aside, note that when writing the code for this example I used a scheme implementation

of the A* algorithm I found online, with some minor alterations made by myself to suit my purposes [24].

5.1.3 Example 3 - Intersection

The final example problem I addressed was a relatively simple one which nonetheless featured both continuous

and discrete probability distributions and a fairly complicated program describing the agent’s behaviour.

27

Here, the observed agent is a car approaching a 4-way intersection. Another car, controlled by the system, is
also approaching the intersection at the same time, and the two cars will crash if they continue at the same
pace at which they are currently moving. See Figure 5.1 for a diagram showing the layout of the intersection
and the locations of every relevant party.

The observed agent, in this case, has three possible goal destinations and three possible strategies it may
follow to get to those destinations. Specifically the three goal destinations are for the observed agent to turn
right, turn left, and to travel straight ahead, while the three strategies are for the observed agent to speed
up so as to pass through the intersection before the user car does, to slow down so as to allow the user car
to pass through the intersection first, and to continue at the same speed at which it is already travelling
(representing the scenario wherein the driver of the other car has not yet noticed the impending collision).
Each goal and strategy has its own probability of occurring, and the goal of the system is to predict both
the other car’s goal and the other car’s strategy (a total of nine different possible behaviours) so that the
user can decide how to best respond to the situation (effectively, this is predicting both the goal and part
of the plan to achieve it). There are various factors about the world that the system can observe to better
determine which goal/strategy is the most likely, such as the possible presence of a pedestrian crossing the
road, the possible presence of a stop sign, and the possible presence of traffic lights and their state. Each
has a different probability of occurring in each of the nine possible scenarios and therefore learning this
information about the world will impact the probability distributions across the nine scenarios. Meanwhile,
the other car also has to make a choice of whether or not it wants to be the right lane or the left lane. Both
turns can occur in either lane, but left turns are more likely in the left lane and vice versa, so the other
car’s choice of lane impacts the probability distribution over the three goal destinations. As an aside, note
that for the sake of simplicity, the system does not currently model the need to slow down to make a turn.
Finally, outside of changing lanes, the observed car also has the ability to either accelerate or decelerate
as it approaches the intersection. Each of three strategies has an acceleration value it expects to see (for
example the “continue” strategy expects an acceleration of 0.0), so the acceleration that the system observes
will impact the probability distributions for the three strategies. For the sake of simplicity, there is no noise
in the observed agent’s actions or my observations, though this is one way in which this example could
theoretically be expanded.

To help illustrate how this example works, here is a sample of the code used to define the observed agent’s

behaviour:

(:begin

28

Figure 5.1: Diagram of the Intersection Example

29

(:act obsChooseGoal!) ;; Will the other car be turning left , right, or
travelling straight?

(:act obsChooseTactic!) ;; Will the other car be speeding up, slowing down,
or continuing at the speed limit?

(:act (obsPedestrian! pedestrianAnswer)) ;; Is there a pedestrian?

(:act (obsStopSign! stopSignAnswer)) ;; Is there a stop sign?

(ract (obsTrafficLight! trafficLightAnswer)) ;; Is there a traffic light?

(:when (eq? trafficLightAnswer ’yes)

(:act (obsTrafficLightColour! trafficLightColourAnswer))) ;; What is the
traffic light’s colour?
:act (obsAccelerate! accelAmount))
:act obsChooseLane!) ;; Will the car be changing lanes?
:act (obsAccelerate! accelAmount))
:if (eq? decisionLane ’left)
(: begin
(:act obsLeftTurnSignal!)
(:act (obsShift! shiftAmount))
(:act obsLeftTurnSignall))
(ract (obsShift! shiftAmount)))
(:until (<= (car otherCar—pos) 6.0) ;; Repeatedly accelerate until the
intersection is reached.
(:act (obsAccelerate! accelAmount)))
(:if (eq? decisionGoal ’turnRight)
(
(

~ A~~~

:act obsRightTurnSignall)
:when (eq? decisionGoal ’turnLeft)
(:act obsLeftTurnSignall!)))
(:if (eq? decisionGoal ’turnRight) ;; Turn until the intersection is passed
(:until (>= (cdr otherCar—pos) 6.0)
(:act obsTurn!))
(if (eq? decisionGoal ’turnLeft)
(:until (<= (cdr otherCar—pos) 4.0)
(:act obsTurn!))
(:until (<= (car otherCar—pos) 4.0)
(:act obsTurn!))))))

5.2 Experimental Evaluation

In order to test the behaviour of my system, I chose to measure how my system’s running time scales
as various parameters change. I also measured how accurate my system’s predictions were and how that
accuracy varied as the number of states changed. I also adapted some of the experiments conducted by

Kaminka et al. so as to compare how my system performs to theirs.
5.2.1 Computational Performance

5.2.1.1 Testing Protocol

In order to test the running time of my system, I used a modified version of the Robot with Multiple Goals
example which features randomly-generated environments. These environments are generated according to

some simple rules. First, it should be noted that each environment is represented as a continuous 2D space

30

with a square-shaped border of length 10, with the lower-left corner of the world being at (0, 0) (though
the system doesn’t limit the robot to only exploring within those borders). The discretization done by
the A* star algorithm in the calculation of the optimal path makes each cell a size of 0.2, resulting in a
total of 2500 cells, with any cell more than half-containing an obstacle being considered an ”obstacle” cell.
The obstacles themselves are generated as follows. The obstacles are represented as circles, and are given
a randomly-chosen centre point along with a randomly-chosen radius. The centre points are constrained
to be within the 10x10 border (though the rest of the circle can extend outside of it), while the radii are
constrained to be no longer than 2.5. Once the obstacles are generated, the system automatically generates
some number of goals. Goals are represented as being single points in 2D space, and like obstacles centres,
are constrained to be within the 10x10 box. They also cannot overlap with obstacles. After generating the
randomized environment, the system would then automatically generate an action sequence using one of
three simulated robots — a robot which only computes random actions (up to a maximum of 100), a robot
which follows the optimal path to its chosen goal (as calculated by the A* algorithm), and a robot which
follows the optimal path with some degree of noise in its movements (specifically, the robot was set to always
turn at an angle within a 20° range, centred on the angle the optimal robot would follow). Theoretically,
further robots could derived from the optimal robot with noise simply by changing the amount of noise
present in the robot’s turn angle. After an action sequence is generated, the system uses that action
sequence in its testing, trying to predict what the robot’s chosen goal is based on the movements generated
by the simulated robot. For the sake of simplicity, I have also chosen to run my first set of tests without re-
computing the optimal path, as re-computing the path has a major affect on the running time of the system.

Later tests did re-compute the path, however, to see just how significantly doing so impacts the running time.
The parameters I chose to vary were the number of goals NG, the number of obstacles NO, and

the number of states N.S. How the running time scales with some of these parameters can already be shown

theoretically using the following (roughly-described) formula:

TR=mxNG+E+uxNS+NG*xbx NS

TR is the total running time of the system. The full formula is split into three sections: pre-processing,

31

belief query, and belief update. The pre-processing running time is the time taken by the system to compute
optimal paths using the A* algorithm (and also to generate the environment, though that had a negligible
impact on the overall time), the belief update running time is the time taken by the system to update the
values of each fluent after the system receives a new action, and the belief query running time is the time
taken by the system to display its current beliefs in the values of the fluents. In the pre-processing section,
m is the number of times the path is calculated per goal and F is the number of edges in the graph used
by the A* algorithm to calculate the optimal path. For the first handful of tests, m = 1 (and note that
this parameter cannot be directly controlled when path re-calculation is active). Meanwhile, E and NG
are constants (E could theoretically not be a constant if I chose to vary the size of the environment in my
tests). Ultimately, this portion of the formula is according to the running time of the A* algorithm, which
is linear in the number of edges and vertices in the graph being used provided that the heuristic function
h satisfies the condition that |h(x) — h*(z)| = O(log h*(x)) [32]. The heuristic function I use satisfies this

condition. It is as follows:

Wz, y) = |t — GX|*V2+ ||z — GX| — |y — GY|| |x — GX| < |y — GY|
Y ly— GY |2+ ||z — GX|—|ly—GY|| |o—GX|>|y—GY]

Where GX and GY are the x and y coordinates of the goal node. Note that the A* calculations
are done independently of any Monte Carlo sampling — in other words, the A* algorithm is only run once
per goal (and once per re-calculation), not once per state, and thus the running time of any work done per
state can be separated from the running time of the A* algorithm in the running time formula. Next, in
the belief update section, u is the amount of work done to update a single state. Finally, in the belief query
section, b is the amount of work done per state and per goal; NG has to be used again here since every belief
query outputs a probability value for every goal. From the formula, it can be seen that the running time of
the system should increase linearly as the number of goals increases and as the number of states increases.
However, there is no clearly-defined formula describing how NO would impact the running time of the
system. Intuitively, it seems likely that more obstacles should increase the running time of the system, as
more obstacles will result in more complicated generated paths. Thus, the hypothesis that I hope to prove
is that the running time of the system will increase linearly as the number of obstacles increases. I also hope

to confirm the above-shown relationship between the running time and the number of goals/number of states.

32

As a brief aside, note the each robot got it its own distinct set of randomly-generated environments;

also note this had no impact on how each robot’s performance varied with each parameter.

I ultimately did twenty runs of the system for each of the three robots and for each value of each
parameter being tested, calculating the average running time across those twenty runs. I chose to do twenty
because, through experimentation, I discovered that it was roughly after twenty runs that the average
running time levelled out; additional tests had little impact on the average running time. I did four sets of
tests on NG, using 4, 8, 10 and 20 goals, and I did the same for NO. For NS, I did tests with 100 states,
1000 states, 10000 states, 100000 and 1000000 states. The default values used for each parameter when
it was not being tested was 4 goals, 4 obstacles, and 1000000 states. Finally, in addition to including the
average pre-processing, belief update, and belief query times, I also included the total average running time
of each set of twenty tests (which includes the pre-processing time in addition to the total belief update and

belief query times).

5.2.1.2 Results

The results of my testing are summarized in Tables 5.1-5.9 and Figures 5.2-5.7. “Avg PreProcessing Time”
refers to the average amount of time taken to perform pre-processing (per test), “Avg Update Time” refers
to the average amount of time taken to perform belief updates (per update), “Avg Query Time” refers to
the average amount of time taken to perform belief queries (per query), and “Total Avg Time” refers to
the overall average amount of time taken by the system to perform a single test. Note again that the total
number of belief updates and queries depends on the number of observed actions, which cannot be easily
controlled; overall, there should be just as many belief updates as there are belief state queries. In addition
to calculating the average time, I have also calculated the standard deviation for each collection of tests run
under a given robot and a given number of goals/obstacles/states. In the graphs, the standard deviation is
noted using a bar with three lines; the middle line is the mean, and the top and bottom lines are the mean
plus-or-minus the standard deviation. The standard deviation values given in the tables have been rounded
to the nearest integer number.

Ultimately, the trends seen in the results are largely as expected. Increasing the number of goals in
particular increases the pre-processing, belief query, and total times at a roughly linear rate (the average

belief update time is unaffected since belief updates do not do work for every goal). Increasing the number

33

Runtime (s)

Runtime (s)

1500 2000 2500 3000

500 1000

0

12

10

Runtime vs. Goals

Legend

B Fre-processing Time, Random Robot
B Pre-processing Time, Optimal Robot
B Fre-processing Time, Cptimal Robot (Noise)

20 40 60 80 100
Number of Goals
(a) Effect of Number of Goals on Preprocess Running Time
Runtime vs. Goals
Legend
M B=lisf Update Tims, Randam Robot
W Eclief Update Time, Optimal Robot
W e=lisf Update Time, Optimal Robot (Noise)
I I [T T
20 40 60 80 100

Number of Goals

(b) Effect of Number of Goals on Belief Update Running Time

Figure 5.2: Effects of Number of Goals, Part 1

34

Runtime (s)

Runtime (s)

12

10

1500 2000 2500 3000

500 1000

0

Runtime vs. Goals

Legend
W E=lisf Query Time, Random Robot
HEe=lisf Query Time, Optimal Robot

W eEclisf Query Time, Optimal Robot (Noise)

(a) Effect of Number of Goals on Belief Query Running Time

|
40

Runtime vs. Goals

|
60

Number of Goals

80

100

Legend
B Totzl Tirme, Random Robot
M Totzl Time, Optimal Robot

W Totzl Time, Optimal Robot (Moise)

|
60

Number of Goals

80

(b) Effect of Number of Goals on Total Running Time

Figure 5.3: Effects of Number of Goals, Part 2

35

100

Runtime (s)

Runtime (s)

400 600 800 1000

200

12

10

Runtime vs. Obstacles

Legend
B Fre-processing Time, Random Robot
B FPre-processing Time, Optimal Robot
W Fre-processing Time, Optimal Robot (MNoise)

Number of Obstacles

(a) Effect of Number of Obstacles on Preprocess Running Time

Runtime vs. Obstacles

Legend
M E=lief Updzate Time, Random Robot
Eeslisf Update Time, Optimal Robot
W Eclief Update Time, Optimal Robot (MNoise)

¢ —=———%

| |
20 40

| T
60 80

Number of Obstacles

(b) Effect of Number of Obstacles on Belief Update Running Time

Figure 5.4: Effects of Number of Obstacles, Part 1

36

100

Runtime vs. Obstacles

12

10

Runtime (s)

Legend
W E=lisf Query Time, Random Robot
HEe=lisf Query Time, Optimal Robot
W eE=lisf Query Time, Optimal Robot (MNoise)

| | | T T
20 40 60 80 100

Number of Obstacles

(a) Effect of Number of Obstacles on Belief Query Running Time

Runtime vs. Obstacles

Runtime (s)

400 600 800 1000

200

Legend
M Totzl Time, Random Robot
B Totzl Time, Optimal Robot

W Totzl Tirme, Optimal Robot (Noise)

| |
40 60

Number of Obstacles

80

100

(b) Effect of Number of Obstacles on Total Running Time

Figure 5.5: Effects of Number of Obstacles, Part 2

37

Runtime (s)

Runtime (s)

400 500 600 700

100 200 300

0

Runtime vs. States

Legend

- B Pre-processing Time, Random Robot

B Pre-processing Time, Optimal Robot

W Pre-processing Time, Optimal Robot (Moise)

T | | T |
Oe+00 2e+05 4e+05 Ge+05 8e+05

Number of States

(a) Effect of Number of States on Preprocess Running Time

Runtime vs. States

1e+06

— Legend

W E=lief Update Time, Random Robot

MW E=lief Update Time, Optimal Robot

W e=lisf Update Time, Optimal Robot (Moise)

| | | | |
0e+00 2e+05 4e+05 6e+05 8e+05

Number of States

(b) Effect of Number of States on Belief Update Running Time

Figure 5.6: Effects of Number of States, Part 1

38

1e+06

Runtime (s)

Runtime (s)

100 200 300 400 500 600 700

0

Runtime vs. States

Legend
W Eclisf Guery Time, Random Robot
BEEelief Guery Time, Cptimal Robot
W eslisf Query Time, Optimal Robot (Moise)

T | | T | T
Oe+00 2e+05 4e+05 Ge+05 8e+05 1e+06

Number of States

(a) Effect of Number of States on Belief Query Running Time

Runtime vs. States

Legend
M Totzl Time, Random Robot
M Totzl Time, Optimal Robot
W Totzl Time, Optimal Robot (Moise)

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

Number of States

(b) Effect of Number of States on Total Running Time

Figure 5.7: Effects of Number of States, Part 2

39

Table 5.1: Effect of Goals on Running Time (Random Robot)

Goals | Avg Pre-Processing Time | Avg Update Time Avg Query Time Total Avg Time
4 Goals 54906ms 4 70284ms 4945ms £ 317Tms 1384ms 4 215ms 605933ms + 101275ms

8 Goals 131656ms £+ 95104ms 4935ms £ 276ms 1842ms 4+ 198ms | 740984ms + 1000780ms
20 Goals 225682ms 4+ 88111ms 4931ms £ 266ms 2995ms + 349ms 950939m.s + 100036ms
100 Goals 1139149ms + 324212ms 5129ms + 574ms | 10647ms £ 216ms | 2611157ms + 324212ms

Table 5.2: Effect of Goals on Running Time (Optimal Robot)

Goals | Avg Pre-Processing Time | Avg Update Time Avg Query Time Total Avg Time
4 Goals 42995ms + 23597ms 5094ms + 436ms 1171ms 4+ 190ms 184518 ms =+ 84480ms

8 Goals 98873ms + 772525ms 5014ms + 384ms 1694ms &+ 214ms 243151ms 4+ 126379ms
20 Goals 322528ms + 182989ms 5142ms + 312ms 2772ms £+ 207ms 525547ms + 223196ms
100 Goals 1365873ms £ 354183ms 5487ms + 998ms | 10452ms + 218ms | 1762076ms + 433389 ms

Table 5.3: Effect of Goals on

Running Time (Opti

mal Robot (+ 10 D

egrees Noise))

Goals | Avg Pre-Processing Time | Avg Update Time Avg Query Time Total Avg Time
4 Goals 39454ms + 15979ms 4973ms £ 396ms 1292ms &+ 214ms 205855ms &+ 66731ms

8 Goals 86673ms £ 62684ms 5179ms £+ 425ms 1574ms 4+ 197ms 238870ms 4 98507ms
20 Goals 294631ms £ 167953ms 5221ms £ 341ms 2771ms £ 202ms 484439ms £ 201342ms
100 Goals 1374230ms + 584950ms 5455ms £+ 970ms | 10439ms 4+ 208ms | 1788383ms 4+ 711617ms

Table 5.4: Effect of Obstacles on Running Time (Random Robot)

Obstacles

Avg Pre-Processing Time

Avg Update Time

Avg Query Time

Total Avg Time

4 Obstacles 62935ms + 73173ms 4950ms £+ 309ms | 1417ms £ 214ms 627510ms + 87173ms

8 Obstacles 68351ms £ 55162ms 5040ms £ 326ms | 1407ms + 214ms 633902ms £ 58469ms
20 Obstacles 130782ms + 150388ms 4941ms £+ 314ms | 1418ms £+ 216ms | 674244ms £ 160428 ms
100 Obstacles 282077ms + 307378ms 4863ms £+ 313ms | 1458ms £ 201ms | 761602ms 4+ 323504ms

Table 5.5: Effect of Obstacles on Running

Time (Optimal Robot)

Obstacles

Avg Pre-Processing Time

Avg Update Time

Avg Query Time

Total Avg Time

4 Obstacles 64689ms £ 69847Tms 5034ms £ 437ms | 1216ms & 199ms | 218131ms £ 110123ms

8 Obstacles 98708ms + 118673ms 4862ms £+ 376ms | 1375ms £ 207ms | 256966ms + 181959ms
20 Obstacles 167943 ms £+ 163768 ms 5028ms + 444ms | 1156ms + 189ms | 279502ms £+ 180089ms
100 Obstacles 267739ms £ 215294ms 5063ms £ 461ms | 1121ms & 167ms | 372140ms £ 280426m.s

Table 5.6: Effect of Obstacles on Running Time (Optimal Robot (£ 10 Degrees Noise))

Obstacles | Avg Pre-Processing Time | Avg Update Time | Avg Query Time Total Avg Time
4 Obstacles 40276ms + 21804ms 4987ms £+ 407ms | 1235ms + 204ms 170642ms £ 54667ms

8 Obstacles 118886ms £ 99237ms 5014ms £ 413ms | 1287ms £+ 217ms | 281167ms £ 160340ms
20 Obstacles 82592ms £+ 75015ms 4978ms £+ 425ms | 1286ms £ 216ms | 211689ms £ 120351ms
100 Obstacles 144933 ms + 176264ms 4990ms £+ 484ms | 1165ms 4+ 191ms | 214744ms £ 225747ms

Table 5.7: Effect of States on Running Time (Random Robot)

Obstacles

Avg Pre-Processing Time

Avg Update Time

Avg Query Time

Total Avg Time

100 States

43476ms £+ 11417ms

Oms + Oms

Oms £ 1lms

345514ms + 11393ms

1000 States 64927ms £ 68784ms Oms + 1ms Ims £ 2ms 66995ms £ 68672ms
10000 States 41628ms + 16807ms 43ms + 20ms 16ms + 13ms 46586ms + 16968ms
100000 States 50941ms + 61011ms 459ms £+ 78ms 129ms £+ 36ms | 100660ms 4+ 57776ms
1000000 States 43983ms £ 26077ms 4947ms £+ 303ms | 1443ms £ 216ms | 604468 ms 4+ 51743ms

40

Table 5.8: Effect of States on Running Time (Optimal Robot)

7 States

Avg Pre-Processing Time

Avg Update Time

Avg Query Time

Total Avg Time

100 States

58893ms £ 50809ms

Oms &+ O0ms

Oms 4+ 0ms

59497ms £ 50889ms

1000 States

53840ms £ 41668 ms

Oms + 1ms

1ms £ 2ms

54386ms £ 41587ms

10000 States 51693ms + 52108 ms 39ms + 18ms 15ms £+ 8ms 53002ms + 52247ms
100000 States 58076ms £ 52608ms 444ms £+ Thms 133ms 4+ 43ms 71976ms £ 54101ms
1000000 States 53131ms 4+ 50165ms 5093ms + 422ms | 1190ms £ 192ms | 203878 ms + 74396ms

Table 5.9: Effect of States on Running Time (Optimal Robot (£ 10 Degrees Noise))

States | Avg Pre-Processing Time | Avg Update Time | Avg Query Time Total Avg Time

100 States 36992ms + 17376ms Oms + Oms Oms £+ Oms 37507ms + 17444ms
1000 States 42708 ms £ 15516ms Oms + 1lms 1ms £ 0Oms 43232ms £ 15558 ms
10000 States 73566ms + 90213ms 38ms + 15ms 16ms + 10ms 74803ms 4+ 90383ms
100000 States 63074ms + 66721ms 39ms + 16ms 15ms £+ 6ms 64478ms + 66981ms
1000000 States 37549ms £+ 16080ms 5087ms £ 447ms | 1187ms £ 196ms | 165167ms £ 77074ms

of obstacles, meanwhile, also increased the pre-processing time at a roughly linear rate, albeit not to the
same degree as with the goals. This is understandable, as while changing the number of obstacles has less of
a direct impact on the running time, it does nonetheless produce more complex paths while requiring more
time to generate the environment. Notably, altering the number of obstacles had no impact on the average
belief update and belief query time. The belief query time was also consistently lower than the belief update
time for small numbers of goals, most likely because the process of simply querying the values of the fluents
is less complex than updating them. It’s worth noting how the belief update and belief query times were
only affected by the number of states and the number of goals, and even then the number of goals only
affected the belief update time in a minor way. Furthermore, the average time for both belief updates and
belief queries remained consistently low, maxing out at roughly 12 seconds per belief query for 100 goals and
5 seconds per belief update for 1 million states. These running times are not terribly high, but may need
to be improved if the system is to be run in real-time (though the large running time is partly down to the
complexity of the problem). It’s also worth noting that the different agent behaviours had very little impact
on the results; the only notable difference is that the random robot took a significantly larger amount of
total time than the other two due to it taking significantly longer for it to reach its target. In most cases
the difference in total running time between the random robot and the other two robots was constant, but
its worth noting that that this difference actually scaled in the case of states, being almost nonexistent for
small quantities of states and rather large for large quantities of states; this is most likely a combination of
the belief query and belief update times scaling directly as the number of states scales (note that the longer

it takes for the robot to reach its target destination, the more belief queries and belief updates occur) and

41

also the fact that I tested much larger quantities of states compared to goals and obstacles (100-1000000
states vs. 4-100 goals/obstacles).

Regarding the standard deviation, it is admittedly the case that the standard deviation is relatively high
when calculating the average pre-processing time. Examining the output of each test more carefully revealed
that the pre-processing time was abnormally high in a few specific cases. What seems to be the most likely
explanation for this is that it occurred during the generation of the random environment. The random
environment generator was built to discard and regenerate an obstacle if it overlapped with a goal, since the
idea was that obstacles were impassable — perhaps there were a few runs wherein this wound up happening
more often than usual. The fact that the standard deviation is highest in the tests wherein I increased the
number of obstacles (and thereby increased the frequency with which a generated obstacle would have to be
discarded), and second-highest in the tests wherein I increased the number of goals (thereby increasing the

chances of a generated obstacle overlapping a goal) heavily supports this theory.

5.2.2 Accuracy Tests

For my accuracy experiments, I used the target shooting example defined in Chapter 4 and fed it a simple
action sequence wherein the observed agent chooses a plan and a target, aims at its chosen target, and fires.
Prior to the agent firing a shot, I made it so that my system would observe it aiming at a 45° angle. I
also made it such that the action used to represent the agent aiming its shot was noisy as I felt that would
produce more interesting results. I then measured the system’s beliefs in: a) which target the agent was
intending to aim at and b) which target the agent was actually aiming at (which might not be the same

target given the use of noisy aiming) after the agent fires its shot but before said shot actually hits a target.

5.2.2.1 Testing Protocol

After measuring my systems beliefs, I calculated what those beliefs should be at that point in time, and
compared these “correct” values to my system’s outputs to see if there were any discrepancies. Since the
system is a simple one where all the probability distributions involved are known quantities, calculating
these correct beliefs was a relatively simple process, and comparing this pre-calculated correct beliefs to the
system’s actual beliefs is more valuable than comparing how quickly the system can correctly predict the
observed agent’s plan because that is largely dependant on the quality of the sensors used to gather data and
on the quality of the model used to formulate these predictions, which my system cannot directly control

(essentially, the onus is on the person using my system to ensure that the model/sensors they are using are

42

Table 5.10: Degree of Belief that the Agent is Intending to Aim at Target 1

States | Correct Belief My System’s Belief Difference

1 State 37.75% 35% + 14.53% —2.75%

10 States 37.75% 44.10% + 6.222% +6.346%

100 State 37.75% 39.53% =4 0.3943% +1.774%

1000 States 37.75% 38.61% 4 0.7857% +0.8537%
10000 States 37.75% 37.58% 4 0.2810% —0.1747%
100000 States 37.75% | 37.64% + 0.008301% —0.1176%
1000000 States 37.75% 37.74% £+ 0.01331% | —0.009855%

Table 5.11: Degree of Belief that the Agent is Intending to Aim at Target 2

States | Correct Belief | My System’s Belief Difference

1 State 62.24% 20% + 40% —42.25%

10 States 62.24% 55.88% =+ 18.60% —6.364%

100 State 62.24% 60.45% £+ 9.161% —1.800%

1000 States 62.24% 61.36% + 2.180% —0.8844%
10000 States 62.24% 62.39% =4 0.5956% +0.1466%
100000 States 62.24% 62.34% £+ 0.2208% | +0.08932%
1000000 States 62.24% | 62.23% + 0.06504% | —0.01835%

Table 5.12: Degree of Belief that the Agent is Intending to Aim at Target 3
States | Correct Belief My System’s Belief Difference

1 State 2.619¢ — 7% 45% + 49.75% +45.00%

10 States 2.619¢ — 7% 0.01889% =+ 0.02163% | +0.01889%

100 State 2.619¢ — 7% 0.02524% + 0.01307% | +0.02524%

1000 States 2.619¢ — 7% 0.03073% =+ 0.007416% | +0.03073%
10000 States 2.619¢ — ™% 0.02808% =+ 0.001853% | +0.02808%
100000 States 2.619¢ — 7% | 0.02825% + 0.0005711% | +0.02825%
1000000 States 2.619¢ — 7% | 0.02821% + 0.0001742% | +0.02821%

Table 5.13: Degree of Belief that the Agent is Aiming at Target 1

States | Correct Belief | My System’s Belief Difference

1 State 24.01% 25% + 43.30% +0.9934%

10 States 24.01% 26.95% + 17.41% +2.940%

100 State 24.01% 25.49% + 6.158% +1.480%

1000 States 24.01% 24.35% + 1.627% +0.3480%
10000 States 24.01% 23.91% + 0.3910% | —0.09274%
100000 States 24.01% 23.97% +0.1704% | —0.03433%
1000000 States 24.01% | 24.00% + 0.04686% | —0.01042%

Table 5.14: Degree of Belief that the Agent is Aiming at Target 2
States | Correct Belief | My System’s Belief Difference

1 State 64.35% 20% + 40% —44.35%

10 States 64.35% 60.40% + 18.92% —3.943%

100 State 64.35% 62.84% + 8.703% —-1.511%

1000 States 64.35% 63.70% + 2.043% —0.6483%
10000 States 64.35% 64.53% + 0.5341% —0.1841%
100000 States 64.35% 64.41% + 0.2327% | +0.05932%
1000000 States 64.35% | 64.32% £ 0.06104% 0.02420%

43

Table 5.15: Degree of Belief that the Agent is Aiming at Target 3

States | Correct Belief My System’s Belief Difference

1 State 0.01659% 45% + 49.75% +44.98%

10 States 0.01659% 0.01889% =+ 0.02163% +0.002300%

100 State 0.01659% 0.01571% + 0.006210% —0.0008755%

1000 States 0.01659% 0.01676% + 0.001576% | +0.0001686%
10000 States 0.01659% | 0.01644% =+ 0.0006767% | —0.0001450%
100000 States 0.01659% | 0.01657% 4 0.0002113% | —1.868e — 5%
1000000 States 0.01659% | 0.01659% + 4.139¢ — 5% | +5.063e — 6%

ones which can produce accurate predictions). So instead, I measured on system’s accuracy by determining
how many states are necessary for Monte Carlo Sampling to produce the “correct” predictions for a given
model/set of sensors. The way these “correct” predictions were calculated was as follows:

To calculate the likelihood that the observed agent was intending to aim at a given target (given
the 45° observation), I first calculated the probability of the system observing the agent aiming at
a 45° angle in the scenario where the agent was intending to aim at the first target (call this
P(45° Observed | Intending to aim at target 1)) by integrating over the product of the gaussian ran-
dom variable representing the probability of the agent’s aim being some value given that they were
intending to aim at the first target and the gaussian random variable representing the probability
of observing the agent aiming at a 45° angle given the agent’s actual aim (with the agent’s actual
aim being the variable being integrated over in a range spanning the entire field). I then did the
same for the other two targets, then calculated the general probability of observing an aim of 45° as
P(45° Observed | Intending to aim at target 1) x 1/3 + P(45° Observed | Intending to aim at target 2) *
1/3 4+ P(45° Observed | Intending to aim at target 3) * 1/3 (since the target the agent intends to aim
at is directly determined by which plan its following and all three plans are equally likely); this gives us
P(45° Observed). Finally, I calculated the likelihood that the observed agent was intending to aim at the first
target as (P(45° Observed | Intending to aim at target 1) / P(45° Observed)) * 1/3) as per Bayesian rules,
then did the same for the other two targets. To calculate the likelihood of the agent actually aiming at a given
target given the 45° observation, I next calculated the probability of both the system observing the agent
aiming at a 45° angle and the agent aiming at the first target in the scenario where the agent was intending to
aim at the first target (call this P(45° Observed & Aiming at target 1 | Intending to aim at target 1)) by in-
tegrating over the same product as before, but this time only over the range of angles at which the agent would
be aiming at target 1. After performing the same calculation for the scenarios wherein the agent was intend-

ing to aim at targets 2 and 3, I calculated the general probability of the system observing a 45° angle while

44

the agent was aiming at target 1 as P(45° Observed & Aiming at target 1 | Intending to aim at target 1)
1/3 + P(45° Observed & Aiming at target 1 | Intending to aim at target 2) = 1/3 +
P(45° Observed & Aiming at target 1 | Intending to aim at target 3) = 1/3; this gives us
P(45° Observed & Aiming at target 1). Finally, T calculated the probability of the agent actually aim-
ing at target 1 given the 45° observation as P(45° Observed & Aiming at target 1) / P(45° Observed),
then repeated the whole process for the other two targets.

Once again, I have included the standard deviation in my results. I measured my results using 1, 10,
100, 1000, 10000, 100000, and 1000000 states. Note that all of my results have been rounded to the nearest

integer.

5.2.2.2 Results

The results I obtained are summarized in Tables 5.10-5.15. As before, I averaged the results over 20 runs of
the system for each number of states. To keep the tables uncluttered, I split each query being evaluated. As
you can see from the tables, it didn’t take many states for my system to begin reporting percentages that
were quite close to the correct values; 1000 states was consistently enough to produce results within less than
1% of the correct result, and the standard deviation of my data steadily decreased with time. While it is
true that the number of samples needed to produce accurate data depends on the specific scenario, the fact
that I was able to produce accurate results at such a significantly smaller number of sample states than I
used in many of my other examples suggests that I can safely reduce the number of states used in modelling
plan recognition problems in my system without significantly sacrificing accuracy, which will have benefits

in regards to the running time of the system.

5.2.3 Additional Tests

As mentioned, I also adapted and ran some of the tests conducted by Kaminka et al. so as to better compare
the results of my work to theirs. Specifically, I adapted the goal recognition algorithm they developed into
my system, and ran it under similar conditions. Their algorithm, again as mentioned, was coincidentally
very similar to the one I used in the example featuring the robot with multiple goals, though the method
they used to compare the robot’s path to the optimal path for a given potential goal was different from
mine; while I calculated the “ideal” orientation for the robot at each time step (i.e. the orientation which
would have the robot pointing directly at the next node in the optimal path) and then compared it to the

robot’s actual orientation, Kaminka et al. estimated the robot’s complete path to the goal (using both the

45

robot’s current path and an optimal path from the robot’s current position), then compared the length of
this estimated path to the length of the optimal path from robot’s original starting position. Additionally,
Kaminka et al.’s method featured various heuristic strategies which could be used to alter the base algorithm
to improve performance. The base version of their algorithm recomputed the optimal path for each goal
at every time step, but they also formulated a version using a heuristic strategy called “RECOMPUTE”
which would only recompute the path under certain conditions (specifically, whenever the goal with the
highest probability of being the actual target goal is not the one whose path the robot is in closest proximity
t0); otherwise, the system instead estimated the complete path to each goal by removing a portion of the
current estimated path (up to whichever node in the path would be the robot’s next target, were it following
the path exactly) and then connecting the path the robot has followed so far to this “shortened” version
of the optimal path. The other heuristic strategy they formulated, called “PRUNE” was to prune certain
potential goals (i.e. removed them from consideration) whenever they were deemed no longer likely to be the
true goal, specifically by checking if the angle between the robot’s current trajectory and the hypothetical
trajectory which would lead it directly to the optimal path to be greater than some threshold angle whose
value would be determined by how strict or lenient one wishes the pruning process to be. When evaluating
their algorithm, they specifically used a threshold of 120°. Provided that the actual target goal never gets
pruned by mistake, pruning goals in this manner would ideally improve the efficiency of the algorithm, as

goals that have been pruned would never need to have their optimal paths recomputed [31].

5.2.3.1 Test Domain.

For these tests, I once again used a randomly-generated environment. However, for these tests, I used one
single randomly-generated environment across every run of the system, rather than changing it every time.

This environment featured 11 possible goals and four obstacles.

5.2.3.2 Testing Protocol.

The experiment analysis I conducted on this version of the robot with multiple goals was similar to the
analysis conducted by Kaminka et al, though I didn’t gather statistics in quite the same way as they did,
admittedly due to a misunderstanding on my part (i.e. I was trying to gather statistics in the same way
they did, but I misunderstood their explanation of how they gathered statistics). This should not have
significantly affected the trends, however. For each run of the system, I used one of the 11 possible goals as

the starting point, with the actual target goal being randomly chosen from among the remaining 10 possible

46

goals. I then did two runs of the system using each possible starting point (with a different random target
goal for each run), and then generated four values, each averaged across the 22 runs of the system: the time
to end (i.e. the number of actions remaining once the system accurately ranks the correct goal as the most
likely goal and never changes that prediction again, as a percent of the total number of actions), the number
of times the system correctly ranked the actual target goal as the most likely goal (again, as a percent of
the total number of actions), the amount of time spent planning, and the number of planner calls. T then
generated these averages across 5 different approaches to the algorithm based on different combinations of
“RECOMPUTE” and “PRUNE”: one in which the optimal paths to each goal are recomputed every time the
robot moves and no goals are pruned, one in which the paths were only recomputed as in “RECOMPUTE”,
one in which goals were pruned as in “PRUNE” | one in which both the “RECOMPUTE” and the “PRUNE”
heuristic strategies were used, and one in which the paths were never recomputed under any circumstances
(and no pruning was done). For the sake of simplicity, let’s call these approaches “Baseline”, “Recompute”,
“Prune”, “Both”, and “No Recompute” (which are the terms Kaminka et al. used), respectively.
Examining the data I got after running one batch of tests, I found that the data did not seem to be converging.
In order to check this, I ran statistics under the same conditions a second time, then averaged the results
from both the first set of statistics and the second. I then repeated this procedure multiple times until the
data appeared to converge; this specifically happened after running statistics nine times, for a total of 198
samples for each approach (11 starting points * 2 runs to a random target goal * 9 total sets of statistics).
For clarity’s sake, Kaminka et al.’s statistics were gather similarly, except rather than only doing two runs
per starting point each with a randomly chosen target goal, they instead did two runs for each starting
point AND potential target goal, resulting in a total of 220 runs per approach (11 starting points * 10
potential target goals * 2 runs per each starting point and target goal). They also did not need to run their
experiments additional times to get the data to converge. So to summarize, the key difference between how
they gathered statistics and how I gathered statistics were a) the number of data points per approach (220
in their case, 198 in mine), and b) the fact that Kaminka et al.’s data points very strictly consisted of two
runs for every possible starting point-target goal pair, whereas mine consisted 18 runs for every starting
point with a random target goal for each run (meaning that some starting point-target goal pairs may have

had more than two runs while others may have had less).

47

Table 5.16: Comparison Test Results

Planning Time

Planner Calls

Time to End

Correct Ranking

Baseline | 3065789.93939 | 289.141414141 | 47.4033372358% | 54.9834013582%
Recompute | 2167598.87374 | 207.525252525 | 40.6477307982% | 53.5540098302%
Prune | 1844673.07576 | 178.621212121 | 49.1695010491% | 57.5980983843%
Both | 1275578.73737 | 123.752525253 | 42.2374053338% | 55.5128665457%

No Recompute

136932.363636

10.0

22.6588122726%

37.1053543378%

5.2.3.3 Results.

The results I generated were largely as expected; they can be found in Table 5.16. Interestingly, the results
don’t quite match up with those of Kaminka et al., but regardless they are largely as expected. In terms
of planning time and planner calls, the “Recompute” and “Prune” approaches both reduced the number of
planner calls and, in turn, the planning time. Why this happened is obvious in the case of “Recompute”;
in the case of “Prune” this happened because there is no need to continue computing paths for goals that
have been pruned. Between the two, “Prune” outperformed “Recompute”, since the paths still needed to be
recomputed fairly often under the “Recompute” approach, whereas pruning a goal meant that goal’s path
never needed to recomputed again under any circumstances. Naturally, combining both strategies under the
“Both” approach produces an even smaller number of calls. The “No Recompute” approach, meanwhile,
had the best running time out of all the approaches, since it only ever computed a path once for each goal.
Finally, the “Baseline” approach had the worst performance in terms of both planning time and number of
planning calls, as expected.

In regards to accuracy (in terms of time to end and the frequency of correct rankings), the “Baseline” ap-
proach outperformed the “Recompute” approach; this is the most notable deviation my results had compared
to those of Kaminka et al. However, I do not think this is surprising, as it is only natural that you get more
accurate results by actually computing the optimal path from the robot’s current position than you would
making an educated guess as to what that path is. Thus, the “Recompute” approach sacrifices a small
degree of accuracy in favour of improving the running time of the system. The “Prune” approach, mean-
while, was more accurate than “Baseline”, which makes sense since removing a goal from the proceedings
makes all the remaining goals (including the actual target goal) slightly more likely, assuming the goal being
removed isn’t the actual target goal. “Both”, meanwhile, was slightly more accurate than “Recompute” due
to the pruning being done and slightly less accurate than “Prune” due to only recomputing the path under

certain conditions, and was also roughly on par with ”Baseline”, having a worse average time to end but

48

a slightly better average frequency of correct rankings. Finally, “No Recompute” was naturally by far the

least accurate of all the approaches.

49

6 Conclusion and Future Work

I have discussed in detail the framework I have developed for modelling plan and goal recognition problems in
Belle and Levesque’s situation calculus [3, 4], particularly in regards to the equal ease with which it can handle
discrete and continuous probability spaces. I have also heavily discussed the Ergo-based implementation of
said framework that I have developed. I have outlined various experimental problems and benchmarks I have
used to demonstrate the variety of problems that can be modelled and solved in this framework, and also
outlined various statistical evaluations I used evaluate the system’s performance in terms of both running
time and accuracy. Overall, the versatility of the framework has been clearly established, as has the ease
with which it can be used.

There are definitely more ways my system could be expanded in the future, however. One task I was
working on which I never quite completed involved projection, i.e. getting my system to display the likelihood
of any given action being the next action to be performed by the observed agent, or the likelihood of a given
sequence of actions being the next sequence of actions to be performed. For the most part, this is actually
a fairly simple task, were it not for one roadblock I have not yet overcome. The method I used to calculate
these predictions was to simply process the given action sequence the same way as I would normally (using
another new Ergo execution mode called offlineStepColl that was later replaced by offlineStepMatch; rather
than returning a list containing the remaining program and the action that was processed, offlineStepColl
instead returns a list containing all possible first actions and the remaining program), except without actually
updating the exoProg fluent (which is necessary since the likelihood of a future action may be affected by
the current program state); while this works for the most part, there is one issue in that fluents are not
updated directly in the program, and thus aren’t updated when processing an action sequence. This causes
trouble when the program expects certain fluents to have certain values that they would have by that point
under normal conditions, but wouldn’t have when “looking ahead”. Being able to process queries about the
likelihood future actions would be a very valuable feature for the system, and would thus be an ideal task

to look into completing in the future.

50

There are also numerous ways the robot with multiple goals experiment could be expanded on. These

include:

e Giving the goals a prior probability distribution. This would be a very simple matter of changing the

initial distribution based on the problem specification.

e Allowing for a wider variety of different kinds of terrain, with different costs for traversing them.
Making this change would be a bit more complex, but ultimately still fairly simple. First, a new
obstacle function with a wider range of possible return values (one for each type of terrain) would have
to be created. Second, the A* algorithm’s cost function would itself have to be updated with the new

costs for each type of terrain.

e Allowing the system to deal with a robot whose movement speed does not match the discretization
procedure used for the A* version of the system. This could be dealt with by updating the discretization
procedure so that the number of cells always matches up the robot’s speed (i.e. such that the robot
always travel exactly one cell every time step), but depending on the exact speed of the robot, this may
not be feasible. Alternatively, the same discretization procedure as before could be used, but rather
than always retrieving the next node in the optimal path, the system could instead ”jump ahead”
based on the speed of the robot — i.e. if the robot’s speed is such that the robot would cover roughly 5
cells per time step, the system would always jump ahead five nodes when retrieving the next node in

the optimal path.

e Related to the above, the system could be re-built to no longer assume that the robot travels with
constant speed in the first place. In order to accommodate for this, the system could simply keep
track of how the robot’s speed changes over time and use the current movement speed to determine
how many nodes to jump over when determining the next target node (i.e. with the number of nodes
being skipped changing as the robot’s speed changes). For the version of the system using maximum
distance differences, the system would be largely the same, except the maximum and minimum values
used to convert the differences to probability values would be constantly updated to account for the
changes in the robot’s speed. Meanwhile, for the version of the system using the robot’s orientation
and position, the changing speed could be used to potentially allow the system to refine its probability
calculations. This could be done by also using the robot’s acceleration as a component of the overall

calculation.

51

e Allowing for the possibility that the robot’s true goal is not any of the known potential goals. This
would be a fairly complicated change; in order to allow for such a possibility, not only would the system
have to determine an adequate initial probability that the goal is not any of the known potential goals,
but there would also have to be a way to update this value accordingly. The best way to accomplish this
would most likely be to find some means of determining that the robot’s actions are not conducive to
any of the known goals and updating the probability values when this happens, but actually quantifying
which actions should trigger a scenario such as this is tricky. One possible idea would be to, in samples
where the chosen goal is unknown” (i.e. the system decides that the robot’s intended goal is not one
of the known ones), determine what the returned probability value would would be for each known
goal; if each value is low, the weight of this sample should be made higher; alternatively, if one or
more of these values are high, the weight of this sample should be made lower. This would ensure that
sample which chose ”unknown” as the robot’s intended goal would only have high weights when the

robot’s actions do not seem conducive to any of the known goals.

e Building the system to allow for the possibility of moving obstacles; this would also be very tricky to
accomplish. The maximum distance difference and orientation/position methods would be unaffected,
but the only way to ensure accuracy with the A* method would be to constantly re-compute the
path as the obstacles move about the environment. This would obviously be extremely inefficient, so

alternative means of updating the optimal path calculation would have to be developed.

e Allowing for additional uncertainty in regards to the system’s observations. This could be interesting
and would allow for modelling of a system which cannot determine the robot’s location/orientation
with 100% accuracy. Building the system in this way would be a simple matter of using additional

probability distributions to represent information such as the robot’s position or observed turn angles.

e Allowing for multiple robots. Ultimately, the simplest means of having multiple robots in the system
would be to simply execute the system for each robot separately. However, this would potentially
cause problems in environments with narrow entrances that both robots pass through simultaneously.
Each additional robot could be treated as a moving obstacle relative to the others, but this would
run into the efficiency problems outlined above. More complex strategies could also be developed
under the assumption that the robots have the ability to communicate with each other, with the
system attempting to predict how the robots would behave in response to this communication to avoid

running into each other. Other factors which may further complicate things are whether or not the

52

robots are all controlled by a single agent and whether or not there’s any uncertainty in the other

robots/agent’s knowledge.

A 3-Dimensional version of the system could be examined. This would be a fairly simple extension
to deal with, as all the calculations done by the system could be pretty easily extended to three
dimensions. The trickiest matter would be adapting the A* algorithm, particularly in a way which
represents the system with sufficient granularity without drastically increasing the running time of the

system.

Finally, it might also be interesting to investigate other methods for calculating the optimal path to
the goal. As has been mentioned, there are many different means of planning out a path from a start
position to a goal. It might be interesting to re-run this system with different path planning algorithms

to try and see which algorithm produces the best results.

53

Bibliography

1]

Dorit Avrahami-Zilberbrand and Gal A. Kaminka. Fast and complete symbolic plan recognition.
In IJCAI pages 653—658. Professional Book Center, 2005.

Fahiem Bacchus, Joseph Y. Halpern, and Hector J. Levesque. Reasoning about noisy sensors and
effectors in the situation calculus. Artificial Intelligence, 111(1-2):171-208, 1999.

Vaishak Belle and Hector J. Levesque. PREGO: an action language for belief-based cognitive
robotics in continuous domains. In AAAI pages 989-995. AAAI Press, 2014.

Vaishak Belle and Hector J. Levesque. ALLEGRO: belief-based programming in stochastic dy-
namical domains. In IJCAI pages 2762—-2769. AAAI Press, 2015.

Vaishak Belle and Hector J. Levesque. Reasoning about discrete and continuous noisy sensors and
effectors in dynamical systems. Artificial Intelligence, 262:189-221, 2018.

Francis Bisson, Froduald Kabanza, Abder Rezak Benaskeur, and Hengameh Irandoust. Provoking
opponents to facilitate the recognition of their intentions. In AAAI 2011.

Craig Boutilier, Ray Reiter, Mikhail Soutchanski, and Sebastian Thrun. Decision-theoretic, high-
level agent programming in the situation calculus. In AAAT/TAAI pages 355-362, 2000.

Hung Hai Bui, Svetha Venkatesh, and Geoff A. W. West. Policy recognition in the abstract hidden
markov model. J. Artif. Intell. Res. (JAIR), 17:451-499, 2002.

Eugene Charniak and Robert P. Goldman. A Bayesian model of plan recognition. Artificial
Intelligence, 64(1):53-79, 1993.

Yi Chu, Young Chol Song, Richard Levinson, and Henry A. Kautz. Interactive activity recognition
and prompting to assist people with cognitive disabilities. JAISE, 4(5):443-459, 2012.

Robert Demolombe and Ana Mara Otermin Fernandez. Intention recognition in the situation

calculus and probability theory frameworks. In Computational Logic in Multi Agent Systems,
pages 358-372, London, 2005.

Robert Demolombe and Erwan Hamon. What does it mean that an agent is performing a typical
procedure? a formal definition in the situation calculus. In AAMAS, pages 905-911, 2002.
Christopher W. Geib and Robert P. Goldman. A probabilistic plan recognition algorithm based
on plan tree grammars. Artificial Intelligence, 173(11):1101-1132, 2009.

Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. ConGolog, a concurrent pro-
gramming language based on the situation calculus. Artificial Intelligence, 121(1-2):109-169,
2000.

Giuseppe De Giacomo, Yves Lespérance, and Adrian R. Pearce. Situation calculus based programs
for representing and reasoning about game structures. In KR, 2010.

Robert P. Goldman, Christopher W. Geib, Henry A. Kautz, and Tamim Asfour. Plan recognition
(dagstuhl seminar 11141). Dagstuhl Reports, 1(4):1-22, 2011.

Alexandra Goultiaeva and Yves Lespérance. Incremental plan recognition in an agent program-
ming framework. In PAIR, 2007.

54

18]
[19)
20]
21]
[22)

[23]

Peter Jarvis, Teresa F. Lunt, and Karen L. Myers. Identifying terrorist activity with ai plan
recognition technology. AI Magazine, 26(3):73-81, 2005.

Gal A. Kaminka, Mor Vered, and Noa Agmon. Plan recognition in continuous domains. In AAAI,
pages 6202-6210. AAAT Press, 2018.

Henry A. Kautz. A formal theory of plan recognition. Technical report, Dept. of Computer
Science, University of Rochester, May 1987.

Henry A. Kautz and James F. Allen. Generalized plan recognition. In AA AT pages 32-37. Morgan
Kaufmann, 1986.

Hector J. Levesque. Manuscript on programming for cognitive robotics, 2018. Unpublished
Manuscript.

Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and Richard B. Scherl.
GOLOG: A logic programming language for dynamic domains. J. Log. Program., 31(1-3):59-83,
1997.

Jay McCarthy, April 2013.

John McCarthy and Patrick J. Hayes. Some Philosophical Problems From the StandPoint of
Artificial Intelligence. Machine Intelligence, 4:463-502, 1969.

Miquel Ramirez and Hector Geffner. Plan recognition as planning. In IJCAI pages 1778-1783,
2009.

Miquel Ramirez and Hector Geffner. Probabilistic plan recognition using off-the-shelf classical
planners. In AAAL AAAT Press, 2010.

Ray Reiter. Knowledge in Action. Logical Foundations for Specifying and Implementing Dynamical
Systems. The MIT Press, 2001.

Gita Sukthankar, Christopher Geib, Hung Hai Bui, David V. Pynadath, and Robert P. Goldman.
Plan, activity, and intent recognition: theory and practice. Burlington: FElsevier Science, 2014.

Karim A. Tahboub. Intelligent human-machine interaction based on dynamic Bayesian networks
probabilistic intention recognition. Journal of Intelligent and Robotic Systems, 45(1):31-52, 2006.

Mor Vered and Gal A. Kaminka. Heuristic online goal recognition in continuous domains. In
IJCAI pages 4447-4454. ijcai.org, 2017.

Wen Zeng and Richard L. Church. Finding shortest paths on real road networks: the case for a*.
International Journal of Geographical Information Science, 23:531-543, 2009.

55

A Appendices

56

A.1 Complete Code of the Target Shooting Example

P R R R N R R R R R N R R N B A N R N N N R N B N B N N R N R R R R R R R R R R R R BTN BT RS NSNS I B N

;3 author: YL, with minor alterations by Alistair Scheuhammer
;5 date: 24 Nov 2019

;5 This is an Ergo implementation of a simple plan recognition example
;5 involving discrete and continuous distributions. The observed agent
;5 selects a target, aims at it , and shoots. Initially the target is
;5 unknown, but after making noisy observations of the aim, we get more
;5 accurate knowledge of the selected target.

;5 Here, ERGO is used in onlineSynchronized mode where:

BN — actions/beliefs query results generated by the program

HE are simply printed

N — exogenous actions are read from a file targetShootObs3.txt

;5 To run:

tAn)

;5 In a terminal enter ”"racket —1 ergoExt —i —f targetShootwExoProgVe6.ergo.scm”
B and then run the program by entering ”(main)”

;; The file targetShootObsl.txt (in the same directory) should contain
;3 the following:

B chooseTarget!

N setAim! or nSetAim!

55 (obsAim! <angle>) e.g. (obsAim! 75.0) zero or more times

53 shoot!

N (obsHit! <target>) or obsNoHit!

33 halt!

;5 In the terminal, Ergo displays the updated beliefs , which evolve as expected.
;; After (obsAim! 75.0) is entered, the agent thinks that it is equally

;5 likely that target 1 and 2 are aimed at, and target 0 is extremely unlikely.
;; After (obsHit! 2) is entered, the agent is certain that target 2 was

;5 aimed at and hit.

;5 If one enters nSetAim! instead of setAim!, the degree of belief that target 0

;; was aimed at after (obsAim! 75.0) is greater than in the previous case
;; because the aiming is inaccurate.

;5 Auxiliary definitions including non—fluents

(define (remainder n m)

(= n (x (floor (/ nm)) m)))
(define nTargets 3)
(define targetPosition (vector 30.0 55.0 90.0))
(define targetSize (vector 10.0 30.0 20.0))
(define targetValue (vector 30.0 10.0 20.0))
;5 Auxiliary definitions
(define (aimedAtTarget)

(let loop ((t 0))

(if (>= t nTargets) #f
(if (and (>= aim (— (vector—ref targetPosition t)

(/ (vector—ref targetSize t) 2)))
(<= aim (+ (vector—ref targetPosition t)

57

(/ (vector—ref targetSize t) 2))))
t

(loop (+ t 1))))))

(define (max—vec—elem—index vec)
(let loop ((i 1) (maxIndex 0))
(if (>= 1 (vector—length vec))
maxIndex
(if (> (vector—ref vec i) (vector—ref vec maxIndex))
(loop (+ 1 i) i)
(loop (+ 1 i) maxIndex)))))

;5 we use an alternative version of non—deterministic iteration
;; defined as follows

(define (:starDFS prog)
(:choose :mnil (:begin prog (:starDFS prog))))
;5 Plans

(define (greedy—plan)
(: begin

(:act chooseTarget!)
(:act nSetAim!)
(:choose :nil (:act nSetAim!))
(:starDFS (:act (obsAim! someObservedAim)))
(:act shoot!)
)
)
(define (safe—plan)
(: begin
(:act chooseTarget!)
(:act nSetAim!)
(:choose :nil (:act nSetAim!))
(:choose :mnil (:act nSetAim!))
(:starDFS (:act (obsAim! someObservedAim)))
(:act shoot!)
)
)
(define (optimal—plan)
(:begin

(:act chooseTarget!)

(:act nSetAim!)

(:starDFS (:act (obsAim! someObservedAim)))
(:act shoot!)

)

)

;3 States and actions

(define—states ((i 1000000))
decisionPlan ’notDecided
decisionTarget ’'notDecided
aim 0.0
someObservedAim ’notSet
targetHit (vector #f #f #f)
halted #f
exoProg (:begin (:act choosePlan!)
(:if (eq? decisionPlan ’greedy) (greedy—plan)
(:if (eq? decisionPlan ’safe) (safe—plan)

58

(optimal—plan)))

(:choose (:for—some t (0 1 2) (:act (obsHit! t)))
(:act obsNoHit!))

(:act halt!)

)

(define—action halt! #:sequential? #t
halted #t
exoProg (let ((res (ergo—do #:mode ’offlineStepMatch #:matchAct ’'halt! exoProg))) (if
res (cadr res) :fail))
weight (if (equal? exoProg :fail) 0.0 weight)

;5 accurate decision action
(define—action choosePlan! #:sequential? #t
decisionPlan (DISCRETE-GEN ’greedy 0.33 ’safe 0.33 ’optimal 0.34)
exoProg (let ((res (ergo—do #:mode ’offlineStepMatch #:matchAct ’choosePlan! exoProg)
)) (if res (cadr res) :fail))
weight (if (equal? exoProg :fail) 0.0 weight)

;; accurate decision action
(define—action chooseTarget! #:sequential? #t
decisionTarget (if (eq? decisionPlan ’greedy)
(max—vec—elem—index targetValue)
(if (eq? decisionPlan ’safe)
(max—vec—elem—index targetSize)
(max—vec—elem—index (vector—map * targetValue targetSize)))

exoProg (let ((res (ergo—do #:mode ’offlineStepMatch #:matchAct ’chooseTarget!
exoProg))) (if res (cadr res) :fail))
weight (if (equal? exoProg :fail) 0.0 weight)

;5 accurate unobservable actuation action
(define—action setAim! #:sequential? #t
aim (vector—ref targetPosition decisionTarget)
exoProg (let ((res (ergo—do #:mode ’offlineStepMatch #:matchAct ’setAim! exoProg))) (
if res (cadr res) :fail))
weight (if (equal? exoProg :fail) 0.0 weight)

;5 noisy unobservable actuation action
(define—action nSetAim! #:sequential? #t
aim (GAUSSIAN-GEN (vector—ref targetPosition decisionTarget) 5.0)
exoProg (let ((res (ergo—do #:mode ’offlineStepMatch #:matchAct ’'nSetAim! exoProg)))
(if res (cadr res) :fail))
weight (if (equal? exoProg :fail) 0.0 weight)

)

;35 noisy continuous sensor
(define—action (obsAim! a) #:sequential? #t
;5 #:prereq (and (>= a 0.0) (< a 360.0))
someObservedAim a ;; fluent someObservedAim is set to argument angle a
;5 ensuring the exoProg can run to match the action
exoProg (let ((res (ergo—do #:mode ’offlineStepMatch
#:matchAct (list ’obsAim! a) exoProg)))
(if res (cadr res) :fail))
weight (if (equal? exoProg :fail)
0.0
(x weight (GAUSSIAN (remainder a 360.0) aim 10.0)))

59

;; accurate unobservable actuation action
(define—action shoot! #:sequential? #t

targetHit (let ((aat (aimedAtTarget)))

(if (not aat) targetHit
(vector—set targetHit aat #t)))
exoProg (let ((res (ergo—do #:mode ’offlineStepMatch #:matchAct ’shoot! exoProg))) (
if res (cadr res) :fail))
weight (if (equal? exoProg :fail) 0.0 weight)

)

;5 accurate discrete sensor
(define—action (obsHit! t) #:sequential? #t
exoProg (let ((res (ergo—do #:mode ’offlineStepMatch
#:matchAct (list ’obsHit! t) exoProg)))
(if res (cadr res) :fail))
weight (if (and (vector—ref targetHit t)
(not (equal? exoProg :fail)))
weight
0.0)

;5 accurate discrete sensor
(define—action obsNoHit! #:sequential? #t
exoProg (let ((res (ergo—do #:mode ’offlineStepMatch #:matchAct ’obsNoHit! exoProg)))
(if res (cadr res) :fail))
weight (if (and (not (or—map (lambda (i) (vector—ref targetHit 1))
(iota nTargets)))
(not (equal? exoProg :fail)))
weight
0.0
)
)

(define (displayBeliefs)
(printf 7(beliefl (eq? decisionPlan notDecided)) returns “s™n” (belief (eq?
decisionPlan ’notDecided)))
(printf 7 (belief (eq? decisionPlan greedy)) returns “s™n” (belief (eq? decisionPlan
"greedy)))
(printf 7 (belief (eq? decisionPlan safe)) returns “s™n” (belief (eq? decisionPlan
safe)))
(printf 7 (belief (eq? decisionPlan optimal)) returns “s™n” (belief (eq? decisionPlan
‘optimal)))
(printf 7 (beliefl (eq? decisionTarget notDecided)) returns “s™n” (belief (eq?
decisionTarget ’notDecided)))
(printf ”(belief (eq? decisionTarget 0)) returns “s™n” (belief (eq? decisionTarget

)

0)))

(printf 7 (belief (eq? decisionTarget 1)) returns ~“s™n” (belief (eq? decisionTarget
1))

(printf 7 (belief (eq? decisionTarget 2)) returns “s™n” (belief (eq? decisionTarget
2)))

(printf 7”(belief (aiming at target 0)) returns ~s™n”
(belief (and (>= aim (— (vector—ref targetPosition 0)
(/ (vector—ref targetSize 0) 2)))
(<= aim (+ (vector—ref targetPosition 0)
(/ (vector—ref targetSize 0) 2)))))
)

(printf 7 (belief (aiming at target 1)) returns “s™n”
(belief (and (>= aim (— (vector—ref targetPosition 1)
(/ (vector—ref targetSize 1) 2)))
(<= aim (+ (vector—ref targetPosition 1)
(/ (vector—ref targetSize 1) 2)))))

60

(printf 7(belief (aiming at target 2)) returns ~s™n”
(belief (and (>= aim (— (vector—ref targetPosition 2)
(/ (vector—ref targetSize 2) 2)))
(<= aim (+ (vector—ref targetPosition 2)
(/ (vector—ref targetSize 2) 2)))))
)

(printf 7 (belief (vector—ref targetHit 0)) returns “s™n
(belief (vector—ref targetHit 0))

)

(printf 7 (belief (vector—ref targetHit 1)) returns “s™n
(belief (vector—ref targetHit 1))

)

(printf 7 (belief (vector—ref targetHit 2)) returns “s™n
(belief (vector—ref targetHit 2))

)

9

”

”

)

(define buStartTime 0)

(define observeUpdtLoop
(: begin
(:>> (let ((start (current—milliseconds)))
(displayBeliefs)
(printf ”Elapsed time for belief queries and display “a ms\n”
(— (current—milliseconds) start))))
(:while (< (belief (eq? halted #t)) 0.9)
(:>> (set! buStartTime (current—milliseconds)))
(:test #t)
(:>> (printf ”Elapsed time for belief update “a ms\n”
(= (current—milliseconds) buStartTime)))
(:>> (let ((start (current—milliseconds)))
(displayBeliefs)
(printf ”Elapsed time for belief queries and display “a ms\n”
(— (current—milliseconds) start))))

)
)
)

(define—interface ’out write—endogenous)

(define—interface ’in
(let ((iport (open—input—file ”"BatchActions.txt”)))
(displayln ”Opening file BatchActions.txt to receive exogenous actions!”)
(lambda () (let ((exog (read iport)))
exog))))

(define (main) (let ((runStartTime (current—milliseconds)))
(ergo—do #:mode ’onlineSynchronized observeUpdtLoop)
(printf ”Total time for run ~a ms\n”
(= (current—milliseconds) runStartTime))

61

A.2 Complete Code of the Jewelry Store Example

P R R R N R R R R R N R R N B A N R N N N R N B N B N N R N R R R R R R R R R R R R BTN BT RS NSNS I B N

)

)

)

3

author: Alistair Scheuhammer

This is an Ergo implementation of a very simple plan recognition
example. The observed agent is an individual who has entered a

jewelry store. Their intentions are not yet known, and it
of the systems to predict those intentions: specifically ,

they are there to steal something, to buy something,

to browse the store’s selection. Stealing is the

offers three items for sale: a ring, a necklace,

simple Ergo program models the observed agent’s behaviour.
First , they choose which of the three possible goals
browse, or buy) they are intending to pursue. Then,
shop and look around for a moment. Then, they approach the

is the goal
whether

or simply

least common
choice, while browsing and buying are equally likely The store
and a bracelet. A

(steal
they enter the

counter and choose which of the three items of jewelry they are
planning on targeting; they are more likely to pick the ring than
steal the object ,
but otherwise all three objects have an equal probability of being
selected. Next, they decide whether or not to look around again;

the necklace or the bracelet if their goal is to

they have a fairly low chance of doing so when browsing or
buying, but are guaranteed to do so when stealing.
agent intends to buy the object, they will pay for

Finally , if the
it and leave. If

they intend to browse, they will set the object down and then
will leave without

leave. If they intend to steal the object, they
doing anything else.

Here, ERGO is used with TCP in a basic way similar to that
in the standard example reactive—elevator—tcpl.scm:
— actions generated by the program are simply printed
— exogenous actions arrive over TCP port 8678

To run:

In terminal 1 enter "racket —1 ergoExt —i —f jewelrystoreProgramFinal.scm”
and then run the program by entering ”(main)”

In terminal 2 enter ”telnet localhost 8345”

and then enter the exogenous actions/observations at the prompt

chooseGoal!
lookAround!
(take! ring)
etc.

In terminal 1, Ergo displays the updated beliefs

, which evolve as expected.

To stop, kill the racket process by entering "C in terminal 1.

(define—states ((i 1000000))

goalChoice (DISCRETE-GEN ’'1 0.2 ’2 0.4 ’3 0.4)
decisionGoal ’notDecided

objChoice (DISCRETE-GEN ’1 1.0) ;; Doesn’t get set until

which potential goal to pursue
decisionObj ’'notDecided
lookChoice (DISCRETE-GEN ’1 1.0) ;; Doesn’t get
which potential goal to pursue
decisionLook ’notDecided
exoProg
(:begin
(:act chooseGoall)
(:act enterShop!)
(:act lookAround!)

62

set until

the observed agent decides

the observed agent decides

(:act approachCounter!)
(:act chooseObj!)
(:for—some o (list ’ring ’necklace ’bracelet)
(:test (eq? o decisionObj)) ;; Fails if o doesn’t match with the object the
observed agent chose
(:act (take! o))
(:act chooseLook!)
(:if (eq? decisionLook ’yes)
(: begin
(:act lookAround!)
(:if (eq? decisionGoal ’steal)
(: begin
(:act leaveShop!))
(:if (eq? decisionGoal ’browse)
(: begin

(:act (putDown! o))
(:act leaveShop!))

(:if (eq? decisionGoal ’buy)
(: begin

(:act (pay! o))
(:act leaveShop!))
(: fail)))))
(:if((eq? decisionLook ’no)
:begin
(ract wait!)
(:if (eq? decisionGoal ’steal)
(:begin
(:act leaveShop!))
(:if (eq? decisionGoal ’browse)
(: begin
(:act (putDown! o))
(:act leaveShop!))
(:if (eq? decisionGoal ’buy)
(:begin
(:act (pay! o))
(:act leaveShop!))
(:fail)))))
(: tail))))))

(define—action chooseGoal! #:sequential? #t
decisionGoal (if (eq? goalChoice ’1)

"steal

(if (eq? goalChoice ’2)
’browse
(if (eq? goalChoice ’3)

"buy
decisionGoal)))

objChoice (if (eq? decisionGoal ’steal)
(DISCRETE-GEN ’'1 0.5 ’2 0.25 ’3 0.25)
(if (or (eq? decisionGoal ’browse) (eq? decisionGoal ’buy))
(DISCRETE-GEN '1 0.33 ’2 0.335 ’3 0.335)
objChoice))

lookChoice (if (or (eq? decisionGoal ’'browse) (eq? decisionGoal ’buy))
(DISCRETE-GEN °'1 0.2 ’2 0.8)
lookChoice)

exoProg (let* ((act ’chooseGoall)
(possConfigs (ergo—do #:mode ’offlineStepColl exoProg))
(config (assoc act possConfigs)))

(if config (cadr config) :fail))

weight (if (equal? exoProg :fail)

63

0.0
weight))

(define—action chooseObj! #:sequential? #t
decisionObj (if (eq? objChoice ’1)

‘ring

(if (eq? objChoice ’2)
"necklace
(if (eq? objChoice ’3)

"bracelet
decisionObj)))

exoProg (letx ((act ’chooseObj!)
(possConfigs (ergo—do #:mode ’offlineStepColl exoProg))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (equal? exoProg :fail)
0.0
weight))

(define—action chooseLook! #:sequential? #t
decisionLook (if (eq? lookChoice ’1)
‘yes
(if (eq? lookChoice ’2)

'no

decisionLook))

exoProg (let* ((act ’chooseLook!)
(possConfigs (ergo—do #:mode ’offlineStepColl exoProg))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (equal? exoProg :fail)
0.0
weight))

(define—action enterShop! #:sequential? #t
exoProg (let* ((act ’enterShop!)
(possConfigs (ergo—do #:mode ’offlineStepColl exoProg))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (eq? exoProg :fail)
0.0
weight))

(define—action lookAround! #:sequential? #t
exoProg (let* ((act ’lookAround!)
(possConfigs (ergo—do #:mode ’offlineStepColl exoProg))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (eq? exoProg :fail)
0.0
weight))

(define—action approachCounter! #:sequential? #t
exoProg (let* ((act ’approachCounter!)
(possConfigs (ergo—do #:mode ’offlineStepColl exoProg))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (eq? exoProg :fail)

64

0.0
weight))

(define—action (take! o) #:sequential? #t
exoProg (let* ((act (list ’take! o))
(possConfigs (ergo—do #:mode ’offlineStepColl exoProg))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (eq? exoProg :fail)
0.0
weight))

(define—action leaveShop! #:sequential? #t
exoProg (letx ((act ’leaveShop!)
(possConfigs (ergo—do #:mode ’offlineStepColl exoProg))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (eq? exoProg :fail)
0.0
weight))

(define—action wait! #:sequential? #t
exoProg (letx ((act ’wait!)
(possConfigs (ergo—do #:mode ’offlineStepColl exoProg))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (eq? exoProg :fail)
0.0
weight))

(define—action (putDown! o) #:sequential? #t
exoProg (let* ((act (list ’putDown! o))
(possConfigs (ergo—do #:mode ’offlineStepColl exoProg))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (eq? exoProg :fail)
0.0
weight))

(define—action (pay! o) #:sequential? #t
exoProg (letx ((act (list ’pay! o))
(possConfigs (ergo—do #:mode ’offlineStepColl exoProg))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (eq? exoProg :fail)
0.0
weight))

(define (displayBeliefs)

(printf 7 (belief (eq? decisionGoal ’notDecided)) returns “s™n” (belief (eq?
decisionGoal ’'notDecided)))

(printf 7 (belief (eq? decisionGoal ’steal)) returns “s™n” (belief (eq? decisionGoal
"steal)))

(printf 7 (belief (eq? decisionGoal ’browse)) returns “s n” (belief (eq? decisionGoal
"browse)))

”»

(printf ”(belief (eq? decisionGoal ’buy)) returns “s™n” (belief (eq? decisionGoal

buy)))

(printf 7 (belief (eq? decisionObj ’'notDecided)) returns “s™n” (belief (eq?

decisionObj ’notDecided)))

65

)

(printf 7 (belief (eq? decisionObj ’ring)) returns “s™n” (belief (eq? decisionObj ~’
ring)))

(printf 7 (belief (eq? decisionObj ’necklace)) returns “s™n” (belief (eq? decisionObj
"necklace)))

(printf 7 (belief (eq? decisionObj ’bracelet)) returns “s™n” (belief (eq? decisionObj
"bracelet)))

(printf 7 (belief (eq? decisionLook ’notDecided)) returns “s™n” (belief (eq?
decisionLook ’notDecided)))

(printf 7 (belief (eq? decisionLook ’yes)) returns “s™n” (belief (eq? decisionLook ’
yes)))

(printf 7 (belief (eq? decisionLook ’no)) returns “s™n” (belief (eq? decisionLook ’no

)))

(define observeUpdtLoop

(:while #t
(:>> (displayBeliefs))
(:wait)

(:>> (printf 7”Exogenous Action Received™n”))))
(define—interface ’out write—endogenous)
(define—interface ’in
(let ((ports (open—tcp—server 8345)))
(displayln "Ready to receive exogenous actions!” (cadr ports))

(lambda () (display ”Act: ” (cadr ports)) (read (car ports)))))

(define (main) (ergo—do #:mode ’online observeUpdtLoop))

66

A.3 Complete Code of the Robot with Multiple Goals Example
A.3.1 Utils.scm

(define (remainder n m) ;; Returns the the difference between m and the nearest
multiple of n thats less than m

(= n (x (floor (/ nm)) m)))

(define (approx—eq? x y err) ;; Returns true if x is between y — err and y + err,
inclusive

(and (<= x (+ y err)) (>= x (= y err))))

(define—syntax incf ;; Increases the numerical value of a variable
(syntax—rules ()

((- x) (begin (set! x (+ x 1))

)

) x)
((- x n) (begin (set! x (+ x n)) x

))))

(define—syntax decf ;; Decreases the numerical value of a variable
(syntax—rules ()
((- x) (incf x —1))
((- x n) (incf x (= n)))))

(define—syntax resetf ;; Resets the numerical value of a variable to 0
(syntax—rules ()

((- x) (incf x (= x)))))

A.3.2 RandomEnvironmentGen.scm

((require dyoo—while—loop)
(include ” Utils.scm”)

(define numGoals 4)
(define numObstacles 100)

(define startPos (comns 5.0 2.0))

(define genCoord (comns 0.0 0.0)) ;; Used to temporarily store a generated coordinate
(define genRadius 0.0) ;; Used to temporarily store a generated radius
(define (overlapsObstacle? coord obstacleCoord obstacleRadius) ;; Returns true if the
given coordinate is inside the given obstacle
(let

((xDiff (abs (= (car coord) (car obstacleCoord))))
(yDiff (abs (= (cdr coord) (cdr obstacleCoord)))))
(let
((dist (sqrt (+ (expt xDiff 2) (expt yDiff 2)))))
(or (< dist obstacleRadius) (approx—eq? dist obstacleRadius 0.05)))))

(define (overlapsObstacles? coord)
obstacle
(for/or ([i (in—range numObstacles)])
(overlapsObstacle? coord (vector—ref obstaclePositions i) (vector—ref
obstacleRadii i))))

;5 Returns true if the given coordinate overlaps any

(define (overlapsGoals? coord) ;; Returns true if the given coordinate is within a 0.1
x0.1 box centred on the goal coordinate for any goal
(for/or ([i (in-range numGoals)])
(and (approx—eq? (car coord) (car (vector—ref goalPositions i)) 0.05) (approx—eq?
(car coord) (car (vector—ref goalPositions i)) 0.05))))

67

(define (overlapsStart? coord) ;; Returns true if the given coordinate is within a 0.1
x0.1 box centred on the start coordinate
(and (approx—eq? (car coord) (car startPos) 0.2) (approx—eq? (car coord) (car
startPos) 0.2)))

(define goalPositions
(make—vector numGoals (cons 0.0 0.0)))

(define obstaclePositions
(make—vector numObstacles (cons 0.0 0.0)))

(define obstacleRadii
(make—vector numObstacles 0.0))

(define (genEnvironment)
(begin
(for ([i (in—range numObstacles)])
(begin
(set! genCoord (cons (* (random) 10.0) (% (random) 10.0)))
(set! genRadius (* (random) 2.5))
(while (overlapsObstacle? startPos genCoord genRadius)
(begin
(set! genCoord (cons (* (random) 10.0) (* (random) 10.0)))
(set! genRadius (* (random) 2.5))))
(vector—set! obstaclePositions i genCoord)
(vector—set! obstacleRadii i genRadius)))
(for ([i (in—range numGoals)])
(begin
(set! genCoord (cons (* (random) 10.0) (* (random) 10.0)))
(while (or (overlapsObstacles? genCoord) (overlapsStart? genCoord))
(set! genCoord (cons (* (random) 10.0) (* (random) 10.0))))
(vector—set! goalPositions i genCoord)))))

(define (envFunc x y) ;; A function which returns 1 f the coordinate defined by the x
and y arguments overlaps any obstacle and 0 otherwise
(if (overlapsObstacles? (cons x y))
1

0))
A.3.3 AStarFinal.scm

(require rackunit
math/matrix
racket /unit
racket /match
racket /list
data/heap
2htdp/image
racket /runtime—path
racket /include
dyoo—while—loop)

;5 This is an implementation of the Ax algorithm by Jay McCarthy, found online at https
://raw.githubusercontent.com/jeapostrophe/jeapostrophe.github.com/source/posts

/2013—04—15—astar.rkt and edited slightly by myself (Alistair Scheuhammer)

(define—signature graph”
(node? edge? node—edges edge—src edge—cost edge—dest))

(define (make—map N func)
(build—matrix N N func))

(struct map—node (M x y) #:transparent)
(struct map—edge (src dx dy dest))

68

(define—unit map@
(import) (export graph®)

(define node? map—node?)

(define edge? map—edge?)

(define edge—src map—edge—src)
(define edge—dest map—edge—dest)

(define (edge—cost e)

(match—define (map—edge (map—node sM sx sy) - - (map—node dM dx dy)) e)
(let
((baseCost (match (matrix—ref dM dx dy)
[0 1]
(1 1000))))

(if (not (or (= sx dx) (= sy dy)))
(x baseCost (sqrt 2))
baseCost)))
(define (node—edges n)
(match—define (map—node M x y) n)
(appendx
(for=/list ([dx (in—list ’(1 0 —=1))]
[dy (in-—1list (1 0 —1))]
#:when
(. (not (and (zero? dx) (zero? dy))))
[(and (<= 0 (+ dx x) (subl (matrix—num—cols M)))
(<=0 (+ dy y) (subl (matrix—num-rows M))))
(define dest (map—node M (+ dx x) (+ dy y)))
(list (map—edge n dx dy dest))]
[else

empty])))))

(define (Ax graph@ initial node—cost)
(define—values/invoke—unit graph@ (import) (export graph”))
(define count 0)

(define node—>best—path (make—hash))
(define node—>best—path—cost (make—hash))

(hash—set! node—>best—path initial empty)
(hash—set! node—>best—path—cost initial 0)
(define (node—total—estimate—cost n)

(+ (node—cost n) (hash—ref node—>best—path—cost n)))
(define (node—cmp x y)

(<= (node—total—estimate—cost x)

(node—total —estimate—cost y)))

(define open—set (make—heap node—cmp))
(heap—add! open—set initial)

(begin0
(let/ec esc
(while (mnot (= (heap—count open—set) 0))

(define x (heap—min open—set))

(heap—remove! open—set x)

(set! count (addl count))

(define h—x (node—cost x))

(define path—x (hash—ref node—>best—path x))

(when (zero? h—x)
(esc (reverse path—x)))

(define g—x (hash—ref node—>best—path—cost x))

(for ([x—=>y (in-—list (node—edges x))])
(define y (edge—dest x—>y))

69

(define new—g—y (4+ g—x (edge—cost x—>y)))

(define old—g—y
(hash—ref node—>best—path—cost y +inf.0))

(when (< new—g—y old—g—y)
(hash—set! node—>best—path—cost y new—g—y)
(hash—set ! node—>best—path y (cons x—>y path—x))
(heap—add! open—set y))))

#1)

(printf ”visited “a nodes\n” count)))

(define ((make—mnode—cost GX GY) n)
(match—define (map—node M x y) n)
(let
((xDist (abs (— x GX)))
(yDist (abs (— y GY))))
(if (< xDist yDist)
(+ (* xDist (sqrt 2)) (abs (— xDist yDist)))
(+ (+ yDist (sqrt 2)) (abs (— xDist yDist))))))
(define N 51)
(define (my-M func)
(make—map N func))
(define (my—path sx sy gx gy func)

(let
((result
(time
(A% map@

(map—node (my-M func) sx sy)
(make—node—cost gx gy)))))
(printf ”path is “a long\n” (length result))
result))

A.3.4 Discretize.scm

(define (discretize5 num)
(exact—round (* num 5)))

(define (discretize5—inv num)

(/ num 5))

(define (discretize5 —biFunc func) ;; Converts a function to one whose output is equal
to 5 times the original function, rounded to the nearest integer
(? (x y) (func (discretizeb5—inv x) (discretize5—inv y))))

A.3.5 OptimalPathProbability.scm

(require racket/include)

(include 7 AStarFinal.scm”)
(include ”Discretize.scm”)
(include ” Utils.scm”)

(define (safe—list—ref 1st pos) ;; Retrieves an item stored in a list using pos an
index into that list , guarding against an invalid index argument by either
retrieving the first element in the list (if pos is too small) or the last element
in the list (if pos is too large)

(if (>= pos (length Ist))
(list —ref Ist (subl (length 1st)))
(if (< pos 0)
(list —ref 1st 0)
(list —ref 1lst pos))))

70

(define (pathGoal start—pos goal—pos func) ;; Generates a sequence of edges
representing the path from star—pos to goal—pos using the Ax algorithm
(let

((sx (discretized (car start—pos)))
(sy (discretizeb (cdr start—pos))
(gx (discretizeb (car goal—pos)))
(gy (discretizeb (cdr goal—pos)))
(obsFunc (discretize5 —biFunc func)))
(my—path sx sy gx gy obsFunc)))

(define index 0) ;; Used to keep track of how many steps along each goal path we’ve
taken

(define path—cache (make—hash)) ;; Hash set storing all the generated goal paths

(define (set—path key start—pos goal—pos func) ;; Stores a generated goal path in the
hash set

(hash—set! path—cache key (pathGoal start—pos goal—pos func)))

(define (get—cur—node—src choice) ;; Gets the last visited node in the goal path
specified by choice
(cons (/ (map—node—x (map—edge—src (safe—list—ref (hash—ref! path—cache choice null)
index))) 5.0) (/ (map—node—y (map—edge—src (safe—list—ref (hash—ref! path—cache
choice null) index))) 5.0)))

(define (get—cur—node—dest choice) ;; Gets the next node in the goal path specified by
choice
(cons (/ (map—node—x (map—edge—dest (safe—list—ref (hash—ref! path—cache choice null
) index))) 5.0) (/ (map—node—y (map—edge—dest (safe—list—ref (hash—ref! path—
cache choice null) index))) 5.0)))

(define (get—full —path choice) ;; Returns the full sequence of nodes for the goal path
specified by choice
(map (lambda (x) (cons (/ (map—node—x (map—edge—dest x)) 5) (/ (map—node—y (map—edge
—dest x)) 5))) (hash—ref! path—cache choice null)))

(define (print—path choice) ;; Prints the full sequence of nodes for the goal path
specified by choice
(printf "Path: “s” (cons (/ (map—node—x (map—edge—src (safe—list—ref (hash—ref! path
—cache choice null) 0))) 5) (/ (map—node—y (map—edge—src (safe—list—ref (hash—
ref! path—cache choice null) 0))) 5)))
(printf ”7s™n” (get—full —path choice)))

(define (get—distribution choice pos angle) ;; Returns the degree to which angle
matches the orientation one standing at pos would need to have in order to be
directly facing the next node in the goal path specified by choice
(let

((intermediateGoal—pos (get—cur—node—dest choice)))
(let
((idealAngle (remainder (4+ 360.0 (radians—>degrees (atan (— (cdr
intermediateGoal—pos) (cdr pos)) (— (car intermediateGoal—pos) (car pos)))
) 360.0)))
(GAUSSIAN angle idealAngle 40.0))))

A.3.6 MaximumDistanceProbability.scm

(require racket/include)
(include ” Utils.scm”)

(define max
100.0)

(define (min)

71

(— max))

(define (set—mew—max val)
(set! max val))

(define (a)
(/ (= 1.0 0.0) (— max (min))))

(define (b)
(= 1.0 (* (a) max)))
(define (normalize value)

(+ (x (a) value) (b)))

(define old—pos ;; The previous position of the agent
(cons —1.0 —1.0))

(define (set—old—pos val)
(set! old—pos val))

(define difference—hash
(make—hash))

(define (set—difference key diff)
(hash—set! difference —hash key diff))

(define (get—difference pos goal—pos) ;; Returns the difference between the agent’s
current distance from goal—pos and the same distance before the agent’s most recent
move action

(let
((oldXDiff (abs (— (car goal—pos) (car old—pos))))

(oldYDiff (abs (— (cdr goal—pos) (cdr old—pos))))

(newXDiff (abs (— (car goal—pos) (car pos))))

(newYDiff (abs (— (cdr goal—pos) (cdr pos)))))

(

((oldLength (sqrt (+ (expt oldXDiff 2) (expt oldYDiff 2))))
(newLength (sqrt (4+ (expt newXDiff 2) (expt newYDiff 2)))))
(— oldLength newLength))))

(define (get—distribution pos choice goals) ;; Sets a normalized difference (i.e.
normalized to be a percentage based on where that difference falls in the range
from min to max) for every goal based on the observed agent’s current and previous
positions , then returns the difference for the goal specified by choice
(begin

(define count 1)
(for ([goal goals])
(let
((difference (get—difference pos goal)))
(set—difference count (normalize difference)))
(set! count (addl count)))
(hash—ref difference —hash choice)))

A.3.7 OrientationDistanceProbability.scm

(require racket/include)
(include ” Utils.scm”)

(define (get—distribution pos angle goal—pos) ;; Returns 80\% times the degree to which
pos matches goal—pos plus 20\% times the degree to which angle matches the
orientation one at pos would need to be directly facing goal—pos

(let
((xdiff (— (car goal—pos) (car pos)))
(ydiff (= (cdr goal—pos) (cdr pos))))

72

A.3.8

(let ((distanceFromGoal (sqrt (+ (expt xdiff 2) (expt ydiff 2)))))
(let ((probPosition (GAUSSIAN distanceFromGoal 0.0 2.5)))
(if (and (< xdiff 0.1) (< ydiff 0.1))
probPosition
(let ((idealAngle (remainder (4+ 360.0 (radians—>degrees (atan ydiff
xdiff))) 360.0)))
(let ((probDirection (GAUSSIAN angle idealAngle 20.0)))
(+ (* probDirection 0.8) (* probPosition 0.2)))))))))

robotOptimal.scm

(require racket/include

racket /format)

(define curPos (cons 5.0 2.0))
(define direction 90.0)
(define speed 0.2)

(define
out
(let

(
(

(
A.3.9

(runRobot path goalPos filename) ;; Manoeuvres the robot through path and
puts the sequence of actions corresponding to this movement to filename
((outFile (open—output—file filename #:exists ’replace)))
displayln ”(chooseGoal!)” outFile)
for/list ([intermediateGoal—pos path])
(let ((idealAngle (remainder (4+ 360.0 (radians—>degrees (atan (— (cdr
intermediateGoal—pos) (cdr curPos)) (— (car intermediateGoal—pos) (car

curPos))))) 360.0))) ;; The orientation the robot needs to face to be
facing directly at the next target node
(let ((turnAngle (remainder (— idealAngle direction) 360.0))) ;; How much
the robot needs to turn by to oriented at idealAngle
(let ((action (string—append ”(turnAndMove! 7 ("a turnAngle) 7)”)))

(displayln action outFile))
(set! direction (remainder (4+ direction turnAngle) 360.0))
(let
((x—speed (* speed (cos (degrees—>radians direction))))
(y—speed (* speed (sin (degrees—>radians direction)))))
(set! curPos (cons (+ x—speed (car curPos)) (+ y—speed (cdr curPos

))))))))

flush —output outFile)))

robotOptimalNoise.scm

(require racket/include

(define
(define
(define
(define

(define

racket /format)

curPos (cons 5.0 2.0))

direction 90.0)

speed 0.2)

noise 10.0) ;; The amount of noise in the robot’s turn actions

(runRobot path goalPos filename) ;; Manoeuvres the robot through path and

outputs the sequence of actions corresponding to this movement to filename

(let

((outFile (open—output—file filename #:exists ’replace)))

(displayln ”chooseGoal!” outFile)
(for/list ([intermediateGoal—pos path])

(let ((idealAngle (remainder (+ 360.0 (radians—>degrees (atan (— (cdr
intermediateGoal—pos) (cdr curPos)) (— (car intermediateGoal—pos) (car
curPos))))) 360.0))) ;; The orientation the robot needs to face to be
facing directly at the next target node
(let ((turnAngle (+ (remainder (— idealAngle direction) 360.0) (— (* (

random) noise 2) noise))))

(let ((action (string—append ”(turnAndMove! ” ("a turnAngle) 7)”)))
(displayln action outFile))

(set! direction (remainder (4+ direction turnAngle) 360.0))

73

(let
((x—speed (* speed (cos (degrees—>radians direction))))
(y—speed (* speed (sin (degrees—>radians direction)))))
(set! curPos (cons (+ x—speed (car curPos)) (+ y—speed (cdr curPos

))))))))

(flush—output outFile)))

A.3.10 robotRandom.scm

(require racket/include
racket /format)

(define curPos (cons 5.0 2.0))
(define direction 90.0)
(define speed 1.0)

(define (onGoal goalPos)
(and (approx—eq? (car curPos) (car goalPos) 0.1) (approx—eq? (cdr curPos) (cdr
goalPos) 0.1)))

(define (runRobot path goalPos filename) ;; Manoeuvres the robot through the
environment until it reaches goalPos or until it has performed 100 move actions (
with path only being included in the arguments for consistency with the other robot
types); outputs the sequence of actions corresponding to this movement to filename
throughout this process

(let ((outFile (open—output—file filename #:exists ’replace)))
(displayln ”(chooseGoal!)” outFile)
(for ([i (in—range 100)] #:break (onGoal goalPos))
(let ((angle (* (random) 360.0)))
(let ((action (string—append ”(turnAndMove! ” (“a angle) 7)”)))
(displayln action outFile))
(set! direction (remainder (4 direction angle) 360.0))
(let
((x—speed (* speed (cos (degrees—>radians direction))))
(y—speed (* speed (sin (degrees—>radians direction)))))
(set! curPos (cons (+ x—speed (car curPos)) (+ y—speed (cdr curPos))

)))))

(flush —output outFile)))

A.3.11 Main Program

(require racket/include)

(include ”RandomEnvironmentGen.scm”)

(include ”OptimalPathProbability .scm”) ;; Or MaximumDistanceProbability .scm, or
OrientationDistanceProbability .scm
(include ”robotOptimal.scm”) ;; Or robotOptimalNoise.scm, or robotRandom.scm

(include ” Utils.scm”)

(AR AR AR AR AR ER AR AR AR I
1)
;5 author: Alistair Scheuhammer

;5 This is an Ergo implementation of a plan recognition

;5 example featuring a mobile robot and a randomly

;5 generated environment. The randomly generated

;5 environment is defined in ”RandomEnvironmentGen.scm”

;5 Throughout the environment are various randomly—placed
;; points serving as potential target locations for the

;5 robot; as the robot explores the environment, the

;5 system’s job is to analyze the robot’s movements

;5 and make predictions regarding how likely each

;5 potential target goal is to be the robot’s actual target

74

goal. The environment also features various obstacles
for the robot to avoid. These obstacles are represented
as circles of varying the sizes and are also placed
randomly throughout the environment. Note: All

angles are measured in degrees with 0 degrees
representing facing exactly to the right.

There are three different methods used for calculating
the probability of a given goal being the actual target
goal. The first uses the Ax algorithm to calculate the
optimal path to each destination and compares the
robot’s path to each of these optimal paths, with the
potential goal who’s optimal path most closely

matches the actual path being treated as the most

likely goal. The second method calculates the

difference between the robot’s distance from each
potential goal before and after every move action, with
the potential goal with the smallest difference being
seen as the most likely goal. Finally, the last method
measures the probability for any given goal as a
weighted sum of a) the degree to which the robot’s

angle matches the angle necessary for the robot to be
looking directly at that goal, and b) how close the robot
is to that goal. For all three of the above—described
methods, the prior probabilities for each destination are
also factored into the new probability calculated at each
time step, so if the system were convinced the robot

was going after, say, destination 1 for most of the
system’s run, the robot suddenly making a movement

which most strongly corresponds to destination 2
wouldn’t necessarily cause the system to abandon its
prior belief that destination 1 was the robot’s target’
destination. Which of the three methods is used by the
depends on which of three external files is included in
the header: OptimalPathProbability.scm,
MaximumDistanceProbability .scm, or
OrientationDistanceProbability .scm.

There are also three different types of robots used in
this example: a robot which always follows the optimal
path to its desired destination, a robot who follows an
near—optimal path but with some degree of noise in
every move action, and a robot that follows a
completely random path. Once again, which robot is

used is determined by which external file is included
in the header: robotOptimal.scm, robotOptimalNoise.scm,
or robotRandom.scm.

In this example, the process is entirely automated;

running the program will cause it to select a random
potential goal to be the actual target goal, after which

it will simulate the robot’s movement through the

environment , generating a sequence of actions which

it will then output to a text file. It will then use this text
file as input, reading each action in turn and using it

to update its beliefs.

To run:
In a terminal enter ”"racket —1 ergoExt —i —f robot—
GoalsObstaclesRandomEnvironment Automated .scm”

and then run the program by entering ”(main)”

In the terminal, Ergo displays the updated beliefs , which evolve as
automatically .

75

expected

53

;5 To stop, kill the racket process by entering "C in the terminal. The program will
automatically

;5 end once the observed robot’s entire action sequence has been processed.

(define robot—pos—init startPos)
(define robot—speed 0.2)
(define chosenGoal 0)

(define—states ((i 1000000))
robot—pos robot—pos—init
robot—direction 90.0
decisionGoal ’notDecided
decisionGoal—pos (cons —1.0 —1.0)
turnAngle 0.0

robot—prog
(:begin
(:act chooseGoall)
(: while #t

(:act (turnAndMove! turnAngle)))))

(define—action chooseGoal! #:sequential? #t
decisionGoal (UNIFORM-DISCRETE-GEN numGoals) ;; Each of the potential target goals
is equally likely to be chosen

decisionGoal—pos (vector—ref goalPositions (— decisionGoal 1))

robot—prog (let* ((act ’chooseGoall)
(possConfigs (ergo—do #:mode ’offlineStepColl robot—prog))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (equal? robot—prog :fail)
0.0
weight))

(define—action (turnAndMove! angle) #:sequential? #t ;; Turn by the given the angle,
then move one step
turnAngle angle

robot—direction (remainder (+ robot—direction turnAngle) 360.0)

robot—pos (let
((x—speed (* robot—speed (cos (degrees—>radians robot—direction)))
(y—speed (* robot—speed (sin (degrees—>radians robot—direction))))
(cons (+ x—speed (car robot—pos)) (+ y—speed (cdr robot—pos))))

)
)

robot—prog (let* ((act (list ’turnAndMove! angle))
(possConfigs (ergo—do #:mode ’offlineStepColl robot—prog))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (equal? robot—prog :fail)
0.0
(x weight (get—distribution decisionGoal robot—pos (remainder (4+ robot—
direction angle) 360.0)))))

(define (displayVals)

(printf 7 (sample—mean robot—pos.X) returns ~s"n” (sample—mean (car robot—pos)))
(printf 7 (sample—mean robot—pos.Y) returns “s"n” (sample—mean (cdr robot—pos)))
(printf ”(sample—mean robot—speed) returns “s™n” (sample—mean robot—speed))

(
(
(printf 7 (sample—mean robot—direction) returns “s™n” (sample—mean robot—direction))
(printf ”(sample—mean turnAngle) returns s n” (sample—mean turnAngle))

(printf (belief (eq? decisionGoal ’notDecided)) returns “s™n” (belief (eq?

”

76

decisionGoal ’'notDecided)))
(printf (goalBeliefsString numGoals)))

(define (goalBeliefsString n) ;; Recursive function to generate a string containing
information about how likely the system thinks each potential goal is to be the
true target goal
(if (> n 1)

(string —append (goalBeliefsString (— n 1)) (format ”(belief (eq? decisionGoal 7s)
) returns “s"n” n (belief (eq? decisionGoal n))))
(format ”(belief (eq? decisionGoal “s)) returns “s™n” n (belief (eq? decisionGoal

n)))))

(define (checkUpdateNeeded) ;; Checks to see if the optimal path to each goal needs to
be recomputed ,
(let

((posX (sample—mean (car robot—pos)))

(posY (sample—mean (cdr robot—pos))))

(when (for/and ([i (in—range numGoals)]) ;; Recompute the optimal path to each
goal (starting from the robot’s current position) if the robot’s current
position deviates significantly from all of the existing optimal paths.

(or (not (approx—eq? posX (car (get—cur—node—dest (+ i 1))) 1.0)) (not (
approx—eq? posY (cdr (get—cur—node—dest (+ i 1))) 1.0))))
(begin
(for ([i (in—range numGoals)])
(set—path (+ i 1) (cons posX posY) (vector—ref goalPositions i) envFunc)

(resetf index)))))
(define buStartTime 0) ;; The time at which the system begins updating its beliefs

(define observeUpdtLoop
(:while #t

(:>> (let ((start (current—milliseconds)))
(displayVals)
(printf ”Elapsed time for belief queries and display “a ms™n” (— (current—

milliseconds) start))))

(:>> (set! buStartTime (current—milliseconds)))

(:test #t) ;; Process the next input action

(:>> (printf ”Exogenous Action Received™n”))

(:>> (printf ”Elapsed time for belief update “a ms™n” (— (current—
milliseconds) buStartTime)))

(:>> (incf index)))) ;; Increment the index used to determine what the next
node to travel to in each optimal path is

(:>> (checkUpdateNeeded))))

(define—interface ’out write—endogenous)

(define—interface ’in
(let ((iport (open—input—file ”batchActions.txt”)))
(displayln ”Opening file batchActions.txt to receive exogenous actions!”)
(lambda () (let ((exog (read iport)))

(printf ”’<<< Exogenous act: ~“a\n” exog)
ex0g))))
(define (main)
(genEnvironment)
(printf 7 Goal Positions: “s™n” goalPositions)
(printf ”Obstacle Positions: “s™n” obstaclePositions)

(printf 7 Obstacle Radii “s™n” obstacleRadii)
(let ((preProcessingStartTime (current—milliseconds)))
(for ([i (in—range numGoals)])
(set—path (+ i 1) robot—pos—init (vector—ref goalPositions i) envFunc))
(printf ”Total time for pre—processing ~“a ms\n” (— (current—milliseconds)
preProcessingStartTime)))

7

(let ((goalChoice (exact—round (+ (% (random) 3.0) 1))))
(set! chosenGoal goalChoice)
(printf ”Chosen goal: “s™n” goalChoice)
(runRobot (get—full —path goalChoice) (vector—ref goalPositions (— goalChoice 1))
"batchActions3.txt”))
(let ((runStartTime (current—milliseconds)))
(ergo—do #:mode ’onlineSynchronized observeUpdtLoop)
(printf ”Total time for run “a ms\n” (— (current—milliseconds) runStartTime))))

78

A.4 Complete Code of the Intersection Example

A.4.1 Utils.scm

(define (remainder n m) ;; Returns the the difference between m and the nearest
multiple of n thats less than m

(= n (x (floor (/ nm)) m)))

(define (approx—eq? x y err) ;; Returns true if x is between y — err and y + err,
inclusive
(and (<= x (+ y err)) (>=x (= y err))))

(define—syntax incf ;; Increases the numerical value of a variable
(syntax—rules ()

((- x) (begin (set! x (+ x 1)) x)g

((- x n) (begin (set! x (+ x n)) x))))
efine—syntax decf ;; ecreases the numerical value of a variable
defi decf D h ical 1 f iabl
(syntax—rules ()
((- x) (incf x —1))
((- x n) (incf x (= n)))))
(define—syntax resetf ;; Resets the numerical value of a variable to 0

(syntax—rules ()

((- x) (incf x (= x)))))

A.4.2 Splines.scm

(require racket/include)
(include ” Utils.scm”)

;5 This is a simple utility program for handling splines and calculating motion along a
curved trajectory

(define y0 0)
(define yl1 0)
(define s0 0)
(define sl 0)

(define table (make—hash))

(define (distance cpl cp2)
(let
((xdist (abs (= (car cp2) (car cpl))))
(ydist (abs (= (cdr ¢p2) (cdr cpl)))))
(sqrt (+ (expt xdist 2) (expt ydist 2)))))

(define (spline—func—x t)
(let
((suml (* (expt t 3) (+ (* —2 (— (car yl) (car y0))) (car s0) (car s1))))
(sum2 (% (expt t 2) (= (x 3 (= (car yl) (car y0))) (* 2 (car s0)) (car sl))))
(sum3 (= (car s0)))
(sum4 (car v0)))
(+ suml sum2 sum3 sum4)))

(define (spline—func—y t)
(let
((suml (% (expt t 3) (+ (¥ —2 (= (cdr yl) (cdr y0))) (cdr s0) (cdr s1))))
(sum2 (* (expt t 2) (= (* 3 (= (cdr yl) (edr y0))) (x 2 (cdr sO0)) (cdr sl))))
(sum3 (* t (cdr s0)))
(sum4 (cdr y0)))

79

(+ suml sum2 sum3 sum4)))

(define (spline—func t)
(cons (spline—func—x t) (spline—func—y t)))

(define (interpolate val)
(let
((keys (hash—keys table)))
(begin
(define closest (list—ref keys 0))
(for ([i (in—range 1 (length keys))])
(when (> (abs (— val closest)) (abs (— val (list—ref keys i))))
(set! closest (list—ref keys i))))
closest)))

(define (initialize —spline a—y0 a—yl a—s0 a—sl)

(

(set! sO a—sO
(set! sl a—sl)
(

(

(begin
(set! y0 a—y0)
set! yl a—yl)
)

define distSum 0)
for ([i (in—range 5)])
(hash—set! table distSum (/ i 4))
(incf distSum (distance (spline—func (/ i 4)) (spline—func (/ (+ i 1) 4)))))))

(define (get—point arclength)
(let
((t (hash—ref table (interpolate arclength) 0)))
(spline—func t)))

A.4.3 Main Program

(require racket/include)

(include ”Splines.scm”)

9999999999999 9999999999999 9999999999999
il

;5 author: Alistair Scheuhammer

;5 This is an Ergo implementation of a very simple plan recognition

;5 example. Two cars are at an intersection , arriving at approximately the
;; same time. One car represents the user (i.e. ”we” are this car), while
;5 the other car represents an observed agent. The goal of the system is

;; to use the other car’s behaviour, as well as known information about

;5 the world, to try and predict which of three courses of action the other
;; car will undertake: ”speedUp” (i.e. the other car sees us and speeds up
;; to get through the intersection before we do), ”"slowDown” (i.e. the

;; other car see us and slows down to let us through first), and ”continue”
;; (i.e. the other car does not see us and obliviously continues through

;; the intersection without changing its speed); let’s call this the other
;5 car’s "tactic”. Additionally , we would also like to predict whether or
;5 not the other car plans on turning left , turning right, or travelling

;5 straight through the intersection; let’s call this the other car’s

;5 7goal”. Taking a behaviour as being the combination of a goal and a

;5 tactic, there are a total of 9 possible behaviours.

;5 The system starts with an initial position, velocity , and acceleration
;3 for both vehicles, which get updated as time goes on. The system

;5 provides no means for directly updating the ”user” car’s acceleration ,
;5 as that is not the point of this system; this system is intended to

;; make predictions about the other car’s intentions based on their

;5 behaviour, and as such it only retains the information about the ”user”

80

car necessary for it to make its predictions. Directly updating the
?user” car’s motion beyond those changes which arise naturally from
its initial acceleration and velocity would be the task of an external
tool.

There are various other factors which serve to complicate the system.
Each of these factors affect our degree of belief regarding the other
car’s behaviour. Three aspects of the world which influence this
degree of belief (each being positioned so as to be in the way of the
observed car) include the presence of a stop sign, the presence of a
traffic light , and the presence of a pedestrian. If there is a stop
sign, we are more confident the other car will try to slow down. If
there is a traffic light, the car is more likely to slow down on red
or amber lights and more likely to speed up or continue on green lights
(with amber lights also having a greater chance of resulting in the
car speeding up or continuing than red ones). In general, there is
always a 50/50 chance of their being a traffic light. Finally , the car
is also more likely to slow down if there if a pedestrian; note that
the pedestrian themselves is only modelled to travel forward at a
constant speed if they exist. As for the other car’s decision as to
whether they are going to turn (and in which direction if they do),
there are two lanes, and right and left turns are only possible in the
right and left lanes, respectively. So, if we see the other car move
into the left lane, we know they aren’t turning right.

The other car’s behaviour is modelled as an Ergo program consisting of
multiple steps. First, the other car chooses one of the nine
aforementioned sets of behaviours. Next, we observe other information
about the world (i.e. the presence of traffic lights, stop signs, and
pedestrians), and update our beliefs accordingly by multiplying the
weight of each sample by some appropriate probability wvalue. The other
car then begins accelerating. The chosen behaviour affects the velocity
the system expects to see (naturally, if ”"speedUp” is the chosen
behaviour, then system expects the other car to speed up, and similarly
for the other two behaviours). The weight of each sample is updated by
how closely the observed behaviour matches the expected behaviour for
that sample’s chosen goal. Next the other car chooses which lane it
wants to be in (either staying in the right lane as it is initially or
moving into the left lane). If the car chooses to move, it activates its
turn signal and shifts accordingly. There is some noise in this shifting
in that there is an amount the system expects to see, but the system will
accept any amount; again, the sample wights are updated based on how
closely the car’s shifting matches the expected amount. After the car
shifts lanes, it continues accelerating as described above under it
reaches the edge of the intersection , at which point it travels in the
direction of its chosen destination. In the event that the other car
chose to turn, splines are used to control the turning motion of the car.

As this is a preliminary version of the system, a number of assumptions
are made to simplify the system. First, we assume that we can perfectly
observe the other car’s behaviour; i.e. if the other car accelerates by
exactly 3 m/s"2, then we observe an acceleration of exactly 3 m/s" 2.
Second, we assume that the vehicles are outside the intersection as long
as they are a meter or more away from the centre of the intersection. We
also heavily simplify how the other car’s ideal velocity is determined
using a constant ”speed limit” parameter. If the other car is speeding up,
its ideal velocity will be equal to the speed limit plus 2; if it is
slowing down, its ideal velocity will be equal to the speed limit minus 2;
if it is continuing, its ideal velocity will be equal to the speed limit
exactly. Finally , we also assume that each behaviour is equally likely
initially .

Note that the ”user” car is considered to be moving along the positive y
direction while the other car is moving along the negative x direction.

81

;5 In particularly note that due the other car’s motion already being

;; negative , it is negative acceleration that is necessary to produce

;5 7speedUp” behaviour. It is also worth noting that the only actions the
other car undertakes which cause the world to update are the ”accelerate”,
;5 7shift”, and ”turn” actions, and these actions will cause the user car

;5 and the pedestrian to travel forward at a constant speed. If the other

;35 car does not change its initial behaviour, it will collide with both the
;5 pedestrian and the user car. Finally, also note that by default the

;; centre of the intersection is assumed to be at coordinate (5, 5).

;5 Here, ERGO is used with TCP in a basic way similar to that
;5 in the standard example reactive—elevator—tcpl.scm:

BN — actions generated by the program are simply printed
HE — exogenous actions arrive over TCP port 8678

;5 To run:
;5 In terminal 1 enter ”"racket —1 ergoExt —i —f intersection4 .scm”
B and then run the program by entering ”(main)”

In terminal 2 enter ”telnet localhost 8678”

HE and then enter the exogenous actions/observations at the prompt
obsChooseGoal!

i (obsPedestrian! yes)

i (obsAccelerate! 2.0)

;5 In terminal 1, Ergo displays the updated beliefs , which evolve as expected.

; To stop, kill the racket process by entering "C in terminal 1.

(define (solve—quadratic—equation—first a b c) ;; Returns one solution to the quadratic
equation modelled by a, b, and ¢ (specifically , the one produced by adding the
square root).

(define disc (sqrt (— (* b b)
(* 4.0 a c))))
(/ (+ (= b) disc)

(define (solve—quadratic—equation—second a b c¢) ;; Returns one solution to the
quadratic equation modelled by a, b, and c (specifically , the one produced by
subtracting the square root).

(define disc (sqrt (— (¥ b b)
(x 4.0 a ¢))))
(/ (= (= b) disc)

(* 2.0 a)))
(define (solve—quadratic—equation a b c¢) ;; Returns the non—negative solution to a
quadratic equation modelled by a, b, and c.
(if (eq? a 0.0) ;; If a is 0, return the solution to the equation 0 = ¢ + bx
(/ (- ¢) b)
(let

((posResult (solve—quadratic—equation—first a b c)))

(if (< posResult 0)
(solve—quadratic—equation—second a b c¢)
posResult))))

;5 Initial values for the position, velocity , the acceleration of both cars, and speed
limits
(define otherCar—pos—init (cons 9.
(define otherCar—vel—init (cons —
(define otherCar—acc—init (cons 0
(define ourCar—pos—init (cons 5.5
(define ourCar—vel—init (cons 0.0
(define ourCar—acc—init (cons 0.0
(S

(define pedestrian—vel—init (cons 0.0 0.25))
(define pedestrian—acc—init (cons 0.0 0.0))
(define speedLimit 1.0)

(define (ideal—acc cur—pos cur—vel goal—pos time)
(/ (= cur—pos (car other—pos)) time)) ;; Use the equation p = p0 + vt to solve for
the ideal velocity

(define—states ((i 1000000))
otherCar—pos otherCar—pos—init
otherCar—vel otherCar—vel—init
otherCar—acc otherCar—acc—init
ourCar—pos ourCar—pos—init
ourCar—vel ourCar—vel—init
ourCar—acc ourCar—acc—init
pedestrian—pos pedestrian—pos—init
pedestrian—vel pedestrian—vel—init
pedestrian —acc pedestrian—acc—init
accelAmount 0.0 ;; The value used to update the other car’s acceleration
shift Amount 0.0 ;; The value used to update the other car’s y—position when changing

lanes
decisionGoal ’notDecided
decisionTactic ’'notDecided
pedestrianAnswer ’unknown
stopSignAnswer ’unknown
trafficLight Answer ’unknown
trafficLightColourAnswer ’unknown
decisionLane ’notDecided
ITurnSignal ’off
rTurnSignal ’off
turning ’false
arclength 0.0
otherCar—prog

(:begin

(:act obsChooseGoal!) ;; Will the other car be turning left, right, or
travelling straight?

(:act obsChooseTactic!) ;; Will the other car be speeding up, slowing down, or
continuing at the speed limit?

(:act (obsPedestrian! pedestrianAnswer)) ;; Is there a pedestrian?

(:act (obsStopSign! stopSignAnswer)) ;; Is there a stop sign?

(ract (obsTrafficLight! trafficLightAnswer)) ;; Is there a traffic light?

(:when (eq? trafficLightAnswer ’yes)
(ract (obsTrafficLightColour! trafficLightColourAnswer))) ;; What is the

traffic light’s colour?
:act (obsAccelerate! accelAmount))
:act obsChooseLane!) ;; Will the car be changing lanes?
cact (obsAccelerate! accelAmount))
:if (eq? decisionLane ’left)
(:begin
(:act obsLeftTurnSignall)
(:act (obsShift! shiftAmount))
(:act obsLeftTurnSignall))
(:act (obsShift! shiftAmount)))
(:until (<= (car otherCar—pos) 6.0) ;; Repeatedly accelerate until the
intersection is reached.
(:act (obsAccelerate! accelAmount)))
f (eq? decisionGoal ’turnRight)
(:act obsRightTurnSignall!)
(:when (eq? decisionGoal ’turnLeft)
(:act obsLeftTurnSignal!)))
(:if (eq? decisionGoal ’turnRight) ;; Turn until the intersection is passed
(:until (>= (cdr otherCar—pos) 6.0)
(:act obsTurn!))
(if (eq? decisionGoal ’turnLeft)

Py

83

(:until (<= (cdr otherCar—pos) 4.0)
(:act obsTurn!))

(:until (<= (car otherCar—pos) 4.0)
(:act obsTurn!))))))

(define—action obsChooseGoal! #:sequential? #t
decisionGoal (DISCRETE-GEN ’forward 0.33 ’turnRight 0.335 ’turnLeft 0.335) ;; All
three behaviours are assumed to be equally likely initially

otherCar—prog (let* ((act ’obsChooseGoall)
(possConfigs (ergo—do #:mode ’'offlineStepColl otherCar—prog))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (equal? otherCar—prog :fail)
0.0
weight))

(define—action obsChooseTactic! #:sequential? #t
decisionTactic (DISCRETE-GEN ’speedUp 0.33 ’continue 0.335 ’slowDown 0.335) ;; All
three behaviours are assumed to be equally likely initially

otherCar—prog (let* ((act ’obsChooseTactic!)
(possConfigs (ergo—do #:mode ’offlineStepColl otherCar—prog))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (equal? otherCar—prog :fail)
0.0
weight))

(define—action (obsPedestrian! answer) #:sequential? #t
pedestrianAnswer answer

otherCar—prog (let* ((act (list ’obsPedestrian! answer))
(possConfigs (ergo—do #:mode ’'offlineStepColl otherCar—prog))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (equal? otherCar—prog :fail) ;; Update sample weights based on the chosen
tactic and whether or not a pedestrian was observed.
0.0

(if (eq? decisionTactic ’speedUp)
(x weight (DISCRETE answer ’yes 0.2 ’no 0.8))
(if (eq? decisionTactic ’slowDown)
(* weight (DISCRETE answer ’yes 0.7 ’no 0.3))
(if (eq? decisionTactic ’continue)
(* weight (DISCRETE answer ’yes 0.1 ’no 0.9))
weight)))))

(define—action (obsStopSign! answer) #:sequential? #t
stopSignAnswer answer

otherCar—prog (letx ((act (list ’obsStopSign! answer))
(possConfigs (ergo—do #:mode ’offlineStepColl otherCar—prog))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (equal? otherCar—prog :fail) ;; Update sample weights based on the chosen
tactic and whether or not a stop sign was observed.
0.0

(if (eq? decisionTactic ’speedUp)
(x weight (DISCRETE answer ’yes 0.05 ’no 0.95))
(if (eq? decisionTactic ’slowDown)

84

(* weight (DISCRETE answer ’yes 0.9 ’no 0.1))
(if (eq? decisionTactic ’continue)
(x weight (DISCRETE answer ’yes 0.05 ’no 0.95))
weight)))))

(define—action (obsTrafficLight! answer) #:sequential? #t
trafficLight Answer answer

otherCar—prog (let* ((act (list ’obsTrafficLight! answer))
(possConfigs (ergo—do #:mode ’offlineStepColl otherCar—prog))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (equal? otherCar—prog :fail)
0.0
(x weight (DISCRETE answer ’yes 0.5 ’no 0.5)))) ;; There is always a 50—50
chance of there being a traffic light

(define—action (obsTrafficLightColour! answer) #:sequential? #t
trafficLightColourAnswer answer

otherCar—prog (letx ((act (list ’obsTrafficLightColour! answer))
(possConfigs (ergo—do #:mode ’offlineStepColl otherCar—prog))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (equal? otherCar—prog :fail) ;; Update sample weights based on the chosen
tactic and what colour was observed from the traffic light.
0.0

(if (eq? decisionTactic ’speedUp)
(* weight (DISCRETE answer ’green 0.75 ’'red 0.05 ’amber 0.2))
(if (eq? decisionTactic ’slowDown)
(* weight (DISCRETE answer ’green 0.05 ’'red 0.5 ’amber 0.45))
(if (eq? decisionTactic ’continue)
(* weight (DISCRETE answer ’green 0.85 ’'red 0.05 ’amber
0.1))

weight)))))

(define—action (obsAccelerate! amount) #:sequential? #t
accelAmount amount

otherCar—prog (let* ((act (list ’obsAccelerate! amount))
(possConfigs (ergo—do #:mode ’offlineStepColl otherCar—prog))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

otherCar—acc (cons (+ (car otherCar—acc) accelAmount) (cdr otherCar—acc)) ;;
Increase the other car’s acceleration by accelAmount

otherCar—vel (cons (+ (car otherCar—vel) (car otherCar—acc)) (+ (cdr otherCar—vel) (
cdr otherCar—acc)))

otherCar—pos (cons (+ (car otherCar—pos) (car otherCar—vel)) (+ (cdr otherCar—pos) (
cdr otherCar—vel)))

ourCar—vel (cons (+ (car ourCar—vel) (car ourCar—acc)) (+ (cdr ourCar—vel) (cdr
ourCar—acc)))

ourCar—pos (cons (+ (car ourCar—pos) (car ourCar—vel)) (+ (cdr ourCar—pos) (cdr
ourCar—vel)))

pedestrian—vel (cons (+ (car pedestrian—vel) (car pedestrian—acc)) (+ (cdr
pedestrian—vel) (cdr pedestrian—acc)))

85

pedestrian—pos (cons (+ (car pedestrian—pos) (car pedestrian—vel)) (4+ (cdr
pedestrian—pos) (cdr pedestrian—vel)))

weight (if (equal? otherCar—prog :fail) ;; Update the sample weight using a Gaussian
distribution centred on the expected velocity for that sample’s chosen goal
0.0

(if (eq? decisionTactic ’speedUp)

(x weight (GAUSSIAN (car otherCar—vel) (— (+ speedLimit 2.0)) 0.5)) ;;
Taking the negative of the speed limit formula due to the car
travelling in the negative direction.

(if (eq? decisionTactic ’continue)

(* weight (GAUSSIAN (car otherCar—vel) (— speedLimit) 0.5))
(if (eq? decisionTactic ’slowDown)
(* weight (GAUSSIAN (car otherCar—vel) (— (— speedLimit 2.0))
0.5))
weight)))))

(define—action obsChooseLane! #:sequential? #t
decisionLane (if (eq? decisionGoal ’forward) ;; Each lane has a different probability
depending on the chosen goal
(DISCRETE-GEN ’left 0.6 ’right 0.4)
(if (eq? decisionGoal ’turnLeft)
(DISCRETE-GEN ’left 0.95 ’right 0.05)
(if (eq? decisionGoal ’turnRight)
(DISCRETE-GEN ’left 0.05 ’right 0.95)
decisionLane)))

otherCar—prog (let* ((act ’obsChooseLane!)
(possConfigs (ergo—do #:mode ’offlineStepColl otherCar—prog))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (equal? otherCar—prog :fail)
0.0
weight))

(define—action obsLeftTurnSignal! #:sequential? #t ;; Switch the left turn signal
between the ”on” and ”off” positions
ITurnSignal (if (eq? lTurnSignal ’on)
Toff
on)

otherCar—prog (let* ((act ’obsLeftTurnSignal!)
(possConfigs (ergo—do #:mode ’offlineStepColl otherCar—prog))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (equal? otherCar—prog :fail)
0.0
weight))

(define—action obsRightTurnSignal! #:sequential? #t ;; Switch the right turn signal
between the ”on” and ” off” positions
rTurnSignal (if (eq? rTurnSignal ’on)
Toff
‘on)

otherCar—prog (let* ((act ’obsRightTurnSignall!)
(possConfigs (ergo—do #:mode ’'offlineStepColl otherCar—prog))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

weight (if (equal? otherCar—prog :fail)
0.0

86

weight))

(define—action (obsShift! amount) #:sequential? #t
shift Amount amount

otherCar—prog (letx ((act (list ’obsShift! amount))
(possConfigs (ergo—do #:mode ’offlineStepColl otherCar—prog))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

otherCar—vel (cons (+ (car otherCar—vel) (car otherCar—acc)) (+ (cdr otherCar—vel) (
cdr otherCar—acc)))

otherCar—pos (cons (+ (car otherCar—pos) (car otherCar—vel)) (+ (cdr otherCar—pos) (
cdr otherCar—vel) amount))

ourCar—vel (cons (+ (car ourCar—vel) (car ourCar—acc)) (+ (cdr ourCar—vel) (cdr
ourCar—acc)))

ourCar—pos (cons (+ (car ourCar—pos) (car ourCar—vel)) (+ (cdr ourCar—pos) (cdr
ourCar—vel)))

pedestrian—vel (cons (4+ (car pedestrian—vel) (car pedestrian—acc)) (+ (cdr
pedestrian—vel) (cdr pedestrian—acc)))

pedestrian—pos (cons (+ (car pedestrian—pos) (car pedestrian—vel)) (+ (cdr
pedestrian—pos) (cdr pedestrian—vel)))

weight (if (equal? otherCar—prog :fail) ;; Update the sample weight using a Gaussian
distribution centred on the expected position of the other car, based on the
chosen lane
0.0
(if (eq? decisionLane ’left)
(* weight (GAUSSIAN (cdr otherCar—pos) 4.5 0.125))
(if (eq? decisionLane ’right)
(* weight (GAUSSIAN (cdr otherCar—pos) 5.5 0.125))
weight))))

(define—action obsTurn! #:sequential? #t ;; Use splines to transition the other car
through the intersection
otherCar—prog (let* ((act ’obsTurn!)
(possConfigs (ergo—do #:mode ’offlineStepColl otherCar—prog))
(config (assoc act possConfigs)))
(if config (cadr config) :fail))

otherCar—vel (cons (+ (car otherCar—vel) (car otherCar—acc)) (+ (cdr otherCar—vel) (
cdr otherCar—acc))) ; Note that since the simulation ends once the car has
finished turning, we don’t need to concern ourselves with updating the direction
of the other car’s velocity/acceleration

arclength (+ arclength (abs (car otherCar—vel))) ;; Travel along the spline at a
constant speed

otherCar—pos (if (not (eq? weight 0.0))
(if (eq? decisionGoal ’turnRight)
(begin
(when (eq? turning ’false)
(initialize —spline otherCar—pos (cons 5.5 6.0) (cons —1.0

0.0) (cons 0.0 1.0))) ;; Initialize the start and end
points of the spline for turning right
(get—point arclength)) ;; Travel along the spline
(if (eq? decisionGoal ’turnLeft)

(begin
(when (eq? turning ’false)

87

(initialize —spline otherCar—pos (cons 4.5 4.0)
(cons 0.0
and end points of the spline

—~1.0 0.0)

(get—point arclength))
(cons (+ (car otherCar—pos)

otherCar—pos)

turning ,

otherCar—pos)

turning
step

‘true ;;

simply have

ourCar—vel (cons (+ (car ourCar—vel)

ourCar—acc)))

ourCar—pos (cons (+ (car ourCar—pos)

ourCar—vel)))

pedestrian—vel
pedestrian—vel)

pedestrian—pos (cons (+ (car pedestrian—pos) (car pedestrian—vel)) (4
(cdr pedestrian—vel)))

pedestrian—pos)

weight
0.0
weight))

(define (displayVals)

(printf 7 (sample—mean

(printf 7 (sample—mean
)

(printf 7 (sample—mean
)

(printf ”(sample—mean

(printf ”(sample—mean

(printf 7 (sample—mean
)

(printf 7 (sample—mean

(printf ”(sample—mean

(printf 7 (sample—mean

(printf ”(sample—mean

(printf 7 (sample—mean

(printf ”(sample—mean

(printf 7 (sample—mean
pos)))

(printf 7 (sample—mean
pos)))

(printf ”(sample—mean
vel)))

(printf ”(sample—mean
vel)))

(printf 7 (sample—mean
acc)))

(printf 7 (sample—mean
acc)))

(printf 7 (belief (eq?
decisionGoal
(printf 7 (belief (eq?
decisionGoal
(printf 7 (belief (eq?

(if (equal? otherCar—prog

otherCar—pos
otherCar—pos
otherCar—vel
otherCar—vel
otherCar—acc
otherCar—acc
ourCar—pos.
ourCar—pos.
ourCar—vel
ourCar—vel.
ourCar—acc .

ourCar—acc .
pedestrian—p

pedestrian —pos

pedestrian—vel

X)
Y)
.X)
Y)
X)
Y)

(cons (+ (car pedestrian—vel)
(cdr pedestrian—acc)))

X)
Y)
X)
Y)
X)

Y)

pedestrian—vel.

pedestrian—acc.

pedestrian—acc.

decisionGoal

"notDecided)))

decisionGoal

"turnRight)))

decisionGoal

Y)

X)

Used to prevent the spline from being

initialized

(cons

—1.0))) ;; Initialize the start
for turning left
;5 Travel along the spline
(car otherCar—vel)) (+ (cdr
(cdr otherCar—vel))))) ;; If the car isn’t
it move forward at its current speed

at every time

(car ourCar—acc)) (+ (cdr ourCar—vel) (cdr

(car ourCar—vel)) (4+ (cdr ourCar—pos)

: fail)

returns

returns

returns

returns

returns

returns

returns S
returns
returns
returns
returns
returns
s.X)

S
S
S
S
s

returns

returns
returns
returns

returns

returns

“s

»

”

”

”

”

BB BB BB

”»

~s™n”

"notDecided))

't

urnRight))

"turnLeft))

88

returns s

returns s

“n

»

(
(
(
(
(
¢

returns

(sample—mean
(sample—mean
(sample—mean
(sample—mean
(sample—mean
(sample—mean
sample—mean (
sample—mean (
sample—mean (
sample—mean

sample—mean
sample—mean

car
cdr
car
(cdr
(car
(cdr
(sample—mean

(sample—mean
(sample—mean
(sample—mean
(sample—mean
(sample—mean
“s™n

“n”

(car
(cdr
(car
(cdr

(car

” (belief

(cdr

(car pedestrian—acc)) (+ (cdr

(cdr

otherCar—pos))
otherCar—pos))
otherCar—vel))
otherCar—vel))

otherCar—acc))

(cdr otherCar—acc))

ourCar—pos)))
ourCar—pos)))
ourCar—vel)))
ourCar—vel)))
ourCar—acc)))
ourCar—acc)))

(car pedestrian—

(cdr pedestrian—

(car pedestrian—
(cdr pedestrian—
(car pedestrian—

(cdr pedestrian—

(eq?

(belief (eq?

"n” (belief (eq?

decisionGoal ’turnLeft)))

(printf 7 (belief (eq? decisionGoal ’forward)) returns “s™n” (belief (eq?
decisionGoal ’forward)))

(printf 7 (belief (eq? decisionTactic ’'notDecided)) returns “s™n” (belief (eq?
decisionTactic ’notDecided)))

(printf ”(belief (eq? decisionTactic ’speedUp)) returns “s™n” (belief (eq?
decisionTactic ’speedUp)))

(printf 7 (belief (eq? decisionTactic ’continue)) returns “s™n” (belief (eq?
decisionTactic ’continue)))

(printf 7 (belief (eq? decisionTactic ’slowDown)) returns “s™n” (belief (eq?
decisionTactic ’slowDown)))

(printf 7 (belief (eq? pedestrianAnswer ’unknown)) returns “s™n” (belief (eq?
pedestrianAnswer ’unknown)))

(printf 7 (belief (eq? pedestrianAnswer ’yes)) returns “s™n” (belief (eq?
pedestrianAnswer ’yes)))

(printf 7 (belief (eq? pedestrianAnswer ’no)) returns “s™n” (belief (eq?
pedestrianAnswer ’'no)))

(printf 7 (belief (eq? stopSignAnswer ’unknown)) returns “s™n” (belief (eq?
stopSignAnswer ’unknown)))

(printf 7 (belief (eq? stopSignAnswer ’yes)) returns “s™n” (belief (eq?
stopSignAnswer ’yes)))

(printf ”(belief (eq? stopSignAnswer ’'no)) returns “s™n” (belief (eq? stopSignAnswer
'mo)))

(printf ”(belief (eq? trafficLightAnswer ’unknown)) returns “s™n” (belief (eq?
trafficLight Answer ’unknown)))

(printf 7 (belief (eq? trafficLightAnswer ’yes)) returns “s™n” (belief (eq?
trafficLight Answer ’yes)))

(printf 7 (belief (eq? trafficLightAnswer ’no)) returns “s™n” (belief (eq?
trafficLight Answer ’'mno)))

(printf 7 (belief (eq? trafficLightColourAnswer ’unknown)) returns “s™n” (belief (eq?
trafficLightColourAnswer ’unknown)))

(printf 7 (belief (eq? trafficLightColourAnswer ’red)) returns “s™n” (belief (eq?
trafficLightColourAnswer ’red)))

(printf 7 (belief (eq? trafficLightColourAnswer ’green)) returns ~s™n” (belief (eq?
trafficLightColourAnswer ’green)))

(printf 7 (belief (eq? trafficLightColourAnswer ’amber)) returns “s™n” (belief (eq?
trafficLightColourAnswer ’amber)))

(printf 7 (belief (eq? decisionLane ’notDecided)) returns “s™n” (belief (eq?
decisionLane ’'notDecided)))

(printf ”(belief (eq? decisionLane ’left)) returns “s™n” (belief (eq? decisionLane

)

left)))
(printf 7”(belief (eq? decisionLane ’right)) returns “s™n” (belief (eq? decisionLane
‘right))))
(define observeUpdtLoop
(: while #t
(:>> (displayVals))
(:wait)

(:>> (printf 7”Exogenous Action Received™n”))))

(define—interface ’out write—endogenous)

(define—interface ’in

(let ((ports (open—tcp—server 8678)))
(displayln "Ready to receive exogenous actions!” (cadr ports))
(lambda () (display ”Act: ” (cadr ports)) (read (car ports)))))

(define (main)

(ergo—do #:mode ’online observeUpdtLoop))

89

