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Abstract

The modelling of fatigue using machine learning (ML) has been gaining trac-
tion in the engineering community. Among ML techniques, the use of probabi-
listic neural networks (PNNs) has recently emerged as a candidate for
modelling fatigue applications. In this paper, we use PNNs with nonconstant
variance to model fatigue. We present two case studies to demonstrate the
developed approach. First, we model the fatigue life of cover-plated beams
under constant amplitude loading, and then we model the relationship
between random vibration velocity and equivalent stress in process pipework.
The two case studies demonstrate that PNNs with nonconstant variance can
model the distribution of the data while also considering the variability of both
distribution parameters (mean and standard deviation). This shows the poten-
tial of PNNs with nonconstant variance in modelling fatigue applications. All
the data and code used in this paper are openly available.

1 | INTRODUCTION

Building a robust mechanical system with low mainte-
nance cost requires accurate estimates of materials prop-
erties. Among these properties, metal fatigue continues
to be challenging to estimate for several reasons. Metal
fatigue is a complex phenomenon that is inherently
uncertain due to a multitude of material properties and
environmental and loading factors.> Wéhler® developed
the first deterministic S-N curve method, which remains
to be among the most popular techniques used to
characterize metal fatigue. The deterministic S-N curve is
relatively simple and in agreement with many experi-
mental tests. Another simple and well-known method for
predicting fatigue life is the Palmgren-Miner linear
damage rule.* This approach is based on the “safe-life”
method coupled with the rules of linear cumulative
damage.

To produce more accurate estimates of fatigue life,
several researchers proposed different deterministic tech-
niques such as the use of energy models.”” Energy
models for fatigue life prediction use either plastic
energy, elastic energy, or the summation of both.

These approaches are deterministic and do not take
into consideration the stochastic nature and uncertainties
associated with fatigue. However, obtaining accurate esti-
mates of the uncertainties associated with fatigue life is
very important for estimating the durability and safety
bounds of structural components subjected to cyclic
loads.® To address this issue, researchers developed
deterministic™®'® and probabilistic'’™*® approaches to
account for these uncertainties. Randomness of the struc-
tural detail cannot be included in the deterministic
approaches, which is one of their weaknesses. On the
other hand, probabilistic approaches are fundamentally
based on stochastics and are thus better suited to account
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for the inherent uncertainties of fatigue. One such proba-
bilistic approach was proposed by Paolino et al.'* They
used the Weibull distributions for constant and variable
stress levels to build the probabilistic fatigue curve. Other
approaches used the strain damage parameter to account
for the uncertainty in the fatigue process."” Another
approach was proposed by Larin and Vodka'® to
stochastically model the natural degradation of the mate-
rials properties and its effect on high cycle fatigue. Bayes'
theorem with its great capability for probabilistic model-
ling has also been deployed to model fatigue. Many
researchers used Bayes' theorem to develop probabilistic
low-cycle fatigue life prediction methods.'"**'” The max-
imum likelihood method'®?° is another probabilistic
method that has shown the potential to minimize the
time and the number of specimens required for testing
and building a probabilistic S-N curve.

In recent decades, the fast-paced development of
artificial neural networks (ANNs) and their ability to
model linear and nonlinear relations using data without
previous knowledge (i.e., without a set of rules or
predefined heuristics) made them very attractive for
fatigue applications. Researchers have used ANNs to
evaluate the degradation of metallic and composite com-
ponents*>* and to predict fatigue life.>**® For example,
the modal properties of structures were used along with
ANNs to identify loss of stiffness in structures and
thereby indicate the presence of damage in the struc-
ture.”” Many researchers used ANNs to build S-N cur-
ves® and constant life diagrams (CLDs).***° Other
researchers built an ANN to estimate the parameters of
the Weibull distribution of the fatigue model.>° However,
the previously mentioned methods (including ANN)
considered the nonlinear behavior of the fatigue data but
did not consider the nonlinearity of the uncertainty espe-
cially that the dispersion of the fatigue data is not con-
stant throughout all the stress levels. Probabilistic neural
networks (PNNs) with nonconstant variance have the
advantages of both ANNs and probabilistic methods. This
type of network has the capability of “learning” the data
distribution and estimating both its mean and standard
deviation. This means that the PNN will not only model
the fatigue data; it will also model the uncertainty associ-
ated with it. PNNs also can preserve the uncertainty
resulting from a small sample thereby reflecting the
instability of statistical inferences.”® In general, S-N
fatigue models show large uncertainty for fatigue life pre-
dictability at lower stress levels.”*** Such uncertainty
decreases as the stress increases; hence, the PNN with a
nonconstant variance can be a powerful tool to accurately
describe the changes of the stress scattering over the
fatigue life cycle. Furthermore, using PNNs enables
combining theoretical knowledge and the available

experimental data by choosing the data distribution type.
This feature allows building more realistic and robust
fatigue models that take into consideration any physical
constraints in the data.

Nashed et al.*> used PNNs with constant variance to
model fatigue. PNNs with constant variance are suitable
when the uncertainty in the data set is linear (or weekly
nonlinear). The training process of a PNN with constant
variance is not computationally demanding. Hence, using
PNNs with constant variance when the uncertainty in
the data set is weekly nonlinear is a good option. How-
ever, if the uncertainty in the data is nonlinear (as will be
shown later), the PNN with constant variance will not
provide a good representation of the data and the
resulting PNN will lack accuracy; PNNs with noncon-
stant variance come forth in this case. To this end, this is
the first work that uses PNNs with nonconstant variance
to model fatigue. We present two case studies. The first
case study concerns the fatigue of welded beams and the
data that we will use is available in the literature. The
second case study concerns vibration induced fatigue in
process pipework due to flow induced forces. The data
for this case study was obtained using finite element
analysis and is also available in the literature.

The remainder of this paper is organized as follows. A
review of machine learning, neural networks and PNNs
is presented in Section 2. Section 3 presents the first case
study: modelling fatigue in welded beams under cyclic
loading. Section 4 presents the second case study: using
PNNs to relate the vibration of pipework to the induced
stress in the pipework. Conclusions for this work are
drawn in Section 5.

2 | MACHINE LEARNING
In this section, we present a brief overview of ANNs
and PNNs.

2.1 | Artificial neural networks (ANNS)

ANN is a class of computational tools inspired by the bio-
logical nervous system.”® The main processing unit in an
ANN is called the neuron or perceptron. Each neuron
has a weight assigned to it that is adjusted during the
training process. ANNs have a great ability to learn linear
and nonlinear relations to solve many problems without
the need for a predefined set of rules. To create an ANN,
the neurons are usually arranged in layers to form a mul-
tilayer perceptron (MLP). An MLP is composed of one
(passthrough) input layer, one or more hidden layers and
one output layer.*® Every layer, except the output layer,
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includes a bias neuron and is fully connected to the next
layer. The network's error is calculated by the bac-
kpropagation algorithm during the training process
which leads to the network's convergence towards the
solution.

22 |
(PNNs)

Probabilistic neural networks

PNN s are a subset of ANNSs that have the additional capa-
bility of learning the distribution of the input data to esti-
mate both the mean and the standard deviation of the
network's output. Both types of networks (ANN and
PNN) share a similar structure; that is, they both com-
prise of an input layer, hidden layers, and an output
layer. Figure 1 shows a sample of the PNN's architecture.
The ability of PNNs to learn data distribution makes
them not only able to model the considered data but also
account for uncertainty in the data and the model.
Another advantage of PNNs is the generative property of
the distribution. This feature makes PNNs an ideal candi-
date for solving regression and classification problems
where the available data is limited. These useful proper-
ties make PNNs an attractive option for applications of
fatigue and random vibration fatigue not only to assess
failure limits but also to consider the physical variability
of engineering components.

The structure of the PNN used in this research com-
prises a fully connected network that can model aleatoric
uncertainty. The first layer is the input layer that has
input neurons corresponding to the input data. Before

Hidden Layers

FIGURE 1 Architecture of a PNN with one input, two hidden
layers, and two output neurons

[ T et e —WILEY-L

commencing the building of the PNN, the data are nor-
malized. For each data set, the normalization process
is done by removing the mean and dividing by the stan-
dard deviation. This process normalizes the range of fea-
tures of the input and output data sets. Then the input
data would go through a set of hidden layers to learn the
distribution of the input data to calculate both the mean
and the standard deviation of the output data. Since the
standard deviation is a positive number while the output
of the PNN could be either positive or negative, the
softplus function, defined as softplus(x) =log(e*+1), is
used for evaluating the data variability, that is, the stan-
dard deviation.

In this research, we allow the PNN's distribution
parameter related to the standard deviation and the mean
to depend on several layers between the input and the
output as the relation between the input and output is
nonlinear. Two stacks of hidden layers consisting of
50, 20, and 10 neurons were used in this research. One
stack of layers is used to learn the mean of the input's
distribution while the other stack is used to learn the
standard deviation of the input's distribution. The
concatenating layer concatenates the output of each stack
in one layer. Then, the concatenating layer is connected
to a DistributionLambda layer, which constructs the con-
ditional probability distribution (CPD P[y|x, w]) and its
standard deviation. TensorFlow Probability’’ with
Python®® and other toolboxes (namely, Pandas®® and
Numpy*’) were used to construct the PNN. The proposed
topology of the PNN used in this research is shown in
Figure 2. This topology was found to be stable during the
training for the two case studies presented thereafter. In
both case studies, the difference between the training and
validation loss is small and does not increase during the
training stage indicating the stability of the network.

In this work, the exponential linear unit (ELU)
activation function was used.*’ When using the ELU,
the mean is shifted towards zero which speeds up the
learning process.*' The defined loss function in this
work is the negative logarithm of the likelihood
(NLL)** given by

Loss:—log(H?zlf(yi;ﬂi,U)) (1)

where f is the maximum likelihood estimation function.
The mean u and the standard deviation o are evaluated
during the training process. The variable y represents the
network input features, while n is the number of data
points. Since the log function is monotonic, maximizing
the likelihood is the same as maximizing the log of the
likelihood. However, in ANNs (and PNNs), we speak of
minimizing the loss; thus, the loss function is defined as
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the negative log of the likelihood. So, minimizing the
NLL is equivalent to maximizing the likelihood.

To prevent overfitting of the network, three regulari-
zation techniques were used in this research. The first
regularization technique that we used is L2 regulariza-
tion, which constrains the weights of the neural net-
work's connections. PNNs have hundreds of parameters
that give them an incredible amount of freedom during
the training phase. Hence, they can fit a huge variety of
complex datasets. But this great flexibility also makes the
network prone to overfitting the training data set. The L2
regularization technique works by punishing the network
for using any extra parameters to fit the data. The
second regularization technique we used is the dropout
method.* Here, at every training step, every neuron
(including the input neurons but always excluding
the output neurons) has a probability p of being tempo-
rarily “dropped-out” of the network. The dropped-out
neuron is entirely ignored during that training step,
but it may be activated during the next step of the
training process.

Furthermore, neural networks may also suffer from
vanishing or exploding gradients during the optimiza-
tion process which could prevent the network conver-
gence to the optimal solution. The batch normalization
technique is used here to reduce vanishing/exploding
gradients during the training process. This operation
simply zero-centers and normalizes each input, then
scales and shifts the results using two new parameter
vectors per layer: one for scaling and the other for
shifting. For optimizing the network, the adaptive
moment estimation (Adam) was used.** This technique
combines the ideas of momentum optimization** and
RMSProp.*> The momentum optimization part keeps
track of an exponentially decaying average of past gra-
dients while the RMSProp keeps track of an exponen-
tially decaying average of past squared gradients. The
NLL is used as a loss function to optimize the PNN
with the coefficient of determination R* computed as a
measure of the PNN's performance.*® Finally, the
Gridsreach method* is used to search for best network
parameters.
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PNNs could be used to model data with constant and
nonconstant variance (large heteroscedasticity). How-
ever, using constant variance with a problem where the
heteroscedasticity is large enough will cause practical dif-
ficulties to estimate uncertainty accurately and will
results with over or under estimation of data uncertainty.
Figure 3 shows a simulated example for a set of data
where the variance of the data changes significantly. The
example illustrates the advantage of nonconstant vari-
ance PNN over the constant variance one. The constant
variance PNN underestimates the uncertainty of data at
range between 2 and 4 on the x-axis and overestimate
data uncertainty between 1 and 2 on the x-axis of
Figure 3. On the other hand, the nonconstant variance
PNN accurately estimates the uncertainty over the entire
range of the data. The difference between PNNs with
nonconstant variance and PNNs with constant variance
will be further illustrated in the second case study of
Section 4.

The added accuracy that is provided by the non-
constant variance PNN comes at an added computa-
tional cost when compared with the constant variance
PNN. Using nonconstant variance PNN to model a
problem with low heteroscedasticity and small data
size could result in noisy estimations since the non-
constant variance PNN was originally developed to
focus on high variance data observations rather than
optimal observation. Thus, it is recommended to use
PNN with nonconstant variance for data with large
heteroscedasticity and of reasonable size to estimate
uncertainty properly. These useful properties of non-
constant variance PNNs make it an attractive option
for applications of mechanical fatigue and random
vibration fatigue not only to assess failure limits but
also to consider the physical variability of engineering
components accurately.

PNN with constant variance

FIGURE 3
[Colour figure can be viewed at wileyonlinelibrary.com]
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3 | BEAM FATIGUE EXAMPLE

The data of cover-plated beams under constant ampli-
tude loading are used to investigate the performance of
nonconstant variance PNNs for modelling S-N curves
and uncertainties in fatigue resistance. Figure 4 pre-
sents a schematic of the cover-plated beam with two
configurations: welded (W) and unwelded (U) ends.
The data have been collected from the work of Leonetti
et al.’® although it was originally reported by Fisher
et al.¥’

Table 1 provides a summary of the fatigue test data.
The data in Table 1 are considered a “large sample” in
agreement with the minimum requirements for fatigue
tests as reported in the literature.*® The data are
included in the appendix of Fisher et al.*’ in the form
of the tables cited in Table 1. Each table includes the
specimen’'s name, stress range, minimum stress, the
number of cycles at which the first crack was observed,
and the number of cycles at failure. Leonetti et al."
used these data to demonstrate the capability of Bayes-
ian modelling to describe S-N relations in both low and
high cycle fatigue more accurately than other determin-
istic methods. The main advantage of that technique
over deterministic techniques is learning the data distri-
bution. But the use of maximum likelihood method in
that research’® considered the nonlinearity of one
parameter (mean u) of the learnt distribution. The con-
sideration of nonlinearity of both distribution parameters
is a complicated process, which involves manually
extracting the optimizing functions. Choi and Darwiche*’
showed that probabilistic neural networks are more
expressive than Bayesian networks since Bayesian net-
works do not use independence forms (e.g., causal depen-
dence, etc.) that could improve their conciseness.”® PNNs
have the potential to model applications that consider the

PNN with nonconstant variance

Uncertainty estimation using constant (left) and nonconstant (right) PNNs for simulated data with large heteroscedasticity
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TABLE 1
welded (W) and unwelded (U) ends

Fatigue test data for welded cover-plated beam with

Dataset Steel type Reference Specimen type
1 A36 Table F1* w
2 A441 Table F2*7 w
3 A36 Table F10*’ U
4 A36 Table F9* w
5 A36 Table F7* w
6 A36 Table F8* w

nonlinearity of both distribution parameters (i.e., mean u
and standard deviation o). This capability not only allows
modelling the data but also modelling the associated
uncertainty. Here, we use PNNs with nonconstant
variance to model fatigue in the beam fatigue data®’
and to demonstrate the ability of this network to
accurately model both the S-N curve and the associated
uncertainty.

Figure 5 shows the beam fatigue resistance data
used herein. The main observation is the change in data
distribution during the transition from finite fatigue life
(lower fatigue life cycle) to infinite fatigue life (over
107 cycles).

To process these data through PNN of Section 2.2, we
first normalized the beam fatigue data as described ear-
lier. Then the data were randomly split into training and
validation sets with 80% and 20%, respectively. To
increase the flexibility and robustness of the PNN, we not
only increase the number of the hidden layers to maxi-
mize the maximum likelihood value (of Equation 1), but
we also allow the PNN to learn both distribution parame-
ters, that is, the mean p and the standard deviation o
throughout its layers. This process allows the network to
learn the data spread and to accurately estimate the
uncertainty in the data.

Figure 6 shows the PNN prediction of fatigue life
against nominal stress for training and validation data.
The figure also displays PNN modeling for aleatoric
uncertainty associated with the fatigue data. The two

FIGURE 4 Schematic of cover-plated beam
with (left) welded (W) and (right) unwelded

(U) ends [Colour figure can be viewed at
wileyonlinelibrary.com]

curves for P68% (1-sigma) and P95% (2-sigma) demon-
strate that the PNN with nonconstant variance can model
the variability of fatigue life. Figure 6 also shows that the
values of the standard deviation at high nominal stress
gradually decrease up to around 50 MPa of nominal
stress. Then, the standard deviation of the data quickly
changes after that level. The coefficient of determination
R? for both training and validation is over 0.83. The varia-
tion of the standard deviation could not have been
observed without the use of the PNN with nonconstant
variance.

The convergence of the PNN in training and in
validation is assessed using the NLL function defined
in Equation 1. Using this loss function, the network is
trained to maximize the likelihood between the net-
work output and the experimental values. The training
is run for 40,000 epochs as shown in Figure 7. In
every epoch, the PNN of Section 2.2 runs through the
entire training dataset, which gives the chance for
every sample in the dataset to contribute to updating
the hyperparameters of the PNN. Figure 7 shows the
estimated NLL during the training and the validation
against the epochs. Both training and validation loss in
Figure 7 start at large values, then reduce into lower
values at the end of the training process. The gap
between training and validation loss stabilizes after
nearly 25,000 epochs. These observations are indicators
of a good network convergence without any signs of
overfitting.

4 | RANDOM VIBRATION OF
PIPEWORK

Vibration induced fatigue in process pipework is the third
reasons for all hydrocarbon releases in the UK North
Sea.”! Oil and gas operators usually screen for this risk by
measuring the vibration of pipework and discerning
whether strain measurement and fatigue life calculations
are required. In this subsection, we use PNNs to study
the relationship between the vibration velocity of a pipe
and the equivalent stress in the weld of the branch. This
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is the location that is most prone to experiencing vibra-
tion induced fatigue.

Figure 8 shows the generic model that was used in
this paper. Vibration velocity and stress data will be
generated through finite element analysis (FEA) using
random vibration as an input excitation—this mimics the
loading of flow-induced turbulence inside the pipe. The
pipe is supported at its ends using rotational and transla-
tional springs to simulate different supporting conditions.
The full data set along with further discussion of this
example was provided by Shadi et al.>

Figure 9 shows a plot of the vibration velocity and the
equivalent stress. It is clear in the figure that the relation-
ship is highly nonlinear. It is also clear in the figure that

Fatigue Life (Cycles)

the equivalent stress data varies rapidly within a small
range of vibration velocity, that is, 0 to 50 mm/s. The var-
iations result in a large uncertainty in the equivalent
stress within this range of velocity. Using data of such
characteristics can be a serious challenge to implement
machine learning approaches. Hence, we choose this set
of data to demonstrate the ability of the proposed PNN
with nonconstant variance in capturing such behavior.

4.1 | Generated of FEA data

One model was created of the pipe setup shown in
Figure 8. The model is composed of a 5 SCH 40 carbon
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the end of the branch to represent a valve
[Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 9 Pipework data for vibration
velocity of a valve at the end of a branch and the
equivalent stresses in the attachment weld of the
branch [Colour figure can be viewed at
wileyonlinelibrary.com]
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steel mainline that is connected to 25 cm and 2” SCH
40 branch pipe using a 2” x 5”7 SCH 40 weldolet. The
pipe, weldolet, and branch have a density of 7850 kg/m?,
Poisson's ratio of 0.3, and modulus of elasticity of
200 GPa. The branch pipe supports a 5 kg valve (repre-
sented in the model as a point mass). The length of the
mainline pipe is 0.3 m in the model. A fillet weld was
added to join the mainline with the weldolet and another
fillet weld was added to join the weldolet and the
branch pipe.

300

The pipe was excited using the power spectral density
(PSD) of a force that is generated from the flow of fluid.
Riverin and Pettigrew” measured flow-induced forces
using different flow regimes and flow speeds. They char-
acterized in-plane forces inside their pipes and showed
that the flow-induced forces can be described using PSD
curves and that the excitation frequency of flow induced
forces does not exceed 100 Hz. We adopt their results in
this work and use their PSD curves to excite the pipe of
Figure 8. For the flow-induced excitation, two parameters
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will be changed: the liquid/gas ratios and the flow veloc-
ity.”> Four values of liquid/gas ratio were considered
along with 16 flow velocities. Furthermore, the transla-
tional and rotational springs were varied as well to
simulate different supporting conditions. Five sets of
translational and rotational spring values were consid-
ered (Table 2). Based on all the previous information, the
stiffness ratio for the simulated data was between 0.001
and 20. The total number of simulated models is 1025
(Table 3). The outputs of each model were the velocity of
the valve in mm/s and the maximum stress in MPa in the
fillet welds since this is the location most prone for
fatigue failure.

4.2 |
data

PNN for random fatigue pipework

The topology of the proposed PNN to predict the velocity-
stress relation is like the one mentioned in Figure 2. The
network has one input layer with two stacks of hidden
layers consisting of 50, 20, and 10 neurons. One stack of
layers is used to learn the distribution mean while the
other to learn the distribution standard deviation of the
input data. The output layer concatenates the output of
each stack in one layer. The output layer is also con-
nected to a DistributionLambda layer. To reduce the
probability of vanishing or exploding gradients at the
beginning of the training, He initialization>® along with
ELU activation* are used. Furthermore, to reduce the
probability of the gradient vanishing at late stages of the
training, Batch Normalization is used. Again, the dropout
method and the L2 regularization techniques are used to
prevent overfitting.

In this case study, we use the vibration velocity as the
training data and the equivalent stress as the target data.
This is mainly motivated by the practicality of measuring
the vibration velocity for pipework in operation. The
vibration velocity and the equivalent stress data for the
0.3 m pipe are split into three groups based on the range
of the stiffness ratio (SR = rotational support stiffness/

TABLE 2 Translational and rotational support stiffness values>*

Translational support stiffness

(N/m) (Ib/in)

112.98 1 x 10°
5705.73 5.05 x 10*
11,298.48 1 x 10°
570,573.38 5.05 x 10°
1,129,848.29 1 x 107

FEEMS |2 e Vv T AVl B

translational support stiffness). The first group includes
the stiffness ratios being less than or equal to 0.002. The
second group includes stiffness ratios higher than 0.002
but less than 0.2. The final group includes stiffness ratios
between 5 and 20. For each group, the data are divided
into two parts: one for training and the other for valida-
tion. To test the proposed PNN in modelling the network
uncertainties, we first use it to predict the data in individ-
ual groups and then for all the data together.

Figure 10 shows the equivalent stress prediction and
the aleatoric uncertainty for each group of the data. The
plots show the experimental data, resulting regression
model and both P68% and P95% uncertainty boundary
curves. The PNN flexibility is reflected in the ability to
handle the data and the uncertainty variation associated
with each individual group successfully.

The resulting PNN model also achieves good coeffi-
cient of determination for all individual groups where R*
is shown in Table 4 for all the mentioned groups.

Next, the combination of all the data groups in one
set is tested with both types of PNNs, that is, PNNs with
constant and nonconstant variance. The previously
described network procedures and parameters used for
the individual groups are kept unchanged when working
with the whole data. Figure 11 shows the results for both
networks with training and validation data. The black
dashed line represents the regression model while the

TABLE 3 Varied parameters for the FEA simulations
Variable
Variable options/ranges  Reference
Translational Table 2 Bifano et al.>*
support stiffness
Rotational support ~ Table 2 Bifano et al.>*
stiffness
Volumetric quality 25, 50, 75, and Riverin and
95% Pettigrew>>
Flow velocity 5,6,7,..,20 m/s  Typical values of
flow velocities
Rotational support stiffness
(N-m/rad) (Ib-in/rad)
1129.85 1 x 10*
57,057.34 5.05 x 10°
112,984.83 1 x 10°
5,705,733.88 5.05 x 107

11,298,482.93 1 x 108
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Validation data coefficient of determination R*

TABLE 4 PNN performance
parameter using the coefficient of

Network SR < 0.002

PNN nonconstant variance 72% 79%

blue and red dashed lines represent the P68% and P95%
uncertainty boundaries. The results of Figure 11 show
the ability of the proposed PNN with nonconstant vari-
ance to capture the equivalent stress variation better than
the PNN with constant variance. The results show the
variation to be accurately reflected although the stress
varies intensely with small changes in the vibration
velocity within the range 0 to 50 mm/s. The coefficient of
determination for both training and validation datasets
for the PNN with nonconstant variance was found to be
>77% whereas that of the PNN with constant variance
was around 74%, which demonstrates the superiority of
the PNN with nonconstant variance.

The results presented in Figure 11 suggest that the pro-
posed PNN with nonconstant variance can successfully
model the nonlinear behavior of the data and accurately
bound its uncertainty. The advantages of the proposed
network are twofolds. First, the PNN with nonconstant
variance can accurately identify the relation between the

0.002 < SR < 0.2

5 <SR <20 determination for all individual groups

76% of the pipework data

vibration velocity and the equivalent stress, which could
not be achieved with a constant variance PNN. The sec-
ond advantage is that the PNN with nonconstant variance
can accurately estimate the uncertainty associated with
the stress values relative to the vibration velocity. Those
two advantages have practical importance for condition
monitoring engineers. Some critical or costly decisions can
be based on the proposed model predictions to avoid any
unexpected fatigue failures or unnecessary costs resulting
from early replacement of pipes or structural modifica-
tions to reduce the risk of fatigue.

The learning progression of the PNN is measured
using the previously defined NLL function. Figure 12
shows the estimated NLL against training epochs. It indi-
cates a good fit for both training and validation loss
where both curves decrease to a point of stability with a
minimal gap between the two final loss values. Figure 12
also shows no signs of underfitting or overfitting in the
network learning.
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5 | CONCLUSION

Fatigue displays stochastic behavior for multiple reasons
such as material uncertainty, structural details, and envi-
ronmental and loading conditions. Therefore, accurately
accounting for the uncertainty associated with such
behavior is important for the robust design, manufacture,
and maintenance of mechanical components. Bayesian
modelling demonstrated great aptitude to describe such
behavior and account for uncertainties much better than
many deterministic models. Bayesian approaches model

fatigue data as a distribution, which allows the propaga-
tion of uncertainty through the model to quantify the
uncertainty in the predicted fatigue life. However, such a
process only considers the variability of the parameters of
the corresponding distribution (usually the mean of the
distribution). This means that the other parameter of
the distribution (i.e., the standard deviation of the
distribution) is considered constant during the modelling
process. We propose using probabilistic neural networks
(PNNs) with nonconstant variance to model such
problems. Like Bayesian modelling, the PNN has the
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capability to learn the data distribution while also consid-
ering the variability of both distribution parameters
(mean and standard deviation). This property allows
PNNs not only to accurately describe the behavior of
fatigue data but also account for uncertainty more pre-
cisely. In this paper, two case studies relating to fatigue
applications are presented to demonstrate the proposed
approach. The first case study concerns welded cover-
plated beams under constant amplitude loading. The data
for this case study is available in the literature and the
objective is to obtain the S-N curve of the weld detail
while accounting for the uncertainties of fatigue resis-
tance. The proposed methodology captures fatigue life
trends accurately and accounts for aleatoric uncertainty.
The PNN further demonstrates its ability to account for
the nonconstant variance in the data. For the second case
study, we use the PNN to model the complicated probabi-
listic behavior of the random vibration and the equivalent
stresses of a process pipework setup. The finite element
method is used to simulate different flow and supporting
conditions, thereby creating a large database for random
vibration analysis. Random vibration of the pipework
may lead to the development of fatigue cracks and fail-
ures. Thus, modelling such relationship is important for
the integrity of process pipework. The data generated
using the finite element method, is then used to train the
proposed PNN to estimate the equivalent stress caused by
flow-induced vibrations. The resulting probabilistic model
achieves good results in terms of accuracy, robustness,
and knowledge incorporation. The model is also a good
example that demonstrates the capability of the presented
approach to model both data and its uncertainty even
when the relationship is highly nonlinear. The resulting
PNN successfully describes the large variation of the
equivalent stress in a narrow range of vibration velocity.
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