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Summary 

Soil organic carbon (SOC) originates from a complex mixture of organic materials, 

and to better understand its role in soil functions, one must characterise its chemical 

composition. However, current methods, such as solid-state 13C nuclear magnetic 

resonance (NMR) spectroscopy, are time-consuming and expensive. Diffuse 

reflectance spectroscopy in the visible and infrared regions (vis–NIR: 350–2500 nm; 

mid-IR: 4000–400 cm-1) can also be used to characterise SOC chemistry; however, it 

is difficult to know the frequencies where the information occurs. Thus, we correlated 

the C functional groups from the 13C NMR to the frequencies in the vis–NIR and mid-

IR spectra using two methods: 1) 2-dimensional correlations of 13C NMR spectra and 

the diffuse reflectance spectra, and 2) modelling the NMR functional C groups with 

the reflectance spectra using support vector machines (validated using 5 times 

repeated 10-fold cross-validation). For the study, we used 99 mineral soils from the 

agricultural regions of Sweden. The results show clear correlations between organic 

functional C groups measured with NMR and specific frequencies in the vis–NIR and 

mid-IR spectra. While the 2D correlations showed general relationships (mainly 

related to the total SOC content), analysing the importance of the wavelengths in the 

SVM models revealed more detail. Generally, models using mid-IR spectra produced 

slightly better estimates than the vis–NIR. The best estimates were for the alkyl C 

group (R2 = 0.83 and 0.85, vis–NIR and mid-IR, respectively), and the O/N-alkyl C 

group was the most difficult to estimate (R2 = 0.34 and 0.38, vis–NIR and mid-IR, 

respectively). Combining 13CNMR with the cost effective diffuse reflectance methods 

could potentially increase the number of measured samples and improve the spatial 

and temporal characterisation of SOC. However, more studies with a wider range of 



 

soil types and land management systems are needed to further evaluate the conditions 

under which these methods could be used.  

Keywords: C functional groups, 13C NMR, C turnover, mid-IR spectroscopy, NIR 

spectroscopy, soil organic matter quality, soil organic matter composition 

Introduction 

Soil organic matter consists of a wide range of heterogeneous materials in all stages of 

decomposition, closely interacting with the soil mineral matrix (Lehmann & Kleber, 

2015). To better understand the mechanisms controlling C dynamics, we need 

information on the chemical composition of the soil organic carbon (SOC), the soil 

physicochemical properties and environmental factors (Paré & Bedard-Haughn, 2013; 

Viscarra Rossel et al., 2019; Schmidt et al., 2011; Kögel-Knabner & Rumpel, 2018). 

This study pertains to the characterisation of organic functional groups in SOC. 

Solid-state 13C Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful 

experimental technique used in different disciplines to elucidate the atomic and 

molecular structure of a wide range of substances. The main advantages of NMR 

spectroscopy are that it is non-destructive and the sample can be used for other 

experiments, solid and liquid samples can be analysed; no extractions are needed and 

it gives comprehensive and semi-quantitative information on the chemical 

composition of a sample for one or several selected elements. It is commonly used to 

quantitatively determine the chemical composition of SOC (Bonanomi et al., 2013), 

to deduce SOC's degree of decomposition and to allow an estimation of more resistant 

fractions. Weng et al. (2021) stressed the point that NMR was used to prove and 

disapprove various theories and hypothesis on SOC dynamics and stabilisation. The 

technique does not provide the structural organization of SOC on a molecular level 



 

but can broadly differentiate C functional groups (Audette et al., 2021). Most studies 

identify alkyl C, O/N-alkyl C, aromatic C and carbonyl C groups (Audette et al., 

2021; Baldock et al., 1992; Kögel-Knabner, 1997, 2000). Chemical shift ranges can 

be fitted to four spectral regions, labeled as (1) alkyl C (10–45 ppm; long chain 

polymethylene type structures, e.g. fatty acids, waxes and resins); (2) O-alkyl C (45–

110 ppm; mostly carbohydrates); (3) aromatic C (110–160 ppm; protonated and C 

substituted aromatics and unsaturated C and oxygenated aromatics); and (4) carboxyl 

C (160–200 ppm; carboxylic C, esters and amides) (Baldock et al., 1992; Oades et al., 

1987). 

Baldock et al. (1997) evaluate the potential of solid-state 13C NMR spectroscopy 

to assess the extent of decomposition of natural organic matter. They describe a strong 

link between the progressing decomposition of natural organic matter, relative 

increase in alkyl C and relative decrease in O-alkyl C. This can be explained by the 

characteristic hydrophobicity and more resistant alkyl materials on the one side and 

the easily decomposable nature of polysaccharides and proteins on the other side. In a 

recent meta-analysis, Audette et al. (2021) draw a comprehensive summary of the 

origin and lability of the NMR derived functional C groups and showed a clear 

influence on the proportions of the different 13C NMR derived C groups of changes in 

agricultural management practises (i.e. fertilisation, tillage, crop rotation and liming), 

demonstrating the usefulness of this type of information for guiding agricultural 

practises and improving soil health.  

Due to the small content of total SOC in soil samples and the low natural 

abundance of the 13C isotopes, the measurement with an NMR can be slow, which 

limits the number of samples that can be analysed, restricting the use of the method to 

smaller dedicated studies (Baldock et al., 1989; Kinchesh et al., 1995). In addition, 



 

paramagnetic materials such as iron may interfere with the measurements further 

reducing the signal-to-noise ratio, so that they have to be removed by treating the 

samples with hydrofluoric acid (HF) (Mathes et al., 2002). This treatment results in an 

increase in SOC content; however, it is also associated with varying degrees of SOC 

loss, both in terms of total loss and selective loss of organic compounds. This may 

result in biased interpretation of the SOC chemical composition (Sanderman et al., 

2017). 

Diffuse reflectance spectroscopy in the visible, near and mid-infrared (vis–NIR: 

350–2500 nm or 28571–4000 cm-1; mid-IR: 2500–25000 nm or 4000–400 cm-1) are 

rapid, non-destructive, methods commonly used in soil science (Soriano-Disla et al., 

2014). Reflectance spectra in the mid-IR region are the result of interactions between 

the radiating energy and the bonds in molecules of soil constituents. In the NIR, the 

spectra result from overtones and combinations of the fundamental vibrations in the 

mid-IR region, while in the visible range the primary processes are electronic 

excitations (Stenberg et al., 2010). The methods provide qualitative information on 

the fundamental composition of the soil, including clay and iron oxide minerals, 

organic matter, water and particle size. Hence, that information is the basis for 

creation of models from the spectra used to estimate several properties. However, the 

information in the diffuse reflectance spectra is overlapping and complex, and 

calibration models are needed for quantitative analysis. Absorbance is bond specific, 

but is also affected by the type of functional group, its neighbouring molecules and 

hydrogen bonds (Miller, 2001). Information on SOC can be found in several regions 

of the mid-IR and vis–NIR spectra, and corresponds to, for example, –CH and –CO 

groups. SOC content is one of the most commonly modelled and best predicted soil 

properties using these techniques (Stenberg et al., 2010). Because the information is 



 

related to specific molecular bonds and their surrounding chemistry, SOC content is in 

fact predicted by its chemical composition, and a number of studies have shown the 

potential for vis–IR spectroscopy to predict different aspects of the organic matter 

quality (Knox et al., 2015; Viscarra Rossel & Hicks, 2015). The possible advantage of 

reflectance spectroscopy for characterising the composition of soil organic C is that 

the chemical information in a soil sample might be gained from the analysis of the 

whole soil without C fractionation (e.g. into particulate, mineral associated or 

pyrogenic organic C), or HF-treatment.  

We found a number of studies that explored the relationship between vis–NIR or 

mid-IR spectra and solid state 13C NMR spectra (Leifeld, 2006; Terhoeven-Urselmans 

et al., 2006; Forouzangohar et al., 2013, 2015; Kang et al., 2017; Ludwig et al., 

2008). These studies used HF-treated mineral soils (for both solid state 13C NMR and 

the vis-NIR and mid-IR spectroscopy) or specific soil C fractions, e.g. litter, 

particulate and mineral-associated organic carbon. To our knowledge, there are no 

other published studies on the characterisation of soil organic C chemistry with 

spectroscopy focusing on whole agricultural soils. 

Given this research gap, our aim here was to test if vis–NIR and mid-IR diffuse 

reflectance spectroscopy could characterise the functional chemistry of SOC in whole 

arable soils with as little pre-treatment as possible, i.e. without HF-treatments or soil 

C fractionation. To do so, we derived 2-dimensional correlations of solid state 13C 

NMR spectra and vis–NIR and mid-IR spectra, compared assignments of the NMR 

functional organic C groups and the corresponding frequencies in the vis–NIR and 

mid-IR, and modelled the NMR functional groups with the reflectance spectra using 

support vector machine regression. For our experiments, we used 99 Swedish soil 

samples with a wide range in SOC content. 



 

Materials and methods 

Soil samples and analyses 

We used 99 mineral soil samples from the 0-20 cm layer of agricultural fields in 

Sweden (Fig. 1). The soils were selected from 12,500 soil samples collected in a 

national campaign run by the Swedish Board of Agriculture during 2010 and 2011 

and archived at the Swedish University of Agricultural Sciences. The 12,500 samples 

were collected in a regular grid of one soil sample per km2, randomly moving the 

sampling site 1-150 m around the grid node, across about 90 % of Swedish 

agricultural land. The 12,500 samples were air dried, sieved to 2 mm and analysed for 

soil texture, soil organic matter content (measured as loss on ignition and corrected 

for structural water in clay (Ekström,1927)) prior to archiving. Soil texture was 

divided into clay (< 0.002 mm), silt (0.002–0.06 mm) and sand (0.06–2 mm). Clay 

content was analysed using a sedimentation method modified from Gee & Bauder 

(1986); the sand fraction was determined by sieving and the silt fraction was 

determined by difference. The 99 samples used in this study were selected using 

stratified random sampling to cover a wide range of soil texture and soil organic 

matter content by dividing the 12,500 soil samples into classes based on soil texture 

and organic matter content and randomly select samples within those classes (Fig. 1 

and supplementary Table 1 and supplementary Figure 1). A maximum amount of 

organic matter was set to 16 % to focus on mineral soils and the clay content was 

limited to 40 % because of a focus on more sandy soils in a joint study. The 99 

samples selected for this study represent a cross section of the possible variations in 

soil texture and organic matter content of the 12,500 Swedish arable soils (within the 

set organic matter content and texture boundaries). For comparison with the analyses 

of the functional C groups the 99 samples were also analysed for SOC. There were no 



 

carbonates present in the soil samples and the 99 samples were analysed for SOC 

through dry combustion on an EuroEA elemental analyser (Hekatech GmbH, 

Wegberg, Germany). Swedish soil are young (i.e. mainly formed during the 

quartanery period) and strongly affected by processes during and after the last glacial 

period (Karlsson et al., 2021). 

vis–NIR and mid-IR spectroscopy 

Vis–NIR Spectra (350–2500 nm; 28571 to 4000 cm-1) were determined using an ASD 

FieldSpec Pro FR scanning instrument (Malvern Panalytical Ltd, Malvern, UK) on the 

2 mm sieved and air-dried soil samples. The instrument was equipped with a bare 

optic fibre connected to a probe with a 20 W Al-coated halogen tungsten light source 

placed 7 cm over the sample, resulting in a field of view of approximately 7.5 cm2. 

Reflectance spectra were recorded in relation to an external white reference 

(Spectralon®) and each composite sample spectrum was comprised of 100 averaged 

spectra collected from a rotating sample. The spectra were sampled at 1.4–2 nm 

intervals with a spectral resolution of 3–10 nm. A wavelength interval of 1 nm was 

interpolated to the instrument output file, resulting in spectra consisting of one data 

point every nanometre. The vis–NIR spectra were transformed to apparent absorbance 

through log(reflectance-1) and the 350–400 nm wavelength range was removed from 

further analysis due to noise. 

Mid-IR spectra were recorded on four ground (< 0.5 mm) replicates of each 

sample using a FT-IR Vertex70 spectrometer (Bruker, Germany) with a spectral range 

of 1333–16667 nm (7500–600 cm-1) and a spectral resolution of 4 cm-1 and 64 

measurements per minute. The spectrometer was equipped with a nitrogen gas 

purging system to reduce the amount of atmospheric interference in the system which 

reduces masking of weak spectral features by water vapour or carbon dioxide 



 

absorption. A gold standard was used as reference. The mid-IR spectra were 

transformed to apparent absorbance through log(reflectance-1) and only the 4000–

600 cm-1 (2500–16700 nm) range was used in the further analysis. The four replicates 

were averaged to one spectrum per sample. 

13C NMR spectroscopy 

The sieved samples were ground < 0.630 mm using mortar and pestle prior to 

solid state 13C NMR experiments (Bruker DSX 200 NMR spectrometer, Karlsruhe, 

Germany). No paramagnetic material was present in the soils and consequently no 

HF-treatment was required. The cross-polarisation magic angle spinning (CPMAS) 

technique was applied with a 13C-resonance frequency of 50.32 MHz and a spinning 

speed of 5 kHz. A ramped 1H-pulse was used during a contact time of 1 ms in order to 

circumvent spin modulation during the Hartmann-Hahn contact. A pulse delay of 1 s 

was used for all experiments and pre-experiments confirmed that the pulse delays 

were long enough to avoid saturation. Depending on the C contents of the samples, 

between 8,000 and 400,000 scans were accumulated and a line broadening of 50 Hz 

was applied. The 13C chemical shifts were calibrated relative to tetramethylsilane 

(0 ppm).  

Relative contributions of the various functional C groups were determined by 

integration of the signal intensity in their respective chemical shift regions according 

to Knicker et al. (2005). The region from 220 to 160 ppm was assigned to carbonyl 

(aldehyde and ketone) and carboxyl/amide C. Olefinic and aromatic C were detected 

between 160 and 110 ppm. O-alkyl and N-alkyl-C signals were found from 110 to 60 

ppm and from 60 to 45 ppm. Resonances of alkyl C were assigned to the region 45 to 

10 ppm. (Fig. 2). 

 



 

As indicator for the degree of decomposition of the SOC, the alkyl C:O/N-alkyl C 

ratio (45 to -10 ppm)/(110 to 45 ppm) was calculated from the NMR spectra (Baldock 

et al., 2004). 

Correlations between the SOC, relative contribution of the different C groups 

derived from the 13C NMR spectra and the Alkyl C:O/N-alkyl C ratio derived from 

relative contribution were calculated using Spearman correlations. 

2-D correlations 

The raw NMR spectra were cut to only include the chemical shifts between 0 and 220 

ppm where most of the information is found. The resolution of the three types of 

spectra were reduced to every 7.5th nm for the apparent absorbance vis–NIR spectra, 

every 10th cm-1 for the apparent absorbance mid-IR spectra, and every 0.8th ppm for 

the raw NMR spectra, resulting in about 300 observations for all three spectral types. 

This was done to reduce the number of variables in the correlation analysis and to 

have a similar number of variables in all three spectra. The NMR spectra were further 

smoothed by a spline function and baselined using a 2nd order polynomial. The raw 

NMR spectra were then recalculated as relative intensity (relative to the most intense 

peak). Due to the shape of the mid-IR spectra these were first split into 4 regions 

(600–2100, 2100–2700, 2700–3720, 3720-4000 cm-1) and then a baseline was applied 

using 1st, 2nd, 3rd, or 4th order polynomials to the different sections. After baselining 

the four sections were again recombined into one spectrum. To baseline the vis–NIR 

spectra we applied a continuum removal (Clark & Roush, 1984). The baselining was 

done to further highlight and define the spectral features in the different spectra. A 

number of different baselining and smoothing techniques were tested, and the 

methods providing the visually best baselined spectra without artefacts were selected. 

The prepossessing of the spectra were performed in the statistical software 



 

environment R (R Core Team, 2020) and the hyperSpec (Beleites 209 and Sergo, 

2020) packages. The vis–NIR and mid-IR spectra were correlated to the NMR spectra 

by heterospectral correlation using the 2Dshige software (2Dshige© Shigeaki Morita, 

Kwansei-Gakuin University, 2004-2005). The correlations were plotted in 2-D plots 

for interpretation.  

Modelling functional C groups 

The original apparent absorbance vis–NIR and mid-IR spectra were transformed and 

smoothed using first order Savitzky-Golay derivative with 11 smoothing points 

(Savitzky & Golay, 1964). First order derivative is a well-established pre-processing 

method in diffuses reflectance spectroscopy studies (Stenberg et al., 2010). A range of 

smoothing points were tested on a subset of SOC variables and the number producing 

the best cross-validated results was used in the final modelling. The vis–NIR and the 

mid-IR spectra were calibrated to the different NMR derived functional C groups 

using support vector machines (SVM) with a radial basis function kernel (Karatzoglou 

et al., 2006). Kernel-based learning methods use an implicit mapping of the input data 

into a higher dimensional feature space defined by a kernel function. With this, it is 

possible to derive a linear hyperplane as a decision function for non-linear problems 

(Vapnik, 1995). Here, we used a Gaussian radial basis function (RBF) implemented in 

the kernlab library of the software R. Upper and lower bounds for the optimisation of 

the hyperparameters, penalty (C) and sigma of the RBF were set to 0 and 10, and 0 

and 1 for C and sigma, respectively. The upper and lower bounds of the C and sigma 

parameters were used in the caret train function in the R library caret (Kuhn, 2008) 

and were optimized using the Differential Evolution optimisation (Price et al., 2006), 

implemented in the R library DEoptim (Mullen et al., 2011).  



 

The models were validated using 10-fold (random) cross validation repeated five 

times using the implementation in the caret library. The aggregation of the repeated 

cross validations generate results that are more stable and robustness. Thus we report 

the validation statistics and variable importance on the average of the five repeats. 

The validations were evaluated using the adjusted coefficient of determination (R2) of 

the linear relation between the predicted and measured values, the concordance 

correlation coefficient (CCC), mean error (ME), the root-mean-square error (RMSE), 

which is a measure of the inaccuracy of the estimates and encompasses both bias and 

imprecision (Viscarra Rossel & McBratney, 1998). The concordance correlation 

coefficient combines measures of both precision and accuracy (bias) and is calculated 

as 

2𝑟𝑟𝜎𝜎𝑜𝑜𝜎𝜎𝑝𝑝
𝜎𝜎𝑜𝑜2 + 𝜎𝜎𝑝𝑝2 + (µ𝑜𝑜 − µ𝑝𝑝)2

 

where r is the correlation coefficient between observed o and predicted p, µo and µp 

are the means, and σo2 and σp2 are the corresponding variances. 

To interpret the models, we calculated their variable importance using the varImp 

function in the caret library (Kuhn, 2008) of R. 

Results 

Chemical composition of SOC 

The 99 soil samples used in this study were selected from a total of little over 12,500 

Swedish arable topsoils to cover a large variation in SOC content and soil texture 

(Fig. 1).  

SOC varied from 1.3 % to 10 % and clay and sand content ranged from 5 % to 

40 % and 80 %, respectively. Because soil texture, and particularly clay content, has a 

significant influence on the vis–NIR and mid-IR spectra, we chose to use a data set 



 

without correlations between clay content and SOC and thus ensure independence in 

our analysis of SOC and it's chemical composition.  

[Figure 1] 

Although all samples were collected from arable fields primarily under cereal 

crops, the SOC composition of the soil samples was variable, as shown by the 

different functional carbon groups defined with 13C NMR (Fig. 2 and Supplementary 

Table 2). 

[Figure 2] 

On average, the O/N-alkyl C group showed the largest contribution to the NMR 

spectrum. However, the alkyl C group with an average contribution of around 25 % of 

the SOC showed the largest variation, contributing to up to 58 % of the carbon in one 

sample. The NMR spectra of the soils could be classified into roughly three types 

depending on the contribution of the alkyl C and O/N-alkyl C groups: soil with a 

fairly even contribution from the two groups and soil with a primary contribution 

from either the alkyl C group or the O/N-alkyl C group (Fig. 2b). The carboxyl-C 

group constituted the smallest portion of the total SOC. The degree of decomposition 

indicated by the ratio between the alkyl C and the O/N-alkyl C (Baldock et al., 2004) 

varied between 0.34 and 2.5 (supplementary Table 2).  

The proportion of the alkyl C group increased with increasing SOC content 

(ρ=0.76, p < 0.05) while the remaining carbon functional groups decreased 

(supplementary Table 3). The exception was the large O/N-alkyl C group that was not 

correlated with the total SOC content (ρ =-0.15, p=0.148) and where the largest 

subgroup, the carbohydrates (O/N-alkyl C subgroup 2), was positively although fairly 

weakly, correlated to SOC (ρ =0.45, p < 0.05). However, the acetal-ketal C portion of 

the O/N-alkyl C group (O/N-alkyl C subgroup 3) was negatively correlated to SOC, 



 

as were the other non-alkyl C groups. The strongest correlations occurred between the 

alkyl C group and the other functional groups. As the alkyl C group increased, the 

other functional groups made up a smaller portions of the SOC. However, as for the 

correlations with SOC content, the largest O/N-alkyl C group, (O/N-alkyl C subgroup 

2), was only weakly correlated with the alkyl C group (ρ =0.22, p < 0.05). The ratio of 

alkyl C to O/N-alkyl C was strongly correlated to the alkyl C group and less so with 

the O/N-alkyl group (ρ =0.98, p < 0.05, and ρ =-0.66, p < 0.05, for alkyl C and O/N-

alkyl C groups, respectively) 

2D correlations of 13C NMR to diffuse reflectance spectra and modelling 

The relationship between the infrared spectra in the vis–NIR and mid-IR regions and 

the NMR spectra are shown in the 2D correlation plots, Fig. 3.  

[Figure 3] 

The figure reveals general correlations between the functional C groups in the 

NMR spectra and different frequencies in the diffuse reflectance spectra. The vis–NIR 

spectra show the strongest positive correlations with the alkyl C group in the visible 

part of the spectrum with some weaker positive correlations around 2000 nm and 

2300 nm (Fig. 3a). The correlations to the remaining functional C groups show an 

opposite pattern to the correlations with the alkyl C group. The exception is a weak 

positive correlation with the O/N alkyl C subgroup 2 at around 2200 nm.  

The correlations between the NMR spectra and the mid-IR spectra were more 

detailed and less concentrated in one region of the spectrum. Although, similar to the 

correlations between NMR and the vis–NIR spectra, the general pattern show 

opposite correlations between the mid-IR spectra and the alkyl C group compared 

with the correlations between the mid-IR spectra and the other functional C groups 



 

(Fig.3 b). Strong positive correlations with the alkyl C group occur in the 2800–3000 

cm-1 and the 1300–1700 cm-1 regions (Fig. 3b). 

The diffuse reflectance spectra in the vis–NIR and the mid-IR regions were then 

used, individually, to model the different NMR derived C functional C groups using 

SVM (Tables 1 and 2).  

The best models with both the vis–NIR and mid-IR spectral regions was the alkyl 

C group, as a whole and especially the largest subgroup with CH2-C (alkyl C 

subgroup 2) with adjusted R2 of 0.84 and 0.92 for vis–NIR and mid-IR models, 

respectively (Tables 1 and 2; Fig. 4).  

[Figure 4] 

The importance of different wavelengths in the machine learning models (Fig. 5) 

also show clear contributions from the spectral regions corresponding to the 

asymmetric and symmetric CH-vibrations at 2930 cm-1 and 2850 cm-1, respectively, in 

the mid-IR region, and their combination bands in the NIR around 2300 nm Viscarra 

Rossel & Behrens, 2010). This corresponds to results shown in the 2D-correlation, 

although in the 2D-correlation plot of the NMR to mid-IR spectra, the alkyl-C group 

also showed a positive correlations with the broader absorptions at 1700–1300 cm-1 

(Fig. 3a) and the highest correlation between the vis–NIR and the alkyl-C group was 

actually in the visible region (Fig. 3b). 

[Figure 5] 

The aryl C group was the second best predicted functional C group with both vis–

NIR and mid-IR models. Absorption near 1500 and 1700–1800 cm-1 was important 

for prediction. Absorptions at 1500 cm-1 can be attributed to aromatic C=C stretching 

vibrations and those near 1700 cm-1 to C=O stretching vibrations (Tinti et al., 2015). 

The 2D-correlation between the NMR and mid-IR also showed weak positive 



 

correlations between the aryl C group and the broad absorptions between 1700 and 

1300 cm-1. 

In the carboxyl C group, predictions of the well-defined subgroup 1 produced 

R2=0.63–0.64 using both vis–NIR and mid-IR spectra. However, predictions of the 

carboxyl C subgroup 2 were poor (R2= 0.35–0.45), using mid-IR and vis–NIR spectra 

respectively. There are regions in the mid-IR spectra (e.g. 1642–1569 cm-1) that are 

attributed to carboxylates, amongst other organic components (Tinti et al., 2015). 

However, this was not shown in our models. Rather, the similar pattern to the alkyl-C 

suggest that the carboxyl C subgroups were modelled based on negative correlations 

with the alkyl-C group (supplementary Table 2), whereas the large carboxyl C group 

show more similarities with the Aryl C subgroups.  

The most difficult C group to predict in these soils was the large O/N-alkyl C 

group including carbohydrate C and C in amino groups. However, predictions of the 

small O/N-alkyl C subgroup 3, representing acetal and ketal C, produced an R2 of 

around 0.7 using both vis–NIR and mid-IR spectra. One of the explanations for the 

difficulties in predicting this large C group might be the small variation in this group 

in our dataset, compared to, for example, the alkyl C group. 

The modelling of the alkyl C:O/N-alkyl C ratio with both vis–NIR and mid-IR 

spectra produced R2 values of 0.81 –0.84, which were similar to the R2 of the alkyl C 

group (Tables 1 and 2; Fig. 4c and f). This was unsurprising because of the good 

predictability of the alkyl C and the very large variation in this C group compared 

with the O/N-alkyl C group. 

The wavelength regions around 2000 nm showing weak positive correlations to 

the alkyl C groups and around 2200 nm showing weak positive correlations with the 

O/N alkyl C subgroup 2 in the 2D correlation plot have been reported to be important 



 

for OC modeling using vis–NIR (Stenberg et al., 2010), however, did not show as 

important in any of the models in this study. Absorbance at 2033 nm can be attributed 

to C=O vibrations (Viscarra Rossel & Behrens, 2010). Absorbance around 2200 nm is 

largely effected by minerlas, e.g. illite, that is a dominating mineral in the soils in this 

study (Stenberg et al., 2010). 

Overall, models of the NMR-derived C functional groups using mid-IR were 

slightly better than those using vis–NIR spectra. However, the differences were not 

always large. The largest difference in performance of the mid-IR and vis–NIR 

models was for total SOC content (Tables 1 and 2; Fig.4). The mid-IR model 

produced estimates of SOC that were as precise as the estimates for alkyl C (R2 = 0.86 

for SOC compared with 0.85 for alkyl C). However, the estimates of SOC from the 

vis–NIR model were less precise (R2 = 0.62) than the estimates of alkyl C and aryl C 

(Table 1 and Fig 4a and d).  

Discussion 

The results provide further evidence that diffuse reflectance spectroscopy in the 

visible and infrared can be used to estimate the chemical composition of SOC derived 

from 13C NMR in mineral bulk soil samples. The results presented in this study are 

based on young soils formed from quaternary deposits without paramagnetc material 

and with similar land management (arable fields), although presenting a large 

variation in climatic conditions, SOC content and soil texture. More studies, including 

other soil types and land management strategies, are needed to further evaluate under 

what conditions the methods could be used. Our results also demonstrate that 

spectroscopic estimates of SOC are soundly based on its chemical composition. 

Our analyses used two approaches for relating the functional C groups to the vis–

NIR and mid-IR spectra. First, using 2D heterospectral correlations between 13C NMR 



 

and infrared spectra, and second, using spectroscopic models of the specific functional 

C groups, which were derived from the 13C NMR. There was good correspondence in 

the results from the two methods, which strengthens our confidence in the findings.  

The 2D-correlations showed the general associations between the 13C NMR and 

vis–NIR, mid-IR spectra spectra. The interpretation of the variable importance of the 

spectroscopic (vis–NIR and mid-IR) models of the functional C groups were similar 

but they revealed more detail. For the different C-groups, many of the important 

wavelength regions in the models were similar (Fig. 5), but there were some notable 

differences, e.g. comparing the mid-IR models of aryl C and alkyl C (Fig 5b). This 

also suggests that the chemical composition of SOC can be characterised separately, 

and is not based on SOC content. However, some of the C-groups seem to be 

modelled largely based on indirect correlations with other C groups which have a 

negative effect on model robustness. 

Generally, models using mid-IR spectra produced better estimates compared to 

vis–NIR models. This is because the fundamental vibrations occur in the mid-IR 

region whereas the NIR spectra result from overtones and combinations of these 

vibrations (Soriano-Disla et al., 2014). However, the differences were often small. 

One reason for this could be the contribution of the visible range to the vis–NIR 

models. The visible region shows the strongest correlations with the NMR-spectra in 

the 2D-correlation plot (Fig. 3a) and the visible and short-wave NIR regions (< 1000 

nm) are indicated as important regions in the models (Fig. 5a). The response in the 

visible region due to organic matter is broad but clear, and several studies have 

reported the improved modelling of SOC when the visible and the NIR regions are 

combined (Stenberg et al., 2010).  The advantage of using mid-IR compared to vis–

NIR seem to be in the estimation of total SOC in datasets with a large variation in the 



 

composition of SOC. The estimates of SOC using vis–NIR spectra appear to be better 

at smaller SOC concentrations, but deteriorate at SOC contents above 4 % (Fig. 4d). 

Ben-Dor & Banin (1995) found similar problems with using NIR spectroscopy to 

estimate soil organic matter in a data set with variable degree of decomposition of the 

organic matter depending on organic matter content. We found a clear correlation 

between SOC and C composition in the soils used in our study, with an increase in the 

proportion of alkyl C with increasing SOC content, but also an increased variation in 

the proportion of the alkyl C with an increase in SOC (data not shown).  

The soil samples used in this study are mineral agricultural soils. The diversity of 

the C inputs is narrow and, as might be expected, so is the variability of the SOC. 

Nonetheless, the samples originate from a large geographic extent, covering different 

climatic regions and with diverse soil texture (Fig. 1), which introduces variability in 

decomposition conditions of the soils used. Apart from the O/N-alkyl C group that 

constituted a smaller portion of the total SOC and was less variable in our study, the 

proportions and ranges of the functional C groups were similar to those of studies 

with more diverse samples, including forest litter, specific soil fractions and soils 

from different land uses (Leifeld, 2006; Terhoeven-Urselmans et al., 2006). 

The promising but somewhat inconsistent results in the few studies published on 

this subject (e.g. Leifeld, 2006; Terhoeven-Urselmans et al., 2006; 431 Ludwig et al., 

2008; Forouzangohar et al., 2015; Kang et al., 2017) may be attributed to the large 

variability within the samples, both between and within studies, and the often small 

number of samples used in those studies. Other studies Terhoeven-Urselmans et al., 

2006; Ludwig et al., 2008) reported better estimates of O/N alkyl C than our study. 

This might be due to the relatively small variation in O/N alkyl C in our study (23–

50 %) compared to those studies which included samples with more less-decomposed 



 

material leading to higher and more variable O/N alkyl C content (33-82 %). 

Differences in C inputs, with more diverse materials e.g. including coniferous 

materials in many of the published studies, might also partly explain the differences in 

the accuracy of the aryl C and carboxyl C group estimates. The relatively more 

homogeneous C inputs and SOC of the sample set in our study might have contributed 

to the better estimates of the alkyl C:O/N-alkyl C ratio.  

The use of HF treated soils in some of the other studies (Forouzangohar et al., 

2013, 2015) prevents direct comparisons to our results. However, our results are 

encouraging because we obtained good estimates of the alkyl C and alkyl C:O/N-alkyl 

C ratio in whole mineral soils without any fractionation or chemical pre-treatments 

(R2 for Alkyl C = 0.83 and 0.85, and R2 for alkyl C:O/N-alkyl C ratio = 0.81 and 0.84, 

for vis–NIR and mid-IR respectively). No paramagnetic material was present in the 

soils in this study and the results are valid for soils under similar conditions.  

Conclusions 

The study shows that diffuse reflectance spectroscopy in the visible and infrared can 

be used to estimate the chemical composition of SOC in whole mineral soil samples 

without C fractionation or HF-treatment. The results further demonstrate that 

spectroscopic estimates of SOC are soundly based on its chemical composition. 

Although diffuse reflectance spectroscopy may not estimate SOC composition as 

accurately as 13C NMR, and there is still a need for traditional methods for 

calibrations, the opportunity to analyse more samples due to the more cost efficient 

analysis could improve the detection and monitoring of changes that might otherwise 

be lost due to spatial variation. Diffuse reflectance spectroscopy also enables in-field 

measurements, which make it possible to consider in-situ measurements of SOC 

composition from soil that is under field condition and undergoing decomposition. 
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FIGURE CAPTIONS 

Figure 1  Location of the 99 soil samples a), and soil texture b) and soil organic 

carbon content (SOC) c) in the samples. 

Figure 2  Summary of the NMR spectra form the 99 soil samples with a) showing the 

median and 16th and 84th percentile NMR spectrum with the different functional C 

groups and subgroups indicated, and b) showing NMR spectra representing three 

common types of NMR spectra in the data set, i.e. those with a high, low and 

intermediate ratio of alkyl C to O/N-alkyl C. 

Figure 3  2D correlation plots between a) vis–NIR and NMR, and b) mid-IR and 

NMR. Blue colour indicates negative correlations and red indicates positive 

correlations. Black spectra shows the average original absorbance IR spectra and 

relative intensity NMR spectra, and red the average base lined spectra used in the 

correlations. 

Figure 4  Cross validated predictions versus measured SOC content (a, d), relative 

contribution of alkyl C CH2-C groups (alkyl C subgroup 2) (b, e), and alkyl C:O/N-

alkyl C ratio derived from relativ contribution (c, f) using machine learning models 

based on mid-IR (a-c) and  vis–NIR (d-f) spectra. Red dotted lines are polynomial fits 

that show deviations from the linear fits. The predictions are average of the five 

repeated cross validations. 

Figure 5  The importance of different wavelength in the machine learning models for 

total C content, relative contribution of the different NMR-derived functional carbon 

groups and subgroups, and the ratio between alkyl C and O/N-alkyl C derived from 

relative contribution using the a) vis–NIR and b) mid-IR wavelength range. 



 

TABLES 

Table 1  Cross-validated prediction results for the vis–NIR calibration models, and 

the final hyperparameters used (sigma, C), for SOC (%), relative contribution of the 

different 13C NMR derived C groups (%), and the Alkyl C:O/N-alkyl C ratio derived 

from relative contribution. The predictions are average results of five times repeated 

10-fold cross-validation. 

    R2 CCC RMSE ME   sigma C 
SOC  0.62 0.75 1.3 -0.207  0.00052 8.735 
Alkyl C 0.83 0.91 3.0 0.090  0.00112 9.085 
 subgroup 1  0.56 0.74 1.6 0.087  0.00074 8.746 

 subgroup 2 0.84 0.91 2.0 -0.006  0.00110 8.199 
O/N-alkyl C 0.34 0.56 2.6 -0.037  0.00187 8.479 
 subgroup 1  0.10 0.28 0.6 -0.014  0.00254 2.321 

 subgroup 2  0.26 0.44 1.7 0.027  0.00581 6.312 
 subgroup 3 0.70 0.82 0.6 0.026  0.00096 7.075 

Aryl C  0.77 0.87 1.8 -0.144  0.00109 9.105 

 subgroup 1  0.73 0.84 1.2 -0.116  0.00111 7.355 
 subgroup 2  0.71 0.83 0.9 -0.002  0.00184 5.099 

Carboxyl C  0.64 0.78 1.4 0.034  0.00123 8.531 
 subgroup 1  0.64 0.79 0.8 0.012  0.00116 7.466 

 subgroup 2  0.46 0.65 0.9 0.008  0.00552 3.535 
Alkyl C: O/N-alkyl C  0.81 0.89 0.1 -0.007   0.00186 7.573 

 

  



 

Table 2  Cross-validated prediction results for the mid-IR calibration models, and the 

final hyperparameters used, for SOC (%), relative contribution of the different 13C 

NMR derived C groups (%), and the Alkyl C:O/N-alkyl C ratio derived from relative 

contribution. The predictions are average results of five times repeated 10-fold cross-

validation. 

    R2 CCC RMSE ME   sigma C 
SOC  0.86 0.92 0.8 -0.02  0.00053 5.841 
Alkyl C 0.85 0.92 2.7 0.35  0.00048 9.024 

 subgroup 1  0.56 0.73 1.5 0.088  0.00027 9.137 
 subgroup 2 0.92 0.96 1.5 -0.017  0.00031 8.961 

O/N-alkyl C 0.38 0.60 2.2 -0.003  0.00035 8.577 

 subgroup 1  0.32 0.54 0.5 0.017  0.00056 6.117 
 subgroup 2  0.20 0.42 1.7 -0.001  0.00075 7.366 
 subgroup 3 0.73 0.85 0.6 -0.054  0.00034 9.372 

Aryl C  0.72 0.85 2.1 -0.098  0.00082 8.768 
 subgroup 1  0.71 0.83 1.3 -0.133  0.00039 5.835 
 subgroup 2  0.81 0.90 0.7 0.049  0.00062 9.955 

Carboxyl C  0.54 0.73 1.5 0.006  0.00048 8.188 
 subgroup 1  0.63 0.77 0.7 -0.026  0.00025 9.126 
 subgroup 2  0.35 0.56 0.9 -0.10  0.00056 5.320 

Alkyl C: O/N-alkyl C  0.84 0.91 0.1 0.00   0.00051 9.138 
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