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SIBLING SPECIES DISCRIMINATION

ABSTRACT

In our work we used noninvasive point reflectance spectroscopy in the range from 400 to 2100 nm cou-
pled with machine learning to study scales on the brown and golden iridescent areas on the dorsal side of
the forewing of Diachrysia chrysitis and D. stenochrysis. We used our approach to distinguish between
these species of moths. The basis for the study was a statistically significant collection of 95 specimens
identified based on morphological feature and gathered during 23 years in Poland. The numerical part
of an experiment included two independent discriminant analyses: stochastic and deterministic. The
more sensitive stochastic approach achieved average compliance with the species identification made
by entomologists at the level of 99-100%. It demonstrated high stability against the different configura-
tions of training and validation sets, hence strong predictors of Diachrysia siblings distinctiveness. Both
methods resulted in the same small set of relevant features, where minimal fully discriminating subsets
of wavelengths were three for glass scales on the golden area and four for the brown. The differences
between species in scales primarily concern their major components and ultrastructure. In melanin-
absent glass scales, this is mainly chitin configuration, while in melanin-present brown scales, melanin

reveals as an additional factor.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In recent years, reflectance spectroscopy (RS) has been applied
in various disciplines of biology [1,2]. RS provides broad spectra,
including the ultraviolet, near, and mid-infrared range. The advan-
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tage of RS is the potential to quickly obtain a large amount of infor-
mation about the studied object during a single and non-invasive
measurement. Many studies refer to spectral properties of butter-
flies and moths but most of them have considered only reflectance
in human-visible wavelengths (380-780 nm) in which coloration is
perceivable. The color of the wing can be pigment-dependent and a
separate phenomenon is the structural colors of the wing, which
was the subject of in-depth research [3-5]. Few studies considered
butterflies and moths wing reflectance properties beyond visible
range of spectra [2,6]. In NIR (near infrared) and SWIR (short-
wave infrared) ranges information on the structure, water and fat
content, and the presence of chitin in the biological tissues is
encrypted [7,8]. Nevertheless, only a few chemical compounds
are identified, mainly bonds occurring in the structure. Combining
information from SWIR and NIR was useful for insect species deter-
mination as well as physiological status, age and sex assessment
[9-11]. However, to date there is no detailed study on species
determination in the Lepidoptera order based on the wing reflec-
tance spectrum in the full VNIR - SWIR spectrum (VNIR - visible
near infrared).

There are scientific reports that the wing scales ultrastructure
shapes the pattern of the reflectance spectrum even in closely
related species [12]. Microscopic studies provide detailed informa-
tion about the optical properties and structure of butterfly wing
scales. For many years, the subject of such research has been the
phenomena of light scattering, and diffraction on butterfly scales
[4,13]. The wings of butterflies and moths have various structures
and types of scales, which requires focusing on relatively small
parts of the wing, e.g. eyespot [14]. We suppose that the micro-
scopic spectral characteristics of selected areas of the wing are
worth exploring over a wide spectrum and may provide new
insight into taxonomic differentiation.

Remote sensing methods produce many features (spectral
wavelengths), which means that rigorous numerical analysis is
an indispensable step of the analytical procedure. Numerical anal-
ysis is necessary with all data sources, including genetics, RGB pho-
tos, and detailed hyperspectral measurements of various
morphological characteristics such as shape, color, and wing pat-
tern [15-17]. Several papers on entomology involving VIS and
NIR spectroscopy applications coupled with numerical methods
have been recently reported (see: Johnson and Naiker [18] for a
comprehensive list). Kaya and Kayci [19] using neural networks
trained on the RGB images and its texture created a classifier which
distinguishes 14 species of butterflies with over 90% accuracy.
Their collection covered only examples with a relatively different
color pattern of wings. However, there exist many lepidopteran
species which cause identification problems because wing col-
oration is not a diagnostic feature. Knowledge about the use of
chemometric properties of scale groups in the VIS - SWIR range
for distinguishing siblings species is a white card.

The Noctuidae family with about 12 000 known species, represent-
ing one of the most species-rich families of Lepidoptera. So, they make
up a significant proportion of the world’s animal diversity and impact
on the environment and human welfare directly. Among them we
found some of the most damaging agricultural pests in the world, like
the fall armyworm Spodoptera frugiperda (Smith, 1797) and Old World
bollworm Helicoverpa armigera (Hiibner, 1808) [20].

Morphological examination of the genital organs and wing pat-
tern is the basis of the classic method of determination of moths
species [21] which is routinely performed on captured individuals.
New insight into the taxonomy of species was made possible by
research on allozyme analysis initiated by Hebert et al. [22] and
Svensson et al. [23]. Further studies were continued with the use
of the cytochrome oxidase subunit I [24,25].

Usually, genetic characteristics allow the different species of
Lepidoptera to be distinguished very effectively. The research done
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by Janzen et al. [26] and Hausmann et al. [27] show that such sep-
aration achieves an efficiency between 97 and 99%. Unfortunately,
a small number of species of Lepidoptera were found to share the
same barcode sequence with other species but are morphologically
distinct. For example, the pair of Phyllodesma ilicifolia (Linnaeus,
1758) - P. tremulifolia (Hiibner, 1810) (Lasiocampidae) specimens
can be discriminated unambiguously using genitalia and features
in wing patterns. For another pair, like Plebejus argyrognomon
(Bergstrdsser, 1779) - P. idas (Linnaeus, 1761) with low sequence
divergence (<1%), discrimination based on external appearance is
challenging [27], but both the male and female genitalia are diag-
nostic [28].

We focused on Diachrysia chrysitis (Linnaeus, 1758) and Dia-
chrysia stenochrysis (Warren, 1913) (Fig. 1), two species common
in the Palearctic and other regions of the world. Both species pro-
vide important ecosystem services and are important to maintain-
ing biodiversity in the face of increasing anthropopression. At the
same time, these so-called siblings species represent one of the
most interesting taxonomic puzzles in the Plusiinae subfamily
[29]. Discrimination of D. stenochrysis and D. chrysitis on some indi-
viduals based on external appearance is challenging, and the gen-
italia are also similar. The minimum pairwise divergence of these
two twin species is only 0.93% [16].

So far, the current methods used to distinguish Diachrysia sib-
lings are one-character taxonomic approaches and therefore some-
times criticized [30]. In such a case, expert classification is also
uncertain. Our research focuses on determining the scale of this
uncertainty by juxtaposing it with another method based on a
set of independent characteristics. In the absence of certain refer-
ences, the high agreement of two independent classification meth-
ods makes it plausible that the morphological differences are not
accidental and have deeper determinants.

As a result of expert classification, we divided the individuals
into two morphological groups, “D. chrysitis type” and “D.
stenochrysis type” denoted as D. chrysitis and D. stenochrysis in
the rest of the paper. As an independent method, we used reflec-
tance spectroscopy applied to the scales on the wings of moths.

In our approach, we assume that the chemometric features of
the scales are not related to the macroscopic features assessed by
an expert, namely external genitalia. Therefore, we ask the ques-
tion: are these groups: D. chrysitis and D. stenochrysis would be
confirmed by the chemometric analysis? Machine learning-
driven chemometrics can make taxonomic research reproducible,
and sustainable, thus more efficient. It has been applied to deter-
mine sex, age, color diversity or taxonomical differentiation
[31,32]. In this approach, we see great potential for discovering
species-specific features. Such features are part of the body’s vari-
ous structural and building materials and are beyond the reach of
classical methods.

Surprisingly, no attempt has yet been made to distinguish spe-
cies complexes of Lepidoptera by studying parts of a wing using
the full spectral range and advanced numerical techniques. In our
work, we present the experiment results, comparing the detailed
expert classification of individuals of moths of D. chrysitis and D.
stenochrysis with results of the chemometric analysis based on
the full range of reflectance spectrum between 400 and 2100 nm,
obtained under the microscope from two distinct groups of scales
on the forewing which have completely different melanin content.

2. Methods
2.1. Specimen sampling and depository

The research was carried out on 95 individuals of D. chrysitis
(43) and D. stenochrysis (52). Male and female imagines were
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Fig. 1. The dorsal part of a wing of Diachrysia chrysitis and D. stenochrysis and their forms with well-marked color pattern. a D. chrysitis. b D. stenochrysis.

caught in light traps between 1995 and 2018 in Poland. Determina-
tive features and the location and trapping date of D. chrysitis and
D. stenochrysis individuals, are presented in Supplementary
Table S1. All sampled specimens were deposited in the Department
of Entomology and Environmental Protection of the Poznan
University of Life Sciences.

In Poland, the populations of eastern and western moths occur
sympatrically, constantly mixing, and therefore, we can exclude
that the moths came from a few homogeneous populations. This
is often a problem in studies involving relatively small areas for
species that extend over much of the Palearctic. In addition, moths
have been collected over a period of more than 20 years, which fur-
ther diversifies the risk of “selective choice”. For these reasons we
examined the potential influence of the age of specimens in collec-
tion on the quality of discrimination of species. Similarly, we
assessed whether male and female individuals differ spectrally.
For this purpose, we used the same discriminant analyzes
described later in the paper.

2.2. Expert examination

The species of each individual was determined on the basis of
the following features: morphology of genitalia and color pattern
of the front pair of wings. In a laboratory, the body parts and the
external genitalia were dissected in a standard way for each indi-
vidual. The abdomen was first removed and dipped for 24-36 h
in 10% caustic potash (KOH). Genitalia were then removed from
the softened surrounding tissues of male and female individuals.
The phallus was removed, and the external genitalia was partially
dehydrated with ethanol and mounted on glycerine between the
microscope slides and cover slips. Latest available publication of
Ronkay et al. [29], and also the drawings of the genitalia shown
in the several papers served as a key is the division of individuals
into two morphologically different groups [33-35].

The color pattern of the wings is an ambiguous feature. D.
chrysitis differs externally from D. stenochrysis by its unbroken
brown median area and more indistinct subterminal line [29].
Fig. 1a and 1b present the individuals with the typically marked
species features on the forewings of D. chrysitis and D. stenochrysis.
The results of this part served as the reference for the spectral and
chemometric procedures.

2.3. Spectral measurements

Spectra were measured with a system consisting of the ASD
FieldSpec 3 spectrophotometer (FieldSpec Analytical Spectral

Devices, Inc., Boulder, Colorado, USA) attached by optical fiber to
microscope NU 2 (VEB Carl Zeiss Jena, Jena, Germany). The spec-
trophotometer recorded the reflected electromagnetic radiation
in the wavelength range from 350 to 2500 nm with a spectral sam-
pling of 1.4 nm from 350 to 1000 nm and 2 nm from 1000 to
2500 nm. The spectral resolution in VIS was 3 nm and at 1400
and 2100 nm was 10 nm. The spectrophotometer was calibrated
with a Spectralon (Labsphere) white standard before each mea-
surement series. A plan apochromat objective (25x) and a coaxial
illumination with a halogen lamp were used in the microscope.

Spectral measurements were carried out on the two dominant
color areas on the wings, brown and golden iridescent on the dor-
sal side of the forewing, which are typical of D. chrysitis and D.
stenochrysis. In the case of the brown area the reflectance was mea-
sured from the median area at the front edge of the forewing while
golden iridescent included subterminal area. In measurement loca-
tion wings are covered with scales of two types. Cover scales are
visible from the outside and brown ground scales below them
(Supplementary Fig. S1). Brown area is covered with brown
melanin-pigmented cover scales. While on the shimmering area,
cover scales are actually colorless melanin-deprived and referred
to as glass scales. As a result of light interference and diffraction,
they form a physical color ranging from bluish to dominant gold
to copper. Glass scales differ significantly in structure from brown
scales, which are perforated and higher in cross-section (Supple-
mentary Fig. S1 and S2). The base brown scales are also perforated.
The scales are arranged in many layers on the wing.

The spectra at wavelengths below 400 nm and above 2100 nm
exhibited high levels of noise, and they were not used in further
analysis. The measurements were made in triplicate on the dorsal
forewing of each of the 95 individuals and then the values have
been averaged for each item. Results of spectra measurements
are presented in Fig. 2. During the measurements, the reference
was a Spectralon diffuse reflectance standard (Labsphere), and
therefore the non-diffusively reflecting surfaces of the wing could
cause the relative reflectance values to be greater than 1. The spec-
tra of both species appear to be similar. The reflectance from the
glass scales in the entire range of the analyzed spectrum is higher
than from the brown scales. In both cases, the reflectance in the UV
range was low. The spectrum of the glass scales shows a distinct
peak below 600 nm. The presence of iridescent golden color man-
ifests it. The curve then descends to a local minimum between 750
and 800 nm, and the reflectance increases again. The brown scales
absorb radiation in the VNIR range due to melanin, which is lower
reflectance than that of colorless cover scales providing iridescent
golden color.
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Fig. 2. Raw spectra for D. chrysitis and D. stenochrysis species.

2.4. Numerical analysis

In the first step, to highlight the spectra shape descriptors, data
was transformed using Savitzky-Golay filter [36]. The filter
removes unnecessary effects like baseline shifts and noise resulting
from the non-ideal sampling process. The SG filter requires three
parameters and by experiments we found that configuration: dif-
ferentiation order = 2, polynomial order = 2, and window size = 5
provides the best results. 3402 spectral bands after SG transforma-
tion were input features (predictors) for all classifiers. As labels, we
used the experts’ species identifications (either D. chrysitis or D.
stenochrysis), and the entire dataset included 95 cases.

Typical machine learning procedures require dividing the col-
lected data into at least two sets: the training - used to train the
model, and the testing set - used for an independent evaluation

of the model accuracy. With a small number of cases and many fea-
tures, the role of features in the trained model may vary signifi-
cantly for various training and testing sets. The consequence
could be a potential over-fitting of the model to the provided data
[37]. In our work, we attempt to reduce over-fitting and detect
essential predictors by two independent methods. The first is fully
stochastic both at the sampling and training level and works with a
complete spectrum. The second is fully deterministic, and it first
selects a limited subset of potentially useful spectral features and
then discriminates D. chrysitis and D. stenochrysis by an exhaustive
search inside this subset only. Both approaches have their own dis-
advantages, especially on small datasets. Stochastic approach,
despite its utility, may result in random, non-optimal configura-
tion, difficult to reproduce. Deterministic approach, through
dimensionality reduction processes may make it difficult to find
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less obvious but more optimal solutions. For this reason, the spe-
cies discrimination process will be controlled by two independent
algorithms.

In the procedure of discrimination, we analyzed popular
machine learning algorithms. The performance results of tuned
algorithms are shown in Table 1. The Support Vector Machine
(SVM) and Random Forest (RF) achieved the highest performance,
close to 1, for accuracy, specificity, and sensitivity. In the case of
SVM, we interpret high efficiency as the effect of the existence of
a clear hyperplane that separates both species in the feature space.
The other tested algorithms did not achieve satisfactory perfor-
mance. The latter is mainly the effect of an imbalance between
the number of features and cases, and excludes the K-Nearest
Neighbors (KNN). Overall, the low number of cases affects Back-
Propagation Neural Network (BPNN) and eXtreme Gradient Boost-
ing (XGBoost) performance. Due to the possibility of analyzing the
role of individual features, we decided to use RF, both for discrim-
ination and feature selection.

Random Forest is a stochastic algorithm and its results may
change between each recurrence. We used the default model
hyperparameters, i.e. number of trees = 500, tree depth = unlimited,
mtry = 58, minimal node size = 1. Moreover, the standard proce-
dure of machine learning training requires to hold part of the cases
for the testing set. It means that the model is trained based on 60-
80% of the entire dataset. Machine learning models gain their high-
est performance when the distributions of selected predictors (fea-
tures) in the training and validation sets are close to each other.
With large datasets this is not the case, but when the dataset is
small, such an assumption is difficult to fulfill. It means that there
is a risk that depending on the composition of the training set, the
selected predictors will not be relevant for the cases included in
the testing set. It is mainly related to high efficiency on the training
set and low efficiency on the testing set.

Random Forest is considered to be an algorithm with a low risk
of over-fitting. To determine the risk of over-fitting resulting from
a small size of training set, we applied a bootstrapping procedure
(Fig. 3-B), including 300 iterations. If such over-fitting risk is high,
we can expect that the testing set’s performance will vary from low
to high between iterations. If such a risk is low, each iteration shall
return with similar performance. Moreover, if the trained model
will select the same predictors at each iteration, we can expect that
correct and incorrect classification will include the same cases each
time. At each iteration, the entire dataset is randomly divided into
the training set including 70% (66 individuals) of cases and the
testing set with remaining 30% (29 individuals). It means that we
have 300 different training sets assessed by 300 different testing
sets and each case had a chance to be included in the testing set
60 times on average. It is a large enough number to assess the sta-
bility of the process of discrimination (Figs. 3-B3). The RF algorithm
also provides “feature importance” - a Gini index describing how
each variable decreases the impurity of RF internal splits (Figs. 3-
B2). The index varies between 0 and 1, where 0 denotes that the
variable cannot increase the purity, while 1 means that variable
allows to split the dataset into pure subgroups.

Table 1
Performance comparison of machine learning algorithms, calculated for testing sets.
For abbreviations see text.

Model Accuracy Sensitivity Specificity
SVM 0.99 1 0.99
RF 0.99 0.99 0.99
KNN 0.69 0.33 0.98
BPNN 0.89 0.85 0.93
XGBoost 0.88 0.85 0.91
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In the second procedure (Fig. 3-C) we first attempted to define a
group of the most significant spectrum bands for the distinction of
D. chrysitis and D. stenochrysis. As “the most important”, we define
a limited, possibly small number of predictors that successfully
separate the specimens under investigation. First, all bands were
sorted in descending importance order. We used the value of
two-sample Kolmogorov-Smirnov (K-S) test as a variable impor-
tance index usefulness of this statistic to feature selection results
from the absence of the assumption on the form of the distribu-
tions of compared sets. For each wavelength D-statistic was calcu-
lated using equation (1):

Ds = sup|Fgc(x) — Fys(X)] (1)

where: Fq. and F4s empirical distribution of D. chrysitis and D.
stenochrysis subsets, and sup is supremum function i.e. the choice
of the largest operand value. D-statistic is 0 when two distributions
fully overlap, values between 0 and 1 when partially overlap, and 1
if two distributions are completely disjoint. All wavelengths were
sorted (Figs. 3-D1) from the highest to lowest D-statistics, it means
from the most to least separating features. Next, we searched for
the minimal combination of predictors (Figs. 3-D2) providing per-
fect separation between D. chrysitis and D. stenochrysis. To evaluate
the separation we used an accuracy of Linear Discriminant Analysis
(LDA), which is considered as one of the best tools to find a minimal
effective combination of spectral features [38]. The same procedure
(Figs. 3-D1 and 3-D2) was applied to the best results of bootstrap-
ping (Fig. 3-B).

2.5. Software

We used the R programming language [39] for the analysis; the
Savitzky-Golay filter from prospectr [40]| package to transform
spectral curves; the ranger [41] package to train the random forest
models; linear discrimination from the MASS [42] package.

3. Results
3.1. Stochastic discriminant analysis

In this procedure, all spectra, both of golden iridescent and
brown fragments of the wing surfaces, were used simultaneously
for classification. The classification achieved average compliance
with the species identification made by entomologists at the level
of 99% + 1%. 91 individuals out of 95 were correctly classified dur-
ing each of 300 testing iterations, and the remaining four individ-
uals with over 98% correctness (two cases of both D. chrysitis and D.
stenochrysis were classified incorrectly). It demonstrates the high
stability of models trained against different training sets.

A one hundred percent reproducibility on the validation set for
almost all cases indicates the presence of a group of relatively
strong predictors among 3402 bands. The predictors are effective
regardless of the configuration of the training sample. For each
iteration of the simulation, the values of the importance index of
all variables were recorded. After performing all iterations, the
average value of the indexes was calculated. For the top 20 vari-
ables, listed in Table 2, the index value ranged from 0.49 for
G1767 (glass scale, wavelength 1767 nm) to 0.22 for G1319 and
only for the first 7 indicators the value of the index exceeded 0.3.

Our collection has a limited number of cases but a very large
number of features. For this reason, we need to consider whether
the very high accuracy, which we achieved in our experiment, is
accidental; namely, the classifier would find distinctive features
for other macroscopic divisions. In order to falsify this thesis, we
run an experiment consisting of multiple random divisions of our
collection of moths into two equal groups and then training and
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Fig. 3. Block diagram of the procedure. A total of 300 iterations of model training and testing were performed, and the final results were averaged.

testing the RF classifier on independent training and testing sub- that in all iterations, the classifier cannot find significant features
sets. During 1000 iterations, the accuracy on the testing set varied that would be present in both the training and the testing sets.
from 0.38 to 0.74, with the average being 0.53. Such results show By comparing the accuracy 0.98-1 with the average being close
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Fig. 4. The importance of spectral bands for specimens classification. The higher the value, the greater the suitability for distinguishing between D. chrysitis and D.
stenochrysis. Most important bands are marked red. Notice that two bands 716 and 1767 nm appear in both types of scales.

to 1 achieved in our experiment for the division made by experts,
we can reject the hypothesis that the high efficiency of our method
may be coincidental.

3.2. Deterministic discriminant analysis

Fig. 4 shows the importance of each band by means of the D-
statistic between D. chrysitis and D. stenochrysis for given wave-
length for glass and brown scales. D-statistics range from 0.07 to
0.83, but associate p-values show that only D-statistics larger than
0.4 allow to accept the null hypothesis that distributions inside D.
chrysitis and D. stenochrysis for the given band are different. This
condition was true for no more than 500 bands. Only nine bands,
all measured from the glass scales, have D-statistic greater than

0.7, with a maximum slightly exceeding 0.82 for band 1378 nm.
Twenty wavelengths with the highest discriminating potential

Table 2
List of 20 best wavelengths indicated by Random Forest feature importance and
Kolmogorov-Smirnov D-statistics.

Method Wavelengths: G - glass scales, B - brown scales

G1767,G1378,G1117,G1367, G1318, G1770, G1385,
G714, G1110, G716, G1419, B1637, G1841, G1480,
B1100, G1651, B1399, B1367, B1248, G1319

G1378, G1767, G1367, G714, G1770, G1117, G1318,
G716, G1110, G1385, B1637, B1367, G1841, G1419,
G1480, G775, G1427, B716, G1533, B1535

Random Forest

Kolmogorov-Smirnov
D-statistics
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Fig. 5. Relation of the LDA accuracy of D. chrysitis and D. stenochrysis discrimination to the number of the consecutive spectral bands. Notice that the values on the Y axis do

not start from 0.

are also listed in Table 2. It is worth pointing out that 10 best wave-
lengths indicated by D-statistics are the same as 10 best resulting
from the stochastic procedure, but in slightly different order. All
these 10 wavelengths were measured from glass scales.

There is no single spectral feature which fully distinguishes D.
chrysitis and D. stenochrysis. It means that we must search for a
minimal number of bands from the entire spectrum whose linear
combination allows such distinction. The discrimination process
was undertaken by sorting features, starting from the most impor-
tant. To achieve this goal, we added the next band from the list in
each step, checking by how much the accuracy would increase.
After adding the top 4 bands, the accuracy stabilizes at 0.95. These
changes are shown in Fig. 5. We found that linear combination of
the first nine most important wavelengths (all from glass scales)
perfectly differentiate D. chrysitis and D. stenochrysis in LDA space,
thus limiting the number of possible band combinations (Fig. 5).
We also tested the potential of spectra derived from the brown
scales only. The discriminatory potential of the individual wave-
lengths is smaller compared to those sensed from glass scales,
but their linear combination already shows similar performance
to the bands from brown scales (Fig. 5).

3.3. Minimal discriminatory combination

In the last step of the analysis, we searched for the smallest pos-
sible group of wavelengths for each of the scales separately, which
allow for full separation of D. chrysitis and D. stenochrysis. It should
be emphasized that this is not a performance of LDA classifier mea-
sured on an independent testing set but only a group of bands for
which there is a hyperplane in the multidimensional space com-
pletely separating D. chrysitis and D. stenochrysis in the collected
dataset. There exist such four independent subsets for glass scales
- one subset with three and three subsets with four wavelengths,
and two subsets for brown scales - one with four and one subset
with five wavelengths. All are presented in Table 3. Other, higher
dimensional configurations are just supersets of those mentioned
above. In that way we can indicate the most important wave-
lengths - for glass scales there are: 1378, 1767, 716, 1385, 1117,
1318, nm and for brown: 1637, 1367, 894, 1942, 716, 1767 nm.
Band 1535 nm is omitted from the brown scale list because it does
not contribute to any subset that fully separates D. chrysitis and D.

stenochrysis. The isolation of the wavelengths of the greatest diag-
nostic importance prompts us to insight into the biophysical and
biochemical reasons for their relevance. The above thesis becomes
all the more important because both the stochastic and determin-
istic analysis showed the existence of the same 10 most important
bands for glass scales. Moreover, the LDA revealed the significance
of two wavelengths (716, 1767 nm) in both brown and glass scales.

4. Discussion

Previous studies on the spectral features of wings in moths of
the genus Diachrysia focused on explaining the phenomenon of
golden iridescence in D. chrysitis [43,44]. This arises as a result of
interference, scattering and absorption in the structures of the
glass scales. Based on our results we can apply the same for D.
stenochrysis, whose wings have not been the subject of spectral
studies so far. It should be noted that in the visible range there is
a large variation in the iridescent color formed on colorless scales
in the population of both species, from pale blue to pale copper.
These color forms of moth wings were distinguished at the begin-
ning of the 20th century [45]. In the course of the reflectance
curves from glass scales of both species above 600 nm after the
maximum reflectance caused by interference, a distinct decrease
is visible. The primary building material of glass scales is chitin.
Reeves [46] showed that the maximum chitin absorption is around
730 nm in this range. The overall absorption in this area may be
influenced by melanin in the scales directly underneath the glass
scales (Supplementary Fig. S1a). The brown scales lack this absorp-
tion region because the radiation absorption by melanin increases
proportionally with the shortening of the wavelength. Using the
reflected light spectrum recorded in the VNIR-SWIR range, we have
collected other, potentially more useful information than that pro-
vided by the visible range. The light transmission in the wing struc-
ture drops significantly with distance and the radiation is strongly
reflected. Based on that, we recognized that the spectrum recorded
by the spectrometer was shaped by the scales structures on the
upper side of the wing.

Our approach to species identification based on spectral charac-
teristics of spotty-defined areas of the wing and machine learning
is original and new. So far, microscopic spectra studies have
focused on the identification of phenomena and comparative char-



K. Dyba, R. Wgsala, J. Piekarczyk et al.

1.00
[72]

o

)

%075

73

©

)

I

Q

(]

C

I

8 0.50

®

C

8

hel

[}

=

0.25 -
: ; 1378 :
716 1117 1318 1767
: : 1385 :
500 1000 1500 2000

1.00 Species
—— Diachrysia christis

— Diachrysia stenochrisis

0.75

0.50

Median reflectance - brown scales

0.25

L 5 1637 1 o
716 894 1367 767 1942

500 1000 1500 2000
Wavelengths (nm)

Fig. 6. The medians of the D. chrysitis and D. stenochrysis spectra for glass and
brown scales with overprinted most important wavelengths.

acteristics of wing scales [4,13]. The analysis of the spectra is so
complicated that even a trained expert can have problems distin-
guishing between species without using numerical methods. In
our case, machine learning was crucial for decoding the informa-
tion written in the form of the reflectance spectrum and to isolate
information of significant importance for the determination of Dia-
chrysia siblings. A comprehensive comparison between expert clas-
sification and iteratively trained stochastic RF classifiers revealed
that models very rarely incorrectly assign labels to validation data,
regardless of the changes of the training sets composition. This
indicates that the diagnostic features favored by RF repeat in all
individuals of the collection. It was also confirmed by
Kolmogorov-Smirnov D-statistic which indicated the same group
of predictors. This means that with the optimal size and quality
of the training set, spectral measurements coupled with machine
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Table 3
The minimal combination of wavelengths to achieve full discrimination of D. chrysitis
and D. stenochrysis in LDA space. *Denote the D-statistic which is equivalent for a
single band. The wavelengths marked in bold appear for the first time in the given
subset.

Scales  Number of bands List of bands (nm) Accuracy
(dimensions)
Glass 1 1378 0.826*
2 1767, 716 0.968
3 1385, 1767, 716 1
4 1378, 1767, 716, 1117 1
1378, 1767, 716, 1318
1378, 1318, 716, 1385
Brown 1 1637 0.695*
1637, 1535 0.926
3 1637, 1367, 894 0.968
1637, 1367, 1942
4 1637, 1367, 1942, 894 1
5 1637, 1367, 1942, 716, 1
1767

learning can be an effective tool not only for mass species differen-
tiation but also can provide insight into the reasons for this
variation.

Since the identification of insects based on chemometric analy-
sis is a new issue, an applicable spectral measurements library has
not yet been developed. The only source of knowledge about the
relationship between spectral bands and the properties of scales
are previous studies. However, in-depth study of Lepidoptera wing
scales that would explain the phenomena behind the meaning of
the spectral features does not yet exist. In the developed model,
the SWIR range turned out to be the most important in terms of
species diagnostics. This is also seen in Fig. 6 where the visual dif-
ferences between spectra D. chrysitis and D. stenochrysis are clearly
visible. In the optimal model we have three or four unique bands
subsets for glass scales and four or five unique subsets for brown
(Table 3). Few bands are of particular importance: 1767, 716 nm
and located in close proximity 1378/1367 nm appear in unique
sets, both in glass and brown scales. Those three bands suggest
the presence of features important for the separation of moths
and independent of the type of scales. The remaining bands are
important mainly for one type of scales. The amplitude of the spec-
tra near these bands is small, indicating small differences between
the D. chrysitis and D. stenochrysis.

The skeleton of the butterfly’s scales is made of a composite
material. There are three main components of Lepidoptera wing
scales: chitin, proteins and melanin [47]. The overall characteristic
of the spectrum of Diachrysia scales, especially glass scales, is very
similar to the general spectrum of chitin presented by Apetroaei
et al. [48]. Glass scales are colorless and melanin-deprived [49].
Studies on structural color analysis proved that the chitinous struc-
ture undoubtedly shapes the reflectance spectra which can be esti-
mated from it [50,51]. Azofeifa et al. [51] observed that with the
increasing complexity of the structures of the analyzed chitin
material, the simulated spectra showed weakening of the wave
pattern. Thus, not only the overall shape of the curve but also the
subtle changes in monotonicity of the curve depend on the com-
plexity of chitin layers. Fig. 6 presents location of the selected
wavelengths indicated in “Minimal discriminatory combination”
section of “Results” against medians of the raw spectra. All values
correspond to the location of changes in monotonicity of the spec-
tral curves. This means that wavelengths relate to subtle physico-
chemical differences between scales of D. chrysitis and D.
stenochrysis, rather than the qualitatively identified presence or
absence of selected chemical components.

Recently, scale ultrastructure can be described numerically on
the basis of scanning electron microscope studies as shown by
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Day et al. [14]. A detailed understanding of this structure could
help answer the question that bothers us about the biophysical
basis of the separateness of Diachrysia siblings. Scales ultrastruc-
ture is biochemically dependent on the remaining components of
the scales. Melanin is the significant factor influencing the brown
scales ultrastructure and response of our model. Moths’ wings
are usually dull as a consequence of high melanin content in brown
or dark scales [5]. The same we can state on brown melanin-
pigmented scales on Diachrysia wings. There exist several types
of melanin and it strongly influences the color and ultrastructure
of moth scales [52]. Brown scales on Diachrysia wings have a differ-
ent spatial structure compared to glass ones (Supplementary
Fig. S1 and S2). Perforated and pigmented brown scales scatter
and absorb light more intensively than non-perforated [53]. Thus,
melanin being one of the biochemical determinants of the forma-
tion of scale ultrastructure, may therefore indirectly influence its
differentiation between siblings moths. Although we cannot
clearly explain the role of all the indicated wavelengths, we con-
sider that the features denoted as important for separation of D.
chrysitis and D. stenochrysis relate to the scale ultrastructure and
its major components, chitin and melanin. Moreover, it should be
emphasized that two wavelengths: 1767 and 716 nm, were identi-
fied in both types of scales, which minimizes the risk that the indi-
cated wavelengths are random.

5. Conclusions

The subject of our study were the twin species D. chrysitis and D.
stenochrysis that cause identification problems for entomologists.
The novelty of our approach is that the combination of reflectance
spectroscopy and machine learning has been used to separate
these two groups. We used microscopic spectroscopy to obtain
pure spectra from scales on the forewing. Applied methods of spec-
imens separation proved a decent accuracy. The advantage of the
RF is a simplicity of procedure and no preliminary assumptions
about the importance and distribution of individual predictors.
Especially the latter means that none of the essential features will
be omitted in the decision-making process. The feature selection
procedure allows indicating a relatively small set (between three
and six) of predictors with the highest discriminatory potential.

Spectral differences between D. chrysitis and D. stenochrysis are
mainly the result of ultrastructure of scales influenced by chitin
and melanin, the nature of which is not achievable for this spectral
study. The differences are subtle and quantitative, nonetheless sta-
tistically significant, and allow, using just several predictors, to
fully discriminate these two groups. At the same time, we showed
that for other combinations of individuals, the classifier is not able
to provide a separation beyond a random guess. Two of these
wavelengths of 1767 and 716 nm appear in unique sets, both in
glass and brown scales.

Biologists dealing with systematics and evolution of Lepi-
doptera are constantly looking for new sources of characteristics
and methods to distinguish taxa. Since chitin-melanin cuticular
skeleton occurs in Lepidoptera scales and are generally common
in the world of insects, the reflectance spectroscopy supported
by machine learning may be useful and effective to assist in the
determination of species of Lepidoptera.
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