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Abstract

In the recent years deep learning has become more and more popular and it is applied in
a variety of fields, yielding outstanding results in different machine learning applications.
Deep learning based solutions thrive when a large amount of data is available for a specific
problem but data availability and preparation are the biggest bottlenecks in the deep learning
pipelines. With the fast-changing technology environment, new unique problems arise daily.
In order to realise solutions in many of these specific problem domains there is a growing
need to build custom datasets that are tailored for a particular use case with matching ground
truth data. Acquiring such datasets at the scale required for training with today’s AI systems
and subsequently annotating them with an accurate ground truth is challenging. Furthermore,
with the recent introduction of GDPR and associated complications introduced, industry
now faces additional challenges in the collection of training data that is linked to individual
persons.

This dissertation focuses on ways to overcome the unavailability of real data and avoid
the challenges that come with a data acquisition process. More specifically data augmentation
techniques are proposed to overcome the unavailability of real data, improve performance
and allow the use of low-complexity models, suitable for implementation in edge devices.
Furthermore, the idea of using AI tools to build large synthetic datasets is considered as an
alternative to real data samples. The first steps in order to build and incorporate synthetic
datasets effectively into the deep learning training pipelines include: building AI tools, that
will generate a large amount of new data and/or augment these data samples and also create
methodologies and techniques to validate that the generate data behave like real ones and
also measure whether their use is effective when incorporated in the training pipelines, with
this dissertation contributing to both of these steps.
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Chapter 1

Introduction

1.1 Introduction

The concept of artificial neural networks (ANNs) can be traced back to the 1960’s [1]. Due to
computational cost and a lack of understanding of how ANN work, simpler models that use
task-specific handcrafted features such as Gabor filters and support vector machines (SVM)
were a popular choice in the 1990s and 2000s [2]. In the last decade, due to a combination of
the availability of massive data sets (Big Data), and the arrival of new graphics-processing-
unit (GPU)-based hardware that enables these large data sets to be processed in reasonable
timescales, triggered an exponential growth in research activity into the advanced training
of ANNs, a field that has become known as deep learning (DL) [3–5]. As deep learning
surpassed human performance [6, 7], it became more and more popular and was applied
in a variety of fields yielding outstanding results in different machine learning applications
[8], including speech recognition [9–12], computer vision [13–15], and natural language
processing [16–18].

During my Ph.D., I worked closely with the industry partner of my program, Xperi, in
solving real problems in consumer technologies using deep learning solutions. Through my
collaboration with Xperi and being exposed to industry problems some practical realisation
of deep neural network (DNN) based solutions became more and more apparent. A first real-
isation is related to the evaluation of a model and its use as an industry solution. Nowadays
models have achieved state-of-art (SoA) results in different applications [8], but these models
are evaluated on a well defined publicly available corpus of data [19]. In industry, one faces
unique practical problems such as determining whether one has enough data for a given
model, with high quality, labelled data being very expensive to acquire [19]. The methods
that are developed and evaluated on the publicly available dataset, no matter how large or



2 Introduction

diverse or interesting these datasets are, are clearly not going to be well suited to address
the variety of real-life scenarios [19]. For example, an ideal dataset would cover all possible
scenarios, but as it is impractical to gather such dataset the reality is that any training dataset
provides a finite set of samples of a much larger data distribution. As a result the models are
not able to generalise and be robust to different scenarios. Furthermore in industry solutions,
lower complexity ANN are preferred to allow for embedded/edge implementation.

The use of data augmentation techniques can provide remedy to some of these problems
and in many cases using the correct augmentation techniques can be more important than
the selection of the model’s architecture [5, 20]. Using augmentation techniques, the dataset
size and its variety can be increased [21]. Thus, enhancing the performance of the trained
model and also its ability to generalize and be more robust to different scenarios that were not
included in the original dataset [21, 22]. Some examples of basic augmentation techniques
that are used in most training pipelines of deep learning include adding Gaussian noise, flip,
rotate, blur, resize, cutout, crop, zoom in and out. These basic augmentation techniques can
be used in almost any problem and in most of the cases it will bring positive results [23].

Another realisation is that when deep learning solutions are applied in industry to solve
practical problems, there is a need for custom datasets that are tailored for a particular use
case. An example is that image data varies across cameras and thus, algorithms that work
on visible images will not work on Near-Infrared (NIR) images, as they are from different
domains. In such case a whole new dataset would need to be acquired, which is an engi-
neering nightmare. Additionally, in these cases using the basic augmentation techniques is
not always enough to solve the problem but there may be aspects of the practical problems
that can be amenable with the use of more advanced data augmentations. For the advanced
augmentation techniques, usually an expert who knows the nature of the specific problem in
hand designs these to transform the data that are available in order for them to mimic the
nature of the specific use case that is being solved [24]. A practical example from [25], where
after extensive study of the low-quality images of the customer level iris acquisition handheld
devices, a specialised data augmentation pipeline is designed that transforms high-quality iris
samples into low-quality ones. Using this augmentation pipeline [25], the author is able to
train a CNN that reports the best segmentation accuracy for low-quality iris datasets despite
having initially only high quality iris samples.

Practical solutions require appropriate training datasets modified to a constrained use
case together with matching ground truth data. Acquiring such datasets at the scale required
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for training with today’s artificial intelligence (AI) systems and subsequently annotating
them with an accurate ground truth is challenging in terms of time, human resources and
operational costs. Finally, with the recent introduction of the General Data Protection Regu-
lations (GDPR) and associated complications introduced, I have experienced public datasets
being withdrawn [26] and it is getting more and more difficult to gather data that is linked to
individual persons. Due to the current difficulties associated with capturing real data, it has
become important to find ways to either adapt the data or be able to generate it in controlled
ways.

Augmentation techniques can alleviate some of the drawbacks of real samples and assist
in the training process, but the fact remains that the augmented samples are still constrained
on the data that we already have. Synthetic data gives us the ability to generate new,
novel data that do not exist at all in the original dataset. Synthetic data is information that
computer simulations or algorithms generate [27]. The recent advancement in the area of
synthetic data generation [28, 29], indicate that synthetic data can be used to overcome the
disadvantages of real-world data and the challenges related to the data acquisition process.
The generation of synthetic data is far cheaper compared to data acquisition and in many
cases these data samples come with annotated labels. Furthermore, the computer simulations
and/or algorithms that generate synthetic data, can be customised to generate samples for a
particular use case, include edge case scenarios and more variation than real-world datasets.
Finally, since the synthetic data is generated, there are no underlying GDPR/privacy concerns
and they can be used freely. Researchers have been increasingly using synthetic data to
train their DNN models [30] and have demonstrated that it can be as good or even better for
training an AI model than data based on actual objects, events or people [31]. Furthermore,
frameworks and methodologies need to be developed as swapping the real-world data with
synthetic is not straightforward. These frameworks have to ensure that the synthetic data
behave as the real-world data, mathematically or statistically and that are effective when
incorporated in the training pipelines.

1.2 Summary of Contributions in this Thesis

In this section a brief summary of the contributions in this thesis are presented. In the
remaining chapters of this thesis the works related to each contribution are thoroughly
presented. In each chapter an introductory paragraph provides the context of the research
work. Following that, the research objectives/ questions of the work are given, followed by
the contributions of the presented research work. Finally a discussion of the contributions is
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given, analysing the impact of the contributions to the overall research area. Additionally, for
each work, a table is presented, in which the contributions of its author are given related to
the four major criteria as explained in section 1.4.

1.2.1 Contribution to Advanced Augmentation Techniques

Chapter 2 contributes to the research area of Advanced Augmentation Techniques. In
this research work [32], advanced augmentation techniques are proposed to overcome the
unavailability of data for the problem of off-axis iris segmentation in augmented/virtual
reality (AR/VR) devices. The proposed augmentation techniques transform high-quality
frontal iris images into off-axis of low-quality, to mimic the shape and quality of the iris
images when captured from a user-facing camera on an AR/VR device along with their
ground truth segmentation map.

Utilising the augmentation techniques, a low-complexity deep neural network is trained,
which achieves SoA levels of accuracy in iris region segmentation for the challenging
augmented off-axis eye-patches. A network architecture of a lower complexity, compared
to the ones proposed in literature, is selected to accommodate the implementation of such
algorithm in edge devices. The proposed technique is designed for segmenting off-axis
consumer level iris images. Despite that, experiments are carried out on frontal iris images
in order to conduct a fair comparison with the other methods trained on such iris images.
The proposed method is shown to achieve high levels of performance for regular, frontal,
segmentation of iris regions, comparing favourably with SoA techniques of significantly
higher complexity. Preliminary results of this work were initially presented in [33].

1.2.2 Contribution to Validation Methodologies for Synthetic Data

The AI tools, based on generative adversarial networks (GANs), for generating synthetic fa-
cial samples have evolved [28, 29] in the last years, enabling photo-realistic, high-resolution
random synthetic face samples to be generated at scale, with StyleGAN [29] being a repre-
sentative of the current state-of-art. This leads us to consider the potential to create a large
facial dataset built entirely from synthetic facial data samples. In such a case the identity
feature is key component and the starting point for building such a dataset is a methodology
to demonstrate that the identities of the synthetic facial data samples behave in the same way
as those of a ‘real-world’ dataset of facial data samples. It is also essential to validate that
the synthetic data samples are unique in terms of identity with the original seed data used to
train the generator. These considerations lead to some key research questions:
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• Are the synthetic data samples unique when compared with the original seed data used
to train the GAN model?

• Are the synthetic data samples within a generated dataset unique when compared with
one another?

• Can we validate individual samples within a generated dataset to ensure that there
is sufficient identity uniqueness to use as a synthetic seed data sample for further
research?

These research questions are answered through a series of research works presented in
Chapter 3, focused on a methodology validating synthetic data samples.
Initially, in the research work [34], referred to as GADAFAI hypothesis, a discussion is
presented on replacing real-world data with synthetic data samples and a roadmap is provided
on the steps required to accomplish that. One of main steps on replacing real-world data with
synthetic, is to create methodologies and techniques to validate that the synthetic data behave
like real ones, statistically or mathematically. In the research paper [35], a methodology
and metrics are introduced that allow to validate synthetic data samples in the context of
facial biometrics. More specifically, this work explores the identity attribute of synthetic
face samples derived from GANs. The methodology, utilising SoA face recognition (FR)
algorithm that measures identity similarity, allows to determine if individual samples are
unique in terms of identity, firstly with respect to the seed dataset that trains the GAN
model and secondly with respect to other synthetic face samples. Furthermore, using this
methodology a technique is provided to remove the most connected data samples within
a large synthetic dataset, thus the remaining synthetic face samples can be considered as
unique as data samples gathered from different real individuals, in terms of their identity. In
Chapter 3, two more research works are presented [36, 37], which are initial building blocks
for creating the validation methodology and metrics for [35].

1.2.3 Utilising Synthetic Data in Training Pipelines for Edge-AI Solu-
tion

In Chapter 4, the effective use of advanced AI tools is shown, in order to overcome the
unavailability of real-world samples and allow to study the investigate the task in hand
and train effectively a convolutional neural network (CNN). More specifically, in [38], the
lack of real face samples with enough illumination variation is observed. To overcome this
obstacle a SoA re-lighting technique is utilised to augment face samples and introduced
different illumination scenarios. This allows the study of the effect of each illumination
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scenario on the performance of a SoA FR algorithm. Furthermore, by utilising the re-lighting
technique there are sufficient face samples with several illumination scenarios allowing to
explore the possibility of fine-tuning the FR model, in order to be robust in such conditions.
The experiments showed that the fine-tuned FR model can cope with different illumination
variations when trained with sufficient data that represent the problem correctly.

Furthermore, currently I am collaborating/ mentoring a Ph.D. student and additional
research papers are in preparation, which are the continuing of this work [38], presented in
Chapter 4.

1.2.4 Contributions to Training Methodologies for Conditional GANs

In Chapter 5, a new framework is presented to train a deep conditional generator by placing
a classifier or regression model in parallel with the discriminator and back propagate the
classification or regression error through the generator network [39]. Special cases for binary
classification, multi-class classification, and regression are studied. Experimental results on
several datasets are provided and the results are compared with similar SoA techniques. The
main advantage of the method is that it is versatile and applicable to any variation of GAN
implementation but also it is shown to obtain superior results compared to other methods.
The mathematical proofs for the proposed schemes for both classification and regression are
presented.

1.2.5 Other Contributions

In Chapter 6, some of secondary publications are presented. Deep Learning for Consumer
Devices and Services is a series of articles in which the main focus of the discussion is on the
deployment of deep learning on consumer devices. This series has currently four articles,
from which I was involved in two of them [40, 41].

In [40, 41], a discussion is presented regarding the shift of AI from the data center
into consumer electronics (CE) devices—“Edge-AI" and some of the challenges that data
acquisitions entail, are presented. Furthermore an initial introduction of basic and advanced
augmentation techniques is given, along with their benefits.

1.3 List of Publications

Contribution to Advanced Augmentation Techniques
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1.4 Contribution Taxonomy

As this publication based thesis includes work that was done in collaboration with others, this
section provides an overview of main criteria that determine primary authorship. The CRediT
approach [42] has been adopted by journals in several fields to specify the contributions
of individual authors. In the CRediT Taxonomy each author’s contributions are measured
as a percentage point on 14 roles. These are: Conceptualization, Data curation, Formal
Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources,
Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review
& editing.

In this thesis, despite the collaborations, the majority of the work is my own, therefore
a more concise generalization of this taxonomy which encapsulates the major criteria is
adopted similar to [43]. More specifically:

1. Research Hypothesis/ Idea.

2. Methodology, which includes validation, data curation, formal analysis, tool selection,
software development, implementation and experiments.

3. Background which includes, investigation, formalization and work done to place the
research efforts in a wider context of literature in a given field, this may include some
aspects of writing (literature reviews) and informs aspects of project administration
and supervision and ensuring that methodology used is typical of that used in the area
of publication.

4. Manuscript Preparation which includes all aspects of writing manuscript preparation
including Writing – original draft, Writing – review & editing, and Visualization except
those specified in the next criteria.
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This generalization has the weakness that it ignores most aspects of funding, project
administration, resources or supervision but otherwise encapsulates the main points that
would determine primary authorship. Such a table will be presented in each main work
presented in this Thesis, attributing the contribution of each author to the aforementioned
four criteria. Authors are listed by initial where VV means Viktor Varkarakis, SB means
Shabab Bazrafkan, PC means Peter Corcoran, HJ means Hossein Javidnia, GC means Gabriel
Costache and WY means Wang Yao. Contribution percent is listed at a resolution of %.





Chapter 2

Contribution to Advanced Augmentation
Techniques

In this chapter an overview of the research work: Varkarakis, Viktor, Shabab Bazrafkan, and
Peter Corcoran. "Deep neural network and data augmentation methodology for off-axis iris
segmentation in wearable headsets." Neural Networks 121 (2020): 101-121, [32], is given
along with its research objectives and a discussion on the primary contributions. The copy
of the paper published based on this section is presented in the Appendix A. Preliminary
results of this work were initially presented in the: Varkarakis, Viktor, Shabab Bazrafkan,
and Peter Corcoran. "A deep learning approach to segmentation of distorted iris regions in
head-mounted displays." In 2018 IEEE Games, Entertainment, Media Conference (GEM),
pp. 1-9. IEEE, 2018, [33], which can be found in the Appendix B.

The contributions of its author related to the four major criteria as explained in section
1.4, for the research works [32, 33] are presented in Table 2.1

Table 2.1 Authors’ Contributions to [32, 33]

Contribution Criteria Contribution Percent
Research Hypothesis/Idea VV 70%, SB 30%
Experiments and Implementation VV 80%, SB 20%
Background VV 70%, SB 30%
Manuscript Preparation VV 70%, SB 15%, PC 15%

Nowadays, the authentication requirements in consumer devices are evolving beyond
today’s mobile devices. New AR/VR headsets provide a gateway to sophisticated virtual
worlds and online services [44–46]. A key challenge with AR/VR headsets is that they do
not provide an intuitive mean of user authentication [47, 48]. User-facing camera systems
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Fig. 2.1 AR/VR devices with a user-facing camera.

can be incorporated into such headsets as shown in Fig. 2.1, thus making feasible the
implementation of an iris authentication mechanism. In such scenario, the iris images
obtained are characterised as off-axis. The current segmentation solutions, used in today’s
iris authentication pipelines, are optimised for frontal iris images which rarely appear in
the AR/VR scenarios. Given the off-axis shape of the iris images in such scenarios, an
accurate segmentation would be challenging. Furthermore in the iris authentication workflow
failed segmentations represent the single largest source of error [25, 49–52]. Therefore, it is
identified that a new iris segmentation solution for the AR/VR cases needs to be developed
in order for iris authentication to be effective in wearable headsets.

2.1 Research Objectives

The iris segmentation method developed for AR/VR cases needs to be of high performance
and robust with off-axis iris images. A dataset with iris images captured from the front-facing
camera of these devices along with their corresponding segmentation ground truth is not
available. As a result, the main obstacle in developing an iris segmentation solution for the
AR/VR cases is the unavailability of data representing the problem correctly. Acquiring
such a dataset is challenging due to GDPR but also due to the manual effort needed to
annotate/label the ground truth segmentation maps. As there are several publicly available
frontal iris datasets with ground truth [53–55], the use of augmentation techniques can be
utilised to overcome the unavailability of data and produce a large dataset that represents the
problem correctly.

Furthermore, existing segmentation solutions consist of networks with high complexity
and memory requirements, making it difficult for deployment in edge devices such as AR/VR
headsets, which was initially discussed in [25]. As a continuation of the work in [25], we
investigate the potential of choosing a network architecture with reduced complexity, to
facilitate the implementation of such solutions in AR/VR headsets, while being able to
preserve the performance and be competitive when compared to larger CNN architectures.
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2.2 Summary of Contributions

In order to accomplish the research objectives, the first step is to overcome the unavailability
of data by generating a large number of samples, representing off-axis iris images as captured
by a user-facing camera from an AR/VR device. Now, frontal iris images, are usually
captured in a controlled environment [53, 54] and positioned in the centre of the image,
having a circular shape. After extensive study of iris images from AR/VR cases, the main
differences compared to the common frontal iris images in terms of shape are as follows:

• such iris images are off-axis in the horizontal and vertical plane

• characterised with a distorted, elliptical shape and

• not in the centre of the image (as usual).

In our solution we propose:

1. Two new specialised augmentation techniques, that take as an input high-quality
frontal iris images and produce an iris image which simulates the characteristics of
iris images as represented when captured from a user-facing camera on an AR/VR
device along with their ground truth segmentation map (Appendix A, section 2.3.2). In
addition, augmentation techniques that transform high-quality iris images into diverse
low-quality iris images are borrowed from [25] to represent unconstrained acquisition
conditions that occur from images captured from a user-facing camera on wearable
AR/VR devices (Appendix A, section 2.3.1).

2. A pipeline of combining these augmentation techniques is designed (Appendix A,
section 2.3.3), which allows to increase the number of samples available and result in a
dataset that represents a generalized and realistic scenario of iris images from AR/VR
devices in order to train a CNN model effectively.

3. Finally, an improved low complexity neural network design for the off-axis iris segmen-
tation task is proposed. The proposed network is targeted for deployment on embedded
wearable headsets, as it has reduced memory and computational requirements in
comparison with other deep learning SoA iris segmentation techniques (Appendix A,
section 3).

The proposed network has the best performance on segmenting the augmented off-axis
iris samples (Appendix A, section 5.1). Interestingly, the segmentation performance of
this network on frontal iris samples from several public datasets, is comparable with the
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current SoA iris segmentation SPDNN network [25] (Appendix A, section 5.2), despite its
complexity being at least an order of magnitude less than the SPDNN [25] (Appendix A,
section 3.2).

The code and instruction on how to use the proposed augmentation techniques along with
the weights of the trained network can be found in the GitHub repository of this research
work 1.

2.3 Discussion of Contributions

This work provides an iris segmentation solution specialised for the new AR/VR devices.
Through this work it is clear that in order to provide a suitable solution, the main bottleneck
as in most machine learning (ML) solutions is data availability. Utilizing though the current
available data and the new specialised augmentation techniques proposed it is shown that is
possible to overcome the unavailability of data for a different problem of the same domain
and avoid the challenging procedure of the data acquisition and labelling. Despite the fact
that in this work the augmentations techniques are focused on generating off-axis iris images,
they could be widely applicable for other off-axis region problems or/and cases where the
images are stretched (e.g.: when using cameras with a wide field of view).

Also, nowadays it is common practice that when an architecture of CNN is designed, that
deep and large structures are favoured. This is preferred in order to increase the possibility
of solving the investigated problem or promise higher performance from a smaller size
CNN. Selecting a CNN with a deeper structure rather than a more compact structure, comes
with drawbacks such as increased training and execution time as well as generous memory
requirements, which are not always available in edge devices. This work showcases how
incorporating the correct data augmentation techniques in the deep learning solutions can be
more important than having a complex model [5, 20] and help design solutions suitable for
edge devices.

This is illustrated through the comparisons between our proposed network and the SoA
solution in the task of segmenting frontal iris samples, SPDNN [25]. The SPDNN [25]
has a complex network architecture with more than 1M parameters while the proposed
network consists only of 70k parameters (Appendix A, section 3.2). The proposed network,
despite having ×10 less parameters and focused on segmenting off-axis iris images, its
performance is comparable with the SPDNN [25] in several frontal iris datasets (Appendix
A, section 5.2.2). The main difference between them except their complexity, is that the

1Code available at: https://github.com/C3Imaging/Deep-Learning-Techniques/tree/Off_axis_Iris

https://github.com/C3Imaging/Deep-Learning-Techniques/tree/Off_axis_Iris
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proposed network is trained with frontal and off-axis iris images while the SPDNN [25] is
only trained with frontal iris images. The proposed augmentations techniques (that transform
the frontal iris samples to off-axis, Appendix A, section 2.3.2), not only increased the number
of samples available to train the network compared to the number of samples used to train
SPDNN [25], but also injected variety and randomness to the data samples that the samples
used to train SPDNN [25] lack. Utilising these components, it allowed us to train a lower
complexity network while keeping the performance comparable to the higher complexity,
SoA SPDNN [25]. Thus, showing the importance of appropriate data augmentation strategies
over heavy-weight network structures, that allow to design solutions that can be efficiently
installed in edge devices, without losing significant performance.





Chapter 3

Contribution to Validation
Methodologies for Synthetic Data

3.1 Introduction

Synthetic Data and Tools

Synthetic data is information that computer simulations or algorithms generate as an alter-
native to real-world data [27]. In this Chapter, we focus on the synthetic data generated by
algorithms.

Some of the most popular tools for synthetic data generation, are known as GANs. GANs
[56] utilise Deep Neural Network capabilities and are able to estimate the data distribution for
large size problems. These models comprise two networks, a generator, and a discriminator.
The generator makes random samples from a latent space, and the discriminator determines
whether the sample is adversarial, made by the generator, or is genuine image coming from
the dataset [24]. The general framework of GANs is shown in Fig 3.1.

Initially, despite the potential of GAN models, their use remained mostly within the
research community due to some of their drawbacks [58, 59]. In general, GANs are known
for their difficultly to train [58, 59], but the main reason they did not become directly accepted
by the industry for commercial use, was due to their output. In the early days of GANs
the output images were of low quality, small resolution and more importantly unrealistic
[56, 60]. When observing an image generated from a GAN, it was easily recognisable that
these images were fake [56, 60]. Over time, GANs evolved and the current SoA GANs are
able to generate high-quality, realistic samples in a variety of image resolutions which can be
used effectively in a range of applications [28, 29]. Progressive-GAN [28] and StyleGAN
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Fig. 3.1 Generative Adversarial Network framework [57].

[29], were one of the first methods that with high-quality, realistic outputs and became the de
facto benchmarks for GANs. In Fig. 3.2, the evolution of GANs in the task of face generation
is shown, going from low resolution, blurry and unrealistic face samples to face images that
can trick the human perception in to believing that these samples are real [61].

Fig. 3.2 The progress of GANs in the task of face generation [62].

The Challenges of ‘Real-World’ Data

It is known that data acquisition, availability and preparation are the biggest bottlenecks in
the ML/DL pipelines [63], which was also shown through the research work described in
Chapter 2. An ideal dataset would cover all the likely sensing and environmental contexts
that might arise, but as it is impractical to gather data for all the possible cases, real-world
datasets are sparser compared to an ideal scenario. As an extension (as the data do not cover
all the possible scenarios) bias is introduced to these datasets which is then inherited by



3.1 Introduction 19

our trained algorithms. Furthermore, due to the fast-changing technology environment, new
unique problems arise daily. In order to realise solutions in many of these specific problem
domains there is a growing need to build custom datasets that are tailored for a particular use
case. Practical solutions require appropriate training datasets modified to a constrained use
case together with matching ground truth data. Acquiring such datasets at the scale required
for training with today’s AI systems and subsequently annotating them with an accurate
ground truth is challenging in terms of time, human resources and operational costs. Finally,
with the recent introduction of GDPR and associated complications introduced, industry
now faces additional challenges in the collection of training data that is linked to individual
persons.

Why Synthetic Data

The improvements in synthetic data generation in recent years suggest that synthetic data can
now be used to overcome obstacles and disadvantages of real-world data. The generation
of synthetic data is far cheaper compared to data acquisition and in many cases these data
samples come with annotated labels. Furthermore, the synthetic models can be modified and
customised to generate samples for a particular use case, include edge case scenarios and
more variation than real-world datasets. Finally, but equally importantly, since the data is
generated, there are no underlying GDPR/privacy concerns and they can be used freely.

As a result the use of synthetic data, is a promising technique on the rise in modern
deep learning. Researchers have been increasingly using them to train their DNN models
[30] and have demonstrated that it can be as good or even better for training an AI model
than data based on actual objects, events or people [31]. Furthermore, frameworks and
methodologies needs to be developed as swapping the real-world data with synthetic is not
straightforward. These frameworks have to ensure that the synthetic data behave as the
real-world data, mathematically or statistically and that are effective when incorporated in
the training pipelines.

Research Questions

The development in the area of synthetic data and the real-world data related difficulties that
research and industry community is facing, suggest that it might make sense to focus on
developing improved methodologies to control and manage the generation of data samples
matched to a specific machine learning problem rather than struggle with the challenges of
obtaining sufficient ‘real-world’ data. These ideas lead to the following research questions:
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• Can we artificially generate and/or augment suitably large sets of data samples adapted
for training today’s AI networks?

• Can we prove that the resulting AI networks are as robust and reliable as those trained
on equivalent ‘real-world’ datasets?

These research questions are introduced and analyzed in the work presented in section
3.2, referred to as GADAFAI hypothesis [34]. In that work, a plan is presented with the steps
required in order to validate the hypothesis and incorporate effectively the AI tools for data
generation in the training pipelines and replace real data. The first steps can be divided in
two categories:

• Building AI tools, that will generate a large amount of new synthetic data and/or
augment these data samples.

• Create methodologies and techniques to validate that the synthetic data behave like real
ones and also measure whether their use is effective when incorporated in the training
pipelines.

Some practical examples and preliminary results are given in the work presented in
section 3.2 in the context of facial biometrics, with the ultimate goal of creating a large
synthetic face dataset.

In the remainder of this chapter (sections 3.3-3.5), the research work presented contributes
on the methodology side of the synthetic data, as techniques are proposed that aim to validate
whether or not the synthetic data "behave" like real-world data.

The methodology developed is in the context of facial biometrics as it is one of best
starting points, where synthetic might replace real data samples. That’s because facial
biometrics is a topic that has been heavily researched in the literature and there is a wide
variety of large face datasets that are easily accessible. Furthermore the AI tools related
to the facial biometrics such as Face Recognition algorithms or GANs [29] for the task of
face generation have improved significantly compared to other areas. Finally, but equally
important is the fact that facial samples is one of the most susceptible data categories to
GDPR and privacy regulations.

The formulation of different building blocks necessary to create the aforementioned
validation methodology, are given below. More specifically, in section 3.3, the expansion of
AI tools for facial data generation is presented. In the section 3.4, irregularities are found and
corrected in real-world datasets. This allows for a clear/correct distribution of real data, thus
when creating methodologies to validate the synthetic data, fair comparisons can be made
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between the real and synthetic data. In section 3.5 , by incorporating parts from the works of
3.3 and 3.4 new methodologies and metrics are proposed that validate the synthetic data.

In each section the research objectives/questions and summary of contributions for each
individual work are given. Finally, in section 3.6, a discussion is presented, which focuses
on the how the individual sections relate to one another and their overall contribution as a
unified research work.

3.2 Framework for Use of Synthetic Data and Data Aug-
mentation Techniques for Improved Training of AI Net-
works

In this section an overview of the research work: Corcoran, Peter, Hossein Javidnia, Joseph E.
Lemley, and Viktor Varkarakis. "Generative Augmented Dataset and Annotation Frameworks
for Artificial Intelligence (GADAFAI)." In 2020 31st Irish Signals and Systems Conference
(ISSC), pp. 1-6. IEEE, 2020.,[34], is given along with its research questions and a discussion
of contributions. The copy of the paper published based on this section is presented in the
Appendix C. The contributions of its author related to the four major criteria as explained in
in section 1.4, for this research work [34] are presented in Table 3.1.

Table 3.1 Authors’ Contributions to [34]

Contribution Criteria Contribution Percent
Research Hypothesis/Idea PC 70%, HJ 30%
Experiments and Implementation VV 100%
Background PC 60%, HJ 40%
Manuscript Preparation PC 60%, HJ 20%, JL 10%, VV 10%

3.2.1 Research Questions and Objectives

Due to the increasing challenges in the collection of real-data, the idea of using advanced
AI tools, such as GANs and augmentation techniques, to generate new data tailored for
training machine learning algorithms and eliminate the need for real-world data, leads to
somewhat contrarian research questions (hereafter referred to as the “GADAFAI hypothesis”)
(Appendix C, section I-A):
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• Can we artificially generate and/or augment suitably large sets of data samples adapted
for training today’s AI networks?

• Can we prove that the resulting AI networks are as robust and reliable as those trained
on equivalent ‘real-world’ datasets?

One of the main goals of GADAFAI [34], is to build synthetic datasets, but is distinguished
from other similar efforts in that it also seeks to provide some validation metrics to measure
the usefulness of these synthetic data samples for a particular use case or problem. These
metrics should allow researchers to quantify variances between ‘real-world’ datasets and
those that are ‘generated’ via alternative methodological approaches. The intention is to
focus on measuring the validity of synthetic datasets for practical problems across a range of
fields of application. This should enable new methodological refinements of the generated
datasets to specific use cases.

3.2.2 Summary of Contributions

In the work presented in [34], the challenges in acquiring large datasets of ‘real-world’ data
are discussed (Appendix C, section II) along with a high level review of current SoA in data
generation and augmentation techniques, which are the foundation for the GADAFAI frame-
work in order to build large synthetic datasets (Appendix C, section III). This is followed by
a discussion of the primary research domains and associated data landscapes in the context of
today’s computer vision research, in which the GADAFAI hypothesis [34] can be useful and
the challenges associated with each domain. Furthermore, how GADAFAI [34] can work in
practice is discussed, providing a roadmap towards a broader validation of the hypothesis
and answering the research questions posed (Appendix C, section IV). Through preliminary
results an initial approach and the steps required to validate the GADAFAI hypothesis [34]
in the context of facial biometric data are outlined (Appendix C, section V).

3.3 Understanding the AI Tools for the Task of Face Gen-
eration - Re-Training StyleGAN

In this section an overview of the research work: Varkarakis, Viktor, Shabab Bazrafkan, and
Peter Corcoran. "Re-Training StyleGAN-A First Step Towards Building Large, Scalable
Synthetic Facial Datasets." In 2020 31st Irish Signals and Systems Conference (ISSC), pp.
1-6. IEEE, 2020., [36], is given along with its research objectives and a discussion of the
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contributions. The copy of the paper published based on this section is presented in the
Appendix D. The contributions of its author related to the four major criteria as explained in
in section 1.4, for this research work [36] are presented in Table 3.2

Table 3.2 Authors’ Contributions to [36]

Contribution Criteria Contribution Percent
Research Hypothesis/Idea VV 80%, SB 10%, PC 10%
Experiments and Implementation VV 90%, SB 10%
Background VV 90%, SB 10%
Manuscript Preparation VV 70%, SB 15%, PC 15%

The original GAN presented in [56] is made of two Deep Neural Networks: a generator
and a discriminator. The generator accepts a tensor of randomly generated numbers and
returns an image and the discriminator is a binary classifier that accepts an image and
determines whether it is a generated image or not. In this approach, these two networks
are trained in a min-max game wherein the final goal is for the generator to synthesis an
image that the discriminator classifies as a real image. StyleGAN [29] is one of the variations
of GAN wherein the generator is developed in a specific way which separates it from its
preceding implementations in three main ways:

• The latent space (Z) is reshaped via a fully connected DNN (which returns W) before
feeding into the generator. This is to introduce disentanglement to the original latent
space (Z) during the mapping into style indicators (W) [29].

• The latent space is not fed into the generator at its input layer. The new latent space
W is given to the generator before each convolutional layer. In other words, each
part of the vector W is induced into the generator in a different layer. This gives the
opportunity to introduce style information at different levels [29].

• A Gaussian noise is added to the features before each convolution. This operation
helps the network to use its maximum capacity and generate higher quality outputs
with high-frequency features [29].

This modifications and novelties in the design of GANs have contributed into making
StyleGAN [29] one of the most sophisticated and successful AI tools. StyleGAN [29] is able
to generate high quality and resolutions samples and has been trained on different image
topics such as cats, cars, bedrooms. Although, the models that really caught the eye of the
public, are the ones trained on the face datasets of FFHQ [29] and CelebA-HQ [28]. These
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models are able to generate high-quality, high-resolution, but also realistic face samples that
are able to fool humans in many cases [61].

StyleGAN [29] is the perfect example of advanced AI tools that can be used in generating
synthetic data and the GADAFAI [34] framework. As discussed in 3.1, we seek to validate
the synthetic data in the context of facial biometrics with the ultimate goal of generating a
large synthetic face dataset and the official models of StyleGAN [29] trained on the face
datasets of FFHQ [29] and CelebA-HQ [28], provide a good starting point. Despite that,
more models need to be trained with larger datasets in order to understand StyleGAN [29]
better, in order to use effectively its samples in the data pipelines.

3.3.1 Research Objectives

As a first step, in the process of validating the GADAFAI hypothesis [34], it is necessary to
build and understand the tools that can generate a larger number of unique synthetic data
samples of a human face. Using StyleGAN [29] to generate new face samples we need to
understand its capabilities and drawbacks. At the time of the research, StyleGAN [29] had
been recently released making available two models, trained on FFHQ [29] and CelebA-HQ
[28], which are datasets with 70k and 30k samples. However, these are not particularly
large facial datasets with relatively low number of identities. Therefore, in order to explore
StyleGAN [29], there was a need for more StyleGAN models trained on several datasets
with more samples, identities and different image resolution and quality, which inspired the
research work of this section. In that way, we can investigate how the quality, attributes,
variety and other characteristics of the generated face samples are related to the datasets used.
Furthermore, having more StyleGAN models [29] trained in a variety of datasets quality and
size, will allow the general validation of the GADAFAI hypothesis [34] in context of facial
biometrics and it wont be constrained only to the initial StyleGAN models [29].

3.3.2 Summary of Contributions

In this research work [36], the procedure of re-training StyleGAN [29] on two publicly
available datasets, CelebA [64] and CASIA-WebFace [65], is presented. CASIA-WebFace
[65] contains almost 500k face samples from more than 10k identities, while CelebA [64]
consist of 200k face samples from 10k identities. These datasets are larger compared to the
FFHQ [29] and CelebA-HQ [28] but also of lower resolution and quality, thus the StyleGAN
models of this work [36] are trained on a 256x256 image resolution. Furthermore, practical
issues and challenges arising from the retraining process are discussed (Appendix D, section
III). Tests and validation results are presented and a comparative analysis of the re-trained
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StyleGAN models is provided (Appendix D, section IV). Finally, the resulted StyleGAN
models are made publicly available and can be found at 2. The official StyleGAN models
and implementation code can be found at 3.

This work [36], expands the available StyleGAN models [29] for generating face samples.
This is one of the first building blocks in order to validate synthetic samples and part of
the GADAFAI hypothesis [34] in the context of facial biometrics. Furthermore, StyleGAN
models [29] are expensive computationally but also in time, (e.g.: a machine with a single
V100s GPU, will need more than two week of computational time for a lower resolution
(256x256) StyleGAN model), therefore the trained models are made publicly available in
order to facilitate and support research in the domain.

3.4 Correcting the Distribution of Real World Samples - A
Methodology for Cleaning Large Facial Datasets

In this section an overview of the research work: Varkarakis, Viktor, and Peter Corcoran.
"Dataset Cleaning—A Cross Validation Methodology for Large Facial Datasets using Face
Recognition." In 2020 Twelfth International Conference on Quality of Multimedia Experience
(QoMEX), pp. 1-6. IEEE, 2020., [37], is given along with its research objectives and
a discussion of contributions. The copy of the paper published based on this section is
presented in the Appendix E. The contributions of its author related to the four major criteria
as explained in in section 1.4, for this research work [37] are presented in Table 3.3.

Table 3.3 Authors’ Contributions to [37]

Contribution Criteria Contribution Percent
Research Hypothesis/ Idea VV 90%, PC 10%
Experiments and Implementation VV 100%
Background VV 100%
Manuscript Preparation VV 80%, PC 20%

2Code available at: https://github.com/C3Imaging/Deep-Learning-Techniques/tree/Re-training-StyleGAN
3Code available at: https://github.com/NVlabs/stylegan

 https://github.com/C3Imaging/Deep-Learning-Techniques/tree/Re-training-StyleGAN
https://github.com/NVlabs/stylegan
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3.4.1 Research Objectives

In recent years, large "in the wild" face datasets have been released in an attempt to facilitate
progress in tasks such as face detection, face recognition, and other tasks [66–68]. Generally,
large face datasets are built in a semi-supervised way using image-search engines and thus
prone to bad data samples due to mislabelling and poor image quality of some samples
[69–71]. Often, the number of these bad data samples is not statistically significant for
a particular task and they can be ignored, but, in other cases a small number of bad data
samples can become quite significant and lead to poor training outcomes [72].

Consider for example a large dataset which is used to train a face detector, if the training
dataset contains some mislabelled identities – i.e. wrong identity is assigned to a person –
this is not critical for training a face detector, as these mislabelled data samples still represent
‘good’ samples of facial images, as their identity characteristic is not used. However, if
the task at hand switches to training a CNN to perform facial recognition, distinguishing
between multiple identities, these mislabelled samples are now ‘bad’ and if there are sufficient
mislabelled data samples, the performance of the resulting face recognition CNN will be
sub-optimal [72]. Therefore, cleaning the datasets from mislabelled samples is desirable for
some use cases.

3.4.2 Summary of Contributions

In this work [37] a (semi-automatic) technique for identifying and removing mislabeled
samples in terms of identity is developed. The technique utilizes a face recognition model
trained / fine-tuned on the examined dataset in order to discover outliers in an identity folder
that shall be examined as it is possible to contain mislabeled face samples (Appendix E,
section III). This methodology is applied to clean the CelebA dataset [64] and show its
effectiveness (Appendix E, section IV). This technique can be applied to any face dataset
annotated with identities in order to “clean” it so that the dataset can be used with more
certainty as a considerable number of mislabeled samples will be eliminated and as a result
the training algorithms and validation metrics are more accurate.

Similar methods exist [72–75], although these can clean a large part of the datasets,
they have some drawbacks as after the cleaning procedure, the datasets may either lack
diversity as many variations are treated as outliers or the size of the dataset has decreased
quite significantly due to the rigorous constraints imposed by the cleaning process. This
research work [37], is distinguished from other methods in that we seek to provide a minimal
curation of the dataset, in order to retain as many original data samples as possible to ensure
that the diversity of the original dataset is preserved.
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The list of the mislabelled samples found in the CelebA dataset [64], using the proposed
method [37] is made available and can be found at the GitHub repository of this work 4.

3.5 Creating Methodologies and Metrics to Validate Syn-
thetic Data Samples

In this section an overview of the research work: Varkarakis, Viktor, Shabab Bazrafkan,
Gabriel Costache, and Peter Corcoran. "Validating seed data samples for synthetic identi-
ties–methodology and uniqueness metrics." IEEE Access 8 (2020): 152532-152550., [35], is
given along with its research questions, objectives and a discussion of contributions. The
copy of the paper published based on this section is presented in the Appendix F. The
contributions of its author related to the four major criteria as explained in in section 1.4, for
this research work [35] are presented in Table 3.4

Table 3.4 Authors’ Contributions to [35]

Contribution Criteria Contribution Percent
Research Hypothesis/ Idea VV 80%, SB 10%, PC 10%
Experiments and Implementation VV 80%, SB 10%, GC 10%
Background VV 60%, SB 20%, GC 20%
Manuscript Preparation VV 70%, SB 10%, PC 20%

As part of GADAFAI [34], this chapter explores the potential to build synthetic facial
datasets at scale by using a GAN to generate a seed dataset of facial data samples. Given
such dataset, it would then be feasible to modify these seed samples to build a large syn-
thetic training datasets focusing on other facial attributes such as facial lighting, pose, and
expression [76–78]. When considering the real face data samples, one of the most important
attributes is their identity. The identity attribute is unique for each subject. In order for the
synthetic face dataset to be valid, it is needed to demonstrate that the identity attribute of the
synthetic facial data samples used in the seed dataset behave in the same way as those of a
‘real-world’ face dataset, as it is essential for the synthetic data to reflect the attributes of real
data as discussed in 3.1.

4Code available at: https://github.com/C3Imaging/Deep-Learning-Techniques/tree/clean-celebA

https://github.com/C3Imaging/Deep-Learning-Techniques/tree/clean-celebA
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3.5.1 Research Questions

The starting point for building a valid seed dataset using synthetic face samples is a method-
ology to demonstrate that the identities of the synthetic facial data samples used as seed data
behave in the same way as those of a ‘real-world’ dataset of facial data samples, meaning
that the identity attribute is unique for each seed sample. It is also essential to validate that
the synthetic data samples are unique in terms of identity when compared with the original
seed data used to train the generator, in order to avoid any GDPR/ privacy issues and be able
to use them freely. These considerations lead to three key research questions (Appendix F,
section I-A):

1. Are the synthetic data samples unique when compared with the original seed data used
to train the GAN model?

2. Are the synthetic data samples within a generated dataset unique when compared with
one another?

3. Can we validate individual samples within a generated dataset to ensure that there
is sufficient identity uniqueness to use as a synthetic seed data sample for further
research?

3.5.2 Summary of Contributions

These research questions led us to develop two approaches to understand and quantify the
identity uniqueness of a set of synthetic data samples when compared against samples from
the seed dataset. The same methodology can then be applied to understand the uniqueness
within a set of synthetic data samples, in terms of identity, when comparing with one another.
To evaluate the identity uniqueness of the generated synthetic samples for both cases, the
proposed approaches utilize a SoA FR model. In both approaches, the performance/behavior
of real samples is used as a reference point, and the performance/behavior of the generated
synthetic samples for each case is compared against it to draw conclusions and answer these
research questions (3.5.1).

In the first approach, the performance/behaviour of real samples and generated synthetic
samples for each examined case is illustrated through receiver operating characteristic (ROC)
curves. These are compared and examine the identity uniqueness of the generated synthetic
samples with their seed data and identity uniqueness of the generated synthetic samples when
compared with one another (Appendix F, section IV-B).

In the second approach, a thresholding technique is used to calculate a new metric which
allows making similar determinations of uniqueness between synthetic and seed data, and
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also among the synthetic samples. In this approach, from a pair of samples, using their
embeddings derived from the FR tool used, a score is obtained and it is compared to an FR
threshold to determine their identity similarity, which reversely shows the identity uniqueness.
As an extension, the second approach enables us to find and quantify the unique samples in
a generated synthetic set of samples when compared with either the seed dataset or within
itself. This can be used as a metric, to measure the ability of a GAN model to generate
synthetic data with unique identities. The FR threshold used to implement this approach
is representative of the statistical behaviour of a dataset of real face samples (Appendix F,
section IV-C).

The two proposed approaches are implemented using the generated samples from different
StyleGAN [29, 36] models, in order to answer the research questions (3.5.1). It should be
mentioned that the proposed methodologies can be implemented with any GAN model
trained for the task of face generation. The identity uniqueness of the synthetic data samples
when compared to the seed data and when compared to one another, is examined . Both
approaches concluded that the generated synthetic samples from any model used in this work
are as unique in terms of identity with the samples from their corresponding seed data, as
samples from different identities in a real dataset, which is desirable, as the synthetic data did
not inherit the identity attribute from the seed dataset and can be used without any privacy
issues.

When comparing the synthetic samples with one another, both approaches concluded that
using the models of this work, the generated samples are not as unique in terms of identity
as samples from different identities in a real dataset, showing that synthetic samples exist
that share the same identity attribute. Finally, the metrics introduced in the second approach
(where the thresholding technique is used), that show the ability of the models to generate
unique synthetic samples are used. The metrics revealed that in some cases only 7-9% of
the samples have a unique identity from a set of 20k generated synthetic samples. Detailed
information of the experiments can be found in the Appendix F, section V.

Face samples with unique identity, generated from different StyleGAN [29] models,
which can form a seed synthetic face dataset with distinct identities can be found at the
GitHub repository of this work 5.

5Code available at: https://github.com/C3Imaging/Deep-Learning-Techniques/tree/Synthetic_Face_Datasets

https://github.com/C3Imaging/Deep-Learning-Techniques/tree/Synthetic_Face_Datasets
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3.6 Discussion of Overall Contributions

In this chapter, we introduce the GADAFAI hypothesis [34] and implement some of parts of
the required steps in order to validate the proposed hypothesis but also the synthetic data in
general.

More specifically, section 3.2, explains and analyses the GADAFAI hypothesis [34],
which its main goal is to build synthetic datasets but also provide validation metrics to
measure the usefulness of these synthetic data samples in the ML/DL training pipelines. A
generalised framework is presented, on the required steps needed, so that synthetic data from
today’s advanced AI tools can eventually replace the need for ’real-world’ data, which is
the main bottleneck in today’s machine learning era. Ultimately, this work showcases how
through creating methodologies to validate the proposed hypothesis, the capabilities of So
neural networks can be enhanced and ultimately, such methodological frameworks could free
researchers from concerns with the logistics of dataset acquisition, enabling them to focus on
new technology innovations in terms of smart services and products.

Following the introduction of the GADAFAI framework [34],in the rest of the chapter
the presented works (3.3-3.5) ultimately contribute to the GADAFAI hypothesis [34] and
to the research area of synthetic data, as a methodology is proposed that validates whether
or not the synthetic data behave like real ones, in the context of facial biometrics with the
ultimate goal of creating a large synthetic face dataset.

A first step in order to create the aforementioned validation methodology, is to understand
the tools selected to generate a larger number of synthetic face data samples. The main
tool selected for that purpose, is StyleGAN [29] as it represents the SoA GAN for the face
generation task, although any GAN model trained on this task can be used. As StyleGAN
[29] is selected to generate new face samples we need to understand its capabilities and
drawbacks. The official StyleGAN models [29] trained on FFHQ [29] and CelebA-HQ [28],
are a good starting point, but these datasets are relatively small and the samples are of high
quality, which is not usual for face datasets. Therefore there is a need to train StyleGAN
models [29] with larger datasets of lower resolution, in order to examine how StyleGAN
behaves when trained with such face datasets. The work described in section 3.3, implements
that, in which StyleGAN is re-trained on two large face datasets. In that way, we can explore
how StyleGAN performs when trained with different datasets. At the same time, this work
expands the variety of available models. This allows for the validation methodology to be
generalised and not constrained to the initial StyleGAN models [29], that are trained with
a datasets that have similar characteristics (relatively small amount of samples and high
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quality-resolution).

The validation methodology that we seek to develop, has to determine whether or not
the synthetic data "behave" as the real data. This can be investigated in terms of selected
characteristic(s) of the samples. In terms of our use case (generating a large synthetic face
dataset), when considering the real face data samples, one of the most important attributes is
their identity, which is unique for each subject. In order for the synthetic face dataset to be
valid, a methodology is needed to demonstrate that the identities of the synthetic facial data
samples used in the dataset behave in the same way as those of a ‘real-world’ face dataset.

A necessary step for forming the validation methodology, is to measure the performance/
behaviour of the real-world face samples in terms of the selected characteristics(s), in our
case their identity, and create a reference point/ benchmark which the synthetic data will be
compared against it, in order to determine whether or not they behave as the real face samples.
The selected tool to develop this methodology and measure the performance/ behaviour of the
real face samples in terms of their identity, is a SoA face authentication algorithm. Current
face authentication algorithms have evolved and are exceeding the 99% accuracy in most of
the datasets [79] thus making it a reliable tool. We started measuring the performance of the
real face samples from CelebA [64] as StyleGAN [29] was initially trained on a subset of it
(the CelebA-HQ [28]) but also it was used as the seed dataset to re-train StyleGAN in section
3.3. While measuring the performance of the CelebA [64] dataset using a SoA FR tool, some
irregularities were noticed. Investigating the matter, we find out that the CelebA dataset
[64] has mislabelled samples (in terms of their identity), showing once more the drawbacks
of real datasets and how difficult is to collect and correctly label them. This inspired the
work described in section 3.4, in which a semi-automatic technique is proposed to find the
mislabeled samples and correct the face dataset.

This work, apart from its general contributions of improving the quality of large real-
world datasets, is essential in the process of creating the methodology for the validation
of the synthetic samples, as without such clean ‘real-world’ datasets we cannot set correct
baselines to make a fair comparisons with datasets built from synthetic data samples.

As we have prepared the tools to generate face samples (section 3.3) and have a clean
distribution of the real samples that will be used to set a performance baseline (section 3.4),
we are able to develop a methodology that will allow us to determine whether the generated
face samples behave as the real face samples. More specifically, the goal is to determine if
individual synthetic samples are unique in terms of identity, firstly with respect to the seed
dataset that trains the StyleGAN model [29] and secondly with respect to other synthetic
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face samples. In the research work presented in section 3.5, two approaches are introduced
to enable the comparative analysis of large sets of synthetic face samples, for both cases.
Furthermore, new metrics are introduced, and a technique is provided to remove the most
connected data samples within a large synthetic dataset. Thus, the remaining synthetic
samples can be considered as unique as data samples gathered from different real individuals.
Through our experiments it is concluded that the resulting synthetic data samples exhibit
excellent uniqueness when compared with the original training dataset, thus the generated
samples can be used freely without any privacy issues, as it was validated that no generated
face sample share the same identity attribute with a face sample from the seed dataset.
Although when comparing the synthetic samples with one another, the proposed approaches
showed that synthetic samples exist that share the same identity. Nevertheless, using the
proposed methodology it is possible to remove the highly connected synthetic data samples.
Thus, remaining with unique synthetic face samples in terms of their identity. The proposed
methodology presented in section 3.5, is implemented using StyleGAN models [29, 36],
although it can be implemented with any GAN model, trained on the task of face generation.

This work validates the synthetic data in the context of facial biometrics, as the proposed
methodology determines whether or not the synthetic face samples behave like the real
ones in terms of their identity attribute. Implementing this methodology, unique (in terms
of identity) samples can be selected from a set of generated synthetic face samples, that
can serve as the seed dataset. These seed samples can be further augmented, introducing
variations such as light, pose, expression in order to complete the ultimate goal of building a
large synthetic face dataset.

Furthermore, this work clearly indicates that synthetic samples should not be used arbi-
trarily, showing the importance of creating methods/metrics to validate the synthetic samples
before incorporating them into ML/DL pipelines.

Overall, the works of this Chapter (3) present a framework on how to develop methods
that validate synthetic data in the context of facial biometrics. The reasoning for selecting
the category of facial biometrics, (which is also discussed in 3.1), is the large number of
available datasets, the advanced AI tools related to that topic but also because facial data are
susceptible to GDPR and privacy regulations. Now, this framework despite being focused
on the category of facial biometrics, the same framework can be used to develop validation
methodologies for synthetic samples for any data category and/or use case. Analysing the
sections 3.3-3.5 the main steps can be summarised as following:

• The starting point is to build and understand the tools selected that generate synthetic
data.
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• Select the characteristic(s), based on which the "behaviour" of synthetic data will be
examined.

• Select/Create the tools and metrics that will be used to measure the "behaviour" of the
synthetic data in terms of the selected characteristic(s).

• Establish a baseline (based on real-world samples), which will be used to determine
whether or not the synthetic samples follow the desired "behaviour". As explained
earlier and shown from sections 3.4, it is important to have clean and correct real data
samples, so that the baseline represents correctly the distribution of the real world.

• Finally, use/develop methods to identify and remove synthetic samples that do not
behave as desired. In that way, it is ensured that remaining samples are validated
and incorporate the desired characteristics so that they can be further used in the data
pipelines.





Chapter 4

Utilising Synthetic Data in Training
Pipelines for Edge-AI Solution

In this section an overview of the research work: Varkarakis, Viktor, Wang Yao, and Peter
Corcoran. "Towards End-to-End Neural Face Authentication in the Wild–Quantifying and
Compensating for Directional Lighting Effects." arXiv preprint arXiv:2104.03854 (2021).,
[38], is given along with its research objectives and a discussion of contributions. The copy of
the paper published based on this section is presented in the Appendix G. The contributions
of its author related to the four major criteria as explained in section 1.4, for this research
work [38] are presented in Table 4.1.

Table 4.1 Authors’ Contributions to [38]

Contribution Criteria Contribution Percent
Research Hypothesis/ Idea VV 90%, PC 10%
Experiments and Implementation VV 80%, WY 20%
Background VV 80%, WY 20%
Manuscript Preparation VV 80%, WY 10%, PC 10%

In the recent years face recognition has been well-studied in the literature with the most
recent enhancements being driven by advances in CNN and deep learning [66, 68, 80, 81, 79].
Despite the improvements , factors such as pose [82–85], illumination [86–88], facial expres-
sion [89–91], age [92, 93] and, gender variations [94, 95], to name but a few, still affect the
performance of the FR algorithms. In order to overcome these obstacles, in most of the liter-
ature the test samples for FR are assumed to be normalized in terms of their variations (pose,
facial expression and illumination) to simplify the challenge of accurately distinguishing an



36 Utilising Synthetic Data in Training Pipelines for Edge-AI Solution

individual identity among a very large population.

The initial focus for implementation of neural algorithms, in embedded devices was on
network optimizations such as parameter quantization and pruning, compressed convolutional
filters and matrix factorizations [96]. However, the attention has recently shifted towards
specialized neural topologies [97, 98] and ultra-low power realizations in hardware [99, 100].
These low power neural accelerators can perform ultra low power ‘sensing’, using SoA
deep learning solutions, but these devices can’t accommodate any processing in the central
processing unit (CPU).

When considering the implementations of a SoA neural FR architectures in such low-
power consumer appliances, the bottleneck is identified to be the pre-processing procedures
required, that corrects the input facial sample before the image is fed to the FR network, due
to the limitations of the low-power devices, that try to optimize the power consumption.

While it would be feasible to concatenate two (or more) ANN to allow a ‘correction’,
followed by a neural FR solution, it requires a lot more parameters. Taking into account all
possible variations (pose, illumination, expression, age, etc) that need correcting before a
facial image is fed to the FR network, there could be a need for 3 or 4 ’correcting’ networks.
Such solution will be extremely inefficient. As a result a better approach would be to fine-tune
a single FR to generalise and be robust to all variations, eliminating the need for image
prepossessing and correcting networks, optimising for low-power consumer appliances.

4.1 Research Objectives

In this work, our goal is to determine the feasibility of modifying a high accuracy SoA neural
FR architecture to demonstrate robustness to un-normalised input image samples, in order to
facilitate deployment in latest neural accelerators. This train of thoughts led to the research
questions posed in this work [38]:

• Can we better quantify the effects of the external factors that affect fully neural FR and
develop metrics to evaluate these;

• Can a fully neural FR architecture be modified through tuning and/or re-training to
compensate internally for such external factors?

The research questions are generalised to include a range of external factors (e.g.: pose,
illumination, expression, accessories, etc.) but in this work we focus on the effect of different
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illumination scenarios. Specifically for the illumination variation, numerous image pre-
processing methods exist to improve the performance of the FR model [101, 87, 102] but
studies exploring the tuning or training of FR models to be robust to illumination variations,
which are better suited for the modern neural accelerators are relatively rare [103, 104].

4.2 Summary of Contributions

In order to answer the research questions of this work with respect to the illumination
variation, a SoA re-lighting technique is employed, known as Deep Single Image Portrait
Relighting (DPR) [105] to augment a set of high-quality facial images with illumination
from different directions (Appendix G, section 3.1). The effect of the of each illumination
variation, on the performance of a SoA FR method is quantified using ROC curve techniques,
and showed that a fully end-to-end neural FR solutions will be challenged by in-the-wild
lighting conditions (Appendix G, section 4). Note that a re-lighting augmentation approach
was adopted as existing public datasets do not provide sufficient lighting variability, which is
discussed in the paper presented in the Appendix G, section 4.3.

Furthermore, the feasibility of handling lighting variations by fine-tuning the neural FR
network is explored. The experiments demonstrate that using the augmented samples for fine-
tuning, the FR model is able to recover to performance levels close to the original baseline for
such illumination conditions. The fine-turning process also indicated that generalization from
the primary directions to combinations of directional illumination is achieved - a promising
result given the non-linear nature of lighting condition (Appendix G, section 5). Given these
results it is clear that a full end-to-end neural FR optimised for implementation in the latest
neural accelerators can be realized.
Instructions on how to generate the sets of CelebA-HQ [28] with the different illumination
scenarios, a list of the images used in the experiments and the final fine-tuned FR network
can be found in the GitHub repository of this work 6.

4.3 Discussion of Contributions

In this work [38], the lack of real world data for a known problem can be observed, as there
aren’t many real face samples with enough illumination variation in the literature (Appendix
G, section 4.3). Capturing facial data in-the-wild, with precise illumination direction is a
challenging task. Through this work [38], the effective use of advanced AI tools is shown, in

6Code available at:https://github.com/C3Imaging/Deep-Learning-Techniques/tree/
Quantify-Retrain-FR-for-Light

https://github.com/C3Imaging/Deep-Learning-Techniques/tree/Quantify-Retrain-FR-for-Light
https://github.com/C3Imaging/Deep-Learning-Techniques/tree/Quantify-Retrain-FR-for-Light
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order to overcome the unavailability of real-world samples and enable the investigation of the
task in hand. This work, utilises a SoA re-lighting technique to augment face samples with
different illumination scenarios, without introducing any artifacts to the images (Appendix
G, section 3.1). Using such AI tools, allows to have control over the image and be able to
augment the samples accurately. This allows the study of the effect of each illumination
scenario on the performance of the FR algorithm.

Furthermore, as we have sufficient face samples with several illumination scenarios it
is possible to explore the possibility of fine-tuning the FR model, in order to be robust
in such conditions. Our experiments showed that the fine-tuned FR model can cope with
different illumination variations when trained with sufficient data that represents the problem
correctly (Appendix G, section 5). Thus eliminating the need for pre-processing methods
that normalise the lighting, and optimising such FR models, for easier deployment in latest
neural accelerators.

Finally, the same framework presented in this work can be used to analyze the effect
of other known factors (such as pose, expression, etc.) or/and their combination on the
performance of the FR model but also train the FR model to be robust to these variations, so
that pre-processing techniques can be eliminated from the FR pipeline.



Chapter 5

Contributions to Training Methodologies
for Conditional GANs

In this section an overview of the research work: Bazrafkan, Shabab, Viktor Varkarakis,
Joseph Lemley, Hossein Javidnia, and Peter Corcoran. "Versatile Auxiliary Classification
and Regression With Generative Adversarial Networks." IEEE Access 9 (2021): 38810-
38825.,[39] is given along with its research objectives and a discussion of contributions. This
work brings together three unpublished works [106–108] that were initially presented as
independent ,and organises them as a unified research piece. The copy of the paper published
based on this section is presented in the Appendix H. The contributions of its author related
to the four major criteria as explained in section 1.4, for this research work [39] are presented
in Table 5.1. An addition section is given, where my personal motivation and contributions
to this work are specified.

Table 5.1 Authors’ Contributions to [39]

Contribution Criteria Contribution Percent
Research Hypothesis Idea SB 100%
Experiments and Implementation SB 60%, VV 30%, HJ 10%
Background SB 70%, JL 15%, VV 15%
Manuscript Preparation SB 60%, VV 30%, PC 10%

There are several extensions to the original GAN idea [56]. One of them, known as
Conditional GAN, where the original GAN is adapted so that the generator produces samples
constrained to a specific class/aspect. Training them is one of the most appealing applications
of GANs. With the recent restrictions on data acquisition and manipulation such as GDPR, it
is become more important to be able to expand the existing databases and/or generate a new
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set of anonymous samples from scratch. The conditional generators give the opportunity to
construct data, given a specific class label. Some of the most successful implementations
of conditional GANs include Conditional GAN (CGAN) [109], Auxiliary Classifier GAN
(ACGAN) [110]. CGAN [109], achieves the conditioning of the generator’s output by
partitioning the latent space and also the auxiliary knowledge of the data class while in
ACGAN [110] the loss of the CGAN is manipulated by adding a classification term which
back-propagates through generator and discriminator.

5.1 Research Objectives

Despite the success of the Conditional GANs, some of these models come with various
disadvantages as some can be versatile to be used with any GAN structure but there is no
mathematical proof showing that the trained generator is able to provide distinct samples for
different classes [110, 111]. Additionally, the classification / regression term is restrained to
the discriminator’s structure [110, 111], and therefore cannot be used with any GAN structure.
Thus, limiting the potential for improvements, as a more optimal classification/regression
network cannot be selected based on different tasks and relying on one structure for multiple
problems. In this work, we seek new methods for training Conditional GANs, which will
improve some of the disadvantages discussed.

5.2 Summary and Discussion of Contributions

The contribution of this work includes two new training methods of Conditional GANs for
classification and regression tasks, which improve the disadvantages discussed earlier. The
first method is called Versatile Auxiliary Classifier with Generative Adversarial Network
(VAC+GAN) applied for classification tasks (binary and multi-class). The initial idea of
VAC+GAN is then extended to regression tasks. This approach is called Versatile Auxiliary
Regression with Generative Adversarial Network (VAR+GAN). The main idea of these
methods is to remove the classification/ regression term from the discriminator’s loss function,
by adding a classification /regression network that back-propagates through the generator.
Also, in the VAR+GAN scheme a new loss function is also proposed. Furthermore, the
mathematical proofs for both methods are provided to show the validity and applicability
of the proposed methods regardless of the GAN’s and classifier’s /regressor’s structure
or/and loss function (Appendix H,section III). The proposed schemes are applied in the
experiments section for binary (classification), multi-class (classification) and regression
problems, showing that using the proposed methods of VAC+GAN and VAR+GAN resulted
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in superior results when compared with similar SoA techniques (Appendix H, section IV).
The implementation of these methods can be found in the GitHub repository of this work at
7.

The main benefit of these methods is their versatility. The proposed methods [39] can
be applied to any GAN structure with any loss function, as well as having the advantage of
choosing any architecture for the classification/ regression network, opposed to other popular
Conditional GAN schemes, where there is no flexibility in selecting the aforementioned
components, as the classification / regression term is restrained to the discriminator’s structure
methods. This give us the ability, to choose the optimal components and optimise our
approach depending on the investigated problem, rather than depend on a predefined scheme
for a variety of problems. In our work [39], the proposed approaches are also validated
through mathematical proofs and not just through experimental results.

5.3 Motivation and Personal Contributions

As discussed in 1.1, there is a need to build and/or improve the tools that generate synthetic
data and/or augment these samples. This could be achieved either using advanced augmenta-
tion techniques, GANs and/or computer simulations. More specifically, the use of conditional
GANs was investigated, for our use case of generating a large synthetic face dataset as
discussed in Chapter 3. In our group (Cognitive, Connected & Computational Imaging
Research - C3I) significant work has been done regarding augmentation techniques [112]
but also GAN related works, in particular, the works [106–108], which focus on improving
Conditional GANs. These [106–108] are part of a cohesive work that remained incomplete.
In addition the initial implementation was in Theano on top of Lasagne, which is currently
outdated and cannot be used easily. Being interested in incorporating these methods as part
of my pipeline in creating a large synthetic facial dataset, I contributed into completing this
work. More specifically my contribution to this research work are:

• Re-writing different parts and merging the three initial works [106–108] into a unified
journal paper

• Being the corresponding author for the submission process

• Re-implementing the proposed methods in a current framework (PyTorch). The
updated implementation of this work can be found at 7.

7Code available at: https://github.com/C3Imaging/Deep-Learning-Techniques/tree/vac_var_gan_pytorch

https://github.com/C3Imaging/Deep-Learning-Techniques/tree/vac_var_gan_pytorch
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Through this work I had the opportunity to collaborate and be mentored from Shabab
Bazrafkan, first author of the work from [39]. This experience was useful in being able to
collaborate/ mentor the following Ph.D. students in continuing the research work of the CI3
group ( which is discussed in 7.3).



Chapter 6

Additional Contributions

In this Chapter, some of my secondary publications are briefly mentioned. Deep Learning
for Consumer Devices and Services is a series of articles in which the main focus of the
discussion is on the deployment of deep learning on consumer devices. This series has
currently four articles, from which I was involved in the following works:

• Corcoran, Peter, Joseph Lemley, Claudia Costache, and Viktor Varkarakis. "Deep
Learning for Consumer Devices and Services 2—AI Gets Embedded at the Edge."
IEEE Consumer Electronics Magazine 8, no. 5 (2019): 10-19, [40], which can be
found in the Appendix I.

• Corcoran, Peter, Claudia Costacke, Viktor Varkarakis, and Joseph Lemley. "Deep
learning for consumer devices and services 3—Getting more from your datasets with
data augmentation." IEEE Consumer Electronics Magazine 9, no. 3 (2020): 48-54,
[41], which can be found in the Appendix J.

In [40], a discussion is presented regarding the shift of AI from the data center into CE
devices—“Edge-AI", practical use cases and as well the challenges of getting these deep
learning solutions into CE devices. In [41], some of the challenges that data acquisitions en-
tailed are presented. Furthermore an initial introduction of basic and advanced augmentation
techniques is given, along with their benefits. In both works [40, 41], practical examples
are borrowed from the research works of [33, 32] which are described in Chapter 2. These
works relate to themes of the articles, as in [33, 32], advanced augmentation techniques are
proposed to overcome the unavailability of data and contribute to a lower-complexity deep
learning solution targeted for deployment in edge-devices .

Despite the fact that, these papers did not propose a new algorithm or methodology,
they have been written in an accessible way and helped to introduce new researchers to the
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subjects discussed. Such articles help promote and explain deep learning related themes to a
broader audience.



Chapter 7

Conclusions and Future Works

In this section a concise summary of the outcomes for the main contributions of this thesis is
given along with future works. Finally, a subsection with a ‘reflective’ discussion is presented
with my personal thoughts related to the contributions of this thesis and the next steps.

7.1 Contribution to Advanced Augmentation Techniques

In Chapter 2, advanced augmentation techniques are proposed that transform high-quality
frontal iris samples to a corresponding set of off-axis data samples. Using the proposed
augmentations, it is possible to overcome the unavailability of data for the task of iris segmen-
tation in AR/VR devices and generate a large number of images that represent the problem
correctly. Thus allowing to train a CNN for this task effectively. As added benefits of using
the proposed augmentation techniques, it is possible not only to increase the number of
available samples but also inject variety and randomness to the new data samples. Util-
ising these components allowed us to train a low complexity network while keeping the
performance comparable to the higher complexity, SoA SPDNN [25]. Thus, showing the
importance of appropriate data augmentation strategies over the selection of heavy-weight
network structures, that allows to design solutions that can be efficiently installed in edge
devices, without losing significant performance (Appendix A).

Future work, with respect to the work presented in Chapter 2, will focus on refinements
in the network design and training/augmentation methodologies to improve performance on
specific AR/VR headsets. Some other practical examples of further research topics include
developing an optimized CNN design based on SPDNN [25] methods with a similar, or
perhaps even smaller number of parameters that can achieve similar segmentation accuracy
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to the proposed network. Additional further work may include the use of the proposed
augmentation techniques [32] for other applications where off-axis regions are noticed.

7.2 Contribution to Validation Methodologies for Synthetic
Data

In Chapter 3, the idea of using AI tools to build large synthetic datasets and reduce/eliminate
the need for real data samples is discussed. This is introduced in the work [34] which
is presented in section 3.2. Swapping real data with synthetic is not straightforward, and
therefore a framework/roadmap is proposed in [34](section 3.2), on the required steps in
order to build and incorporate synthetic datasets effectively into our data/training pipelines.
The first steps can be divided into two main categories:

• Building AI tools, that will generate a large amount of new data and/or augment these
data samples.

• Create methodologies and techniques to validate that the generate data behave like real
ones and also measure whether their use is effective when incorporated in the training
pipelines.

Sections 3.3-3.5, contribute to the category of the validation of the synthetic data. A
methodology is proposed that allows to determine whether or not the synthetic data behave
as the real data, in the context of facial biometrics. More specifically, the identity attribute of
synthetic face samples derived from GANs is explored. The proposed methodology allows
to determine whether individual samples are unique in terms of identity, firstly with respect
to the seed dataset that trains the GAN model and secondly with respect to other synthetic
face samples. Furthermore, techniques are proposed that are able to identify and remove the
samples that aren’t unique (in terms of their identity attribute), thus remaining with validated
synthetic face samples that are considered as unique as data samples gathered from different
real individuals.

The experiments conducted in [35], show that the generated data cannot be used arbi-
trarily in the data/training pipelines, highlighting the need for validation of synthetic data
(Appendix F). Finally, despite the fact that the methodology proposed is applied in the context
of the facial biometrics, a framework is given on how to develop methodologies that validate
the synthetic data for any application (section 3.6).
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In future works the methodology proposed in [35] can be used to generate a seed dataset of
facial data samples that are validated and demonstrably unique in terms of their identity. Given
such a seed dataset it would then be feasible to modify features (e.g. facial lighting,pose,
and expression) of these seed samples to build large synthetic training datasets that could be
used for FR purposes and other applications. Furthermore, using this methodology [35], it
would be interesting to investigate and benchmark different GANs for the task of generating
face samples with a unique identity. Furthermore, utilizing core ideas from the proposed
methodology [35], a loss function can be created that can be used to train GAN models in
order to maximize their ability to generate facial data samples with a unique identity.

7.3 Utilising Synthetic Data in Training Pipelines for Edge-
AI Solution

In Chapter 4, the lack of variation in terms of illumination scenarios in the current face
datasets is observed and the effective use of a SoA relighting technique is explored to aug-
ment accurately face samples with different illumination directions. This allows to study
the effect that the different illumination scenarios have on a SoA FR algorithm, with the
experiments showing that the FR is greatly challenged in such conditions. Utilising the
augmentation technique selected for this work, we are able to significantly increase the
number of face samples with different illumination scenarios, which allows us to fine-tune
the FR model. The experiments showed that when fine-tuned with the appropriate data,
the FR model can be robust in different illumination conditions. Given that, the need for
a pre-processing technique in the FR’s pipeline, that usually normalises samples against
illumination variations, is eliminated and therefore makes it easier for deployment in the latest
neural accelerators (Appendix G). Thus showing how with the use of data augmentation
it is feasible to develop end-to-end solutions that are preferred for installment in neural
accelerators or/and edge devices.

Future works include using the same framework to conduct a broader study on factors that
can affect the FR and investigate the potential of an end-to-end solution which can be robust
to the different factors (such as pose, illumination, expression, etc.), without the need for
pre-processing methods. As a continuation of this work [38], I am collaborating/ mentoring
a Ph.D. student, who is investigating the effect of pose variation on the FR’s performance,
but also the pose and illumination combined, using the framework proposed in [38].
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7.4 Contributions to Training Methodologies for Conditional
GANs

In Chapter 5, the proposed training methods improve upon the drawbacks of conditional
GANs for classification and regression cases (Appendix H). Conditional GANs are an AI
tool that can be used in the GADAFAI framework [34] (Chapter 3), as they generate new
samples, with the added benefit that they are also labelled. The main benefit of these methods
is their versatility. The proposed methods can be applied to any GAN structure with any loss
function, as well as having the advantage of choosing any architecture for the classification/
regression network, opposed to other popular Conditional GAN schemes, where there is
no flexibility in selecting the aforementioned components, as the classification / regression
term is restrained to the discriminator’s structure methods. This give us the ability, to choose
the optimal components and optimise our approach depending on the investigated problem,
rather than depend on a predefined scheme for a variety of problems.

Future works includes extending the implementation for images of higher resolution and
experiment with more GAN architectures. Additional, future studies involve, mixing the
VAC+GAN and VAR+GAN ideas [39] to train conditional generators which accept discrete
and continuous aspects at the same time. For example, in the face generation case one can
generate random faces which belong to a specific gender class and also are fixed onto a
particular landmark set.

7.5 Reflection of the Contributions and Next Steps

During my Ph.D. I was fortunate to witness the growth in the research area of deep learning,
and be part of it. This growth is attributed to the availability of massive data sets (Big
Data), and the arrival of new GPU-based hardware that enables these large data sets to be
processed in reasonable timescales. Initially the approach adopted by researchers to deep
learning can be characterised as model-centric, in which a fixed set of data is provided,
and researchers iterate on the code/model to improve the performance of the deep learning
algorithm [113]. As a product of this approach, SoA neural network architectures were
developed such as ResNet, VGG, Inception and others [114–116]. As deep learning sur-
passed human performance [6, 7], it became more and more popular and was applied in a
variety of fields yielding outstanding results in different machine learning applications [8–18].



7.5 Reflection of the Contributions and Next Steps 49

While being a Ph.D. candidate, I worked closely with the industry partner of my program,
Xperi, in solving industry problems in consumer technologies with the use of deep learning.
Through my collaboration with Xperi and the research that I conducted, some practical
realisation of deep neural network based solutions became more and more apparent. One
of the biggest lesson was to realize the importance of data in the deep learning pipelines.
I realised that the data should not be a considered an auxiliary part (of the deep learning
pipelines) which just helps the network to learn but in fact that the network should serve the
data. As a result, I understood that a neural network solution is only as good as the data used
to train it and that the training data can determine how big the network should be, what kind
of layers should be used, what non-linearity will serve better and what loss function should
be employed in the model.

As a result of the realisations of the importance of data in deep learning pipelines, the
drawbacks of real-world data and the difficulties associated with data acquisition (discussed
in the Introduction, Chapter 1.1), this thesis is contributing to both data augmentation tech-
niques and synthetic data as they can alleviate some of the drawbacks of real-world samples,
eliminate/reduce the need for real-world samples and avoid the challenges related to the data
acquisition process. Data augmentation techniques are proposed that transform the available
data in order to simulate the image characteristics, for a custom problem, based on the a new
camera setup. Utilising the augmentation techniques, enough samples are generated that
represent the problem correctly, eliminating the need for a data acquisition process and allow
to train effectively a CNN solution. With regards to the synthetic data, this thesis contributes
by building AI tools, that will generate a large amount of new data and/or augment these data
samples, so that we can eliminate the need for the real-world samples. Last but not least, this
thesis contributes to creating methodologies validating that the generate data behave like real
ones and also measure whether their use is effective when incorporated in the deep learning
training pipelines.

Currently experts call for a broad shift to a more data-centric approach to deep learning,
in which the code is fixed, and researchers are asked how to change or improve the data to
improve performance [113] and the contributions of this dissertation aligns with this shift
to a data-centric approach to deep learning. As a result of this shift , I expect AI tools that
generate samples to be improved closing the gap to the real data and their use in the deep
learning training pipelines to be increased.
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Finally, I expept the development of deep learning solutions for sensors that can utilise
the synthetic data to their full capacity, despite some of their drawbacks – such as realism
(synthetic data can appear unrealistic, especially for data generated from current computer
simulations). A good example is deep learning solutions for neuromorphic cameras, as these
cameras do not capture images using a shutter as conventional cameras do [117]. Instead,
each pixel inside an event camera operates independently and asynchronously, reporting
changes in brightness as they occur, and staying silent otherwise [117]. Thus in such a case
synthetic data can be very useful as the most important characteristic of the samples captured
from a neuromorphic sensor is the changes that occur in each pixel rather than the whole
image.
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in embedded applications such as augmented and mixed reality headsets.
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1. Introduction

Data augmentation is a common technique in Deep Learn-
ing and is frequently exploited by researchers in order to over-
come the obstacle of limited labelled data. But even where large
datasets are available using appropriate data augmentation tech-
niques can improve the distribution of training samples and
reduce overfitting during training. In turn this increases the gen-
eralization of the trained network and improves network accu-
racy and robustness.

Commonly used data augmentation techniques involve rota-
tion, translation, flipping, re-sizing or affine transformation of
data samples. Other well known techniques include adding noise,
motion or optical blur, or varying image contrast or gamma.
These techniques are computationally inexpensive (Krizhevsky,
Sutskever, & Hinton, 2012) and have been previously used suc-
cessfully to reduce overfitting in training a CNN for the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) (Russakovsky
et al., 2015), and achieved state-of the-art results at that time.

Data augmentation methods have been widely used in deep
learning, and the selection of appropriate data augmentation
strategies can be more important to solving a machine learning
problem than the choice of a particular neural-network struc-
ture (Goodfellow, Bengio, & Courville, 2016; Shijie, Ping, Peiyi, &
Siping, 2017).

∗ Corresponding author.
E-mail addresses: v.varkarakis1@nuigalway.ie (V. Varkarakis),

shabab.bazrafkan@uantwerpen.be (S. Bazrafkan), peter.corcoran@nuigalway.ie
(P. Corcoran).

In this work we focus on presenting and validating a new
data-augmentation technique targeted to optimize the perfor-
mance of off-axis iris segmentation. Our results show promising
levels of accuracy for off-axis segmentation and the resulting
trained neural network has performance that is competitive with
state-of-art frontal iris segmentation networks of much greater
complexity. This illustrates the powerful generalizing capabilities
of our augmentation methodology.

The core of this work takes high-resolution frontal iris datasets
as a starting point for generating a corresponding set of off-axis
data samples. A similar approach can be adopted and applied
to create a set of off-axis data samples from any frontal object
view, but in this work we focus on the problem of off-axis
iris segmentation as this is a new, emerging challenge for user
authentication on Augmented and Mixed reality headsets.

Biometric user authentication is available on consumer de-
vices, including smartphones, using facial recognition (Darwaish,
Moradian, Rahmani, & Knauer, 2014; Samangouei, Patel, & Chel-
lappa, 2017; Vazquez-Fernandez & Gonzalez-Jimenez, 2016) and
fingerprint biometric (Bakir, Chesler, & Torriente, 2016; Cherapau,
Muslukhov, Arachchilage, & Beznosov, 2015; De Luca, Hang, von
Zezschwitz, & Hussmann, 2015; Goode, 2014; Ring, 2015; Tipton,
White II, Sershon, & Choi, 2014). The broad adoption of biometrics
on consumer devices was originally discussed in Corcoran (2013)
with additional discussion of the impacts in several following
articles (Corcoran, 2016, 2017; Corcoran & Costache, 2016). Being
a near ideal biometric, the iris of the human eye is well-suited to
many consumer applications, but iris recognition is traditionally
implemented in a controlled environment and under constrained
acquisition conditions.

https://doi.org/10.1016/j.neunet.2019.07.020
0893-6080/© 2019 Elsevier Ltd. All rights reserved.
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Authentication requirements in consumer devices are evolv-
ing beyond today’s mobile devices. New virtual reality (VR) and
augmented reality (AR) headsets provide a gateway to sophisti-
cated virtual worlds and online services (Kress, Saeedi, & Brac-
de-la Perriere, 2014; Linao, 2016; Timekeeper, 2017). In fact
researchers have been working with Augmented Displays for
more than 20 years (Bhorkar, 2017; Mann, 2001, 2004, 2013;
Mann & Fung, 2002; Starner et al., 1997; Tang, Aimone, Fung,
Marjan, & Mann, 2002). The most recent mass market experiment
with a wearable, augmented/mediated-reality display, that could
be worn on a day-to-day basis, was Google Glass (Ackerman,
2013; Hayes, 2016; Mann, 2013). Glass, as it became known, was
considered to be a game changing technology for a few years
across a wide range of industry sectors (Elise, 2014; Fox & Felkey,
2013; Muensterer, Lacher, Zoeller, Bronstein, & Kübler, 2014;
Schreinemacher, Graafland, & Schijven, 2014). But ultimately, the
product was withdrawn (Cave, 2015).

A key challenge with AR/VR headsets is that, lacking a physical
keyboard they do not provide an intuitive mean of user au-
thentication. The weak authentication available in Glass (Ching &
Singh, 2016; Hayes, 2016; Yadav, Ionascu, Ongole, Roy, & Memon,
2015) subsequently led to various attempts to refine and im-
prove on the basic authentication of the headset (Chan, Halevi,
& Memon, 2015; Chauhan, Asghar, Kâafar, & Mahanti, 2016; Peng
et al., 2017). Ultimately, the device authentication was simply not
adequate and led, in part, to its withdrawal from the market.

This leads us to consider how the next generation of wearable
AR/VR vision systems might implement a more seamless and
intuitive authentication mechanism without sacrificing security
and robustness. The implementation of a face recognition system
is not practical, as the form-factor of an AR/VR head-set does not
allow to capture a full facial image. However, with the reduction
in size and cost of multi-cameras systems on mobile devices
it is now practical to consider that rear-facing (i.e. user-facing)
camera systems can be incorporated into such headsets. One
important driver for rear-facing cameras is the use of eye-tracking
to dynamically determine the wearer’s point of gaze (PoG) which
is important for accurate AR/VR rendering (Cognard, Goncharov,
Devaney, Dainty, & Corcoran, 2018; Rompapas et al., 2017).

Iris authentication is a proven and reliable biometric trait with
high distinctiveness, permanence and performance (Prabhakar,
Pankanti, & Jain, 2003). The use of iris recognition on consumer
devices is explored across multiple works (Corcoran, Bigioi, &
Thavalengal, 2015; Shejin & Corcoran, 2016; Thavalengal, An-
dorko, Drimbarean, Bigioi, & Corcoran, 2015; Thavalengal, Bigioi,
& Corcoran, 2015b) and the importance of accurate iris segmen-
tation, particularly in consumer imaging devices, is identified
as a key challenge (Bazrafkan, Thavalengal, & Corcoran, 2018;
Thavalengal, Bigioi, & Corcoran, 2016). In the iris authentica-
tion workflow, failed segmentations represent the single largest
source of error (Erbilek, Da Costa-Abreu, & Fairhurst, 2012; Hof-
bauer, Alonso-Fernandez, Bigun, & Uhl, 2016; Proença & Alexan-
dre, 2010). In addition to its role in improving the performance
of an iris-based authentication system, the accurate segmentation
of iris regions, can be used successfully for eye-gaze estimation
(Hammal, Massot, Bedoya, & Caplier, 2005). Eye-gaze as men-
tioned is a key element of various user-interface modalities for
wearable AR/VR displays.

1.1. Background to the problem

Data augmentation techniques and their effectiveness in com-
puter vision have been explored in multiple research works.

In Shijie et al. (2017) and Taylor and Nitschke (2017) the effect
of several data augmentation techniques (GAN/WGAN, Flipping,
Cropping, Shifting, PCA jittering, Colour jittering, Noise, Rotation)

is investigated, in improving the performance of a CNN in the
image classification task. Furthermore, researchers have studied
ways to implement and automate different data augmentation
techniques (beyond the traditional techniques) that can boost a
CNN’s performance.

In Perez and Wang (2017) the authors present an approach
called neural augmentation, which allows a neural network to
learn augmentations that will improve the accuracy of a CNN
classifier. Similarly in Cubuk, Zoph, Mane, Vasudevan, and Le
(2018) where their Autoaugment method searches automatically
for improved data augmentation policies in order for a neural
network to yield higher performance in the validation set.

Additionally in Lemley, Bazrafkan, and Corcoran (2017), the
Smart Augmentation method learns suitable augmentations dur-
ing the training of the neural network. The results indicate that
this method could be applied for a range of tasks and that by im-
plementing this augmentation method a small network achieved
better results than those obtained by a much larger network. Fi-
nally the effectiveness of data augmentation is not applicable only
to computer vision problems but also in audio (Salamon & Bello,
2017; Schlüter & Grill, 2015). It is worthwhile to mention that
these methods are solely designed for classification problems and
data augmentation for regression problems are widely applied by
prior knowledge.

As new technologies arise, deep neural networks can provide
solutions to the consequently new challenges that appear, but the
data collection related to the new problems and their annotation
remains the bottleneck of the process. Data augmentation is com-
monly used to boost the performance and the generalization of
the CNNs but with specialized techniques can be utilized to elim-
inate the expensive procedure of the data collection–annotation.
By designing specific data augmentation techniques, it is possible
to simulate the characteristics and features related to the new
challenges and inject them in relation to the problem datasets,
so that a CNN can be efficiently train for the new task without
going through a data acquisition and annotation procedure.

In this case the new challenges arise from the next genera-
tion of wearable AR/VR vision systems which as mentioned in
the introduction will have to implement a more seamless and
intuitive authentication mechanism that is available on today’s
mobile devices. Therefore, the next generation of AR/VR headsets
might incorporate a user-facing camera installed below the eye
level, used for iris authentication or eye-gaze tracking. In such a
case, off-axis iris images can be readily obtained and provide a
suitable biometric for user authentication.

Note that a key challenge for accurate iris recognition is to
accurately segment the iris region (Bazrafkan et al., 2018; Jillela
& Ross, 2013). Given that camera locations for AR/VR devices
must be mounted off-axis, often with an oblique perspective
and close proximity to the observed eye-region the segmentation
process for such off-axis iris regions becomes even more critical
as errors at the segmentation stage are propagated to the feature
extraction and pattern matching stages of the authentication
workflow (Bazrafkan et al., 2018; Hofbauer et al., 2016; Hofbauer,
Alonso-Fernandez, Wild, Bigun, & Uhl, 2014). While there are past
studies on off-axis iris and its effects on recognition rates, the
problem of near-eye iris segmentation is a new problem arising
from the introduction of emerging AR/VR headset technology into
consumer devices and a main obstacle for providing a solution, is
the unavailability of a dataset with iris samples captured from
an user-facing camera on AR/VR devices, but data augmentation
techniques can be utilized to eliminate this obstacle.

Currently, the majority of existing iris recognition systems fol-
low the authentication workflow as (i) image acquisition: an eye
image is acquired using a camera, (ii) iris segmentation: eye/iris
region is located in this image followed by isolating the region
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representing iris. (iii) iris normalization (iv) Feature extraction:
relevant features which represent the uniqueness of the iris pat-
tern is extracted from the iris region and (v) similarity of the two
iris representations is evaluated by pattern matching techniques.
The described workflow is illustrated in Fig. 1, highlighting the
focus of this work, which is on the second step of the iris recog-
nition workflow, the iris segmentation. Specifically, specialized
data augmentation techniques are designed to simulate the iris
images as represented when captured from a user-facing camera
on an AR/VR device along with their ground truth segmentation
map and thus eliminating the expensive process of data acquisi-
tion and annotation. In continuance a low-complexity network is
designed and trained with the augmented samples to successfully
segment the off-axis close proximity iris images. Although this
work is focused solely on the use of deep neural networks for the
off-axis iris segmentation task, it could be widely applicable for
other off-axis region segmentation problems.

1.2. Related literature

The significant success of deep neural networks at vision-
oriented tasks has enabled exceptional advancement in semantic
segmentation. An instance of that is the DeepLab method (Chen,
Papandreou, Kokkinos, Murphy, & Yuille, 2014), where instead of
using deconvolution, they proposed Atrous (‘Holes’) convolution.
The proposed method is combined with fully connected condi-
tional random fields (CRF) and is able to produce semantically
accurate predictions and detailed segmentation maps efficiently.
In a follow-up publication (Chen, Papandreou, Kokkinos, Murphy
and Yuille, 2018), the same team proposed an atrous spatial pyra-
mid pooling (ASPP) module, consisting of multiple parallel atrous
convolutional layers with different sampling rates to improve the
segmentation of objects. The DeepLab team consistently proposes
methods for improving the segmentation standards (Chen, Papan-
dreou, Schroff, & Adam, 2017; Chen, Zhu, Papandreou, Schroff and
Adam, 2018). In another semantic segmentation approach (Jiang,
Yuan, & Wang, 2018), the authors develop an adaptive-depth
neural network to obtain the course semantic segmentation re-
sults. At the same time, the contour information is provided
by a contour-aware network. Both the coarse semantic infor-
mation and contour information are modelled in the same way
and combining this information the semantic labels are given
through global inference based on CRF. Furthermore, semantic
segmentation methods could provide a solution to road detection,
a challenging problem in autonomous driving. In Wang, Gao,
and Yuan (2018), a Siamese neural network is developed which
accepts an RGB image, the semantic contour and the location
prior, at the same time, for the road detection task and the results
demonstrate that the network is able to learn discriminative
features of road boundaries and location prior. More detailed
information for semantic segmentation techniques using deep
learning can be found in Garcia-Garcia, Orts-Escolano, Oprea,
Villena-Martinez, and Garcia-Rodriguez (2017) and Lateef and
Ruichek (2019).

As the work is focused on the iris segmentation task, a quick
overview of similar works in the literature is outlined below.

1.2.1. Frontal iris segmentation
The number of methods in the literature regarding iris seg-

mentation shows that this topic has been thoroughly studied
but remains an active area of research. When referring to iris
segmentation algorithms, a good starting point is two highly cited
works in the literature: Daugman (2009) and Wildes (1997). In
the iris matching algorithms developed in these research papers
iris segmentation is achieved by fitting a circular contour to
the iris and pupil. These two methods differ mostly in the way

they define the circular boundaries on the image information.
Daugman’s integrodifferential operator searches the entire image
pixel by pixel to find the best circular path for the iris and pupil
boundaries. While Wilde, in order to fit the circular contour,
combines an edge detector and Hough transform.

In continuance approaches were implemented in an attempt
to speed up the process. For example, Liu, Yuan, Zhu, and Cui
(2003), uses a Canny edge detector with a Hough transform to
provide a fast localization of the iris edges with the assumption
that the iris texture is located between two homocentric circles.
Several other methods were developed based on Wilde’s and
Daugman’s implementations such as: Huang’s (Huang, Luo, &
Chen, 2002), Khan’s (Khan et al., 2011), He’s and Shi’s (He & Shi,
2006), Lili’s and Mei’s (Lili & Mei, 2005).

As noted, the aforementioned methods assume the circular-
ity of the iris outer boundary and pupil boundaries. However,
Daugman in his follow up work (Daugman, 2007) shows that
a non-circularity applies to the iris and pupil contour which
when defined precisely has a significant influence on recogni-
tion performance. Therefore, adopts an active contour or snake
model to segment the iris. Furthermore, Shah and Ross (2009)
implemented a geodesic active contour to capture the iris texture
and experimental result on non-ideal iris images designates the
effectiveness of this method. Koh, Govindaraju, and Chaudhary
(2010) similarly implemented an active contour model which
was combined with the Hough transform for iris localization.
In another approach, Broussard and Ives (2009), used a feature
saliency algorithm to identify the measurements that could define
the iris boundary. The selected measurements are fed to a shallow
artificial neural network in order to accurately predict the outer
iris boundary. A detailed overview of the iris segmentation liter-
ature can be found in Bowyer, Hollingsworth, and Flynn (2008,
2013), as well as in Jan (2017) where approaches for segmenting
non-ideal iris images are reviewed.

1.2.2. Off-axis iris segmentation
A subsection of non-ideal iris images includes the off-axis iris

images. Localizing the iris in this type of images has always been a
challenge for researchers. In Dorairaj, Schmid, and Fahmy (2005),
Dorairaj assumes that a rough estimation of the angle rotation is
available in order to deal with the off-axis iris problem. Two dif-
ferent objective functions are used to refine the estimate. When
two images are available from the same iris class, the ‘‘ideal’’
and off-axis iris image, the Hamming distance between the ICA
coefficients of the two images is calculated. In the case that only
the off-axis image is available, Daugman’s integro-differential
operator is used. A projective transformation is applied to rotate
the off-axis image into a frontal view image once the angle is
estimated. In the next step, the image is enhanced and segmented
with the integro-differential operator. In another approach, Li
in Li (2006) first fits an ellipse to the pupil boundaries. After
that based on the information that has been retrieved from the
ellipse fitting, rotation and scaling are applied to the image, to
restore the straight position of the ellipse and the circularity of
the pupil. The segmentation of iris is then operated by Daugman’s
like algorithms. A similar approach can be found in Abhyankar,
Hornak, and Schuckers (2005) where the use of projective and
affine transformation is explored in order to bring the off-axis iris
images and match them with frontal iris images. This approach
comes with some serious downsides, such as the blurring of the
iris outer boundaries and the fact that a prior knowledge of the
angle is required for the transformation. Finally, in Abhyankar and
Schuckers (2006) the use of active shape models to retrieve the
elliptical boundaries of the off-axis iris is investigated.
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Fig. 1. Iris authentication workflow. In practical implementation the bulk of authentications errors are due to incorrect segmentations (Erbilek et al., 2012; Hofbauer
et al., 2016; Proença & Alexandre, 2010).

1.2.3. Deep learning approaches for iris segmentation
Liu, in Liu et al. (2016) proposed two CNN approaches to seg-

ment noisy iris images acquired under unconstrained conditions.
In the first approach called hierarchical convolutional neural net-
works (HCNNs), three patches taken from different scales of the
same image are used as input. The HCNN consists of three similar
blocks, a combination of convolutional and pooling layers that
are merged together into a fully connected layer. In the second
approach, 31 convolutional layers and 6 pooling layers are used
to compose the multi-scale fully convolutional network (MFCNs).
Both models are end-to-end, with no requirement for pre- or
post-processing of the image. Arsalan et al. (2017), introduced
a two-stage iris segmentation method. The first stage includes
a pre-processing of the image and the use of a modified Hough
Transform to identify the region of interest (ROI). In the second
stage, a mask of [21 × 21] pixels, based on the ROI defined in
the previous stage, is fed to a pre-trained VGG-face model which
classifies the pixels as iris or non-iris. In a follow up work which is
focused on segmenting low quality iris images, Arsalan in Arsalan
et al. (2018), proposed a densely connected fully convolutional
network (IrisDenseNet), consisting of two main components: a
densely connected encoder and a SegNet decoder. In a similar
work, Bazrafkan in Bazrafkan et al. (2018), presented a network
design focused on segmenting iris of inferior quality. Four dif-
ferent end-to-end fully convolutional networks are merged into
a single model using a method known as Semi Parallel Deep
Neural Networks (SPDNN). In this way, the final model benefits
from each of the four distinct network designs. Furthermore from
a more medical aspect in Lakra, Tripathi, Keshari, Vatsa, and
Singh (2018), utilizes a DenseNet-121 which has four convolution
blocks to be able to segment iris with cataract or post cataract
surgery. Finally, since the existence of a large labelled dataset
is a prerequisite in order to implement a convolutional neural
network approach, Jalilian in Jalilian, Uhl, and Kwitt (2017) to
overcome this obstacle, introduced a domain adaption method so
that a CNN for iris segmentation could be trained with a limited
data.

1.3. Contributions

The focus of this work is to improve the segmentation of
off-axis iris images originating from the unconstrained conditions
of a user-facing camera on wearable AR/VR device.

The model proposed is an end to end deep neural network
which accepts an off-axis eye-region image and generates the
corresponding binary segmentation map for the iris region as
output. Performance evaluation of the proposed model shows
advantages over recent iris segmentation techniques in the liter-
ature which together with its simple, yet efficient design makes
it well-suited for deployment in wearable AR/VR devices.

Three noteworthy contributions are presented in this work.

1. Specialized data augmentation methods that generate dis-
torted iris images of size and quality typical of the
user-facing camera employed on today’s wearable AR/VR
headsets. These are derived from a high-quality iris dataset
together with a corresponding ground truth.

2. By utilizing the data augmentation techniques and produc-
ing a large number of representative data, it enabled us
to propose an improved low complexity neural network
design for the off-axis iris segmentation task with reduced
memory and computational requirements in comparison
with other deep learning state-of-the-art iris segmentation
techniques while achieving equivalent performance.

3. A thorough evaluation of the proposed segmentation model
is presented on several well-known public iris datasets. The
presented method is compared with state-of-the-art iris
segmentation techniques.

1.4. Foundation methods

1.4.1. Data augmentation
Despite the large amount of data available today, there are

many problems where data collection and annotation poses chal-
lenges and thus only small datasets are publicly available. In some
cases, the data contains sensitive information such as in medical
applications or due to privacy/legislations reasons, data is not
easily accessible. Also, with the technology rapidly growing, new
problems arise frequently and in many cases it takes a while
before a proper dataset is built and made publicly available.
The problem investigated in this work is a clear example of
the later situation. Therefore, data augmentation can be utilized
not only to increase the performance of a CNN, but also to
overcome the non-availability of data due to the aforementioned
reasons. Applying the appropriate augmentation techniques to
available datasets allows to investigate a problem where there
are currently no existing public datasets and where the collec-
tion of a large training dataset poses significant challenges. Data
augmentation can simulate the features and characteristics of
such problems without the time, expense and data-collection and
annotation challenges associated with building a dataset of many
thousands of individual subjects.

In regard to our problem the main focus of the proposed
augmentation techniques, is to simulate off-axis iris images as
captured by a user-facing camera on AR/VR device, as to the
best of our knowledge such dataset is not available. As men-
tioned, a possible location of the user-facing camera utilized for
iris recognition and eye-gaze is below the eye. In that case the
iris samples obtained will be off-axis in the horizontal and the
vertical plane. Main characteristics of the iris images taken with
a head-mounted device are their elliptical shape along with the
fact that are not centred, in contrast with frontal iris images
where the iris is most of the time centred and a more circular
shape is obtained. Therefore, the augmentation techniques in this
work are focused in achieving the described representation. In
addition, a secondary goal of our augmentation is to introduce
effects of images when captured in real-life, where the samples
are not obtained in constrained conditions and a lower quality is
reported. These augmentation techniques are focused on reducing
the contrast between the iris and the pupil as well as adding noise
to the samples.
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1.4.2. Network design
In this work a low complexity network, targeted for deploy-

ment in embedded devices is designed and trained to generate
the segmentation map for low quality off-axis iris images.

In order to achieve high performance results, when a network
is designed, large structures with high capacity are favoured.
That is translated into CNNs containing millions of parameters,
which to be used require large memory and high operation cost.
Therefore, executing deep CNNs requires significant hardware
resources which is a limited specification in many computational
platforms.

The number of parameters in the proposed network is signifi-
cantly lower compared to the parameters of other deep learning
approaches designed for the iris segmentation task. Thus, making
the proposed network faster and with reduced memory require-
ments, while attaining high performance results in producing
the segmentation map for off-axis iris images of low quality as
represented when captured by a user-facing camera on AR/VR
headset and therefore well-suited for deployment in such devices.

The rest of the paper is arranged as follows: In Section 2, the
datasets used are presented along with a detailed description of
the augmentation techniques. In Section 3, the network design
and training are explained. In Section 4, the results are illus-
trated and in Section 5, the numerical evaluation of the proposed
method and its comparisons with state-of-the-art segmentation
techniques are presented.

Finally, it should be remarked that preliminary results from
this research were first presented in Varkarakis, Bazrafkan, and
Corcoran (2018). This article builds on that earlier work with
more detailed and extensive experimental verifications, exhaus-
tive description of the augmentation techniques and direct com-
parison on off-axis and frontal iris samples with state-of-the-art
iris segmentation techniques.

2. Datasets and augmentation methodology overview

In this work, three datasets are utilized. CASIA Thousand (‘‘CA-
SIA Iris Image Database’’, 2019) and Bath800 (Rakshit, 2007) are
used during the training and testing stages. UBIRIS v2 (Proenca,
Filipe, Santos, Oliveira, & Alexandre, 2010) is used for tuning and
testing. Two types of augmentation methods are described below.
The first type is concentrated on adding real-world condition
effects to the iris images, while the second is focused on augment-
ing the images so that they represent off-axis iris images. The
combination of these two types of augmentation methods results
in iris images as captured by an user-facing camera on AR/VR
device. Below, the datasets used are presented along with the
production of their ground truth, and finally, the augmentation
techniques are explained.

2.1. Datasets

CASIA-Iris-Thousand is a subset of CASIA-Iris V4 dataset. This
subset contains 20000 iris images from 1000 subjects. The iris
images are constrained, high quality and high contrast. Bath800
dataset is made of 31997 images taken from 800 individuals.
The samples similarly to the CASIA Thousand are of high quality
and high contrast. Both datasets consist of Near InfraRed (NIR)
samples. Finally, UBIRIS v2 dataset includes 11102 iris images
from 261 subjects, captured in visible wavelength. The samples
are of low-quality as they are taken under unconstrained condi-
tions. More detailed description of CASIA Thousand, Bath800 and
UBIRIS v2 can be found in Bazrafkan et al. (2018). Samples from
the datasets used in this work are shown in Figs. 2–4.

2.2. Ground truth

Bath800 and CASIA Thousand are not provided with the seg-
mentation ground truth. However, these datasets as mentioned
above contain images of high quality, high contrast and are cap-
tured under constrained conditions. In this work, the binary iris
map for these datasets is produced using the commercial iris
segmentation solution MIRLIN (‘‘MIRLIN’’, 2019). The obtained
segmentation map is considered in this work as the ground truth.
The selection of the segmentation algorithm is based on the avail-
ability as well as its performance on large-scale iris evaluations
(Quinn, Grother, Ngan, & Matey, 2013). The same segmentation
solution was also adopted in Bazrafkan et al. (2018). The low-
resolution segmentations for Bath800 and CASIA Thousand are
publicly available.1

Regarding UBIRIS v2, the manual segmentation generated by
WaveLab2 (WaveLab, 2019), available in IRISSEG-EP dataset
(Hofbauer et al., 2014), is used. The manual segmentation map
is not available for all the samples of the dataset. Segmentation
of only 2250 images from 50 individuals is provided and therefore
only these are used in this work. Segmentations examples derived
from these datasets are shown in Figs. 5–7.

2.3. Data augmentation

In order to accurately train a deep neural network, a large
number of labelled training samples are required. These samples
should correctly characterize the imaging problem so that it
enables the deep learning process to train an accurate model.
To the extent of our knowledge, there is not available a dataset
with iris samples captured from a user-facing camera on AR/VR
device. Even if such datasets were available it would require an
accurately marked segmentation ground truth – a task which
poses new problems over more conventional frontal iris images.
Thus, in order to obtain a large number of labelled samples to
enable the training of a DNN for AR/VR iris segmentation task,
some specialized augmentations of existing datasets are required.
To find the best augmentations for the iris images, precise obser-
vations have been made on iris images obtained by a user-facing
camera on head-mounted displays.

The augmentation techniques are divided into two categories.
The first category of augmentation techniques is focused on rep-
resenting real-life scenarios where low-quality images are ob-
tained. Based on research that has been done in Thavalengal
et al. (2015b) and Thavalengal, Bigioi, and Corcoran (2015a), the
difference between high-quality constrained iris images and wild
ones is linked to contrast, blurring, and shadows. Consequently,
to simulate the effects of real-world conditions in iris images the
contrast is changed, motion blurring and shadows are added to
the images. The augmentation techniques used to deteriorate the
image quality and simulate unconstrained conditions are derived
from Bazrafkan et al. (2018). The objective of the second cate-
gory’s augmentation techniques is to simulate the representation
of iris images as captured by a user-facing camera on an AR/VR
device. This representation includes off-axis iris images mainly of
elliptical shape and not centred in the image.

The augmentation techniques are detailed in Sections 2.3.1
and 2.3.2. The workflow that is followed for the augmentation
of the datasets is described in Section 2.3.3. In this work all the
samples are resized to [120 × 160] using bilinear interpolation.
Smaller resolution samples are preferred rather than larger ones
as it accelerates the training of the deep neural network.

1 https://Goo.gl/JVkSyG.
2 http://www.wavelab.at/sources/Hofbauer14b/.
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Fig. 2. Eye socket samples from Bath800 dataset.

Fig. 3. Eye socket samples from CASIA Thousand dataset.

Fig. 4. Eye socket samples from UBIRIS v2 dataset.

Fig. 5. Bath800 automatic segmentation results.

Fig. 6. CASIA Thousand automatic segmentation results.

Fig. 7. UBIRIS v2 manual segmentation results.

2.3.1. Data augmentation: Simulating unconstrained conditions
The first type of augmentation techniques is applied to ensure

that the samples used to train the network represent real-life sce-
narios. The distribution of the input data plays a vital role in what
the network learns and how it will behave during the testing
stage but also in unconstrained situations. As mentioned earlier,
to simulate real-life captured iris images of low quality, the con-
trast of the samples is changed, blurring and shadows are added
to the samples with the following augmentation techniques. The
techniques mentioned below are derived from Bazrafkan et al.

(2018) and used with slight changes. The original code of these
augmentation techniques is available.3

2.3.1.1. Augmentation 1: Image contrast. The iris images captured
by an AR/VR device in real-world conditions compared to the
high-quality, high-resolution NIR iris images acquired in con-
strained conditions have significant differences. The differences
are with regard to the amount of contrast inside and outside

3 https://github.com/C3Imaging/Deep-Learning-Techniques/blob/Iris_SegNet/
DBaugmentation/DBaug.m.
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Fig. 8. For inside the iris region, the contrast is reduced, and the region is getting
darker. The outside of iris is altered by decreasing the contrast.

the iris region as in unconstrained scenarios the samples are
suffering from low contrast. Another difference noted is the in-
tensity properties of the low-quality samples inside and outside
the iris region. The region inside the iris is darker than the same
region in high-quality samples. For the outside region of the iris
the level of brightness cannot be categorized as it could differ
from overexposed and strongly bright till very dark. To bring
these properties to high-quality images, the contrast inside and
outside the iris region is modified separately. This is achieved
with the use of histogram mapping. The following histogram
mapping equations are used to reduce the contrast of the iris
images. Eq. (1) is used for the region outside the iris and (2) is
used for the region inside the iris.

yout = norm(tanh
(
3 ∗

( x
255

− 0.5
))

+ U(−0.2, 0.3)) ∗ 255 (1)

yin = norm(tanh
(
3 ∗

( x
255

− 0.45
))

− U(0, 0.2)) ∗ 255 (2)

where x is the input intensity in the range [0, 255], y is the output
intensity in the same range, U(a, b) is the Uniform distribution
between a and b, and the norm function normalize the output be-
tween 0 and 1. As mentioned above the outside and inside regions
of iris suffer from low contrast, but the brightness differs. For the
region outside of the iris, the histogram mapping with Eq. (1) can
result in bright, dark, or normally exposed low contrast outputs.
For the region inside the iris, where Eq. (2) is used, the contrast
is reduced while the brightness of the iris region is reduced as
well. Different equations are used to reduce the contrast in the
inside and outside regions of the iris so that variety is obtained.
An example of this step is shown in Fig. 8.

2.3.1.2. Augmentation 2: Motion blur. Wearing AR/VR devices,
head movements are inevitable. These movements can cause mo-
tion blur. Therefore, to mimic these situations and train the model
in order to be efficient in these cases, motion blurring has to be
introduced to the training images. In order to include this effect,
the image is passed through a motion blur filter, applying the
linear camera motion by U(3, 7) pixels in the direction U(−π, π ),
where U(a, b) is the Uniform distribution between a and b. The
low contrast image after applying motion blur is shown in Fig. 9.

2.3.1.3. Augmentation 3: Shadowing. In unconstrained conditions,
the illuminations scenarios vary. One main effect produced by
different illumination directions is shadows. In order to add this
effect, the iris images were multiplied with the following shadow

Fig. 9. Applying motion blur in a random direction to the low contrast image.

Fig. 10. Shadowing applied to low contrast blurred image.

function:

y = norm(tanh(2∗ randSign∗ (x−0.5+U(−0.3, 0.3))))+U(0, 0.1)
(3)

where x is the dummy variable for image column number and y
is the coefficient for intensity, U(a, b) is the Uniform distribution
between a and b, the norm function normalizes the output be-
tween 0 and 1, and the randSign generates a random coefficient
in the set {−1, 1} which determines the direction of the shadow.
The final image after applying shadowing is given in Fig. 10.

The segmentation map for these augmented samples is the
same as the original segmentation ground truth as the structure
and position of the iris remain unchanged.

More detailed information regarding the augmentation tech-
niques simulating unconstrained conditions can be found in
Bazrafkan et al. (2018) from where are originated.

2.3.2. Off-axis, near-perspective iris data augmentation
The second category contains two augmentation techniques,

which their goal as mentioned previously is to generate iris
images as they appear when acquired by a user-facing camera on
AR/VR device. As noted in the introduction, a possible location of
the camera used for obtaining an iris image that is to be used
in iris recognition or eye-gaze is below the eye. Therefore, the
iris images captured are off-axis in both horizontal and vertical
planes. The augmentation techniques described below are spe-
cialized to produce such off-axis iris images. Furthermore, the
combination of the two augmentation techniques and the multi-
ple ways and different volume that each technique can be applied
to an image, it allows to represent the iris regions as captured
from a user-facing camera on AR/VR device from many varying
perspectives, as multiple AR/VR headsets exist and each will
locate the camera in a different position. This is a desired goal as it
facilitates the training of generic DNN that is able to segment the
off-axis iris region from user-facing cameras installed on AR/VR
devices and being invariant of the camera’s different set-ups. The
code for these augmentation techniques is also available.4

2.3.2.1. Augmentation 4: Spatial stretching/contracting. The iris
images when captured from an AR/VR, are characterized as dis-
torted and with an elliptical shape. In addition, the iris is not at
the centre of the image as usual. In order to generate iris images
with these properties, the samples are warped by applying a
spatial stretching/contracting to the iris images. The stretching
is linearly applied to the images. The stretching is achieved by

4 https://github.com/C3Imaging/Deep-Learning-Techniques/tree/Off_axis_Iris.
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Fig. 11. Workflow of spatial stretching/contracting, illustrating the mapping of columns/rows to a new position based on y[j].

mapping every column/row of the image to a new position given
from y[j] as shown in Fig. 11.

The equations below illustrate how y[j] is calculated for
columns/rows:

λ = U (2, 17) (4)

k [i] =

( 1
λ

)
− λ

s − 1
∗ t [i] + λ, i ∈ [1, s] (5)

k [i] =

(λ−1)
λ

s − 1
∗ t [i] + λ, i ∈ [1, s] (6)

a = a + k [j] , j ∈ [2, s] (7)

y [j] = Round (a ∗ 5) , j ∈ [2, s] , y [1] = 1 (8)

where s is the length of the columns or rows of the original image
depending on where the distortion is applied, t[i] is a vector
which includes all the integer values [0, s−1] in ascending order
and U(a, b) is the Uniform distribution between a and b.

The first column/row of the original image is mapped on the
first column/row of the stretched image. The following
columns/rows are then mapped in the position determined by
the value of y[j]. Depending on which is the desired direction for
stretching the image, Eq. (5) or (6) is used in calculating y[j].

The combination of (5) and (6) makes it possible to stretch
the images in four main directions. If (5) is used for mapping the
columns and the rows, the image will be stretched in the right
and down direction. In case (6) is used for both columns and rows,
the image is stretched at left and up. Using (5) when mapping the
columns and the (6) when mapping the rows of the image, will
result in stretching the image to the right and up direction. Finally
mapping the columns using (6) and the rows using (5), the image
will be stretched to the left and down direction. Each direction
has the same probability of being selected when the image is
stretched. For each distortion and each direction, the amount
of stretching applied to the images differs on every occasion as
well as the volume of the stretching applied to the columns and
the rows of the image is different, so that variation is injected
to the augmented dataset. The stretching is applied at first to
the columns of the image. The void spaces that are created, are
interpolated with a weighted nearest neighbour method, which
is explained by the following equations:

c [i] =

f (y[j])
i−y[j] +

f (y[j+1])
y[j+1]−i

1
i−y[j] +

1
y[j+1]−i

, j ∈ [1, 160] , i ∈ (y[j], y[j + 1]) (9)

where f (x) is a function that returns the values of the xth col-
umn/row, c[i] represents the values of the ith column/row of the
stretched image. The values of y[j] and y[j + 1] are the positions
where the columns or rows of the stretched image have values
and the columns/rows that need to be interpolated are located
between these two positions. Finally, the image is contracted as
the image is resized to the original resolution [120 × 160] using
bicubic interpolation. The same process is then applied to the
rows of the image. The same workflow is used for the ground
truth segmentation map in order to obtain the segmentation map
for the augmented sample.

The described workflow for the spatial stretching/contracting
of an image is illustrated in Fig. 12. Applying spatial stretch-
ing/contracting results in an iris region that is not located in the
centre of the image and with non-circular iris-pupil structures,
as shown in Fig. 13 which is a usual case in iris images acquired
from a user-facing camera on AR/VR headsets.

2.3.2.2. Augmentation 5: Image tilting. A possible location of the
camera used for capturing the iris images, as mentioned in the
introduction, will be below the eye. Therefore, the iris images
should be representing samples which when captured, the cam-
era is positioned below the eye level. To achieve that effect and
also give an elliptical shape to the iris, in this second augmenta-
tion technique the samples are tilted in two directions: up and
left, up and right.

A projective transformation is applied to the images. This
transformation maps the top vertices of the image to a new pair
of points as illustrated in Fig. 14. The values from Fig. 14, a, b, c ,
and d are randomly generated between a range of values, so the
image is tilted in the desired direction with variation. When the
image is tilted up and left the values of a, b are in U(0.15, 0.45),
c in U(0.9, 1) and d in U(0, 0.1). When the image is tilted up and
right, the values of a, b are in U(0, 0.1), c is in U(0.55, 1) and d is in
U(0.15, 0.45), where U(a, b) represents the Uniform distribution
between a and b. During this transformation as the image shrinks
the interpolation used is the nearest-neighbour. The probability
of the images being tilted in a direction between the two options
(up and left/up and right) is the same.

As shown in Fig. 14, when the transformation is applied, while
mapping the top vertices, to the a, b, c and d points, the image is
compressed at the boundaries. Since the resolution of the image
has to stay unchanged, the void spaces around boundaries should
be filled to avoid sharp edges in the image. Since the void spaces
are at the boundaries of the image, there is not a direct way
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Fig. 12. Workflow of spatial stretching/contracting. For this transformation Eqs. (6) was used to map the columns and the rows of image and direct the image in
up and left direction.

Fig. 13. Spatial stretched/contracted (warped) samples and their corresponding segmentation map.
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Fig. 14. Tilt transformation.

to apply interpolation. Therefore, the value from the edges of
the tilted image is extended for each column up to the image
boundary. The same process is applied to the image rows. After
this process has been applied in both columns and rows, the
average value is assigned to the void spaces. Finally, in order to
smooth the interpolated areas of the image, a gaussian 3 × 3 filter
with standard deviation σ equal to 2 is applied to this region.

The described workflow for tilting an image is shown in
Fig. 15, and in Fig. 16 samples are shown where the tilting
transformation is applied. To obtain the segmentation map for
the augmented samples, the same workflow is applied to the
segmentation ground truth with the only difference being that
the void spaces created are filled with black.

2.3.3. Dataset preparation
2.3.3.1. Workflow of combining the augmentations techniques. The
augmentation techniques are combined in various ways so that
the dataset represents a generalized and realistic scenario and as
a result the trained model can be robust and perform well in all
the different conditions that one can encounter with iris images
acquired from a user-facing camera on AR/VR device.

The augmentation techniques are mixed in three ways. Sam-
ples are augmented by only using the methods for simulating
the off-axis, near-perspective iris images. At first, the spatial
stretching/contracting transformation is applied to an image with
50% probability. In the next step, the tilting transformation is
applied to the rest of the samples that the first transformation
was not applied to. In addition to these, for an image that spatial
stretching/contracting is applied to in the first step, there is a 50%
probability that tilting is applied afterwards. In the second way,
the samples are augmented using only the methods for simulat-
ing unconstrained conditions. At first, the contrast of all the iris
images is modified as explained. Afterwards, all the images are
passed through the motion filter, and finally, the technique used
to introduce shadows is applied to the image. The probability that
shadows are added to an image is 50%. Thirdly, the techniques
from the two augmentation categories are combined. Initially, the
techniques simulating the off-axis, near perspective iris images
are applied to an image based on the augmentation workflow
described above. Later the same image is processed using the
techniques simulating unconstrained conditions, including con-
trast reduction, motion blurring, and shadowing. In Fig. 17, the
workflow explained is illustrated.

The augmented samples simulate iris images captured using
a user-facing camera on AR/VR device, frontal iris images af-
fected by unconstrained conditions and AR/VR images affected by
unconstrained conditions. Bath800 and CASIA Thousand are aug-
mented with all three combinations of the augmentation tech-
niques described. UBIRIS v2 was augmented only by using the
augmentation techniques simulating iris images as represented
by an AR/VR device. The samples of this dataset as mentioned
previously are captured in unconstrained conditions, and there-
fore it will be redundant to make use of the augmentation tech-
niques that simulate real-world conditions as they already exist
in the dataset of UBIRIS v2.

2.3.3.2. Dataset analysis. In this section a further analysis of the
workflow used to combine the augmentation techniques is pre-
sented, in order to provide a better insight of the dataset created
and used in this work.

As mentioned above, the workflow was designed in that way
so that the dataset created to train the network represents a
generalized and realistic problem. By using the three combina-
tions of the augmentation techniques, three different subsets are
created as shown in Fig. 17, that form the main dataset used
in this work. The first combination as described earlier uses
only the augmentation techniques designed to simulate off-axis
iris images. This process is used twice for each dataset creating
the off-axis iris subset. The second combination uses only the
augmentation techniques that simulate unconstrained conditions.
This process is used once for each dataset consisting thus the un-
constrained condition subset. Finally, the third combination, uses
the augmentation techniques simulating the off-axis iris images
and unconstrained conditions. This process is used twice for each
dataset formulating the off-axis & unconstrained condition iris
subset. Bath800 and CASIA Thousand combined consist of around
50.000 samples. With the use of the described workflow, 250.000
augmented samples are created. The off-axis iris subset is 100.000
samples, the unconstrained condition subset is 50.000 samples
and 100.000 more samples from the unconstrained condition
and off-axis iris subset. With the addition of the 50.000 original
samples from Bath800 and CASIA Thousand, the final dataset
used consists of 300.000 samples. In Table 1, a further analysis
is presented describing the percentage of samples, with each
augmentation technique or their combination, to the dataset.

Regarding the UBIRIS v2 as stated above, it consists of samples
acquired in unconstrained conditions and therefore there is not
a necessity of augmenting the samples with the augmentation
techniques simulating unconstrained conditions. The samples of
UBIRIS v2 are augmented only with the use of the augmentation
techniques simulating off-axis iris images. This procedure is op-
erated twice, creating the off-axis iris subset of UBIRIS v2 which
along with the original samples are used in this work.

Finally, the element of randomness introduced in the aug-
mentation techniques as well as at the way they are combined
as explained in the workflow plays an important role to the
augmentation process. One instance of that is that the direction
of the shadowing, stretching or tilting is chosen randomly for
each image. Also, the volume that an augmentation technique
is applied to an image is chosen randomly between a range of
values. Additionally, as illustrated in the workflow a sample is
augmented with one or more augmentation techniques combined
in different ways. These three approaches make it possible that
a variety of conditions are introduced into the dataset leading
to a generalized solution and each time producing unique sam-
ples with different characteristics and distributions. Examples of
augmented samples with the use of all three different workflow
combinations and their corresponding ground truth are given in
Fig. 18.

3. Network design & training

In this section the design of the network is presented along
with a detailed comparison of its complexity with other CNN
methods designed for the iris segmentation task followed by the
procedure of training and fine-tuning.

3.1. Network design

For the segmentation task, a fully convolutional network in-
spired by Bazrafkan et al. (2018) is used, consisting of 10 layers.
The network starts with a 3 × 3 kernel mapping the input (1
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Fig. 15. Workflow of image tilting.

Fig. 16. Tilted samples and their corresponding segmentation map.

channel) on the first convolutional hidden layer which consists
of 32 channels using a rectified linear unit (ReLu) as an activation
function. The kernel size remains the same throughout the hidden
convolutional layers, as well as, the number of channels and their
activation function. Finally, at the output layer (1 channel), the
kernel size is 3 × 3, but in this layer, the sigmoid activation
function is used. Pooling layers were not used as it was observed
that the performance of the network’s output was decreasing. The
design of the network is illustrated in Fig. 19.

3.2. Complexity comparison of CNNs for iris segmentation

In this section, the complexity of several CNNs for iris seg-
mentation will be compared with the proposed method. When
referred to the complexity of a CNN, the main characteristics
that one shall investigate is the number of parameters, the mem-
ory requirements for storing the parameters and the number of
multiply-accumulate operations (MAC).
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Fig. 17. Workflow of augmentation techniques.

Fig. 18. Augmented samples and their corresponding ground truth.
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Table 1
Percentage (%) of images with each augmentation technique or combination in the dataset. In this table the
augmentation techniques are referred as Contrast reduction: Contrast, Motion blur: Blur, Shadows: Shadows, Spatial
stretching/contracting: Warp and Tilting: Tilt.
Augmentation techniques % of images Dataset

Contrast & Blur ∼8.5% Unconstrained condition subset
Contrast & Blur & Shadows ∼8.5%

Warp ∼8.5% Off-axis subsetTilt ∼16.5%
Warp & Tilt ∼8.5%

Warp & Contrast & Blur ∼4% Off-axis
&
Unconstrained conditions subset

Tilt & Contrast & Blur ∼8.5%
Tilt & Contrast & Blur & Shadows ∼8.5%
Warp & Contrast & Blur & Shadows ∼4%
Warp & Tilt & Contrast & Blur ∼4%
Warp & Tilt & Contrast & Blur & Shadows ∼4%

No augmentation ∼16.5% Original subset

Fig. 19. Network Design.

It is common practice that when an architecture of CNN is
designed, that deep and large structures are favoured thus in-
creasing the possibility of solving the investigated problem or
promise higher performance from a smaller size CNN. Selecting a
CNN with a deeper structure rather than a more compact struc-
ture, comes with some drawbacks such as increased training and
execution time as well as generous memory requirements. There
are cases, such as the proposed CNN, where a low complexity
network can produce similar results as a high complexity network
and as extension make it feasible to eliminate the downsides of
a large CNN.

The proposed CNN consists of less than 75k parameters, re-
quiring only 0.28 MB of memory to store the parameters and
1426.64M MAC for an input image with dimensions [120×160×

1] [width × height × channels]. The SPDNN (Bazrafkan et al.,
2018) consist of more than 1M parameters, requiring 35.26 MB
to store them and 13536.22M MAC for a smaller input image
of dimensions [98 × 128 × 1]. Another high performance deep
learning method, MFCNs (Liu et al., 2016) is of high complexity
and memory requirements, with 21M parameters, needing 82.56
MB of memory to store them. The input dimension and MAC in
this structure are not specified as the input image dimension is
not fixed and the number of MAC is related to the dimension of
the input image. The complexity characteristics of the methods
mentioned are shown in Table 2.

In this section is presented the low complexity proposed net-
work, with reduced memory requirements resulting into a more
efficient solution which is compatible for deployment in embed-
ded applications such as AR/VR headsets. Furthermore, in the
evaluation of the proposed network in Section 5, is demonstrated
that the low complexity network proposed in this work can
obtain high performance iris segmentation results in both off-
axis and frontal samples. The proposed CNN is outperforming

Table 2
Complexity of CNNs for iris segmentation.
Metrics Methods

Proposed
method

SPDNN MFCNs

Total no. parameters 74.593 1.101.851 21.643.596
Parameters size 0.28 MB 35.26 MB 82.56 MB

Input size dimensions
(width × height × channels)

120 × 160 × 1 96 × 128 × 1 N/A

Total MAC 1426.64M 13536.22M N/A

other methods in segmenting off-axis iris images. Also, despite
the fact that the network is designed for segmenting off-axis iris
images, the results reported in segmenting frontal iris images
are comparable to the-state-of-the-art SPDNN method of higher
complexity and memory requirements.

3.3. Training and fine-tuning

3.3.1. Training
The network is trained on the original and augmented samples

of Bath800 and CASIA Thousand. The dataset is divided 70% for
the training set, 20% for validation set and 10% for the test set.

The training was carried out in TensorFlow library. The Mean
Squared Error is used as the loss function. The Gradient De-
scent with Adaptive Moment Estimation (Adam) is used, with a
learning rate of 1e–4, beta1 and beta2 equal to 0.9 and 0.999
respectively, to optimize the loss function. The training is done on
a desktop computer with Nvidia GTX 1080 GPU. The executable
of the trained network is available at7.
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3.3.2. Fine-tuning
In this section the process of fine-tuning the original network

with the UBIRIS v2 dataset is described. Fine-tuning is a con-
cept of transfer learning. Transfer learning is a machine learning
technique, where knowledge gain during training in one type of
problem is used to train in another related task or domain.

The proposed model was trained on the augmented and origi-
nal samples from Bath800 and CASIA Thousand. UBIRIS v2 differs
from the other datasets in the fact that it consists of visible iris
image while Bath800 and CASIA Thousand are taken in NIR do-
main. Obtaining high-performance segmentation results in visible
iris samples requires training a new model from the beginning or
either fine-tune a pre-trained network on a dataset with visible
samples. As UBIRIS v2 is a small dataset, training a new model
is not possible, therefore fine-tuning the parameters of the pre-
trained network is more functional. The network is trained on
NIR iris samples and therefore it is excepted that the network
transfers the information and tune the parameters on the UBIRIS
v2 samples, as the context of the task and the datasets are
similar.

Regarding the specifics of fine-tuning, the network is fine-
tuned on the augmented and original samples of UBIRIS v2. The
dataset is divided 70% for the training set, 20% for validation
set and 10% for the test set. The training was carried out in
TensorFlow library. The Mean Squared Error is used as the loss
function. The Gradient Descent with Adaptive Moment Estimation
(Adam) is used, with a learning rate of 5e-5, beta1 and beta2
equal to 0.9 and 0.999 respectively, to optimize the loss function.
The tuning is done on a desktop computer with Nvidia GTX 1080
GPU.

4. Results

The input of the network is a greyscale iris image of 1 channel
with dimensions [120 × 160]. The output of the network is a
greyscale segmentation map with values between [0, 1] and of
the same size and channels as the input. The binary segmenta-
tion map is obtained by using a thresholding technique, where
the values bigger than the threshold are shifted to 1 and the
others to 0. The threshold value 0.55 is used in this work for
the Bath800, CASIA Thousand which are datasets containing NIR
images. Regarding UBIRIS v2 which contains visible samples, after
fine-tuning the network to the dataset, the threshold with value
0.4 is selected. The output of the proposed model for the different
datasets is shown in Figs. 20–22.

5. Evaluation

Several metrics are used to evaluate the proposed method
and conduct a detailed comparison with several segmentation
methods of the literature. The metrics used in this work are: ac-
curacy, sensitivity, specificity, precision, NPV and F1-score. More
information about these metrics can be found in Bazrafkan et al.
(2018). Two main experiments have been used to evaluate the
performance of the proposed network:

(1) Evaluate the proposed network on the off-axis augmented
samples:
The network is trained on the original and augmented
samples of Bath800 and CASIA Thousand. The network
is tested on the off-axis augmented samples of Bath800,
CASIA Thousand and UBIRIS v2. These are the off-axis sub-
set and off-axis with unconstrained condition subset for
Bath800 and CASIA Thousand and the off-axis subset for
UBIRIS v2, as described in Section 2.3.3. In continuance it is
compared with the segmentation results on these samples
from the methods: SPDNN (Bazrafkan et al., 2018), IrisSeg

Fig. 20. Output of the network for the augmented off-axis and original samples
of Bath800.

Fig. 21. Output of the network for the augmented off-axis and original samples
of CASIA Thousand.

(Gangwar, Joshi, Singh, Alonso-Fernandez, & Bigun, 2016)
and OSIRIS (Othman, Dorizzi, & Garcia-Salicetti, 2016). The
test set of the augmented samples is used to test the
network and the other methods.
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Fig. 22. Output of the network for the augmented off-axis and original samples
of UBIRIS v2.

(2) Evaluate the network on the original samples from the
datasets:
The network is tested on the original samples of Bath800,
CASIA Thousand and UBIRIS v2, which consist of frontal
iris samples. The test set of these datasets is used for
testing the proposed method. The results of the proposed
network are compared extensively with the state-of-the-
art SPDNN on the Bath800, CASIA Thousand and UBIRIS v2.
Furthermore, the results of the network are compared with
the available results from other segmentation methods of
the literature.

The results presented on UBIRIS v2 are the results of the original
network after tuning.

5.1. Evaluation and comparison on off-axis augmented samples

In this section the proposed method is tested on the off-
axis augmented samples. These samples are the combination of
the off-axis subset and the off-axis with unconstrained condition
subset for Bath800 and CASIA Thousand and the off-axis iris
subset for UBIRIS v2. The test sets from the datasets are used for
the testing stage.

5.1.1. Evaluation
The proposed network produces high performance results in

the datasets Bath800 and CASIA Thousand. This is expected as
the network is trained on them. On UBIRIS v2 the network is
able to provide accurate segmentation results but is not able to
perform at the same level as on Bath800 and CASIA Thousand. The
samples of UBIRIS v2 are taken in visible spectrum and therefore
the distribution differs. The proposed network with tuning is able
to produce high segmentation results showing that the CNN is
able to adopt to a similar task but with different distribution.

Table 3
Comparison of the proposed method with other segmentation methods on the
off-axis augmented samples of Bath800. A higher value for µ and lower for σ

is desired.
Metrics Bath800

Proposed
method

SPDNN IrisSeg OSIRIS

Accuracy µ 99.22% 97.03% 96.10% 95.86%
σ 0.62% 1.96% 3.53% 2.80%

Sensitivity µ 92.98% 58.71% 67.26% 62.16%
σ 8.7% 38.04% 21.82% 35.72%

Specificity µ 99.62% 99.15% 98.02% 98.00%
σ 0.38% 0.86% 3.53% 2.37%

Precision µ 93.97 80.34% 75.88% 67.68%
σ 7.41% 19.32% 21.18% 24.11%

NPV µ 99.52% 97.74% 97.79% 97.60%
σ 0.57% 2.14% 1.72% 2.24%

F1-score µ 93.21% 59.90% 68.63% 59.54%
σ 7.70% 35.76% 19.51% 31.78%

In the datasets that the network is trained on, the accuracy
and the F1-score and sensitivity measurements are higher show-
ing high quality in returning true results and more consistent
segmentations in comparison with UBIRIS v2. The same applies
with the sensitivity and NPV metrics showing that the network
is able to rule-out non-iris pixels more effectively in the trained
datasets than the dataset that it was tuned on. Although, the
network has higher performance in precision and specificity on
the UBIRIS v2 dataset, showing greater capability in returning real
iris pixels in the UBIRIS v2 dataset rather than the Bath800 and
CASIA Thousand. The results are shown in Tables 3–5.

5.1.2. Comparison with SPDNN, IrisSeg and OSIRIS
The proposed method is designed for segmenting low quality

off-axis iris images as acquired from an AR/VR device. The pro-
posed method is compared with the SPDNN, IrisSeg and OSIRIS
on the test set of the augmented off-axis samples. The selection
of these algorithms is based on their availability. Furthermore,
the SPDNN is a state-of-the-art segmentation method special-
ized on low quality iris images and IrisSeg and OSIRIS are well-
established methods with high performance in the iris segmen-
tation task. The SPDNN is trained on the original and augmented
samples of Bath800 and CASIA Thousand and tuned on UBIRIS v2.
The augmented samples used in their work are representing un-
constrained scenarios. The SPDNN is a network with high capacity
and large number of parameters as analysed earlier.

The SPDNN when tested on the off-axis augmented samples
is able to provide overall good results in accuracy and specificity
and average results in precision. The performance of the SPDNN
is low in the sensitivity and F1-score measurements. The pro-
posed network is outperforming the SPDNN in all the evaluation
metrics showing higher results and ability to segment off-axis
iris samples as appear when acquired from a user-facing camera
on AR/VR device. In regard to IrisSeg and OSIRIS there not
able to provide high segmentation results for the augmented off-
axis samples. The low performance results of IrisSeg and OSIRIS
are due to the fact that the augmented samples that used are
challenging as they simulate off-axis iris images in unconstrained
conditions. In addition, IrisSeg and OSIRIS were not able to pro-
vide a segmentation in many cases. The results included for
IrisSeg and OSIRIS are only for the images that the algorithms
were able to provide a segmentation. The results are given in
Tables 3–5.
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Table 4
Comparison of the proposed method with other segmentation methods on the
off-axis augmented samples of CASIA Thousand. A higher value for µ and lower
for σ is desired.
Metrics CASIA Thousand

Proposed
method

SPDNN IrisSeg OSIRIS

Accuracy µ 99.40% 97.75% 96.7% 95.81%
σ 0.56% 1.66% 5.52% 2.49%

Sensitivity µ 90.64% 49.36% 69.67% 36.34%
σ 11.14% 43.15% 27.13% 38.40%

Specificity µ 99.77% 99.43% 97.90% 98.60%
σ 0.29% 0.9% 5.62% 2.13%

Precision µ 94.17% 75.89% 74.37% 48.42%
σ 7.87% 28.26% 27.97% 34.48%

NPV µ 99.59% 98.27% 98.63% 97.07%
σ 0.49% 1.64% 1.19% 2.14%

F1-score µ 91.93% 49.40% 69.00% 35.83%
σ 9.66% 41.44% 26.72% 34.31%

Table 5
Comparison of the proposed method with other segmentation methods on the
off-axis augmented samples of UBIRIS v2. A higher value for µ and lower for σ

is desired.
Metrics UBIRIS v2

Proposed
method

SPDNN IrisSeg OSIRIS

Accuracy µ 98.83% 97.94% 87.17% 92.96%
σ 1.16% 1.84% 9.10% 5.31%

Sensitivity µ 83.89% 60.17% 27.06% 24.11%
σ 10.48% 34.20% 23.51% 29.04%

Specificity µ 99.77% 99.75% 91.03% 97.58%
σ 0.46% 0.73% 9.30% 4.15%

Precision µ 95.26% 93.78% 24.31% 39.11%
σ 9.87% 15.51% 29.21% 38.34%

NPV µ 98.94% 98.01% 94.97% 95.15%
σ 1.12% 1.88%% 4.22% 4.33%

F1-score µ 88.72% 66.35% 21.58% 23.58%
σ 10.62 35.49% 22.50% 29.66%

5.2. Evaluation and comparison on the frontal iris-region samples

In this section the proposed method is evaluated and com-
pared on the frontal original samples of Bath800, CASIA Thou-
sand and UBIRIS v2, which consist of frontal iris samples. It is
worthwhile to note that the proposed technique is designed for
segmenting off-axis consumer level iris images. Despite that, the
experiments below are carried out in order to conduct a fair com-
parison with the other methods on frontal images. Meanwhile
the proposed method is giving the best results on segmenting the
augmented off-axis samples.

5.2.1. Evaluation on the frontal iris-region samples
The proposed network is now tested on the original samples

from Bath800, CASIA Thousand and UBIRIS v2. For this procedure
the test sets of the datasets are used.

Similar outcomes with the one’s on the evaluation of the
proposed method on the off-axis iris samples are found in the
evaluation of the original samples. The proposed network has
higher performance in the datasets that the network is trained on,
Bath800 and CASIA Thousand. Lower performance is reported on
UBIRIS v2. The network accomplishes high accuracy results in all
datasets showing that has high quality in returning true results.
Moreover, in all datasets it returns high values in specificity and
precision, meaning that the model performs well returning iris
pixels. The sensitivity metric on Bath800 and CASIA Thousand is

Table 6
Testing the proposed method on the original samples of several datasets.
Metrics Proposed method

Bath800 CASIA Thousand UBIRIS v2

Accuracy µ 99.13% 99.50% 98.92%
σ 0.52% 0.36% 0.67%

Sensitivity µ 94.90% 94.67% 88.38%
σ 6% 4.33% 9.29%

Specificity µ 99.56% 99.86% 99.71%
σ 0.47% 0.16% 0.39%

Precision µ 95.67% 97.39% 96.33%
σ 6.33% 2.83% 7.22%

NPV µ 99.49% 99.63% 99.10%
σ 0.45% 0.34% 0.60%

F1-score µ 95.17% 95.94% 91.46%
σ 5.43% 2.89% 9.63%

high, showing the ability of the model in ruling out non-iris pixels
accurately while in UBIRIS v2 the same metric has average perfor-
mance. The same applies to the F1-score measurement showing
that the network produces more consistent segmentations, both
in finding iris and non-iris pixels in the datasets Bath800 and
CASIA Thousand compared to UBIRIS v2. In Table 6 the results
of the proposed network on the test sets of the original samples
from Bath800, CASIA Thousand and UBIRIS v2 are presented.

5.2.2. Comparison with the SPDNN
The SPDNN is a sophisticated network, with state-of-the-art

results in the iris segmentation task. Now as mentioned earlier
the SPDNN was trained on samples of Bath800 and CASIA Thou-
sand and tuned on the UBIRIS v2, as is the proposed method.
The SPDNN is of high complexity with 14 times more number
of parameters when compared to the proposed network. This is
an aspect that should be considered in the comparison between
these segmentation methods. Also, as mentioned earlier the pro-
posed network is designed for segmenting off-axis iris images as
captured by a user-facing camera on AR/VR device. The numerical
results of the SPDNN (Bazrafkan et al., 2018) performance are
reported as presented in their work.

5.2.2.1. Comparing results on Bath800, CASIA Thousand and UBIRIS
v2. The proposed method shows higher accuracy than the SPDNN
in the Bath800 dataset which implies better quality in return-
ing true results. The performance in specificity of the proposed
method is also higher than the SPDNN. However in the precision
metric the SPDNN is performing better. That shows that both
can perform well in returning iris pixels, with not one method
being better than the other. The same applies in the ability of
the methods in ruling out non-iris pixels, as in NPV the pro-
posed method is performing better than the SPDNN while the
SPDNN shows higher results from the proposed method in the
sensitivity metric. On the other hand, a small advantage of the
SPDNN over the proposed method is in the F1-score showing a
better efficiency. Overall in Bath800 dataset there is not a clear
advantage of one method over the other as the performance in
the metrics is divided with the differences between them either
in favour or against them being marginal. The proposed network
is performing comparable with the SPDNN in the Bath800 dataset.

In regard with the CASIA Thousand dataset, the SPDNN shows
a small advantage over the proposed method. The proposed
method performs better in the specificity and precision metrics
showing higher quality in returning iris pixels than the SPDNN. In
the rest of the evaluation metrics the SPDNN is performing better
than the proposed method. Nonetheless, generally the differences
in performance are marginal.
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Fig. 23. Accuracy of the proposed method vs. other methods over the original UBIRIS v2 dataset.

On UBIRIS v2, the SPDNN performs better than the proposed
method. The proposed method is performing better only in the
specificity and precision metrics showing that is better on return-
ing iris pixels than the SPDNN. In some metrics such as accuracy
and NPV the difference is marginal showing that the proposed
method is almost as good as the SPDNN in returning true results
and in ruling out non-iris pixels. In the rest of the metrics there
is a slight difference between the two methods, showing that the
SPDNN is able to adopt better to the dataset that the methods
are tuned utilizing thus the larger number of parameters of the
SPDNN.

Overall, the proposed network and SPDNN performs similarly
in the Bath800 and CASIA Thousand datasets, which are the
datasets that were trained on. Therefore, showing that when
trained the proposed network is comparable to the SPDNN de-
spite that the complexity of the proposed network is at least an
order of magnitude less than the SPDNN as analysed earlier. In
the UBIRIS v2, where the proposed network and the SPDNN are
tuned, the proposed method shows high results but the SPDNN
still outperforms it, showing the ability to adopt better to a
different dataset distribution, utilizing the higher complexity of
its structure. The comparison between the two methods is shown
in Table 7.

5.2.3. Comparison with state-of-the-art methods
In the following section the proposed method is compared

to the most advance and state-of-the-art segmentation methods
in the literature. First, accuracy over the challenging UBIRIS v2
dataset is compared with several methods. In continuance, it is
evaluated and compared over CASIA Thousand and UBIRIS v2 in
three important segmentation metrics: sensitivity, precision and
F1-score with known segmentation methods.

5.2.3.1. Comparison of accuracy on UBIRIS v2. The accuracy of
the proposed method is compared with state-of-the-art segmen-
tation methods over UBIRIS v2. The state-of-the-art segmenta-
tion methods used in the comparison are the SPDNN (Bazrafkan
et al., 2018), MFCN and HCNN from Liu et al. (2016) and Total
Variation (TV) model utilized in Zhao and Ajay (2015); also an
integrodifferential constellation followed by a curvature fitting
model proposed in Tan, He, and Sun (2010), the HOG-SVM from
Radman, Zainal, and Suandi (2017), and the random walker al-
gorithm used in Tan and Kumar (2013). Moreover, the method
proposed in Proenca (2010) where the sclera and iris regions
are detected separately using neural networks as classifiers, and
polynomial fitting is applied estimating the final iris region and
finally the method from Tan and Kumar (2012) in which proposes
a post-classification procedure including reflection and shadow
removal and several refinements on pupil and eyelid localiza-
tions to get higher performance on iris segmentation task. The

accuracy of the proposed method compared with the aforemen-
tioned state-of-the-art methods on UBIRIS v2 dataset is presented
in Fig. 23.

As illustrated, the proposed method has the third best perfor-
mance compared with the state-of-the-art segmentation meth-
ods. The two methods that are performing better are: the SPDNN
of Bazrafkan et al. (2018) and MFCN of Liu et al. (2016). However,
these two methods are considerably more complex. As analysed
in Section 3.2, SPDNN and MFCN contain 1M and 21M parame-
ters respectively while the proposed network contains only 75k
parameters.

Overall, the proposed method is the third best performing
algorithm in the challenging dataset of UBIRIS v2 while its com-
plexity is at least an order of magnitude less than the two
methods that outperforms it, making the proposed method more
suited for deployment in embedded applications.

5.2.3.2. Comparison on CASIA Thousand and UBIRIS v2. In this
section the proposed method is compared with other known
segmentation methods over three important metrics: sensitivity,
precision and F1-score. Sensitivity measures the model’s ability
to rule out non-iris pixels, while precision measures the ability
of the model to detect true iris pixels. F1-score is the harmonic
average of these two metrics. The segmentation methods include
CAHT, GST, IFFP, OSIRIS, and WAHET. The comparisons are made
over the CASIA Thousand and UBIRIS v2 original datasets. The
numerical results are initially presented at (Hofbauer et al., 2014).
The metrics for each presented algorithm are calculated compar-
ing the algorithms results with the ground truth. The comparisons
are illustrated in Figs. 24–25. Comparing all methods on the high-
quality CASIA Thousand dataset, the proposed method achieves
the best performance on the F1-score and precision metrics, and
second best for the sensitivity metric. Furthermore, on UBIRIS v2
where the samples are of low quality the proposed method gives
higher results in all metrics compared to the other approaches.
Although the proposed method is designed for segmenting off-
axis iris samples, these results show that it performs well on
frontal iris samples of high and low quality.

6. Conclusion

In this paper advanced data augmentation techniques are pro-
posed to simulate off-axis iris samples as represented when cap-
tured by user-facing cameras on wearable AR/VR headsets, which
enables us to propose a low-complexity neural network architec-
ture, designed for deployment on embedded devices, targeting
the segmentation of off-axis iris samples. The current network
represents a proof of concept which will be integrated into hard-
ware in future works. The quality of segmentation achieved by
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Table 7
Comparison between the proposed method and the SPDNN on the original samples from several datasets. Green
colour shows a better performance. Yellow shows a marginal difference in the performance and Orange a noteworthy
difference in performance. A higher value for µ and lower for σ is desired.

Fig. 24. Sensitivity, Precision, F1-score on the original samples of CASIA Thousand for the proposed method vs. five other methods.

Fig. 25. Sensitivity, Precision, F1-score on the original samples of UBIRIS v2 for the proposed method vs. five other methods.
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this network is evaluated and compared with state-of-the-art
methods both for off-axis and frontal iris regions.

The proposed network’s complexity is at least an order of mag-
nitude less than other CNNs specifically designed for the iris seg-
mentation task. Also, it has the best performance on segmenting
the augmented off-axis iris samples. Further, the segmentation
performance of this network on frontal iris samples from several
public datasets, is comparable with the SPDNN network proposed
by Bazrafkan et al. (2018) a state-of-the-art iris segmentation
method. This performance is achieved even though the proposed
network is of significantly smaller size and complexity and is
trained for the task of segmenting off-axis iris samples. Due to
its lightweight design and high performance in segmenting both
off-axis and frontal iris samples and handling a range of input
image qualities, the proposed network is well suited for general
deployment on AR/VR devices.

Future work will focus on refinements in the network de-
sign and training/augmentation methodologies to improve per-
formance on specific AR/VR headsets. As can be noted from the
introduction, different devices will have user-facing cameras in
a more limited set of locations and image acquisitions will be
at varying NIR/wavelengths. In addition, the imaging pipeline on
each camera module can have subtle effects on image quality.

Some practical examples of further research topics include
developing an optimized CNN design based on SPDNN methods
with a similar, or perhaps even smaller number of parameters
that can achieve similar segmentation accuracy to our network.
An additional further work includes the study of disease affected
irises and the design of a CNN segmentation technique that is able
to handle such iris images. Another future research direction is to
build some device-specific datasets with iris images captured by
the user-facing camera on several state-of-the-art AR/VR head-
sets. This will enable evaluation of the proposed segmentation
method on practical off-axis iris samples. (At present it is not
possible to gain low-level access to the imaging systems on the
available devices to capture continuous image streams, but we
have opened some discussions with device manufacturers and
such access will hopefully be available in the near future as these
devices continue to enter mainstream adoption.)

It is also expected to extend this work to apply these improved
segmentation techniques to a number of full iris recognition
pipelines to evaluate its effects on the reliability and robustness
of near-view, off-axis iris recognition. The main challenge here is
that the only off-axis recognition pipeline that we are aware of is
proprietary. Again, we expect other algorithms will appear in the
near future and hopefully some of these will be open-source or
provide at least API-level access to system developers.
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Abstract—In this paper, we consider the next generation of 
wearable AR/VR display glasses and the challenges of personal 
authentication on such devices. The use of iris authentication as a 
mean of creating a seamless biometric link between the user and 
his personal data offers a viable approach, but due to the likely 
location of user-facing cameras there are some challenges in 
achieving an accurate segmentation of the iris. In this paper, a 
deep neural network was trained to accurately segment distorted 
iris regions. An appropriate augmentation method is presented to 
generate the distorted iris dataset used for training from publicly 
available frontal iris datasets. The proposed method shows 
promising results in segmenting off-axis iris images in 
unconstrained conditions. 

I.  INTRODUCTION  
Virtual reality display technology has only recently 

appeared as a consumer electronics product in the form of new 
VR headsets, but in industry sectors these headsets have been 
evolving for more than a decade [1]. But now that the 
technology is ready for mass market deployment it will not 
take long for the next generation of headset technology to 
evolve, providing even more sophisticated display and 
interface capabilities and acting as a  gateway into  new virtual 
and augmented application frameworks [2]–[5]. 

Now the current evolution in AR display systems does not 
imply that this is a ‘new’ technology. Researchers have in fact 
been working with Augmented Displays for more than 20 
years [6]–[12]. The Microsoft HoloLens [3], [13]–[15] is a 
good example of an AR headset that is similar to today’s VR 
headsets – perhaps a little oversized for day-to-day consumer 
use. The most recent mass market experiment with a wearable, 
augmented/mediated-reality display, that could be worn on a 
day-to-day basis, was Google Glass[11],[16], [17]. Glass, as it 
became known, was considered to be a game changing 
technology for a few years across a wide range of industry 
sectors [18]–[21]. Ultimately, however, the product was 
withdrawn [22] and since that point consumers have had to 
wait for the next mass-market AR display technology. 

Currently there are several companies that are working on 
the next generation of wearable technology to follow in the 
footsteps of Google Glass and Steve Mann’s EyeTap. There are 
numerous challenges both in the display technology itself, but  

also in the ergonomics and the user-interface aspects of the 
device. Nevertheless, we expect that recent advances in 
motion-sensing technologies, eye-tracking and affective 
interpretation models will improve the usability of the next 
generation of these devices.  

Another key challenge which applies to all variants of AR 
and VR headsets is that of user authentication. Where there is 
no physical keyboard or equivalent there are challenges to 
authenticate a user and ensure the privacy of user profiles and 
data that is collected/generated by a wearable AR consumer 
device. It is interesting that in the recently released movie 
“Ready Player One” the players who enter the virtual world of 
“The Oasis” are portrayed as being linked auto-magically with 
their virtual world profiles, but no explanation of this magic 
“authentication” achieved, is provided. Fortunately, we can 
answer this question for you in this short paper by looking at 
how AR glasses are evolving today and demonstrating how 
current biometric authentication technology can be easily re-
purposed to work in a seamless manner on tomorrow’s 
wearable AR/VR glasses and display devices.  

A good starting point is found in [23] where the author 
considers how biometric technology is becoming the natural 
authentication mechanism for personal consumer devices and 
the broad range of services and capabilities they bring to our 
daily lives. In follow-on publications the use of iris recognition 
on consumer devices is explored [24]–[27] and the importance 
of accurate iris segmentation, particularly in consumer imaging 
devices, is identified as a key challenge [28], [29]. In the iris 
authentication workflow, failed segmentations represent the 
single largest source of error [30]–[32].    

In addition to its role in improving the performance of an 
iris-based authentication system, the accurate segmentation of 
iris regions, can be used successfully for eye-gaze estimation 
[33]. Eye-gaze is a key element of various user-interface 
modalities for wearable AR & VR displays.  

As shown in US design patent, D795952S1 [34] “Fig1”, a 
possible location of the camera used for iris authentication or 
eye-gaze direction, is below the eye.  As opposed to when the 
camera is frontal, resulting in having circular iris images, in 
positioning the camera, same way or similar as described 
above, off-axis iris images will be obtained. At the moment 



there is not a publicly available commercial segmentation 
method for off-axis iris images as this is quite a new problem 
arising from the recent proliferation of AR/VR technology into 
consumer devices. 

 
Fig. 1. Virtual Reality Glasses - Patent Number:  USD795952S1 [34] 
 

The focus of this work is on implementing a deep learning 
technique to segment distorted iris images. The main 
contribution is a data augmentation technique that simulates 
iris images from an AR/VR head mounted display with off-axis 
cameras. On a selection of the distorted iris images a second 
augmentation process is applied, adding contrast, blurring or 
shadows to the images mimicking the variability of images 
quality achieved in real-life environment.  

In the next section the proposed method is explained in 
more detail including the data preparation and augmentation 
techniques that are implemented. The design of the deep 
learning network is also presented along with a description of 
the underlying training algorithm. The results of the proposed 
method are given in the final section. 

II. PROPOSED METHOD 

A. Database Preparation 
In order to accurately train a deep neural network, a large 

number of labeled training samples are required. These 
samples should correctly characterize the imaging problem so 
that it can be solved, enabling the deep learning process to train 
an accurate model. For this reason, an augmentation process 
was implemented and is explained in section: B. Data 
Augmentation.  The CASIA Thousand [35] and Bath 800 [36] 
databases were used as a starting point for the task of 
generating a suitably augmented training dataset. The CASIA 
Thousand has approximately 20.000 images and Bath 800 over 
30.000 iris images. These databases are not labeled with the 
segmentation ground truth, but they do contain high quality iris 
images (captured in constrained conditions). There are high 
resolution, high contrast samples, with low noise and 
shadowing. These high-quality images can be accurately 
segmented with standard industrial segmentation algorithms 
applied to segment the original images. In this work, these 
segmentations are considered as the effective ground truth for 
the iris images. 

B. Data Augmentation 
 To proceed to the training of a deep neural network for 
AR/VR iris segmentation task, an augmentation of the database 

is required as there is not a publicly available database of iris 
images acquired from an AR/VR set-up. Therefore, the first 
objective of the augmentation process is to simulate the 
representation of respective iris images. This representation, 
consist of distorted iris images, some with secondary low 
contrast, blurring and shadowing of the distorted iris images. In 
this work, all the samples are resized to 120x160 using bicubic 
interpolation. To generate the initial distorted iris images the 
samples were warped using two transformations. 

1. The images are warped by applying a spatial 
stretching/contacting of the iris images in different parts. For 
example, an image will be stretched in its left side and 
contracted in its right side as shown in “Fig. 2”. The warping 
is applied in a linear manner with random parameters. The 
parameters determine the amount of stretching/contracting of 
the image in each direction. The void spaces are filled using 
linear interpolation. This transformation is applied in both 
horizontal and vertical direction. After that the images are 
resized to the original resolution (120x160). Applying warping 
results in iris images with non-circular iris and pupil 
structures, as shown in “Fig.3” which is a usual case in iris 
images acquired from an AR/VR headset. This transformation 
is applied with 50% probability to the images. 

 

 
Fig. 2. Stretching/Contracting of the image. 

 

 

    

Original Image Ground Truth Warped Image Warped 
Ground Truth 

Fig. 3. Example of a warped image. 

 

 2.   At the second transformation, the images are tilted in 
two directions (up-left, up-right) with the same probability. 
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This is accomplished by applying a projective transformation 
to the images. This transformation is mapping the top vertices 
of the image to a new pair of point as illustrated in “Fig. 4”. In 
“Fig. 4” the values of a, b, c and d are randomly generated so 
that the image is tilted in the desired direction. The values 
from “Fig.4”, of a and c are in U (0.9,1), b is in U (0.15,0.45) 
and d in U (0.55,0.85) where U is the uniform distribution. 
The images were tilted in these directions, due to the fact that, 
as shown in “Fig. 1” and described in the introduction, a 
possible location of the camera used for capturing the iris 
images will be below the eye. The second transformation is 
applied to the images that the first transformation was not 
applied, along with the images that were distorted in the 
previous step with 50% probability. In “Fig.5” an image is 
shown where the above transformation was applied.   

 
Fig. 4. How the projective transformation is applied to an image. 

 

    
Original 
Image Ground Truth Tilted Image Tilted Ground 

Truth 

Fig. 5. Example of tilted image. 

The second objective of the augmentation, is to ensure that 
the samples used to train the network represent real-life 
scenarios.  The distribution of the input data plays an extremely 
important role in what the network learns and how will behave 
during the testing stage but also in unconstrained situations 
[37]. The databases that are used, CASIA Thousand and Bath 
800, consist of high quality iris images. Based on the precise 
observations that have been done [26], [38] the main 
differences between high quality constrained images and wild 
ones, are linked to contrast, blurring and shadows in the image.  
In order to simulate real-life captured iris images, the contrast 
inside and outside the iris region is changed separately using 
histogram mapping. Motion blurring is applied, as well as, 
adding shadows to the images by multiplying them with a 
shadow function. Contrast and blurring are applied to all the 
images and with 50% probability shadowing is applied to the 
samples. The functions used in order to apply contrast, 
shadowing and motion blurring are explained in [29]. The 
augmentation process is shown in “Fig. 6”. The distortion-
contrast database and the distortion database, as illustrated in 
“Fig. 6”, are created twice and the contrast database once. 

 After the augmentation process, with the addition of the 
original images the total number of samples generated is over 

300.000. Regarding the ground truth of the augmented data, 
when a distortion method is applied to an image, an identical 
distortion is also applied to its ground truth segmentation.  In 
“Fig.7” examples of augmented data are presented along with 
their corresponding augmented ground truth. 

 
Fig. 6. Workflow of the augmentation process. 

 
Fig. 7. A: Augmented samples, B:  Augmented Ground Truth of Segmentation  

C. Network Design 
For the segmentation task a fully convolutional network 

inspired by [29] is used, consisting of 10 layers. The network 
starts with a 3x3 kernel mapping the input (1 channel) on the 
first convolutional hidden layer which consists of 32 channels 
using a rectified linear unit (ReLu) as an activation function. 
The kernel size remains the same throughout the convolutional 
hidden layers, as well as, the number of channels and their 
activation function. Finally, at the output layer (1 channel), the 
kernel size is 3x3, but in this layer, the sigmoid activation 
function is used. Pooling layers were not used as it was 

(0,0) (0,1)

(1,0) (1,1)

(0,0) (0,1)

(a,b)
(c,d)



observed that the accuracy of the network’s output was 
decreasing. 
 

D. Training 
The training was carried out in TensorFlow library. The 

Mean Squared Error is used as the loss function. The Gradient 
Descent with Adaptive Moment Estimation (Adam) is used, 
with a learning rate of 1e-4, beta1 and beta2 equal to 0.9 and 
0.999 respectively, in order to optimize the loss function. The 
samples are divided 70% for the training set, 20% for 
validation set and 10% for test set. The training is done on a 
desktop computer with Nvidia GTX 1080 GPU. 

III. RESULTS AND DISCUSSION 
In this work, the network is trained on the original images 

and the augmented databases (Bath 800 and CASIA 
Thousand). The output of the network is a grayscale 
segmentation map with values between 0 and 1. The binary 
map is obtained by using a thresholding technique, where the 
values bigger than the threshold are shifted to 1 and the others 
to 0. The threshold value 0.55 is used in this work. In “Fig.8 
the output of the network is presented for several sample 
images. Several metrics have been used to evaluate the 
network. The metrics used are described thoroughly in [29].  

The segmentation results for the test set on the two 
databases (Bath 800 and CASIA Thousand) are presented 
below in Table I and II. In Table I, higher performance is 
represented by higher values and in Table II higher 
performance is represented by lower values. 

The proposed method shows promising results using the 
deep learning technique in segmenting off-axis iris images as 
represented by AR/VR set-ups, including also effects on the 
images from real-life environments. 

This work is an initial proof-of-concept and more details 
regarding the augmentation process along with numerical 
analysis and comparisons with other segmentation algorithms 
will be presented at the conference. 

 
TABLE I. SEGMENTATION RESULTS 

 
Metrics Proposed Method 

BATH 800 CASIA Thousand 

Accuracy 99.12% 99.34% 

Sensitivity 92.75% 90.32% 
Specificity 99.58% 99.78% 

Precision 94.26% 94.78% 

NPV 99.45% 99.52% 
F1-Score 93.23% 92.07% 

MCC 92.94% 92.02% 
Informedness 92.34% 90.10% 

Markedness 93.72% 94.30% 

 

 

TABLE II. SEGMENTATION RESULTS 
 

Metrics Proposed Method 
BATH 800 CASIA Thousand 

FPR 0.41% 0.22% 

FNR 7.24% 9.67% 

FDR 5.73% 5.21% 

 

 
Fig. 8.  A: Augmented samples, B: Segmentation Ground Truth, C: Output of 
Network - Segmentation map 
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Abstract— Recent Advances in Artificial Intelligence (AI), 
particularly in the field of compute vision, have been driven by 
the availability of large public datasets. However, as AI begins 
to move into embedded devices there will be a growing need for 
tools to acquire and re-acquire datasets from specific sensing 
systems to train new device models. In this paper, a roadmap in 
introduced for a data-acquisition framework that can build the 
large synthetic datasets required to train AI systems from small 
seed datasets. A key element to justify such a framework is the 
validation of the generated dataset and example results are 
shown from preliminary work on biometric (facial) datasets.  

Keywords—Generative Models, Data Augmentation, Data 
Annotation, Synthetic Data,  

I. INTRODUCTION 
Recent progress in Artificial Intelligence (AI) has been 

driven by a combination of, firstly, increased computational 
power, enabling more sophisticated neural network 
architectures to be trained; secondly the availability of large 
digital datasets, harvested from Big Data on the cloud and 
thirdly, machine learning methodologies based on deep neural 
networks. We are now on the cusp of a new era where 
embedded devices will be able to employ hardware AI 
accelerators [1] enabling transformative AI solutions in fields 
such as autonomous vehicles, smart-healthcare for the elderly, 
smart-city infrastructure and emerging mixed reality and 
wearable technologies.  

But in order to realise solutions in many of these specific 
problem domains there is a growing need to build custom 
datasets that are tailored for a particular use case.  Practical 
solutions require appropriate training datasets modified to a 
constrained use case together with matching ground truth data. 
Acquiring such datasets at the scale required for training with 
today’s AI systems and subsequently annotating them with an 
accurate ground truth is challenging in terms of time, human 
resources and operational costs. And with the recent 
introduction of GDPR and associated complications 
introduced industry now faces additional challenges in the 
collection of training data that is linked to individual persons.  

A. The GADAFAI Hypothesis 
Recently, innovative deep learning methodologies have 

proved surprisingly sophisticated at generating new data 
samples [2]–[5] and the State-of-Art (SoA) in Virtual Reality 
(VR) enables large-scale photorealistic, yet virtual, ‘scenes’ to 
be created. These development suggest that it might make 
sense to focus on developing improved methodologies to 
control and manage the generation of data samples matched to 

a specific machine learning problem rather than struggle with 
the challenges of obtaining sufficient ‘real-world’ data. This 
train of thought has led to a somewhat contrarian, research 
question (hereafter referred to as the “GADAFAI 
hypothesis”): 

“Can we artificially generate and/or augment suitably 
large sets of data samples adapted for training today’s AI 
networks, and prove that the resulting AI networks are as 
robust and reliable as those trained on equivalent ‘real-
world’ datasets?” 

This paper outlines how GADAFAI can work in practice 
and provides a roadmap towards a broader validation of the 
hypothesis and establishes the first steps to validate the 
hypothesis for some specific types of dataset. To provide a 
context for this roadmap we focus on a range of topical 
research fields in Computer Vision (CV). These include, in 
order of increasing complexity, systems for biometric 
authentication (use cases: consumer devices, security & 
authentication), indoor scene analysis (use cases: consumer 
devices & home healthcare), human body motion & facial 
emotion analysis (use cases: home services, healthcare & 
security), and street-scene analysis (use cases: autonomous 
vehicles & smart-city). Some initial results on the validation 
of the GADAFAI hypothesis in the context of large facial 
datasets (biometrics) are provided.  

B. Strategic Importance of this Research 
Today AI resides mostly in cloud systems but, a migration 

from the datacentre towards the data sources/sensors has 
begun. Ultimately, a fusion of sensing & primary data-
processing is to be expected on embedded devices at the 
network edge [6] and for some applications this is feasible 
today [1], [7]–[9]. But moving the core AI functions onto 
embedded devices is only one piece of the puzzle to deliver 
practical AI solutions. Currently, AI is mainly trained on Big 
Data, harvested from large Cloud repositories. But there are 
growing concerns among government regulators and the 
public regarding privacy issues arising from the mass 
harvesting of personal data. Now GDPR data privacy 
regulations in Europe have effectively throttled Big Data as a 
source of training data [10]–[12]. 

With many companies releasing new embedded AI 
accelerators [13]–[15] the only remaining barrier to new 
Edge-AI applications is training of the neural networks. But 
this relies on the availability of suitably annotated datasets that 
in most cases do not yet exist. If the full potential of Edge-AI 
[16] is to be realized in our daily lives, it is important that new 



approaches are explored to building the training datasets that 
will enable tomorrow’s disruptive AI technologies.  

Currently, one of the most important challenges in 
building reference datasets for AI applications is the 
management of privacy and ethics. The EU has recently 
initiated major initiatives to boost research activity and 
encourage world-leading research on the next generation of AI 
in Europe [17], [18], but, in parallel, the increasing regulation 
of digital data poses a significant challenge to EU aspirations 
to become a global leader in AI research. In brief GDPR 
creates a significant barrier to building the large datasets 
required as a foundation for future AI research activity. 

C. Overview of this paper 
In the next section some of the challenges in acquiring 

large reference datasets of ‘real-world’ data are discussed. 
This is followed by a high level review of current state-of-art 
in data generation and augmentation techniques – these 
provide a foundation for GADAFAI frameworks to build large 
synthetic datasets. This is followed by a discussion of the 
primary research domains and associated data landscapes in 
the context of today’s computer vision research. Next we 
outline an initial approach to validating the GADAFAI 
hypothesis in the context of biometric data. In this field there 
are large publicly available datasets and a number of well-
developed methodologies to generate synthetic facial and 
other biometric data. A number of experiments are currently 
in progress to realise this initial validation and some results 
will be presented at the ISSC 2020 conference.      

II. THE CHALLENGES OF ‘REAL-WORLD’ DATA 
The technical challenges in building new ‘real-world’ 

datasets arise from the need for accurate annotation and expert 
curation of the data. If data is not correctly annotated or 
sufficiently generalized for the problem at hand then incorrect 
features are easily learned by the neural network [19]–[23].  

 
Figure 1: Illustrative examples of datasets based on ‘real-world’ 
computer vision data. 

In Fig. 1 some examples of datasets based on acquired 
‘real-world’ data are shown. The ideal dataset covers all the 
likely sensing and environmental contexts that might arise, but 
as it is impractical to gather such a broadly scoped dataset 
researchers must typically rely on a much sparser, although 
still costly dataset. In practice this sparser dataset can be 
enhanced using simple data augmentation techniques [24], 
[25] to grow the context of the original samples. More 
sophisticated technique such as learned augmentation [26], 
[27] can help to create some new, intermediate data samples. 
This can improve the performance of existing datasets, but it 
still relies on a large original ‘real-world’ dataset which is 

costly and time-consuming to acquire and often provides a less 
that reliable ground truth.  

To better illustrate the challenges of real-world data it is 
useful to consider a simple example – acquiring a stereo 
baseline dataset for training a neural network to detect image 
depth. To acquire this dataset, a researcher needs two identical 
cameras – but individual cameras have subtle differences in 
the optics (distortions & aberrations), the CMOS sensors 
(noise) and in the digital pipelines (jitter & rolling shutter 
synch). To obtain well matched stereo pairs a detailed baseline 
calibration should be performed between the two cameras. 
Subsequently, they should be maintained at the same 
temperature and in similar ambient conditions. An accurate 
depth sensing system is also required as part of the 
experimental rig to gather detailed depth information for a 
ground truth; the point cloud of depth measurements needs to 
be aligned with individual pixels of the camera image for both 
cameras, and for each image frame as the imaged scene 
changes. Finally, if it subsequently becomes necessary to 
change the stereo baseline, the sequence of imaged scenes 
must be re-created frame by frame, and if the original data is 
to be re-used then each scene should be re-created exactly as 
the original (lighting, object poses & locations, stereo path, 
etc). This exact re-creation of the experimental conditions is 
practically impossible to achieve in the ‘real-world’.  

Now consider an implementation of the above acquisition 
sequence in a photo-realistic virtual environment. The two 
cameras are represented by ‘camera models’ and are 
‘identical’ digital twins of each other; the exact depth values 
for each rendered pixel are available and the stereo acquisition 
paths are precisely defined and can be readily adjusted. 
Objects and animations in the 3D scene are stored and can be 
recreated and manipulated at will in a repeatable manner.  

Naturally the storage and rendering of complex 3D scenes 
has significant associated computational and storage 
overheads so it is helpful if we can also leverage advanced 
augmentation techniques to grow the size of the rendered 
dataset. Further, 3D scenes typically employ digitally 
generated components which do not provide the same 
variations as ‘real-world’ objects and textures – thus some 
acquisition of ‘seed data’ from the real world is still important 
to better generalize the training data and introduce realistic 
variations in surface texture, lighting and image noise.  

III. STATE OF ART IN DATA GENERATION & AUGMENTATION  

A. Advanced Data Augmentation 
Fully learnable data augmentation was originally proposed 

by Lemley et al. [26] and there have been many refinements 
of the approach over the last 3 years [27]. In the learned, or 
smart augmentation technique of [26], all the components of 
the augmentation pipeline are learned via an auxiliary neural 
network. An alternative approach is proposed in [28] where 
the augmenter accepts two random images from a class and 
tries to generate images which reduce the loss of the target 
network (a network that learns a desired task). In another 
approach a Bayesian technique [29] is applied to generate data 
based on the distribution which is learned from an originl 
training set. Similarly, learned features can be manipulated 
using simple transformation which results in augmented data 
as shown in [30]. Note that learned augmentation techniques 
differ from the more widely researched generative adversarial 
networks (GANs) in that the end point is create data samples 
that improve a training task, rather than data samples that 
attempt to mimic a known data distribution.    



B. Generative Adversarial Networks (GANs) 
Since the introduction of GANs in 2014 [31], there has 

been a rapid growth of research in this field. GANs are now 
applied to many applications across different domains from 
computer vision to natural language processing and 
audio/speech processing. The use of GANs in SoA is 
particularly effective in the generation of facial data samples 
[32]–[36]. The GADAFAI hypothesis seeks to investigate a 
broader range of data classes across the image and audio 
domain, but initial investigations have focussed on facial data 
as advanced techniques and large public datasets are more 
highly evolved in this field.   

IV. OVERVIEW OF GADAFAI 
GADAFAI is distinguished from other efforts to build 

synthetic datasets in that it also seeks to provide some 
validation metrics to measure the usefulness of the synthetic 
data samples for a particular use case or problem. These 
metrics should allow researchers to quantify variances 
between ‘real-world’ datasets and those that are ‘generated’ 
via alternative methodological approaches. The intention is to 
focus on measuring the validity of synthetic datasets for 
practical problems across a range of fields of application. This 
should enable new methodological refinements of the 
generated datasets to specific use cases. 

Key research fields to be addressed include, in order of 
increasing complexity and challenge, (i) biometrics 
(consumer devices, security & authentication); (ii) indoor 
scenes (smart-home & home healthcare), (iii) human body 
motion & facial emotion analysis (home services, healthcare 
& security), (iv) complex & dynamic street scenes 
(autonomous driving & smart-city) and (v) human speech 
synthesis. Each of these research fields provide a more 
complex format of dataset and represent progressive 
challenges both in generating appropriate and accurate 
datasets and in the availability of suitable quantitative and 
qualitative metrics to realize the validation of the dataset.  

A. The Data Landscape 
There is no doubt that we face a complex and 

heterogeneous data landscape in the field of computer vision 
and much of the challenge revolves around this complex data 
landscape. The GADAFAI hypothesis considers this data in a 
series of categories of increasing complexity. Note that the 
main goal is to demonstrate sufficient commonality to deliver 
on a broadly-scoped data synthesis framework, while 
potentially solving some specific applied research problems. 
Here we briefly review each data category, summarising the 
inherent challenges.   

Biometric Data – This category of data is well studied in 
the literature and mature techniques to analyse and validate 
biometric identity are available, especially for facial and iris 
recognition pipelines. More recently, advanced deep learning 
techniques have shown improvements on certain aspects of 
these acquisition pipeline and the use of less robust acquisition 
platforms, such as handheld devices have been explored. The 
maturity of biometric data analysis offers a good starting point 
to explore the GADAFAI hypothesis and some work on the 
validation of synthetic facial data samples for use in the area 
of facial recognition will soon be ready for publication.  

Indoor Scenes – This category of data has received much 
attention recently as methods for acquiring 2.5D data (imaged 
scene + depth data) have been refined and in parallel there 
have been advances in the 3D modelling of rooms and 

buildings and recently a range of deep learning techniques and 
the use of GANs have been applied to both analyse indoor 
scenes and generate random, but semantically valid models of 
indoor spaces. Important tools include monocular depth 
estimation [37], [38] and scene segmentation [39]. This data 
category provides a first step away from the maturity of 
biometric data, but as scenes are essentially static the 
challenges are reasonably tractable. Applied problems related 
to this data category include the dynamic analysis of a room 
environment to improve consumer audio experience, or to 
enable augmented or mixed reality on smartphones or with 
wearable glasses. This data category also offers a stepping-
stone to modelling a dynamic indoor environment involving 
human interactions.    

Body Motion & Facial Expressions – This spans a 
number of different areas from motion-capture, typically for 
purposes of advanced animations, to security systems, often in 
urban environments and more recently Driver-Monitoring 
Systems (DMS) and Adaptive Driver Assistance Systems 
(ADAS) for the automotive sector. This data category presents 
an additional challenge as it involves dynamic transitions 
rather than the static data of the first two categories. Research 
is not as mature, but there are many useful datasets and data 
analysis tools that can be leveraged to support data-generation, 
augmentation and 3D modelling.  

Indoor Scenes with Humans – This data category takes 
us beyond current state-of-art by combining the previous two 
data categories to enable the modelling or generation of 
dynamic human interactions within a living environment. At 
this point technical challenges are encountered in terms of the 
size of data required to represent such dynamic scenes and the 
bandwidth and computational power required to model or 
generate interactive action sequences. Some real-world 
datasets exist for human activities and actions, but they are 
less comprehensive than in the previous data categories. 
Applied problems related to this category include monitoring 
the capacity of the stay-at-home elderly – a compelling and 
global socio-economic challenge.   

Street Scenes with Dynamic Activities – This data 
category involves a wider range of depths and more complex 
dynamic scenes with multiple vehicles, humans and other 
animated elements. While these scenes represent an even 
greater challenge over dynamic indoor scenes some aspects of 
the data models and generative techniques are better 
developed in this field due to the research focus of industry 
and academia on autonomous driving.  

B. The GADAFAI Data-Generation Framework 
Up to this point the goal was to explain the scope and 

context of the GADAFAI hypothesis. Here the proposed 
dataset-generation framework is explained in the context of a 
practical application such as generating a dataset of facial 
identities to train a facial recognition classifier. Figure 2 
illustrates a brief overview of the pipeline employed to 
activate GADAFAI hypothesis. The process starts with a 
number of seed datasets - Fig 2(i). For facial data samples 
there are quite a few suitable datasets, one of the best being 
CELEB-A. Public facial datasets typically have a significant 
number of bad data samples. These may be incorrectly 
labelled or of such poor quality that a neural network 
algorithm will not be able to learn correctly from these 
samples. Thus the seed dataset often has to be pre-filtered, or 
cleaned before if can be used. Another challenge is that the 
number of data samples in each class can vary widely with 



some classes only having 1-3 data samples. These classes 
should be excised from training data but can be useful later for 
validation. Classes with more samples, but lower numbers – 
typically having only 5-10 samples – should have additional 
data samples created using learned augmentation - Fig 2(ii).  

 
Figure 2: The brief overview of GADAFAI hypothesis 

To create additional data classes a GAN such as StyleGAN 
should be trained - Fig 2(iii) – and these can then be used to 
generate new data classes which can bridge gaps between the 
seed datasets - Fig 2(iv). At this point the framework can 
provide a larger hybrid dataset than is available from public 
datasets, and such a comprehensive dataset should, on its own, 
enable more sophisticated facial classification techniques and 
building more adaptive facial class generators. Current state 
of research for this specific problem is now at the stage 
illustrated in Fig 2(iv) and should be published later this year.    

V. PRACTICAL VALIDATION ON FACIAL DATASETS 
It is clear that, the GADAFAI hypothesis is somewhat 

contrarian in nature - no data scientist would subscribe to the 
idea that man-made data can substitute for real-world data. 
Thus, it is important to validate the hypothesis across a 
number of different fields. As was discussed earlier, the field 
of facial biometrics offers a good starting point. In this section 
some details of our initial work on facial datasets is provided, 
together with some preliminary outcomes.  

There are several steps to achieve this first validation. 
Firstly it is necessary to build tools that can generate a larger 
number of unique synthetic data samples of a human face. 
Secondly we need to work with existing ‘real-world’ facial 
datasets to obtain a relatively clean distributions of data 
samples. Both of these tasks are challenging in their own right 
and are documented in companion papers to be presented at 
ISSC 2020 and QoMEx 2020. A third, more comprehensive 
journal paper will bring together all of this research. In this 
section an overview of the current status and summary of the 
main findings is presented.   

A. Re-Training of StyleGAN 
StyleGAN is a state-of-art generative adversarial network 

(GAN) architecture that generates random 2D high-quality 
synthetic facial data samples. The original GAN network for 
StyleGAN was trained on the CelebA-HQ (high quality) 
dataset which has 30,000 facial images. However this is not a 
particularly large facial dataset so the motivation to re-train 
StyleGAN is to better understand the relationship between the 
original seed data and the synthetic samples generated by the 
GAN after training on different sizes of seed data.  

 

 

 

 
Figure 3: Four examples of uncannily similar StyleGAN image 
pairs generated randomly in a batch sample of 20,000 images; 

Our preliminary work suggests that without a sufficiently 
large seed dataset that StyleGAN can exhibit overlappings 
within the generated samples within the latent space. This 
manifests through a small number of synthetic data samples 
that are separated in latent space, but appear uncannily similar 
to one another as shown in Figure 3. Additional experiments 
are in progress to better quantify this phenomenon. The results 
of several of our re-trainings of the generator network are 



made available publicly 1 to encourage other researchers to 
contribute and explore the stability of StyleGAN further. 

B. Cleaning of Large Facial Datasets 
CelebA and CelebA-HQ are actually not very optimal 

datasets as they provide relatively small numbers of individual 
data samples and separate identities. CelebA has 200,000+ 
individual facial data samples and 10,000+ identities, but that 
is only an average of 20 samples per identity. There are several 
datasets with at least an order of magnitude more unique data 
samples and thus a greater density of samples per identity. But 
all these large datasets share one common challenge – they 
have many bad data samples. Some are of poor image quality, 
but there are also many examples of bad labelling of data in 
all public datasets. This motivated a second piece of work to 
find a method to improve the quality of such large real-world 
datasets because without such clean ‘real-world’ datasets we 
cannot make a fair comparison with datasets built from 
synthetic data samples.  

C. Real Vs Synthetic Data Samples - Preliminary ROCs 
Our initial experiments comparing CelebA negative pairs 

with StyleGAN and several other datasets led to the discovery 
of overlapping identities across several of these datasets. After 
removal of these overlapping identities the results shown in 
Figure 4. It is noted that all of the ROC curves are essentially 
consistent, apart from a comparison of StyleGAN with 
StyleGAN negative pairs (yellow curve). At this point it was 
concluded that this poor performance is due to the similar 
negative pairs, as illustrated in Figure 3 and this is turn is due 
to insufficient training samples in the CelebA dataset. A re-
training of StyleGAN on the larger CelebA and Casia datasets 
was recently completed and results from an extended set of 
experiments will be provided at the ISSC 2020 conference.   

 
Figure 4: ROC curves comparing negative pairs between CelebA 
and StyleGAN, Casia and Labeled Faces in the Wild (LFW) datasets. 

D. Towards complete Synthetic Identities 
The results presented here are the first phase of validation 

on large facial datasets. To complete the validation the next 
step is to build a complete facial identity from a random 
StyleGAN data sample so that a fair comparison can be made 
between a ‘clean’ real-world dataset and a corresponding 
‘synthetic’ dataset. This entails augmenting each random 
StyleGAN data sample with variations such as facial 
expressions, pose variations, and mixed lighting conditions 
amongst others. These variations can be generated both using 
conventional image processing techniques and though 
specialized training of GANs. Elements of this work are 

 
1 https://github.com/C3Imaging/Deep-Learning-Techniques/tree/Re-

training-StyleGAN 

underway and will be reported in detail in a following 
publication.  

VI. DISCUSSION 
The initial work on validation of the GADAFAI 

hypothesis has led to some interesting findings and outputs. 
Firstly, in order to provide clean versions of a number of large 
public face datasets a semi-automated cleaning methodology 
was developed and validated and will be presented in a 
companion paper.  

Secondly, the quality of the data samples generated by 
StyleGAN when trained on some of the smaller facial datasets, 
such as CelebA-HQ or CELEBA has been explored. Initial 
results show that some of the generated data samples result in 
uncannily similar facial identities. This suggests that either 
there is insufficient variation in the seed data used to train the 
generator or alternatively the GAN may be approaching mode 
collapse. More detailed investigations are ongoing and a 
methodology to measure the uniqueness of generated data 
samples is evolving. These results should inform other 
researchers relying on the use of generators such as StyleGAN 
that additional analysis of the generated data is needed if this 
data is to be used to accurately simulate variations in real-
world datasets. Some additional results will be presented at the 
conference and a more detailed journal publication is in 
preparation.  

The GADAFAI research hypothesis has been outlined in 
some detail in this work and represents an evolving approach 
that can help develop powerful new training methodologies to 
enhance the capabilities of state-of-art neural networks. 
Ultimately, such methodological frameworks could free 
researchers from concerns with the logistics of dataset 
acquisition, enabling them to focus on new technology 
innovations in terms of smart services and products. 
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Abstract—StyleGAN is a state-of-art generative 

adversarial network architecture that generates random 2D 

high-quality synthetic facial data samples. In this paper we 

recap the StyleGAN architecture and training methodology 

and present our experiences of retraining it on a number of 

alternative public datasets. Practical issues and challenges 

arising from the retraining process are discussed. Tests and 

validation results are presented and a comparative analysis of 

several different re-trained StyleGAN weightings is provided. 

The role of this tool in building large, scalable datasets of 

synthetic facial data is also discussed.  
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I. INTRODUCTION 

In the last few years, a number of tools for generating 
synthetic facial data samples have evolved [1]–[3], based on 
generative adversarial networks (GANs) [4]. These enable 
photo-realistic, high-resolution random face samples to be 
generated in almost limitless numbers. However, these face 
samples are essentially random with no relationship to one 
another, and thus of limited value or interest to researchers.  

Some research has attempted to modify the training of 
these GANs to provide more control over the output data 
samples. As examples, Bazrafkan et al [5] have shown that 
a GAN can be trained so that the first vector in the latent 
space represents male samples if it has a negative value or 
female images if the value is positive. In a separate work, 
Bazrafkan et al  [6] have shown that faces can be generated 
in a fixed pose set by an auxiliary regressor.  

From these works, it is clear that GANs can be adapted 
and modified to enable more sophisticated control of the 
generation of synthetic facial data samples. It is also 
important to understand the relationship between the 
original training dataset and the data samples obtained from 
the resulting GAN. In order to obtain a wide variation in 
output data, it is necessary to have a large original training 
dataset, but it is not clear from current research how the size 
and quality of this original dataset affect the distribution of 
the output data samples. Neither is it clear how well these 
synthetic data samples are distinguished from the original 
data. 

 
1 https://github.com/kayoyin/FakeCelebs 

2 https://github.com/podgorskiy/StyleGan 

StyleGAN has been used widely and trained on different 
image topics (cats, cars, bedrooms, anime, etc) [3][7]. The 
original models released in StyleGAN [3], provide models 
trained on the FFHQ [3] and CelebA-HQ [8] datasets at a 
resolution of 1024×1024. It is worth noting that the size of 
these datasets is relatively small as they consist of 70000 
and 30000 samples respectively. Apart from these original 
models to the best of our knowledge a few models are 
publicly available that provide StyleGAN models trained on 
alternative facial datasets at different image resolutions and 
quality. These models are unofficial implementations 1,2 of 
the StyleGAN in other frameworks (PyTorch) and therefore 
it is not possible to compare them with the original 
StyleGAN [3].    

As a first step to understanding better the nature of state-
of-art GANs we have re-trained StyleGAN on a number of 
large publicly available datasets and made the resulting 
model networks with their weights publicly available 3. In 
this paper, we describe the re-training process on various 
original facial datasets and explain the various steps in the 
re-training process. We then perform a comparative analysis 
of a randomized set of data created by each of the re-trained 
GANs, in order to evaluate the quality and diversity of the 
generated samples.    

II. AN OVERVIEW OF PUBLICLY AVAIALBLE FACIAL 

DATASETS 

In recent years more and more “in the wild” face datasets 
have become available of different sizes and with each 
dataset being proposed for a different use case. A short 
description of some of the more significant publicly 
available facial datasets is given below.    

A. LFW 

Labelled Faces in the Wild (LFW) [9] is the de facto 
standard test dataset for the face verification in 
unconstrained conditions. The majority of research 
publications related to the face verification task report their 
performance with the mean face verification accuracy and 
the ROC curve on the standard evaluation set of 6,000 given 
face pairs in LFW. The dataset was released in 2007 and 
contains 13,233 face images of 5,749 identities. Although, 
it should be mentioned that due to the small number of 
identities and the number of samples per identity in the 

3  https://github.com/C3Imaging/Deep-Learning-Techniques/tree/Re-

training-StyleGAN 
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LFW, it is inadequate for training purposes and thus is used 
mainly for testing.      

B. CASIA-WebFace  

CASIA-WebFace [10] is one of the first large public 
facial datasets, published in 2014. It contains 10,575 
identities with a total of 494,414 facial data samples. The 
identities belong to celebrities and all of them are collected 
from the IMDb website. The size of the dataset makes it 
suitable for facial recognition tasks and this dataset is 
frequently used as a baseline by researchers in the facial 
recognition field. 

C. CelebFaces  

The CelebFaces+ dataset [11] was released in 2014 and 
along with the CASIA-WebFace was one of the first large 
publicly available datasets, as it contains 202,599 images of 
10,177 identities. A version of this dataset with additional 
metadata is known as CelebFaces Attributes Dataset 
(CelebA) [12] where the samples form CelebFaces+ are 
annotated with 5 landmark locations and for 40 binary 
attributes (eyeglasses, moustache, hat, etc), providing 
valuable information for the researchers.  

D. MegaFace 

The MegaFace dataset [13] was published in 2016 in 
order to examine face recognition methods with up to a 
million distractors in the gallery image set. The dataset 
consists of 4.7M samples organised into 672,057 identities. 
Despite being a large dataset, it offers a limited set of 
variations per identity, as on average it has only 7 samples 
per person.   Depending on the specific research goal this 
can limit the usefulness of MegaFace for some research 
tasks.      

E. Ms-Celeb-1M 

The Ms-Celeb-1M dataset [14] was created and 
published in 2016 by Microsoft. It is the largest publicly 
available face recognition dataset with over 10M samples 
from 100K identities. The dataset is suitable for both 
training and testing purposes with an average of 100 
samples per identity.    

F. VGGFace & VGGFace2 

The VGG datasets are released from the Visual 
Geometry Group from the University of Oxford. The 
VGGFace [15] dataset was released in 2015 and contains 
2.6M samples from 2,622 people. VGGFace was released 
mainly for training purposes. In 2018, the VGGFace2 [16] 
was released. This dataset comprises 3.31M samples from 
9,131 celebrities – on average 360 samples per identity. The 
images were downloaded from Google Image Search. The 
image samples from VGGFace2 cover a wider range of 
different ethnicities, professions, and ages compared to 
VGGFace. Furthermore, all the samples have been captured 
“in the wild” thus giving the dataset a desirable variation 
with respect to pose, lighting and occlusion conditions as 
well as facial expressions. The dataset can be used for 
training and testing purposes as it is divided into a train and 
test set. Finally, VGGFace2 provides annotations regarding 
the pose and the age of its samples which can be useful for 
researchers.   

 

G. Other Face Datasets  

Several other datasets should be mentioned such as YTF 
[17], which has 1,595 identities and 3,425 video clips. 
Another dataset that was built in order to recognise faces in 
unconstrained videos is UMDFaces-Videos [18], which 
consists of 3,107 identities and 22,075 video clips. Also, 
they have a face dataset as well with still images, the 
UMDFaces which consist of 367,88 samples from 8,277 
identities [19]. 

Furthermore, FFHQ [3] and CelebA-HQ [8] are some 
face datasets that are not created for face recognition 
purposes. These datasets are of a high quality and a high 
resolution 1024×1024 compared to the aforementioned 
databases. These datasets were used to train StyleGAN, 
which produces high quality generated images. The FFHQ 
consists of 70,000 images without an identity annotation but 
contains variation in terms of age, ethnicity and image 
background. It also has a good coverage of accessories. 
CelebA-HQ is a subset of CelebA from 6,217 identities. As 
mentioned before the samples are at 1024×1024 resolution 
and of high quality which was achieved through a procedure 
of pre-processing that is explained in [8]. 

Finally, it is also worth remarking that large 
corporations, e.g. Facebook, Google, have their own in-
house datasets that are likely to dwarf those that are publicly 
available. Facebook [20] trained some of their model with a 
dataset that comprises 500M facial samples from more than 
10M identities and  Google’s model [21] was trained on 
200M images from 8 million subjects. 

III. RETRAINING METHODOLOGY 

In this section, the process of retraining StyleGAN is 
described. Initially, a preparatory filtering procedure is used 
to select the samples is explained and subsequently, the 
procedure of training StyleGAN is analysed. For the 
purposes of this work, the StyleGAN network was retrained 
twice, once with samples from the CelebA dataset and the 
other one is trained on the CASIA-WebFace dataset.  The 
techniques documented here are being applied to additional 
datasets and corresponding results will be presented at the 
ISSC conference later this year.  

A. Data  Sample Resolution and Quality Considerations 

 The datasets used in our experiments (CelebA, CASIA-
WebFace) are pre-filtered before the data samples are fed 
into the training network. The filtering is performed for two 
main reasons. Firstly, it is important to ensure that the data 
samples given to the network contain a detectable face 
region of good quality.  Most large face datasets contain 
noisy, poor samples and it is desirable to remove such 
samples as inputs to the training network as they can 
interfere with the main learning task of generating realistic 
face samples of good visual quality. Secondly, it is 
important to resize the facial samples to a particular size that 
the StyleGAN network will be trained on. The size of the 
image samples used in this work was determined to be 
256×256 pixels. This offers a good balance between facial 
image quality and the computational resources required for 
training. With such a size of image samples, it is practical to 
train on a single dual-GPUs computer. Based on the 
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information available on StyleGAN’s GitHub repository 4, 
training at a higher resolution such as 1024×1024 with only 
two GPUs it would have required almost a month of 
continuous operation.  

For our purposes – to gain practical experience in re-
training these powerful GANs - samples at a resolution of 
256×256 have sufficient visual information and quality for 
most practical uses and applications of synthetic facial data.  
It is also worth noting that most of the available public face 
datasets the data samples are of similar or lower resolution 
and often there is a significant number of samples that are 
noisy or of quite poor visual quality.  

B. Dataset Preparation & Pre-Filtering 

In the initial filtering step, the image samples are passed 
through a face detector. The face detector used is the Multi-
task Cascaded Convolutional Networks (MTCNN) [22]. An 
implementation of the MTCNN in Python / TensorFlow was 
used which can be found in 5. The face detector is applied to 
the images. The MTCNN implementation used takes two 
arguments, the margin size and the size of the output image. 
The margin used is 50px and the size of the image as 
mentioned earlier is 256×256. The CelebA dataset  has 
202,599 samples and the CASIA-WebFace has 494,414 
samples. After the pre-processing procedure, CelebA and 
CASIA-WebFace consist of 202,281 and 491,073 samples 
respectively. In Fig 1. and Fig 2. some samples from 
CASIA-WebFace and CelebA are presented. The MTCNN 
detection was not able to confirm these samples as faces and 
thus they are not used in training. These examples illustrate 
the need for a pre-filtering step for the input data. In all large 
public face datasets, a significant number of such noisy data 
samples are expected and may unduly affect the training 
outcome. In Fig. 1 there are some examples of extreme pose, 
images with artifacts, blurred or extremely dark facial 
images or only partial face samples. In Fig. 2, samples are 
presented that only contain noise, or the face is mostly 
obscured and is not representative of a normal human face.  

 With the use of MTCNN to pre-filter the data, it is 
possible to a certain degree to eliminate many unwanted 
samples that would not be beneficial for retraining 
StyleGAN for the task of generating unobscured, human 
faces. Finally, in Fig. 3 and Fig. 4 a selection of good, high-
quality, facial samples from CASIA-WebFace and CelebA 
are presented after the pre-processing procedure and used to 
prepare data samples for the main training procedure. 

 

 

 

 

 

 

 

 

Fig. 1. CASIA-WebFace samples [10], not detected by the MTCNN [22]. 

 
4 https://github.com/NVlabs/stylegan 

 
5 https://github.com/davidsandberg/facenet 

 

Fig. 2. CelebA samples [12], not detected by the MTCNN [22].  

 

Fig. 3. CASIA-WebFace samples [10], after the pre-processing procedure 

 

Fig. 4 CelebA samples [12] after the pre-processing procedure.  

C. The Re-Training Process 

The original Generative Adversarial Networks (GAN) 

presented in [4] is made of two Deep Neural Networks: a 

generator and a discriminator. The generator accepts a 

tensor of randomly generated numbers and returns an 

image and the discriminator is a binary classifier that 

accepts an image and determines whether it is a generated 

image or not.  In this approach, these two networks are 
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trained in a min-max game wherein the final goal is for the 

generator to synthesis an image that the discriminator 

classifies as a real image. 

The StyleGAN [3] is one of the variations of GAN 

wherein the generator is developed in a specific way which 

separates it from its preceding implementations in three 

main ways: 

1- The latent space (Z) is reshaped via a fully connected 

DNN (which returns W) before feeding into the generator. 

This is to introduce disentanglement to the original latent 

space (Z) during the mapping into style indicators (W). 

2- The latent space is not fed into the generator at its 

input layer. The new latent space W is given to the 

generator before each convolutional layer. In other words, 

each part of the vector W is induced into the generator in a 

different layer. This gives the opportunity to introduce style 

information at different levels. 

3- A Gaussian noise is added to the features before each 

convolution. This operation helps the network to use its 

maximum capacity and generate higher quality outputs 

with high-frequency features. 

More details regarding the architecture as well as the 

hyperparameter selection of StyleGAN can be found in [3]. 

In this current study, once the samples were pre-

processed, StyleGAN is re-trained on the two large datasets 

mentioned above (CelebA, CASIA-WebFace). The official 

implementation of StyleGAN was adopted to retrain on our 

databases. This implementation is in TensorFlow, requiring 

version 1.10 or newer and Python 3.6 and can be found in 
4. The default configuration for training was utilized which 

used to train the highest-quality StyleGAN with the FFHQ 

dataset at a 1024×1024 resolution. Full details can be found 

in [3], as here we only described modifications to the base 

training. As mentioned earlier a dual-GPU machine was 

used to train StyleGAN. The GPUs used are RTX 2080 Ti. 

The training process was performed twice, once training 

with samples from CelebA dataset and once with samples 

from the CASIA-WebFace dataset. Each experiment ran 

for 12 days. After the end of the training process, the 

epoch/checkpoint with the best Fréchet Inception Distance 

[23] using 50,000 images (FID50k) is selected. FID50k is 

an evaluation metric used in the training procedure.  In the 

next section, examples and the evaluation results for the 

best models are presented. Finally, we make these models 

publicly available and can be found in 3.      

IV. RETRAINING – EXPERIMENTS & VALIDATION  

As mentioned, the model with the best Fréchet inception 
distance (FID) using 50,000 images for each dataset with 
which the StyleGAN was trained (CelebA, CASIA-
WebFace) is selected as the final model. The FID is an 
evaluation metric that captures the similarity of generated 
images to real ones better than the Inception Score [23]. A 
lower FID score means better image quality and diversity of 
the generated images. For the best model selected for each 
dataset, the results of several quality and disentanglement 
metrics are presented along with visual examples. More 
information about the metrics and the way that are 
calculated can be found in [3]. 

 

 

Table I. Quality and  disentangelement metrics for several StyleGAN 
models trained on different datasets and resolutions. Specifically, 

SyleGAN trained on CelebA and Casia-WebFaces at 256 ×256 and the 

original StyleGAN [3] trained on FFHQ at 1024×1024. 

Metric 

Results Description 

StyleGAN 
on CelebA 

StyleGAN 
on CASIA-
WebFace 

StyleGAN 
on FFHQ 
[3] 

FID50k 4.7842 4.5992 

 
 

4.4159 

Fréchet 
Inception 
Distance 
using 50,000 
images. 

ppl_zfull 191.9051 258.4270 

 

664.8854 
 

Perceptual 
Path Length 
for full paths 
in Z. 

ppl_wfull 68.6066 81.7605 

 

233.3059 

Perceptual 
Path Length 
for full paths 
in W. 

ppl_zend 190.5838 259.5282 

 

666.1057 

Perceptual 
Path Length 
for path 
endpoints 
in Z. 

ppl_wend 56.4555 74.2621 

 

197.2266 

Perceptual 
Path Length 
for path 
endpoints 
in W 

ls in Z 143.2236 109.7136 
 

165.0106 

Linear 
Separability 
in Z  

ls in W 2.5235 3.1748 
 

3.7447 

Linear 
Separability 
in W 

 

A. Evaluation of the re-trained StyleGAN models 

In Table I, the quality and disentanglement metrics for 

the best StyleGAN models on each dataset are presented. 

The selected model of StyleGAN trained on the CelebA 

dataset, has a better score in the perceptual path length for 

full paths and for the endpoints path in W and Z latent 

space, compared to the selected model trained on CASIA-

WebFace. Perceptual path length [24] measures the 

difference between consecutive images (their VGG16 

embeddings) when interpolating between two random 

inputs. Drastic changes mean that multiple features have 

changed together and that they might be entangled, 

therefore showing that the model trained with the CelebA 

dataset generates samples that its features are less 

connected between them compared to the ones from the 

model trained with CASIA-WebFace. The metric of linear 

separability shows the ability to classify inputs into binary 

classes. The better the classification the more separable the 

features. In this metric, the model trained with CelebA has 

a better score in the W latent space whereas the model 

trained on CASIA-WebFace has a better score in the Z 

latent space. Finally, in the FID score using 50,000 images 

the StyleGAN model trained on CASIA-WebFace has a 

better score illustrating a slightly better quality and 

diversity in the generated samples compared to the 

StyleGAN model from CelebA. In Table I, the quality and 
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disentanglement metrics for the StyleGAN trained on 

FFHQ from [3], are presented. We do not compare with 

their results as they trained StyleGAN on high quality and 

high resolution (1024×1024) in contrast with our models 

which they were trained on a ×4 smaller resolution and 

lower quality samples. 

Below several samples are generated from the trained 

StyleGAN models. Fig. 5 and 6 show an uncurated set of 

novel images generated from the trained generator. Fig. 7. 

shows the effect of applying stochastic variation to 

different subsets of layers. Fig 8 illustrates the effect of the 

truncation trick as a function of style scale ψ.  The samples 

in Fig 5, and 8 are generated by the selected StyleGAN 

model trained with CelebA and Fig 6 and 7 with the 

selected StyleGAN model trained with CASIA-WebFace. 

The models used to generate the samples are available in 3. 

 

 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Uncurated set of images produced by the best StyleGAN model 
trained with CelebA. The samples are generated with a variation of the 

truncation trick [25]–[27], ψ = 0.7 for resolutions 42 − 322. This figure is 

similar to the figure (2) from [3] 

 

 
 
Fig. 6. Uncurated set of images produced by the best StyleGAN model 

trained with CASIA-WebFace. The samples are generated with a variation 

of the truncation trick [25]–[27], ψ = 0.7 for resolutions 42 − 322. This 

figure is similar to the figure (2) from [3]. 

 

 
 
Fig. 7. Effect of noise inputs at different layers of the generator. (a) Noise 

is applied to all layers. (b) No noise. (c) Noise in fine layers only (642 – 

10242). (d) Noise in coarse layers only (4 2 – 322).  This is similar to figure 

(5) from [3]. 
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Figure 8 The effect of truncation trick as a function of style scale ψ (ψ=1). 
When we fade ψ → 0, all faces converge to the “mean” face of CelebA. 

This is similar to figure (8) from [3] 

V. DISCUSSION AND FUTURE WORK 

StyleGAN is currently the state-of-the-art in generating 
images, especially in the task of realistic face generation. In 
the sections above the procedure of re-training it on several 
public face datasets is discussed. The network was re-
trained on two large publicly available datasets, CelebA and 
CASIA-WebFace. The Original StyleGAN has been trained 
on the FFHQ and CelebA-HQ face datasets which are of 
high quality and high resolution in [3]. As in this work, the 
training is performed with images of low resolution and 
lower quality, no comparison is being performed between 
the StyleGAN models of this work and the models from [3]. 
We trained StyleGAN models on different face datasets 
with different resolutions providing a useful tool for 
researchers, as to make these models available in 3. 
Furthermore, it gives the opportunity to examine several 
aspects of StyleGAN. As mentioned StyleGAN is being 
trained on other large face datasets and further results will 
be presented at the ISSC conference later this year. It should 
be noted that this work is a first step and an important tool 
that will be used in order to understand how the size and 
quality of the original dataset affect the quality and 
distribution of the output data samples. Also, it will help to 
study how these tools could be used in order to build large, 
scalable datasets of synthetic facial data. Future works 
include, a study regarding the amount of data and variation 
needed in order to train StyleGAN effectively and a study 
regarding the relationship between the original samples 
used for training the StyleGAN models and the generated 
samples will be performed as well as examining the 
relationship between the generated samples. 
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Abstract— In recent years, large "in the wild" face datasets 
have been released in an attempt to facilitate progress in tasks 
such as face detection, face recognition, and other tasks. Most of 
these datasets are acquired from webpages with automatic 
procedures. As a consequence, noisy data are often found. 
Furthermore, in these large face datasets, the annotation of 
identities is important as they are used for training face 
recognition algorithms. But due to the automatic way of 
gathering these datasets and due to their large size, many 
identities folder contain mislabeled samples which deteriorates 
the quality of the datasets. In this work, it is presented a semi-
automatic method for cleaning the noisy large face datasets with 
the use of face recognition. This methodology is applied to clean 
the CelebA dataset and show its effectiveness. Furthermore, the 
list with the mislabelled samples in the CelebA dataset is made 
available.  

Keywords— face datasets, mislabeled identities, noisy samples, 
clean face dataset, semi-automatic cleaning, CelebA 

I. INTRODUCTION 

In the last few years, Convolutional Neural Networks 
(CNNs) have significantly enhanced the performance of the 
state-of-the-art methods in many areas, including  face 
recognition [1]–[3]. New CNN architectures are released 
frequently along with new learning methodologies that push 
the limits of face recognition [4]–[6]. But this success is also 
due to the recent Big Data era that has emerged, which allows 
creating large face datasets with real images harvested from 
the Internet [7][8]. Generally, large face datasets are built in a 
semi-supervised way using image-search engines and thus 
prone to bad data samples due to mislabelling and poor image 
quality of some samples  [9]. Often, the number of these bad 
data samples is not statistically significant for a particular task 
and they can be ignored, but, in other cases a small number of 
bad data samples can become quite significant and lead to poor 
training outcomes [10]. Therefore, cleaning the datasets from 
mislabelled samples is desirable for some use cases.  

Consider for example a large dataset which is used to train 
a facial image generator, e.g. StyleGAN[11]. If the training 
dataset contains some mislabelled identities – i.e. wrong 
identity is assigned to a person – this is not critical for training 
a GAN that can create realistic faces as these mislabelled data 
samples still represent ‘good’ samples of facial images. 
However, if the task at hand switches to training a CNN to 
perform facial recognition, distinguishing between multiple 
identities, these mis-labelled samples are now ‘bad’ and if 
there are sufficient such data samples, the performance of the 
resulting face recognition CNN will be sub-optimal [10]. 

However, identifying mislabelled facial images 
automatically without human supervision is a very challenging 

task. This is due to the extreme variations of the facial images 
captured in the wild which can result in mis-labelling one’s 
identity [9]. Also, it has been shown that large face datasets 
can typically have a noise ratio of bad data samples higher than 
30% [12].  

In few works, procedures and ways are described in order 
to minimize bad data samples when creating the dataset [10], 
[12]. Other researchers have tried in various ways to clean the 
noisy data samples from such large datasets. In [13], an anchor 
face that had the most neighbours was selected and a maximal 
subgraph starting from this anchor was regarded as the 
cleaning result. The authors in [14], proposed a three-stage 
graph-based method to clean the large face datasets using a 
community detection algorithm. Although these methods can 
clean a large part of the datasets, they have some limitations. 
After the cleaning procedure, the datasets may, either lack 
diversity as many variations are treated as outliers or the size 
of the dataset has decreased quite significantly due to the 
rigorous constraints imposed by the cleaning process. 

 Finally, some researchers have employed manual 
annotators, and have succeeded in constructing a variety of 
face datasets where most images are correctly labelled such as 
[15][16], but this approach requires significant human effort 
with overlapping of the data annotation to achieve a consensus 
on more difficult samples. It also remains prone to human 
error and variations in human judgement, especially on 
‘difficult’ samples. 

This work introduces a semi-automatic methodology to 
find and remove mislabelled samples. from large facial 
datasets. Such facial datasets have many practical applications 
in building state-of-art multimedia experiences. A 
methodology for improving the quality of facial data samples 
in such datasets is an important tool for multimedia system & 
content developers.  

This method described here utilizes a state-of-the-art face 
recognition (FR) model in order to detect the outliers within of 
a facial dataset which is organized with multiple classes of 
facial identity. Based on the intra-class comparisons of the 
samples, the images that produce low-confidence result are 
considered as outliers and examined manually. This is caused 
by either mislabelled samples or the samples which are 
difficult intra-class images for the FR model. This method 
does not dramatically reduce the size of the original dataset or 
reduces the diversity of the dataset. This method has been 
tested on a large facial dataset and the results are presented in 
this paper. 

In the next sections the related literature is presented, 
followed by a description of the cleaning methodology for 
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facial identity datasets. Some examples of mislabelled data 
samples are described, and we have identified some common 
labelling errors across all of the dataset we have processed to 
date. Finally, results arising from an application of the 
methodology to the full CelebA dataset are presented and 
discussed and the list with the mislabelled samples are given 
in 1. 

II. RELATED LITERATURE  

In the following section an overview of publicly available 
facial datasets used for face recognition purposes are 
presented. Furthermore, as a face recognition model (FR) is 
used in the methodology, some the state-of-the-art face 
recognition algorithms are described shortly.    

A. Publicly Available Facial Datasets  

1) CASIA-WebFace 
 CASIA-WebFace [17] is one of the first large public 

facial datasets. It contains 10.575 identities with a total of 
494.414 samples. The identities belong to celebrities and are 
collected from the IMDb website. The size of the dataset 
makes it suitable for training on the face recognition task and 
is frequently used throughout the literature. 

2) CelebFaces  
 The CelebFaces+ dataset [18] was released in 2014 
and along with the CASIA-WebFace was one of the first large 
publicly available datasets, as it contains 202,599 images of 
10,177 identities. The dataset might also be known as 
CelebFaces Attributes Dataset (CelebA) [19] where the 
samples form CelebFaces+ are annotated with 5 landmark 
locations and for 40 binary attributes, providing valuable 
information for the researchers 

3) VGGFace & VGGFace2 
 The VGG datasets are released from the Visual 

Geometry Group from the University of Oxford. The 
VGGFace [2] dataset was released in 2015 and contains 2.6M 
samples from 2,622 people. VGGFace was released similarly 
to CASIA-WebFace mainly for training purposes. In 2018, the 
VGGFace2 [20] was released which consists of 3.31M 
samples from 9,131 celebrities. The images were downloaded 
from Google Image Search. The image samples from 
VGGFace2 cover a wider range of different ethnicities, 
professions and age compared to VGGFace. Furthermore, all 
the samples have been captured “in the wild” thus giving the 
dataset a desirable variation with respect to pose, lighting and 
occlusion conditions as well as emotions. The dataset can be 
used for training and testing purposes as it is divided into a 
train and test set. Finally, VGGFace2 provides annotations 
regarding the pose and the age of its samples which can be 
useful for researchers.   

4) Ms-Celeb-1M 
 The Ms-Celeb-1M dataset [9] was created and 

published in 2016 by Microsoft. It is the largest publicly 
available face recognition dataset with over 10M samples 
from 100K identities. The dataset is suitable for training and 
testing purposes.    

B. Face Recognition Algorithms 

Below a few state-of-the-art CNN based face recognition 
algorithms, are introduced. 

                                                           
1 https://github.com/C3Imaging/Deep-Learning-Techniques/tree/clean-

celebA 

1) DeepFace 
In 2014, Facebook published DeepFace [3]. DeepFace 

at the time achieved state-of-the-art accuracy (97.35%) on the 
famous LFW benchmark. DeepFace introduced a new 
alignment, employing explicit 3D face modelling in order to 
apply a piecewise affine transformation. Furthermore, to 
achieve such a performance they trained a nine-layer deep 
neural network with their in-house datasets which consists of 
4 million face samples from more than 4,000 identities.   
 

2) FaceNet 
In 2015, Google introduced FaceNet [1] and achieved 

accuracy of 99.63% on the LFW benchmark. FaceNet was 
trained on 200M images from 8 million subject. Furthermore, 
they introduced the triplet loss function. It requires the face 
triplets (an anchor, a sample of the same class as the anchor 
and a negative sample), and then it minimizes the distance 
between an anchor and a positive sample of the same identity 
and maximizes the distance between the anchor and a 
negative sample of a different identity.  
 

3) ArcFace 
ArcFace [5] was published in 2018. It pushed the limits 

of the LFW benchmark even further as it achieved 99.83% 
accuracy.   It also achieved state-of-the-art results on the 
MegaFace Challenge. Finally, the authors proposed a new 
loss function, additive angular margin, to learn highly 
discriminative features for robust face recognition 

III. METHODOLOGY 

 The following section describes, the methodology for 
finding and removing mislabelled samples in identity folders 
from face dataset. This methodology comprises three main 
stages. Initially a FR model is utilized to get an embedding 
from all the images. After, using the embeddings, a score for 
all the positive pairs from the face dataset is calculated. In the 
second stage the worst 2%-3% of identities of the dataset is 
thresholded as outliers.  Finally, through a selection method, 
possible mislabelled samples from the thresholded identities 
are selected to be manually examined. The resulting data 
sample pairs – typically not more than a few thousand even on 
a large dataset - are manually examined.   

A. Scores from Face Recognition (FR) Model 

Firstly, the FR model is trained (or fine-tuned) on the 
original dataset which is to be cleaned. Note that following an 
initial cleaning of the dataset, the FR can be further fine-tuned 
by retraining on the cleaned dataset. Thus, several iterations 
can be run to further improve the cleaning. This methodology 
leverages the power of the FR model to distinguish samples 
of different facial identities. The FR model must have a very 
good performance on the examined dataset in order to be able 
to detect outliers efficiently. If the FR model does not have 
high performance on the dataset, correctly labelled samples 
will be easily considered as outliers.  Training / fine-tuning 
the FR on the dataset that will be examined, has a trade-off, 
as there is the possibility that the FR model will learn to 
classify a sample “correctly” even if it is mislabeled. 
Although it is assumed that the mislabeled entities comprise 
a very small percentage of the database and does not have a 



big effect on the final model. This gives the FR model the 
opportunity to learn the most representative embeddings 
during training and mislabeled samples will be treated as 
outliers.  

It is not a necessary step to train / fine-tune the FR on the 
examined dataset as FR can perform well on a dataset even if 
it has been trained on a different one. Although this is 
recommended as the FR model will thus be better optimized 
for the dataset that is selected to be cleaned. 

 
Next, the embeddings for all the images are produced 

from the FR model. For all the positive pairs for each identity, 
the score is calculated using the embeddings (pair score). The 
selection of the score depends on the way the FR model was 
optimized (Euclidean distance, cosine similarity etc.), as 
models can be optimized with different losses. The proposed 
methodology utilizes the Euclidean distance to measure the 
difference between the embeddings of two images. 

  
For each identity the scores from all the possible positive 

pairs are calculated and the worst score is selected as the score 
of the identity (id score). In this way we take into 
consideration all the intra-class samples and it enables us to 
examine how good are the embeddings of the FR model 
produced for each identity.  

B. Outlier Selection  

After the procedure described above, each identity is 
assigned with an id score. The 2-3% of the identities with the 
worst id score, are thresholded and marked as outliers.  

It is chosen to examine only the top 2-3% of the dataset as 
we do not want to dramatically reduce the size of the original 
dataset or reduces its diversity. It is  desired to  only to remove 
the most obvious outliers. There is a high possibility that the 
mislabelled samples are discriminated after thresholding 
since the FR model was not able to produce embeddings that 
are close enough. Although, that does not necessary means 
that all the samples from these identities are mislabeled. 

 
In order to fine-grain the selection of the possible 

mislabeled samples from the thresholded identities, the 
images from the pairs that produced a low-confidence pair 
score are targeted. To do that, another threshold is defined 
(pair threshold) which is selected, based on the average value 
of all the id scores from the identities.  If a pair has produced 
a pair score worse than the pair threshold, then the images of 
the pair are recorded. Also, it is noted how often an image 
participated in pairs that produced a pair score, worse than 
the pair threshold. Therefore, in this step the samples with the 
biggest internal embedding distance are selected as 
mislabeled. 
  

To summarize, two thresholding procedures are being 
implemented at this step. The first one is being implemented 
to threshold the identities that might have mislabeled samples 
in their folder. The second thresholding is implemented in 
order to fine-grain which samples from the thresholded 
identities might be the mislabeled ones. 

                                                           
2 https://github.com/davidsandberg/facenet 

C. Selection of Samples for Visual Examination  

As, mentioned in the previous section, the identities that 
might contain mislabeled samples followed by the image 
pairs are thresholded. Also, image frequency was introduced 
as the number of times that an image participated in a pair and 
had a pair score more than the pair threshold. 

Based on the image frequency of a sample, it is 
determined whether it will be manually examined or not. For 
each identity the samples that are manually examined are 
selected using the following procedure. The number of pairs 
that have pair score worse than the pair threshold is 
calculated ( ). Then the samples are sorted in a 
descending order based on their image frequency. Starting 
from top to bottom a sample is selected. Every time a sample 
is selected, its image frequency is subtracted from . 
Samples are selected till  is equal or less to 0. Finally, 
these samples are manually examined in order to identify the 
mislabeled ones.  

 
The initial experiments using the proposed methodology 

indicated that there are 3 common types of mislabeling in the 
identity folders: 

a) One main identity with 1 to , mislabeled samples 
in the folder 

b) An identity folder with n mislabeled samples and 
without one of the different identities having a 
stronger presence than the others. By stronger 
presence, it is meant to have enough samples to 
create an identity folder (more than 4-5 samples). 

c) Two identities in the same folder.  

IV. EXPERIMENTS ON CELEBA   

In the next section, the methodology described is applied 
to clean the CelebA dataset from mislabeled samples and the 
result are presented with examples from each mislabeling 
type. 

A. Scores from FR model on CelebA  

The FR model selected for this set of experiments can be 
found here 2. This is an unofficial TensorFlow implementation 
of FaceNet [1], built on ideas from [2]. This FR model/ 
implementation was selected for two main reasons. The first, 
being its availability and its ease of use. The second is the fact 
that it provides a pretrained model which reports state-of-the-
art performance in the LFW test set [7]. For the purpose of this 
research, the available pre-trained model is fine-tuned on the 
CelebA dataset. The FR model’s architecture is an Inception 
ResNetv1 [21]. The employed pretrained model that is trained 
with SoftMax, on the VGGFace2 dataset [20]. The input size 
of the network is an 160 160 image and the output is a 512-
embeding. 

 The reason for the fine-tuning is for the FR to be more 
dataset specific and have a higher performance on the dataset 
that will be examined. In the fine-tuning process, the same 
configurations as in training were used, with a reduced 
learning rate. For more information regarding the training of 
the FR model and data preparation see 2.  

In Fig.1 the ROCs on the CelebA dataset is presented for 
the models before and after fine-tuning. The ROC curves, 
shows that the FR model after fine-tuning on the CelebA, 



performs better than the pretrained model. Therefore, it will 
point to the identity folders that may have mislabeled samples 
more effectively. This is because the performance is increased, 
resulting in a lower false positive error. This also illustrates the 
need for the FR model to be trained / fine-tuned on the 
examined dataset.  

After fine-tuning is completed, the 512-embedding for all 
the samples of CelebA dataset are calculated. The score used 
for this set of experiments is the Euclidean distance between 
the embeddings. For each identity, the scores from all the 
possible positive pairs are calculated and the worst score (in 
this case the highest Euclidean distance) is selected as the 
score of the identity (id score). 

 

 
Fig. 1. The ROC curves on the CelebA dataset. The blue line, shows the 
performance for FR model before fine-tuning and the red for the FR model 
after-finetuning.  

B. Identifying possible mislabeled identity folders 

As mentioned in the section B of the Methodology, in two 
thresholding procedures take place at this step.   

In the first thresholding procedure, the identities with the 
worst 3% id score (in this case with highest Euclidean 
distance) are thresholded. These identities are considered as 
outliers, as they might contain mislabeled samples in their 
folders. This means 310 identities.  

Afterwards, a second thresholding takes place. This is 
implemented in order to fine-grain the selection of the possible 
mislabeled samples that may exist in the thresholded identity 
folders (section III-B). 

 First, the pair threshold is calculated as described in the 
Methodology (section B) which is the average of all the id 
scores from all the identities and is equal to 1. 

Therefore, for the thresholded identities, all the positive 
image pairs that have Euclidean distance more than 1 (pair 
threshold), are recorded. Also it is noted how often an image 
exist in pair with pair score, worse than the pair threshold, and 
is defined as image frequency. In Fig.2 illustrates the 
distribution of the id score from all the identities. 

C. Results  

After the two thresholding operations (initially for the 
identities and afterwards for its samples), the image frequency 
is finally calculated. As mention in the section C, of the 
Methodology, the image frequency is used to determine  

 
 Fig. 2. The distribution of the id score from all the identities from the CelebA 
dataset before applying the method proposed for cleaning the dataset. 

which samples will be manually examined for being possible 
mislabeling.  

Applying the methodology, the three types of mislabeling 
in the identity folders appeared as well as cases where the 
methodology flagged an identity folder which by examining 
its samples, it did not have any mislabeling, but it contained 
samples with high variation. Below some examples are 
presented for each case, along with the different actions that 
were chosen for cleaning the dataset, depending on the 
mislabeling type. 

 
1. Two identities in one folder 

 

 
   (a) 

 
  (b) 
Fig. 3. Example of a mislabeled folder in CelebA, which contains 
two different identities.  

In this case the mislabeling type of having two 
identities in the same folder was detected using the 
described technique. Fig. 3a and Fig. 3b are samples, 
obviously from 2 different identities but found on the 
same identity folder.  In this cases, one identity is retained, 
and the samples of the other identity are removed 

 
 



2. One identity with  mislabeled samples 
 

In this case the technique used, flagged an identity folder 
which contained samples from one identity but also some 
mislabeled samples.  Fig. 4a, shows the mislabeled samples 
existing in the identity folder. Fig. 4b shows the samples 
belonging to the same identity. 

 In these cases, the mislabeled samples were deleted. In 
case that the mislabeled samples were many and the main 
identity was left with less than 2-3 samples, the folder was as 
well removed. 

 

        
                            (a) 

 
        (b) 
Fig. 4. Example of an folder in CelebA, which contains one main 
identity with 1 to n, mislabeled samples in the folder. 
 

3. An identity folder with  mislabeled samples 
 

 
 
Fig. 5. Example of an folder in CelebA, with n mislabeled samples 
and without one of the different identities having a stronger 
presence than the others.  
 

In this example a folder with  different identities 
were detected, as it can be seen in Fig.5. In this type of 
mislabeling, where a folder had  mislabeled samples 
without one identity having a stronger present (By 
stronger presence, it is meant to have enough samples to 
create an identity folder (more than 4-5 samples)), the 
whole identity folder was deleted. 

 

4. High variation in an identity folder 
 
Finally, there were cases were the methodology indicated 

an identity folder as an outlier. Though by examining its 
samples, it was detected that the samples belong to the same 
identity. The technique indicated this identity folder as an 
outlier due to its high variation. In Fig. 6, such an example is 
illustrated. In case a folder was considered an outlier without 
having any mislabeled samples, no further action was taken, 
and its samples were retained.  

 

 
 
Fig. 6. Example of an folder in CelebA, shows a case where the methodology 
was unsuccessful. As it identified this folder as outlier with possible 
mislabeled samples but the folder just contained difficult intra-class samples 
due to variation for the FR model.  

 
Fig. 7. The distribution of the id score from all the identities from the CelebA 
dataset before (blue) applying the method proposed for cleaning the dataset 
and after (orange). The distribution of the id scores was reduced when the 
mislabeled samples were removed, showing the effect of cleaning in the 
dataset with the proposed method. 

In total, from the 310 identities that were flagged using 
the proposed method only 9 of them did not have any 
mislabeling samples. The other 301 identities selected 
contained mislabeled samples. In Fig. 2, the distribution of 
the id score for all identities is shown before cleaning the 
CelebA dataset. In Fig. 7 the distribution of the id score is 
shown after the cleaning of the CelebA dataset, in comparison 
with the initial distribution of the id score from Fig2. It can 
be seen from the Fig.7, that majority of the high scores were 



due to the mislabeled samples, as after removing the 
mislabeled samples the distribution of the id score was 
reduced. 

 
The CelebA dataset as mentioned earlier, consist of 

202,599 images from 10,177 identities. After applying the 
methodology for finding and removing mislabeled samples as 
described earlier, it remains with 197,477 samples from 9,996 
identities. The list with the mislabeled samples is publicly 
available in 1. 

V. DISCUSSION AND FUTURE WORK 

In the sections above, a (semi-automatic) technique for 
identifying and removing mislabeled samples in terms of 
identity is described. The technique utilizes a face recognition 
model trained / fine-tuned on the examined dataset in order to 
discover outliers in an identity folder that shall be examined as 
it is possible to contain mislabeled face samples. This 
methodology was applied to clean the CelebA dataset and the 
results are presented in section IV-C. In addition, the list with 
the mislabeled samples can be found in 1. This technique can 
be applied to any face dataset annotated with identities in order 
to “clean” it so that the dataset can be used with more certainty 
as a considerable number of mislabeled samples will be 
eliminated.  

In this preliminary work our main goal has been to 
demonstrate the effectiveness of the methodology to provide a 
minimal curation of the dataset. In other words, we seek to 
retain as many of the original data samples as possible to 
ensure that the diversity of the original dataset is preserved. 
There is still a lot of work to apply these techniques across 
additional large datasets and to further automate the 
methodology and develop additional analysis tools and quality 
metrics to fully demonstrate its capability to improve the 
quality of these datasets.  

Also, this technique will be examined in order to observe 
the influence and how to achieve the best configuration for 
setting the identity and pair threshold, as the tuning of this 
threshold has not been explored in detail in this preliminary 
work. Furthermore, this methodology will be used to identify 
mislabeled samples in other face datasets. The methodology 
should also be compared with some datasets that have been 
manually cleaned and we are currently signing some license 
agreements to gain access to a number of such ‘clean’ datasets. 
It is expected that some comparisons can be provided for 
presentation at QoMEx 2020. 

Finally, it would be useful to automate additional aspects 
of the cleaning process and approaches to reduce the 
computational complexity of the methodology. A number of 
these will be explored, working in collaboration with other 
researchers later this year.   
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ABSTRACT This work explores the identity attribute of synthetic face samples derived from Generative
Adversarial Networks. The goal is to determine if individual samples are unique in terms of identity, firstly
with respect to the seed dataset that trains the GAN model and secondly with respect to other synthetic
face samples. Two approaches are introduced to enable the comparative analysis of large sets of synthetic
face samples. The first of these uses ROC curves to determine identity uniqueness using a number of large
publicly available datasets of real facial samples to provide reference ROCs as a baseline. The second
approach uses a thresholding technique utilizing again large publicly available datasets as a reference. For
this approach, new metrics are introduced, and a technique is provided to remove the most connected data
samples within a large synthetic dataset. The remaining synthetic samples can be considered as unique as data
samples gathered from different real individuals. Several StyleGAN models are used to create the synthetic
datasets, and variations in key model parameters are explored. It is concluded that the resulting synthetic data
samples exhibit excellent uniqueness when compared with the original training dataset, but significantly less
uniqueness when comparisons are made within the synthetic dataset. Nevertheless, it is possible to remove
the most highly connected synthetic data samples. Thus, in some cases, up to 92% of the data samples in
a 20k synthetic dataset can be shown to exhibit similar uniqueness to data samples taken from real public
datasets.

INDEX TERMS Artificial intelligence, computer vision, face recognition, generative adversarial networks
(GANs), StyleGAN, synthetic face, synthetic identity, uniqueness metrics.

I. INTRODUCTION
In the last few years, a number of tools for generating
synthetic facial samples have evolved [1]–[3], based on
generative adversarial networks (GANs) [4]. These enable
photo-realistic, high-resolution synthetic face samples to
be generated at scale. StyleGAN [3] is a representative
of the current state-of-art, and the generated samples are
photo-realistic and of higher quality than the facial samples
available in many public face datasets. This leads us to con-
sider the potential to create a large facial dataset built entirely
from synthetic facial data samples.

Now a key attribute of face samples is their associationwith
a specific person or individual. We refer to this association

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

as the identity of a face sample. With the introduction of
GDPR in Europe and similar data privacy regulations in other
jurisdictions, it has become challenging to gather biometric
data, in particular, facial data for research purposes. Facial
data samples are directly associated with an individual, and
it is challenging to anonymize or otherwise separate facial
data from a person’s identity. Consequently, some biometric
datasets have been withdrawn from public use, and building a
new dataset has become increasingly complex and expensive.

A. MOTIVATION & RESEARCH QUESTIONS
This work explores the potential to build synthetic facial
datasets at scale by using a GAN to generate a seed dataset
of facial data samples that are demonstrably unique in terms
of their identity. Given such a seed dataset, it would then be

152532 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020



V. Varkarakis et al.: Validating Seed Data Samples for Synthetic Identities

feasible to modify these seed samples to build large synthetic
training datasets focusing on other facial attributes such as
facial lighting, pose, and expression [5]–[7].

The starting point for building such datasets is a method-
ology to demonstrate that the identities of the synthetic facial
data samples used as seed data behave in the same way as
those of a ‘real-world’ dataset of facial data samples. It is also
essential to validate that the synthetic data samples are unique
in terms of identity with the original seed data used to train
the generator. These considerations lead to three key research
questions:

1) Are the synthetic data samples unique when compared
with the original seed data used to train the GAN model?

2) Are the synthetic data samples within a generated
dataset unique when compared with one another?

3) Can we validate individual samples within a generated
dataset to ensure that there is sufficient identity uniqueness to
use as a synthetic seed data sample for further research?

B. APPROACH AND METHODOLOGY
These research questions led us to develop two research
approaches to understand and quantify the identity unique-
ness within a set of samples of synthetic (Sy) data when com-
pared against samples from the seed (Se) dataset (Sy vs Se).
The same methodology can then be applied to understand the
uniqueness within a set of synthetic data samples, in terms
of identity (Sy vs Sy). To evaluate the identity uniqueness
of the generated synthetic samples for both cases (Sy vs
Se, Sy vs Sy), the proposed approaches utilize a state-of-art
Face Recognition (FR)model. In both approaches, the perfor-
mance/behavior of real samples is used as a reference point,
and the performance/behavior of the generated synthetic sam-
ples for each case is compared against it to draw conclusions
and answer the Research Questions.

In the first approach, the performance/behavior of real
samples and generated synthetic samples for each examined
case (Sy vs Se, Sy vs Sy) is illustrated through ROC curves.
These are compared and examine the identity uniqueness
of the generated synthetic samples with their seed data and
identity uniqueness of the generated synthetic samples when
compared with one another.

In the second approach, a thresholding technique is imple-
mented to determine the identity uniqueness for both cases.
In this approach, the performance of real samples is illus-
trated through an FR threshold. The FR threshold is used to
determine the similarity of the generated samples with their
seed dataset and also among the synthetic samples in terms of
identity. Reversely, this shows the identity uniqueness. Using
this approach, a new metric is introduced which based on its
value, answers the questions posed on this work along with
an approach to quantify the generated synthetic samples that
have a unique identity in each case (Sy vs Se, Sy vs Sy).

The paper is structured in the following way. A Literature
Review is initially given along with the Foundation Methods
used in this work. The Methodology is described, followed

by its Implementation and Experiments. Finally, the results
are discussed in the Conclusion, along with Future Work.

II. LITERATURE REVIEW
Several evaluation measures have surfaced with the emer-
gence of new GAN models. Some of them attempt to quanti-
tively evaluate models while others emphasize on qualitative
ways such as studies or analyzing internals of models [8].

Regarding quantitative metrics, the Inception Score (IS)
proposed in [9], is one of the most popular scores for
evaluating GAN models [10]. In order to compute the IS,
the generated images are passed through Inception Net [11]
(trained on ImageNet [12]) and the output is post-processed
to capture different properties of the image. The IS score is
able to show a reasonable correlation with the quality and
diversity of generated images [11]. Other metrics have also
been introduced, which use similar concepts as in IS, such as
M-IS [13], Mode Score [14], AM score [15], and FID [16].
Also, a common indirect technique for GAN evaluation,
especially for Conditional-GANs, is to use an off-the-shelf
classifier to assess the synthetic images [8]. For example,
in [17], a VGG network was utilized to evaluate the fake col-
ored images. This method is called semantic interpretability.
A similar approach was used in [18], where the FCN score is
proposed to measure the quality of the generated images and
also in [19], where the GAN Quality Index (GQI) is intro-
duced. Finally, researchers have proposed measures from the
image quality assessment literature, such as SSIM, PSNR,
or/and Sharpness Difference (SD), to be used not only in eval-
uating the GAN models but also in training [18], [20]–[22].

The qualitative metrics used to evaluate GAN models are
divided into 5 main categories in [8]: (i) Nearest Neighbors
approaches to detect overfitting [20], [23], (ii) Rapid Scene
Categorization methods, in which humans are reporting fea-
tures of the generated images with a quick look [24]–[26],
(iii) Rating and Preference Judgment, where humans rate the
synthetic images in terms of fidelity [17], [21], [27]–[32],
(iv) approaches where the mode drop/collapse of the GANs
models are examined [33]–[35] and finally (v) methods
of Investigating and Visualizing the Internals of Networks,
to explore what and how theGANmodels learn through latent
space exploration [1], [36]–[41].

All approaches have strengths and limitations, which are
discussed extensively in [8]. Even the IS and FID, have draw-
backs as they rely on pre-trained deep networks to represent
and statistically compare original and generated samples and
using a certain natural scene dataset (e.g., ImageNet), and
applying them to other domains is questionable [8]. However,
these two metrics are widely accepted in evaluating GAN
models. These, along with other issues, have made evaluating
generative models notoriously difficult [23] and there exists
no agreement regarding the best GAN evaluationmeasure [8].

Due to these challenges, it is argued against evaluating
models for task-independent image generation and proposed
to evaluate GANs with respect to a specific application
as for different applications different measures might be
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appropriate [23]. This work’s Methodology focuses on the
uniqueness of the identity attribute of the synthetic face sam-
ples. Therefore, it is only applicable to GAN models trained
for the task of face generation. The proposed Methodology
enables us to understand if the generate synthetic face sam-
ples are unique, in terms of identity, when compared to their
seed data samples. The approach is also applied to examine
the uniqueness among the generated synthetic data sample.
As an extension, this Methodology allows us to quantify the
synthetic data with a unique identity when compared to their
seed data or with other synthetic samples, which can be used
to measure the ability of a GAN to generate synthetic data
with unique identities.

III. FOUNDATION TECHNIQUES
This section presents the Foundation Techniques employed
in this research, including an introduction to the GAN model
selected in generating the synthetic samples that are exam-
ined, the datasets used, the employed face recognition model
as well as the measurement techniques used to generate the
proposed Methodology.

A. GENERATING SYNTHETIC FACIAL DATA WITH GANs
Currently, StyleGAN [3] represents the state-of-the-art GAN
for the face generation task and the synthetic facial samples
that are examined in this work are derived from it. Although
any GAN model trained on the task of face generation can
be used to implement the Methodology proposed. Three
different StyleGAN models are used for the result of this
study to not rely on a single model. The datasets that each
model has been trained on has a different number of samples
and a different number of identities. Note that in this work,
we did not consider other GANs due to the complexity and
computation effort of the re-training process, but it would be
interesting to investigate and compare other GANs that are
used for facial generation and this is commented on in the
future work section.

When considering the distribution of the training data,
areas of low density are poorly represented and thus likely
to be difficult for the generator to learn which is a signifi-
cant open problem in all generative modeling techniques [3].
However, it is known that drawing latent vectors from a
truncated [42], [43], or otherwise shrunk [44] sampling
space tends to improve average image quality, although some
amount of variation is lost. To avoid generating poor images,
StyleGAN [3] truncates the intermediate vector w, forcing
it to stay close to the ‘‘average’’ intermediate vector. The
truncation psi value ranges from {−1, 1} and influences
how diverse the output will be. The further the truncation
psi value is from 0, the less truncated (more diverse) the
sampling space is. In the work presented, the influence of
StyleGAN’s truncation psi parameter is studied, and sets of
synthetic data samples are created using different truncation
psi values. More details regarding the architecture, as well
as the hyperparameter selection of StyleGAN, can be found
in [3].

In the Implementation and Experiment, section V, the
StyleGAN models used in this work are described. Also,
the procedure and details used to generate the synthetic data
are given.

B. DATASETS
The following datasets are used as part of this research for
training and evaluation purposes.

1) LABELED FACES IN THE WILD (LFW)
Labeled Faces in the Wild (LFW) [45] is the de facto stan-
dard test dataset for the face verification in unconstrained
conditions. The majority of research publications related to
the face verification task report their performance with the
mean face verification accuracy and the ROC curve on the
standard evaluation set of 6,000 given face pairs in LFW.
The dataset was released in 2007 and contains 13,233 face
images of 5,749 identities. Although, it should be mentioned
that due to the small number of identities and the number of
samples per identity in the LFW, it is inadequate for training
purposes and thus is used mainly for testing. In this work,
the LFW is utilized to compute ROC curves which are part
of the proposed Methodology. In the Implementation and
Experiment, section V, it is explained in detail how it is used.

2) CASIA-WEBFACE
CASIA-WebFace [46] is one of the first large public facial
datasets, published in 2014. It contains 10,575 identities,
with a total of 494,414 facial data samples. The identities
belong to celebrities and all of them are collected from the
IMDb website. The size of the dataset makes it suitable for
facial recognition tasks and this dataset is frequently used
as a baseline by researchers in the facial recognition filed.
CASIA-WebFace is used similarly as the LFW in this work
and more details can be found in the Implementation and
Experiment section V.

3) CELEBFACES/CELEBA
The CelebFaces+ dataset was released in 2014 and along
with the CASIA-WebFace was one of the first large publicly
available datasets, as it contains 202,599 images of 10,177
identities. A version of this dataset with additional metadata
is known as CelebFaces Attributes Dataset (CelebA) [47],
where the samples form CelebFaces+ are annotated with
5 landmark locations and for 40 binary attributes (eyeglasses,
mustache, hat, etc.), providing valuable information for the
researchers. CelebA has a two-fold use in this work. As LFW
and CASIA-WebFace, it is used similarly in order for ROC
curves to be computed. In addition, it is used in training a
StyleGAN model from which synthetic data are generated
and examined in this work.

4) CELEBA-HQ
CelebA-HQ [48] is a high-quality subset version of
the CelebA dataset. Consists of 30,000 face samples in
1024 × 1024 resolution. The original samples from CelebA
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were utilized and pre-processed, in order to achieve consis-
tent high quality and center the images on the facial region.
The pre-processing pipeline used to produce the CelebA-HQ
from the CelebA dataset is described in [48]. The dataset
was created and used initially to train PGAN [48] and
also StyleGAN [3]. The 30,000 samples are from approxi-
mately 6,000 identities. The StyleGAN model trained on the
CelebA-HQ from [3], is used to generate synthetic samples
which are used to answer the Research Questions posed in
the Introduction.

5) FFHQ
Flickr-Faces-HQ (FFHQ) [3] is a high-quality image dataset
of human faces. The datasets consist of 70.000 high-quality
images at a resolution of 1024 × 1024. The samples were
crawled from Flickr. The dataset has considerable variation
in terms of ethnicity, age, image background and accessories.
The dataset is created as a benchmark for generative adversar-
ial networks and each face sample originates from a different
person. The FFHQ is used to train a StyleGAN model [3],
from which synthetic samples are created which are used in
the Methodology of this work.

C. FACE RECOGNITION MODEL
The face recognition (FR) model selected for use in this work
is the ArcFace [49]. ArcFace was made public in 2018 and
the results presented at that time pushed the limits of the
LFW benchmark beyond state-of-art at that time, achieving
99.83% accuracy. It also achieved state-of-the-art results on
the MegaFace Challenge [50].

The proposed methodology can be implemented using any
FR model with the condition that should be a state-of-art
model and having a high performance on the datasets used
to implement the Methodology. The choice of the ArcFace
model is because of the availability, as the authors have
released the weights of the model.1 Other state-of-art FR
models such as FaceNet [51] or CosFace [52] do not provide
official implementations with reference training weights.
Before concluding in the use of the ArcFacemodel, an unoffi-
cial implementation of FaceNet2 was also tested but it didn’t
have a high performance on the datasets used in this work.
Therefore extra fine-tuning should have been implemented
and possible making the FR model biased on a specific
dataset. On the contrary, the ArcFace model has high per-
formance on the datasets used in this work without any
fine-tuning or initial training on the them. Thus, the use of
ArcFace will enable other researchers to reliably repeat the
experimental work described.

D. ROC CURVE-THRESHOLDING TECHNIQUE
The Receiver Operating Characteristic (ROC) curve illus-
trates the performance capability of a classifier at various
threshold settings. The ROC curve is created by plotting the

1https://github.com/deepinsight/insightface
2https://github.com/davidsandberg/facenet

true positive rate (TPR) against the false positive rate (FPR)
at various threshold settings [53] (Fig.1). The TPR and FPR
are also known as sensitivity and probability of false alarm,
respectively. The FPR can be calculated as (1 − specificity).
TPR is on the y-axis and FPR is on the x-axis. The ROC curve
is widely used to evaluate the performance of FRmodels, as it
is a known classification task. In this case, the two classes are
positive pairs - pair samples from the same identity (PP) and
negative pairs - pair samples from two distinct identities (NP).

FIGURE 1. A typical ROC curve, TP vs. FP rate at different classification
thresholds [53], [54].

Also, it is common to derive a threshold from a relevant
ROC curve and use this as a threshold for face recognition.
Given two embeddings (numerical vectors), as the output
of a face recognition model, representing two face samples,
a score can be obtained representing the identity similarity
of the two samples. This score is compared against the FR
threshold and this comparison determines if the two samples
have or not the same identity. The workflow of the threshold-
ing technique described is illustrated in Fig.2. The threshold
corresponds to an FPR value, which depending on the FPR
value, makes the FR thresholdmore or less strict. In this work,
the ROC curves and the thresholding technique, are the base
of theMethodology created to answer theResearchQuestions
presented in the Introduction.

FIGURE 2. The workflow of Thresholding Technique.

IV. METHODOLOGY
In this work, we take two different approaches to measure the
identity uniqueness of a set of synthetic data samples. In the
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first approach, ROC curves are computed and compared to
determine the identity uniqueness. This approach can be
applied to determine the identity uniqueness of a synthetic
dataset compared to the original set of seed data samples
(Sy vs Se). It can also be applied to determine the uniqueness
among the synthetic samples (Sy vs Sy).

In the second approach, a thresholding technique is used to
calculate a new metric which allows making similar determi-
nations of uniqueness between synthetic and seed data, and
also among the synthetic samples. In this approach, a pair
of samples are compared to an FR threshold to determine
their identity similarity. As an extension, the second approach
enables us to quantify the number of unique samples in a
generated synthetic set of samples when comparedwith either
the seed dataset or within itself. This can be used to measure
the ability of a GAN model to generate synthetic data with
unique identities.

This section is structured as follows: the section IV-A,
explains the FR model alongside with how the synthetic
samples are obtained. In section IV-B, the approach using
ROC curves is described and finally, in IV-C the Thresholding
Technique is explained in detail.

A. GENERATED SYNTHETIC DATA AND FACE
RECOGNITION MODEL
For experimental purposes each generated synthetic dataset
should meet several criteria: (i) the same parameters are used
when generating synthetic facial samples (e.g., truncation
psi); (ii) all generated samples are tested to ensure they are
detected as a face; this ensures they can be correctly pro-
cessed by the FR model which is an essential tool of this
Methodology.

Also, as the Methodology depends on the FR model’s
performance, it should be a state-of-art. An FR model is
usually trained to output an embedding - numerical vector,
which represents the input face sample. The embeddings are
compared using a metric (e.g., Euclidean distance, cosine
similarity, etc.), to get a score that represents the identity
similarity. The FR model is optimized to output embeddings
that for images of the same identity, the score computed
shows high similarity compared to the score of images from
different identities. The metric used to get the score from
the two embeddings is selected based on the FR model’s
implementation. The FR model in this Methodology is uti-
lized by feeding it with face samples (real or synthetic) to get
their corresponding embeddings. The embeddings are used
to calculate the score for a pair representing their identity
similarity, which is used to either compute the ROCs or for
comparison against an FR threshold.

B. ROC CURVES COMPARISON
1) REFERENCE POINT ROC (REF-ROC)
To examine each case (Sy vs Se, Sy vs Sy), a ROC curve is
computed, only using real samples. This ROC is used as a
reference point (Ref-ROC) in the Methodology. This curve

represents the statistical behavior of a dataset of real face
samples. The Ref-ROC is compared with the ROC curves of
synthetic samples and helps in understanding if the statistical
distributions of the generated synthetic data samples match
those of a real-world dataset. Thus, ROC curves are computed
illustrating the statistical behavior of generated synthetic data
for the various cases of interest – synthetic with the seed data
(Sy vs Se) and synthetic with one another (Sy vs Sy) and
compared against the Ref-ROC.

To compute a ROC curve the following procedure is fol-
lowed. Initially, an equal number of positive and negative
image pairs are created. A positive pair (PP) is when two
face images have the same identity and in negative pairs (NP)
have different identities. Using the corresponding embed-
dings (obtained by an FRmodel) of the image pairs, the scores
are calculated and used to plot the ROC. The workflow of
creating a Ref-ROC is given in Fig.3.

FIGURE 3. The workflow of computing a Ref-ROC.

2) IDENTITY UNIQUENESS BETWEEN SYNTHETIC AND SEED
DATA (SY VS SE) - ROC CURVES COMPARISON
To examine the identity uniqueness between synthetic and the
seed data, a ROC curve is computed using both synthetic and
seed data (Sy-Se-ROC) and compared against the Ref-ROC
curve. For the Sy-Se-ROC curve, the PPs remain the same as
the PPs used in the Ref-ROC, but the NPs are different. The
NP consist of pairing the generated synthetic data with the
seed data (real face samples). The scores of the pairs (PPs,
NPs) are computed using the corresponding embeddings and
finally used to compute the Sy-Se-ROC. The workflow of
computing a Sy-Se-ROC is given in Fig.4.

When the Sy-Se-ROC is compared against the Ref-ROC,
the only difference between these two sets of ROCs (Sy-Se-
ROC, Ref-ROC), as both use the same FRmodel and PPs, are
the NPs. The NPs from the Ref-ROC consists of real NPs (as
their identity is known), while the NPs from the Sy-Se-ROC
are generated synthetic data (without an identity label) paired
with seed data and therefore treated as NPs. As a result, when
comparing the two ROCs, the behavior/performance of the
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FIGURE 4. The workflow of computing a Sy-Se-ROC.

NPs consisting of synthetic data and seed data (from the
Sy-Se-ROC) is compared against the NPs from the Ref-ROC
(which are real/known NPs).

Now either the Sy-Se-ROC is below the Ref-ROCs in
different parts of the plot, or the Sy-Se-ROC is at the same
or higher levels than the Ref-ROC. At higher or equal levels,
we can conclude that that the probability of having a false
positive from the NPs of the Sy-Se-ROC is the same or lower
than that from the NPs of the Ref-ROC. In this case, the iden-
tity uniqueness between the synthetic data and the seed data
is equal or higher as the one in real samples from different
identities. Thus, showing that the generated synthetic data are
unique when compared with the seed data in terms of identity,
which is desirable.

When the Sy-Se-ROC is below the Ref-ROC, the probabil-
ity of having a false positive from the NPs of the Sy-Se-ROC
is higher than that of the NPs of the Ref-ROC. In this case,
the identity uniqueness between the generated synthetic data
and the seed data is lower compared to that of real samples
and it is concluded that the generated data samples are not
unique when compared with the seed dataset in terms of
identity.

3) IDENTITY UNIQUENESS AMONG THE SYNTHETIC DATA
(SY VS SY) - ROC CURVES COMPARISON
To examine the identity uniqueness among the generated
synthetic data, a ROC curve is computed using these samples
(Sy-ROC) and compared against the Ref-ROC curve. The
Sy-ROC curve uses the same PPs as the Ref-ROC, but the
NPs consist of synthetic data pairs. The scores of the PPs and
NPs are calculated and used to compute the Sy-ROC. The
workflow of computing a Sy-ROC is given in Fig 5.

When the Sy-ROC is compared against the Ref-ROC,
the ROC curves differ only in the NPs which in this case
are synthetic data pairs. The synthetic data pairs are treated
as NPs as they don’t have an identity label. Similarly, as in
section IV-B-2, when the Sy-ROC is at similar or higher

FIGURE 5. The workflow of computing a Sy-ROC.

levels than the Ref-ROCs, it can be concluded that the identity
uniqueness of the synthetic pairs is similar or higher as the
one of real samples from different identities. Thus, showing
that the generated synthetic data are unique in terms of iden-
tity, which is desirable. Conversely, if the Sy-ROC lies below
the Ref-ROC, then the synthetic data pairs show a lower
statistical identity uniqueness between them compared to that
of real samples, concluding that the generated synthetic data
are not unique in terms of identity.

C. THRESHOLDING TECHNIQUE AND UNIQUENESS
METRICS
A common approach used in face recognition/ verification
to determine if two face samples are classified as having a
similar identity or not is by using a thresholding technique.
Using the embeddings of the two face samples, a score is
obtained and compared against an FR threshold (Fig.2). This
technique is followed to determine the identity uniqueness for
a set of synthetic data for each case (Sy vs Se, Sy vs Sy).

1) FACE RECOGNITION THRESHOLD-SELECTION
The FR threshold used to implement this approach is
representative of the statistical behavior of a dataset of
real face samples, following the same reasoning as in
section IV-B-1. Therefore, is derived from the Ref-ROC
curve. Also, as described in section III-D, a threshold is
derived from a ROC curve corresponds to an FPR value. The
statistical meaning is that for a threshold corresponding to an
FPR value, e.g., FPR=1e-05 means that statistically, 1 false
positive is expected in every 100k comparisons.

2) IDENTITY UNIQUENESS BETWEEN SYNTHETIC AND SEED
DATA (SY VS SE) - THRESHOLDING TECHNIQUE
In this case, the identity uniqueness between the generated
synthetic data and seed data is examined (Sy vs Se), using the
Thresholding Technique. All the generated synthetic data are
paired with all the seed data. These pairs are considered NPs,

VOLUME 8, 2020 152537



V. Varkarakis et al.: Validating Seed Data Samples for Synthetic Identities

as the generated synthetic data don’t have an identity label.
For all the pairs, their score is calculated through the corre-
sponding embeddings. In continuance, the score is compared
against the FR threshold to determine if the samples of the
pair are classified as having a similar identity or not. The
described workflow is illustrated in Fig 6. After calculat-
ing the metrics introduced in sections IV-C-4 and IV-C-5,
the identity uniqueness of the generated synthetic data when
compared with their seed data is determined.

FIGURE 6. The workflow of the Thresholding Technique to examine the
identity uniqueness between synthetic and seed samples (Sy vs Se).

3) IDENTITY UNIQUENESS AMONG THE SYNTHETIC DATA
(SY VS SY) - THRESHOLDING TECHNIQUE
In this case, the identity uniqueness among the generated
synthetic data is examined (Sy vs Sy), using the Thresholding
Technique. The procedure is similar as in section IV-C-2,
but as the identity uniqueness among the generated synthetic
data is examined, the way that the pairs are created differ.
In this case, all the generated synthetic data are paired with
each other. These pairs are also treated as NPs. For all the
pairs, their score is calculated through the corresponding
embeddings. Then the score is compared against the FR
threshold to determine if the generated synthetic samples of
the pair are classified as having a similar identity or not.
The described workflow is illustrated in Fig.7. The identity
uniqueness is determined using the metrics introduced in the
sections IV-C-4 and IV-C-5.

4) RATIO OF EXPECTED FALSE POSITIVES (REFP)
The number of pairs created for this thresholding technique
is the number of comparisons that are made (NoC). The
number of pairs that are classified as being similar in terms
of identity, based on their score comparison with the FR
threshold, is quantified (NoP). Due to the statistical meaning
of FPR given in section IV-C-1, when a large number of
comparisons is conducted, it is expected to have a number
of pairs which, are classified as having a similar identity, but
these might be statistically false positives.

As the generated synthetic data don’t have an identity label,
to examine if there is actually an identity similarity (being
classified as having a similar identity) between the samples

FIGURE 7. The workflow of the Thresholding Technique to examine the
identity uniqueness among the synthetic samples (Sy vs Sy).

of these pairs in each case (Sy vs Se, Sy vs Sy), the NoP,
for the selected threshold corresponding to an FPR value,
is compared with the number of expected statistical false
positives on this FPR value.

If the NoP is at the same levels or lower than the expected
statistical false positives on the FPR value, then it can be
concluded that the synthetic samples are at the same or
higher levels of identity uniqueness as the real samples from
different identities, showing that the generated samples are
unique in terms of identity for the case examined (Sy vs Se,
Sy vs Sy). But if the NoP is higher, then the identity unique-
ness of the generated synthetic data samples (for the exam-
ined case) is lower, concluding that the generated samples are
not unique in terms of identity.

To account for different sizes of synthetic datasets, and
thus different NoCs and different thresholds corresponding
to different FPR values, the Ratio of Expected False Positive
(REFP) is introduced and defined as:

REFP =
(
NoP
NoC

)
/FPR (1)

The number of pairs in which its samples are classified as
having a similar identity (NoP) is divided to the number of
comparisons (NoC). This, in turn, is normalized by dividing
it by the FPR value of the selected threshold. TheREFP shows
how many times higher or lower is the NoP, compared to the
expected false positives, for the given FPR value, based on the
comparisons conducted and therefore a lower value is desired
showing a better performance.

If the REFP, is lower/equal or very close to 1, then the
synthetic dataset for the case examined (Sy vs Se, Sy vs Sy)
has a similar or higher identity uniqueness than real datasets.
If the REFP is higher than 1, then the synthetic data samples
are characterized by a lower level of uniqueness for the
examined case. The REFP is a useful metric to understand
if the GAN model is able to generate unique synthetic data
for each examined case.
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5) NUMBER OF UNIQUE SYNTHETIC DATA SAMPLES
A metric that can be used to evaluate the ability of a GAN
model to generate unique synthetic data is to quantify these
synthetic samples with a unique identity. This is possible as
in the Thresholding Technique, all possible pair combinations
have been taken into consideration.

Therefore, in the case where the synthetic data are not
unique in terms of identity when compared to the seed
data (REFP higher than 1), then calculating the number of
synthetic samples with a unique identity is straightforward.
We just subtract the number of synthetic samples that are
classified at least once as having a similar identity with
a seed sample from the total size of the synthetic dataset.
This is defined as the number of unique samples (NoU) in
a generated synthetic dataset when compared to their seed
data.

In the case that the synthetic data show a lack of uniqueness
(REFP higher than 1) when compared to one another, it is
not straightforward to determine the samples with a unique
identity as the identity similarities are entangled with other
samples. But using a graph theory approach, it is feasible
to determine the maximum number of unique identities in
a generated synthetic dataset. The idea is to start by deter-
mining the most connected sample and remove this from the
dataset. By iteratively removing the sample with the high-
est number of similarities/connections until no samples with
a similarity/connection remain, it is possible to determine
the number of unique data samples in a generated batch of
synthetic data samples. This is defined as the number of
unique samples (NoU) within a generated synthetic dataset.
The procedure is given in Fig.8. In Appendix 1, the procedure
is described through Algorithm 1 and an example where it is
applied is given in Fig.21.

FIGURE 8. The workflow of calculating the NoU within a synthetic set of
samples (Sy vs Sy).

Note that to compare the performance of different models,
in the task of generating unique, in terms of identity, synthetic
samples for each case, the NoU is used, as it shows the num-
ber of unique samples in a synthetic set while the REFP shows
the number of pairs that have an identity similarity. Although
as mentioned for the NoU to be computed, the REFP has to
be higher than 1, showing lower level of uniqueness.

V. IMPLEMENTATION AND EXPERIMENTS
In this section, a series of experiments are presented based on
the two approaches of the proposed Methodology.

A. SYNTHETIC DATASETS
In this work, the synthetic samples are generated from Style-
GAN [3] and used as a basis for the experiments presented
in this section. Three different StyleGAN models are used to
build these synthetic datasets. Two official StyleGANmodels
from NVIDIA are used [3]. These are trained on FFHQ [3]
and CelebA-HQ [48], respectively, at a 1024 × 1024 reso-
lution. Also, a StyleGAN model trained on the CelebA [47]
dataset at 256× 256 resolution is used [32]. This enables the
outcomes of this study to be validated across several different
variants of the StyleGAN model so that the results are not
biased to a specific seed training dataset. Each seed dataset
has a different number of data samples and identities.

In addition, when generating data, it is possible to generate
samples with different truncation psi values, as explained in
section III-A. These experiments use three different values
for this variable - 0.5, 0.7, and 1.0, so that the effects of
varying this key parameter can be understood. Using these
values allows the use of publicly available synthetic datasets
provided from the StyleGANmodel trained on FFHQ, allow-
ing these experiments to be easily replicated using these
samples [3]. The generated synthetic data are divided into
several datasets of 20k samples used in this work.

Instructions on how to generate the same synthetic data
samples for each set that is used in this work can be found in.3

In total, 9 sets of 20k generated synthetic datasets are used in
this work. In order to refer to a dataset of synthetic samples,
the following naming convention is used: Sy – name of
seed dataset - truncation psi value (e.g., Sy-FFHQ-0.5). The
generated synthetic datasets are given in Table 1 along with
information of their corresponding seed dataset (e.g., number
of samples and identities). Finally, as mentioned in IV-A, all
the generated face samples used are ‘‘face detectable’’.

TABLE 1. The synthetic datasets created along with the truncation psi
value used and information of their seed dataset.

B. FACE RECOGNITION MODEL
The FR tool used in this work is the ArcFace FR model [28].
The selected FR model takes a face image as an input and
outputs a 512-embedding. The face samples are pre-processed

3https://github.com/NVlabs/stylegan
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before passing to the FR model. The pre-processing includes
a face detector, cropping the detected area and resizing to
the required input size of the FR network. In this work,
the same procedure as advised by the authors of ArcFace is
followed before the face samples are fed to the network.1 The
MTCNN [33] is used to detect and crop the face samples and
to validate if generated data samples are recognizable as a
face. The detected area is cropped and resized to 112× 112,
using bilinear interpolation, before passing to the ArcFace
recognition network which calculates the 512-embedding
corresponding to a facial sample. Finally, the cosine simi-
larity is used to compute the score representing the identity
similarity when comparing two embeddings. The model and
weights of ArcFace used in this work can be found in.4

C. ROC CURVES COMPARISON
In this section, the ROC curves Comparison approach is
implemented using the generated synthetic datasets (Table 1).
Initially, the Ref-ROCs are computed and using the generated
synthetic datasets, the Sy-Se-ROCs and the Sy-ROCs are
computed. The identity uniqueness between samples from
the generated synthetic datasets with the samples from their
corresponding seed datasets is examined by comparing the
Sy-Se-ROC with the Ref-ROC. Also, the identity uniqueness
among the samples from each generated synthetic dataset
is examined by comparing the Sy-ROC with the Ref-ROC.
In both cases, the influence of truncation psi and the perfor-
mance of the different models are also explored.

1) COMPUTING THE REF-ROC
For this work, three Ref-ROCs are computed with NPs taken
from different datasets. In this way, the results are not spe-
cific to a single dataset or Ref-ROC curve. The PPs are all
the possible PPs that can be formulated from the CelebA
dataset, in total 2.5M. The NPs for these three Ref-ROCs
are formulated by combining a sample from the CelebA
dataset [47], with samples from CelebA, LFW [45] and
CasiaWebFaces [46] datasets respectively as summarized
in Table 2. In each case, 2.5M NPs are created to match the
number of PPs.

TABLE 2. Datasets used to compute the pp and the np for each Ref-ROC
curve as shown in Fig.3.

2) DETERMINING UNIQUENESS - SY VS SE - ROC CURVES
COMPARISONS
In order to determine the identity uniqueness of each
synthetic dataset with their seed dataset, a corresponding

4https://www.dropbox.com/s/tj96fsm6t6rq8ye/model-r100-arcface-
ms1m-refine-v2.zip?dl=0

Sy-Se-ROC is computed which is described in
section IV-B-2 and shown in Fig.4. It uses the same 2.5M PPs
used in the Ref-ROC and 2.5MNPs of synthetic data samples
paired with seed data samples. In Table 3, these different
combinations are listed.

TABLE 3. The synthetic and the seed datasets used to computed each
sy-se-roc curve, as shown in fig.4.

In Fig.9 and 10, the Sy-Se-ROCs, start and remain at
similar levels or above the Ref-ROCs. This indicates that the

FIGURE 9. The Sy-Se-ROCs from StyleGAN-CelebA (Table 3) compared
against the Ref-ROCs to determine the identity uniqueness between the
synthetic and the seed samples.

FIGURE 10. The Sy-Se-ROCs from StyleGAN-CelebA-HQ (Table 3)
compared against the Ref-ROCs to determine the identity uniqueness
between the synthetic and the seed samples.
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identity uniqueness between the synthetic data and the seed
data is equal or higher as the one in real samples with dif-
ferent identities. Thus, showing that the generated synthetic
data from these models (StyleGAN-CelebA and StyleGAN-
CelebA-HQ) are unique when compared with their seed data
in terms of identity.

In Fig.11, the Sy-Se-ROCs using the synthetic datasets
generated from the StyleGAN-FFHQ model are compared
against the Ref-ROCs. All the Sy-Se-ROCs start and remain
below the Ref-ROCs, indicating that the generated synthetic
data from the StyleGAN-FFHQ are not unique when com-
pared with their seed data samples. However, when a selec-
tion of the NPs with high similarity scores was examined
it was clear that the high-scoring pairs consisted of face
samples of infants or young children. The FFHQ dataset is
unique among our selected datasets as it is the only dataset
to contain such samples. As the reference model of ArcFace
was not trained with samples of kids/babies and therefore it
isn’t robust in distinguishing such samples, which explains
the results of Fig 11. Thus in Fig.12, the same Sy-Se-ROCs

FIGURE 11. The Sy-Se-ROCs from StyleGAN-FFHQ (Table 3) compared
against the Ref-ROCs to determine the identity uniqueness between the
synthetic and the seed samples.

FIGURE 12. The Sy-Se-ROCs from StyleGAN-FFHQ (Table 3), with pairs of
infants/kids removed, are compared against the Ref-ROC.

as in Fig.11 are presented but with the manual removal of
several data pairs that consist of infants or young children.
It is clear that these remain at similar levels or above the
Ref-ROC and the behavior is now similar to Fig.9 and 10.
This indicates that the identity uniqueness between the syn-
thetic data and the seed data is equal or higher as the one in
real samples, showing that the generated synthetic samples
from StyleGAN-FFHQ are unique when compared with their
seed data in terms of identity.

In order to examine the influence of the truncation psi
value in the identity uniqueness between the generated syn-
thetic data and the seed data, the Sy-Se-ROCs of each figure
(Fig. 9,10,12) are compared with each other. From this com-
parison, it is observed that all the Sy-Se-ROCs perform sim-
ilarly with only marginal differences. This suggests that the
value of the truncation psi parameter does not influence the
identity uniqueness of generated synthetic data samples with
respect to their seed dataset.

Finally, in Fig.13, all Sy-Se-ROCs are presented together
to determine which StyleGAN model is better at generat-
ing synthetic data which are unique in terms of identity
when compared with their seed data. From this compari-
son, the StyleGAN-FFHQ shows a better performance, fol-
lowed by the StyleGAN-CelebA and StyleGAN-CelebA-HQ,
respectively but with only marginal differences between
them.

FIGURE 13. The Sy-Se-ROCs (Fig. 9,10 and 12) are compared between to
examine which StyleGAN model performs better in generating synthetic
samples that are unique when compared to their seed data.

In summary, it can be concluded that StyleGAN is very
effective at generating synthetic data samples that are well
distinguished (unique in terms of identity) from the original
set of data samples used to train the GAN. The next challenge
is to understand how unique the synthetic data samples are
when compared with other synthetic samples.

3) DETERMINING UNIQUENESS - SY VS SY - ROC CURVES
COMPARISONS
In order to determine the identity uniqueness within each syn-
thetic dataset, a corresponding Sy-ROC is computed which
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is described in section IV-B-3 and shown in Fig 5. It uses
the same 2.5M PPs used in the Ref-ROCs and 2.5M NPs of
synthetic samples paired with one another. In table 4, these
different combinations are listed.

TABLE 4. The synthetic datasets used to compute each sy-roc curve, as
shown in Fig.5.

In Fig. 14-16, the Sy-ROCs are compared against the
Ref-ROCs and start and remain below them. As explained
in the corresponding methodology of this experiment in

FIGURE 14. The Sy-ROCs from StyleGAN-CelebA (Table 4) compared
against the Ref-ROCs to determine the identity uniqueness among the
synthetic samples.

FIGURE 15. The Sy-ROCs from StyleGAN-CelebA-HQ (Table 4) compared
against the Ref-ROCs to determine the identity uniqueness among the
synthetic samples.

FIGURE 16. The Sy-ROCs from StyleGAN-FFHQ (Table 4) compared against
the Ref-ROCs to determine the identity uniqueness among the synthetic
samples.

section IV-B-3, this shows that there is a lower statisti-
cal identity uniqueness among the samples of a synthetic
dataset compared to that of real samples. Concluding that,
when generating synthetic samples with any model used
in this work (StyleGAN-CelebA, StyleGAN-CelebA-HQ,
StyleGAN-FFHQ), not all the generated synthetic samples
have a unique identity.

In order to examine the influence of the truncation psi
value in the identity uniqueness among the generated syn-
thetic data of a synthetic dataset, the Sy-ROCs of each figure
(Fig. 14-16) are compared between them. The Sy-ROCs
corresponding to a truncation psi value closer to 0, has a
lower performance compared to the others, in all figures. The
lower the performance of a Sy-ROC, the lower the number
of synthetic samples that have a unique identity in a syn-
thetic dataset. Concluding that the truncation psi influences
the identity uniqueness of the generated synthetic samples,
showing that when generating synthetic samples, the closer
the truncation psi value is to 0, the lower is the identity
uniqueness in the set of synthetic samples. This is an antici-
pated result that is validated through our experiments. When
the truncation psi is closer to 0, the latent space chosen to
generate the image is more truncated (section III-A) and,
therefore with a less overall variation which extends in less
variation (less uniqueness) in the identity feature of the gen-
erated synthetic samples.

Finally, in Fig. 17, all the Sy-ROCs are compared between
them to examine which model performs better in generat-
ing synthetic samples with unique identities. We compare
the models between them by comparing their correspond-
ing Sy-ROC with the same truncation psi value between
them. This is performed, for the comparisons to be fair
and consistent, as the truncation psi influences the identity
uniqueness among the generated synthetic samples. (e.g., the
Sy-ROC-CelebA-0.5, the Sy-ROC-CelebA-HQ-0.5, and the
Sy -ROC- FFHQ-0.5 are compared between them).
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FIGURE 17. The Sy-ROCs (Table 4) are compared to examine which
StyleGAN model performs better in generating synthetic samples with a
unique identity.

Comparing the Sy-ROCs as explained, from Fig. 17,
it is illustrated that the Sy-ROCs corresponding to the
StyleGAN-FFHQ is performing overall better followed in
performance by the StyleGAN-CelebA and StyleGAN-
CelebA-HQ, respectively, for all the different truncation
psi values. The higher the performance of a Sy-ROC,
the higher the number of generated synthetic samples that
have a unique identity in the synthetic dataset. As a result,
it is shown that when using the same truncation psi value,
the StyleGAN-FFHQ model performs the best in generat-
ing synthetic samples with a unique identity followed in
performance by the StyleGAN-CelebA and the StyleGAN-
CelebA-HQ respectively.

D. THRESHOLDING TECHNIQUE
In this section, the Thresholding Technique is implemented
using the generated synthetic datasets (Table 1). Initially,
the FR threshold selection is described. Then, the identity
uniqueness between the samples from the synthetic datasets
with the samples from their corresponding seed datasets and
as well the identity uniqueness among the samples from each
synthetic dataset is examined. In both cases, the influence of
truncation psi and the performance of the different models
is explored using the uniqueness metrics presented in the
Methodology (section IV-C).

1) FACE RECOGNITION THRESHOLD-SELECTION
To implement the Thresholding Technique as described
in section IV-C-1, the FR threshold is derived from the
Ref-ROC curve. The thresholds are derived from the Ref-
ROC-CelebA (Table 2), as two out of three StyleGAN mod-
els used in this work are trained on the same distribu-
tion (StyleGAN-CelebA, StyleGAN-CelebA-HQ). However,
the threshold could have been derived from any other
Ref-ROC. For this work, three thresholds are selected corre-
sponding to different FRP values. The threshold values are
0.483, 0.428, 0.3815 corresponding to the FPR values of:
4.46e-07 (the closest to 1e-07), 1.33e-06 (the closest to 1e-06)

and 1e-05. Three thresholds are selected to examine how the
identity uniqueness in each case (Sy vs Se, Sy vs Sy) is influ-
enced as the threshold is less or more strict. As mentioned in
section V-B, the score that represents the identity similarity
between two samples through their corresponding embed-
dings is the cosine similarity. As for the cosine similarity
metric, a higher score shows a higher similarity in terms of
identity, in the comparison of the pair’s score with the FR
threshold, if the score is above the FR threshold then the
samples of the pair are classified as having a similar identity.

2) DETERMINING UNIQUENESS - SY VS SE -
THRESHOLDING TECHNIQUE
In this experiment, the uniqueness of the generated synthetic
data with the samples from the seed data in terms of identity
is examined following the Threshold Technique described in
section IV-C-2. The generated synthetic datasets are com-
pared and with their corresponding seed data (Table 5). For
each synthetic dataset the number of pairs that their score
is above the determined FR threshold (NoP) is calculated.
As the number of comparisons (NoC) is also known along
with the FPR value, the REFP described in (1) is calcu-
lated for each synthetic dataset and is given in Table 6. For
more numerical details on the NoP and NoC, see Table 15,
in Appendix B.

TABLE 5. The synthetics and seed dataset used to implement the
Thresholding Technique for the Sy vs Se case.

TABLE 6. The REFP for each synthetic dataset for the sy vs se case.

From Table 6, the REFP for the synthetic datasets gen-
erated from the models StyleGAN-CelebA and StyleGAN-
CelebA-HQ, in all the different FR thresholds, is lower
or just marginally higher than 1. This shows that the
synthetic data generated from the StyleGAN-CelebA and
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StyleGAN-CelebA-HQ, are unique with respect to their cor-
responding seed samples.

For StyleGAN-FFHQ, the REFP is significantly higher
than 1, but as discussed in V-C-2, this behavior is due to the
presence of data samples of infants and young children. As to
the best of our knowledge there isn’t a direct way to eliminate
all the pairs consisting of only infants/young children. Also,
if this is conducted the ability of the model-StyleGAN-FFHQ
in generating synthetic samples would be decreased and
the comparisons won’t be fair; therefore the REFP can’t be
re-calculated. Eliminating pair samples consisting of only
infants/ young children solves this problem, as discussed and
demonstrated in section V-C-2, where it is concluded that the
generated synthetic data from the StyleGAN-FFHQ model
are unique when compared with the samples from their seed
dataset (FFHQ).

Regarding the influence of the truncation psi in the iden-
tity uniqueness between the synthetic samples and the sam-
ples from their seed datasets, the REFP values of each set
are compared in Table 6. For the StyleGAN-CelebA and
StyleGAN-CelebA-HQ, at a particular threshold, the val-
ues are reasonably consistent and lower or just marginally
higher than 1, and it is concluded that truncation psi value
does not influence on the identity uniqueness, a similar con-
clusion to that reached in section V-C-2. The behavior of
StyleGAN-FFHQ doesn’t show this consistency, but this may
be explained by the unpredictable effects of data samples
of young children, where when omitted for the StyleGAN-
FFHQ, it is shown that the truncation psi does not influence
the uniqueness.

As the REFP is lower or just marginally higher than
1 for all the synthetic datasets showing that the generated
synthetic samples have a unique identity when compared
with samples from their seed dataset, the NoU can’t be
calculated. Therefore, to compare the performance of the
different synthetic datasets, the REFP is used. The synthetic
datasets that are generated with the StyleGAN-CelebA have
a lower REFP than the ones generated with the StyleGAN-
CelebA-HQ. This indicates that the StyleGAN-CelebA per-
forms marginally better in generating samples that are unique
from their seed dataset. No further examination is conducted
regarding the synthetic datasets from the StyleGAN-FFHQ
model as the samples of infants/young children pose chal-
lenges in computing the REFP correctly.

3) DETERMINING UNIQUENESS - SY VS SY -
THRESHOLDING TECHNIQUE
In this experiment, the identity uniqueness among the gen-
erated synthetic data is examined following the Threshold
Technique described in section IV-C-3. For each generated
synthetic dataset, their samples are cross-compared (Table 7)
to calculate the number of pairs with similar identities (NoP).
Next, using the number of comparisons (NoC), and the
selected FPR, the REFP of (1) is calculated for each synthetic
dataset and listed in Table 8. For more numerical details on
the NoP and NoC, see table XVI, Appendix C.

TABLE 7. The synthetic datasets used to implement the Thresholding
Technique for the Sy vs Sy case.

For all the synthetic sets, and across all threshold settings,
the REFP is significantly above 1 (Table 8). It is clear that
when generating synthetic data samples from themodels used
in this work, not all synthetic samples have a unique identity.
In fact, even our best result shows that the REFP rate is
about 36 times higher than would be expected in a real-world
dataset.

TABLE 8. The REFP for each synthetic dataset for the Sy vs Sy case.

Regarding the influence of the truncation psi in the identity
uniqueness of the generated samples, it can be seen that the
REFP is reduced at higher values of this variable. It can
be concluded that a larger truncation psi value increases the
identity uniqueness of the generated synthetic samples, with
the best results obtained when this variable is at value of 1.0.

The REFP is above the 1 for all the synthetic sets showing
that not all the generated synthetic samples have a unique
identity. In such a case, as discussed in section IV-C-5,
the number of unique samples (NoU) can be calculated. It is
also useful to provide the percentage of synthetic data with
a unique identity in the synthetic dataset. These values are
given in Table 9.

The NoU is used to compare the performance of differ-
ent models in the task of generating face samples with a
unique identity. The NoUs for each model with the same
truncation psi value are compared between them. This is per-
formed as the truncation psi influences the identity unique-
ness of the generated synthetic samples. Comparing the
NoU, in the different threshold settings, it is shown that
the highest NoU is from the synthetic datasets generated
with the StyleGAN-FFHQ model, showing the best perfor-
mance, followed by the StyleGAN-CelebA. Finally, last in
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TABLE 9. The number of samples with a unique identity (NoU) and the
percentage (%) of them within each synthetic dataset.

performance is the StyleGAN-CelebA-HQ, in the task of
generating synthetic samples with unique identities.

The NoU also shows that even in the strictest FR threshold
of this work (FPR=4.46e-07, Threshold=0.4823), and using
the full variation of the latent space (truncation psi=1), in the
synthetic datasets, 80-90% of the samples have a unique iden-
tity. More interestingly, when the FR threshold becomes less
strict (FPR=1e-05, Threshold=0.3815) and using a trunca-
tion psi value closer to 0 (truncation psi=0.5), while ensures
better quality for the output image, the samples with a unique
identity in the datasets decrease dramatically to 7-9%. This
shows the necessity of investigating the variation in the iden-
tity attribute of the generated synthetic samples, as in some
cases only a small number of samples are unique (in terms of
identity). The samples with a unique identity (Table 9) from
each synthetic dataset and for the different thresholds, which
can form a seed synthetic face dataset with distinct identities
are made available through the IEEEDataPort accompanying
this article. Also, these can be found in.5

E. VISUAL EXAMPLES
In this section, some qualitative examples are provided,
to visually demonstrate how the proposed Methodology
removes the most connected data samples to provide a unique
set of synthetic identities.

The thresholding technique is able to locate synthetic pair
samples that have similar identities. In Fig.18, several such
synthetic pair samples with a high similarity score are shown.
Visual inspection shows how similar these data samples are
and serves to illustrate the key challenge to achieve unique
identity seed samples in order to creating a valid synthetic
dataset.

5https://github.com/C3Imaging/Deep-Learning-Techniques/tree/
Synthetic_Face_Datasets

FIGURE 18. The synthetic pair samples have a similarity score above the
FR threshold of this work (0.48). Thus, the synthetic samples have an
identity similarity and therefore are not unique. The similarity score for
the pairs is: A=0.72, B=0.70, C=0.75, D=0.74.

In Fig.19, state A, a cluster of synthetic samples is illus-
trated. These samples are interlinked by high similarity scores
indicating they are not unique from one another. In Table 10,
the identity similarity scores between these data samples is
shown. The FR threshold in this example is: 0.48 and it can be
seen from the highlighted scores that none of these identities
can be considered unique. The number of connections (con)
that each sample has is also given in Table 10. By applying our
graph theory approach (section IV-C-5), the most connected
face sample, Sy-1, can be removed. The four remaining sam-
ples, shown as State B, do not have an identity similarity and
thus can be considered as unique seed identities.

FIGURE 19. A cluster of synthetic samples which have an identity
similarity between them (state A). The graph theory technique of
section IV-C-5 removes the sample with the most identity connections
resulting in four unique identities (state B). The corresponding similarity
scores, and number of connections are given in Tables 10 and 11.

TABLE 10. The identity similarity score between the samples
(Fig.19-state A) and the number of connections of each sample.
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TABLE 11. The identity similarity score between the samples
(Fig.19-state B) and the number of connections of each sample.

FIGURE 20. A cluster of synthetic samples which have an identity
similarity between them (state A). The graph theory technique of
section IV-C-5 removes the samples with the most identity connections in
two steps, resulting in four unique identities (state C). The corresponding
similarity scores, and number of connections are given in Tables 12-14.

Another similar but more complicated example is given in
Fig.20, with the Tables 12-14 showing the identity similarity
scores for each state (A-C) in Fig 20, respectively. From
Table 12, it is shown that the Sy-1 (Fig.20, state A) is the
sample with the most connections (5) and therefore elimi-
nated. After the Sy-1 is removed, in table 13, the Sy-2 (Fig.20,
state B), is the sample with the most connections (2) and
therefore also removed. Table 14, which corresponds to state
C from Fig.20, shows that the remaining samples do not have
a connection between them and therefore these samples are
unique, in terms of their identity. These are simplified exam-
ples of the graph theory technique (section IV-C-5) applied
to a small subset of a synthetic dataset. As discussed, and
illustrated in section V-D, when used to the entire synthetic
dataset, it allows us to identify and quantify the samples
with a unique identity within a synthetic dataset. This can be
used to measure the ability of GAN in generating synthetic
samples with a unique identity or select these unique samples
to be used in further research.

F. COMPUTATIONAL ASPECTS OF ROC CURVES
COMPARISON AND THRESHOLDING TECHNIQUE
The ROC curve Comparison approach (section IV-B), uses a
lower number of comparisons compared to the Thresholding
Technique (section IV-C). This is because a limited number
of random pairs are selected as representative of the statistical
properties of the underlying data distribution.

TABLE 12. The identity similarity score between the samples
(Fig.20-state A) and the number of connections of each sample.

TABLE 13. The identity similarity score between the samples
(Fig.20-state B) and the number of connections of each sample.

TABLE 14. The identity similarity score between the samples
(Fig.20-state C) and the number of connections of each sample.

The Thresholding Technique can provide more precise
results for a generated set of synthetic data and quantify the
uniqueness of these samples with either the seed dataset or
the other synthetic data samples in the generated dataset. This
also allows the REFP metric to be calculated along with the
NoU which as shown can be used to measure the number
of synthetic data with a unique identity. However, the num-
ber of comparisons can quickly become a limiting factor -
when using a dataset size of 20k synthetic samples with a
corresponding seed dataset of 200k then 4B comparisons
are needed to examine the identity uniqueness between the
two sets and 200M comparisons are required to examine the
uniqueness within the synthetic dataset, which can take up to
a day to calculate. On the other hand, the ROCbased approach
requires only 5M comparisons in each case.

VI. CONCLUSION AND FUTURE WORK
In this work, a Methodology is presented with two different
approaches that enable to answer the following Research
Questions posed in this work:

1) Are the synthetic data samples unique when compared
with the original seed data used to train the GAN model?

2) Are the synthetic data samples within a generated
dataset unique when compared with one another?

3) Can we validate individual samples within a generated
dataset to ensure that there is sufficient identity uniqueness to
use as a synthetic data sample for further research?

In both approaches, the performance/behavior of real sam-
ples is used as a reference point and the performance/
behavior of the generated synthetic data for each case
(Sy vs Se, Sy vs Sy) is compared against it to answer the
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Research Questions. In the first approach the performance/
behavior of real samples and generated synthetic data for
each examined case is illustrated through ROC curves, which
are compared and examine the uniqueness of the generated
synthetic data with the seed data and the uniqueness among
the generated synthetic data, in terms of identity. In the second
approach, a Thresholding Technique is implemented to deter-
mine the identity uniqueness for both cases. In this approach,
the performance of real samples is illustrated through the
FR thresholds that are selected and used to determine the
similarity of the generated synthetic samples with their seed
dataset and also among them, which reversely shows the iden-
tity uniqueness of the synthetic data in each case. Using this
approach, the introduced metric REFP is calculated which
answers the questions of this work. Also, through the Thresh-
olding Technique approach, another metric can be calculated
which is used to measure a model’s ability to generate sam-
ples with a unique identity and also identify these samples
(NoU).

To answer the Research Questions, the two presented
approaches are implemented using generated samples from
three different StyleGAN [3] models using different settings
(e.g. truncation psi value). In this way, the identity unique-
ness is examined, for both cases, for several models and
different truncation psi values. StyleGAN is selected as it
represents the state-of-the-art GAN for the face generation
task, although any GAN model trained on this task can be
used to implement the Methodology proposed.

Given the extensive observations in section V, both
approaches concluded to similar results. Both approaches
concluded that the generated synthetic samples from any
model used in this work are as unique in terms of identity with
the samples from their corresponding seed data, as samples
from different identities in a real dataset, which is desirable.
Also generating samples with any truncation psi value does
not influence the identity uniqueness between the generated
synthetic and their seed data. Finally, all the models perform
similarly in this task with small differences between them.

When comparing the synthetic samples with one another,
both approaches concluded that using the models of this
work, the generated samples are not as unique in terms of
identity as samples from different identities in a real dataset.
Also, it is shown that the truncation psi value influences the
identity uniqueness of generated synthetic samples of a set,
for any model used in this work. When generating samples
with a truncation psi value closer to 0, the identity unique-
ness in the synthetic datasets is lower in comparison when
generating samples with a truncation psi value further from 0.
Additionally, it is shown, that the model of StyleGAN-FFHQ,
performs the best in generating synthetic samples with a
unique identity when compared with each other, followed by
the StyleGAN-CelebA and StyleGAN-CelebA-HQ. Finally,
the NoU metric, which shows the ability of the models to
generate unique synthetic samples, reveals that in some cases
only 7-9% of the samples have a unique identity from a
dataset of 20k generated synthetic samples.

Algorithm 1 Graph Approach Which Allows to Quantify the
Number of Samples With a Unique Identity (NoU) Within a
Synthetic Dataset
Find the maximum number of SY with a unique iden-
tity(NoU) within a set of generated synthetic samples. The
name_of_nodes, is a list and contains all the SY samples. The
Sy_edges is a list and contains all the pairs of SY that have an
identity similarity with e.g.: Sy_edges = [(SYx, SYy),.. . . ]
show that the SYx and SYy have an identity similarity and
therefore connection (edge) for the graph.
• Create the graph G:

G=Graph()
• Add all nodes to the graph G

G.add_nodes_from(name_of_nodes)
• Add all the edges (nodes that are connected to the
graph G)

G.add_edges_from (Sy_edges)
• List the nodes (max_nodes) with the most

connections and the value of the connections
(num_edges)

max_nodes, num_edges= max(G.degree())
• Check if the max number of connections is more

than 0 otherwise, remove the max_nodes from
the graph G. (if len(max_nodes)>1 choose
randomly a node a value and remove the
corresponding graph from the graph)

• Repeat that till the num_edges <=0
While (num_edges>0):

rand= random integer between 0 and
len(max_nodes)
G.remove_nodes_from ( [ max_nodes [ rand ] ])
max_nodes, num_edges= max(G.degree())

end while
• When over the maximum number of SY with

a unique identity NoU) is the number of
remaining nodes which don’t have a connection
with other nodes.

NoU= len(G.nodes())

In future work, this Methodology can be used to build
synthetic facial datasets at scale by using a GAN to generate
a seed dataset of facial data samples that are demonstrably
unique in terms of their identity. Given such a seed dataset it
would then be feasible to modify features (e.g. facial lighting,
pose, and expression) of these seed samples to build large
synthetic training datasets that could be used for FR purposes
and other applications. Furthermore, using this methodology,
it would be interesting to investigate and benchmark differ-
ent GANs for the task of generating face samples with a
unique identity. Also, future work will include a subjective
evaluation which additionally will allow to further study the
validity of the face recognition system in the examined cases.
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Finally, utilizing core ideas from the proposed Methodology,
a loss function can be created that can be used to train GAN
models in order to maximize their ability to generate facial
data samples with a unique identity.

APPENDIX A
Algorithm 1, below indicates the graph approach which
allows to quantify the number of samples with a unique iden-
tity within a synthetic dataset, described in section IV-C-5
and in Fig 21, this is shown, as the Algorithm 1 is applied
to a simplified graph.

FIGURE 21. A graph containing several synthetic samples. The arrows
show if two samples have an identity similarity between them and next
to them is the number of connections of each sample. The Algorithm 1 is
applied till the remaining samples do not have any connection between
them which gives the NoU within a synthetic dataset.

APPENDIX B
Following the Thresholding Technique described in
section IV-C-2, the uniqueness of the synthetic datasets
with the samples from the seed data in terms of identity is
examined in section V-D-2 and the NoP and NoC for each
synthetic dataset are given in Table 15.

TABLE 15. The number of pairs with similar identity (NoP) using the
Thresholding Technique for the Sy vs Se case and the number of
comparisons (NoC).

APPENDIX C
Following the Thresholding Technique described in
section IV-C-3, the uniqueness within the synthetic datasets,
in terms of identity, is examined in section V-D-3, and the
NoP and NoC for each synthetic dataset are given in Table 16.

TABLE 16. The number of pairs with similar identity (NoP) using the
Thresholding Technique for the Sy vs Sy case and the number of
comparisons (NoC).
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Abstract

The recent availability of low-power neural accelerator hardware, combined
with improvements in end-to-end neural facial recognition algorithms pro-
vides enabling technology for on-device facial authentication. The present
research work examines the effects of directional lighting on a State-of-Art
(SoA) neural face recognizer. A synthetic re-lighting technique is used to
augment data samples due to the lack of public data-sets with sufficient
directional lighting variations. Top lighting and its variants (top-left, top-
right) are found to have minimal effect on accuracy, while bottom-left or
bottom-right directional lighting have the most pronounced effects. Follow-
ing the fine-tuning of network weights, the face recognition model is shown to
achieve close to the original Receiver Operating Characteristic curve (ROC)
performance across all lighting conditions, and demonstrates an ability to
generalize beyond the lighting augmentations used in the fine-tuning data-
set. This work shows that a SoA neural face recognition models can be
tuned to compensate for directional lighting effects, removing the need for a
pre-processing step prior to applying facial recognition.

Keywords: Directional Lighting, Face Illumination, Face Recognition, Face
Re-Lighting Method

1. Introduction

Human Face Recognition (FR) has been an active research field in com-
puter vision since the early 1990’s [38] and early Convolutional Neural Net-
work (CNN) based approaches were in evidence before the end of that decade
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[19]. Over the last two decades FR has been well-studied in the literature
with the most recent advances being driven by advances in CNN and deep
learning [32, 36, 7, 41, 26]. In much of the literature the test samples for FR
are assumed to be normalized in terms of pose, facial expression and illu-
mination to simplify the challenge of accurately distinguishing an individual
identity among a very large population. But, as it is not always feasible
to capture optimal facial samples, some studies have explored the effects of
different factors on the accuracy of State-of-Art (SoA) FR systems.

The main factors that affect FR include (i) pose [37, 47, 3, 18], (ii) illu-
mination [2, 49, 42], (iii) facial expression [29, 30, 28], (iv) age [31, 6] and,
(v) gender variations [44, 27].

In this work, the focus is on the latest end-to-end fully neural FR tech-
niques [9] as these represent current SoA in terms of accuracy and have the
potential for implementation in the latest neural accelerators [4, 12]. The
initial focus for implementation of neural algorithms in embedded devices
was on network optimizations such as parameter quantization and pruning,
compressed convolutional filters and matrix factorizations [12]. However, the
attention has recently shifted towards specialized neural topologies [22, 16]
and ultra-low power realizations in hardware [10, 14]. Such optimizations
enable a SoA neural FR architectures to be implemented in a low-power con-
sumer appliance, enabling a new generation of devices capable of identifying
their owners, provide access control and personalize the device’s responses
and behaviour. However, this introduces new challenges as such FR embodi-
ment can no longer rely on pre-processing of input facial samples to optimize
power consumption. Thus, all image processing must be achieved in a fully
neural implementation, requiring a neural FR to be robust to factors such as
pose and illumination. Here our goal is to determine the feasibility of modi-
fying a high accuracy SoA neural FR architecture to demonstrate robustness
to uncompensated input image samples.

This leads to the research questions posed in this work: (i) can we better
quantify the effects of the external factors that affect fully neural FR and
develop metrics to evaluate these; and (ii) can a fully neural FR architecture
be modified through tuning and/or re-training to compensate internally for
such external factors? As human interaction with a consumer device will
typically lead the user to look directly at a screen, or similar user-interface,
this work has a focus on the effects of lighting/illumination scenarios on FR.
A consideration of the effects of facial pose and other external factors is left
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to future studies. Specifically for the lighting variation, numerous image
pre-processing methods exist to improve the performance of the FR model
[35, 50, 34], but studies exploring the tuning or training of FR models to be
robust to lighting variations are relatively rare [5, 21].

As a first step towards answering these research questions, this work em-
ploys a SoA re-lighting methodology to augment a set of high-quality facial
images with directional lighting effects. The effect of these augmentations
on the performance of a SoA FR method is quantified using Receiver Oper-
ating Characteristic curve (ROC) techniques. A similar approach was used
recently to validate synthetic facial identities [40]. Note that a re-lighting
augmentation approach was adopted as existing public datasets do not pro-
vide sufficient lighting variability. This is discussed in the sections 4 and 6.
Finally, this works studies the feasibility of handling lighting variations by
fine-tuning the neural FR network. The results for directional lighting are
promising and indicate the potential for an end-to-end neural face authenti-
cation solution for in-the-wild faces.

2. Related Works

The advances in computational resources and with a surge in access to
very large datasets, deep learning architectures have been developed and
pushed the SoA in the FR task achieving exceptional accuracy results [26].
Famous deep neural approaches include DeepFace, FaceNet and ArcFace [32,
36, 7, 41]. Each work advanced the accuracy on the benchmarks of FR and
new loss functions, pre-processing techniques and deep neural architectures
were introduced. More information regarding the SoA of deep neural FR
approaches as well as the entire pipeline of the FR and the methods used are
given in [9, 1].

Despite the improvements, the FR task remained challenging in several
cases. Studies revealed that many factors can have a negative impact on the
FR performance, with the main factors being pose, illumination and others
[2, 26, 18, 23]. Specifically, on face samples with lighting variation, techniques
were proposed that compliment both the traditional and deep learning FR
methods reporting improved performance [26, 15]. The approaches include
pre-processing of the facial samples to normalise any variation, before feeding
it to the face recognition algorithm [33, 17, 50, 34, 35].
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Databases have been introduced to facilitate the development of FR mod-
els with light, pose, expression and other variations. The Yale b, CMU
Multi-PIE, AR, Postech01 and UHDB31 [13, 25, 11, 8, 20] are a few of the
datasets that have incorporate face variations and either focus on a single
variation or a combination of different variations. Despite the developments
of such datasets, the number of the variations and human subjects remain
limited along with the fact that these datasets are usually acquired in con-
trolled environments and therefore not being able to represent in-the-wild
conditions.

Relighting techniques have been introduced in the literature with impres-
sive results and able to introduce lighting into the face images without the
degradation of the image by artifacts [48, 43] giving the ability to augment
in-the-wild face datasets. Thus, providing a solution to the limited variation
of lighting and human subjects in face datasets, which is discussed in section
4.

3. Methodology

In this section the various techniques and methodologies used in this work
are detailed.

3.1. Face Re-Lighting Method

In this work, the lighting variation is applied to the CelebA-HQ dataset
using the Deep Single Image Portrait Relighting (DPR) technique [48]. In
this method a CNN is trained to generate a relighted image based on a Spher-
ical Harmonics (SH) description of a lighting source. The method achieves
SoA results, and in particular avoids introducing artifacts to the relighted
samples - a drawback of other re-lighting methods that were considered for
use in this study. The selected DPR method is trained on the well-known
CelebA-HQ dataset which provides good variability in term of subject iden-
tity, combined with consistent face image quality. This makes the combina-
tion of the DPR re-lighting methodology and CelebA-HQ ideal for this work
as side-effects are eliminated due to either variable facial sample quality or
re-lighting artifacts, either of which could distort our experimental outcomes.

In this work we restricted our experiments to a select set of directional
lighting components in order to gain a better understanding of the overall
effect of directional lighting. The selected scenarios that are examined in-
clude lighting from 4 main directions: right, left, top and bottom of the face
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image. This has the added benefit of keeping the computation requirements
for experiments bounded to reasonable time-frame, with most individual ex-
periments completing in less than a 48 hour period.

The representative Spherical Harmonic (SH) lighting sources used are
shown in Fig.1. More SH lighting scenarios can be found in 1. The illumina-
tion variations (right, left, top and bottom) are introduced to each sample of
the CelebA-HQ dataset, resolving with 4 new sets of the CelebA-HQ, each
containing of one illumination variation (CelebA-HQ-right, CelebA-HQ-left,
CelebA-HQ-top and CelebA-HQ-bottom). Examples of the CelebA-HQ sam-
ples after introducing the illumination variations are illustrated in Fig.1. It
can be seen from Fig.1 that the DPR method has high quality outputs in-
corporating the target SH lighting to the images realistically and without
generating any artifacts to the face images. Instructions on how to generate
the sets of CelebA-HQ with the different illumination scenarios are given in
the Github repository of this work 2.

3.2. Face Recognition Model

A public reference implementation of the ArcFace [7] model is available, as
the authors have released optimized, pre-trained, weights for the model.This
reference ArcFace model has high performance on the dataset used in this
work and provides a useful public baseline for future performance compar-
isons. This has motivated our use of ArcFace throughout this study. Other
SoA FR models such as FaceNet [32] or CosFace [41] do not provide refer-
ence implementations and thus restrict direct experimental comparisons. An
unofficial, but public, implementation of FaceNet 3 was also tested but could
not provide a similar level of performance on the baseline or test datasets
used in this work.

In this work, the recommended workflow, by the authors of ArcFace is
followed before the face samples are fed to the network. The MTCNN [45]
is used to detect and crop the face samples. The detected area is cropped
and resized to 112 × 112, using bilinear interpolation, before passing to the
ArcFace network which calculates the 512-embedding corresponding to a
facial sample. Finally, the cosine similarity is used to compute the score

1https://zhhoper.github.io/dpr.html
2https://github.com/C3Imaging/Deep-Learning-Techniques/tree/Quantify-Retrain-

FR-for-Light
3https://github.com/davidsandberg/facenet
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Figure 1: The target SH lighting that is examined in this work is presented on the top
row. The original images of CelebA-HQ are on the left column. Examples of lighting
injected in the original images using the DPR method [48] are shown for each examined
illumination scenario (right, left, top & bottom).

representing the identity similarity when comparing two embeddings. The
pretrained network used in this work is provided by the authors of ArcFace
and can be found in 4.

Due to the introduction of the lighting variation and other factors, the face
detection is not able to process all the face images from the CelebA-HQ sets.
In the experiments only the images which the face detection network was able
to process in all the illumination scenarios along with the original image, are
used in order to keep the consistency in the experiments. Therefore, from
the initial 30,000 images, in this work 28,222 are used from each set (CelebA-
HQ-left, right, top, bottom and original). For the requirements of this study
the dataset is divided into a train and test set with 19,570 images from 4k

4https://www.dropbox.com/s/ou8v3c307vyzawc/model-r50-arcface-ms1m-refine-
v1.zip?dl=0
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identities and 8,654 images from 2k identities, respectively. This is applied
to each CelebA-HQ-set. A list of the images used in the experiments can be
found in 2.

3.3. Using ROC Curves as a Metric

The ROC curve is created by plotting the true positive rate (TPR) against
the false positive rate (FPR) at various threshold settings [24]. More specif-
ically, to compute an ROC curve, an equal number of positive-identity and
negative-identity pairs are created. Using the corresponding embeddings (ex-
tracted from the FR model for each image) of the pairs, similarity scores are
calculated and used to plot the ROC curve. The closer an ROC curve is to
unity, the better the performance of the FR model on the selected samples.
More information regarding the ROC and its interpretation and use can be
found in [40].

4. Quantifying the Effects of Illumination on the Face Recognition

In this section, the experiments conducted to quantify the effect of dif-
ferent lighting conditions on the FR’s performance are presented with a dis-
cussion of the findings.

4.1. Experiments on Initial Lighting Variations

The effects of the 4 directional lighting scenarios shown in Fig.1 on the
FR’s performance are examined. Initially an ROC curve is calculated using
only the samples from the test set of the original CelebA-HQ (ROC-Original)
following the procedure described in section 3.3. All possible positive pairs
from the test set of the original CelebA-HQ are used, in total 31k image
pairs and an equal number of negative pairs are created randomly. Using the
corresponding FR embeddings, the similarity scores are calculated and used
to plot the ROC curve. The ROCs corresponding to re-lighting augmented
scenarios are calculated following a similar procedure. The same positive and
negative identity pairs as in ROC-Original are used but one of the samples
from each pair has a re-lighting augmentation applied. Thus resulting in 4
main ROC curves (ROC-Left, ROC-Right, ROC-Top, ROC-Bottom) repre-
senting the FR’s performance in each illumination scenario. The positive
and negative pairs used to compute each ROC can be found in 2. The re-
sulting ROCs enable a direct comparison of the effects of different types of
directional illumination with the original set of test image pairs and between

7



them. This is presented in Fig.2.

From Fig.2 the initial experimental results are largely self consistent and
show well-defined performance degradation of the FR which is largely consis-
tent with what might be expected. The ROC-Original curve illustrates that
the FR model has a SoA performance on the non-augmented test dataset
approaching close to unity, of 0.99 TPR on the corresponding to 10−4 FPR
value. The re-lighting augmented ROC curves show significant deviations
from this baseline performance and are largely consistent with what might
be expected. Thus, the smallest deviation is for the ROC-Top, which starts
at 0.925 TPR, followed by the ROC-Right and ROC-Left curves at 0.86 and
0.85 respectively. The worst performing ROC is that of the bottom light,
starting a TPR of only 0.725. Looking at the examples shown in Fig.1 these
results make sense - the top lighting augmentation causes the least distortion
to the facial image from a human perspective, whereas the bottom-lighting
creates more obvious distortions in the facial features. Finally, the left/right
lighting augmentations would be expected to have similar effects due to the
symmetry of a human face. Note that the slight variation between ROC-
Left and ROC-Right is most likely due to slight left-right pose variations
in some facial samples leading to eccentricities in the corresponding lighting
augmentations.

4.2. Experiments on Additional Lighting Variations

The initial results shown in Fig.2 encouraged a more extensive set of ex-
periments to include additional top-right, top-left and bottom-right, bottom-
left lighting augmentations, to further improve our understanding of mixed
directional lighting modes. The new SH lighting used and examples of the
CelebA-HQ samples after introducing these illumination variations are il-
lustrated in Fig.3. The goals of this additional set of experiments were to
provide a second validation of our results, and in addition to explore the
effects of more varied re-lighting augmentations.

Due to the introduction of the new lighting variations, the face detection
is not able to process all the face images from the test set of the CelebA-HQ.
Similarly as in section 3.2, only the images which the face detection network
was able to process in all 8 illumination scenarios and the original images
are used in order to keep the consistency in the experiments. Therefore, the
initial test set of 8,654 images from 2k identities is reduced to 8,552 images
from 1,979 identities. In order to calculate the ROCs, corresponding to the
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Figure 2: ROC curves, representing the performance of the FR model 4 on the original im-
ages and the 4 initial directional illumination scenarios (left, right, top, bottom) examined
in this work.

original images and the 8 illuminations scenarios the procedure described in
3.3 and 4.1, is followed, using the new tests. As the size of the test set is
reduced, so is the number of all possible positive image pairs used to com-
pute the ROCs. For this set of experiments 30k positive pairs and an equal
number of negative pairs are used. These pairs can be found in 2.

The primary directional ROCs curves (top, bottom, left & right) pre-
sented in Fig.4, differ slightly from those of Fig.2, as the image pairs used
in these experiments are different. However their behaviour has a broadly
similar characteristic. The bottom, bottom-left and bottom-right lighting
augmentations are seen to be the most challenging for the FR task, while the
top-left and top-right illuminations have the least effect on the FR’s perfor-
mance. There is a small drop and a small increase on the FR’s performance
from the top and right light respectively, compared to the Fig.2. These are
attributed to the use of different pairs. These results are useful as a baseline
for the section 5, as they help demonstrate that fine-tuning on the primary set
of directional lighting augmentations can generalize across a broader range
of directional lighting effects.
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Figure 3: The additional SH lighting that is examined in section 4.2 is presented on the
top row. The original images of CelebA-HQ are on the left column. Examples of lighting
injected in the original images using the DPR method [48] are shown for each examined
illumination scenario (top-left, top-right, bottom-left, bottom-right).

4.3. Experiments on Public Face Illumination Data-sets

Similar experiments as in 4.1 and 4.2, were conducted using face datasets
which include illumination variation in their samples, to measure the effect
of their lighting scenarios on the FR’s performance. More specifically the
AR and Postech01 [25, 8] face datasets were used. These experiments did
not show any measurable degradation of the FR’s performance across the
illumination conditions provided in these data-sets. This is attributed to
the relatively limited variation of the illumination scenarios, the numbers of
human subjects, the total number of images and the controlled environments
in which these face datasets were acquired. This is also indicated through the
information regarding these datasets, provided in Table 1. Thus, revealing
the need for the development of a face dataset that resembles in-the-wild
conditions with illumination variation, which is further discussed in section
6.
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Figure 4: Additional ROC curves, representing the performance of the FR model 4 on
the original images and the 8 directional illumination scenarios (left, top-left, bottom-left,
right, top-right, bottom-right, top and bottom) examined in this work.

Table 1: Summary Information of Face Data-sets with Illumination Variations. (The num-
ber of Pose Variations in this table is referred with regards to the Illumination Variation)

Face Data-
sets

#IDs #Illumination
Variations

#Pose
Variations

AR [25] 126 3 1
Postech01 [8] 103 4 1

5. Fine-Tuning the Face Recognition model on Directional Illumi-
nations

In the first part of this work the potential effects of in-the-wild lighting
conditions, in particular directional lighting effects on a SoA neural face
recognition method have been demonstrated and quantified. The next step
is to determine whether the FR can be tuned to compensate for these effects.
In this section the selected FR model is fine-tuned, using a similar approach
to [39] with samples augmented with directional lighting.
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5.1. Fine-tuning Process & ROCs Computation

The initial pretrained network provided by the authors of Arcface 4, is
fine-tuned using a training set comprising samples from the original CelebA-
HQ dataset and samples with all 4 primary directional lighting augmentations
(CelebA-HQ-Left, Right, Top and Bottom). In total 97,850 high-quality
facial samples were used for fine-tuning, or 19,750 from the original data and
each of the four primary lighting sub-category.

For the re-training process the standard Arcface loss function is used,
with the learning rate set to 0.005 and a batch size of 128, following the
instructions from the authors of ArcFace. The network is fine-tuned for 40
epochs, as the number of images used is relatively large and all network
layers are unfrozen for the fine-tuning process. After 40 epochs the network
showed satisfactory results on the training data used and therefore stopped.
Longer training could result in over-fitting to the training data and thus not
being able to generalise. More details regarding the fine-tuning process and
the corresponding training code can be found at 5. The fine-tuned network
resulting from this re-training process is released at 2.

The fine-tuned network, is used to calculate the embeddings of the test
samples. The same procedure as described in 3.3 and 4.1 is followed to cal-
culate the ROC-Original-finetuned (ROC-Original-FT) and the ROCs corre-
sponding to the 8 different illumination scenarios (ROC-Left-FT, Right-FT,
Top-FT, Bottom-FT, Top-Left-FT, Top-Right-FT, Bottom-Left-FT, Bottom-
Right-FT,), using the positive and negative pairs from section 4.2. These
ROCs are compared with the ROC-Original-FT and between them to ex-
plore whether the fine-tuned FR model is able to handle the variation in
illumination as well as whether can generalise across the illuminations that
were not used for the fine-tuning process.

5.2. ROCs Comparison

The ROCs representing the performance of the fine-tuned FR model on
the original images and on the 8 directional lightings are presented in the
Fig.5. From Fig.5 it is illustrated that the ROCs corresponding to the fine-
tuned FR model on the 4 main illuminations (left, right, top, bottom) used
in the fine-tuning process (Fig.5) are at higher levels compared to the ROCs

5https://github.com/deepinsight/insightface
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Figure 5: ROC curves, representing the performance of the finetuned FR network 2 on
the original images and the 8 directional illumination scenarios (left, top-left, bottom-left,
right, top-right, bottom-right, top and bottom) examined in this work.

corresponding to the performance of the initial network (Fig.4) on these il-
lumination scenarios. More importantly, the ROCs corresponding to the
fine-tuned model on the 4 illuminations scenarios that are not used during
the fine-tuning (top-left, top-right, bottom-left, bottom-right), are also at
higher levels, thus showing that the network is able to generalise to other
variations of illumination that it was not trained on. Overall, the perfor-
mance of the fine-tuned FR model on any given illumination scenario has
increased and its above 0.95 TPR, even on the lower FPR values. Notably,
the ROCs are very close to the performance of the FR on the original images.
Therefore, concluding that the FR model when trained with lighting varia-
tion is able to adopt and handle face samples that include illumination and
achieve high accuracy results and also generalise across different illumination
variations that are not used during fine-tuning. Thus, showing that the illu-
mination can be compensated through training methods and augmentation
techniques eliminating the need for pre-processing methods correcting the
lighting, which are not optimal for use in neural accelerators.
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6. Conclusion & Future Work

It is clear from the results of the experiments, illustrated in Fig. 2 & 4
that fully end-to-end neural FR solutions will be challenged by in-the-wild
lighting conditions. As was indicated in [26] this problem is typically solved
by additional pre-processing of image samples to correct for lighting condi-
tions. In section 5.2 the practicality of fine-tuning a high-performing neural
FR model has been demonstrated, recovering performance levels close to the
original baseline for such lighting conditions. The fine-turning process also
indicated that generalization from the primary directions to combinations
of directional lighting is achieved - a promising result given the non-linear
nature of lighting conditions. Note that providing a broader and more varied
range of re-lighting samples and refining the training methodology to iden-
tify the more sensitive network layers in the ArcFace model should further
improve these results, but even as they stand it is clear that a full end-to-end
neural FR can be realized.

These initial results, especially the effectiveness of the fine-tuning process
are very promising. They suggest that SoA neural FR algorithms can be fine-
tuned to handle difficult in-the-wild acquisition conditions such as directional
lighting. However there are other challenges for FR algorithms in-the-wild,
including those listed in the introduction. A broader study on factors that
can affect FR is indicated. In this regard the availability of several large 3D
facial model datasets [46] could provide sufficient individual identities and
support more complex data variations to support such a study.
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ABSTRACT One of themost interesting challenges in Artificial Intelligence is to train conditional generators
which are able to provide labeled adversarial samples drawn from a specific distribution. For a successful
implementation of conditional generators, the created samples are constrained to a specific class. In this
work, a new framework is presented to train a deep conditional generator by placing a classifier or regression
model in parallel with the discriminator and back propagate the classification or regression error through
the generator network. Special cases for binary classification, multi-class classification, and regression are
studied. Experimental results on several data-sets are provided and the results are compared with similar
state-of-the-art techniques. The main advantage of the method is that it is versatile and applicable to any
variation of Generative Adversarial Network (GAN) implementation but also it is shown to obtain superior
results compared to other methods. The mathematical proofs for the proposed scheme for both classification
and regression are presented.

INDEX TERMS Conditional generators, deep neural networks, generative adversarial networks.

I. INTRODUCTION
Due in part to the affordability of modern parallel process-
ing hardware, such as Graphical Processing Units (GPUs),
the use of deep learning (DL) has become ubiquitous in
solutions to a broad range of academic and industrial prob-
lems [1]. Deep Learning often provides superior outcomes
on classification and regression problems compared to clas-
sical machine learningmethods and other supervised learning
techniques.

Deep learning has also proven successful in unsuper-
vised learning such as with Generative Adversarial Networks
(GAN) [2]. GANs, like other deep generativemodels, are able
to learn an approximation of the distribution for a given task
and generate an arbitrary number of samples from that dis-
tribution. These models comprise two networks, a generator,
and a discriminator. The generator takes from a random latent
vector, and the discriminator attempts to learn to distinguish
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approving it for publication was Chun-Wei Tsai .

between images created by the generator (fake images) and
those that are from the training set (real images). Since the
original concept [2], many variations of GAN have been
developed. Notable GANs include WGAN [3], EBGAN [4],
BEGAN [5], DCGAN [6]. Other popular deep generative
models include variational autoencoders, PixelRNN, and Pix-
elCNN. Also, Conditional generative adversarial networks
are models that can generate a class-specific data given the
right latent input, such as CGAN [7]. Although these come
with various disadvantages as some can be versatile to be
used with any GAN structure but there is no mathemati-
cal proof showing that the trained generator is able to pro-
vide distinct samples for different classes [8]. Furthermore,
other methods [8], [9], cannot be applied with any GAN
structure. Additionally, the classification / regression term is
restrained to the discriminator’s structure methods [8], [9].
Thus, limiting the potential for improvements, as a more opti-
mal classification/regression network cannot be select based
on different tasks and relying on one structure for multiple
problems.
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FIGURE 1. ACGAN [8] scheme vs VAC+GAN scheme.

The contribution of this work includes, two new training
methods of Conditional GANs for classification and regres-
sion tasks, which improve the disadvantages discussed ear-
lier. The first method is called Versatile Auxiliary Classifier
with Generative Adversarial Network (VAC+GAN) applied
for classification tasks. The initial idea of VAC+GAN is
then extended to regression tasks. This approach is called
Versatile Auxiliary Regression with Generative Adversar-
ial Network (VAR+GAN). The main idea is to remove
the classification/ regression term from the discriminator’s
loss function, by adding a classification /regression network
that back-propagates through the generator. Also, in the
VAR+GAN scheme a new loss function is also proposed.
The main benefit of these methods is their versatility as they
can be applied to any GAN structure with any loss function,
as well as having the advantage of choosing any architec-
ture for the classification/ regression network. Mathematical
proofs are provided to show the applicability of the methods
regardless of the GAN’s and classifier’s /regressor’s structure
or/and loss function. The proposed schemes are applied in
the experiments section and compared with state-of-the-art
methods, showing that using the proposed schemes resulted
in improved performance.

The rest of the paper is arranged as follows: In section II
related works are presented. In III, the mathematical
proofs for both, VAC+GAN and VAR+GAN are given.
In section IV, VAC+GAN is discussed and compared
with state-of-the-art methods for binary and multi-class
classification problems. VAR+GAN scheme is then
discussed and compared with similar other state-of-the-art

techniques. Finally, the conclusions are presented in the last
section (V).

II. RELATED WORKS
Conditional generative models are models that can gener-
ate a class-specific data given the right latent input. These
have shown a significant improvement in generating good
sample quality. Conditional GANs have shown a potential
application for the image synthesis and image editing appli-
cations. Being able to augment a database for certain data
classes/aspects and use them in training the final products is
one of the most interesting applications for the conditional
generators. In [7] the authors introduce a variation of GAN
known as conditional GAN (CGAN), wherein the model
is similar to the ordinary GAN [2], but the latent space is
conditional with respect to the class label. This approach is
versatile enough to be extended to other GAN variations, but
there is no mathematical proof that the trained generator is
able to provide distinct samples for different classes. A highly
successful class-aware generative model is the Auxiliary
Classifier GAN (ACGAN) [8], which is an extension of the
CGAN [7] architecture. By adding a classification term to
the generator and discriminator loss, the ACGAN’s generator
is forced to generate a specific class of data for a given
input (See Fig. 1a). One disadvantage of ACGAN [8] is that
it cannot be used with arbitrary GANs. Mixing the loss of
discriminator and the classifier will alter the training conver-
gence if the output of the discriminator is from a different
type compare to the classifier’s output. Furthermore, Infor-
mation maximizing Generative Adversarial Network (Info-
GAN) [10] splits an input latent space into the standard noise
vector z and additional latent vector c. The latent vector c is
then made meaningful disentangled representation by max-
imizing the mutual information between latent vector c and
generated images G(z, c) using additional Q network. Also,
the Similarity constraint Generative Adversarial Network
(SC-GAN) [11] attempts to learn disentangled latent repre-
sentation by adding the similarity constraint between latent
vector c and generated images G(z, c). Info-GAN [10] uses
an extra network to learn disentangle representation, while
SCGAN only adds an additional constraint to a standard
GAN. Therefore, SCGAN [11] simplifies the architecture of
Info-GAN. Finally, related work includes [9] wherein a Hier-
archical Generative Model (HGM) is utilized for eye image
synthesis and eye gaze estimation. This work introduces a
variation of GAN known as conditional Bidirectional GAN
(cBiGAN) [9], shown in Fig. 2a, which is a mixture of CGAN
and Bidirectional GAN (BiGAN). The primary disadvantage
with this method is that it can only be used with BiGAN like
networks.

III. MATHEMATICAL PROOFS
In this section, the mathematical proofs of the proposed
techniques (VAC+GANandVAR+GAN) are given, showing
their applicability and effectiveness to any GAN implemen-
tation using any classification/regression network.
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FIGURE 2. cBiGAN [9] scheme vs VAR+GAN scheme.

A. VERSATILE AUXILIARY CLASSIFIER WITH GENERATIVE
ADVERSARIAL NETWORK (VAC+GAN)
The proposed method of VAC+GAN, combines a GAN
and a classifier in such a way that the classifier accepts
samples from the generator, and the classification error is
back-propagated through the classifier and the generator. The
flowchart of the proposed model’s structure is presented in
Fig. 1b.

In this section it is shown that by placing a classifier at
the output of the generator and minimizing the categori-
cal cross-entropy as the classifiers loss, the Jensen-Shannon
Divergence between all the classes is increased. The terms
used in the mathematical proofs are the following:

1) N is the number of the classes.
2) The latent space Z is partitioned in to {Z1,Z2, . . . ,ZN }

subsets. This means that {Z1,Z2, . . . ,ZN } are disjoint
and their union is equal to the Z -space.

3) C is the classifier function.
4) Lce is the binary cross-entropy loss function.
5) Lcce is the categorical cross-entropy loss function.

Proposition 1: In the multiple classes case, the classifier
C has N outputs, where N is the number of the classes. In this
approach, each output of the classifier corresponds to one
class. For a fixed Generator and Discriminator (meaning the
weights of the discriminator and generator do not change but
the classifier’s weights do change), the optimal output for
class c (c’th output) is:

C∗G,D(c) =
pXc (x)∑N
i=1 pXi (x)

(1)

Proof: Considering just one of the outputs of the clas-
sifier, the categorical cross-entropy can be reduced to binary

cross-entropy given by

Lce(C(c)) = −Ez∼pZc (z)
[
log

(
C(G(z))

)]
−Ez∼∑i6=c pZi (z)

[
1− log

(
C(G(z))

)]
(2)

which is equal to:

Lce(C(c)) =
∫ (

pZc (z) log
(
C(G(z))

)
+
(∑
i6=c

pZi (z)
)
log

(
1− C(G(z))

)
dz
)

(3)

By considering G(zi) = xi:

Lce(C(c)) =
∫ (

pXc (x) log(C(x))

+
(∑
i6=c

pXi (x)
)
log(1− C(x))dx

)
(4)

The function f → m log(f )+ n log(1− f ) gets its maximum
at m

m+n for any (m, n) ∈ R2
\ {0, 0}, concluding the proof.

Theorem 1: The maximum value for Lcce(C) is N log(N )
and is achieved if and only if pX1 = pX2 = . . . = pXN .

Proof: The categorical cross-entropy is given by:

Lcce = −
N∑
i=1

Ez∼pZi (z)
[
log

(
C(G(z))

)]
= −

N∑
i=1

∫
pXi (x) log(C(x))dx (5)

From equation 1:

Lcce = −
N∑
i=1

(∫
pXi (x) log

(
pXi (x)∑N
j=1 pj(x)

)
dx
)

= N log(N )

−

N∑
i=1

(∫
pXi (x) log

(
pXi (x)∑N
j=1

pj(x)
N

)
dx
)

= Nlog(N )−
N∑
i=1

KL
(
pXi (x)

∣∣∣∣∣∣∣∣ N∑
j=1

pXj (x)

N

)
(6)

where KL is the Kullback-Leibler divergence, which is
always positive or equal to zero.

Now consider pX1 = pX2 = · · · = pXN . From 6:

Lcce = N log(N )−
N∑
i=1

KL
(
pXi (x)

∣∣∣∣∣∣pXi (x))
= N log(N ) (7)

concluding the proof.
Theorem 2: Minimizing Lcce increases the Jensen-

Shannon Divergence between pX1 , pX2 , . . . , pXN
Proof: From equation 6:

Lcce = N log(N )−
∫ N∑

i=1

(
pXi (x)

[
log(pXi (x))

− log
( N∑
j=1

pXj (x)

N

)])
dx (8)
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Which can be rewritten as:

Lcce = N log(N )−
N∑
i=1

(∫
pXi (x) log(pXi (x))dx

)

+

∫ N∑
i=1

(
pXi (x) log

( N∑
j=1

pXj (x)

N

))
︸ ︷︷ ︸(∑N

i=1 pXi (x)
)(

log

(∑N
j=1

pXj(x)
N

))
dx (9)

Which is equal to:

Lcce = N log(N )

−N
N∑
i=1

(
1
N

∫
pXi (x) log(pXi (x))dx

)

+N
∫ ( N∑

i=1

pXi (x)
N

)(
log

( N∑
j=1

pXj(x)
N

))
dx

(10)

This equation can be rewritten as:

Lcce = N log(N )

−

[
H
( N∑

i=1

1
N
pXi (x)

)
−

N∑
i=1

1
N
H
(
pXi (x)

)]
(11)

wherein the H (p) is the Shannon entropy of the distribution
p.

The Jensen Shannon divergence between N distributions
p1, p2, . . . , pN , is defined as:

JSDπ1,π2,...,πN
(
p1, p2, . . . , pN

)
= H

( N∑
i=1

πipi

)

−

N∑
i=1

πiH (pi) (12)

From equations 11 and 12:

Lcce = N log(N )− N JSD 1
N ,

1
N ,...,

1
N(

pX1 (x), pX2 (x), . . . , pXN (x)
)

(13)

Minimizing Lcce increases the JSD term, concluding the
proof.

In this section it has been shown that by placing a classifier
at the output of the generator and back-propagate the classi-
fication error throughout the generator, one can increase the
dis-similarity between the classes for the generator. There-
fore deep generator can be trained which can produce class
specified samples. The mathematical proofs are presented for
a multi-class scenario but consequently the technique works
for binary classification also by setting N (number of classes)
equal to 2.

B. VERSATILE AUXILIARY REGRESSOR WITH GENERATIVE
ADVERSARIAL NETWORK (VAR+GAN)
In the previous subsection, mathematical proof for the appli-
cability and effectiveness of VAC+GAN, which deals with
classification tasks, was presented. In this subsection a similar
proof for the case of regression tasks, called VAR+GAN is
given. VAR+GAN, uses a regression network in addition to
the usual discriminator and generator network and the error
from the regressor network back propagates to the generator.
The flowchart of the proposed VAR+GAN is presented in
Fig. 2b)

In this method, the generator is constrained to generate
samples with specific continuous aspects. Aspects refers to
the input of the generator and the output of the regressor. For
example, in the face generation task, given the right latent
sequence, the generator is able to create faces with particular
landmarks. The following loss function is introduced for the
regression network:

LR =
∫ ∫

dpz(z)
(
− log

(
1− (y− R(G(z)))

))
dz (14)

wherein z is the latent space variable, dpz(z) is the distribution
of an infinitesimal partition of latent space, y is the target
variable (ground truth), R is the regression function and G
is the generator function.
Proposition 2: For the loss function in equation 14 the

optimal regressor is:

R∗ =
p(x)
c
+ y− 1 (15)

wherein p(x) is the distribution of the generator’s output, c is
post-integration constant, and y is the target function.

Proof: Considering the inner integration of equation 14
and by replacing G(z) = x, the extremum of the loss function
with respect to R is:

d
dR

∫
dpx(x)

(
− log

(
1− (y− R(x))

))
dx = 0 (16)

which can be written as:∫
−dpx

R− y+ 1
= 0 ⇒

px
R− y+ 1

= c (17)

this results in:

R =
p(x)
c
+ y− 1 (18)

concluding the proof.
Theorem 3: Minimizing the loss function in equation 14

decreases the entropy of the generator’s output.
Proof: by replacing the equation 15 in 14, gives :

LR =
∫ ∫

− log
(px(x)

c

)
dpxdx (19)

which can be rewritten as:

LR = −
∫
px(x) log(px(x))dx + log(c)

= H (px(x))+ log(c) (20)
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wherein H is the shannon entropy. Minimizing LR results in
decreasing H (px(x)) concluding the proof.

Adding the regressor to the model decreases the entropy of
the generated samples. This is expected since the idea is to
constrain the output of the generator to obey some particular
criteria. This is shown in observations in section IV-C4.
Theorem 4: For any two sets of samples and their corre-

sponding targets (y1 and y2), the loss function in equation
14 increases the Jensen Shannon Divergence (JSD) between
generated samples for these two sets.

Proof: Consider z1 and z2 are two partitions of the latent
space correspond to two sets of samples with targets y1 and
y2. In this case, the loss function in equation 14 is given by:

LR = −
∫
pz1 (z) log(1− (y1 − R(G(z1))))dz

−

∫
pz2 (z) log(1− (y2 − R(G(z2))))dz (21)

Considering G(z1) = x1, G(z2) = x2, c1 = 1 − y1, and
c2 = 1− y2 equation 21 simplifies to:

LR = −
∫
px1 (x) log(c1 + R(x))dx

−

∫
px2 (x) log(c2 + R(x))dx (22)

To find the optimum R(x) the derivative of the integrand is set
to zero given by:

px1
c1 + R

+
px2

c2 + R
= 0 (23)

which results in

R = −
px1c2 + px2c1
px1 + px2

(24)

By replacing equation 24 in equation 22 it simplifies to:

LR = −
∫
px1 log

(
(c1 − c2)px1
px1 + px2

)
+

∫
px2 log

(
(c2 − c1)px2
px1 + px2

)
dx (25)

which can be rewritten as:

RL = −
∫

log
(

px1
px1+px2

2

)
−

∫
log

(
px2

px1+px2
2

)
− log(c1 − c2)− log(c2 − c1)− log(4) (26)

which equals to:

RL = − log(c1 − c2)− log(c2 − c1)− log(4)

−2JSD(px1 ||px2 ) (27)

minimizing RL increases JSD(px1 ||px2 ) term, concluding the
proof.

In this section, it has been shown, that the presented loss
function increases the distance between generated samples
for any two set of aspects. This is a desirable feature because
even small changes in the generator’s input space causes
changes in the generated images. This protects against com-
mon problems such as mode collapse or near mode collapse
and increases the diversity of the generated samples.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS
In this section the implementation of VAC+GAN and
VAR+GAN is described. In continuance, experimental
details are provided and the proposed methods are compared
with similar state-of-the-art techniques. Specifically, exper-
iments are conducted for three main scenarios: VAC+GAN
for binary and multi-class classification and the VAR+GAN
for regression. The code for both methods can be in 1 and.2

A. BINARY VAC+GAN
The VAC+GAN method is implemented using the BEGAN
[5] structure for training a gender specified generator on the
CelebA [12] database. The results of the proposed method are
compared against the results of the conditional GAN (CGAN)
[7] method applied also to the BEGAN [5] structured, for
a fair comparison on the task of generating face samples
constrained to either male or female class.

Different metrics are used to show the diversity of the
generated samples includingMean Square Error (MSE), Root
Mean Square Error (RMSE), Mean Absolute Error (MAE),
Universal Quality Index (UQI), and Structural Similarity
Index (SSIM). These metrics are explained in Appendix. All
the networks mentioned are trained with Lasagne [13] on top
of the Theano [14] library in Python.

A comparison with the ACGAN method is not avail-
able since applying this method to the BEGAN framework
resulted in mode collapse on the first epoch.

1) DATABASE
The CelebA dataset [12] consists of 202,599 original sam-
ples. The OpenCV frontal face cascade classifier [15] is
utilised to detect facial regions which are cropped and resized
to 48 × 48 pixels and used for training the proposed GAN
framework.

2) NETWORK ARCHITECTURES
In the BEGAN [5] structure, the generator network it has
the same architecture as the decoder part of an auto-encoder.
The network used in the experiment contains one fully con-
nected layer which reshapes the input to match next layer.
The next layers are all convolutional layers followed by
(2, 2) un-pooling layers for every second convolution. The
exponential linear unit (ELU) [16] is used as activation func-
tion except in the last layer wherein no non-linearity has
been applied. The discriminator network used in this exper-
iment is an auto-encoder. The input of the auto-encoder is
the image (48 × 48). The encoder part of the network is
made of convolutional layers with ELU activation function.
The down-scaling in these layers is obtained by using (2, 2)
stride in every second convolutional layer. The architecture
of decoder is the same as the generator network. The bot-
tleneck of the auto-encoder is a fully connected layer with
no activation function. The encoder and decoder networks

1https://github.com/shababqcd/VAC-GAN
2https://github.com/shababqcd/VAR-GAN
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FIGURE 3. Network architectures used for implementation purposes in
the experiments of IV-A and IV-C.

TABLE 1. The classifier structure for the experiment in IV-A.

used for training the BEGAN [5] are shown in Fig. 3a and 3b
respectively. The layers shown in red apply no non-linearity
to the data. The classifier used in this experiment to
implement the VAC+GAN proposed scheme is given in
Table 1.

3) IMPLEMENTATION
a: VAC+GAN
The loss functions used to train VAC+GAN applied to
BEGAN [5] framework are given by

Ld = L(x)− kt · L(G(z|c))

Lg = ϑ · L(G(z|c))+ ζ · BCE

kt+1 = kt + λk
(
γL(x)− L(G(z|c))

)
(28)

where Lg and Ld are the generator and discriminator losses
respectively. G is the generator function, z is a sample from
the latent space, c is the class label, x is the sample drawn
from the database, λk is the learning rate for k , γ is the
equilibrium hyper parameter set to 0.5 in this work, and L
is the auto-encoders loss defined by

L(v) = |v− D(v)|2 (29)

BCE is the binary cross-entropy loss of the classifier, and
ϑ and ζ are set to 0.997 and 0.003 respectively. The opti-
mizer used for training the generator and discriminator is
ADAMwith learning rate, β1 and β2 equal to 0.0001, 0.5 and
0.999 respectively. The classifier is optimized using nestrov
momentum gradient descent with learning rate and momen-
tum equal to 0.01 and 0.9 respectively.

The latent space has 64 dimensions and the first dimension
is used to partition the latent space in two subspaces corre-
sponding to the two classes.

b: CBEGAN
The loss functions for training the conditional BEGAN
(CBEGAN) [5] are given by:

Ld = L(x)− kt · L(G(z|c))

Lg = L(G(z|c))

kt+1 = kt + λk
(
γL(x)− L(G(z|c))

)
(30)

where Lg and Ld are the generator and discriminator losses
respectively. G is the generator function, z is a sample from
the latent space, c is the class label, x is the sample drawn
from the database, λk is the learning rate for k , γ is the
equilibrium hyper parameter set to 0.5 in this work, and L
is the auto-encoders loss defined in equation 29.

4) RESULTS
The results from experiments involving CBEGAN [5] and
the proposed VAC+GAN method are shown in Fig. 4 and
5, respectively.

Fig. 4 shows that the gender-specific generator fails to
correctly generate samples for a specific class when the con-
ditional GAN is applied (CBEGAN) [5]. The Fig. 5 indicates
that the proposed VAC+GAN method constrains the genera-
tor to create samples drawn from a specific class.

In order to compare the models (CBEGAN [5],
VAC+GAN), 80 random male and 80 random female sam-
ples have been generated using the trained generators and
three observations have been conducted on these samples:

1) Each male sample has been compared to all the other
male samples, and all the metrics have been calculated
for these comparisons, and the average of these num-
bers has been obtained (blue bars).

2) Each female sample has been compared to all the other
female samples, and all the metrics have been calcu-
lated for these comparisons, and the average of these
numbers has been obtained (purple bars).
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FIGURE 4. Generator trained using CBEGAN [5] method.

FIGURE 5. Generator trained using the proposed VAC+GAN method.

3) Each male sample has been compared to all female
samples, and all the metrics have been calculated for
these comparisons, and the average of these numbers
has been obtained (yellow bars).

The aforementioned measurements are illustrated in Fig. 6
and 7 for the CBEGAN [5] and the proposed method. The
lower value of UQI and SSIM show low similarity between
samples. In Fig. 6, from the first two observations (blue
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FIGURE 6. UQI and SSIM metrics for VAC+GAN vs. CBEGAN [5]. Lower
values show higher performance.

FIGURE 7. MSE, RMSE and MAE metrics for VAC+GAN vs. CBEGAN [5].
Higher values show better performance.

and purple bars) it is shown that the proposed method is
able to draw samples from each class that are not similar.
From the third observation (yellow bars), it is shown that the
inter-class similarity in the proposed method is less than the
one from CBEGAN [5]. This demonstrates that the generated
samples of different classes from the proposed VAC+GAN
method differ more compared to the same measure applied
to CBEGAN [5] approach. Finally, the higher value of MSE,
RMSE, and MAE show high variation of the generated
images for the proposed method. As shown in Fig. 7, the pro-
posed method is able to generate samples with high variation
for each class and also between classes.

B. MULTI-CLASS VAC+GAN
In this section, two experiments are conducted to show
the effectiveness of VAC+GAN in multi-class classifica-
tion scenarios. In the first one, the VAC+GAN scheme
is applied to the DCGAN [6] structure and trained on
the MNIST [17] dataset. Visual comparisons are con-
ducted with CGAN [7],CDCGAN [6] and ACGAN [8] on
the task of generating MNIST samples constrained to a
class.

The second experiment is implemented to the ACGAN
[8] structure and compared with the ACGAN on generating
images using the CIFAR10 dataset [18]. The classification
error is presented, comparing the two methods.

All the networks are trained in Lasagne [13] on top of
Theano [14] in Python, unless stated otherwise.

Note that evaluating any GAN implementation is still an
open problem since there is not any consistent measurement
in evaluating a deep generator. As explained in [19], ‘‘As
of yet, there is no consensus regarding the best score.’’ In
fact some scores like structural similarity index (SSIM) and
Universal Quality Index (UQI) favor the models closer to
a random generator. Other measurements such as Inception
Score use another pre-trained deep neural networks (which
is biased towards a specific database) to evaluate a deep
generator. This is not a valid evaluation except if the generator
is trained on the exact same database (this is presented in
the second experiment with the CIFAR10 database [18]).
So far the most accepted evaluation for deep generators is
the visual correctness of the generated samples. Therefore,
in the first experiment, the visual results are presented for
the MNIST [17] dataset. For the second experiment which is
performed on the CIFAR10 dataset [18], since the images are
very small to represent visual information, the classification
error and confusion matrices are presented to evaluate the
deep generators.

1) MULTI-CLASS VAC+GAN WITH MNIST
a: DATASET
MNIST (‘‘ModifiedNational Institute of Standards and Tech-
nology’’) [17] is known as the ‘‘hello world’’ dataset of
computer vision. It is a historically significant image classi-
fication benchmark introduced in 1999, and there has been a
considerable amount of research published on MNIST image
classification. MNIST contains 60,000 training images and
10,000 test images, both drawn from the same distribution.
It consists of 28×28 pixel images of handwritten digits. Each
image is assigned a single truth label digit from [0, 9].

b: NETWORK ARCHITECTURE
The proposed method of the multi-class VAC+GAN has
been applied to the DCGAN structure [6]. The generator,
discriminator and the classifier used in this experiment are
given in Table 2, 3 and 4 respectively. All convolutions and
deconvolution layers in Table 2, 3 are using (2,2) padding
with stride (2,2).

c: IMPLEMENTATION VAC+GAN
The loss functions for the proposed VAC+GAN method for
multi-class scenarios, (using MNIST) is given by:

Lg = ϑ · BCE(G(z|c), 1)+ ζ · CCE

Ld = BCE(x, 1)+ BCE(G(z|c), 0) (31)

where, Lg, and Ld are the generator and discriminator losses
respectively, G is the generator function, BCE is the binary
cross-entropy loss for discriminator and CCE is the categor-
ical cross-entropy loss for the classifier. For this experiment
the hyper-parameters of the loss function, ϑ and ζ are equal
to 0.2 and 0.8 respectively.

The optimizer used for training the generator and dis-
criminator is ADAM with learning rate, β1 and β2 equal
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TABLE 2. The generator’s structure for the experiment in IV-B1.

TABLE 3. The discriminator’s structure for the experiment in IV-B1.

TABLE 4. The classifier’s structure for the experiment in IV-B1.

to 0.0002, 0.5 and 0.999 respectively. And the classifier
is optimized using nestrov momentum gradient descent
with learning rate and momentum equal to 0.01 and 0.9
respectively.

d: RESULTS
In Fig. 8a-8d the generated MNIST digits from 4 different
methods are illustrated. The results from the CGAN [7] and
CDCGAN [6] are shown in Fig. 8a and 8b. It is noticeable
that the quality of the generated digits from the CGAN and
CDCGAN is not sufficient and in many cases the output is
vague. The proposed VAC+GAN method is able to generate
digits of superior quality (Fig. 8d) compared to CGAN and
CDCGAN, while using the exact same structure of genera-
tor as in CDCGAN. The results of ACGAN in Fig. 8c are
comparable with the results generated from the VAC+GAN
method, but the main advantage of the proposed method over
the ACGAN is its versatility as it can be applied to any GAN
implementation regardless of the model’s architecture and
loss function.

2) MULTI-CLASS VAC+GAN WITH CIFAR10
a: DATASET
In this experiment the CIFAR10 database [20] is utilized,
which consists of 60000 images in 10 classes. In this
work the existing default split was used, wherein 50000 of
these images are for training and 10000 for testing
purposes.

TABLE 5. The generator’s structure for the experiment in IV-B2.

TABLE 6. The discriminator’s structure for the experiment in IV-B2. The st
stands for stride size and MBDisc for Mini Batch Discrimination layer.

b: NETWORKS ARCHITECTURE
For this experiment, the proposed VAC+GAN multi-class
scheme is compared with the ACGAN [8]. The networks
utilized in this experiment are shown in Table 5, 6 and 7
corresponding to the generator, discriminator3 and classifier
respectively. All deconvolution layers in Table 5 are using
‘SAME’ padding with stride (2,2). Also in Table 6, the decon-
volution layers are using ‘SAME’ padding with kernel size
3 × 3. The same generator and discriminator architectures
have been used in both VAC+GAN and ACGAN method [8]
to obtain fair comparisons.

c: IMPLEMENTATION VAC+GAN
The loss functions for the proposed VAC+GAN method for
multi-class scenarios, (using CIFAR) is the same as in the
previous experiment (with MNIST) given in Equation 31 and
used to train the models. In this experiment, ϑ and ζ are equal
to 0.2 and 0.8 respectively.

The optimizer used for training the generator and discrimi-
nator is ADAMwith learning rate, β1 and β2 equal to 0.0002,
0.5 and 0.999 respectively. The classifier is optimized using
nestrov momentum gradient descent with learning rate and
momentum equal to 0.01 and 0.9 respectively.

3https://github.com/King-Of-Knights/Keras-ACGAN-
CIFAR10/blob/master/cifar10.py
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FIGURE 8. Deep conditional generators trained on MNIST [17].

d: RESULTS
The results of the ACGAN [8] and the proposed method of
VAC+GAN, using the CIFAR10 database [18], are shown
in Fig. 9a4 and 9b respectively. The CIFAR10 database is
extremely unconstrained and there are just 1000 samples in
each class. Consequently the outputs of both implementations
are vague. Therefore, in order to compare the two methods,
their classification errors are compared. The confusionmatrix
for ACGAN [8] and VAC+GAN are shown in Fig. 10a5

and 10b respectively. The confusion matrices show that the

4https://github.com/King-Of-Knights/Keras-ACGAN-
CIFAR10/blob/master/plot_epoch_220_generated.png

5https://github.com/King-Of-Knights/Keras-ACGAN-
CIFAR10/blob/master/Confusion_Matrix.png

proposed VAC+GAN method has a better classification
performance compared to the ACGAN. The classification
accuracy of the ACGAN and the VAC+GAN on CIFAR10
is 71.89% and 74.49% respectively after 200 epochs.
The proposed method not only has a higher classification
accuracy but also has the main advantage of versatility.
In VAC+GAN scheme the most appropriate classification
network can be selected in contrast with the ACGANmethod
where the classification task is restrained to the discrim-
inator which performs as the classifier as well. Moreover
the VAC+GAN can be applied to any GAN implementa-
tion just by placing a classifier in parallel with discrim-
inator as shown through the mathematical proofs given
in III.
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TABLE 7. The classifier’s structure for the experiment in IV-B2.

C. VAR+GAN
In this section, the implementation of the VAR+GAN is
presented and compared to the cBiGAN method [9] in the
task of generating face samples in a particular set of landmark
points using the CelebA [12] dataset. To keep the consistency
in comparisons, the same architecture for the generator net-
work has been kept throughout all implementations. All the
networks are trained using the Lasagne [13] library on the top
of Theano [14] in Python.

1) DATABASE
The dataset used in this experiment is the CelebA database
[12] which is made of 202,599 frontal posed images. Sim-
ilarly to the experiments in the binary VAC+GAN, the
face regions are cropped and resized to 48 × 48 pixels
using OpenCV frontal face cascade classifier [22]. Super-
vised Descent Method (SDM) [23] is used for facial land-
mark points detection. The detector is based on [24] and
it utilizes the discriminative 3D facial deformable model to
find 49 facial landmarks including contours of eyebrows,
eyes, mouth and the nose. These landmarks are used as the
data aspect in this experiment.

2) NETWORK ARCHITECTURES
The three architectures used in this experiment are the
encoder, the decoder, and the regression networks. The first
two are shown in Fig. 3. The encoder network is made of con-
volutional layers with ELU activation function. The down-
scaling in these layers is obtained by using (2, 2) stride in
every second convolutional layer. In the decoder network, all
convolutional layers have 64 channels while in the encoder,
the number of the channels is gradually increased to 128, 192,
and 256 after each pooling layer. The decoder contains one
fully connected layer which reshapes the input to match the
dimensionality of the next layer. Next layers are all convo-
lutional layers followed by (2, 2) un-pooling layers for every
second convolution. The exponential linear unit (ELU) [16]
is used as activation function except in the last layer wherein
no non-linearity has been applied except for the encoder in
cBiGAN scheme wherein tanh nonlinearity is applied in the
output layer. For the layers shown in red no non-linearity
is applied to the input. The regression network is shown in
table 8.

FIGURE 9. Generated samples using ACGAN [8] and the proposed method
VAR+GAN method on CIFAR10 [18]. Each row corresponds to a class.

3) IMPLEMENTATION
a: VAR+GAN
For the proposed scheme (VAR+GAN) (Fig. 2b), the Bound-
ary Equilibrium Generative Adversarial Network (BEGAN)
[5] is utilized to train the deep generator. In this method the
generator’s and discriminator’s input dimension is k = 128.
The loss function for the proposed implementation is a mod-
ified version of the original BEGAN loss [5] given by:

Ld = L(x)− kt · L(G(z|y))

Lg = ϑ · L(G(z|y))+ ζ · LR
kt+1 = kt + λk

(
γL(x)− L(G(z|y))

)
(32)
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FIGURE 10. Confusion matrices for the classifier trained on ACGAN [8]
and VAC+GAN methods on CIFAR10 [18].

TABLE 8. The regression network used in the experiments described in
IV-B2.

where Lg and Ld are generators and discriminators losses
respectively. G is the generator function, z is a sample from
the latent space, x and y are genuine image and corresponding
ground truth drawn from the database, λk is the learning rate
for k , γ is the equilibrium hyper parameter set to 0.5 in this
work, LR is the regression loss given by equation 14, and

FIGURE 11. Generator outputs for proposed VAR+GAN method vs cBiGAN
[9] on the CelebA [12]. (Experiment described in IV-C).

ϑ and ζ are set to 0.97 and 0.03 respectively, and L is the
auto-encoders loss defined by

L(v) = |v− D(v)|2 (33)

The optimizer used for training the generator and discrim-
inator is ADAM with learning rate, β1 and β2 equal to
0.0001, 0.5 and 0.999 respectively. And the regression net-
work is optimized using nestrov momentum gradient descent
with learning rate and momentum equal to 0.01 and 0.9
respectively.
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FIGURE 12. Generator outputs for proposed VAR+GAN method vs cBiGAN [9] on the CelebA [12], given particular landmarks. (Experiment
described in IV-C).

FIGURE 13. Generator outputs for proposed VAR+GAN method vs cBiGAN [9] on the CelebA [12], given particular landmarks. (Experiment
described in IV-C).

b: cBiGAN
The cBiGAN scheme [9] is implemented in the following
way. The generator’s architecture is same as the decoder
network shown in Fig. 3b with input dimension k = 128. The
discriminator model is same as the encoder network in Fig. 3a
with k = 1 and sigmoid non-linearity at the output layer. And
the encoder network in Fig. 1b has the architecture shown

in Fig. 3a with k = 98 and tanh non-linearity at the output
layer. The loss function for this scheme is presented in [9]
given by

LD = log(pr )+ log(1− pI )+ log(1− ps)

LG = log(pI )

LE = log(ps)+ θ ||s− − y||2 (34)
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wherein s− is the encoder’s output, y is the genuine aspect
coming from the database, and

pr = D(y, x) , pI = D(y,G(z|y)) , ps = D(s−, x)

(35)
where D and G are discriminator and generator functions
respectively, x and y are genuine image and corresponding
ground truth drawn from the database, and z is a sample from
the latent space. The coefficient θ is set to 0.8. The optimizer
used for training the model is ADAM with learning rate, β1
and β2 equal to 0.0001, 0.5 and 0.999 respectively.

4) RESULTS
In this section, the proposed VAR+GANmethod is compared
against the cBiGAN method [9] while generating faces for
a particular landmark point set. The results for six sets of
landmarks are shown in Fig. 11 to 13. In each figure the
outputs from the proposed method for a particular set of
landmarks are illustrated in 11a,12a and 13a while in the
Fig. 11b, 12b and 13b, the output of the generator trained in
cBiGAN scheme [9] is given for the same landmarks.

As shown in Fig. 11 - 13, both methods are able to gen-
erate samples constrained to a particular set of landmarks
but the proposed method generates higher variations of faces
for a given landmark set while cBiGAN [9] fails to create
different samples in the same condition. Also the advantage
of VAR+GAN lies is the versatility of the method which
facilitates the implementation and also guarantees the higher
quality in the generated samples. As prime example, in this
work the proposed VAR+GAN method is taking advantage
of the simplicity and power of BEGAN implementation [5]
and the only change applied, is to place the regression net-
work and add its error value to the generator’s loss, while
cBiGAN method [9] is constrained to a specific loss function
which remains a disadvantage.

V. DISCUSSION AND CONCLUSION
The main contributions of this work is the introduction of
two new methods to train conditional deep generators along
with their mathematical proofs. The first method is called
Versatile Auxiliary Classifier with Generative Adversarial
Network (VAC+GAN)which can be used for both binary and
multi-class-classification problems. The second approach is
an extension of the initial idea of VAC+GAN, used in
regression tasks. It is called Versatile Auxiliary Regression
with Generative Adversarial Network (VAR+GAN). In the
VAR+GAN scheme a new loss function is also proposed. The
main idea is to place a classification/ regression network in
parallel to the discriminator network and back-propagate the
classification/ regression loss through the generator network
in the training stage. The mathematical proofs provided show
that the proposed methods are versatile to be applicable to
any GAN structure with any loss function, as well as having
the advantage of choosing any architecture for the classifica-
tion/ regression network. For both schemes, the mathematical
proofs show that the presented frameworks increase the JSD
between samples/classes generated by the deep generator i.e.

the generator can produce more distinct samples, which is
desirable. The code for both methods is available at 1 and 2.

The proposed schemes are implemented and compared
with similar state-of-art methods. Firstly, the proposed
VAC+GAN is presented for both binary and multi-class
classification. The VAC+GAN for the binary classification
case is implemented for training a gender specified generator.
The results has been compared to another versatile method
known as Conditional GAN (CGAN) [7], showing the supe-
riority of the proposed VAC+GAN method. Furthermore the
VAC+GAN is implemented for multi-class cases and the
results have been compared to the implementation of CGAN
[7], CDCGAN [6] and ACGAN [8] on the MNIST dataset
[17]. Also experiments conducted on the CIFAR10 dataset
[18] and comparisons are made with respect to the ACGAN
method [8]. In all cases the VAC+GAN has given superior
results compared to the other methods.

Finally, the proposed VAR+GAN method is compared
with a state-of-the-art method with the same purpose. The
cBiGAN method [9] generates samples with a particular
aspect the variations between the generated samples is lim-
ited, while the proposed VAR+GAN produces greater vari-
ations for a specific set of aspects. Being able to generate
variable samples is crucial for tasks including augmentation
purposes.

Overall the proposed methods of VAC+GAN and
VAR+GAN show superior results when compared with sim-
ilar state-of-the-art techniques. Except the increase in the
performance for several tasks, the main advantage is their
versatility, as the proposed schemes can be applied to any
GAN structure with any loss function as well as having the
advantage of choosing any architecture for the classifica-
tion/regression network.

The future work includes applying the method to datasets
with a larger number of classes (such as CIFAR-100 [18],
ImageNet 1000 [25]) for more complex tasks, extend the
implementation for images of higher resolution and experi-
ment with various GAN architectures. Also comparisons with
more SoAmethods will be conducted to study extensively the
proposed method. Additional, future studies involve merging
the VAC+GAN and VAR+GAN methods to constrain the
generator to create samples from a specific class with a par-
ticular continuous aspect and also investigating the influence
of the generated samples in augmentation task for different
applications.

APPENDIX
DIVERSITY MEASUREMENTS

1) MSE (Mean Squared Error): MSE measures the
average of the squares of the errors or deviations;
representing the difference between the estimator and
what is estimated. The lower value of MSE shows
lesser error.

MSE(f , g) =
1
mn

m−1∑
0

n−1∑
0

||f (i, j)− g(i, j)|| (36)
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2) RMSE (Root Mean Squared Error): RMSE is a
quadratic scoring rule that measures the average mag-
nitude of the error. It is the square root of the average
of squared differences between prediction and actual
observation. The lower value of RMSE shows lesser
error.

RMSE(y, ŷ) =

√√√√1
n

n∑
i=1

(yi − ŷi)2 (37)

3) MAE (Mean Absolute Error): MAE also measures
the average magnitude of the errors in a set of pre-
dictions, without considering their direction. It is the
average over the test sample of the absolute differences
between prediction and actual observation where all
individual differences have equal weight. The lower
value of MAE shows lesser error.

MAE(f , y) =
1
n

n∑
i=1

|fi − yi| (38)

4) UQI (Universal Quality Index) [26]: UQI measures
the structural distortion of the images by modeling the
distortion as a combination of three factors: loss of cor-
relation, luminance distortion, and contrast distortion.
The higher value of UQI shows lesser error.

5) SSIM (Structural Similarity Index) [27]: SSIM is a
perception-based model that considers image degra-
dation as perceived change in structural information,
while also incorporating important perceptual phenom-
ena, including both luminance masking and contrast
masking terms. The higher value of SSIM shows lesser
error.

The MSE, RMSE and MAE show the difference between
two images. Higher values for these metrics correspond to
higher variation of the generated images. UQI and SSIM
measure the structural similarity between two samples. Lower
value for these metrics corresponds to reduced similarity.
Therefore when evaluating generative models, higher values
for MSE, RMSE, and MAE and lower values for UQI and
SSIM are desirable.
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Abstract—The recent explosive growth of deep learning is enabling a new generation

of intelligent consumer devices. Specialized deep learning inference now provides data

analysis capabilities that once required an active cloud connection, while reducing

latency and enhancing data privacy. This paper addresses current progress in Edge

artificial intelligence (AI) technology in several consumer contexts including privacy,

biometrics, eye gaze, driver monitoring systems, andmore. New developments and

challenges in edge hardware and emerging opportunities are identified. Our previous

article, “Deep learning for consumer devices and services,” introduced many of the basics

of deep learning and AI. In this paper, we explore the current paradigm shift of AI from the

data center into CE devices—“Edge-AI.”

& THIS PAPER FOLLOWS the earlier publication,1

“Deep learning for consumer devices and serv-

ices: Pushing the limits for machine learning,

and computer vision.” That article introduced

the basics of deep learning along with the sup-

porting tools and methodologies. Our vision at

that time was that new embedded hardware sol-

utions would enable advanced capabilities and

features incorporating convolutional neural net-

work (CNN)-based AI across a broad range of

Consumer Electronic (CE) devices and services.

Since that time, there has been a growing inter-

est and investment by industry into moving key

elements of AI away from the cloud toward the

sensors and the embedded devices themselves.

The movement of AI closer to the device was
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covered by two special issues of CE magazine2,3

near the end of 2016. At that time, industry was

focused on OpenFog, an initiative to define a new

generation of low-latency services for the Inter-

net-of-things (IoT). But, AI is nowmoving onto the

device itself with many companies and research-

ers focusing on developing FPGA-based solutions4

and, most recently, embedded AI hardware

accelerators.5,6

Most of the large semiconductor manufac-

turers are working on a new generation of AI

accelerator chipsets and the widespread deploy-

ment of neural networks on the device itself. In

fact, such technology is already incorporated

into the latest generation of mobile handsets,

high-end television panels, professional digital

cameras, and many new automotive subsystems.

This embedding of AI into the device itself is

referred to as Edge-AI and is distinguished from

AI services provided over a low-latency network

link, better known as Mobile-Edge AI.

There is a role for both network-based and

device-based AI, but it is the recent emergence

of on-device implementations that is most excit-

ing for CE engineers. Improvements in the

computational and energy efficiencies of hard-

ware AI accelerators over today’s GPU-based sol-

utions provides an ideal solution for challenging

data-processing problems introduced by new

battery-powered, wearable, and IoT devices.

In this paper, progress in Edge-AI over the

past two years is reviewed and several examples

of practical problems tackled with CNNs are out-

lined. Some are contributions made within our

research team, others are drawn from the litera-

ture, but each example illustrates how CNN-

based Edge-AI will be at the core of many new

devices, systems, and services that emerge over

the next decade.

EXAMPLE CE USE CASES AND
DL SOLUTIONS

A good starting point is to consider how

Edge-AI solutions can improve performance and

operational efficiency to a point where the bene-

fits outweigh the costs of incorporating an infer-

ence engine or platform into the system.

Looking at the research literature and the evolu-

tion of consumer electronics products over the

past decade, one area where DL can add value is

in computer vision applications. The cost of a

complete VGA camera module has dropped

below $1.00 and the cost of adding a CMOS

image sensor is almost negligible in today’s devi-

ces. Thus, many interesting uses of Edge-AI focus

on combining advanced image analysis capabili-

ties with low-cost CMOS sensors. Following are

some good examples of the associated CE appli-

cations that Edge-AI is enabling today.

Eye-Gaze Systems

A range of applications based on eye-gaze

tracking in consumer platforms such as automo-

tive (for driver monitoring), augmented and vir-

tual reality (AR/VR) (for foveated rendering and

immersive experiences), and smartphones and

TV (for gaze-based user interfaces and saliency

analysis of content) have been described in a

recent review.7 Recent research in this field

includes the work presented by Lohmeyer et al.8

where gaze duration and patterns are used to

assess how effectively users can operate a con-

nected self-injection system. Similarly, the effec-

tiveness of observation charts in a hospital is

evaluated9 by comparing user viewing patterns

derived from eye tracking data. Eye movements

and pupillary response are used as indicators of

cognitive load.10,11 In the work of Przyby»o et al.,
12 the influence of emotions on the visual acuity

of users was studied, which showed that eye

movements like fixations and saccades clearly

respond to levels of stress. Eye gaze estimation

is a “must have” feature for the latest driver

monitoring systems (DMS) such as illustrated

in Figure 1 and is crucial for the functioning

of AR/VR systems. For these applications,

deep learning can either be applied as an end-to-

end solution13 or as a component of a more tra-

ditional gaze estimation pipeline, such as iris

segmentation.14,15

End-to-end approaches to eye gaze estima-

tion are state of the art for uncontrolled environ-

ments where the camera is at a distance, and

such methods are closing the gap in AR/VR set-

tings.16 Real-world Edge-AI must balance accu-

racy requirements with power availability and

speed. Typical Edge products have strict limits

on the number of MAC operations per second,

and these limits often preclude the use of the

largest and most popular networks without
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significant optimization. Similar approaches can

have vastly different performance. Many papers

report performance on GPUs, but it is important

to consider their speed on the low-cost commod-

ity processors that are typical of Edge devices.

For example, one published gaze estimation

solution operates at approximately 120 fps on a

GPU, but 0.0043 fps on an ARM processor (�one

frame every 4 min), while another network with

similar accuracy runs at 92.59 fps on the sameARM

processor, or 19 fpswith 1.5% higher accuracy.13

Biometrics and Device Authentication

Biometric authentication has the potential to

solve many pressing problems related to security

and privacy for today’s CE devices.17 This can be

seen in today’s mobile devices, but the real break-

throughwill comewhen biometric technology can

be incorporated into lower power devices such as

wearables and IoT peripherals. A key aspect here

is that biometric acquisition and processing

shouldoccur on the device or peripheral to secure

the biometric.18–20 Realistically, this can only be

achieved by leveraging Edge-AI to enable secure,

energy-efficient authentication of the biometric.

Automotive biometrics offer a compelling use

case for Edge-AI. Our cars already have cameras

to monitor the driver so it is straightforward to

incorporate technology to verify driver identity.

External cameras, for pedestrian detection can

be repurposed for an initial authentication,

supplementing today’s keyless entry systems. In

this use case, the key challenge is acquiring a

biometric in unconstrained conditions.21,22

While facial biometrics offer a good level of veri-

fiability, they are prone to attacks23–25 and even

iris biometrics can be challenged.26,27

Incorporating all the elements of a biometric

authentication chain—unconstrained acquisition,

liveness verification, and, finally, authentication of

the registered biometric—requires significant

computational resources and energy. Each of

these elements can be tackled independently,

and in parallel, by neural network-based solutions.

As examples, large pose three-dimensional (3-D)

facial segmentation,28 facial segmentation and

alignment29, and iris segmentation14 can all be

tackled with CNNs. Liveness detection is also

receivingmuch attention from researchers.30–33

Biometrics is also important for wearable

devices such as the one shown in Figure 2. Con-

sider the emerging category of AR and mixed-real-

ity (MR) headsets where there is no keyboard.

These devices must be connected to an online

account. Fortunately, these AR/MR headsets

must track eye-gaze to accurately render objects

onto the real-world scene. To track eye-gaze, it

requires a user-facing camera which monitors

and segments iris and pupil regions (Figure 3) to

determine eye-gaze. It is a straightforward task to

add authentication of the segmented iris region.34

Immersive Audio for MR Headsets

MR implies combining a mixture of aug-

mented visual elements with additional nonvi-

sual sensory elements. In practice, audio

augmentations can provide more compelling

immersion than visual cues. However, maintain-

ing the illusion of the real world when adding

audio to the perceived environment is

Figure 1. State-of-the-art DMS—screenshots courtesy of Xperi,

Inc.

Figure 2. User-facing cameras for a mixed reality

headset—courtesy of pupil-labs.com.35

Edge-AI
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challenging. Each individual has a unique ear

canal and our brains process and perceive audio

in a highly personalized way. And our audio

senses are attuned to visual cues, subcon-

sciously anticipating changes in environmental

acoustics. Thus, in a large cathedral, you expect

echoes from your footsteps and voice; in a room

with carpets and soft furnishings, the acoustics

should be subdued. Thus, acoustic cues should

adapt to the surroundings of an MR-headset, or

the illusion of immersion is lost.

But energy usage on a headset is more critical

than on a smartphone, providing another excellent

use-case for Edge-AI: scene analysis36,37 andmateri-

als recognition38 combined with depth39,40 can

help build a detailed analysis of the surrounding

acoustic environment. And with state-of-the-art

Edge-AI, multiple neural networks can operate in

parallel at a fraction of the power budget for a GPU.

Image Signal Processing Pipeline in a Camera

Processing the raw Bayer data from an image

sensor is a classic examplewhere camera engineers

and photographic experts have devoted many

years of effort to create a specialized imageprocess-

ing pipeline (IPP), illustrated in Figure 4. Bryce

Bayer’s original patent41 filed in 1976 is a classic

example of an engineering compromise that works

so well that it has become the basis of modern digi-

tal imaging. Until recently, this “magic” happened

via complex set of image analysis and processing

algorithms, the IPP.42

But now, thanks to the magic of deep learning

methodologies, it has become feasible to replace

the IPP in an imaging system. This work began

with the demosaicking step of image conver-

sion,43,44 followed by the idea to replace the key

steps of denoising and demosaicking from the IPP

with a single CNN network.45–47 Other authors

have progressed to complete replacement of the

IPP,48 or alternatively, to learn the detailed camera

model embodied in an existing IPP,49,50 which can

lead to reprogrammable IPPs. Imagine that you

can completely reprogram how your camera cap-

tures and develops raw images “on the fly.” Well,

this approach is beginning to make its way into

actual products, so expect to see some exciting

new features in higher end digital cameras shortly!

Once you replace the IPP with a CNN, new

ideas emerge such as “Learning to see in the

dark.”51 In this particular example, researchers

have used a CNN to solve a key challenge for

Figure 3. Off-axis iris regions; accurate per-pixel segmentation

is essential for user authentication.15

Figure 4. Detailed view inside the IPP of a typical digital

camera.42
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today’s smartphone cameras—to capture

images in low-illumination conditions.

CHALLENGES FOR AI DEPLOYMENTS
IN CONSUMER ELECTRONICS?

Sinceour last article, there has been rapidprog-

ress with AI development, but many challenges

specific to Edge-AI in consumer devices remain.

Our recent work on a number of example CE-

device problems has highlighted these challenges.

Problem-Specific Nature of AI Solutions

Every practical problem that we solve with

Edge-AI is a component of a larger problem set.

Focusing on a specific problem typically allows

the research engineer to accurately define the

data characteristics and the criteria to solve

that particular problem. Let us consider the task

of iris authentication where there is a processing

pipeline, as shown in Figure 5.

Note that, in this sequence, some tasks can

employ proven techniques such as iris-match-

ing, deployed for more than two decades by the

biometrics research community. However, the

adoption of authentication on mobile and wear-

able devices introduces new tasks such as the

segmentation and normalization of uncon-

strained iris regions to serve as input to estab-

lished feature extraction and matching

algorithms. These new challenges are crucial,

and it is now well appreciated that iris segmenta-

tion is the predominant source of authentication

error in mobile and wearable devices.14,21

Now,while deep learning is a powerful tool and

can often achieve very impressive levels of accu-

racy, it is important to appreciate that neural net-

works can easily learn the wrong features from a

poorly designed dataset and are vulnerable to

adversarial attacks. This is a challenge we will

return to later, and it remains an open-ended

challenge.

Device-Specific Aspects

A unique aspect of applying deep learning

techniques to consumer electronics is the

device-specific nature of consumer data.

Research has shown that images can be uniquely

associated with a particular IPP.49,50 This obser-

vation applies across other sensing capabilities

of consumer devices. Thus, the collection of

data from any particular consumer device, be it

video, audio, six-axis motion or other forms of

data collection, invariably exhibits unique

characteristics.

Thus, to achieve optimal performance from a

deep learning solution, the network should be

trained on device-specific datasets. This is well

known in the CE industry, where more tradi-

tional algorithms are tailored to individual mod-

els of production devices. In fact, variations in

the manufacturing process, the local environ-

ment, or the calibration procedures applied can

lead to differences in production batches of the

same device. Thus, it is important to bear in

mind that optimal performance of Edge-AI is

achieved by tuning on device-specific data.

Conversely, a network that is tuned to a spe-

cific device may not perform well on other

devices. While we have not explored this phe-

nomenon across enough different problem

cases, current experience suggests that a two-

step approach makes sense. At stage one, a net-

work is tuned on a generic dataset, representa-

tive of a range of similar data sensing systems

(e.g., data acquired from multiple f2.0, 12 MP

cameras). After this network is tuned to an

acceptable level, then stage two involves addi-

tional tuning of some network layers on data

from a specific production stream or batch of

camera modules. Our experience shows that

performance enhancements can be achieved,

but the fine-tuned network cannot be used

for other camera batches due to a loss of

generality.

WHAT IS NEXT FOR EDGE-AI?
When we last considered the state-of-the-art,

the AI-stick from Movidius was discussed as a

practical example. Since that time, this company

was acquired by Intel and a second generation of

the AI-stick with enhanced performance is now

available. There are now several other AI accel-

erators from mainstream players such as

Nvidia’s Jetson family of devices, and in mid-

Figure 5. Iris authentication processing pipeline.15
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2018 Google introduced an “Edge” version of

its tensor processing unit. Outside of these main-

stream players, there are many start-ups, spin-

outs, and in-house projects working to deliver

new low-power neural network accelerators.

Very soon, many of our readers will be devel-

oping systems and products based on these new

AI platforms. Edge-AI with the promise of intelli-

gent devices that have minimal power require-

ments—some able to run on a coin-sized battery

for months without replacement—allows new

CE devices to have functionality that only last

year would require a large, power-hungry GPU

or an always-on cloud connection. Our group

has had the opportunity to build some interest-

ing prototypes with these hardware accelera-

tors, and some of you may have attended our

“hands-on” workshop at IEEE GEM 2018, which

was a great success; you can view a Twitter

“moment” of the conference.52 In our current

graduate program lab classes, we help students

build a handheld computer-vision terminal that

can implement the Yolo one-shot object detec-

tor. This runs happily at 30 fps on a Raspberry PI

coupled with the Intel AI-stick.

The age of embedded AI is now a practical

reality. The open questions are how it will

impact today’s technology and what new chal-

lenges and opportunities the broader adoption

of Edge-AI will bring.

Emerging Opportunities for Edge-AI

One area where Edge-AI will have enormous

impact is on personal privacy. It is difficult to

address privacy concerns when video data are

constantly uploaded and processed in the cloud.

By processing data on the device, one can avoid

sending raw data over networks where it offers

an attractive target for cyber criminals.

One example where Edge-AI will have a signif-

icant impact is in DMS, which will be mandated

by the EU in 2022. These are already deployed

in many high-end vehicles, and require devices

that can instantly and intelligently react when a

driver is distracted or impaired. They offer a

stepping stone to fully autonomous vehicles,

but pose a significant design challenge in the

context of the EU’s general data protection regu-

lation (GDPR). While 5G technology can argu-

ably perform the advanced processing required

by DMS, this approach requires moving data

off-vehicle with associated data security and

privacy issues. In contrast, Edge-AI enables

onboard data processing and can employ a

secure compute-unit within the sensing subsys-

tem. Placing computation as close as possible

to the sensor reduces latency and costs while

addressing privacy of data.

Other opportunities lie in new wearable

devices and smart cities. A new generation of

smart glasses (e.g., Magic Leap and Hollolens)

and wearable audio enhancement devices,

known as hearables, represent devices that

can directly modify our perception of the sur-

rounding environment. The computational

requirements to achieve real-time perceptual

analysis followed by a realistic blending of

additional visual and acoustic elements into

the user experience are beyond the capabili-

ties of today’s embedded-GPU solutions. The

answer lies with the next generation of Edge-

AI hardware accelerators that can achieve the

required real-time data processing rates with

levels of energy efficiency orders of magnitude

lower than is possible today.

In smart cities, we have an urban environment

permeated with ubiquitous networks of sensors

and services, but this poses significant challenges.

How can we authenticate individuals in such an

environment to validate their access to services

and, more importantly, how do we guard the pri-

vacy of individuals when their every move is

tracked by a multitude of cameras and sensing

technologies? Again, Edge-AI can offer new solu-

tions. Biometric processing can be implemented

within devices so that registered users can be

authenticatedwithout a global sharing of their bio-

metric data.53 Oncewe have authenticated individ-

uals, they can be linked with a global-ID that is

independent of the local device authentication

using techniques such as blockchain or zero-

knowledge proof.54 Then, once the individual is

globally authenticated, they can be flagged with a

“do not track” marker and compliance with regula-

tions such asGDPR can be explicitly recorded.

Challenges for Edge-AI

Undoubtedly, the greatest challenge for Edge-

AI is in obtaining the large datasets that are

needed to train deep neural networks. Data
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acquisition is time consuming, and every prob-

lem needs a ground truth to train against!

Taking the iris segmentation problem as an

example, every iris image should be marked-up

with a ground truth. Even where some auto-

mated mark-up is possible, there must be a man-

ual check to detect mark-up failures. This is very

time-consuming, and the costs can quickly

mount up for large datasets. This data bottle-

neck is a problem for all deep learning research-

ers, but more so for CE engineers who may need

to adapt networks for multiple device models or

in new use-case geometries such as off-axis iris

authentication.

There are approaches that can help here,

such as data augmentation (Figure 6) where a

seed-dataset is modified and transformed in

particular ways to match the underlying prob-

lem, as is done in the case of iris segmenta-

tion.14,15 It has also been shown that we can

train a network to learn how to make “new”

data by combining existing samples in its con-

volutional layers.55 Another technique that

pairs two deep-learning networks in a configu-

ration known as a generative adversarial net-

work enables researchers to train a data

generator that learns the key features of an

existing dataset and can thus make “new” ran-

dom data samples that match these.56

Data curation is another major challenge.

As mentioned in “Device-Specific Aspects,” if

data samples are not carefully chosen to

match the problem at hand, then neural net-

works can easily learn incorrect features from

the training dataset. For AI applications in CE

devices, this dependence of the solution on

the training data is both a challenge and an

opportunity. The better aligned the training

data is with the original sensor system, the

more robust and accurate the trained network

will be. For large research datasets, the train-

ing data are typically gathered by many devi-

ces and images are harvested from many

online sources. If we consider the variety of

video cameras used to create a collection of

youtube videos, for example, it is easy to see

that networks trained on such datasets will

not be able to take account of device-specific

characteristics.

Thus, the biggest challenge for Edge-AI is that

of data. Improved tools and methodologies are

needed to better support acquisition, annota-

tion, and curation of training datasets. This is a

fascinating topic and a follow-up article is

planned to address it in more detail.

CONCLUDING THOUGHTS
A lot has happened in the last two years.

Our research group has continued to work on a

number of fascinating problems, leveraging

deep learning techniques to achieve state-of-

the-art solutions. In parallel, many other

researchers have been working on and solving

a broad range of problems in computer vision,

machine learning, signal processing, data ana-

lytics, and advanced sensor fusion, all of which

have relevance to new and emerging CE devices

and services.

There has been explosive growth in the use

of deep learning and advanced neural network

methodologies, and much of this research can

be leveraged into new CE solutions. The chal-

lenge today for CE engineers and researchers

is how to pick and choose across this vast

array of possibilities and deliver practical and

useful solutions that can meet the needs of

consumers.
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Abstract—Akey aspect to developing and successfully deploying neural network (NN)-based

solutions is the availability of suitable datasets. In this article some of the challenges to

acquire and annotate data are discussed in the context of new consumer devices. To

increase the sample size of training data several approaches to augment a seed dataset are

explained and discussed including a number of advanced, problem-specific techniques. A

basic introduction to the concept of learned data augmentation is also provided.

& THIS ARTICLE FOLLOWS-ON from an earlier pub-

lication1 on the topic of Deep Learning and how

it can be successfully applied to solve problems

in today’s consumer electronics devices. In

this article, we will focus on the importance of

training data and explain the importance of

building a relevant dataset for a particular task

or problem.

While deep learningmethodologies have been

proving themselves in many different contexts, it
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is easy to get carried away and ignore some prac-

tical realities about deep neural network (DNN)-

based solutions. First, a network is only as good

as the data used to train it, and training an effec-

tive neural network (NN) requires a large anno-

tated dataset. The challenges of building a

dataset will be discussed later. Second, as engi-

neers, we do not have detailed control over what

an NN learns from a dataset––NNs can easily

learn “bad” features that can lead to challenging

problems when they are deployed in the field.

Third, NNs can be sensitive to features that are

not apparent to human observers; as an example,

an image dataset acquired from a particular cam-

era module may learn features specific to that

imaging system, andmay not perform adequately

if the optics, the sensor, or even the image proc-

essing pipeline are changed.

Thus, while the NN-based approaches can

perform with very high levels of accuracy in

many contexts, they need to be approached

with respect and understanding of how the NN

works, and how it can be tuned and adapted for

deployments in CE devices and services.

One key aspect to developing and success-

fully deploying the NN-based solutions is the

availability of suitable datasets and, in this arti-

cle, we will discuss some of the challenges of

acquiring and annotating data, and more impor-

tantly, we focus on approaches to build larger

training datasets by augmentation of the base

dataset.

CHALLENGES OF BUILDING A
DATASET

Data are a valuable commodity in industry

today. Indeed, many companies rely on data

for their core business and there has been

much recent press attention on the thorny

topic of personal data.8 In the context of the

data that we are interested in for today’s con-

sumer electronics applications, it is more use-

ful to think in terms of image and video data

and most of the examples discussed in this

article rely on such data.

Today’s DNNs require large datasets in order

to converge on an accurate representation of a

multidimensional data distribution. The deeper

and more sophisticated the network, the greater

the need for data. But, acquiring good quality data

is a complex and costly process, and accurately

annotating the data tomatch a particular problem

adds further cost and complexity to the process.

Typically, to achieve sufficiently robust results

that can be implemented in a consumer electron-

ics imaging system, a dataset of at least 10000

images is needed and many research datasets now

exceed 1000000 image samples. Acquiring such

large numbers of image samples is a challenge in

itself, but when the problem of image annotation

to provide a ground truth for training is consid-

ered the costs can quickly explode. Even where

some automation can be introduced into the anno-

tation process, there is still a need to check the

accuracy of a significant sample of the dataset.

As a very simplistic example, consider the

problem of building a personalization system for

a consumer device that can distinguish a small

set of individuals suitable for a group of users in

an extended family. The goal is simple––match a

person with one of up to 20 people registered on

the system. Assume that we are doing this from

scratch, so you will need to gather data samples

to train the system––at least one sample of each

user, but that would not be sufficient. Some peo-

ple may always smile when you take their pic-

ture, others may scowl, so the system could

learn to classify people by their facial expression

rather than by other characteristics. Children

will have smaller faces than adults, so the sys-

tem might learn to distinguish them by facial

size rather than by facial features. If some sam-

ples are acquired indoors in low lighting and

others are acquired in daylight, the system

might learn these characteristics instead. But,

you cannot ask people to provide dozens of data

samples to register with such a system because

that will ensure that no one will ever use it!

So, how can the challenge of dataset creation

be solved, or at least simplified? One key element

in providing a practical solution is to expand a

smaller dataset through a process known as data-

augmentation. If this is undertaken in a careful

and considered manner, it becomes feasible to

grow a relatively small seed dataset of a few thou-

sand images into a much larger dataset that can

achieve high levels of generalization.

DATA ACQUISITION CHALLENGES
FOR CONSUMER DEVICES

The starting point for image acquisition in a

consumer device is the camera module. Each
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camera has its own individual characteristics,

derived from a combination of its optics, the

CMOS image sensor, and the digital processing of

the sensor data that typically yields a 3-channel

RGB output image. You can read elsewhere about

the complexities of the image acquisition pipe-

line,4 but for the present discussion, we can con-

sider the cameramodule as a unified subsystem.

Now, it would be nice if we could assume that

the data samples obtained from any well-calibrated

imaging subsystem are consistent across a range of

external acquisition conditions. In other words, the

output images from all RGB cameras provide simi-

lar data samples across the same range of lighting,

focus, and exposure settings. Unfortunately, as any

imaging or optical expert will quickly tell you, there

are somany tradeoffs involved, which is simply not

the case. Every camera is quite unique and its data

samples will vary in unique ways.

It is not uncommon for a particular model of

smartphone to have different camera modules in

different geographic regions or for a new and

improved camera module––in the CE industry

that typically means a “cheaper” module––to be

introduced into the manufacturing process. And

from our experience, when training with a lim-

ited dataset obtained from a specific consumer

imaging module, the resulting networks can be

tuned to high levels of performance, but are typi-

cally highly dependent on that module.

As a consequence, a key challenge when

introducing deep learning technology into con-

sumer vision applications is to build training

datasets that can be regenerated when new

acquisition systems are introduced into produc-

tion. Data augmentation can play a key role in

simplifying this regeneration process.

Let us start by considering how some simple

data augmentations can improve a basic dataset.

WHAT IS DATA AUGMENTATION?
The quantity of high-quality annotated data

for a problem is often limited by the cost and

complexity of acquiring such data. And even

when an abundance of annotated data is avail-

able, there are risks that the methods or condi-

tions of data acquisition, or even the data

acquisition system itself, may influence the train-

ing process. In a nutshell, it can be challenging to

predict what features the training process may

extract from a dataset. Thus, there are examples

of trained networks that classify certain random

noise patterns as animals or objects,2 and others

where inverting a single pixel can change the

detected object class.3 These are called adver-

sarial examples and have been a subject of

heavy research. Incidentally, using these adver-

sarial examples for data augmentation has been

shown to increase network robustness.

The reality is that any training dataset provides

a finite set of samples of a much larger data distri-

bution. But, it is possible to expand the original

set of samples in a variety of ways that improve

the training dataset and enhance the ability of the

trained network to generalize. This process is

known as data augmentation and can be best

understood through some practical examples.

Examples of Basic Data Augmentation

To provide a context for our discussion of

basic data augmentation, consider one of the

most common objects that computer vision

applications seek to analyze––the human face.

Facial analysis encompasses many facets from

the basic detection of a facial region, to analyz-

ing facial expressions, features, tracking eye and

lip movements, and distinguishing a particular

individual from others.

To progress any facial analysis, a training data-

set is required, but it is clear that it will be very

limited in scope. Faces have a broadly similar

shape and structure, but they can appear in a wide

variety of poses, illumination conditions, and with

different expressions. Given a limited facial data-

set, how might we expand this in ways that could

improve the performance of a trained network?

One simple generalization is to resize the

facial samples that are available. This will enable

larger and smaller faces to be identified by the

trained network. Another simple generatization

is to rotate the available facial samples––if every

face is only provided in an upright frontal pose,

then the network will learn that faces only exist

as mugshots. Depending on the intended appli-

cation you might limit rotations to a relatively

small range, but if you want to detect faces in all

possible orientations, then a selection of sam-

ples from the seed dataset should be rotated

through a full 360�.
Another common augmentation is to add

Gaussian noise to the data samples. Deep net-

works can learn subtle features or pattens from

a dataset that are imperceptible to the human
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observer; adding random noise to a selection of

image samples disrupts many of these hidden

patterns, ensuring that the network will be

robust to learning such features.

It is also worth noting that augmentations can

be combined. As an example, it is helpful to blur

some of the image samples, so that a network can

generalize to images that are not in sharp focus; it

is also good to flip images to remove a left/right

bias––these and other augmentations can be com-

bined to further expand the original seed dataset.

Figure 1 illustrates all of the above basic data aug-

mentations applied to a single facial data sample.

A network trained with such an expanded dataset

will be better able to generalize to faces of differ-

ent sizes, in different orientations and at various

levels of defocus.

EXAMPLES OF ADVANCED DATA
AUGMENTATIONS

When deep learning techniques are applied

to solve practical CE problems, there may

aspects of the specific problem-at-hand that can

be amenable to more advanced data augmenta-

tions. These will be quite problem specific and

can be best understood through examples. Here,

we provide two related case studies, starting

with the problem of iris segmentation for mobile

devices. This leads, in turn, to the related prob-

lem of off-axis iris segmentation as found on the

next-generation AR headsets.

Iris Segmentation of Low-Quality Smartphone

Images

The subsequent feature extraction and pattern

matching stages of an authentication workflow

rely on the accurate segmentation of the iris. The

failed segmentations represent the single largest

source of error in the iris authentication work-

flow.5 For an accurate segmentation, the exact iris

boundaries at pupil and sclera have to be

obtained, the occluding eyelids have to be

detected, and reflections have to be removed, or

flagged. Iris segmentation can be formulated as a

binary classification problem––each image pixel is

part of the iris region, or not.

Acquiring iris data for a mobile device is chal-

lenging. Iris sizes are typically in the range of

80–100 pixels, and as many images are blurred

or of poor quality, and it is challenging to accu-

rately annotate the iris regions. While some test

datasets exist, they do not provide sufficient

training samples, and so researchers have

explored the use of larger high-quality iris data-

sets (iris diameter > 300 pixels) to provide seed

data.5 High quality segmentation algorithms can

provide an accurate ground truth without

requiring manual annotation, and images can be

augmented to mimic the low-quality images

obtained from a handheld smartphone.

A range of augmentations are employed. All

the high-quality images are downsized to provide

iris regions with width of 80–100 pixels, typical for

a smartphone camera acquisition. Image contrast

Figure 2. Eye region firstly with shadowing applied, followed by

motion blur.

Figure 1. Some basic data augmentations in common use.
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is also reduced by histogram remapping, but the

most interesting augmentations seek to mimic the

shadowing of the eye region that arises due to the

wide variations in lighting conditions for smart-

phone acquisitions and the introduction of

motion blur as the acquisition device is handheld.

These key augmentations are illustrated in

Figure 2. A range of shadowing and motion blur

are combined in5 to provide a broad variation in

the low-quality images introduced into the data-

set. These advanced augmentations enabled the

trained network to achieve state-of-the art perfor-

mance on the available test datasets UBRIS and

MobBio, both captured on actual smartphones.

Iris Segmentation for Augmented Reality

Headsets

Related to the problem of iris segmentation on

handheld devices, such as smartphones, is the

emerging use of user-facing cameras on the next

generation of augmented reality (AR) headsets,

whereas the use of such cameras may initially

appear counter-intuitive, they are required to track

the eye-gaze of the user so that AR constructs can

be rendered correctly onto the user’s field of view.

And eye-gaze tracking, as with iris authentication,

requires the accurate segmentation of the iris and

pupil regionswithin the eye.6

In this problem, we find that an affine trans-

formation is required in addition to the aug-

mentations used for iris segmentation on

smartphones. This is illustrated in Figure 3.

This second example use case illustrates the

potential of data augmentation in consumer

device use cases. Starting from existing high-

quality datasets that were originally intended for

testing dedicated iris biometric authentication

systems, it is now possible to generate a range of

training datasets that can be applied across a

range of new applications.

The high-quality seed dataset can thus be

applied to train new iris segmentation, pupil seg-

mentation, and eye-gaze analysis networks.

Figure 4 illustrates three alternative data augmen-

tation workflows that can be used to create three

differing training datasets. Further tuning and cus-

tomization of training datasets can be achieved by

adjusting the shadowing and blur augmentations

to closelymatch the characteristics of a particular

acquisition subsystem. And if the user-facing cam-

era positions are restricted, then the stretching

and tilting ranges can be adjusted accordingly.

Some practical examples of off-axis iris seg-

mentations are illustrated in Figure 5.

WHAT IS NEXT FOR DATA
AUGMENTATION?

When we last considered the state-of-the art

for machine learning, artificial intelligence, and

computer vision in the context of consumer elec-

tronics systems, it was clear that the new hard-

ware projects working to deliver new low-power

neural network accelerators.

Learnable-Augmentation

The concept of learnable data augmentation

is quite a recent development and appears to

have originated in early 2017. This article

describes a fully learnable data augmentation,

where all components of the augmentation

pipeline are learned using an artificial neural

Figure 4. Augmentation workflow to generate training datasets

for (a) off-axis iris regions, (b) unconstrained (smartphone) iris

regions, and (c) a mixed dataset combining off-axis and

unconstrained datasets.

Figure 3. Novel data augmentation strategies can help grow the

available training dataset for a specific problem; in this example,

we show how iris data samples can be transformed to solve off-

axis iris segmentation.7
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network, learnable data augmentation as “Smart

Augmentation.”7 This article addressed the ques-

tions: “Can a neural network learn to perform the

labour-intensive process of data augmentation?

Can a network or a collection of networks learn

not just how to perform a task, but also how to

create new data that will help it learn that task?”

The authors demonstrated an improvement

of 5%–7% in the accuracy across a wide range of

classification tasks. They also showed some aug-

mentations that originate in the convolutional

layers of the network, but that combine two dif-

ferent data samples in a way that makes sense to

a human observer as shown in Figure 6.

Since 2017, there have been many works on

learnable data augmentation, and these are

detailed in a companion article, “Learnable Data

Augmentation––Advanced Strategies for Impro-

ved Training of Deep Neural Networks.” This com-

panion article discusses these latest techniques in

the context of CE devices and systems, and will be

useful for readers who wish to explore more

advanced data augmentation approaches.

CONCLUDING THOUGHTS
The goal of this article is to introduce the

reader to the concept of data augmentation as

it is applied in the field of machine learning,

today. This powerful tool is widely used today

to enable engineers and researchers to build

working solutions with small problem-specific

datasets.

This can be particularly helpful for engineer-

ing working in the CE field where it is often desir-

able to build a solution for a specific device or

system, and where data gathered from other

contexts may not be very useful, especially for

fine-tuning the solution to achieve optimal per-

formance. It is hoped for that the overview and

examples given here will encourage other

researchers to experiment more widely with the

use of data augmentation to build larger and

more effective training datasets.
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