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Abstract

This work explores theoretical and computational principles for data-driven discovery
of reduced-order models of physical phenomena. We begin by describing the theoretical
underpinnings of multi-parameter models through the lens of information geometry. We then
explore the behavior of paradigmatic models in statistical physics, including the diffusion
equation and the Ising model. In particular, we explore how coarse-graining a system affects the
local and global geometry of a “model manifold” which is the set of all models that could be fit
using data from the system. We emphasize connections of this idea to ideas in machine learning.
Finally, we employ coarse-graining techniques to discover partial differential equations from
data. We extend the approach to modeling ensembles of microscopic observables, and attempt
to learn the macroscopic dynamics underlying such systems. We conclude each analysis with
a computational exploration of how the geometry of learned model manifolds changes as the
observed data undergoes different levels of coarse-graining.
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1 Introduction
One problem that has garnered significant attention in recent years is that of predicting the dynamical
equations that govern real-world data. While techniques for solving systems of differential equations
numerically are well-established, this “inverse” problem of discovering the equations underlying
data is significantly more challenging. Typical techniques for tackling this problem include symbolic
regression, or neural network-based approaches[1, 2]. For example, previous work by Brunton et
al. used sparse regression techniques to reconstruct the dynamical equations underlying chaotic
systems such as the fluid flow of vortex shedding behind an obstacle [3].

However, instead of precisely learning the exact model of the dynamics of complex systems—which
might be difficult—it may be sufficient to use lower-order approximations. As an example, suppose
a scientist wants to understand if the salinity of the water near a coast affects the temperature of
the ocean 10 kilometers away. Instead of modeling the dynamics of the ocean currents and salt
concentration, a more macroscopic and coarse-grained model of ocean dynamics may be sufficient
to answer such a question. Such a reduced-order model would also be more practical; we may need
fewer data to fit or computation resources to build such a model.

Complex models of the dynamics that underlie real-world data are ubiquitous across biology,
physics, and engineering. Often times, these models can be described as sloppy—namely, that
only a few combinations of model parameters significantly affect model behavior [4, 5]. In such
situations, complex multi-parameter models can be greatly reduced in size and still capture the
dominant dynamics of the system. This work will demonstrate that the sloppiness of real-world
systems is something that can be exploited to effectively construct reduced-order models of systems
from data. To that end, we first reproduce the findings of Machta et al. and demonstrate that
paradigmatic models from statistical physics can be compressed into smaller effective theories
upon coarse-graining observable data [5]. Then, we apply concepts from information geometry to
analyze how modern techniques for system identification of partial differential equations behave
under coarse-graining. Finally, we develop techniques for learning reduced order models of large
ensembles of microscopic observables.
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2 Overview of Information Geometry
To motivate the methods that will be employed for the discovery of reduced order models from data,
we begin by introducing ideas from information geometry. Information geometry has proven to be a
powerful framework for analyzing the behavior of multi-parameter models [4, 5]. From models of
complex biological systems with thousands of parameters to parameter-dense neural networks in
machine learning, multi-parameter models across various domains, it is often of interest to compress
multi-parameter models into smaller and more interpretable effective theories. Fortunately, for many
such models, such compression of models is possible with little cost to overall model expressivity
and accuracy [6]. These models are referred to as sloppy, and can be characterized by a wide
hierarchy of model sensitivities to parameter combinations, whereby the least important parameter
combinations can be varied drastically without significantly affecting model behavior. Information
geometry offers a lens through which to understand the behavior of sloppy models, and how they
might be reducible into simpler effective theories.

To illustrate the principles of information geometry in the context of multi-parameter models, it is
useful to introduce the concept of a model manifold. Suppose a model yθ(t) is parameterized by
D parameters given by θ = {θµ}, 1 ≤ µ ≤ D, and is evaluated at points ti, 1 ≤ i ≤ M . We can
define a model manifold as

Y = {[yθ(t1), yθ(t2), . . . yθ(tM)]|θ}

Each dimension corresponds to a prediction made by the model. In many cases, the number of
model evaluationsM is much larger than the number of parameters of the model. Therefore, the
model manifold can often be thought of as embedding a manifold with a low intrinsic dimensionality
(at most D) into a higher dimensional prediction space [4].

This framework yields new interpretations of classical problems such as fitting parameters to data
under nonlinear least squares optimization. Suppose that we would like to find the parameters θ
of a model yθ such that the likelihood of observations {xi}Mi=1 being produced by the model is
maximized. Assuming Gaussian measurement uncertainties {σi}Mi=1, we have that

xi = yθ(ti) + ϵi (1)

where ϵi ∼ N (0, σi) is a normally distributed random variable. As described in [7], we can then
define residual random variables Rθ(ti) of the form

Rθ(ti) =
yθ(ti)− xi

σi

(2)

These residuals are now standard normal random variables (zero mean, unit variance). Consequently,
the likelihood of observing residuals R⃗ can be given by the multivariate Gaussian

P (R⃗|θ) = 1

2πM/2
exp

(
−1

2

M∑
i=1

Rθ(ti)
2

)
(3)

Maximizing the log-likelihood in turn yields the least squares cost function
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C(θ) =
M∑
i=1

Rθ(ti)
2 (4)

to be minimized. Alternatively, Eqn. (4) could have been arrived at by considering the observations
{xi}Mi=1 as a point [x1, x2, . . . xM ] embedded in the same prediction space as the model manifold
Y , and finding the parameters θ that minimize the “distance" between this point and the model
predictions [yθ(t1), yθ(t2), . . . yθ(tM)]. In general, the precise way in which this distance should be
defined depends on the likelihood distribution of observable data p(x⃗|θ). As demonstrated by this
example, even models which are not explicitly stochastic in nature can often be framed as arising
from a probabilistic model of the likelihood of observations under a given set of model parameters.
This motivates the need to define a distance metric between different probabilistic models.

For a notion of distance to be useful in comparing two models with different sets of parameters, it
would ideally be large between models that produce significantly different predictions, and small
between models that produce near identical predictions. To that end, the Kullback-Liebler (KL)
Divergence has commonly been used as a measure of distinguishibility between distributions [8].
Given two models with parameters θ and θ̃, one can define the KL Divergence between their data
likelihood distributions as follows:

DKL[p(x⃗|θ)||p(x⃗|θ̃)] =
∑
x⃗

p(x⃗|θ) log
(
p(x⃗|θ)
p(x⃗|θ̃)

)
(5)

While the KL Divergence fails to be a proper distance metric due to its lack of exchange symmetry
(DKL[p||q] ̸= DKL[q||p]), the symmetric requirement can be recovered to first order when consider-
ing the KL Divergence produced by an infinitesimal change to the parameters θ̃ = θ + δθ, yielding
[4]:

ds2 =
D∑

µ,ν=1

gµνdθ
µdθν (6)

where
gµν = −

∑
observables x⃗

p(x⃗|θ)∂
2p(x⃗|θ)
∂θµ∂θν

(7)

is the Fisher Information Matrix (FIM). This matrix can be viewed as describing the local geometry
at a particular point on the model manifold.

In practice, gµν can be difficult to compute directly using Eqn. (7), as it requires estimating
second-order derivatives of the data likelihood function with respect to model parameters. However,
for many models, gµν can be expressed in terms of the Jacobian of model observations with respect to
parameters. In particular, for nonlinear least squares models, where we assume Gaussian uncertainty
in model estimates, this Jacobian is given by

Jiµ =
∂

∂θµ
yθ(ti)

σi

(8)
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where θi represents the measurement uncertainty of the ith observation.

Then, assuming diagonal measurement errors and that measurement uncertainties are parameter-
independent, the Fisher Information Matrix can be expressed in terms of the Jacobian as [7]

gµν =
∑
i

JiµJiν = J⊤J (9)

Indeed, modern packages for computing the Fisher Information Matrix of complex multi-parameter
models such as neural networks often do so via first computing the model Jacobian and then applying
Eqn. (9) [9].
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3 Information Geometry of Sloppy Models

Figure 1: The eigenvalues of the Fisher Information Matrix for various multi-parameter models,
plotted on a logarithmic scale. Figure adapted from [4].

While an individual entry gµν of the FIM can be insightful for understanding how sensitive a model
is to co-varying a particular combination of parameters θµ and θν , it is often useful to consider the
most salient parameter combinations in general. To do this, one can analyze the eigenspectrum of an
FIM matrix. FIM eigenvectors paired with large eigenvalues correspond to parameter combinations
that the model is extremely sensitive to. Consequently, the distribution of eigenvalues of the FIM can
be insightful as to whether or not a large multi-parameter model can be reduced to a few particularly
relevant parameter combinations. Indeed, it has been found empirically that many multi-parameter
models, including systems biology models, statistical physics models, and artificial neural networks,
display an FIM eigenvalue spectrum spanning many orders of magnitude [7, 10, 4]. In particular,
such models, which are referred to as "sloppy", display an approximately geometric series of FIM
eigenvalues (see Fig. 1). Sloppy FIM eigenspectra are in turn indicative of a particular geometric
structure of the model manifold that is often referred to as a hyper-ribbon. Such hyper-ribbons
are characterized by successively decreasing manifold widths along different dimensions. For
such models, FIM eigenvectors paired with negligibly small eigenvalues can be considered sloppy
parameter directions [10](see Fig. 2).

Sincemodel behavior is largely unaffected by the projection of their parameters onto sloppy directions,
two models that seem quite distant in parameter space may produce very similar predictions if
they are only separated along a sloppy direction. From these insights, a natural way of performing
model order reduction of sloppy models arises [11, 7]: 1) Compute the FIM of a model and its
eigenspectrum. 2) Consider the smallest FIM eigenvalue and its corresponding eigenvector, and
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Figure 2: A section of a sloppy model’s parameter space (purple) projected onto its model manifold.
Figure adapted from [10].

walk along the direction in parameter space pointed by the eigenvector. Eventually, a boundary
of the model manifold will be hit. 3) Apply the approximation suggested by the boundary (often
involving sending parameter combinations to 0 or∞). 4) Re-fit the model with reduced parameters,
and then repeat the process until the model is sufficiently reduced.
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4 Coarse-Graining in Statistical Physics Models
An insightful way of demonstrating the properties of sloppy models is through studying paradigmatic
multi-parameter models from statistical physics. Recent work has demonstrated that, in multiple
classic models of statistical physics, model sloppiness can arise as an emergent phenomenon from
coarse-graining observable data [5]. Thus, the fitting of models to coarse-grained data may prove to
be a useful way of discovering reduced order models of real-world systems. To demonstrate the
power of this approach, we first reproduce the computational experiments and analyses performed
in [5]. In particular, we show that both the Ising model and a discrete 1D model of particle
diffusion display emergent sloppiness under coarse-graining. Furthermore, we demonstrate an
alternative method not explored in [5] for demonstrating the sloppiness of the diffusion model under
coarse-graining.

4.1 Coarse-graining the Ising Model
One of the most well-studied models of statistical physics is the Ising model of ferromagnetism.
This system describes a system of discrete spins that each exist as either spin-up or spin-down.
Each configuration of spins has an associated energetic cost that depends on whether adjacent spins
are aligned, as well as what fraction of spins are aligned with the direction of the global external
magnetic field. In this manner, spin configurations that are more energetically costly are less likely
to arise. Despite its simplicity, multidimensional versions of the Ising model have been shown to
exhibit phase transitions, analogous to phase transitions observed in basic states of matter [12].

In the analysis that follows, we consider the Ising model on a 2D lattice. The standard Ising model
on an L× L lattice can be described as a system of spins si,j ∈ {−1,+1}. In this computational
analysis, a set of spin configurations x⃗ = {si,j} is considered to be an observable, and occurs with
a probability given by Pθ(x⃗) = e−Hθ(x⃗)/Z , where Hθ(x⃗) is the model Hamiltonian and Z is the
partition function. The standard 2D Ising model has a Hamiltonian of the form

Hθ(x⃗) = θ0
∑
i,j

si,j + θ01
∑
i,j

si,jsi,j+1 + θ10
∑
i,j

si,jsi+1,j

where the three terms correspond to the external magnetic field, up-down neighbor coupling, and
left-right neighbor coupling.

However, such a model has only three parameters, and thus it would be difficult to meaningfully
analyze the spectrum of its Fisher Information Matrix. Likely for this reason, [5] considers an
expanded version of the Ising model, where the Hamiltonian is given by

Hθ(x⃗) = θµΦµ(x⃗),

where Φ0(x⃗) =
∑

i,j si,j , and Φαβ(x⃗) =
∑

i,j si+αsj+β . In particular, the model considered has 13
parameters: the global coupling θ0, as well as 12 other spin couplings θαβ .

However, existing techniques and algorithms for efficiently simulating the Ising model (Monte-Carlo,
Wolff [13]) do not cleanly apply to this expanded Ising model. Consequently, [5] limits their
simulations to Ising configurations with θ0 = 0, θ10 = θ01, and θαβ = 0 (the regular Ising model
with no external magnetic field).
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Figure 3: A schematic depicting observable spin sites on the Ising lattice under the observation
coarsening scheme analyzed in [5]. Each black site represents an observed spin at a particular level.

The Fisher Information Metric of this expanded Ising model can be cleanly written in terms of the Φ
spin correlation functions, as follows:

gµν = ⟨ΦµΦν⟩ − ⟨Φµ⟩⟨Φν⟩ (10)

To coarsen the Ising model, [5] considers an approach where increasingly smaller subsets of the
spins are considered as observables, as opposed to the more common block-spin procedure (see Fig.
3). This approach turns out to be computationally more tractable.

Computing the Fisher metric at level 0 (no coarsening) was done by simulating the Ising model with
1000 different initial conditions, each for 1000 Wolff-algorithm steps. Then, the quantity described
in Eqn. (1) was numerically estimated for every pair of parameters µ, ν.

After coarsening, computing the metric becomes more complicated. [5] gives the post-coarsening
metric as

gnµν =
〈
{Φµ(x)}Cn(x){Φν(x)}Cn(x)

〉
−
〈
{Φµ(x)}Cn(x)

〉 〈
{Φν(x)}Cn(x)

〉
(11)

where gnµν represents the metric at coarsening level n, and {Q}Cn(x) is a notation that represents the
expected value of the quantity Q, conditioned on a system coarsening to xn (xn representing the
observed spins of configuration x at level n).
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To estimate the coarsened spin correlation functions shown in Eqn. (2) at some level n, it was
necessary to first simulate an ensemble of Ising model configurations (M = 200 was chosen as
the size of the ensemble). Then, for each member of the ensemble, further simulation of the Ising
configuration is run, but with the observables at level n fixed. For each member of the overall
ensemble, a sub-ensemble ofM ′ = 200 configurations were generated in this manner. However,
equilibriation of each of the sub-ensemble configurations was quite slow, and further tricks were
needed to speed up the simulations. These tricks are described in detail in the supplement of [5].
The main idea was to first integrate out half of the spins (specifically, the white spins at level 1
shown in Fig. 1).

The results are shown in Fig. 4B. The qualitative findings closely match those found in [5] (see.
Fig. 4A), but there is one key difference to note. Specifically, the eigenvalues found in this analysis
spanned a range around 102 larger than those of the original work. However, these results remain
consistent with the behavior near the critical temperature/coupling combination shown in [5] (see.
Fig. 4C).

4.2 Coarse-Graining the Diffusion Model
Diffusion processes underlie a wide variety of phenomena, including fluid dynamics and heat
conduction[14].

The diffusion model considered in these experiments is the discrete 1D diffusion model. This model
is characterized by 2N + 1 parameters θµ that describe the probability of a particle hopping to
a location µ steps away, where −N ≤ µ ≤ N . We take the distribution of particles across all
locations j at time t as the observables, given by x⃗ = ρt(j). Note that this model can be viewed as a
discretization of the 1D version of the continuous diffusion equation given by

∂tρ(r, t) = D∇2ρ− v⃗ · ∇ρ+Rρ (12)

whereD, v⃗, andR represent the diffusion constant, drift, and particle creation rate, respectively.

For simplicity, we consider simulations where all particles start at the origin, giving the distribution
ρ0(j) = δj,0. With these initial conditions, after one time-step has elapsed, the distribution of
particles mirrors the hopping probabilities:

ρ1(j) =

{
θj −N ≤ j ≤ N

0 otherwise
(13)

To compute the Fisher Information Matrix after t timesteps, we can appeal to the assumptions made
in [5], where the authors assume that uncertainty in measurement at each site is Gaussian with a
width of σ = 1. With this assumption, it can be shown that the FIM is given by g = J⊤J , where J
is the Jacobian matrix defined by

Jiµ =
∂

∂θµ
ρt(i)

σ
= ∂µρt(i) (14)
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A B

C

Figure 4: Spectrum of the Ising model FIM at different levels of coarsening, produced via Monte
Carlo simulations. (A) Adapted figure of the original Ising model FIM eigenspectrums computed in
[5]. (B) The reproduced Ising Model FIM eigenspectrums, computed in this work. (C) Behavior of
Ising FIM eigenvalues versus temperature, adapted from [5].
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Figure 5: Spectrum of the diffusion model, reproduced analytically in this work forN = 3, θµ = 1/7

for all µ.

From Eqn. (2), we can observe that after just 1 timestep, Jiµ = δiµ, and consequently the FIM is
given by the identity matrix g1µν = δµν .

To coarsen the diffusion model, we again follow [5] and do this by just observing the diffusion
model at later times. However, analytically computing the FIM at timesteps later than 1 is more
complicated, but is done in the supplement of [5], yielding

gtµν =
t2

2π

∫ π

−π

dkeik(µ−ν)(θ̃k)t−1(θ̃−k)t−1 (15)

where θ̃k =
∑N

µ=−N e−ikµθµ represents the Fourier transform of the model parameters.

Using the analytic result of Eqn. 4, we computed the FIM for a diffusion model with N = 3,
θµ = 1/7 for all µ. The corresponding spectrum obtained is shown in Fig. 5, which closely
resembles the result of [5] (see Fig. 7A). As a sanity check that these results are qualitatively similar
regardless ofN or the model parameters, this analysis was also performed withN = 10 and random
hopping rates θµ (See Fig. 6).

To go a step further, we wanted to see if the same results could be reproduced purely through
observing the outcomes of diffusion model simulations, as often times the model form is not as
privy to analyses that give a precise equation for the FIM such as Eqn. (15). Note that this was not
done in the original paper [5]. Our strategy was to simulate the diffusion model with a finite but
large number of particles (M = 20000 was chosen) for the appropriate number of timesteps, and
then compute the Jacobian Jiµ = ∂µρt(i) empirically via finite differences. With the Jacobian, we
could then appeal to the result that g = J⊤J .

However, computing the Jacobian empirically in this manner proved challenging. To demonstrate

13



Figure 6: Spectrum of the diffusion model, computed analytically in this work for N = 10 and
randomly chosen hopping parameters θµ.

why, consider the diffusion model N = 3 with uniform hopping parameters θµ = 1/7. To compute
Jiµ = ∂µρt(i), one would like to consider a small deviation δθµ from the parameters, simulate the
diffusion model with parameters θµ + δθµ, and then estimate the Jacobian as

Jiµ = ∂µρt(i) ≈
ρt(i)|θµ+δθµ − ρt(i)|θµ

δθµ
(16)

However, the constraint that
∑

µ θ
µ = 1 complicates this kind of analysis. Specifically, if θ0 was

increased by δ = .001, then, to maintain normalization, on average, other hopping parameters
θ−2, θ−1, θ1, etc. would decrease. As a result, after 1 timestep, computing derivatives via finite
differences would yield erroneous results such as Jiµ = −0.4 where i ̸= µ, despite the fact that
all off-diagonal elements should be 0. This proved to be non-negligible, and caused the estimated
Jacobian after just 1 timestep to be completely off (very significantly different from the identity
matrix).

Our solution to this was to consider small perturbations of model parameters δθµ without normaliza-
tion. In particular, to compute Jiµ, Eqn. (16) was used with a small perturbation δθµ = 0.001, while
all other hopping rates were kept constant. Note that since

∑
µ θ

µ + δθµ is now slightly greater than
1, a small number of particles had to be allowed to hop to two locations in one time-step, causing the
total number of particles in the simulation to increase. While an unorthodox method, this solved the
aforementioned problem with the finite differences computation, and completely recovered the result
that J1

iµ = δiµ. The FIM was computed via simulations in this manner at later timesteps as well,
with the corresponding spectrums shown in Fig. 7B. The spectrums obtained through simulations in
this manner appear qualitatively similar to the original analytical spectrums found in [5] (see Fig.
7A), confirming the validity of the approach.
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A B

Figure 7: A comparison of computed FIM eigenspectrums for the diffusion model with parameters
N = 3, θµ = 1/7 for all µ. (A) The original diffusion model spectrum computed analytically,
adapted from [7]. (B) The same diffusion model spectrum, reproduced numerically in this work
through particle-level simulations.
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5 System Identification: An Overview
This section explores some of the most prominent techniques for identifying the dynamics that
underlie observed data. In particular, we focus on system identification techniques for systems
whose dynamics can be formulated in terms of differential equations.

5.1 Sparse Regression
One approach for system identification that has proven quite successful in certain system identification
problems is to apply sparse regression techniques to a library of nonlinear functions of observed input
data. This approach has proven useful for discovery of both ordinary differential equations (ODEs)
and partial differential equations (PDEs) [3, 15]. Specifically, these works employ finite differences
or polynomial-interpolation based methods to compute approximate spatial and temporal derivatives
of some observed state variable of interest. For the goal of discovering dynamics underyling data
generated from an ODE, this is particularly useful because ODEs can often be expressed in the form

d

dt
x(t) = f(x(t)) (17)

Furthermore, it can often be assumed that f is composed of no more than a few terms involving x
and its components. Consequently, discovering the underlying ODE amounts to solving a sparse
regression problem that takes in a library of combinations of numerically approximated derivatives
and nonlinearities of the observed state variable x(t) and predicts a numerically approximated form
of d

dt
x(t). Note that this approach can also be applied to models that require second derivatives in

time of the state variable (e.g. Newtonian forces). In particular, one can re-parameterize the system
of interest in terms of a new state variable x̃ = [x, d

dt
x] to recover the desired form. Using these

methods, Brunton et al. demonstrated that the precise equations governing chaotic ODE systems
including the Lorenz system and mean-field vortex shedding dynamics can be recovered from data
to a high degree of accuracy [3].

Similarly, PDEs can often be expressed in the form

ut = f(u, ux, uxx, . . . u
2ux . . . ) (18)

allowing for the discovery of the the terms that compose f in an analogous manner. Along this line
of reasoning, Brunton et al. also extended the sparse regression approach to PDEs, and successfully
applied the approach to identify chaotic PDEs such as the Navier-Stokes equations from sparsely
sampled observations [15]. The methodology of this approach is summarized in Fig. 8.

However, these methods certainly have limitations. One major limitation is the accuracy of numerical
differentiation methods. Especially at higher order derivatives, significant numerical error is often
unavoidable in the computation of higher order derivatives via finite differences or polynomial
approximation schemes [16, 15]. Indeed, the sparse aggression approach combined with classical
numerical differentiation methods failed to accurately identify the coefficients of PDEs involving
higher order derivatives, such as the fourth-order Kuramoto-Sivashinsky equation [15]. Despite
these limitations, sparse-regression methods remain well-suited for the task of model order reduction.
In particular, a learned model with many nonzero coefficients can be successively reduced by
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Figure 8: A schematic of the PDE-FIND method for identifying PDEs from data via sparse
regression, adapted from [15].

dropping terms that explain the least amount of the variance of observed data. Moreover, learned
coefficients can easily be refit following parameter pruning.

5.2 Physics-Informed Neural Networks
Another strategy for data-driven modeling of real-world systems is to take advantage of the
expressivity of deep neural networks [17]. In particular, Physics-Informed Neural Networks (PINNs)
propose a simple way of augmenting standard neural networks to make them more well-equipped
for modelling the dynamics generated by some partial differential equation. Suppose we are trying
to predict the dynamics of some state variable of interest as a function of position and time, given
by u(x, t). This state variable could be a scalar quantity, such as heat or salinity, or could be
vector-valued, such as a velocity field. Suppose further that we know the PDE that governs u’s
evolution, given by ut = f(u,u2,u ◦ux, . . . ,x, t). Lastly, there are partial observations of the value
of u at different positions and times, given by a dataset D = {(xi, ti,ui)}Ni=1. The goal is then to
learn a model that best approximates u, which we denote by uθ(x, t).

There are two main reasons why PINNs are especially suited for this type of problem. Firstly, neural
networks are highly expressive and can, in principle, approximate any smooth, continuous function
[18]. Secondly, automatic differentiation allows for high-precision estimates of derivatives of
interest. While finite difference and polynomial interpolation methods for approximating derivatives
are in many situations sufficient, they produce errors that scale with the order of differentiation. This
makes classical numerical methods less appropriate for accurate analysis of PDEs containing terms
involving second-order derivatives or higher, such as the Laplacian operator. On the other hand,
automatic differentiation operates via the chain-rule, analytically decomposing derivatives into
elementary functions before any numerical evaluation, and is thus more robust to numerical error.
Applying automatic differentiation, one can use a model uθ to compute high precision estimates
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of ut, ux, uxx, and other spatiotemporal derivatives of the state variable. This in turn allows for
computing estimates of the dynamics of u given by f . From this, a natural loss function for training
PINNs arises:

1

N

N∑
i=1

||uθ
i − ui||2 +

1

N
||u̇θ

i − f θi ||2 (19)

Here, u̇θ
i represents the approximation of ut|(xi,ti) by automatic differentiation, and f θi represents the

approximate dynamics f |(xi,ti) at a particular position and time. The first term of this loss function
is often referred to as the data loss, and ensures that uθ is a good approximator of u, whereas the
second term–which explains the name “physics-informed"–enforces consistency between uθ and the
known dynamics f .

However, while PINNs are a useful tool for learning dynamics that arise from PDEs, they are
difficult to use for the task of system identification. In particular, they require knowledge of the
precise functional form of the PDE that governs the underlying dynamics, which seems to defeat
the purpose of their usage for system identification. In the section that follows, we will attempt to
circumvent this problem and explore an approach that combines the strategy of PINNs described in
[17] with the sparse regression approaches applied in [3, 15].
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6 PDE System Identification
In this section, we explore techniques for system identification of PDEs from spatiotemporal data.
We begin by introducing an approach that integrates PINNs [17] with sparse regression techniques
for PDE discovery, and apply it to two nonlinear PDEs. Then, we investigate methods for discovering
reduced order models of large ensembles of microscopic observables. For all methods analyzed, we
consider how the behavior of discovered models changes under coarse-graining.

6.1 General Methods
This section describes the general experimental and computational methods used for the following
analyses.

One recent approach for discovering PDEs from data integrates the methods used by PDE-FIND [15]
with Physics-Informed Neural Networks [17]. In particular, the work of [19] applies the automatic
differentiation capabilities of deep neural networks (DNNs) to construct libraries of derivatives and
candidate nonlinearities for sparse regression. In this context, automatic differentiation has proven
to be a powerful tool; one of the main challenges faced by the approach of [3] were numerical
inaccuracies arising from applying classical numerical differentiation methods to estimate higher
order derivatives. Automatic differentiation, on the other hand, allows for the computation of spatial
and temporal derivatives to much higher precision [19]. During the training of these DNNs, an
initial estimate of the sparse regression weights is learned simultaneously, which in turn provides an
inductive bias to the DNN that is analogous to the physics-informed prior in PINNs.

We first obtain data D = {(xi, ti,ui)}Ni=1 that we would like to fit a PDE to. We then use this data
to train a DNN to approximate the state variable(s) u, which we denote by uθ(x, t) ≈ u(x, t).

We then adapt the approach of [19] by constructing a library ϕ(u) ∈ R1×s of candidate nonlinear
functions of the components of the state variable u, such as
ϕ = {1,u,u2,u3, . . . ,ux,u ◦ ux, . . . }.

ut = ϕΛ (20)

where the matrix Λ ∈ Rs×n denotes the coefficients of the candidate nonlinearities. To train the
DNN to approximate u(x, t) and to learn initial estimates of candidate nonlinearity coefficients, we
again follow the approach of [19] and construct a loss function with a three main components: a state
variable estimation loss, a physics-prior/regression loss, and a regularization penalty to encourage
sparsity. The first component, Ldata(θ;D), quantifies the mean squared error between the DNN’s
approximation of the state variable and its true value across all available measured data, as defined
in Eqn. (21):

Ldata(θ;D) =
1

N

N∑
i=1

||uθ
i − ui||2 (21)

In addition, we penalize the residual between the approximate time derivative of the state variable
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and the sparse regression predictions:

Lphysics(θ,Λ;D) =
1

N

N∑
i=1

||u̇θ
i − ϕ(ui)Λ||2 (22)

where u̇θ
i denotes the approximation of ∂u

∂t
|(xi, ti) by automatic differentiation using the DNN.

Finally, we include L1 regularization of Λ to encourage sparsity of learned coefficients. The total
loss is then given by

L(θ;D) = Ldata(θ;D) + αLphysics(θ,Λ;D) + β||Λ||1 (23)

where α and β control the relative importances of the physics prior and the L1 regularization,
respectively.

To ensure higher-order differentiability and smoothness of network predictions, we use the tanh
activation function. For each experiment, the DNN was trained for 200 epochs. To improve on
both the performance and interpretability of the approach of [19], we made a few changes to the
training process and DNN architecture. First, for simplicity, we reduced the DNN to a three-layer
feed-forward network. Additionally, the weight of the physics loss α was set to 0 for the first 100
epochs of training. This was done to allow the DNN to learn to approximate u well before enforcing
the consistency condition of the physics loss, reducing the risk of the DNN getting stuck in a poor
local minimum. Finally, while [19] refines the sparse regression coefficient estimates Λ after DNN
training through an alternating optimization process, for simplicity, we use the Forward-Stagewise
regression algorithm [20] for this purpose.

Once trained, we then computed the FIMs of the DNN’s approximation of the state space uθ(x, t),
the resulting approximation of its time derivative u̇θ(x, t), and the sparse regression predictions
ϕ(uθ)Λ. We then investigated how spatiotemporal coarse-graining of the input data D used to train
these DNNs affected the spectrums of their corresponding FIMs.

To analyze the effects of coarse-graining of observable data, we considered 6 different resolutions
of the ground truth data of the state variable u(x, t), sampled over a grid spaced regularly over
positions and times. At level 1 of coarsening, no coarse-graining is applied. For levels i > 1 we
employed a convolutional averaging kernel of size (2i−1 +1)× (2i−1 +1) to the data organized over
a position-time meshgrid. The effects of this coarse-graining on spatiotemporal data are visualized
in Fig. 12.

6.2 System identification of Partial Differential Equations
To evaluate the effectiveness of our approach, we numerically simulate the dynamics of a few known
PDEs and attempt to re-discover their forms from the observed data.

6.2.1 Burgers’ equation
We begin by applying this approach to the 1D Burgers’ equation, defined below:
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Figure 9: (A) Learned coefficients of Burgers’ equation after Forward-Stagewise optimization vs
level of coarsening. (B) FIM spectrum for the regression predictions versus level of coarsening.

ut + uux − νuxx = 0 (24)

Burgers’ equation has been used to model phenomena ranging from fluid dynamics to traffic flow
[21].

For our simulations, we use ν = 0.1. Since the state variable is one-dimensional, we restrict
the library of nonlinearities to terms of degree at most 3, derivatives of order at most 3, and any
combinations of the two, yielding the following library of terms:
ϕ = {1, u, u2, u3, ux, uux, u

2ux, . . . uxxx, . . . u
3uxxx}

We find that, in the absence of coarse-graining, our model successfully correctly identifies the proper
terms in Burgers’ equation. Moreover, the estimated coefficients are roughly correct (See Fig. 9A).
The learned coefficients remain stable under coarse-graining until coarsening level 4, where the
model begins confusing uux with ux. We visualize the ground truth state variable u, as well as the
predicted state variable û obtained from integrating the learned PDEs at coarsening levels 3 and 4
(Fig. 10).

To gain further insight into how coarse-graining affects the behavior of the learned model, we
computed the Fisher Information Matrix of three quantities predicted by our model: uθ(x, t) with
respect to parameters θ, u̇θ(x, t) with respect to parameters θ, and the regression predictions ϕ(u)Λ
with respect to parameters Λ. As shown in Fig. 9B, the eigenspectrum of the FIM of regression
predictions can indeed be characterized as sloppy. Furthermore, the spectrum becomes sloppier
under coarse-graining, consistent with what was observed in the analysis of statistical physics models
(Sec. 4). In particular, the dominant eigenvalue remains stable, but the second largest eigenvalue
decays with increased coarsening. Similarly, the FIM spectrums of uθ(x, t) and u̇θ(x, t) also span
many orders of magnitude, but increased emergent sloppiness with more aggressive coarsening is
not apparent (Fig. 11).
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Figure 10: The ground truth state variable u of Burgers’ equation, an estimate computed from
integrating learned PDE coefficients û, and error in estimation u− û are shown at (A) coarsening
level 3 and (B) coarsening level 4, respectively.

6.2.2 The Korteweg–De Vries equation
To investigate whether this approach remains successful for more complex PDEs, we also apply it to
the Korteweg-De Vries (KdV) equation, a third-order PDE that takes the form

ut + 6uux − uxxx = 0 (25)

This PDE supports solutions in the form of travelling waves, and allows for superposition of multiple
waves travelling at different speeds (Fig. 12). We use the same library of nonlinearities as before:
ϕ = {1, u, u2, u3, ux, uux, u

2ux, . . . uxxx, . . . u
3uxxx}. Unlike what was found for Burgers’ equation,

our model was unable to identify the correct terms in the KdV equation. In particular, even in the
absence of coarse-graining, it incorrectly identified ux as the dominant term instead of uux(Fig.
13A). Furthermore, it failed to identify uxxx. At higher levels of coarse-graining, the model begins
to identify the correct components, but also introduces extraneous terms. A comparison of the
ground truth state variable u and the predicted state variable û obtained from integrated learned
PDE coefficients is shown at coarsening levels 1 and 6 (Fig. 14). Notably, at level 1 coarse-graining,
the learned model successfully produces one of the traveling waves, but is unable to simultaneously
propagate another traveling wave with a different speed (Fig. 14A). One possible explanation for the
model’s inability to correctly identify the correct terms of the KdV equation is that, during training,
the network becomes stuck in a local minimum where it accurately reproduces the faster traveling
wave, but neglects the lower-amplitude, slower traveling wave.
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Figure 11: (A) FIM spectrum for uθ learned for Burgers’ equation vs the level of coarse-graining.
(B) FIM spectrum for u̇θ vs the level of coarse-graining.

Analogous to our analysis of Burgers’ equation, We also analyze the eigenspectra of the FIMs of the
approximated state variable uθ(x, t), its approximated time derivative u̇θ(x, t), and the regression
predictions ϕ(u)Λ. We once again find that all spectra span a wide range of magnitudes and
therefore can be described as sloppy (Fig. 13B, Fig. 15). Interestingly however, we find that
the regression predictions’ FIM eigenspectrum does not necessarily become sloppier with greater
coarsening of the training data (Fig. 13B). Moreover, there does not seem to be any dominant
eigenvalues that remain stable under coarsening.

6.2.3 Perturbing PDEs with a diffusive term
As demonstrated with our analysis of Burgers’ equation and the Korteweg-De Vries equation, the
described method for discovering PDEs from data can be effective for simple PDEs, but struggles
for PDEs involving higher order terms. Here we consider an alternative strategy involving analyzing
how the eigenspectrum of the model’s regression prediction FIM behaves under perturbing the
ground truth PDE to be learned. Ideally, for every term in a library of candidate functions (e.g.
ux, uxx, u2), adding a small perturbation to a PDE consisting of that term would yield a unique
effect on the FIM eigenspectrum. If this were the case, then analyzing the FIM spectrum of learned
models for signatures of Candidate PDE terms would yield a fruitful way for discovering PDEs
using insights from information geometry.

However, there are a few practical limitations to this strategy. Firstly, not all PDEs result in nice
solutions for the state variable, as randomly assembled PDEs were almost always found to diverge
upon integration. As a concrete example, Burgers’ equation with a negative diffusion constant ν
leads to a solution that diverges.

Considering these limitations, we restrict our analysis to perturbing PDEs with the diffusion term
uxx, and ensure that all perturbations analyzed result in non-negative diffusion coefficients in the
final PDE. We apply this approach to the previously studied Burgers’ and KdV equations.

The Burgers’ and KdV equations are perturbed as follows:

ut + uux − νuxx = δuxx (26)
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Figure 12: The ground truth form of the state variable u(x, t) for the Korteweg–De Vries equation
at different levels of coarse graining.

A B

Figure 13: (A) Learned coefficients for the Korteweg-De Vries equation after Forward-Stagewise
optimization versus level of coarsening. (B) FIM spectrum for the regression predictions versus
level of coarsening.
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Figure 14: The ground truth state variable u of the Korteweg-De Vries equation, an estimate
computed from integrating learned PDE coefficients û, and error in estimation u− û are shown at
(A) coarsening level 1 and (B) coarsening level 6, respectively.

ut + 6uux − uxxx = δuxx (27)

where we choose perturbations δ ∈ [−0.08, 0.08] and δ ∈ [0, 0.4] for the Burgers’ and KdV equations,
respectively. We then trained models as before on data generated from these perturbed PDEs, and
analyzed how perturbations affect relevant FIM eigenspectra. For Burgers’ equation, we observe
clear effects of the perturbation process on the regression predictions’ FIM eigenspectra (Fig. 16A).
In particular, decreasing the diffusivity of the equation via supplying a negative perturbation leads to
large dominant eigenvalues and a sloppier spectra. This result is sensible considering that Burgers’
equation exhibits a shock wave when the overall diffusion coefficient is small [22]. On the other
hand, steadily increasing diffusivity also appears to increase overall spectra sloppiness, but causes
a different eigenvalue mode to dominate. On the other hand, perturbing the KdV equation via
increasing diffusivity appears to cause decay of the first two eigenvalues, but has a stabilizing effect
on the third eigenvalue (Fig. 17A). However, it is difficult to discern evidence of a unique signature
of uxx perturbation in the FIM spectra that is present for both equations. Future analysis along this
line of reasoning should investigate how the dominant FIM eigenvectors corresponding to directions
stiff directions of parameter space are perturbed as a consequence of PDE perturbation.
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Figure 15: (A) FIM spectrum for uθ learned for the Korteweg-De Vries equation vs the level of
coarse-graining. (B) FIM spectrum for u̇θ vs the level of coarse-graining.

A B

Figure 16: (A) FIM spectrum of regression predictions versus the coefficient of uxx perturbation
applied to Burgers’ equation. (B) FIM spectrum for uθ vs the coefficient of uxx perturbation.

6.3 Identifying macroscopic models from ensembles of microscopic observables
One area where reduced order models are particularly useful is for understanding the emergent
dynamics that govern ensembles of microscopic observables. For example, in a fluid system
containing calcium ions, one might be able to roughly model calcium ion concentrations as a
function of position and time. However, actually tracking each of the trajectories of N individual
ions in three spatial dimensions would require 3N state variables. For real-world scenarios, where a
mole of ions would yield N ∼ 1024 trajectories to follow, such a high-dimensional description of
the system would be both highly impractical and different to interpret. Moreover, for such a system,
it is unlikely that each individual ion is governed by unique forces, but rather that all ions roughly
share some form of underlying dynamics. One would then expect that an accurate macroscopic
description of the ions’ collective behavior should be feasible.

We can frame this problem more generally as follows: Suppose we have a system of ODEs governed
by

d

dt
x = f(x); x(0) = x0 (28)

Each choice of initial condition x0 gives rise to a unique trajectory x(t). Now, suppose that there
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Figure 17: (A) FIM spectrum of regression predictions versus the coefficient of the uxx perturbation
applied to the Korteweg-De Vries equation. (B) FIM spectrum for uθ vs the coefficient of uxx

perturbation.

are N independent trajectories that obey the same dynamics f , each with their own initial conditions
given by {x(i)

0 }Ni=1. For any such system of trajectories obeying the same underlying dynamics, a
macroscopic description of their collective dynamics exists in the form of a PDE. This PDE is given
by the advection equation, and in general describes the conservation of a scalar quantity as it is
being advected by a velocity field:

ρt +∇ · (fρ) = 0; ρ(x, 0) = ρ0(x); ρ|Γi
= 0 (29)

Here, ∇ · (. . . ) denotes the divergence operator, and ρ0(x) and ρ|Γi
represent initial and boundary

conditions for the trajectory densities, respectively. In this case, the underlying microscopic dynamics
of ODE trajectories f serves as the velocity field for this PDE.

A question then arises: given ODE trajectory densities evaluated at different positions and times,
estimated from many observations of individual trajectories, could one learn the form of the PDE
given in Eqn. (29)? We investigate this problem from two angles: 1) learning Eqn. (29) from
scratch by learning coefficients of libraries of derivatives and nonlinearities of position and state
variables (analogous to what was done for Burgers’ equation and the Korteweg-De Vries equation),
and 2) directly learning the coefficients of the components of f from a library of nonlinearities of
position variables. The first approach attempts to learn the entirety of the trajectory density PDE
from scratch, whereas the second approach adds additional structure to the task, taking advantage of
prior knowledge that trajectory densities can be modelled by an advection equation. We refer to
these strategies as the standard approach and advection-based approach, respectively.

6.3.1 Reduced order Modeling of Van der Pol Ensembles
To explore these methods, we first consider the Van der Pol oscillator, whose dynamics are governed
by a set of coupled ODEs given as follows:

ẋ = y

ẏ = µ(1− x2)y − x
(30)
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Figure 18: (A) Limit cycles of the Van der Pol system for different values of µ. (B) Snapshots of the
estimated Van der Pol trajectory densities at t = 5.0 for different levels of spatial coarse graining.
Density estimates were produced from N = 300, 000 Van der Pol trajectories with initial conditions
sampled uniformly from a circle of radius 3 centered at the origin.

Importantly, each individual Van der Pol trajectory will eventually converge onto a limit cycle,
whose shape is governed by the parameter µ.

We can recast the ODE dynamics of Van der Pol oscillators to the form of Eqn. (28) as follows:

d

dt
x = f(x); f =

[
y µ(1− x2)y − x

]⊤ (31)

We simulated N = 300, 000 trajectories of the Van der Pol system with µ = 2, using initial
conditions sampled uniformly from a circle of radius 3 centered at the origin. Then, the density of
trajectories at each position and time was estimated by binning the number of observed trajectories
over time in each unit of a discretized x-y grid.

We first attempt to discover the PDE governing Van der Pol trajectory density via the standard
approach. Since the ground truth form of the PDE depends on not only the state variable ρ
(trajectory density), but also position variables x and y, the library of functions for which to learn
coefficients must be expanded. In particular, we consider powers of ρ given by U = {1, ρ, ρ2, ρ3},
powers of position variables P = {1, x, x2, x3, y, y2, y3, xy, x2y, xy2}, and derivatives of ρ up to
second order D = {1, ρx, ρxx, ρy, ρyy, ρxy}. The final library of nonlinearities is then given by
ϕ = {upd|u ∈ U , p ∈ P , d ∈ D} ∈ R1×240.

Upon expanding the divergence operator of Eqn. (29), we find that there are 6 terms in ϕ that appear
in the ground truth expression for the dynamics of Van der Pol trajectory density: ρ, x2ρ, yρx, yρy,
xρy, and x2yρy.
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Figure 19: (A) Learned coefficients for the Van der Pol density (direct approach) before Forward-
Stagewise optimization versus level of coarsening. (B) Learned coefficients for the Van der Pol
density (direct approach) after Forward-Stagewise optimization versus level of coarsening. (C) The
FIM spectrum of the regression predictions versus level of coarsening.

A B C

Figure 20: Learned coefficients for the Van der Pol density velocity field (advection-based approach)
versus level of coarsening, shown for (A) the x-component f · x̂ and (B) the y-component f · ŷ. (C)
The FIM spectrum of the advection predictions versus level of coarsening.
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Using this approach, our model was unable to identify any of the proper coefficients in the absence
of coarse-graining. However, upon coarse-graining the observable data, the correct terms begin to
be identifiable, albeit accompanied by the emergence of extraneous terms (Fig. 19 A,B). Pruning
coefficients via the Forward-Stagewise optimization aids in dropping unwanted terms, but also
prunes some terms that actually contribute to the ground truth dynamics (Fig. 19B).

Next, we apply the advection-based approach. As before, we approximate the trajectory density via
a DNN parameterized by θ, denoted by ρθ(x, t). Given that each component of the dynamics f must
be a function of position, we can construct a candidate library consisting solely of nonlinearities
of position variables, given by ϕspatial = {1, x, x2, x3, y, y2, y3, xy, x2y, xy2} ∈ R1×10. Using this
library, we learn the coefficients of terms of ϕspatial corresponding to f · x̂ and f · ŷ, given by
Λ ∈ R10×2. In particular, estimates of the underlying ODE dynamics are given by fΛ = ϕspatialΛ.
Then, taking advantage of automatic differentiation, we can approximate ∇ · (ρf). The overall
network is then trained with the loss function in Eqn. (23), but with the physics loss component
modified as follows:

Lphysics(θ,Λ;D) =
1

N

N∑
i=1

||ρ̇θi +∇θ · (ρθiϕspatial(xi)Λ)||2 (32)

Applying this approach, we observe that, without coarse-graining the trajectory density data, the
model is unable to identify any of the correct coefficients for either velocity field component (Fig.
20 A,B). Interestingly however, upon coarsening the data, the correct terms begin to emerge around
coarsening level 3. These findings are consistent with the previous approach, which also could
not learn any proper coefficients without coarsening the observable data. This suggests that, for
learning the macroscopic dynamics underlying an ensemble of trajectories, coarse-graining the
observable density data may actually sharpen signals in the data corresponding to the correct terms.
A possible explanation for this finding is that the process of coarse-graining smooths the otherwise
discontinuous density data, thereby making the data more suited for approximation via neural
networks. Visualizations of the effects of coarse-graining on temporal snapshots of Van der Pol
trajectory density estimates are shown in Fig. 18B.

We also evaluate the eigenspectrum corresponding to the FIM of the output of the divergence
operator
∇θ · [ρθiϕspatial(xi)Λ] (the analogue of the regression predictions of the standard approach) with
respect to the learned velocity field coefficients Λ. Notably, none of the dominant eigenvalues
appear to be stable under coarse-graining. This finding suggests that no combination of terms in
ϕspatial remain dominant in explaining model behavior as the data is coarsened.

6.3.2 Reduced order Modelling of Lorenz Ensembles
Next, we apply the advection-based approach to the Lorenz system, a dynamical system known for
chaotic behavior [23]. The Lorenz system is given by the system of coupled ODEs

d

dt
x = f(x); f =

[
σ(y − x) x(γ − kz)− y kxy − βz

]⊤ (33)
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where σ γ, and β are parameters that control the shape of the attractor, and k is a scale factor used to
re-scale the position coordinates. We choose σ = 10, γ = 28 and β = 8/3, and shrink the position
coordinates by a factor of k = 10. Unlike the Van der Pol system, the Lorenz system does not have a
limit cycle, and instead exhibits two fixed point attractors (Fig. 21A).

To obtain trajectory densities of the Lorenz system, we first simulated N = 300, 000 trajectories of
the Lorenz system with initial conditions sampled uniformly from the surface of a sphere of radius 2
at the center of the spatial domain considered (see Table 1). We then estimate trajectory densities
over time on a discretized x-y-z grid. Visualization of temporal snapshots of estimate trajectory
density before and after coarse-graining are shown in Figs. 20B, C.

Preliminary attempts at discovering the reduced order Lorenz system via the advection-based
approach were unsuccessful, and yielded significantly incorrect coefficients. A possible reason
for this is the complex shape of the Lorenz attractor. While the Van der Pol oscillator’s limiting
behavior can at least be crudely modeled by an ellipse, capturing the dynamics that give rise to the
Lorenz attractor’s complex shape is a more challenging task.

To make the task of discovering a reduced order model of the Lorenz trajectory density easier, we
prune all coefficients in Λ that do not correspond to terms in the ground truth dynamics f . After
pruning irrelevant coefficients, the advection-based approach becomes somewhat successful at
identifying the correct coeffficients (Fig. 22). Furthermore, the accuracy of learned coefficients
improves through coarse-graining, consistent with what was found with the Van der Pol system.

6.3.3 Limitations of the advection-based approach
One drawback of the advection-based approach is that it is difficult to refine learned coefficients
Λ after training. While the standard approach of directly learning coefficients of nonlinearities of
the state variable allows for post-training coefficient tuning via techniques such as the Forward-
Stagewise algorithm, these methods are inapplicable for the advection-based approach. Specifically,
the advection-based approach does not learn linear regression coefficients directly. Instead, it learns
parameters that must first undergo differentiation (specifically, the divergence operator) before model
outputs can be produced.

One simple alternative for refining parameter estimates is to threshold learned coefficients so that all
parameter values below a certain threshold are set to 0. While this does indeed improve sparsity, it
is an imperfect method as it is possible for terms with tiny coefficients to be dropped that would
otherwise contribute greatly to overall dynamics. A concrete example of this phenomena involves
the Kuramoto model of coupled oscillators. While the original model contains only first-order
derivatives in time of the state variables, perturbing the model with a term involving a second-order
time derivative drastically changes the model’s behavior [24]. In particular, it has been proven
analytically that even a vanishingly small second-order term can fundamentally change the nature
of the Kuramoto model’s attractors, causing a supercritical bifurcation to become a subcritical
bifurcation [25].
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Figure 21: (A) The attractor of the re-scaled Lorenz system, generated with the initial condition
x(0) = (0, 1, 1.05). (B) A snapshot of estimated trajectory density of the Lorenz system without
coarse-graining at t = 5. (C) The estimated trajectory density of the Lorenz system at level 3
coarsening (spatially isotropic Gaussian blurring with σ = 2.0). Density estimates were produced
from N = 300, 000 Lorenz trajectories with initial conditions sampled uniformly from the surface
of a sphere of radius 2 centered at (0, 0, 2.5).

PDE (Approach) Spatial Domain Temporal Domain # Coeffs.
Burgers’ x ∈ [−8, 8]nx=256 t ∈ [0, 10]nt=101 16

Korteweg-De Vries x ∈ [−16, 16]nx=256 t ∈ [0, 5]nt=101 16

VDP Ensemble (Standard) x, y ∈ [−6, 6]nx=ny=512 t ∈ [0, 10]nt=201 240

VDP Ensemble (Advection) x, y ∈ [−6, 6]nx=ny=512 t ∈ [0, 10]nt=201 10× 2

Lorenz Ensemble (Advection) x, y ∈ [−3, 3]nx=ny=100, z ∈ [0, 5]nz=100 t ∈ [0, 10]nt=1001 20× 3

Table 1: A table summarizing all PDEs analyzed in this work. For each PDE learned, we report the
spatial and temporal domains considered, as well as the number of coefficients learned, corresponding
to the size of the candidate function library.
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A B C

Figure 22: Learned coefficients for the Lorenz density velocity field versus level of coarsening,
shown for (A) the x-component f · x̂, (B) the y-component f · ŷ, and (C) the z-component f · ẑ.
During training, coefficients for terms not present in the ground truth solution are set to 0.
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7 Conclusion
In this work, we explored techniques for constructing reduced-order models of phenomena from
data. By investigating the geometric properties of models from statistical physics, we demonstrate
that coarse-graining observable data can amplify model sloppiness, thereby eliminating parameter
combinations that do not contribute to macroscopic model behavior. In addition, we study
approaches for discovering the functional forms of partial differential equations from data, and how
such approaches perform under coarse-graining. Importantly, we find that some, but not all learned
models of discovered PDEs exhibit FIM eigenvalues that stay stable under coarse-graining. This
suggests that there are a subclass of PDE systems that are well-suited for model order reduction
techniques. Lastly, we investigate techniques for identifying macroscopic dynamics underlying
large ensembles of individual trajectories. To that end, we extend the approach of physics-informed
neural networks and introduce a method for directly learning the coefficients of an advection PDE’s
underlying velocity field. Notably, we demonstrate that discoverability of a system’s underlying
macroscopic dynamics can actually improve upon coarse-graining observable data.

Our findings suggest a number of directions for future study. Firstly, while we have studied PDE
system identification techniques via observing FIM eigenvalues of learned models, future work
should also investigate how the properties of dominant FIM eigenvectors may prove fruitful for model
order reduction. In particular, it is possible that projecting learned coefficients along directions of
stiff FIM eigenvectors may yield useful information about the dominant or stable modes that underlie
a system’s dynamics. In addition, future work should investigate whether the advection-based
approach introduced in this work remains effective for learning reduced order models of ensembles
of microscopic observables from real-world data, such as the flow of ions in a fluid.
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Code Link
Code used to generate the plots in this work can be found at https://github.com/wqian0/
CIS498Thesis.
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