Purdue University

Purdue e-Pubs

Department of Food Science Faculty Publications

Department of Food Science

7-19-2019

trans-Trismethoxy Resveratrol Decreased Fat Accumulation Dependent on Fat-6 and Fat-7 in Caenorhabditis Elegans

Yiren Yue University of Massachusetts

Peiyi Shen University of Massachusetts

Amanda L. Chang University of Massachusetts

Weipeng Qi University of Massachusetts

Kee Hong Kim Purdue University, kim618@purdue.edu

See next page for additional authors

Follow this and additional works at: https://docs.lib.purdue.edu/foodscipubs

Recommended Citation

Yue Y, Shen P, Chang AL, Qi W, Kim KH, Kim D, Park Y. trans-Trismethoxy resveratrol decreased fat accumulation dependent on fat-6 and fat-7 in Caenorhabditis elegans. Food Funct. 2019 Aug 1;10(8):4966-4974. doi: 10.1039/c9fo00778d.

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Authors

Yiren Yue, Peiyi Shen, Amanda L. Chang, Weipeng Qi, Kee Hong Kim, Daeyoung Kim, and Yeonhwa Park

1	trans-Trismethoxy resveratrol decreased fat accumulation dependent on fat-6 and fat-7 in
2	Caenorhabditis elegans
3	
4	Yiren Yue ¹ , Peiyi Shen ¹ , Amanda L. Chang ¹ , Weipeng Qi ¹ , Kee-Hong Kim ^{2, 3} , Daeyoung Kim ⁴
5	and Yeonhwa Park ^{1,*}
6	
7	¹ Department of Food Science, University of Massachusetts, Amherst,
8	² Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
9	³ Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA
10	⁴ Department of Mathematics and Statistics, University of Massachusetts, Amherst,
11	
12	
13	*Corresponding author:
14	Department of Food Science, University of Massachusetts, 102 Holdsworth Way,
15	Amherst, MA 01003
16	Telephone: (413) 545-1018
17	Fax: (413) 545-1262
18	e-mail: ypark@foodsci.umass.edu

19 Abstract

20 trans-Trismethoxy resveratrol (TMR) is a methyl analog of resveratrol. It is found to exhibit 21 enhanced biological effects compared to resveratrol, such as inhibition of cancer cell growth and 22 pro-apoptotic activities. However, the role of TMR in lipid metabolism is not fully understood. 23 In this study, we used *Caenorhabditis elegans*, an *in vivo* nematode model which has been 24 widely applied in disease research, including research on obesity, to investigate the effect of 25 TMR on lipid metabolism. Treatment with TMR (100 and 200 μ M) for 4 days significantly 26 reduced triglyceride accumulation (14% and 20% reduction over the control, respectively) of C. 27 elegans, without affecting nematode growth, food intake and reproduction. Treatment with TMR 28 significantly downregulated stearoyl-CoA desaturase genes, fat-6 and fat-7, accompanied by a 29 decrease in the desaturation index of fatty acids, the ratio of oleic acid to stearic acid. These 30 results suggest that TMR inhibits fat accumulation by downregulating stearoyl-CoA desaturase 31 in C. elegans.

32

33 Keywords: *trans*-Trismethoxy resveratrol, *C. elegans*, lipid metabolism, stearoyl-CoA
34 desaturase

35 Introduction

36 trans-Trismethoxy resveratrol (TMR, (E)-5-[2-(4-hydroxyphenyl)ethenyl]-1,3-benzene diol) is a 37 naturally occurring organic compound found in plants, including *Pterobolium hexapetallum* and *Virola cuspidate*.^{1, 2} TMR is derived from resveratrol by the addition of three methyl esters. 38 39 Resveratrol is known to be metabolized under a detoxification pathway through sulfation and 40 glucoronidation, which impact its bioavailability.³ The conversion of three active hydroxy 41 groups into methyl esters in TMR is thought to make it more stable and exhibit higher bioavailability compared to resveratrol.⁴⁻⁶ TMR has been reported to have many biological 42 properties, such as protection against oxidative stress-induced DNA damage,⁷ anti-inflammatory 43 effects,⁸ and anti-cancer effects.⁴ However, the question of whether this compound also exhibits 44 45 anti-obesity effects similar to resveratrol remains understudied. 46 *Caenorhabditis elegans* (*C. elegans*) is a free-living nematode that has been widely used for many studies, including studies of obesity.⁹ It has a compact body size – the adult worm is 47 48 only 1mm in length. In the laboratory, it can be cultured on either an agar plate or a liquid 49 medium, and non-pathogenic Escherichia coli OP50 as the food source. C. elegans also has a 50 short lifecycle of approximately 3 days at 25°C, a significant advantage for shortening 51 experiment duration.¹⁰ Moreover, many lipid-metabolism-related signaling pathways are highly 52 conserved from humans to C. elegans, which makes C. elegans highly suitable as a model for obesity research.⁹ Thus, the purpose of the present study was to examine the role of TMR in lipid 53 54 metabolism using C. elegans as an in vivo animal model.

55

- 56 Materials and Methods
- 57 *Materials*

58	<i>trans</i> -Trismethoxy resveratrol (TMR) was purchased from Cayman Chemical (≥98%, Ann
59	Arbor, MI). Chemicals that included biological agar, peptone, LB broth used for C. elegans
60	maintenance were purchased from Fisher Scientific Inc. (Pittsburgh, PA). Fluorodeoxyuridine
61	(FUDR) and carbenicillin were purchased from Sigma-Aldrich Co. (St. Louis, MO). Reverse
62	transcription kit, TaqMan gene expression assays and master mix for real time PCR assays were
63	purchased from Applied Biosystems (Carlsbad, CA, USA). Commercial kits used for
64	triglycerides (TG, Infinity [™] Triglycerides Reagent) and protein (Bio-Rad DC protein assay kit)
65	quantification were purchased from Thermo Fisher Scientific Inc. (Middletown, VA) and Bio-
66	Rad Co. (Hercules, CA), respectively. Escherichia coli OP50 and nematode strains, including
67	N2, Bristol (wild type), daf-16 (mgDf50) I, tub-1 (nr2044) II, nhr-49 (ok2165) I, sbp-1(ep79) III,
68	fat-5 (tm420) V, fat-6 (tm331) IV, fat-7 (wa36) V, fat-6 (tm331) IV; fat-7 (wa36) V, lin-15B&lin-
69	15A(n765) X; waEx15, aak-2 (ok524) X were obtained from Caenorhabditis Genetics Center
70	(CGC).

71

72 Caenorhabditis elegans Maintenance and TG Quantification

Caenorhabditis elegans was maintained as previously described ¹⁰ with freshly prepared *Escherichia coli* OP50 as a food source. Unless otherwise noted, synchronized L1 worms ¹⁰ were
supplemented with 0.1% dimethyl sulfoxide (DMSO) as vehicle or different doses of TMR for 4
days at 20°C in S-complete liquid media before measurements. TG content was determined as
previous reported.^{9, 11-13} Worms were collected in tubes and washed trice with M9 buffer to
eliminate *E. coli* and treatment. After washing, the samples were prepared by sonication in
0.05% Tween 20 and were quantified for TG and protein using commercial kits: InfinityTM

Page 5 of 27

Food & Function

80	Triglycerides Reagent and Bio-Rad DC protein assay kit, respectively. TG content was			
81	normalized by protein level.			
82				
83	Growth Rate, Locomotive assay, Progeny and Pumping Rate			
84	Growth rate, body size, and locomotive activity were determined after two days of treatment			
85	with TMR as previously described. ¹⁴ For growth rate, the number of worms at each			
86	developmental stage was recorded. Results were presented as a % of worms at each stage. Body			
87	size and the locomotive activity of worms were measured by using a WormLab tracking system			
88	(MBF Bioscience, Williston, VT). ¹¹ C. elegans were transferred to a fresh E. coli OP50-seeded			
89	low peptone plate and allowed to acclimate for 10 min before recording. Each video was filmed			
90	for 1 min, then analyzed with WormLab software (MBF Bioscience version 3. 1. 0, Williston,			
91	VT) for average speed, worm length, and worm width.			
92	Progeny and pumping rate were determined after two days' treatment. Worms were			
93	picked onto fresh Escherichia coli OP50-seeded nematode growth media (NGM) plates to lay			
94	eggs. Parent worms were transferred to new plates every day until the reproduction period was			
95	ceased. Daily brood size was recorded. Pumping rate was monitored by counting the pharyngeal			
96	contraction of randomly selected worms for 30 sec. ¹⁴			
97				
98	Fatty Acid Composition Analysis			

99 Fatty acid composition was determined as previously described.¹² Pre-treated worms were

100 collected and washed three times to eliminate *E. coli* and treatment. Fatty acid methyl esters

101 were subjected to GC/MS analysis (Shimadzu GC/MS-QP2010 SE, Tokyo, Japan). Both injector

102 and detector temperatures were 250°C, and helium was used as a carrier gas with splitless

103 injection. Oven conditions were as follows: initial temperature of 50°C rose at a rate of 104 20°C/min to 190°C, was held for 30 min, then increased at a rate of 2°C /min to 220°C, and then 105 held for 130 min. Identification of fatty acid methyl esters was conducted by comparing with 106 fatty acid standards and/or their mass spectra according to the American Oil Chemists' Society 107 mass spectra data or the NIST Mass Spectral library. 108 109 Fluorescence Imaging and Quantification 110 Fluorescence imaging and quantification were conducted as previously described.¹⁵ After 111 treatment, approximately $20 \sim 30$ worms were anesthetized with 10 mM NaN_3 then mounted on 112 microscopic slides with a 3% agarose layer and capped with covered slides. Imaging was 113 performed by using confocal microscopy (Nikon Eclipse 80i Microscope SOP, Tokyo, Japan). 114 Pictures of 20-40 worms were taken for each treatment group. The GFP intensity of the first

anterior pair of intestinal cells was quantified by using Image J software.¹⁵

116

117 *Quantitative Real-Time Reverse Transcription PCR (qRT-PCR)*

118 Real time PCR was performed as previously described.¹⁴ Pre-treated nematodes were collected,

119 and total RNA was extracted by Trizol. A high-capacity cDNA reverse transcription kit (Thermo

120 Fisher Scientific Inc, Middletown, VA) was used for cDNA generation. The StepOnePlusTM

121 Real-Time PCR system (Applied Biosystems, Foster City, CA) was used to perform qRT-PCR.

122 Taqman gene expression assays used in this study were: *daf-16* (Ce02422838_m1), *fat-5*

123 (Ce02488494_m1), fat-6 (Ce02465318_g1), fat-7 (Ce02477066_g1), sbp-1 (Ce02453000_m1),

124 *tub-1* (Ce02435686_m1), *nhr-49* (Ce02412667_m1), *mdt-15* (Ce02406575_g1), *acs-2*

125 (Ce02486193_g1), kat-1 (Ce02434540_g1), fasn-1 (Ce02411648_g1), acs-2 (Ce02486193_g1),

126	pod-2 (Ce02427721_g1), nhr-80 (Ce02421189_g1), atgl-1 (Ce02406733_g1), hosl-1
127	(Ce02494529_m1), aak-1 (Ce02406989_g1), aak-2 (Ce02406989_g1) and ama-1
128	(Ce02462726_m1, an internal control).
129	
130	Statistical analyses
131	Statistical analyses were performed by using one-way ANOVA model with
132	homogeneous/heterogeneous variance or generalized one-way ANOVA model with
133	homogeneous/heterogeneous variance, followed by the Tukey's multiple comparison test for
134	the comparisons among groups. For Data in Fig. 2B, 2C, 2F and 3C, the normality assumption
135	did not hold under one-way ANOVA model (with homogeneous/heterogeneous variance), thus,
136	generalized one-way ANOVA model with homogeneous/heterogeneous variance was employed.
137	The statistical analyses were performed using PROC MIXED (for one-way ANOVA) and PROC
138	GLIMMIX (for generalized one-way ANOVA) in SAS statistical software (SAS Institute version
139	9.4, Cary, NC, USA), and $P < 0.05$ was considered statistically significant.
140	
141	Results
142	trans-Trismethoxy resveratrol decreased TG accumulation in C. elegans
143	As shown in Figure 1, TMR significantly reduced TG accumulation, representative of body fat,
144	in C. elegans at both concentrations of 100 and 200 μ M, with 14% (P=0.0305) and 20%
145	(P =0.0036) reductions compared to the control, whereas 50 μ M TMR did not show any
146	difference from the control. Therefore, a follow-up procedure used 100 and 200 μM of TMR. A

similar result was observed for the resveratrol treatment, which exhibited a significant reduction

of TG accumulation in C. elegans, approximately 10-20% reductions over control at 100 and 200

149	μ M, which were comparable to those of TMR (Supplementary Figure S1).
150	
151	Effect of trans-trismethoxy resveratrol on physiological functions
152	To determine if TMR altered the basic physiological functions of C. elegans, several parameters
153	- including growth rate, body size, food intake, reproductive capacity and locomotive activity -
154	were examined. Results in Figure 2A show that TMR at 100 and 200 μM did not influence the
155	growth rate of C. elegans. Consistently, no change in body length (Figure 2B) and width (Figure
156	2C) was observed under TMR treatment. To determine whether the reduced fat accumulation by
157	TMR resulted from the change in food intake, we monitored the pharyngeal pumping rate, a
158	widely-used indicator of food intake in C. elegans. ¹⁶ TMR did not influence the pumping rate of
159	worms (Figure 2D), suggesting TMR's fat reduction did not result from the change in food
160	intake. Additionally, TMR did not affect the progeny number of worms (Figure 2E), which
161	indicates that TMR did not influence reproduction. Locomotive activity was monitored by
162	measuring the worms' average moving speed, which also serves as an energy expenditure
163	indicator. 17 Our results showed that at 200 μM TMR, moving speed was reduced by 10%
164	compared to the control (Figure 2F), suggesting a reduced energy expenditure. Collectively,
165	these results suggest that TMR, at 100 or 200 μ M, did not influence development, food intake
166	and reproduction, but reduced locomotive activity of C. elegans.
167	

168 Effect of trans-trismethoxy resveratrol on lipid metabolism

148

169	To explore the underlying mechanisms of TMR's fat reduction effect, we examined the mRNA
170	expression level of lipid metabolism-related genes with real time PCR analysis, as well as the
171	genetic requirements of certain genes with mutant strains.
172	First, we determined the effect of TMR on lipogenesis. Sterol regulatory element-binding
173	proteins (SREBPs) are the major transcription factors regulating the biosynthesis of cholesterol,
174	fatty acids, and triglycerides, and therefore are considered the therapeutic target for many
175	metabolic diseases, including obesity. ¹⁸ In C. elegans, SBP-1 is the single homolog of SREBPs,
176	and plays a crucial role in regulating lipogenesis by targeting fatty acid biosynthesis genes: pod-
177	2, fasn-1 and stearoyl-CoA desaturases (SCDs) genes: fat-5, fat-6 and fat-7.19, 20 Loss of function
178	mutation of <i>sbp-1</i> will lead to a low fat phenotype in <i>C. elegans</i> . ²¹ However, our results showed
179	that TMR did not influence <i>sbp-1</i> , as the mRNA expression of <i>sbp-1</i> remained unchanged under
180	TMR treatment (Figure 3A). Moreover, mutation of <i>sbp-1</i> failed to abrogate TMR's fat reduction
181	effect as shown in Figure 3B, which suggests that <i>sbp-1</i> may not be involved in TMR's fat
182	reduction effect.
183	Although TMR did not influence <i>sbp-1</i> , its known downstream targets, <i>pod-2</i> , <i>fat-6</i> and
184	fat-7 were significantly altered by TMR treatment. Indeed, TMR significantly reduced the
185	expression level of <i>pod-2</i> by 24% (<i>P</i> =0.0469) at 100 μ M, and 26% (<i>P</i> =0.0355) at 200 μ M
186	(Figure 3A) compared to the control, indicating a role for <i>pod-2</i> in TMR's fat-lowering effect.
187	SCDs are responsible for catalyzing the rate-limiting step in the formation of
188	monounsaturated fatty acids, which have been suggested as potential drug targets for obesity
189	treatment. ^{22, 23} Inhibition of SCDs is associated with reduced overall fat accumulation in both
190	mammals ^{22, 24} and <i>C. elegans</i> . ¹⁹ Our results showed that SCD genes, <i>fat-6</i> and <i>fat-7</i> , were
191	significantly downregulated by TMR, in which the <i>fat-6</i> mRNA level was reduced by 29% at

192	100 μ M (<i>P</i> =0.0417) compared to the control, and the <i>fat</i> -7 transcription level was decreased by
193	89% (P =0.0481) at 100 μ M and 81% (P =0.0468) at 200 μ M when compared to the control
194	(Figure 3A). This was consistent with the results obtained in <i>fat-7::gfp</i> transgenic worms, in
195	which there was significant reduction of <i>fat-7</i> expression by TMR treatments (P <0.0001 for 100
196	and 200 μ M, respectively, Figure 3C). To further delineate the role of TMR in <i>fat-6</i> and/or <i>fat-7</i> ,
197	we examined the effect of TMR on fat accumulation in <i>fat-6</i> and <i>fat-7</i> single/double mutants.
198	Results showed that TMR's fat lowering effects were only abolished in the fat-6; fat-7 double
199	mutant, but not the fat-6 or fat-7 single mutant (Figure 3B), suggesting the fat reduction effect of
200	TMR was via both <i>fat-6</i> and <i>fat-7</i> -dependently.
201	Additionally, DAF-16, the sole C. elegans forkhead box O (FOXO) homologue, and
202	NHR-80, the nuclear hormone receptor in <i>C. elegans,</i> are known to regulate lipid metabolism by
203	targeting fatty acid desaturation (fat-5, fat-6 and fat-7). ²⁵ However, TMR did not affect daf-16
204	and <i>nhr-80</i> , as TMR did not influence the mRNA expression level of either <i>daf-16</i> and <i>nhr-80</i>
205	and/or the loss of function mutant of <i>daf-16</i> failed to abolish the fat reduction effect of TMR
206	(Figures 3A & 3B). This suggests that TMR's regulation of <i>fat-6</i> and <i>fat-7</i> may not depend on
207	daf-16 and nhr-80. Taken together, our results suggest that TMR inhibited lipogenesis, possibly
208	through the modulation of <i>pod-2</i> , <i>fat-6</i> and <i>fat-7</i> .
209	Next, we examined the role of TMR in beta-oxidation. <i>tub-1</i> encodes a TUBBY homolog
210	that regulates fat storage across species, including C. elegans. ²⁶⁻²⁸ Mutation of tub-1 exhibits a
211	high fat phenotype, which appears to be linked with impaired β -oxidation. ¹⁹ kat-1 encodes a β -

212 oxidation enzyme, 3-ketoacyl-CoA thiolase, which acts in a synergistic manner with *tub-1* in

213 regulating β -oxidation.²⁹ Results (Figure 3A) shows that 100 μ M TMR significantly elevated the

214 expression of *tub-1* by 70% (*P*=0.0005), but not *kat-1* compared to the control. However,

217

reduction effect.

Food & Function

215 treatment of TMR significantly reduced fat reduction in *tub-1* mutant worms (Figure 3B), which
216 suggests that *tub-1* is potentially a contributing factor, but not a requirement, for TMR's fat-

218 *nhr-49* encodes a functional homolog of peroxisome proliferator-activated receptor α .³⁰ It 219 works with mediator subunit MDT-15 to regulate β -oxidation by targeting genes involved in fat 220 oxidation signaling, such as *acs-2* (encodes an acyl-CoA synthetase). Worms treated with TMR 221 did not show any effects on gene expression of nhr-49, mdt-15 nor acs-2 compared to the control 222 (Figure 3A). In addition, TMR significantly reduced fat accumulation in *nhr-49* mutants (Figure 3B), which suggests the independence of nhr-49 in TMR's function. Collectively, these results 223 224 suggest that TMR may enhance fatty acid beta-oxidation via a *tub-1*-mediated pathway, but not 225 nhr-49.

Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are the major rate-determining enzymes for lipolysis in adipocytes.³¹ In *C. elegans*, ATGL and HSL homologs are encoded by *atgl-1* and *hosl-1*, respectively ⁹. TMR did not change the expression of *atgl-1* and *hosl-1* (Figure 3A), suggesting that TMR's fat-lowering effect might be independent of its effect on lipolysis.

AMP-activated kinase (AMPK) is an energy sensor that modulates metabolic energy balance at the whole-body level.³² It is known to modulate energy homeostasis by negatively regulating fat synthesis and positively regulating fatty acid β -oxidation and glycolysis.^{9, 32} In *C. elegans*, there are two genes that encode the homolog of the catalytic alpha subunit of AMPK: *aak-1* and *aak-2*.¹⁹ in which AAK-2 is the subunit thought to be responsible for the kinase activity of AMPK, to regulate lifespan, dauer formation, fat metabolism.¹⁹ TMR did not influence *aak-1* expression, but significantly increased *aak-2* transcription levels (Figure 3A),

238	suggesting the possible involvement of AMPK in TMR's fat reduction effect. We further
239	determined the role of <i>aak-2</i> in TMR's function by using the <i>aak-2</i> mutant strain. However, the
240	fat reduction effect of TMR was remained in <i>aak-2</i> mutants (Figure 3B), suggesting that <i>aak-2</i>
241	may not be required for TMR's fat-lowering effect.
242	
243	trans-Trismethoxy resveratrol significantly reduced desaturation index
244	Based on results that TMR reduces fat accumulation via a fat-6- and fat-7-dependent manner, we
245	further examined the effect of TMR on the desaturation index of oleic vs. stearic acids, as FAT-6
246	and FAT-7 are responsible for the conversion of stearic acid to oleic acid. ³³ Results showed, as
247	expected, that TMR significantly decreased the desaturation index, and lead to 28% and 36%
248	reductions at 100 and 200 μ M, respectively, compared to the control (Figure 4).
249	
250	Discussion
251	TMR, a methyl derivative of resveratrol, significantly decreased the fat accumulation of C.
252	elegans. Moreover, TMR significantly down-regulated the expression of lipogenesis-related
253	
235	genes fat-6, fat-7, and pod-2, and upregulated the fat oxidation-related gene tub-1, which
254	genes <i>fat-6</i> , <i>fat-7</i> , and <i>pod-2</i> , and upregulated the fat oxidation-related gene <i>tub-1</i> , which suggests a potential role for TMR in lipogenesis and fat oxidation. It was further determined that
254	suggests a potential role for TMR in lipogenesis and fat oxidation. It was further determined that
254 255	suggests a potential role for TMR in lipogenesis and fat oxidation. It was further determined that fat reduction from TMR was dependent on <i>fat-6</i> and <i>fat-7</i> , homologs of SCDs. This research is
254 255 256	suggests a potential role for TMR in lipogenesis and fat oxidation. It was further determined that fat reduction from TMR was dependent on <i>fat-6</i> and <i>fat-7</i> , homologs of SCDs. This research is the first to report on the role of TMR in lipid metabolism in <i>C. elegans</i> .
254 255 256 257	suggests a potential role for TMR in lipogenesis and fat oxidation. It was further determined that fat reduction from TMR was dependent on <i>fat-6</i> and <i>fat-7</i> , homologs of SCDs. This research is the first to report on the role of TMR in lipid metabolism in <i>C. elegans</i> . SCDs have been suggested as a potential drug target for obesity treatment. ^{22, 24} Mice

261	elegans. Similar to TMR, other functional food components, including hesperidin, ³⁴ pu-erh tea
262	water extract, 35 and N- γ -(l-glutamyl)-l-selenomethionine, 36 were also found to inhibit fat
263	accumulation in C. elegans via a fat-6- and fat-7-dependent process. The modulation of fat-6 and
264	<i>fat-7</i> was proposed via the regulation of <i>sbp-1</i> by hesperidin 34 and <i>mdt-15</i> by pu-erh tea extract
265	35 and N- γ -(l-glutamyl)-l-selenomethionine. ³⁶ However, none of these genes are involved in the
266	effect of TMR investigated in this study. In addition, other SCD regulators NHR-49, NHR-80
267	and DAF-16 ³³ were not influenced by TMR. Therefore, whether TMR's effect was by acting
268	directly on <i>fat-6</i> and <i>fat-7</i> , or indirectly through the regulation of an alternative upstream
269	modulator, is not clear, and needs to be further elucidated.
270	pod-2 encodes the acetyl-CoA carboxylase (ACC) homolog responsible for catalyzing the
271	first step of <i>de novo</i> fatty acid biosynthesis. In this report TMR significant modulated <i>pod-2</i> , but
272	not <i>sbp-1</i> , which suggests the modulation of <i>pod-2</i> by TMR might be independent of <i>sbp-1</i> . In
273	addition to <i>sbp-1</i> , POD-2/ACC is known to be regulated by other factors, such as AMPKs. ³⁷
274	Thus, increased AAK-2/AMPKs might play a role in the regulation of <i>pod-2</i> by TMR treatment.
275	Additionally, the reduced <i>fat-6</i> and <i>fat-7</i> might be contributing to TMR's effect on <i>pod-2</i> , as the
276	inhibition of SCDs leads to the accumulation of saturated fatty acyl-CoA, which may result in a
277	feedback inhibition of ACC (POD-2 in C. elegans). ³⁸
278	TUB-1, the TUBBY homolog, functions with KAT-1, a 3-ketoacyl-coA thiolase, to
279	modulate fat metabolism, which is known to be linked to fatty acid β -oxidation. ²⁶⁻²⁸ In addition,
280	RAB-7 (Ras-related protein Rab-7a homolog), a mediated endocytic pathway, might be a target
281	for <i>tubby</i> to regulate fat storage. ²⁶⁻²⁸ In the current study, TMR activated <i>tub-1</i> , which suggests a

282 possible role for TMR in fatty acid β -oxidation and the endocytic pathway. Along with TUB-1,

283 NHR-49, a functional homolog of PPAR α , is also reported to regulate β -oxidation.³⁰ However,

284 current results showed that TMR did not influence *nhr-49*, which is consistent with a previous 285 finding that TMR is not acting as a PPAR α agonist.³⁹ Since *nhr-49* and *tub-1* are both able to 286 modulate fatty acid β -oxidation, whereas TMR only modulates *tub-1*, but not *nhr-49*, we 287 speculate that *tub-1* and *nhr-49* may regulate β -oxidation through distinct mechanisms. Further 288 studies will be needed to determine the role of TMR, particularly in *tub-1*-mediated fatty acid β -289 oxidation.

290 It was previously reported that the fat-lowering effect of resveratrol was via the activation of AMPKs and Sirtuin 1 (SIRT 1) to promote adipocyte browning.^{40, 41} Resveratrol derivatives, 291 292 piceatannol (hydroxylated derivative) and pterostilbene (demethylated derivative), were also reported to activate AMPKs and SIRT 1.42-45 Our study found that TMR increases expression of 293 294 *aak-2*, and it was previously reported that TMR also activates SIRT1.⁴⁶ In addition, it was reported that resveratrol regulated lipid metabolism by regulating SCDs (fat-6 and fat-7).47-49 295 296 Although this is the first report on the role of SCDs (fat-6 and fat-7) in TMR's impact on fat 297 reduction, results suggest that resveratrol and its derivatives not only share structural homology, 298 they also may share common mechanisms regulating lipid metabolism.

299 Previously TMR was reported to have better bioactivities than resveratrol, especially 300 anticancer properties in numerous cancer cells.⁵⁰⁻⁵⁵ One study directly compared the same dose 301 of TMR and resveratrol (50 mg/kg dose, orally administered every other day for 52 days) in nude 302 mice, and showed that resveratrol undergoes more extensive metabolic degradation than TMR, 303 which resulted in a higher serum level of TMR ($0.94\pm0.55 \,\mu\text{g/mL}$) compared to that of resveratrol ($0.02\pm0.01 \ \mu g/mL$).^{50, 51} Consistently, Lin et al. reported that the clearance for TMR 304 305 was found to be 8- to 9-times slower than that of resveratrol in rats.⁵ Thus, it was suggested that 306 the improved bioactivities of TMR over resveratrol are due in part to methoxylation in TMR that

307	may hinder conjugation under detoxification metabolism, and/or alternatively to the greater
308	lipophilicity of TMR, which leads to greater cell membrane permeability than resveratrol. In
309	addition to the TMR studied in this research, which is a trans-isomer, TMR also has a cis-
310	isomer, which has shown greater potency in inhibiting cancer cell growth compared to trans-
311	TMR, although with higher cytotoxicity.56 However, in the current study, we observed similar
312	effects of TMR and resveratrol on body fat reduction (Supplementary Figure S1). Although C.
313	elegans possess the conserved detoxification pathways to the mammals,57,58 the metabolic fate of
314	the xenobiotics between C. elegans and humans may still be different, including the metabolism
315	of bioactives by gut microbiota in the intestines. ^{59, 60} Moreover, C. elegans can absorb bioactives
316	through cuticles along with ingestion, ¹⁹ and these differences may lead to different overall
317	responses. Thus, it would still need to be determined if TMR exhibits enhanced potency over
318	resveratrol and/or other cognates in fat reduction, particularly in humans.
319	According to our results, TMR at 100 and 200 μ M did not significantly impact the
320	normal physiological parameters of growth rate, body size, food intake and reproduction, while
321	the locomotive activity, represented as average moving speed, was reduced by TMR at 200 μ M,
322	although with a relatively small reduction of 10% over the control. The reduced locomotive
323	activity by TMR treatment might be an indicator for potential toxicity when the dosage of TMR
324	is greater than 200 μ M. Alternatively, as locomotive activity is regulated by neural networks, ⁶¹ it
325	may indicate the potential effects of TMR on the nervous system. However, future research
326	would be needed to confirm the significance of reduced locomotive activity by TMR observed in
327	the current study.
220	To conclude, our data success that TMD, a mathematical derivative of a successful

328 To conclude, our data suggests that TMR, a methylated derivative of resveratrol,
329 significantly reduced fat accumulation in *C. elegans*. The fat reduction induced by TMR requires

330	steroyl-CoA desaturase, <i>fat-6</i> and <i>fat-7</i> , along with the contributions of <i>tub-1</i> , <i>pod-2</i> , as well as
331	aak-2. Although it is not currently possible to translate doses used in C. elegans directly to
332	animals or humans, the current study may still provide the foundation for future studies with
333	rodents and human clinical studies.
334	
335	Acknowledgments
336	This material is based upon work supported in part by the National Institute of Food and
337	Agriculture, U.S. Department of Agriculture, the Massachusetts Agricultural Experiment Station
338	and the Department of Food Science, the University of Massachusetts Amherst, under project
339	numbers MAS00492. All the strains were provided by the CGC, which is funded by the NIH
340	Office of Research Infrastructure Programs (P40 OD010440). Authors thank Ms. Lynnea Young
341	for help proofreading this manuscript.

342 **Reference**

- B. B. Aggarwal, A. Bhardwaj, R. S. Aggarwal, N. P. Seeram, S. Shishodia and Y. Takada, Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies, *Anticancer Res.*, 2004, 24, 2783-2840.
- G. Blair, J. M. Cassady, J. Robbers, V. E. Tyler and R. F. Raffauf, Isolation of 3, 4', 5-trimethoxytrans-stilbene, otobaene and hydroxyotobain from Virola cuspidata, *Phytochemistry*, 1969, 8, 497-500.
- 3493.T. Walle, F. Hsieh, M. H. DeLegge, J. E. Oatis and U. K. Walle, High absorption but very low350bioavailability of oral resveratrol in humans, *Drug Metab. Dispos.*, 2004, **32**, 1377-1382.
- 3514.S. Fulda, Resveratrol and derivatives for the prevention and treatment of cancer, Drug Discovery352Today, 2010, 15, 757-765.
- 3535.H.-s. Lin and P. C. Ho, Preclinical pharmacokinetic evaluation of resveratrol trimethyl ether in354sprague-dawley rats: the impacts of aqueous solubility, dose escalation, food and repeated355dosing on oral bioavailability, J. Pharm. Sci., 2011, 100, 4491-4500.
- 3566.K. De Vries, M. Strydom and V. Steenkamp, Bioavailability of resveratrol: possibilities for357enhancement, J. Herb. Med., 2018, **11**, 71-77.
- M. Rossi, F. Caruso, R. Antonioletti, A. Viglianti, G. Traversi, S. Leone, E. Basso and R. Cozzi,
 Scavenging of hydroxyl radical by resveratrol and related natural stilbenes after hydrogen
 peroxide attack on DNA, *Chem. Biol. Interact.*, 2013, **206**, 175-185.
- Y. Son, H. T. Chung and H. O. Pae, Differential effects of resveratrol and its natural analogs,
 piceatannol and 3, 5, 4'-trans-trimethoxystilbene, on anti-inflammatory heme oxigenase-1
 expression in RAW264. 7 macrophages, *Biofactors*, 2014, **40**, 138-145.
- 9. P. Shen, Y. Yue and Y. Park, A living model for obesity and aging research: *Caenorhabditis elegans, Crit. Rev. Food Sci. Nutr.*, 2018, **58**, 741-754.
- T. Stiernagle, Maintenance of C. elegans (February 11, 2006), in WormBook, ed. The C. elegans
 Research Community, WormBook, doi/10.1895/wormbook.1.101.1, <u>http://www.wormbook.org</u>,
 (accessed April 2019)
- 36911.Q. Sun, Y. Yue, P. Shen, J. J. Yang and Y. Park, Cranberry product decreases fat accumulation in
Caenorhabditis elegans, J. Med. Food, 2016, **19**, 427-433.
- D. Colmenares, Q. Sun, P. Shen, Y. Yue, D. J. McClements and Y. Park, Delivery of dietary
 triglycerides to *Caenorhabditis elegans* using lipid nanoparticles: nanoemulsion-based delivery
 systems, *Food Chem.*, 2016, **202**, 451-457.
- 374 13. P. Shen, Y. Yue, K.-H. Kim and Y. Park, Piceatannol reduces fat accumulation in *Caenorhabditis*375 *elegans, J. Med. Food.*, 2017, **20**, 887-894.
- 37614.P. Shen, Y. Yue, Q. Sun, N. Kasireddy, K. H. Kim and Y. Park, Piceatannol extends the lifespan of377*Caenorhabditis elegans* via DAF-16, *Biofactors*, 2017, **43**, 379-387.
- 37815.G. A. Lemieux, J. Liu, N. Mayer, R. J. Bainton, K. Ashrafi and Z. Werb, A whole-organism screen379identifies new regulators of fat storage, *Nat. Chem. Biol.*, 2011, **7**, 206-213.
- B. Raizen, B.-m. Song, N. Trojanowski and Y.-J. You, Methods for measuring pharyngeal
 behaviors (December 18, 2012), *in WormBook, ed. The C. elegans Research Community,*WormBook, doi/10.1895/wormbook.1.154.1, http://www.wormbook.org, (accessed April 2019).
- P. Shen, J. C. Kershaw, Y. Yue, O. Wang, K.-H. Kim, D. J. McClements and Y. Park, Effects of
 conjugated linoleic acid (CLA) on fat accumulation, activity, and proteomics analysis in *Caenorhabditis elegans, Food Chem.*, 2018, **249**, 193-201.
- 38618.X. Xiao and B.-L. Song, SREBP: a novel therapeutic target, Acta Biochim. Biophys. Sin., 2013, 45,3872-10.

388 389	19.	P. Shen, Y. Yue, J. Zheng and Y. Park, <i>Caenorhabditis elegans</i> : a convenient <i>in vivo</i> model for assessing the impact of food bioactive compounds on obesity, aging, and Alzheimer's disease,
390	•	Annu. Rev. Food Sci. Technol., 2018, 9 , 1-22.
391	20.	J. L. Watts and M. Ristow, Lipid and carbohydrate metabolism in <i>Caenorhabditis elegans</i> ,
392		<i>Genetics</i> , 2017, 207 , 413-446.
393	21.	T. Nomura, M. Horikawa, S. Shimamura, T. Hashimoto and K. Sakamoto, Fat accumulation in
394		Caenorhabditis elegans is mediated by SREBP homolog SBP-1, Genes Nutr., 2010, 5, 17-27.
395	22.	P. Cohen, J. M. Ntambi and J. M. Friedman, Stearoyl-CoA desaturase-1 and the metabolic
396	•	syndrome, Endocr. Metab. Immune Disord. Drug Targets, 2003, 3 , 271-280.
397	23.	Y. Choi, YC. Kim, YB. Han, Y. Park, M. W. Pariza and J. M. Ntambi, The <i>trans</i> -10, <i>cis</i> -12 isomer
398		of conjugated linoleic acid downregulates stearoyl-CoA desaturase 1 gene expression in 3T3-L1
399		adipocytes, J. Nutr., 2000, 130 , 1920-1924.
400	24.	A. Dobrzyn and J. Ntambi, Stearoyl-CoA desaturase as a new drug target for obesity treatment,
401		Obes. Rev., 2005, 6 , 169-174.
402	25.	S. S. Lee, S. Kennedy, A. C. Tolonen and G. Ruvkun, DAF-16 target genes that control <i>C. elegans</i>
403		life-span and metabolism, Science, 2003, 300 , 644-647.
404	26.	K. Carroll, C. Gomez and L. Shapiro, Tubby proteins: the plot thickens, Nat. Rev. Mol. Cell Biol.,
405		2004, 5 , 55-63.
406	27.	P. W. Kleyn, W. Fan, S. G. Kovats, J. J. Lee, J. C. Pulido, Y. Wu, L. R. Berkemeier, D. J. Misumi, L.
407		Holmgren and O. Charlat, Identification and characterization of the mouse obesity gene tubby: a
408		member of a novel gene family, <i>Cell</i> , 1996, 85 , 281-290.
409	28.	A. Mukhopadhyay, B. Deplancke, A. J. Walhout and H. A. Tissenbaum, <i>C. elegans</i> tubby regulates
410		life span and fat storage by two independent mechanisms, <i>Cell Metab.</i> , 2005, 2 , 35-42.
411	29.	I. C. Elle, L. C. Olsen, MB. Mosbech, S. V. Rødkær, D. Pultz, S. G. Boelt, J. Fredens, P. Sørensen
412		and N. J. Færgeman, C. elegans: a model for understanding lipid accumulation, Lipid Insights,
413		2008, 1 , LPI. S1057.
414	30.	M. R. Van Gilst, H. Hadjivassiliou, A. Jolly and K. R. Yamamoto, Nuclear hormone receptor NHR-
415		49 controls fat consumption and fatty acid composition in <i>C. elegans, PLoS Biol.</i> , 2005, 3 , e53.
416	31.	H. Miyoshi, J. W. Perfield, M. S. Obin and A. S. Greenberg, Adipose triglyceride lipase regulates
417		basal lipolysis and lipid droplet size in adipocytes, J. Cell. Biochem., 2008, 105, 1430-1436.
418	32.	D. G. Hardie, F. A. Ross and S. A. Hawley, AMPK: a nutrient and energy sensor that maintains
419		energy homeostasis, Nat. Rev. Mol. Cell Biol., 2012, 13, 251-262.
420	33.	J. L. Watts, Fat synthesis and adiposity regulation in <i>Caenorhabditis elegans, Trends Endocrinol.</i>
421		<i>Metab.</i> , 2009, 20 , 58-65.
422	34.	H. Peng, Z. Wei, H. Luo, Y. Yang, Z. Wu, L. Gan and X. Yang, Inhibition of fat accumulation by
423		hesperidin in Caenorhabditis elegans, J. Agric. Food Chem., 2016, 64 , 5207-5214.
424	35.	Y. Ding, X. Zou, X. Jiang, J. Wu, Y. Zhang, D. Chen and B. Liang, Pu-erh tea down-regulates sterol
425		regulatory element-binding protein and stearyol-CoA desaturase to reduce fat storage in
426		Caenorhaditis elegans, PloS ONE, 2015, 10 , e0113815.
427	36.	C. H. Chang, H. X. Q. Liao, F. L. Hsu, C. T. Ho and V. H. C. Liao,
428		N-Y-(I-glutamyl)-I-selenomethionine inhibits fat storage via the stearoyl-CoA desaturases FAT-6
429		and FAT-7 and the selenoprotein TRXR-1 in Caenorhabditis elegans, Mol. Nutr. Food Res., 2018,
430		61 , 1800784.
431	37.	C. Cantó and J. Auwerx, AMP-activated protein kinase and its downstream transcriptional
432		pathways, Cell. Mol. Life Sci., 2010, 67, 3407-3423.
433	38.	K. Ashrafi, Obesity and the regulation of fat metabolism (March 9, 2007), in WormBook, ed. The
434		C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.130.1,
435		http://www.wormbook.org, (accessed April 2019).

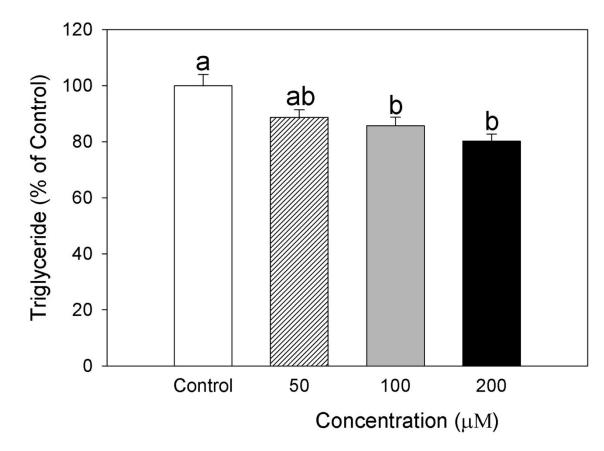
436 437	39.	A. M. Rimando, R. Nagmani, D. R. Feller and W. Yokoyama, Pterostilbene, a new agonist for the peroxisome proliferator-activated receptor α -isoform, lowers plasma lipoproteins and
438		cholesterol in hypercholesterolemic hamsters, J. Agric. Food Chem., 2005, 53, 3403-3407.
439	40.	S. Wang, X. Liang, Q. Yang, X. Fu, C. J. Rogers, M. Zhu, B. Rodgers, Q. Jiang, M. V. Dodson and M.
440		Du, Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-
441		activated protein kinase (AMPK) α1 <i>, Int. J. Obes.,</i> 2015, 39 , 967-976.
442	41.	N. L. Price, A. P. Gomes, A. J. Ling, F. V. Duarte, A. Martin-Montalvo, B. J. North, B. Agarwal, L.
443		Ye, G. Ramadori and J. S. Teodoro, SIRT1 is required for AMPK activation and the beneficial
444		effects of resveratrol on mitochondrial function, Cell Metab., 2012, 15, 675-690.
445	42.	S. Kawakami, Y. Kinoshita, H. Maruki-Uchida, K. Yanae, M. Sai and T. Ito, Piceatannol and its
446		metabolite, isorhapontigenin, induce SIRT1 expression in THP-1 human monocytic cell line,
447		Nutrients, 2014, 6 , 4794-4804.
448	43.	S. Gómez-Zorita, A. Fernández-Quintela, A. Lasa, L. Aguirre, A. M. Rimando and M. P. Portillo,
449		Pterostilbene, a dimethyl ether derivative of resveratrol, reduces fat accumulation in rats fed an
450		obesogenic diet, J. Agric. Food Chem., 2014, 62 , 8371-8378.
451	44.	K. Nagao, T. Jinnouchi, S. Kai and T. Yanagita, Pterostilbene, a dimethylated analog of
452		resveratrol, promotes energy metabolism in obese rats, J. Nutr. Biochem., 2017, 43 , 151-155.
453	45.	YC. Tung, YH. Lin, HJ. Chen, SC. Chou, AC. Cheng, N. Kalyanam, CT. Ho and MH. Pan,
454		Piceatannol exerts anti-obesity effects in C57BL/6 mice through modulating adipogenic proteins
455		and gut microbiota, <i>Molecules</i> , 2016, 21 , 1419.
456	46.	Q. Li, K. Wang, Y. Ma, C. Qin, C. Dong, P. Jin, Y. Wu, X. Xiong, N. Li and C. Hu, Resveratrol
457		derivative BTM-0512 mitigates obesity by promoting beige remodeling of subcutaneous
458		preadipocytes, Acta Biochim. Biophys. Sin., 2017, 49 , 318-327.
459	47.	C. Rojas, B. Pan-Castillo, C. Valls, G. Pujadas, S. Garcia-Vallve, L. Arola and M. Mulero,
460	47.	Resveratrol enhances palmitate-induced ER stress and apoptosis in cancer cells, <i>PLoS ONE</i> , 2014,
461		9 , e113929.
462	48.	XH. Zhang, B. Huang, SK. Choi and JS. Seo, Anti-obesity effect of resveratrol-amplified grape
463	40.	skin extracts on 3T3-L1 adipocytes differentiation, <i>Nutr. Res. Pract.</i> , 2012, 6 , 286-293.
464	49.	K. Svensson, S. Schnyder, V. Albert, B. Cardel, L. Quagliata, L. M. Terracciano and C. Handschin,
465	45.	Resveratrol and SRT1720 elicit differential effects in metabolic organs and modulate systemic
466		parameters independently of skeletal muscle peroxisome proliferator-activated receptor y co-
467		activator 1 α (PGC-1 α), J. Biol. Chem., 2015, 290 , 16059-16076.
468	50.	F. S. Aldawsari and C. A. Velázquez-Martínez, 3, 4', 5- <i>trans</i> -Trimethoxystilbene; a natural
469	50.	analogue of resveratrol with enhanced anticancer potency, <i>Invest. New Drugs</i> , 2015, 33 , 775-
470		786.
471	51.	S. J. Dias, K. Li, A. M. Rimando, S. Dhar, C. S. Mizuno, A. D. Penman and A. S. Levenson,
472	51.	Trimethoxy-resveratrol and piceatannol administered orally suppress and inhibit tumor
473		formation and growth in prostate cancer xenografts, <i>Prostate</i> , 2013, 73 , 1135-1146.
474	БЭ	Y. Bader, S. Madlener, S. Strasser, S. Maier, P. Saiko, N. Stark, R. Popescu, D. Huber, M. Gollinger
474	52.	
		and T. Erker, Stilbene analogues affect cell cycle progression and apoptosis independently of
476 477		each other in an MCF-7 array of clones with distinct genetic and chemoresistant backgrounds,
477 478	F 2	Oncol. Rep., 2008, 19 , 801-810.
478 479	53.	D. Simoni, M. Roberti, F. P. Invidiata, E. Aiello, S. Aiello, P. Marchetti, R. Baruchello, M. Eleopra,
		A. Di Cristina and S. Grimaudo, Stilbene-based anticancer agents: resveratrol analogues active
480		toward HL60 leukemic cells with a non-specific phase mechanism, <i>Bioorg. Med. Chem. Lett.</i> ,
481		2006, 16 , 3245-3248.

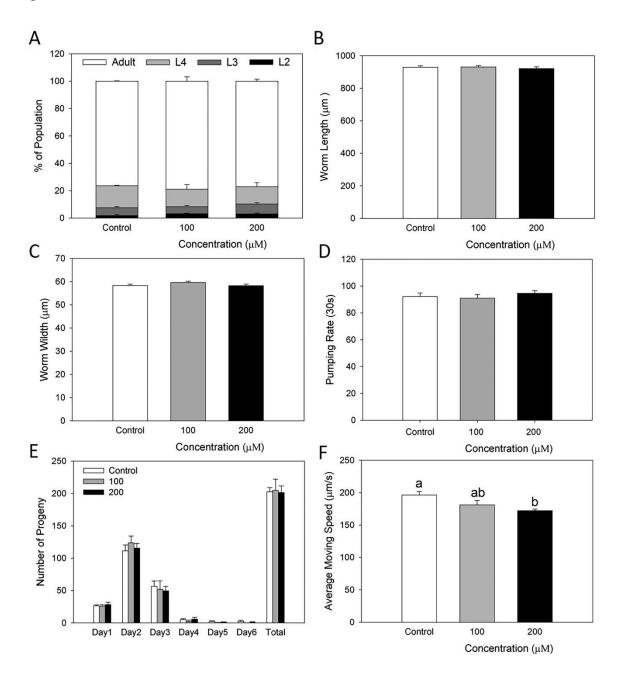
482 483 484	54.	M. Belleri, D. Ribatti, S. Nicoli, F. Cotelli, L. Forti, V. Vannini, L. A. Stivala and M. Presta, Antiangiogenic and vascular-targeting activity of the microtubule-destabilizing <i>trans</i> -resveratrol derivative 3, 5, 4'-trimethoxystilbene, <i>Mol. Pharmacol.</i> , 2005, 67 , 1451-1459.
485	55.	L. Kai, J. Wang, M. Ivanovic, Y. T. Chung, W. B. Laskin, F. Schulze-Hoepfner, Y. Mirochnik, R. L.
486		Satcher and A. S. Levenson, Targeting prostate cancer angiogenesis through
487		metastasis-associated protein 1 (MTA1), Prostate, 2011, 71, 268-280.
488	56.	C. S. Mizuno, W. Ampomaah, F. R. Mendonça, G. C. Andrade, A. M. N. d. Silva, M. O. Goulart and
489		R. A. d. Santos, Cytotoxicity and genotoxicity of stilbene derivatives in CHO-K1 and HepG2 cell
490		lines, <i>Genet. Mol. Biol.</i> , 2017, 40 , 656-664.
491	57.	T. H. Lindblom and A. K. Dodd, Xenobiotic detoxification in the nematode Caenorhabditis
492		elegans, J. Exp. Zool., Part A, 2006, 305 , 720-730.
493	58.	T. Fukushige, H. E. Smith, J. Miwa, M. W. Krause and J. A. Hanover, A genetic analysis of the
494		Caenorhabditis elegans detoxification response, Genetics, 2017, 206, 939-952.
495	59.	E. M. Wilkinson, Z. E. Ilhan and M. M. Herbst-Kralovetz, Microbiota–drug interactions: impact on
496		metabolism and efficacy of therapeutics, <i>Maturitas</i> , 2018, 112 , 53-63.
497	60.	H. Remmer, The role of the liver in drug metabolism, <i>Am. J. Med.</i> , 1970, 49 , 617-629.
498	61.	J. Gjorgjieva, D. Biron and G. Haspel, Neurobiology of Caenorhabditis elegans locomotion: where
499		do we stand?, <i>Bioscience</i> , 2014, 64 , 476-486.
500		
501		

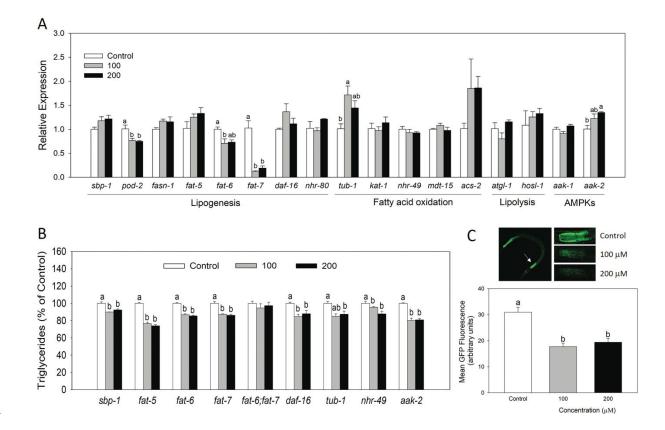
502	Figure 1. <i>trans</i> -Trismethoxy resveratrol significantly decreased fat accumulation in wild type C.
503	elegans. Synchronized L1 worms were treated with the control (0.1% DMSO) or trans-
504	trismethoxy resveratrol (50, 100 and 200 μ M) for 4 days in 12-well plate with liquid medium at
505	20°C. Triglyceride content was measured and normalized by protein level. Results are expressed
506	as mean±S.E (n=4 wells, each well contained >1000 nematodes). ^{a,b} Means with different letters
507	are significantly different ($P < 0.05$).
508	
509	Figure 2. Influence of <i>trans</i> -trismethoxy resveratrol on physiological parameters. Synchronized
510	L1 worms were treated with the control (0.1% DMSO) or <i>trans</i> -trismethoxy resveratrol (100 and
511	200 μ M) for 2 days in liquid medium at 20°C. Growth rate (A) was scored as the percentage of
512	worms at different developmental stages (n=3 plates, each plate >50 worms). Worm size,
513	including length (B) and width (C), and locomotive activity, as average moving speed (F), were
514	measured and analyzed by using the WormLab Tracking System (n=150-161). Food intake (D)
515	was monitored by counting the pharyngeal pumping rate per 30s (n=12). Reproduction assay (E)
516	was conducted by counting the number of progenies per worm until the reproduction period was
517	ceased (n=5-6). Results are expressed as mean \pm S.E. ^{a,b} Means with different letters are
518	significantly different (P<0.05).
519	

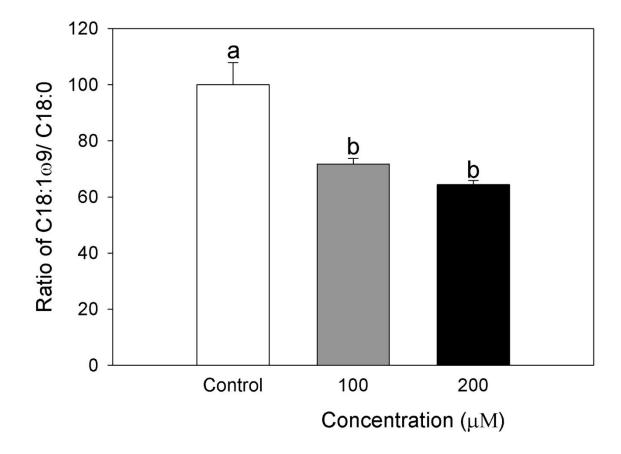
520 **Figure 3.** *trans*-Trismethoxy resveratrol regulates lipid metabolism-related genes. (A) Effect of

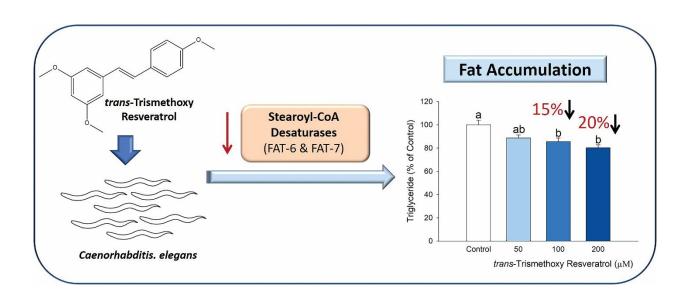
521 *trans*-trismethoxy resveratrol on the mRNA expressions of lipid metabolism related genes.


522 Synchronized L1 worms were treated with control (0.1% DMSO) or *trans*-trismethoxy


523 resveratrol (100 and 200 μ M) for 2 days in 60 mm dish with liquid medium at 20°C (n=3, each


524 plate contained >8000 nematodes). Tested genes are *sbp-1* (sterol regulatory element binding


525	protein-1), pod-2 (polarity and osmotic sensitivity defect-2), fasn-1 (fatty acid synthase-1), fat-5
526	(fatty acid desaturase-5), fat-6 (fatty acid desaturase-6), fat-7 (fatty acid desaturase-7), daf-16
527	(abnormal dauer formation-16), <i>nhr-80</i> (nuclear hormone receptor-80), <i>tub-1</i> (tubby related-1),
528	kat-1 (3-ketoacyl-coa thiolase), nhr-49 (nuclear hormone receptor-49), mdt-15 (mediator-15),
529	acs-2 (fatty acid CoA synthetase-2), atgl-1 (adipose triglyceride lipase-1), hosl-1 (hormone
530	sensitive lipase-1), aak-1 (AMP-activated kinase-1), and aak-2 (AMP-activated kinase-2). (B)
531	Effect of <i>trans</i> -trismethoxy resveratrol on different mutant worms (n=4 wells, each well
532	contained >1000 nematodes). Synchronized L1 worms were treated with control (0.1% DMSO)
533	or <i>trans</i> -trismethoxy resveratrol (100 and 200 μ M) for 4 days in 12-well plate with liquid
534	medium at 20°C. Triglyceride content was measured and normalized by protein level. (C)
535	Representative images of FAT-7::GFP expression. FAT-7::GFP expression was analyzed by
536	Image J software by quantifying fluorescence intensity in the first anterior pair of intestinal cells
537	(n=23-42). White arrow points out the first anterior pair of intestinal cells. Results are expressed
538	as mean \pm S.E. ^{a,b} Means with different letters are significantly different (<i>P</i> <0.05).
539	
540	Figure 4. <i>trans</i> -Trismethoxy resveratrol significantly decreased the desaturation index.
541	Synchronized L1 worms were administrated with control (0.1% DMSO) or <i>trans</i> -trismethoxy
542	resveratrol (100 and 200 μ M) for 4 days in 100 mm dish with liquid medium at 20°C. After
543	treatment, total fatty acids were extracted, methylated and then analyzed by GC/MS (n=3 plates,
544	each plate >10000 worms). Results are expressed as mean \pm S.E. ^{a,b} Means with different letters


545 are significantly different (P < 0.05).

trans-Trismethoxy resveratrol reduced fat accumulation via the regulation of FAT-6 and FAT-7, stearoyl-CoA desaturases homologs, in *Caenorhabditis elegans*.