Purdue University

Purdue e-Pubs

Department of Food Science Faculty Publications

Department of Food Science

5-29-2020

Piceatannol, a Natural Stilbene, Extends the Lifespan of Caenorhabditis elegans Under Fasting Through Inhibition of Lipolysis

Miran Jang Purdue University

Yuan Zhang Purdue University

Juan Bai *Purdue University*

An Jun-Bae Seowon University

Gun-Hee Kim Duksung Women's University

See next page for additional authors

Follow this and additional works at: https://docs.lib.purdue.edu/foodscipubs

Recommended Citation

Jang Miran, Zhang Yuan, Bai Juan, Jun-Bae An, Park Yeonhwa, Kim Gun-Hee, Kee-Hong Kim, Piceatannol, a Natural Stilbene, Extends the Lifespan of Caenorhabditis elegans Under Fasting Through Inhibition of Lipolysis, Current Developments in Nutrition, Volume 4, Issue Supplement_2, June 2020, Page 38, https://doi.org/10.1093/cdn/nzaa040_038

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Authors

Miran Jang, Yuan Zhang, Juan Bai, An Jun-Bae, Gun-Hee Kim, Yeonhwa Park, and Kee Hong Kim

This article is available at Purdue e-Pubs: https://docs.lib.purdue.edu/foodscipubs/35

Piceatannol, a Natural Stilbene, Extends the Lifespan of Caenorhabditis elegans Under Fasting Through Inhibition of Lipolysis

Miran Jang¹, Yuan Zhang¹, Juan Bai¹, An Jun-Bae², Yeonhwa Park³, Gun-Hee Kim⁴, and Kee-Hong Kim¹

¹Purdue University; ²Seowon University; ³University of Massachusetts Amherst; and ⁴Duksung Women's University

Objectives: Lipolysis is the catabolic process that hydrolyzes triglyceride (TG) to free fatty acids (FFAs) and glycerol under negative energy balance such as fasting. In adipocytes, adipose TG lipase (ATGL), hormone-sensitive lipase (HSL), and monoglyceride lipase play key roles in a series of TG hydrolysis reactions in mammals. However, overly activated adipose lipolysis is believed to contribute to link between obesity and systemic inflammation and oxidative stress. We previously demonstrated that piceatannol (PIC), a natural resveratrol analogue, inhibits adipogenesis in cultured adipocytes and lipogenesis in *Caenorhabditis elegans*. Furthermore, we showed that PIC extends the lifespan of *C. elegans* via the insulin/IGF-1 signaling. However, the effects of PIC on lipid metabolism during fasting state is unknown.

Methods: We conducted Oil-Red-O assay, Enzyme assay (TG and Free glycerol contents), PCR analysis and lifespan assay.

Results: In this study, we demonstrated that PIC-treated *C. elegans* exhibited suppressed lipolysis under fasting as judged by increased lipid accumulation and TG levels with decreased free glycerol level. Consistent with these findings, PIC treatment resulted in decreased mRNA levels of genes involved lipolysis such as *atgl-1, hosl-1* and *aak-2* in fasted *C. elegans*. Also, PIC treatment augmented fasting-induced lifespan of *C. elegans* by an increased *daf-16* gene expression. However, such effect was abolished when *atgl-1, aak-2*, and *daf-16* mutants were treated with PIC. In addition, we also found that autophagy is required for PIC-induced lifespan in *C. elegans* during fasting since autophagy inhibitor treatments and autophagy gene deficient worms resulted in blunting the lifespan extension effect of PIC.

Conclusions: Collectively, our results indicate that PIC contributes to lifespan extension in *C. elegans* during fasting possibly through regulating lipolysis- and/or autophagy-dependent lipid metabolism.

Funding Sources: 1. The National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2019R1A2C1086146) and (2019R1A6A3A03033878) 2. The Rural Development Administration of the Republic of Korea.