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Abstract: During oxidative stress, degenerative diseases such as atherosclerosis, Alzheimer’s, and
certain cancers are likely to develop. Recent research on canary seed (Phalaris canariensis) peptides
has demonstrated the high in vitro antioxidant potential. Thus, this study aimed to assess the
cellular and in vivo antioxidant capacity of a low-molecular-weight (<3 kDa) canary seed peptide
fraction (CSPF) using Caco-2 cells and the Caenorhabditis elegans model. The results show that
the CSPF had no cytotoxicity effect on Caco-2 cells at any tested concentration (0.3–2.5 mg/mL).
Additionally, the cellular antioxidant activity (CAA) of the CSPF was concentration-dependent,
and the highest activity achieved was 80% by the CSPF at 2.5 mg/mL. Similarly, incubation with
the CSPF significantly mitigated the acute and chronic oxidative damage, extending the lifespan
of the nematodes by 88 and 61%, respectively. Furthermore, it was demonstrated that the CSPF
reduced the accumulation of reactive oxygen species (ROS) to safe levels after sub-lethal doses of
pro-oxidant paraquat. Quantitative real-time PCR revealed that the CSPF increased the expression of
oxidative-stress-response-related gene GST-4. Overall, these results show that the CSPFs relied on
GST-4 upregulation and scavenging of free radicals to confer oxidative stress protection and suggest
that a CSPF can be used as a natural antioxidant in foods for health applications.

Keywords: canary seed peptides; Caenorhabditis elegans; oxidative stress; antioxidant potential

1. Introduction

Hairless canary seed (Phalaris canariensis L.) is a novel cereal grain that has gained
the attention of scientists due to its high protein content (23%), unique starch chemistry,
and potential application as a functional ingredient [1–4]. Typical canary seeds are not
safe for human consumption due to the presence of toxic siliceous hairs on the surface of
the seeds’ kernel; however, crossbreeding techniques allowed the development of novel
hairless varieties that are safe and approved for human consumption [5]. Previous studies
demonstrated the high in vitro antioxidant activity of canary seed extracts, and it was
believed that phenolic compounds were responsible for their antioxidant activity. However,
recent research efforts have linked the antioxidant activity of canary seeds to the release of
hydrophobic peptides from prolamin proteins during gastrointestinal digestion [6,7]. In
accordance with these findings, various studies have also shown that protein hydrolysis
is associated with a rise in antioxidant properties [8–11]. Moreover, it has been shown
that a peptides’ rise in antioxidant activity is dependent on their amino acid composition,
structure, hydrophobicity, and position in the peptide sequence [12]. For instance, amino
acids such as tyrosine, tryptophan, methionine, lysine, cysteine, and histidine are known
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for their high antioxidant activity attributed to their hydrogen-donating, peroxyl-radical-
trapping, and/or metal-ion-chelating abilities [13,14]. Furthermore, regarding the amino
acid residue position, tyrosine in the C- and N-termini are important motifs of antioxidant
peptides of rice (Oryza sativa) bran protein [15]. Likewise, the presence of non-polar
residues such as valine, leucine, isoleucine, alanine, and phenylalanine at the N-terminal
was a common characteristic of antioxidant peptides from ostrich (Struthio camelus) egg
whites [16]. In this context, it is imperative to study antioxidant peptides derived from novel
protein sources with high nutritional and biological value to satisfy the rising population’s
food demand and preference for naturally sourced ingredients.

Under normal physiological conditions, DNA and human cells undergo exposure to
reactive oxygen species (ROS) derived from essential metabolic processes in the human
body or compounds commonly present in our environment, such as X-rays, ozone, smoke,
environmental pollutants, and industrial chemicals [17]. This natural process repeats regu-
larly; nevertheless, this balance becomes unfavorable as we age. Its progression contributes
to aging and the development of several chronic complications, such as neurodegenera-
tive disorders, atherosclerosis, inflammation, and certain cancers [18]. Generating canary
seed peptides with commercial proteases could be an excellent strategy for developing
bioactive agents that could mitigate the damage caused by ROS in the body [6,7]. Yet,
the understanding of the health benefits of canary seed peptides remains limited, and no
evidence has shown that their antioxidant activities could be translated in vivo. Thus, using
an appropriate in vivo model organism to study oxidative stress is critical to recapitulate
any metabolic implication of canary seed peptide supplementation.

In this respect, the nematode Caenorhabditis elegans is widely used as a cost-effective
animal model to study pharmacological strategies to treat or prevent various human
diseases and their effects at metabolic or genomic levels. Recently, C. elegans was used as a
model to elucidate genetic pathways related to the antioxidative and anti-aging properties
of phenolic compounds from mulberry (Morus alba) [19], and bioactive peptides from
saltwater clam (Meretrix meretrix) [20]. In addition, it has been estimated that around 50%
of C. elegans genes are homologous to genes implicated in human diseases, and studies
have demonstrated that C. elegans is a valuable in vivo system for studying oxidative stress
response pathways [21]. Therefore, this study aimed to evaluate the cellular (using Caco-2
cells) and in vivo (using a C. elegans model) antioxidant effect of canary seed peptides
to generate new knowledge on the potential molecular mechanisms of these bioactive
peptides involved in lowering oxidative stress.

2. Materials and Methods
2.1. Materials

USDA-GRAS hairless canary seeds (CDC Cibo) were purchased from a commercial
vendor (Canpulse Foods LTD, Saskatoon, SK, Canada). Alcalase® (protease from Bacillus
licheniformis, P2.4 U/g) was purchased from Novozymes (Bagsvaerd, Denmark). Nema-
tode N2 (wild-type) C. elegans and bacterial strain Escherichia coli OP50 were purchased
from the Caenorhabditis Genetics Center (University of Minnesota, Minneapolis, MN,
USA). Ascorbic acid, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT),
tert-butyl hydrogen peroxide (t-BOOH), methyl viologen dichloride hydrate (paraquat),
Eagle’s Minimum Essential Medium (EMEM), and Caco-2 cells were all purchased from
Millipore Sigma (St. Louis, MO, USA). Chemicals and materials not specified above
were purchased from companies VWR International (Radnor, PA, USA), Millipore Sigma
(St. Louis, MO, USA), and Thermo Fisher Scientific (Waltham, MA, USA).

2.2. Preparation of Canary Seed Peptide Fraction (CSPF)

Canary seeds were prepared as previously reported [6]. Briefly, a canary seed protein
solution (22.5 mg of protein/mL at pH 8) was hydrolyzed at 50 ± 3 ◦C for four hours with
3% (w/w) Alcalase®. Proteolysis was stopped by pasteurization (95± 3 ◦C) for 15 min. Then,
the solution was cooled and centrifuged (17,636× g for 15 min) (Avanti J-26S Centrifuge,
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Beckman-Coulter INC. Brea, CA, USA). The supernatant was collected as a whole protein
hydrolysate (WPH) and stored at −80 ◦C until use. The WPH was subject to simulated
gastrointestinal digestion (SGD) using the method described by You, Zhao [22]. A WPH
solution (10 mg of protein/mL, at pH 2) was prepared using 1 M HCl and then incubated
with pepsin (4% weight/weight of protein) at 37 ◦C for two hours. The pH was increased
to 5.3 using a 0.9 M NaHCO3 solution and increased further to 7.5 using a 1.0 M NaOH
solution. Pancreatin was then added (4% w/w of protein), and the mixture was incubated
again at 37 ◦C for two hours. SGD was terminated by pasteurization (95 ± 3 ◦C) for 15 min.
Subsequently, the solution was centrifuged at 11,000× g for 15 min. The supernatant was
ultrafiltered using a <3 kDa cutoff membrane to collect the peptide fraction identified in
our previous study as being the most bioactive [6], which was referred to as canary seed
peptide fraction (CSPF). CSPF was frozen at −80 ◦C for 12 h and freeze-dried using a
Labconco FreeZone Plus 2.5 L cascade benchtop freeze dry system (Labconco Corp., Kansas
City, MO, USA). Lastly, CSPF concentrations used in this study were based on previous
investigations [6], preliminary antioxidant assays in Caco-2 cells, and C. elegans model.

2.3. Proximate Composition

CSPF was analyzed for moisture, ash, lipid, and protein content following the AOAC
methods 950.46(b), 920.153, 960.39, and 984.13 (A-D), respectively (AOAC 2016), through a
commercial analytical laboratory (A&L Great Lakes, Fort Wayne, IN, USA).

2.4. Total Amino Acid Analysis

The total amino acid analysis of CSPF digesta was performed by the University of
Missouri Agriculture Experiment Station Chemical Laboratories (University of Missouri,
Columbia, MO, USA) as previously described [23]. Briefly, two hundred milligrams of
CSPF were subjected to complete hydrolysis with 6 N HCI at 155 ◦C for 16 h. The amino
acids were analyzed using high-performance, cation exchange resin column in the Beckman
6300 Amino acid Analyzer (Beckman Instruments, Fullerton, CA, USA).

2.5. Cellular Viability Test

The cytotoxicity of CSPF was tested using the MTT assay as proposed by Er, Koparal [24].
Briefly, Caco-2 cells (passage 18) were seeded on a 96-well culture plate at 1 × 104 cells/well
and grown for 24 h using Dulbecco’s Modified Eagle Medium (DMEM). The DMEM was
removed, and a 100 µL aliquot of DMEM containing 0.31, 0.62, 1.25, or 2.50 mg/mL of
CSPF was added to the cells and incubated for 24 h at 37 ◦C in 5% CO2 conditions. Then,
CSPF medium was removed, and 100 µL of an MTT solution (0.5 mg/mL) in EMEM was
added to the cells. After two hours of incubation in dark conditions at 37 ◦C in 5% CO2,
100 µL of dimethylsulfoxide (DMSO) was added to dissolve blue crystals. Finally, the optical
density was measured at 570 nm using Multiskan™ FC Microplate Photometer (Waltham,
MA, USA). Cell viability was expressed as a percentage of viable cells relative to control cells
(untreated cells).

2.6. Cellular Antioxidant Activity (CAA)

The CAA was evaluated following a modified methodology by Malaypally, Liceaga [25].
Briefly, 100µL of Caco-2 cells (passage 18) were placed in a black 96-well plate (2.5× 105 cells/mL)
and incubated for 6 h under 5% CO2 at 37 ◦C. Then, the growth medium was removed, and
the cells were washed using 1× phosphate-buffered saline (PBS). Next, the cells were incubated
with 100 µL of DMEM with 60 µM dichlorodihydrofluorescein diacetate (DCFH-DA) for one
hour, followed by a washing step, and then exposed to a solution of CSPF (0.31, 0.62, 1.25, or
2.50 mg/mL) in DMEM for an additional hour. The CSPF solution was removed from each well,
followed by a final wash with 1x PBS. Then, the cells were exposed to an oxidizing environment
by adding 100 µL of 500 µM 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH) solution to
each well. Dichlorodihydrofluorescein (DCFH) production was measured every 5 min using the
fluorescent reader Spectra Max Gemini EM spectrofluorometer (Molecular Devices, Sunnyvale,
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CA, USA) with an excitation wavelength of 485 nm and an emission wavelength of 538 nm. The
sample blank contained DMEM and DCFH-DA without AAPH; negative control wells contained
cells with DCFH-DA and AAPH, and the positive control wells contained cells treated with
L-ascorbic acid (50 µM), DCFH-DA, and AAPH. The cellular antioxidant activity was calculated
by measuring the area under the curve based on Equation (1).

CAA unit = 100 − (
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2.7. Caenorhabditis Elegans Growth and Maintenance

C. elegans was grown and maintained according to the methodology proposed by
Bai, Farias-Pereira [26] and Solis and Petrascheck [27]. Briefly, 0.7 mL of E. coli (OP50)
grown overnight in lysogeny broth (LB) medium was plated on nematode growth medium
(NGM) agar plates. Immediately after, wild-type (N2) strains of C. elegans were seeded,
and the plates were incubated at 25 ◦C. After 2–3 days, enough nematode concentrations
were achieved, and the worms were collected by washing with M9 buffer. The OP50 was
removed by three washing steps, in which the supernatant was discarded after 10 min of
sedimentation. Consequently, the worms were synchronized by suspending them in 700 µL
of M9 buffer with 300 µL of household bleach, and 200 µL of 5 M NaOH, followed by 5 min
of vigorous vortexing. The eggs were then collected by centrifugation 3000× g for 2 min
and washed three times with M9 buffer. After the third wash step, eggs were suspended in
10 mL and hatched in a sterile test tube. Furthermore, L1-stage worms were grown to early
L4 stage by incubating them in an NGM plate with live E. coli (OP50) for 44–46 h. Finally,
L4 nematodes were collected and utilized for further experimentation.

2.8. Chronic and Acute Oxidative Stress Using C. elegans Model

The effect of CSPF on chronic and acute oxidative stress of C. elegans was determined
following the methodology proposed by Bai, Farias-Pereira [26] and Zhao, Cheng [28].
Briefly, nematodes in the L4 stage were incubated in S-complete medium solution with CSPF
(1, 2, or 3 mg/mL), 5-Fluoro-2′-deoxyuridine (FUdR) (120 µM), carbenicillin (2.8 µg/mL),
and amphotericin (0.40 µg/mL) for 24 h at 25 ◦C. After incubation with CSPF, chronic
or acute oxidative stress assessment was carried out. For chronic stress, a solution of
S-complete-containing paraquat (25 mM), FUdR (120 µM), carbenicillin (2.8 µg/mL), am-
photericin (0.40 µg/mL), and 20% of LB broth with E. coli (OP50) was added to the upper
(200 µL), and lower (600 µL) compartment of a 24-transwell plate, and the media were
changed every 70 h. The chronic stress analysis was initiated by adding 25 worms/well. For
acute oxidative stress, 100 µL of a solution of S-complete-containing t-BOOH (5 mM) and
20% of LB broth with E. coli (OP50) was added to wells containing 25 worms/well using
a 96-well plate. A total of 100 worms per treatment were scored microscopically based
on their movement every 30 min for acute oxidative stress and 12 h for chronic oxidative
stress, counting live and dead nematodes to determine their resistance to oxidative stress.

2.9. Quantitative Analysis of the Intracellular Reactive Oxygen Species (ROS)

The quantification of intracellular ROS accumulation in animals was carried out using
the method by Sarasija and Norman [29]. Briefly, L4 nematodes were pre-treated with
CSPF (1, 2, or 3 mg/mL) for 24 h as described in Section 2.8. Then, the worms were washed
three times with M9 buffer and incubated in a solution of S-complete-containing paraquat
(50 mM), FUdR (120 µM), carbenicillin (2.8 µg/mL), amphotericin (0.40 µg/mL), and 20%
of LB broth with E. coli (OP50) for a period of 48 h at 25 ◦C. After that, L4 nematodes were
washed three additional times with M9 buffer and then suspended in PBS at a pH 7 with
0.05% Tween®20. Next, worms were lysed by pulsed sonication for 40 s in an iced bath
using a QSonica Q500 Sonicator (Qsonica LLC, Newton, MA, USA). An aliquot (50 µL) of
worm extract (200 µg of protein/mL) was pipetted into a black 96-well plate with 50 µL of
DCFH-DA (500 µM). The plate was incubated at 37 ◦C, and the ROS levels were quantified
after 45 min using the fluorescent reader Spectra Max Gemini EM spectrofluorometer
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(Molecular Devices, Sunnyvale, CA, USA) at an excitation wavelength of 485 nm and an
emission wavelength of 538 nm.

2.10. Gene Expression by Quantitative Real-Time Polymerase Chain Reaction (qPCR)

RNA was extracted following the methodology proposed by Green and Sambrook [30],
and the qRT-PCR analysis followed the methodology proposed by Ogawa, Kodera [31].
Briefly, L4-stage nematodes were treated for 24 h with CSPF (3 mg/mL) at 20 ◦C as indicated
in Section 2.5. Subsequently, the RNA was extracted by homogenizing nematodes in 1 mL
of TRIzol (Invitrogen) for 5 min. RNA was then purified by adding 150 µL of chloroform
followed by centrifugation at 12,000× g for 15 min at 4 ◦C. The supernatant was recovered
as a source of RNA and was further washed and centrifuged three times with 0.5 mL of
75% ethanol at 12,000× g for 3 min. Finally, the pellet was resuspended with 0.5 mL of
DPEC water, 0.5 mL of isopropanol, and 50 µL of a 3 M sodium acetate solution at pH
5.5 followed by centrifugation at 12,000× g for 15 min at 4 ◦C. The precipitated RNA was
then suspended in DEPC water, and complementary DNA (cDNA) was subsequently
synthesized using the superscript II kit according to the manufacturer’s protocol. cDNA
was amplificated using SYBR premix Plus (SYBR Green) (Bio-Rad Laboratories, Hercules,
CA, USA). The reaction was carried out using StepOne Real-Time PCR System (Applied
Biosystems, Foster City, CA, USA), and the expression was normalized to housekeeping
gene β-actin. Lastly, the data were analyzed using the Delta Delta CT (2−∆∆Ct) method
to calculate the fold gene expression change relative to the control (no peptide exposure).
Primers used to quantify each transcript are specified in Supplementary Table S1.

2.11. Statistical Analysis

The results in this study were analyzed using a complete randomized design by a
one way-ANOVA followed by a Tukey’s post hoc test (p < 0.05 and p < 0.01). In addition,
a log-rank methodology was applied for survival estimates at (p < 0.01 and p < 0.0001).
The statistical analysis was carried out using the statistical software JMP® PRO version
15.1.0 (SAS Institute, Inc., Cary, NC, USA). At least three independent experiments were
performed for each assay, and in the case of C. elegans studies, a minimum of three different
populations, with at least 100 nematodes per treatment, were utilized. Finally, the results
are reported as mean ± standard deviation (SD) of triplicate determinations.

3. Results and Discussion
3.1. Proximal Composition and Amino Acid Analysis

The CSPF was composed of carbohydrate 74% (by difference), protein 22%, ash 3%,
and fat 1% (w/w, dry basis) content. Compared to previously reported raw canary seed
powder consisting of carbohydrate 71% (by difference), protein 18%, ash 6%, and fat 5%
(w/w, dry basis) [6], the CSPF was higher in carbohydrate and protein but lower in ash and
fat. The amino acid composition of the CSPF is shown in Table 1. In particular, the CSPF
had a higher content of glutamic acid 30.7%, isoleucine 4.3%, and histidine 2.0% compared
to raw unhydrolyzed canary seed protein containing 26.0, 3.9, and 1.6%, respectively [5].
Concerning other cereal proteins, glutamic acid in the CSPF was also higher than that of
rice (19%), maize (18%), barley (23%), oat (21%), and rye (24%) [1,32]. Furthermore, the
concentration of aromatic amino acids (phenylalanine, tyrosine, and tryptophan) in the
CSPF (13%) was also superior to that of maize (9%), rice (10%), wheat (8%), barley (10%),
oat (10%), and rye (8%) [32]. In addition, the CSPF had a higher concentration of arginine
(6%) and isoleucine (4%) than those present in maize, wheat, barley, and oat [32]. Although
the CSPF was deficient in methionine and lysine, the level of essential amino acids was
34%, comparable to that reported for other cereal sources, which ranged between 29 and
35%, and remained constant when compared to unhydrolyzed canary seed protein [32].
While no specific antioxidant peptide sequences were identified in the present study, we
previously identified and reported peptides in this CSPF that were rich in polypeptides
(4–8 amino acids long) and contained a high content of glutamine, proline, and cationic
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residues (histidine and arginine) [33]. In this respect, proteolysis with commercial proteases
such as Alcalase could contribute to the exposure of radical scavenging residues (e.g.,
aromatic, cationic, and non-polar amino acids) that increase the antioxidant activity and
promote the rise in the glutamic acid content observed in this study. Nevertheless, future
research should focus on developing a detailed identification of amino acid sequences in
the CSPF involved in these antioxidant properties.

Table 1. Total amino acid composition of canary seed peptide obtained from simulated gastrointestinal
digestion.

Amino Acids Relative Content (g/100 g)

Taurine § 0.10
Aspartic Acid 4.79
Threonine 2.50
Serine 3.98
Glutamic Acid 30.72
Proline 6.34
Lanthionine § 0.19
Glycine 3.21
Alanine 4.44
Cysteine 2.50
Valine 4.55
Methionine 1.37
Isoleucine 4.31
Leucine 7.56
Tyrosine 3.46
Phenylalanine 6.34
Hydroxylysine 0.30
Ornithine § 0.07
Lysine 2.00
Histidine 2.02
Arginine 6.27
Tryptophan 2.98
AAA 12.78
PCAA 10.29
SAA 3.88
HAA 41.08
EAA/NEAA 0.51

Results are expressed on a dry basis. §: non-proteinogenic amino acids. AAA: aromatic amino acids. PCAA: posi-
tively charged amino acids. SAA: sulfur-containing amino acids. HAA: hydrophobic amino acids. EAA/NEAA:
essential to non-essential amino acid ratio.

3.2. Effect of Canary Seed Peptides on Cellular Viability and Oxidative Stress

Caco-2 cells were selected in this study for their ability to provide a more robust
association with active membrane transport (bioavailability) in the intestinal cell wall
compared to other cell types (e.g., L-929, HepG2) [34,35]. Cellular viability assessment by
the MTT assay is a well-recognized methodology and used on a wide range of molecules
(e.g., drugs, topical ingredients, proteins, and phytochemicals) to assess the toxicity of an
agent [36]. In this study, we evaluated the viability of Caco-2 cells after 24 h of exposure
to the peptide fraction (CSPF) at various concentrations (Figure 1A). Results show that
the CSPF was not cytotoxic at any of the tested concentrations (1–3 mg/mL), where no
significant difference (p > 0.05) was found among tested concentration levels, and the cell
viability ranged between 96 and 100%. Additionally, cell confluency remained unaffected,
and cell loss was not observed in this study. Even though no information was available
regarding CSPF cellular toxicity, these results align with observations reported in other
toxicological studies, where no adverse effects were seen when feeding rats with a 50%
hairless canary seed diet [37]. Subsequently, we analyzed the cellular antioxidant activity
of the CSPF (Figure 1B). We monitored the oxidation of the intracellular probe DCFH-DA



Nutrients 2022, 14, 2415 7 of 12

to its fluorescent counterpart DCF after exposure to the CSPF for one hour (Figure 1C). The
probe DFH-DA is introduced to the cell and subject to deacetylation by cellular esterases;
this leads to the production of the oxidable form of DCFH to DCF. Thus, for an antioxidant
to prevent oxidation of DCFH to DCF, it must permeate the cell and compete intracellularly
with free radicals from AAPH. Our results show that the CSPF confers a homogenous
and gradual cellular antioxidant protection that increases significantly with concentra-
tion (p < 0.05), offering cellular antioxidant activity (CAA) of up to 80% for the CSPF at
2.5 mg/mL. There were no significant differences between the CSPF (2.5 mg/mL) and the
positive control ascorbic acid (1 mg/mL). The high CAA observed in this study could be
linked with the low molecular weight (<3 kDa) and the high content of aromatic amino
acids 13% (w/w of protein) present in the CSPF (Table 1). Aromatic amino acids such as
tyrosine, phenylalanine, and tryptophan are well-known for their excellent proton donation
capabilities, stabilizing electron-deficient radicals, and preventing oxidative damage [14,38].
From a cellular transport perspective, we previously reported that CSPF had a high cellular
transport capacity (>10%); this property could also contribute to their ability to scavenge
radicals at intracellular levels [33].
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Figure 1. (A) Cell viability (%): MTT assay over canary seed peptide fraction (CSPF) at different
protein concentrations, (B) intracellular antioxidant activity (%) of CSPF and ascorbic acid (ASC),
and (C) inhibition of peroxyl-radical-induced DCFH oxidation to DCF by CSPF and ASC. Negative
control: untreated cells. Bars and lines represent mean values of triplicate determinations ± standard
deviation. Different letters (a–e) indicate statistical differences (p < 0.05) between samples.

3.3. Antioxidant Properties of Canary Seed Peptides against Chronic and Acute Oxidative Stress

This study explored if CSPF have molecular implications for oxidative stress using
a C. elegans model. Based on the cellular toxicity analysis, CSPF (1, 2, and 3 mg/mL)
were used to assess their in vivo antioxidant activity. When pre-exposed to the CSPF,
followed by induction of acute oxidative stress using t-BOOH, CSPF treatments were
shown to significantly (p < 0.001) increase C. elegans’s lifespan compared to nematodes
exposed to S-complete buffer alone (Figure 2A). The antioxidant protection was shown
to be concentration-dependent, and the lifespan was extended significantly (p < 0.001) by
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45, 63, and 88% at 1, 2, and 3 mg/mL peptide concentrations, respectively. These results
are similar to those observed for the cellular antioxidant activity (Figure 1B), indicating an
equally high capacity to permeate and protect the cells from acute oxidative damage in
whole organisms. In the case of chronic oxidative stress (Figure 2B), CSPF pre-exposure
was successful in significantly (p < 0.05) extending the lifespan of C. elegans relatively
to the control by 23, 42, and 61% for the 1, 2, and 3 mg/mL peptide concentrations,
respectively. The impact on the survival rate (%) derived from CSPF pre-exposure was
lower chronic oxidative stress compared to acute oxidative stress; this could be due to the
half-life of the antioxidant peptides, whose effects tend to diminish over time due to protein
turnover [39]. Notably, on the chronic stress survival analysis, a significant difference
between CSPF samples was only detected between 1 and 3 mg/mL. In this regard, these
results are in agreement with those observed for ROS quantification (Figure 2C), where
the treatment with 3 mg/mL decreased ROS levels (p < 0.01) compared to the 1 and
2 mg/mL treatments. Similarly, Zhang, Jiang [40] showed that supplementation of green
alga (Chlorella vulgaris) protein hydrolysates at a concentration of 4 mg/mL successfully
lowered the ROS in C. elegans compared to the untreated nematodes or lower peptide
concentrations (1–2 mg/mL). We previously demonstrated the in vitro antioxidant capacity
of peptides derived from commercial hydrolysis of canary seed protein [6]; yet, to the best
of our knowledge, this is the first time the antioxidant activity of canary seed peptides
obtained from simulated gastrointestinal digestion has been tested in vivo, indicating their
nutraceutical potential. From these results, we confirm that the antioxidant capacity of
a CSPF relies on the scavenging of free radicals as one of the mechanisms by which it
prevents acute and chronic oxidative stress at both cellular (Caco-2) and live-organism
(C. elegans) levels.
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Figure 2. In vivo antioxidant activity of canary seed peptide fraction (CSPF), using a C. elegans
model. (A) Survival analysis of C. elegans pre-exposed to CSPF for 24 h followed by acute
oxidative stress induction with tert-butyl hydrogen peroxide (t-BOOH). (B) Survival analysis of
C. elegans pre-exposed to CSPF for 24 h followed by chronic oxidative stress induction with paraquat.
(C) Intracellular accumulation of reactive oxygen species (ROS) in C. elegans after pre-exposure to CSPF
for 24 h followed by paraquat for 48 h. (D) Relative mRNA levels of expression of DAF-16, SOD-3,
SKN-1, GST-4, and GST-10 after 24 h exposure with 3 mg/mL of CSPF using ACT-1 as an internal
control. Bars and lines represent mean values± standard deviation. Three independent experiments
were performed with at least 100 nematodes per treatment. Statistical differences are indicated as
* p < 0.01, and ** p < 0.001 or different letters (a–c) p < 0.01.
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3.4. Expression of Antioxidant-Related Genes

The expression of various antioxidant-related genes (DAF-16, SOD-3, SKN-1, GST-4,
and GST-10) was monitored by quantitative real-time PCR (qPCR) after 24 h of exposure
to a high dose (3 mg/mL) of a CSPF in order to determine which molecular mechanisms
could be tied to the antioxidant potential of a CSPF applied to C. elegans. The results for
gene expression fold change are shown in Figure 2D. After pre-treatment with the CSPF,
there was no significant difference in gene expression for DAF-16, SOD-3, SKN-1, or GST10.
Nevertheless, significant upregulation was found for the GST-4 gene. GST-4 encodes
the antioxidant enzyme glutathione S-transferase, which is involved in suppressing ROS
formation and confers longer survival time to nematodes [41]. Research has demonstrated
that glutathione-S-transferases (GSTs) act in the second detoxification phase, reducing ROS
into less toxic compounds [42]. It has been reported that some plant metabolites have
induced the expression of GST-4 and other enzymes involved in glutathione biosynthesis
and metabolism. For instance, Pohl, Teixeira-Castro [43] and Ma, Cui [44] showed that
GST-4 was upregulated after incubation of C. elegans with rapeseed extract and sesame
peptides, respectively. In another study, tyrosol, a simple phenol from olive oil, was
an effective inducer of GST-4 and promoted a drop in ROS levels of treated C. elegans
nematodes [45]. Finally, other plant-derived compounds have shown that flavonoids
such as baicalein, chrysin, and 6-hydroxyflavone were effective in extending the C. elegans
longevity via GST-4 induction [46]. Interestingly, the GST-4 upregulation by CSPF was
shown to be independent of the SKN-1 signaling pathway, an upstream regulator of
antioxidant and detoxification genes such as GST-4. It is possible that GST-4 induction
could be happening via the epidermal growth factor (EGF) signaling pathway and is
promoted by EOR-1; this could also explain the lack of transcriptional activity from other
GSTs such as GST-10 [47]. In this context, others have reported that royalactin, a honeybee
protein, increased the expression of GST-4 via the EPG signaling pathway with no impact
on the SKN-1 gene [48]. It is hypothesized that CSPFs could increase EGF expression,
resulting in EOR-1 translocation to the nucleus, and promote the transcription of the
detoxification gene GST-4, which might help decrease oxidation and extend C. elegans’s
survival to oxidative stress [49]. Nevertheless, further investigations applying EGF- or
SKN-lacking mutants as well as targeted analysis of protein expression levels are necessary
to confirm this hypothesis. Overall, the results of this study suggest that GST-4-mediated
antioxidant activity in coordination with the scavenging of free radicals could be the reason
for the extended nematode survival times observed in this study.

4. Conclusions

In this study, we demonstrated that a canary seed peptide fraction produced by
commercial enzymatic proteolysis with Alcalase followed by simulated gastrointestinal
digestion showed no cytotoxic effect on Caco-2 cells at any of the tested concentrations
(1–3 mg/mL). In addition, pre-exposure to a CSPF significantly lowered oxidative damage
in Caco-2 cells in a concentration-dependent matter. Furthermore, we showed that pre-
exposure to the canary seed peptide fraction substantially increased the resistance to acute
and chronic oxidative stress by extending the lifespan of a live organism (C. elegans). The
results from this study reveal that the CSPF relies on radical scavenging and up-regulation
of the anti-oxidative-related gene (GST-4) to confer antioxidant protection to C. elegans,
demonstrating the feasibility of using this simple in vivo model to establish preliminary
determination of the antioxidant activity of peptides. Finally, GST-4 modulation was
shown to be independent of upstream signaling pathways such as SKN-1 and suggests
an alternative antioxidant route may be involved. Further research will be needed to
elucidate this possibility and the biological activity that peptide fractions from canary seed
might offer to more complex model organisms. Taken all together, the results in this study
demonstrate that canary seed peptides can confer antioxidant protection in vivo and can be
valuable as a nutraceutical ingredient for the food and pharmaceutical industries. Future
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steps should be focused on developing a more detailed understanding of specific peptide
sequences responsible for the antioxidant activity observed in this study.
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