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CHAPTER 1 INTRODUCTION 

1.1. Background 

In the current era of rapid urbanization and motorization, traffic congestion continues to impair 

urban travel experience and quality of life. According to the United Nations, 54 percent of the 

world’s population resides in urban areas, and this percentage will rise to 66 percent by 2050 

(United Nations 2014, 2015). Both developing and developed countries are experiencing growth 

in vehicle ownership or use, with 1.4 billion vehicles globally in 2021. In the United States, for 

example, the total number of registered vehicles increased from 250 million to 273 million in the 

8-year period between 2010 and 2018 (U.S. Department of Transportation, 2020). There is a 

myriad of demand-side and supply-side palliatives for congestion reduction, as we discuss in the 

next subsection of this report. However, some of these that initially offered much promise, 

including rideshare and delivery services, rather exacerbated the congestion problem than cure it, 

because they (paradoxically) led to travel demand increase (INRIX, 2020).  

 

1.2. Congestion-mitigation palliatives 

Generally, urban traffic congestion occurs when traffic flow exceeds road capacity and is 

generally addressed through any (or a combination) of three categories of mitigation palliatives: 

(a) adding more capacity, (b) promoting travel and land-use patterns reduce or flatten demand, (c) 

using the existing capacity more efficiently (U.S Department of transportation, 2012). The first 

category of palliatives includes capacity expansion through new corridors or additional travel 

lanes. However, it is well known that this may not always yield the intended benefits due to 

induced demand (Karimi et al., 2021). With regard to the second category, classic initiatives 

include staggered work hours, work-from-home, carpooling, congestion pricing, and other demand 

reduction strategies. Of these, congestion pricing (CP) seems to have the greatest potential to 

reduce congestion. CP harnesses the power of the market to reduce congestion. However, CP may 

lead to inequitable outcomes (Eliasson et al., 2006). With regard to the third category, there has 

been much promise of using advanced technologies and real-time information to mitigate 

congestion. With the development of the emerging technologies including connectivity and 

automation, Intelligent Transportation Systems (ITS) and real-time control through Transportation 

Management Center (TMC) are becoming increasingly feasible. Connectivity, in particular, plays 

an important role in the process of acquiring and using real-time traffic information to enhance 

travel efficiency. Through connectivity, vehicles are able to communicate with other vehicles 

(V2V) and infrastructures (V2I) (Nguyen et al., 2020, 2021). Further, mobile technologies, such 

as smartphones and Bluetooth, which are convenient and affordable, can be used to provide V2V 

connectivity services. In addition, V2V connectivity is not susceptible to occlusion or inclement 

weather, and thus offers high accuracy of information with fewer limitations. Recognizing the 

merits of connectivity in terms of reliability and affordability, vehicle manufacturing and 

technology companies seek ways to install connectivity-enabling devices on human-driven 

vehicles (HDVs). Traffic congestion mitigation using real-time information can be enhanced when 

more and more vehicles are equipped with connectivity technology. There is a growing body of 
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literature that describe promising frameworks using connectivity technology in traffic control, to 

enhance travel efficiency in urban networks (Abuelenin et al., 2021; al Islam et al., 2021; Dong et 

al., 2021; Guanetti et al., 2018; Ha et al., 2020; Pupiales et al., 2021; Yang et al., 2021). Also, the 

deployment of these strategies and technologies has been increasing and have shown to be very 

cost-effective (U.S Department of Transportation 2012).  

 

1.3. Congestion reduction using vehicle rerouting 

ITS-related congestion-mitigation initiatives include vehicle rerouting. This has been found to 

be particularly useful in dynamic traffic environments (Ho et al., 2019; Li et al., 2009). Vehicle 

rerouting based on prevailing traffic conditions can improve capacity utilization of the existing 

roads and ultimately mitigate congestion. For example, car-navigation systems including 

GoogleMap and TomTom use infrastructure-based traffic information to compute and prescribe 

traffic-cognizant shortest routes to their users (Wang et al., 2016). Drivers at similar locations, 

however, may receive similar rerouting guidance. In addition, several large cities have deployed, 

on a wide scale, traffic guidance systems including Variable Message Signs (VMS), to broadcast 

real-time traffic flow information. However, as the information is available to all drivers, VMS 

may provide identical guidance for all vehicles with similar destinations simultaneously. 

Therefore, these methods tend to merely shift the traffic congestion to other locations of the road 

network, and the overall congestion issue remains unresolved (Tang et al., 2020).  

To address such “congestion-shifting” effects of congestion-mitigation initiatives, multi-route 

planning algorithms have been proposed in existing literature. One of these is simply to calculate 

K alternative routes and then randomly assign them to the vehicles (Brennand et al., 2016; Pan et 

al., 2013). However, such rerouting might yield a further inferior solution because the vehicles that 

are already close to their destinations may be randomly rerouted by the algorithm to take a longer 

detour. Therefore, in assigning the routes to the vehicles, it is vital to consider the priority of the 

vehicles (vehicles’ proximity to intended destination). In addition, it is important to consider the 

“popularity” or, the frequency-of-use, of each route. As a rule of thumb, vehicles with relatively 

lower priority should not be assigned routes that are assigned frequently (popular routes). 

Therefore, from a system efficiency perspective, it is more prudent for lower priority vehicles to 

be assigned routes with relatively lower popularity. Pan et al. used the Entropy Balanced k Shortest 

Path (EBkSP) algorithm to dynamically reroute vehicles and demonstrated that the algorithm can 

efficiently assign vehicles to appropriate routes thus addressing systemwide congestion without 

shifting, and with reasonably low computational effort (Pan et al., 2013).  

 

1.4. Overview and organization of this part of the report 

The remaining parts of the Part I report are organized as follows: Section II presents the 

underlying concepts of the proposed architecture, and Section III presents the problem settings, 

which include the framework structure, DRL-stage settings (state space, action space, reward 

function) and routes assigned stage settings and logical flow. The proposed methodology is 

introduced in greater detail in the Section IV. Section V, which is the experiment section presents 
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the simulation parameters and introduces the baseline models. Section VI shows the experiment 

results and analysis from both training stage and testing stage. Lastly, Section VII summarizes the 

research for part II, offers some concluding remarks, and suggests directions for future work. 
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CHAPTER 2 UNDERLYING CONCEPTS OF THE PROPOSED 

FRAMEWORK 

 

In this section, we discuss the prospective role of fog-cloud collaboration in vehicle rerouting, 

and the attention mechanism for deep reinforcement learning. These are key underlying concepts 

of the rerouting architecture proposed in this project. 

 

2.1. Prospective role of fog-cloud collaboration in vehicle rerouting  

Past researchers have recognized the need for efficient flow of information to support vehicle 

rerouting. Such a need is critical in urban road networks because such networks are extremely 

complex and highly interconnected systems where real-time information must be transmitted and 

disseminated efficiently, otherwise the efficiency and safety of travel could be jeopardized. As a 

result, information exchange (communication) in a cloud-based computing environment in large 

networks can be time-consuming (high latency) as the information resources are located in the 

core. (Aazam et al., 2018). Fortunately, fog information resources, unlike clouds (DataCenters), 

are located on the edge of the network, and by decreasing the distance from the core to the users, 

fogs can enhance communication efficiency. Fog nodes refer to distributed fog computing entities 

that enable the deployment of fog services with processing and sensing capabilities (Marín-

Tordera et al., 2017). As shown in the Fig 1, each fog node governs different regions (known as 

“fog node areas”, which are indicated by different colors in the Fig 1). Each fog node collects data 

(including vehicle speed, vehicle location and vehicle density) in their respective region and 

preprocesses the data to render it more compact.  

Our review of related literature indicates that fog computing has been used to effectively assist 

in dynamic rerouting. Brennand et al., proposed an ITS architecture using fog nodes they termed 

“Fog RoutE VEhiculaR (FOREVER)” (Brennand et al., 2017). In that application context, 

however, the lack of communication among the fog nodes could possibly lead the fogs to 

recommend routes that are local optimal. Cao et al. designed a traffic congestion scheduling 

scheme using ITS architecture that incorporates fog computing. In their study, the fog nodes 

communicated and shared information to characterize overall traffic conditions, and K alternative 

routes were identified to prevent the same route from always being selected (Cao et al., 2019). In 

the Cao et al study, even though the fog nodes related to each other, the routes were still calculated 

locally and therefore the identified routes are most likely locally optimal. Moreover, compared 

with cloud, fog nodes have relatively weak computing capabilities. In yet another study, Rezaei et 

al. evoked a fog-cloud based architecture to guarantee that the vehicles are assigned the best routes 

globally using cloud computing to provide supplementary information where the local information 

from the fog node is insufficient (Rezaei et al., 2018). They demonstrated that a combination of 

fog and cloud can represent an efficient architecture that combines local information exchange and 

global route guidance.  

Thus, in this project, the cloud serves as a central platform for planning and making decisions 

at the system level, while fog nodes are responsible for executing those decisions in a decentralized 
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manner. As shown in Fig 1, the fog nodes collect and preprocess local information and then transfer 

the preprocessed data to the cloud where system-level decisions are made efficiently. Hence, a 

centralized-control system with decentralized execution is built on top of a fog-cloud architecture; 

this arrangement is intended to preserve both the computation capability and the efficiency of 

information exchange. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1 Fog-cloud collaboration 

 

2.2. Attention mechanism for deep reinforcement learning 

Given the highly dynamic and complex nature of urban traffic systems, deep reinforcement 

learning (DRL) can be considered a perfect tool for solving problems such as dynamic rerouting 

(Zhao et al., 2021). Very few studies in the literature have used reinforcement learning (RL) to 

address the dynamic rerouting problem. Arkhlo et al. proposed a Multi-Agent Reinforcement 

Learning (MARL) to identify the best and the shortest path between specified origin-and-

destination nodes (Arokhlo et al., 2011). Tang et al. generated an  trajectory rejection method 

based on multi-agent reinforcement learning (Tang et al., 2020). Yet still, there exist a few 

challenges in the use of DRL to address dynamic rerouting problems:  

(i). The immense size of the action space, particularly in the case of complex road networks in 

a large urban area: If all the network edges (links) are considered, then the action space can be as 

large as ae where a is the number of possible actions and e is the number of edges. This extremely 

large size of the action space, even for small networks, is costly in terms of training time and 

inhibits convergence of the algorithm. 

(ii). The large size of information collected from the network impairs learning efficiency 

because not all the information is relevant.  

In this project, both challenges are addressed. The fog nodes cover local regions, which 

represents the edges in these areas Thus, as an alternative to the use of all the network edges in the 

Cloud-computing 
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RL model, we use the fog nodes, which largely shrink the action space to af where f is the number 

of fogs. This addresses the first challenge. With regard to the second challenge, the fog nodes’ 

dependency and information flow can be modeled using a graph (Fig 2) where the nodes represent 

fog nodes (which govern the fog node areas), and the edges represent the connection between fog 

nodes (fog nodes connect with their neighboring fog nodes). Attention mechanism has been widely 

used to deal with variable-sized inputs and focus on the most relevant parts of the input to make 

decisions in graphs (Dong et al., 2020, 2021). Using a Graph Neural Network (GNN) combined 

with attention mechanisms, Veličković et al created an attention-based architecture to perform 

node classification of graph-structured data called Graph Attention Networks (GAT) (Velicković 

et al., 2017). The hidden representations of each node in the graph are calculated by paying 

attention to the neighbors using a self-attention strategy. Since both local information and neighbor 

information are crucial for understanding the overall driving environment, a fusion method is 

needed to explicitly combine such information from different sources. Moreover, there is a need 

to differentiate the relative importance of input information based on the final decision. Thus, 

attention mechanism is essential for fogs to automatically “adjust the attention” to relevant 

information and GAT is an ideal candidate for this attention-fusion task due to its information 

fusion and attention ability. Therefore, in this paper, GAT is applied in the model to help extract 

relevant information in the vehicle rerouting (and thus the second challenge is conquered).  

 

 

Figure 2 Fog-node graph structure 

 

There are a few research efforts that combined GNN and DRL. Jiang et al proposed a Graph 

Convolutional Reinforcement Learning (DGN) framework by using GNN as the encoder to learn 

representations between agents, then have the representations as input to a policy network (Jiang 

et al., 2018). The joint trading of the encoder and policy network enabled the DGN agents to 

develop cooperative strategies. Chen et al built a Graphic Convolutional Q Learning (GCQ) 

framework by combining Graph Convolutional Neural Network (GCN) layer with Deep Q 

learning for Connected and Autonomous Vehicle (CAV) control. By generating the feature 

embedded mapping from GCN, and feeding into Deep Q Network, the CAV can make lane-change 

decisions in a sophisticated manner (Chen et al., 2021). Inspired by this recent research, a DRL 

model that combines GAT with Deep Q Learning is proposed based on fog-cloud information 

architecture to extract important and related information to reroute vehicles. The DRL model 
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assists the cloud to make system-level decisions on fog node area road index, which indicates the 

current and potential congestion level of the specific fog node area.  

 

2.3. Discussion 

The DRL-based dynamic rerouting framework proposed in this project can be considered a 

novel fog-cloud architecture that is carried out in a centralized-planning and decentralized-

execution manner. The fog nodes collect and transfer the local information to the cloud. Then a 

deep learning-based fusion method with graphic attention network is incorporated to generate 

system-wide decisions considering information from both local and neighboring areas. Then, fog 

nodes assigned with the decisions help the vehicles to chart their appropriate routes. Moreover, 

EBkSP method is used to avoid the phenomenon of congestion shifting. 

 

 

Figure 3 Dynamic vehicle rerouting framework architecture 

 

 

 

Figure 4 Illustration of BVs (white) and RVs (green) on the road network 
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CHAPTER 3 PROBLEM SETTINGS 

 

The dynamic rerouting framework consists of two main stages. As shown in Fig 3, in the first 

stage (DRL stage), the network with fog paradigm is modeled as a graph whose nodes represent 

different fog nodes and edges represent connections between neighboring fog nodes. The state, 

action and reward are defined to model the Markov Decision Process in the DRL stage for the 

agent to make decisions. By applying GAQ, road indexes for different fog node areas (fog node 

area road index) are generated from the central platform as the control variable for rerouting. In 

the second stage (route assignment stage), road weights are calculated based on the fog node area 

road index and road density, then, each vehicle calculates its K alternative shortest paths based on 

the road weights. Incorporating vehicle priorities and route popularities, the Entropy balance 

method is applied to assign the appropriate route to each vehicle. After the appropriate routes are 

assigned, the states of the network are updated, and data are collected to feed into the next episode.  

The penetration rate of connectivity technology in vehicles is low even in urban areas [32], 

[33]. Such lack of widespread connectivity is indicative of existing technology barriers that inhibit 

prospective dynamic rerouting of a large majority of vehicles in urban road networks. Therefore, 

this project considers two types of vehicles not only to reduce the number of vehicles considered 

for rerouting but also to render the study more realistic. Fig 4 indicates rerouting vehicles (RV) 

(colored green) and Background Vehicles (BV) (colored white). BVs are not rerouted but are 

incorporated in the framework to add randomness and dynamics in the network. Both vehicles can 

be detected by fog nodes, and they have distinct origins and destinations.  

 

3.1. DRL stage 

At the DRL stage, four key factors are considered: Agent, State space, Action space and 

Reward function. 

Agent: In this research, the cloud represents the agent. At each timestep 𝑡, the agent chooses 

actions {𝑎𝑡
𝑖 , 𝑖 = 1, . . , 𝑁} for each fog node 𝑖 based on existing policy and the current environment. 

After the fog nodes execute the actions, a reward is given to the agent based on the updated states; 

this motivates the agents to strive for satisfactory results.  

State space: The state space includes two parts: node feature at each time step 𝑡: 𝑋𝑡 ; and 

adjacency matrix at each time step 𝑡: 𝐴𝑡. At each 𝑡, RVs and BVs can be detected using fog nodes. 

Thus, network information is extracted from each fog node area. Two types of information are 

included in the node feature matrix: average speed 𝑣̅𝑖 and congestion condition 𝑐𝑖 (Maciejewski et 

al., 2018).  

• 𝑣̅𝑖 =
∑ 𝑣𝑘𝑘=1,…,𝑛

𝑁𝑖
 is the average vehicle speed of fog node area 𝑖, with 𝑁𝑖 equals to the number 

of vehicles in fog node area 𝑖. 
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•  𝑐𝑖 =
∑

𝑅𝑛𝑢𝑚−𝑣𝑒ℎ
𝐺 ×𝜏

𝑅𝑛𝑢𝑚−𝑙𝑎𝑛𝑒
𝐺 ×𝑅𝑙𝑒𝑛

𝐺𝐺=1,…,𝑚

𝑀𝑖
 is the average congestion level of the roads in fog node area 𝑖. 

{𝑅𝑛𝑢𝑚−𝑣𝑒ℎ
𝐺 , 𝑅𝑛𝑢𝑚−𝑙𝑎𝑛𝑒

𝐺 , 𝑅𝑙𝑒𝑛
𝐺 }  represent the number of vehicles, length of road  𝐺  and 

number of lanes of road 𝐺, 𝑀𝑖 is the total number of roads in the area 𝑖. 𝜏 is a scalar to 

prevent 𝑐𝑖 from becoming too small.  

 

The adjacency matrix 𝐴𝑡 is a binary matrix with dimension of 𝑁 × 𝑁, where 𝑁 is the number 

of fog nodes. 𝐴𝑡 reflects the information topology and dependency of the fog nodes. In this study, 

the graph of the road network is directed, but the graph of the fog layer (for information 

dissemination purpose) is undirected, and 𝐴𝑖𝑗 = 1  represents the existence of a connection 

between fog nodes 𝑖 and 𝑗.  

 

Action space: for each time step, each fog node has five different actions to choose 𝑎𝑖 =

{0, 1, 2, 3, 4}. The action space for reinforcement learning is aggregated by all possible actions for 

each fog nodes: 𝒜 = [𝑎𝑖], 𝑖 = 1, … , 𝑛. The cloud chooses the actions for all the fog nodes and the 

actions are used as fog node area road index. In the routes assigned stage, the road index is a key 

factor in the calculation of the road weight which used to generate routes for the rerouting vehicles. 

 

Reward function: In the reward function, we consider both reward and penalty based on 

average vehicle speed in the network. The purpose of the proposed dynamic rerouting framework 

is to maintain and enhance the RVs’ efficiency. The speed change reflects a change in the traffic 

conditions. A drastic drop in the average vehicle speed is often symptomatic of congestion. Thus, 

the framework uses a speed increase reward and speed decrease penalty with threshold of 5 m/s 

(11 mph). 

 

3.2. Route-assignment stage 

The route-assignment stage assigns a route to each rerouting vehicle based on network road 

weights (calculated by road index from DRL stage and road density) and locations of vehicles. 

This stage consists of two steps (Fig 5): (a) route computation, (b) route selection. In the route 

computation step, each rerouting vehicle calculates its K shortest paths based on its current 

location. Then, in the route selection step, the entropy balanced method is applied to select the 

appropriate routes (target routes) for rerouting vehicles so as to avoid congestion shifting. The 

entropy balanced method is based on two critical factors: vehicle priority and route popularity. 
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Figure 5 Logical flow of the route assignment stage 

 

Given a set of RVs: 𝑅𝑉 = (𝑅𝑉1, 𝑅𝑉2, … , 𝑅𝑉𝑛) to be rerouted, the distance to the destination is 

used to compute the priority of the RVs. RVs with higher priority can choose the shortest route 

without considering the popularity of the route, while RVs with lower priority must choose the 

routes with the lowest popularity to avoid congestion shifting. In this project, two different 

standards to calculate vehicles’ priority are analyzed in the model training stage:  

• Priority1-Near: based on the destination of RVs’ current location to their destination, RVs 

that are nearer to their destinations are assigned higher priority. 

• Priority2-Far: based on the destination of RVs’ current location to their destination, RVs 

that are further to their destinations are assigned higher priority. 

Moreover, the length of the high priority set, which determines the number of high priority 

RVs is investigated; different lengths of the high priority set are analyzed at the training stage. 
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CHAPTER 4 METHODOLOGY 

 

4.1. DRL model architecture 

In the DRL stage, the settings are built on top of the fog-cloud architecture with centralized 

learning but decentralized execution (Chen et al., 2021). Each fog node is assigned with different 

actions at each timestep, and the target is to improve the efficiency and avoid congestion of the 

rerouting vehicles in the network. The information attention is modeled with GAT and the decision 

processor used is Deep Q learning. 

At each timestep 𝑡, vehicles (RVs and BVs) are detectable by fog nodes. The input of the model 

is the state 𝑠𝑡 . The state is a tuple of 𝑁 × 𝐹 fog nodes feature matrix 𝑋𝑡 and 𝑁 × 𝑁 adjacency 

matrix 𝐴𝑡, 𝑁 is the number of fog nodes, and 𝐹 is the number of features in each fog node area. 

There are two features considered in fog nodes feature matrix: (i) the average speed; and (ii) the 

congestion condition; fog nodes send their local information to the cloud and then the network 

node features are concatenated by fog nodes’ information. During the information fusion process, 

the adjacency matrix is used to indicate the spatial relationship between the fog nodes. 

As shown in Fig 6, the model consists of the following parts: a fully connected network 

encoder, a GCN layer, the Q network, and the output layer. At each timestep 𝑡, the fog nodes 

feature matrix 𝑋𝑡 is used as the input to the FCN encoder 𝜑 to generate node embeddings 𝐻𝑡 in 𝑑 

dimensional embedding space 

𝐻𝑡 = 𝜑(𝑋𝑡) ∈ ℋ, ℋ ⊂ 𝑅𝑁×𝑑                                                 (1)  

                         

 

 

Figure 6 DRL model architecture 
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Then the graph convolution with attention mechanism is applied to the node embeddings 𝐻𝑡. 

Unlike the GCN layer, the GAT layer uses the attention mechanism to weight the adjacency matrix 

instead of using the normalized Laplacian. 

𝐻𝑡
′ = 𝑔𝑎𝑡(𝐻𝑡, 𝐴𝑡) =  𝛼𝐻𝑡𝑊 + 𝑏                                             (2) 

 

𝛼𝑖𝑗 is calculated using the attention mechanism and the adjacency matrix, it represents the 

coefficient of fog node 𝑗 ∈ 𝒩𝑖, where 𝒩𝑖 represents a set of first-order neighbors of fog node 𝑖 

(including 𝑖). 𝑇⊺ is a weight factor that parameterize the attentional mechanism 𝑇: 

 

𝛼𝑖𝑗 =
𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑇⊺[(𝐻𝑡𝑊)𝑖∥(𝐻𝑡𝑊)𝑗]))

∑ exp(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑇⊺[(𝐻𝑡𝑊)𝑖∥(𝐻𝑡𝑊)𝑘]))𝑘∈𝒩𝑖

                                       (3)     

                                        

The output of GAT layer is the node embedding 𝐻𝑡
′, which is subsequently sent to a Q network 

𝜌  to obtain Q values. Q values are used to evaluate the actions 𝑎 . With 𝑄̂  representing the 

combined neural network blocks (FCN, GAT, and Q network), 𝜓  representing the combined 

weights, the model can be expressed as: 

 

𝑄̂𝜓(𝑠𝑡, 𝑎𝑡) = 𝜌(𝐻𝑡
′, 𝑎𝑡)                                                      (4)     

                                                      

Experience Replay and Target Network (van Hasselt et al., 2016) are used in the model training 

to enhance the learning efficiency. Also, the 𝑄̂ is trained on randomly sampled batches from replay 

buffer 𝑅 with size 𝐵 to obtain a stable performance. For each batch, the objective is to minimize 

the value of the loss function: 

𝐿𝜓 =
1

𝐵
∑ 𝑦𝑡𝑡 − 𝑄̂𝜓(𝑠𝑡, 𝑎𝑡)                                                  (5)    

                                                     

Where 𝑦𝑡 = 𝑟𝑡 + 𝛾 max
𝑎

𝑄̂𝜓(𝑠𝑡+1, 𝑎).  

The architectures of different parts of the network are: 

• FCN Encoder 𝜑: Dense (32) + Dense (32) 

• GAT layer 𝑔𝑎𝑡: GATConv (32) 

• Q network 𝜌: Dense (32) + Dense (32) + Dense (64) + Dense (64)  

• Output layer: Dense (5) 

 

Warm-up steps are added prior to the training to let the agent explore the environment 

thoroughly by taking random actions. After the warm-up steps, the training is performed by 

maximizing the reward and minimizing the losses. Algorithm 1 presents the detailed steps of this 

process. 
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Algorithm 1. Graph Attention Q Learning 

Initialize: 

Replay memory 𝑅                                                            

Joint weights 𝜓 and the target network 𝑄̂𝑡 = 𝑄̂𝜓 

Warm up steps: 

For time step 𝑡 from 1 to 𝑇𝑤 do 

• Random actions assigned to each fog node: 𝑎𝑡 = [
𝑎𝑖

⋮
𝑎𝑛

] 

• Gather and store (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) into the memory buffer 𝑅 

Training steps: 

For time step 𝑡 from 𝑇𝑤 + 1 to 𝑇 do 

• Update memory 𝑅 and choose new batch samples                                                                                                   

• Take 𝑠𝑡 = 𝑋𝑡, 𝐴𝑡 (Feature Matrix and Adjacency Matrix) and encode the node features 

into a node feature embedding 𝐻𝑡 = 𝜑(𝑋𝑡) 

• Apply graph attention mechanism 𝐻𝑡
′ = 𝑔𝑎𝑡(𝐻𝑡, 𝐴𝑡) 

• Compute Q values for each action combination 𝑎𝑡: 𝑄̂𝜓(𝑠𝑡, 𝑎𝑡) =  𝜌(𝐻𝑡
′, 𝑎𝑡) 

• Select optimal action 𝑎𝑡
∗ = argmax

𝑎𝑡

𝑄̂𝜓(𝑠𝑡, 𝑎𝑡) 

• Apply 𝑎𝑡
∗ to the network and then obtain the reward 𝑟𝑡 and next state 𝑠𝑡+1 

• Add the (𝑠𝑡, 𝑎𝑡
∗, 𝑟𝑡, 𝑠𝑡+1) into the memory buffer 

• Move from state 𝑠𝑡 to state 𝑠𝑡+1 

• From replay memory buffer 𝑅, get a random batch size 𝐵 

• For each training examples with the batch, the target of Q value 𝑦𝑡 is calculated: 

o If 𝑠𝑡+1 is not done: 𝑦𝑡 =  𝑟𝑡 + 𝛾 max
𝑎𝑡

𝑄̂𝜓(𝑠𝑡+1, 𝑎𝑡) 

o If 𝑠𝑡+1 is not done: 𝑦𝑡 = 𝑟𝑡 

• Losses are calculated by the loss function: 𝐿𝜓 =
1

𝐵
∑ 𝑦𝑡𝑡 − 𝑄̂𝜓(𝑠𝑡, 𝑎𝑡) 

• The target network is updated based on the target updating frequency value 

 

4.2. Routes assigned model architecture 

In the vehicle route assignment stage, a local search method is applied to assign the proper 

routes to the RVs. Given the RV set: 𝑅𝑉 = {𝑅𝑉1, 𝑅𝑉2, … , 𝑅𝑉𝑛} At each time step 𝑡, after obtaining 

the fog node area road index, the road weight, which is the actual weight [𝑅𝑤𝑒𝑖𝑔ℎ𝑡
𝑗=1,…,𝑀𝑖]

𝑖=1,…,𝑁
 for 

road 𝑗 in fog node area 𝑖 can be calculated based on the road index of fog node area 𝑖: ℛ𝑖𝑛𝑑𝑒𝑥
𝑖  and 

road vehicle density 𝑅𝑑𝑒𝑛𝑠𝑖𝑡𝑦
𝑗=1,…,𝑀𝑖 (number of vehicles): 

[

𝑅𝑤𝑒𝑖𝑔ℎ𝑡
1

⋮

𝑅𝑤𝑒𝑖𝑔ℎ𝑡
𝑀𝑖

]

𝑖

= ℛ𝑖𝑛𝑑𝑒𝑥
𝑖 × 𝒯1𝐼 + 𝒯2 [

𝑅𝑑𝑒𝑛𝑠𝑖𝑡𝑦
1

⋮

𝑅𝑑𝑒𝑛𝑠𝑖𝑡𝑦
𝑗

]

𝑖

                                      (6) 
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Where 𝒯1 and 𝒯2 are balance terms to help avoid overwhelming of the road vehicle density on 

the road index or vice versa. The updated road weights for each road [𝑅𝑤𝑒𝑖𝑔ℎ𝑡
𝑗=1,…,𝑀𝑖]𝑖=1…𝑁 are used to 

calculate K shortest alternative routes for each RV based on their current location. As shown in 

Equation (7), the K shortest routes set of 𝑅𝑉𝑚 ({𝑘𝑆𝑃}𝑚) is calculated based on the current location 

of 𝑅𝑉𝑚 (𝑅𝑉𝑚
𝑐𝑢𝑟𝑟𝑒𝑛𝑡). The K shortest alternative routes in the {𝑘𝑆𝑃}𝑚 set are represented as 𝑟𝑠=1,..,𝑘. 

 

𝑟𝑠=1,..,𝑘 ∈ {𝑘𝑆𝑃}𝑚 = 𝑘𝑠𝑝(𝑅𝑉𝑚
𝑐𝑢𝑟𝑟𝑒𝑛𝑡)                                         (7) 

 

As one of the crucial factors in the routes assigned stage, RVs’ priority set 𝒫 is obtained by 

the distance between their current location (𝑅𝑉𝑚
𝑐𝑢𝑟𝑟𝑒𝑛𝑡) and the destination, which is represented 

as 𝑑𝑅𝑉𝑚
. According to various priority standards, the RVs’ priority set will be sorted differently. 

In this project, two different priority standards are included. For priority standard 1 (Near), vehicles 

closer to their destination would have higher priority; for priority standard 2 (Far), vehicles further 

to their destination would have higher priority.  

 

𝑠𝑜𝑟𝑡𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑(𝒫) = (𝑑𝑅𝑉𝑚
)                                            (8) 

 

Using 𝑑𝑅𝑉𝑚
, the priority of the RVs can be determined. The first 𝑥 vehicles are categorized in 

the “high priority” set: {𝑅𝑉ℎ} (𝑥 can be changed at the stage of model training), the rest of the 

vehicles are placed in the low priority set: {𝑅𝑉𝑙}.  

Congestion shifting occurs when vehicles are assigned to the same route.  Thus, we need to 

avoid assigning vehicles to the routes that has already been frequently assigned to vehicles (which 

is the popular routes). In this project, we solve this problem by incorporating the relative popularity 

of the routes with the relative priority of the rerouting vehicles’ priority in the assignment of routes:  

 

• If 𝑅𝑉𝑚  is in high priority set, they will be assigned with the shortest path in their 

{𝑘𝑆𝑃}𝑚 set: 𝑟𝑠
∗ = 𝑚𝑖𝑛{𝑘𝑆𝑃}𝑚.  

 

• If 𝑅𝑉𝑚 is in low priority set, the final assigned route is the least popular route from 

{𝑘𝑆𝑃}𝑚 set: 𝑟𝑠
∗ = 𝑚𝑖𝑛{𝑃𝑜𝑝(𝑟𝑠)}. And this not only prevents the congestion shifting 

but also prevents the 𝑅𝑉𝑚 with the final assigned route from an excessively lengthy 

detour.  

 

The popularity of a route rs, is defined as: 

 

𝑃𝑜𝑝(𝑟𝑠) = 𝑒𝐸(𝑟𝑠)                                                         (9) 

 

𝐸(𝑟𝑠) =  − ∑ (
𝑓𝑐𝑠

𝑧

𝑁𝑟𝑠

)
𝑁𝑟𝑠
𝑧=1 ln (

𝑓𝑐𝑠
𝑧

𝑁𝑟𝑠

)                                            (10) 
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Where 𝑁𝑟𝑠
 is the number of road segments in the route 𝑟𝑠 . 𝑓𝑐𝑠

𝑧 (𝑧 = 1, … , 𝑁𝑟𝑠
) is the road-

weighted footprint of road 𝑧 in route 𝑠, which is calculated from: 𝑓𝑐𝑧 = 𝑛𝑧 × 𝜔𝑧. 𝑛𝑧 represents 

the total number of vehicles assigned to the routes that include road segment 𝑧, 𝜔𝑧 is a weight 

associated with road segment 𝑧 considers length, lane numbers and average free flow speed: 

 

𝜔𝑧 = (
𝑙𝑒𝑛𝑎𝑣𝑔

𝑙𝑒𝑛𝑧
) × 𝑙𝑎𝑛𝑒𝑧 × (

𝑉𝑓𝑎𝑣𝑔

𝑉𝑓𝑧
)                                             (11) 

 

Algorithm 2 presents the detailed route assignment algorithm. 

 
Algorithm 2. Route assigned by EBkSP 

Get Roads Weights: 

For 𝑅𝑉𝑚 in set 𝑅𝑉 do  

• Find K-alternative shortest path based on current location: {𝑘𝑆𝑃}𝑚 = 𝑘𝑠𝑝(𝑅𝑉𝑚
𝑐𝑢𝑟𝑟𝑒𝑛𝑡)     

• Calculate the priority based on current location and add to the set 𝒫 = (𝑑𝑅𝑉𝑚
)                                                             

Sorted Priority: 

Based on 𝑠𝑜𝑟𝑡𝑒𝑑(𝒫), let the top priority RVs into set 𝑅𝑉ℎ and others are low priority RVs into set 𝑅𝑉𝑙  

Route Popularity: 

For 𝑅𝑉𝑚 in set 𝑅𝑉ℎ do 

• Assign the shortest route: 𝑟𝑠
∗ = 𝑚𝑖𝑛{𝑘𝑆𝑃}𝑚 to 𝑅𝑉𝑚 

• Update the road weight footprint: 𝑓𝑐𝑠
𝑧 , 𝑧 = 1, … , 𝑁𝑟𝑠

 

For 𝑅𝑉𝑚 in set 𝑅𝑉𝑙  do 

• Based on the updated footprint, for the routes in {𝑘𝑆𝑃}𝑚, calculate: 𝑃𝑜𝑝(𝑟𝑠) = 𝑒𝐸(𝑟𝑠) 

• Assign the least popular route: 𝑟𝑠
∗ = 𝑚𝑖𝑛{𝑃𝑜𝑝(𝑟𝑠)} to 𝑅𝑉𝑚 

• Update the road weight footprint: 𝑓𝑐𝑠
𝑧 , 𝑧 = 1, … , 𝑁𝑟𝑠
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CHAPTER 5 EXPERIMENTAL SETTINGS 

The proposed framework is implemented in a simulation environment using SUMO 

(Simulation of Urban Mobility), which is an open-source simulator with well-defined vehicle 

parameters and vehicle controller (Krajzewicz et al., 2012). The training network is the Manhattan 

network (Fig 7 (a)) that is imported from OSM (Open Street Map) (OpenStreetMap contributors, 

2017) and cleaned in SUMO (Fig 7 (b)), then fog nodes are involved into the network (Fig 7(c)). 

As shown in Fig 7 (c), there are six fog nodes covers different regions of the network. To have the 

equivalent information collection of different fog node areas, each fog node covers about 50 roads. 

Simulator parameters, training parameters and baseline models used in the experiment are 

discussed in detail in the following sub sections. 

5.1. Simulator parameters 

In SUMO, critical parameters for the driving simulation environment need to be well defined 

based on the specific research problem. Detailed description of simulator parameters including 

network features, scenario parameters, vehicle control parameters, vehicle priority parameters, and 

training parameters are discussed in the following subsections. 

 

Network features 

A 5.926𝑘𝑚2 area that extracted from the Manhattan area is used in this research, the network 

includes 287 edges (roads) and 120 nodes (junctions). The network structure is the same as that of 

the real world. There are multiple road types in the network: 2-lane roads, 3-lane roads, 6-lane 

roads, and 7-lane roads. Both one-way and two-way roads are included. The speed limit is 

reflective of the actual real-world conditions as evidenced by data from an open street map. The 

speed limit varies due to the different road types and ranges from 11 m/s to 28 m/s. 

 

Scenario parameters 

To increase the complexity and to mimic the dynamic nature of the urban road network 

environment, BVs (colored white) enter the study area from multiple areas with different travel 

patterns and destinations: (a) from right to the left, (b) from left to the right, (c) from the middle to 

the top, and (d) from the middle to the bottom; RVs (colored green) enter the map from 3 roads 

located on the right of the network (two from the top, one from the bottom) and two different 

destinations are located on the left of the network (one from the middle, the other from the bottom). 

At the training stage, the inflow rates of the BVs and RVs are both specified as 100 veh/hr. At the 

testing stage, the inflow rates are changed according to the number of BVs and RVs. A significant 

factor in the mixed traffic is the penetration rate (which refers the ratio of RVs to the total number 

of vehicles: 
𝑅𝑉

𝐵𝑉+𝑅𝑉
). Therefore, in the training stage, the total number of RVs and BVs is 1000 with 

a 0.1 RV ratio. While in the testing stage, different RV ratios of the mixed traffic with RVs and 

BVs are investigated.  

Vehicle control parameters: The vehicle control in this project includes vehicle behavior 

control and routing control. The vehicle behavior control includes car-following control and lane-

changing control. In this study, both BVs and RVs use SUMO’s built-in car-following and lane-
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changing controllers. In this research, the routing controller for RVs is based on learning-based 

model like proposed GAQ-EBkSP model and learning-based baseline model, while the routing 

controller for BVs is simply based on the shortest path rerouting model. The routing controller 

runs on different rerouting models; therefore, the performance of different rerouting models can 

be investigated. 

 

Vehicle priority parameters 

As mentioned earlier, there are two ways in which we can calculate vehicle priority (priority1-

Near and priority2-Far), both ways are trained in the training stage. Additionally, as discussed in 

"Model Architecture Assigned to Routes" section of this project, the length of the high priority set 

is configurable. Thus, different lengths of the high priority set are implemented in the training 

stage as well. 

 

Training parameters: In the model training section, approximately 800 epochs are trained, with 

the first 200 epochs as warm-up stage. When training starts, transition batches of size 32 are 

sampled and put into the model. The optimization parameters used in this research is Adam 

(Kingma et al., 2015) which has initial learning rate 𝛾 = 10−4. 

 

   
(a) OSM network (b) SUMO network (c) Network with fog nodes 

Figure 7 Network used in experiments 

5.2. Baseline models 

In this research, the baseline models are the rule-based model and GCQ-EBkSP model: 

• Rule-based model: here, the RVs are rerouted using EBkSP only (which means, no learning 

stage). Rerouting will not be affected by the road index, only the road density (number of 

vehicles) will be taken into consideration when calculating the road weight. 

• GCQ-EBkSP model: there, the RVs are rerouted with learning stage; the road index will 

be calculated through GCQ model. This model is implemented to compare with the 

proposed GAQ-EBkSP framework in terms of DRL models’ performances.  

To test the efficacy of learning on the dynamic rerouting of vehicles, the rule-based model is 

compared with two learning models (i.e., the proposed GAQ-EBKSP and the other baseline model, 

GCQ-EBKSP). The other baseline model: GCQ-EBkSP provides the means of comparing different 

DRL model performance under large urban network settings. 
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CHAPTER 6 RESULTS 

 

6.1. Training stage 

At the training stage, the two priority standards (priority1-Near and priority2-Far) are analyzed 

under the proposed GAQ-EBkSP framework. As shown in the reward curves Fig 8 (a), priority1-

Near overperforms priority2-Far. Based on the average reward lines that are calculated after 

convergence (after 400 episodes) of both priority standards, the average reward of the priority1-

Near scenario is higher than that of priority2-Far by approximately 300 units. In this project, the 

maximum number of steps for one episode is set to be 10 (1 step equals to 200-unit time). 

Typically, 10 steps per episode is adequate for all the RVs in the network to complete their trips. 

Therefore, if the maximum number of steps is reached in one episode, it means that rerouting 

vehicles are unable to complete their trips within the specified maximum number of steps. One 

evident reason could be that some of the RVs encounter severe congestion with BVs. Fig 8 (b) 

presents the probability of reaching the maximum episode steps of different priority standards 

throughout the training period. Clearly, as the training progresses, both priority standards show 

some progress, the probability of reaching the maximum episode step is lower. This means that 

the GAQ-EBkSP framework effectively prevents the rerouting vehicle from encountering severe 

congestion. On the other hand, using priority1-Near scenario, there is 13% lower probability 

(compared to priority2-Far) to encounter severe congestion.  

With the exception of different priority standards, the length of the high priority set, which 

determines the number of high priority RVs is also crucial factor for the training stage. Therefore, 

we implemented three different set lengths for the high priority case: {5,10,15} under the priority1-

Near standard. As shown in Fig 8 (c) and Table 1, on the basis of the average reward lines 

(calculated after convergence), the performance of high priority length 5 (average reward of 893) 

is much worse compared to that of length 10 (which indicated an average reward of 1420) and that 

of length 15 (average reward of 1371). Even though the average rewards of high priority set length 

10 and 15 are close, 10 is still a superior choice. This is because when the high priority set length 

is relatively large, almost all the vehicles in the network choose the shortest route without 

considering route popularity, which leads to congestion shifting from one part of the road network 

to another. As shown in Fig 8 (d), the probability of getting severe congestion using 15 as the high 

priority set length is higher than that associated with a set length of 10. Throughout the training 

process, the combination of priority1-Near as the priority standard and 10 as the high priority set 

length overperforms other combinations. Therefore, this combination is used in the proposed 

model. 
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(a) Episode reward curve of Priority1-near and 

Priority2-far  

(b) Probability of reaching the travel time limit of 

Priority1-near and Priority2-far  

 

  
(c) Episode reward curve for different sizes of 

the high priority set  

(d) Probability of reaching the travel time limit, for 

different sizes of the high priority set 

 

Figure 8 Training performance of different priority standards 

 

Fig 9 (a) presents the episode reward curve of rule-based model, GCQ-EBkSP and GAQ-

EBkSP (proposed RL model). The proposed GAQ-EBkSP and baseline GCQ-EBkSP both 

outperform the rule-based model. Since the rule-based model equips with no learning stage, it can 

be difficult to obtain improvement (in terms of reward), and the average reward of the proposed 

model is approximately 850 units higher than the rule-based model (As shown in Fig 9 (b) and 

Table 2). By using the GAQ model's attention mechanism as a replacement for the statically 

normalized convolution operation used by the GCQ model, the GAQ model obtains superior 

learning efficiency through the consideration of the importance of adjacent information. Therefore, 

the GAQ model obtains higher learning efficiency by providing road index considered different 

importance of neighboring information. As shown in Fig 9 (a) and (b), the proposed GAQ-EBkSP 

model performs superior to the baseline GCQ-EBkSP model (by approximately 17% additional 

reward units). 
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              (a) Reward comparison for each episode         (b) Training performance comparison (Mean, 

Median, Std dev)  

Figure 9 Reward comparison (Proposed vs. Balanced) 

 

Table 1 Training performance comparison (episode reward) with different parameters 

Parameter Statistic Training Scenario 

Priority standards   

Priority1-Near Mean 1412 

 Median 2339 

 Std dev. 1752 

Priority2-Far Mean 1172 

 Median 1855 

 Std dev. 1667 

High priority set length   

High priority set: 5 Mean 893 

 Median 755 

 Std dev. 1649 

High priority set: 10 Mean 1412 

 Median 2339 

 Std dev. 1752 

High priority set: 15 Mean 1371 

 Median 2262 

 Std dev. 1751 

 

Table 2 Training performance comparison (episode reward) for each model 

Model Statistic Training Scenario 

Graph Attention Q network (GAQ) Mean 1412 

 Median 2339 

 Std dev. 1752 

Graph Convolution Q network Mean 1209 

 Median 2203 

 Std dev. 1809 

Rule-based Mean 556 

 Median 148 

 Std dev. 1671 
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6.2. Testing stage 

Two important factors are considered in the testing stage: (i). the RV ratio (ii). the total number 

of vehicles in the network (BV + RV). For the RV ratio test, the total number of the vehicles is set 

to be 1000. Five different scenarios with RV ratios range from 0.1~0.9 were tested: 0.1 (900 BVs 

and 100 RVs), 0.3 (700 BVs and 300 RVs), 0.5 (500 BVs and 500 RVs), 0.7 (300 BVs and 700 

RVs), 0.9 (100 BVs and 900 RVs). Higher ratio reflects larger number of RVs in the network per 

unit time. Thus, the inflow parameter (vehicles per hour) is adjusted to increase with the RV ratio 

to maintain RVs’ number in the network under different ratios. For the total number of vehicles 

test, three scenarios with different total numbers of vehicles with fixed RV ratio 𝑟𝑅𝑉 are generated: 

1000 (1000(1 − 𝑟𝑅𝑉) BV and 1000𝑟𝑅𝑉 RV), 1500 (1500(1 − 𝑟𝑅𝑉) BV and 1500𝑟𝑅𝑉 RV), 2000 

(2000(1 − 𝑟𝑅𝑉) BV and 2000𝑟𝑅𝑉 RV). The performance metrics are the average speed and the 

probability to encounter severe congestion, which reflect the efficiency of the proposed method 

under the different scenarios.  

As shown in Fig 10 (a) and Fig 10 (b), the proposed GAQ-EBkSP model performs the best 

among all the models under different ratios in both average speed and probability of reaching travel 

time limit (probability of the RVs encountering severe congestion). Interestingly, the learning-

based models (GAQ-EBkSP, GCQ-EBkSP) outperform the rule-based model across all scenarios 

considered. Fig 10 (a) represents the average speed of RVs, the rule-based model reroutes the 

vehicles based on the current density of the network only with no learning stage to foresee the 

potential congestion at different road sections. As a result, the vehicles have no “future planning” 

and cannot choose superior routes jointly. This is the main reason why the learning-based models 

achieve higher reward values. Particularly, this is observed where the RV ratio is lower (a low 

ratio means that there are more background vehicles that are not under rerouting control), it is more 

likely to encounter severe congestion. As shown in Fig 10 (b), when the rerouting ratios are 

relatively low (≤30%), the average probability of encountering severe congestion is 0.35 when the 

learning-based model is used, while the rule-based model has an average probability of 0.51 which 

is 21% higher than that of the learning-based model. When the rerouting ratios increases, the 

probabilities of encountering severe congestion are lower when either model is used. Yet still, even 

in the case, the learning-based model outperforms the rule-based model. Furthermore, the GAT 

layer in the proposed GAQ-EBkSP model expands the basic aggregation function of the GCN 

layer in the GCQ-EBkSP model, assigning different importance to each edge through the attention 

coefficients. Thus, compared to the GCN layer, GAT layer are able to learn the information which 

is much more relevant to the problem. As shown in Fig 10 (a) and (b), the proposed GAQ-EBkSP 

model outperforms the GCQ-EBkSP model in all the scenarios considered. 

Based on Fig 10 (a) and Fig 10 (b), the worst case is when the RV ratio is 0.3. Thus, we use 

0.3 as the fixed RV ratio in the test that investigates the effect of a different total number of vehicles 

on the two learning-based models. As shown in Fig 10 (c) and Fig 10 (d), the proposed model has 

superior performance with regard to both the average speed and probability of RVs encountering 

severe congestion. As indicated in Fig 10 (c), the proposed GAQ-EBkSP exhibits a higher level of 

robustness compared to the baseline GCQ-EBkSP. When the total number of vehicles is 1500, the 

average speed of the RVs under the proposed model is still high, indeed, higher than the scenario 
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with 1,000 vehicles. This because as the number of RVs increases, some of the fast-moving RVs 

overtake the slow-moving RVs. In the Fig 10 (d), the probability of achieving the travel time limit 

is 0.5, which is the same with the scenario that has 1000 vehicles. Even with 2,000 vehicles (i.e., 

a very high chance of congestion), the average speed is still promising. The proposed GAQ-EBkSP 

model outperforms the GCQ-EBkSP baseline model, in all the scenarios considered. The benefits 

of using the attention mechanism in the proposed model are shown evidently when there is massive 

information (the total number of vehicles is large). As shown in Fig 10 (c) and (d), when the total 

number of vehicles reaches 1500 and 2000, the average speed of RVs in the proposed model is 

nearly 10m/s higher than that of the RVs in the baseline model. Moreover, when using the baseline 

model, the probability of RVs encountering severe congestion under large total number (1500 and 

2000) of vehicles is 75%, while this probability is only 57.5% when the proposed model is used. 

 

  
(a)Average speed for the Proposed model and Baseline 

models under different rerouting ratio  

(b)Probability of reach travel time limit under different 

rerouting ratio  

 

 

  
(c)Average speed for the Proposed model and Baseline 

models under different total number of vehicles  

(d)Probability of reach travel time limit under different 

total number of vehicles  

 

Figure 10 Testing performance: different scenarios for rule-based and RL-based models  
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CHAPTER 7 CONCLUDING REMARKS  

In this part of the project, a DRL (GAQ)-EBkSP model based-on fog-cloud architecture is 

proposed to dynamically reroute the vehicles in large transportation networks. The setting of the 

proposed model follows a centralized learning and decentralized execution manner. The fog nodes 

collect regional information and send to the cloud, where the road indexes of different fog node 

areas are learned. After obtaining the fog node area road indexes, EBkSP method is used in cloud 

to search the proper routes for the rerouting vehicles in their K shortest routes set based on the 

vehicles’ priority and routes’ popularity levels. Moreover, the large action space problem in large 

transportation network is solved by using fog nodes to substitute regional edges. Furthermore, the 

project applied a graph attention mechanism to fuse information and extract relevant information 

to enlarge the learning efficiency. The cloud layer helped ensure that the assigned routes are not 

local optimal but global optimal, and the routes are assigned to the vehicles based on their priority 

and routes’ popularity to avoid the congestion shifting. A region in mid-Manhattan, New York, is 

used as the experiment network study area. Different levels of the RV ratios (0.1~0.9) and total 

numbers of vehicles (1000, 1500, 2000), are tested. The testing results suggest that the proposed 

model (GAQ-EBkSP) outperforms the baseline models (rule-based model and GCQ-EBkSP) in 

terms of average speed and the probability of reaching the travel time limit in various scenarios; 

the learning-based model (proposed GAQ-EBkSP, GCQ-EBkSP) outperform the non-learning-

based model (rule-based model) across different scenarios.  

The fog nodes layer plays a crucial rule in the developed framework. In this research, six fog 

nodes are used to cover the network. However, different numbers of fog nodes and different fog 

node area sizes are expected to influence the rerouting decision. Thus, in the future work, the 

impacts of different number of fog nodes and different fog node sizes can be studied. 
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PART II 

 

System Control using Fog-Cloud Based 

Multiagent Reinforcement Learning and 

a Case Study involving Scalable Traffic 

Signals 
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CHAPTER 8: INTRODUCTION 
 

With growing global populations, increased urbanization, and trends of growing automobile 

ownership, urban transportation networks are increasingly subjected to traffic congestion. The 

consequential loss of time, increased emissions, and reduced safety in urban transportation can be 

expected to grow along with increased congestion. The optimization and control of traffic signals 

represent a key strategy for the management of traffic congestion and improving traffic conditions 

in urban areas. According to the Federal Highway Administration (FHWA), poor signal timing 

can account for up to 10% of traffic congestion (FHWA, 2020). Further, implementation of 

advanced traffic signal control (TSC) systems in Phoenix, Arizona has seen reductions in traffic 

collisions by 6.7%, travel times by 11.4%, and delay by 24.9% (Zhao et al., 2011). Therefore, 

developing and deploying advanced TSC systems can be integral to improving urban traffic 

conditions.  

          Traffic signal control is a domain that has seen much attention and research due to its direct 

impact on social and commercial activities. Broadly, TSC can be classified into two categories: 

fixed-time traffic control and real-time traffic control. Fixed-time traffic control typically uses a 

pretimed program that controls the cycle and split times. Webster (1958) was one of the earliest 

researchers to present a fixed-time control model, which aimed to minimize average delay of 

vehicles (Webster, 1958). For traffic flow conditions that are stable and do not exhibit randomness, 

fixed-time traffic control is well-suited. However, for traffic flow conditions that exhibit high 

levels of stochasticity and instability, fixed-time traffic control models are unsuitable due to their 

static nature. A better alternative are real-time traffic control models that are responsive to traffic 

conditions. Traffic control strategies can be made using real-time traffic data, allowing signals to 

adjust accordingly with unstable and/or stochastic traffic flow. A widely used real-time traffic 

controller is the actuated signal, which regulate its cycle and timings according to the detector and 

sensor inputs of the real-time traffic. While many applications of actuated signals have been 

developed and deployed to great effect, they suffer from the inability to cooperate with many other 

intersections and do not utilize queues of other phases. Therefore, actuated traffic controllers are 

unsuitable for addressing network-wide control of urban intersections. 

          In most urban areas, travel patterns are highly dynamic, and traffic signals are deeply 

interconnected. Poorly designed signal timings can paradoxically exacerbate congestion, 

especially when a locally optimal solution is scaled up to large networks. While several studies 

have shown that traffic signal control (TSC) methods such as actuated and pretimed controls are 

adequate for small networks (Koonce and Rodegerdts, 2008; Ceyland and Bell, 2004), they cannot 

be integrated effectively into large networks. With the imminent emergence of robust vehicular 

connectivity and automation technologies, many solutions on traffic signal control leveraging such 

technologies are being studied. Guo et al., (2019) presented six types of connected and automated 

vehicle- (CAV) based traffic control methods including an improved actuated system that utilizes 

CAV data (Guo et al., 2019). However, the question of when the CAVs will be deployed into the 

real-world is still largely debated. As such, this study aims to provide an intelligent, scalable traffic 

control model that can be integrated into large, urban networks without utilizing CAVs directly. 

          The prospect of scaling small-intersection TSC solutions to larger networks has been a 

persistent challenge that has been addressed using a variety of optimization algorithms. In recent 

years, there has been pronounced interest in the investigation of other solutions methods, and this 

new direction is motivated by advancements not only in computer hardware and software, 
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including computing power, but also in techniques and technologies for data management and 

analytics including artificial intelligence and machine learning. For example, multi-threaded, 

multi-core central processing units (CPUs) such as the Ryzen Threadripper series with up to 64-

cores and 128-threads have become more widely available for consumer use. Combined with 

advances in graphics processing units (GPUs) and large video random access memory (vRAM) 

capabilities, training deep reinforcement learning models has become much more efficient in 

recent years. It is acknowledged that deep learning and reinforcement learning concepts were 

introduced several decades ago (Jin, 1992; Tesauro, 1995). However, recent advancements in 

computational capabilities have made their application more feasible and therefore have fostered 

a new generation of deep and reinforcement learning algorithms in continuous and discrete control 

(Lillicrap et al., 2016; Tesauro, 1995). Alongside emerging smart infrastructural technologies that 

facilitate real-time data collection and sharing such as road-side units (RSUs) and drones, the 

implementation and deployment of scalable TSCs and other intelligent transportation systems have 

become increasingly feasible.  

          For these reasons, deep reinforcement learning (DRL) based approaches to solving TSC 

problems in large networks has become an increasingly studied topic. Wiering’s study was one of 

the earliest to propose the use of reinforcement learning algorithms for traffic signal control to 

minimize city-wide congestion (Wiering et al., 2000). Prashanth and Bhatnagar proposed 

reinforcement learning with function approximation for traffic signal control, using Q-learning for 

adaptive signal control (Prashanth and Bhatnagar, 2010). Chu et al proposed a multiagent deep 

reinforcement learning algorithm that could be applied to large-scale networks; they applied an 

actor critic network to recurrent neural network with long-short term memory (LSTM) (Chu et al., 

2020). Wang et al, proposed the cooperative double Q-learning (Co-DQL) model that leverages 

mean field approximation of all other agents in the network to significantly reduce model 

complexity and the curse of dimensionality (Wang et al., 2021).   

          While the aforementioned studies utilize the state-of-the-art DRL approaches for TSC 

problems, an oft overlooked topic is the resource constraints that may restrict transportation 

agencies and other government entities from deploying data-facilitating infrastructure such as 

RSUs and drones. As such, this study presents an alternative perspective to scalable TSC models 

that can reduce the number of deployed data-facilitating infrastructure. In essence, the proposed 

model utilizes a graph attention network (GAT) to preserve the topology of the traffic network 

while focusing on relevant inputs to make decisions. Doing so allows the model to address large 

networks as well as variable sized inputs. RSUs are deployed in an urban grid-like network, each 

serving as fog-nodes that collect data via detectors and share with other fog-nodes in its range, 

utilizing the information to control the phase and duration of the traffic lights in its control. The 

Q-network utilizes double estimators to approximate 𝑚𝑎𝑥
𝑎

𝐸{𝑄𝑡 (𝑠𝑡+1, 𝑎)} instead of maximizing 

over the estimated action values in the corresponding state to approximate the value of the next 

state (as is the case in standard Q-learning), performance overestimation is avoided. Overall, the 

model extracts node embeddings from fog node features while also constructing an adjacency 

matrix that maps the topology of the connected fog nodes, which are passed through the attention 

layer to be used for the Q-network. To the best of the authors’ knowledge, this is the first study 

that considers preservation of network topology in TSC problems through the use of GATs. 
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CHAPTER 9. BACKGROUND FOR THE METHODOLOGY 
 

9.1 Reinforcement Learning 

Figure 11 presents the architecture for the GAT Model. In general, reinforcement learning (RL) 

utilizes feedback of decisions, observations, and rewards. Deep reinforcement learning (DRL) 

combines RL with deep learning, which allows for end-to-end training of multilayer models that 

can solve complex problems. This is particularly useful for sequential decision making such as in 

robotics, video games, and traffic operations (Lillicrap et al., 2016; Chu et al., 2020; Vinitsky, et 

al. 2018; Ha, et al., 2020; Liu and Yang, 2019.  

One of the most popular single-agent RL method is Q-learning. Q-learning is a model-

free reinforcement learning approach that can be considered as asynchronous dynamic 

programming, where agents learn optimal policies in Markovian domains through solving 

sequential decision-making problems (Watkins, et al. 1992). This is achieved through estimating 

the optimal value, 𝑄∗(𝑠, 𝑎) = max
𝜋

𝑄𝜋(𝑠, 𝑎) , for each action 𝑎  during state 𝑠 . Because most 

problems have large state and action spaces to learn all action values separately, a parametrized 

value function 𝑄(𝑠, 𝑎; 𝜃𝑡) can be learned instead. Thus, the standard Q-learning update for the 

parameter from taking action 𝑎𝑡  in state 𝑠𝑡  with observed reward 𝑟𝑡+1 and the subsequently 

resulting state 𝑠𝑡 is: 

 

𝜃𝑡+1 = 𝜃𝑡 + 𝛼 (𝑌𝑡
𝑄 − 𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑡)) ∇𝜃𝑡

𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑡) 

 

where 𝛼 is the learning rate, and the target 𝑌𝑡
𝑄

 is defined as: 

 

𝑌𝑡
𝑄 ≡ 𝑟𝑡+1 + 𝛾 max

𝑎
𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡) 

 

where the constant 𝛾 ∈ [0,1) is the discount factor adjusting the weight between immediate and 

later rewards. 

 Q-learning in multiagent reinforcement learning (MARL) differs primarily in that MARL 

is based on Markov game instead of a Markov decision process (MDP) (Shapley, 1953; Watkins, 

et al., 1992). Similarly to MDPs, Markov games can be represented as a tuple 

(𝑀, 𝑺, 𝑨1,2,…,𝑀, 𝑟1,2,…,𝑀, 𝑝), where M is the number of agents, 𝑺 = {𝑠1, 𝑠2, … , 𝑠𝑚} is the set of 

system states, 𝑨𝑚 is the action set of agent 𝑚 ∈ {1,2, … , 𝑀}, 𝑟𝑚: 𝑺 × 𝑨𝟏 × … × 𝑨𝑴 × 𝑺 → ℝ is 

the reward function for agent 𝑚, and 𝑝: 𝑺 × 𝑨𝟏 × … × 𝑨𝑵 → 𝜇(𝑺) is the transition function for 

moving from one state 𝑠 to another state 𝑠′ given action 𝑎1,2,…𝑀. Partially observable Markov 

games additionally require Ω, the set of observations of the hidden states, and 𝒪: 𝑺 × Ω → ℝ≥0, 

the observation probability distribution. 

 In MARL, each agent learns to choose its actions according to their respective strategies. 

At each time step, the system state transfer occurs by taking the joint action 𝑎 = (𝑎1, … , 𝑎𝑀) 

under the joint strategy 𝜋 ≜ (𝜋1, … , 𝜋𝑀), and each agent receives their immediate reward from 
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the joint action. For each agent 𝑚 under joint policy 𝜋 and initial state 𝑠(0) = 𝑠 ∈ 𝑺, the 

expected discounted reward is: 

𝑉𝑚
𝜋(𝑠) = 𝐸𝜋 {∑ 𝛾𝑡𝑟𝑚(𝑡 + 1)|𝑠(0) = 𝑠

∞

𝑡=0

} 

 

Additionally, the agent-specific average reward can be found as: 

𝐽𝑚
𝜋 (𝑠) = lim

𝑇→∞

1

𝑇
𝐸𝜋 {∑ 𝑟𝑚(𝑡 + 1)|𝑠(0) = 𝑠

𝑇

𝑡=0

} 

 

9.2 Graph Neural Networks 

Graph neural networks are able to preserve acyclic and nonacyclic graph topology, which can 

enhance road network representation particularly in the context of scalable network traffic signal 

control (Watkins, 1989; Wang, et al. 2020; Wei, et al. 2019). Deep reinforcement learning requires 

a strong neural network architecture for forward and backpropagation for model training (Devailly 

et al., 2021). Graph convolutional networks (GCNs) can serve as powerful neural networks that 

can address graph data for deep reinforcement learning (Goodfellow, et al. 2016; Kipf and Welling, 

2017). The nodes of a GCN layer aggregates its own observed states and those of its neighbors 

into embeddings. Given different relational graphs, the message propagation is as follows (Kipf 

and Welling, 2017): 

 

ℎ𝑡
𝑙+1 = 𝜍 (Σ𝑚∈ℳ𝑖

𝑔𝑚(ℎ𝑖
𝑙 , ℎ𝑗

𝑙)) 

 

where ℎ𝑡
𝑙 ∈ ℝ𝑑(𝑙)

 denotes the hidden state of node 𝑣𝑡 in the 𝑙𝑡ℎ layer of the neural network, 𝑑(𝑙) is 

layer dimensions, ℳ𝑡 is the set of incoming messages, and 𝑔𝑡(∙) is the transformation for the 

message from the nodes.  

 In essence, these node embeddings can address problems caused by variable length inputs 

to perform various sequential learning tasks given graph data, and error terms can be used to 

backpropagate to perform the requisite gradient descent for parameter tuning purposes. 
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CHAPTER 10. METHODOLOGY  
 

 

10.1 DRL Model Architecture 

The fog-based graphic RL (FG-RL) model for TSC presented in this paper employs a scalable and 

decentralized methodology. The graphical structure of the network topology is preserved with 

traffic signals and intersections, along with their relative adjacencies. The fog arrangement 

determines the topology of the connected entities and the number of the connected intersections 

within its range. Therefore, the adjacency matrix containing the relative adjacencies and 

connectivity of intersections vary corresponding to how the RSUs (and in turn, the fog nodes) are 

dispersed in the network and how many intersections each RSU oversees. In DRL architecture, 

each RSU is represented as a fog node, which serves as an agent that makes decisions to select 

traffic signal phases for each of the intersections it oversees, with an overall goal to reduce 

congestion.  

The network topology and information attention are modeled using GAT. Figure 11 

presents the network architecture.  

 

 
 

Figure 11: GAT Model Architecture 

 

The fog node can oversee multiple intersections, some of which may have few or no 

queued vehicles. Therefore, it must learn to divert attention away from relatively uncongested 

intersections and focus more on congested intersections. However, a given intersection’s 

congestion levels can vary drastically between episodes or even across different time-steps in one 

episode. As a result, applying an attention model can facilitate the learning process under 

conditions when such variations exist.   

Each fog node 𝑖 produces node embeddings that encode node features ℎ𝑖. The state is a 

tuple of 𝑁 × 𝐹 node feature matrix 𝑋𝑡 and an 𝑁 × 𝑁 adjacency matrix 𝐴𝑡 , where 𝑁 is the total 

number of nodes, and 𝐹 is the number of features in each node. The feature matrix considers the 

states consistent with those in the literature (Wang, et al. 2021; Chu, et al., 2020), namely, (i) the 

cumulative delay of the first vehicle in each incoming lane at an intersection, and (ii) the total 

number of approaching vehicles in each incoming lane.   
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At each time-step 𝑡, the node feature matrix 𝑋𝑡 is fed as the input into a fully connected 

encoder denoted 𝜑 that generates node embeddings 𝐻𝑡 in 𝑑 dimensional embedding space ℋ ∈
ℝ𝑁×𝑑 

𝐻𝑡 = 𝜑(𝑋𝑡) ∈ ℋ 

 

The node embeddings then are passed through the graph convolution with attention mechanism.  

 
 
 

 

 

 

 
 
 

 

 

 

 

 

Figure 12: Small TSC Network 

 

 

The adjacency matrix is weighted using the attention mechanism: 

 

𝐻𝑡
′ = 𝐺𝐴𝑇(𝐻𝑡, 𝐴𝑡) = 𝛼𝐻𝑡𝑊 + 𝑏 

 

where 𝛼𝑖𝑗  are coefficients computed by the attention mechanism defined in the literature 

(Velickovic et al., 2017): 

 

𝛼𝑖𝑗 =
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝒂𝑇[𝑾ℎ𝑖||𝑾ℎ𝑗]))

Σ𝑘∈(𝒩𝑖) exp(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑾ℎ𝑖||𝑾ℎ𝑘]))
 

 

The output of the GAT layer is then used as inputs to the Q network to obtain the Q values. 

Further, experience relay and soft target update are utilized to enhance learning (Mnih et al., 2013; 

Hester et al., 2018), and the model is trained on randomly sampled batches from a replay buffer. 

Thus, the architecture can be summarized as follows: 

 

• FCN Encoder 𝜑: Dense (32) + Dense (32) 

• GAT Layer 𝐺𝐴𝑇: GATConv (32) 

• Q Network: Dense (32) + Dense (32) + Dense (64) + Dense (32) 

• Output Layer: Dense (5) 
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CHAPTER 11. CASE STUDY FOR PART II 
 

The case study utilized the Simulation of Urban MObility (SUMO) for traffic simulation 

(Krajzewicz et al., 2012), an open-source simulator that enables detailed tracking of vehicle and 

traffic light parameters. For an initial proof of concept, a small 6-node network is considered 

(Figure 2). 

 

11.1 Network Descriptions 

A small grid network was used for numerical experimentation, as shown in Figure 2. The first 

setting utilizes a “smart cities” approach, where each intersection is connected via a central 

controller in a cloud environment. This setting is a fully observable MDP. It must be noted that 

this is an ideal setting that has no constraints, meaning that all entities are assumed to be 

connected. While this can be achieved easily in simulation, it will need many connectivity 

facilitating infrastructure units to ensure that the entire network is connected. Especially in large 

networks, this can be problematic. 

The second setting utilizes the proposed fog-node approach, where intersections are 

grouped together by a small number of connectivity facilitating infrastructure such as RSUs or 

drones. Specifically, for this numerical example, two fog nodes are deployed such that the upper 

horizontal intersections are connected, and the lower horizontal intersections are connected. As 

previously states, the two benefits of segmenting the whole network into smaller fog nodes is the 

improved scalability and the possibility of reducing the number of RSUs/drones required to 

facilitate the intelligent TSC models. 

Each westbound and eastbound road segment entering signalized intersections is a two-

lane arterial comprised of a through-lane and a left-turn lane. Each northbound and southbound 

road segment consists of a single through-lane. Vehicles enter each outer road segments (10 

total) at a flow rate of 2200 vehicles/hour. The vehicle origins and flows are randomly 

distributed. 

 

11.2 MDP Settings 

 

Action space: 

Each fog node controls the three traffic signals in its range. As shown in Figure 2, Node 1 

controls the top three signals, and Node 2 controls the bottom three signals. Each signal can take 

one of five pre-determined phases, as is consistent with most literature and the practice (Wang, et 

al. 2021; Chu, et al., 2020): east-west straight, east-west left-turn, three straight and left-turn 

phases for east, west, and north-south.   

 

State space: 

The local state observed within each fog node is defined as follows: 

 

𝑠𝑘,𝑡 = {𝑤𝑎𝑖𝑡𝑘,𝑡[𝑙𝑎𝑛𝑒], 𝑤𝑎𝑣𝑒𝑘,𝑡[𝑙𝑎𝑛𝑒]} 
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As stated previously, 𝑤𝑎𝑖𝑡𝑘,𝑡[𝑙𝑎𝑛𝑒] denotes the cumulative delay of the first vehicle for a given 

lane in an intersection, and 𝑤𝑎𝑣𝑒𝑘,𝑡[𝑙𝑎𝑛𝑒] denotes the total number of approaching vehicles 

along each incoming lane.  

Rewards: 

The reward function consists of two main penalties: 

𝑟1 = 𝑤𝑎𝑖𝑡𝑘,𝑡[𝑙𝑎𝑛𝑒] 
𝑟2 = 𝑤𝑎𝑣𝑒𝑘,𝑡[𝑙𝑎𝑛𝑒] 

The total reward is the negative weighted sum of the two penalties,  

𝑟 =  −Σ𝑙𝑎𝑛𝑒(𝜎1𝑟1 + 𝜎2𝑟2) 

 

where 𝜎1, 𝜎2 are used to scale the two penalties.  

This numerical example used 𝜎1 = 1 and 𝜎2 = 0.30.  

 

11.3 Preliminary Results 

Fig. 13 presents a comparison of training results using 2 fog nodes vs. a fully observable system. 

 

 
(a) 

 
(b) 

Figure 13: Comparison of Training Results using 2 Fog Nodes vs Fully Observable System 
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For each setting, the model was trained using a soft target update set at 1𝑒−3 and a 

learning rate of 1𝑒−5. Each model was trained for a total of 100,000 time-steps, with 20,000 

time-steps being used for warm-up. Given these training parameters, the training results for the 

fully observable “smart cities” setting and the fog-node setting are shown in Figure 3. It can be 

seen that despite the lack of information sharing between the upper and lower intersections, the 

fog-node setting still performs comparably to a fully observable setting.  

However, despite similar training performances, the use of fog nodes results in higher 

average intersection delay, as shown in Figure 14. Over a 1,000 time-step policy replay, the fully 

observable model ends with about 150-second average intersection delay. On the other hand, the 

use of two fog nodes with no communication between them results in almost 300-seconds of 

average intersection delay at the end of the policy replay.  

The primary shortcoming of a fully observable model for traffic signal control problems 

is that they cannot scale well due to the curse of dimensionality as the number of connected 

nodes increases. These preliminary results indicate that the use of two separately controlled fog 

nodes allows for comparable training performance while being more scalable, but at the cost of 

some performance.  

 

 

 
 

Figure 14: Average intersection delay 
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CHAPTER 12 CONCLUSIONS 
 

In order to create a more easily scalable, intelligent traffic signal control (TSC) model that can be 

applied to large networks, this paper proposed the use of graph attention networks (GATs) and 

fog-node architecture. The added benefit of segmenting large networks into smaller fog-nodes 

includes the possibility of reducing the number of smart infrastructure units required to facilitate 

the intelligent TSC models. Multiagent reinforcement learning based models for TSC typically 

can be affected by the curse of dimensionality. The proposed model addresses scalability in two 

ways: (i) graph attention that only utilizes relevant node features and neighbor node features to 

reduce the input complexity, and (ii) fog-nodes that break up the large network into manageable 

sizes. Preliminary findings show that the proposed model shows promising results that can be 

scaled into larger networks.  

However, their performance in reducing average intersection delay may be relatively 

inferior compared to a fully observable model. As such, ongoing work on various fog node 

deployment arrangements and their performance, are expected to provide additional insights on 

the tradeoff between scalability and performance using the proposed GAT and fog-node 

architecture. Another promising research direction is to create a simplified or averaged 

performance within each fog-node to reduce the data size and complexity, thereby allowing fog-

nodes to exchange data between each other to make decisions based on other fogs’ 

performances.  
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CHAPTER 13 SYNOPSIS OF PERFORMANCE INDICATORS 

 

13.1 Part I 

 

Two (2) transportation-related courses were offered annually during the study period that was 

taught by the PI and a teaching assistant who are associated with the research project. One of 

these was a newly developed course inspired and directly associated with CCAT research. Three 

graduate students and a post-doctoral researcher (subsequently designated a Visiting Assistant 

Professor) participated in the research project during the study period. One (1) transportation-

related advanced degree (doctoral) program utilized the CCAT grant funds from this research 

project, during the study period to support graduate students.  

 

13.2 Part II 

 

Research Performance Indicators: 2 journal articles and 2 conference articles were produced 

from this project. The research from this advanced research project was disseminated to over 150 

people from industry, government, and academia, through 3 conference presentations. These 

include the 2021 IEEE International Smart Cities Conference (ISC2), the 2021 INFORMS 

Annual Meeting, and the 2022 ASCE International Conference on Transportation and 

Development.   

One (1) other related research project was funded by a source other than UTC and 

matching fund sources. At the time of writing, the researchers are still working on developing a 

specific product (new technologies), procedures/policies, and standards/design practices based 

on the results of this research project. 

Leadership Development Performance Indicators: This research project generated 3 academic 

engagements and 2 industry engagements. The PI held positions in 2 national organizations that 

address issues related to this research project. One of the CCAT students who worked on this 

project holds a leadership position. 

Education and Workforce Development Performance Indicators: The methods, data and/or 

results from this study are being incorporated in the syllabus for the next versions (Fall 2022 

and/or Spring 2023) of the following courses at Purdue University: (a) CE 561: Transportation 

Systems Evaluation, a mandatory graduate level course at Purdue’s transportation engineering 

M.S. and Ph.D. programs, (b) CE 299: Smart Mobility, an optional undergraduate level course at 

Purdue’ civil engineering B.S. program, and (c) CE 398: Introduction to Civil Engineering 

Systems, a mandatory undergraduate level course at Purdue University’s civil engineering 

program. These students will soon be entering the workforce. Thereby, the research helped 

enlarge the pool of people trained to develop knowledge and utilize the at least a part of the 

technologies developed in this research, and to put them to use when they enter the workforce. 

Collaboration Performance Indicators: There was collaboration with other agencies, and 1 

agency provided matching funds. 

The outputs, outcomes, and impacts are described in Chapter 14 below. 
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CHAPTER 14. STUDY OUTCOMES AND OUTPUTS 

14.1 Outputs 

14.1.1 Publications, conference papers, or presentations 

(a) Journal Papers 

Ha, P. Y. J., Chen, S., Du, R., Dong, J., Li, Y., & Labi, S. (2020). Vehicle connectivity and 

automation: a sibling relationship. Frontiers in Built Environment, 6, 199. 

https://doi.org/10.3389/fbuil.2020.590036 

(b) Conference papers 

Du, R., Chen, S., Dong, J., Ha, P. Y. J., & Labi, S. (2021, September). GAQ-EBkSP: A DRL-

based Urban Traffic Dynamic Rerouting Framework using Fog-Cloud Architecture. 

In Proceedings of the 2021 IEEE International Smart Cities Conference (ISC2) (pp. 1-7). IEEE. 

https://ieeexplore.ieee.org/abstract/document/9562832 

 

(c) Presentations  

Du, R., Chen, S., Dong, J., Ha, P. Y. J., & Labi, S. (2021). GAQ-EBkSP: A DRL-based Urban 

Traffic Dynamic Rerouting Framework using Fog-Cloud Architecture. In 2021 INFORMS 

Annual Meeting, Anaheim, CA, October 24-27, 2021. 

 

Du, R., Chen, S., Dong, J., Ha, P. Y. J., & Labi, S. (2021). GAQ-EBkSP: A DRL-based Urban 

Traffic Dynamic Rerouting Framework using Fog-Cloud Architecture. In 2021 IEEE 

International Smart Cities Conference (ISC2) IEEE Virtual Conference. 

 

Du, R., Chen, S., Dong, J., Ha, P. Y. J., & Labi, S. (2022). A DRL-based urban traffic dynamic 

rerouting framework with fog-cloud architecture, 2022 ASCE International Conference on 

Transportation and Development, Seattle, Washington, May 31–June 3, 2022. 

 

14.1.2. Other outputs 

 

The first part of this study addresses the use of fog-cloud architecture for a deep reinforcement 

learning-based control framework and presents a case study involving urban traffic dynamic 

rerouting, in a bid to help mitigate traffic congestion at urban areas. The second part of the study 

recognizes that optimizing traffic signal control at intersections continues to pose a challenging 

problem particularly for large-scale traffic networks, and uses fog-cloud based multiagent 

reinforcement learning scalable for controlling urban traffic signal systems. Specifically, the new 

methodologies, technologies and techniques developed in the study are: 

 

• A centralized-control system with decentralized execution is built on top of cloud-fog 

information exchange architecture (cloud-fog-edge): 

In this project, the cloud serves as a central platform for planning and making decisions at 

https://ieeexplore.ieee.org/abstract/document/9562832
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the system level based on the information collected decentralized by the fog nodes. 

Rerouting vehicles executing those decisions in a decentralized manner. This 

arrangement is intended to preserve both the computation capability and the efficiency of 

information exchange.  

• Attention mechanism combines with deep reinforcement learning:  

using DRL (deep reinforcement learning) solely in solving problems in the urban traffic 

systems (with highly dynamic, complex nature and massive information) can be really 

challenging. However, in this project, we introduced attention mechanism. The attention 

mechanism helps differentiate the relative importance of input information which enlarge 

the learning efficiency of the DRL. 

• Combine (OSM) Open Street Map and SUMO (Simulation of Urban Mobility) to build 

the experiment network:  

The proposed framework is implemented in a simulation environment using SUMO, 

which is an open-source simulator with well-defined vehicle parameters. The experiment 

network is the Manhattan network, which is imported from OSM and cleaned in SUMO.  

Other products of this research are as follows: 

• A set of analytical models that describe: a centralized-control system with decentralized 

execution is built on top of cloud-fog information exchange architecture (cloud-fog-

edge); uses attention mechanism combined with deep reinforcement learning; and 

combine (OSM) Open Street Map and SUMO (Simulation of Urban Mobility) to build a 

network for experimentation. 

• Material for the Purdue Graduate course “CE 597 – Artificial intelligence and machine 

learning for autonomous vehicle operations.” 

• Research material and datasets to support future research related to the subjects of multi-

level control for CAV and smart infrastructure and AI-based fog-cloud collaboration 

14.2 Outcomes  

The outcomes of this project are the prospective changes that can be made to the transportation 

system, or its regulatory, legislative, or policy framework, resulting from research and 

development outputs. These are: 

• Increased understanding and awareness of traffic congestion in large urban areas 

• Adoption of new methodology combining DRL with attention mechanism GAT 

• Enhanced travel efficiency of large urban networks 

• Demonstration of the fog-cloud collaboration concept 

• Demonstrate information collection and use motivated by decision contexts  

14.3 List of impacts  

The impacts of this project are the effects of outcomes on the transportation system, or society in 

general, such as reduced fatalities, decreased capital or operating costs, community impacts, or 

environmental benefits. This includes how the research outcomes can potentially improves the 
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operation and safety of the transportation system, increase the body of knowledge and 

technologies, enlarges the pool of people trained to develop knowledge and utilize new 

technologies and put them to use, and improve the physical, institutional, and information 

resources that enable people to have access to training and new technologies. A list of specific 

impacts from this research project, are as follows: 

• Vehicle rerouting is the key to provide better traffic mobility, especially in large urban 

area. However, only consider local information will not provide optimal routing solution 

in most cases. In this project, we bring attention mechanism into the framework to help 

select information based on importance. Thus, the framework can help predict the 

potential congestion area and help rerouting vehicles avoid future congestion, and thus, 

enhance the urban mobility. In large urban area, information exchange happens at 

anywhere and anytime, the efficiency of the information exchange affects the users’ 

decisions and experience. Traditional cloud locates far from users, which brings high 

latency. By introduce fog nodes into the information exchange architecture, users can get 

faster respond with low latency. In this project, we built our framework on top of the fog-

cloud architecture, which enhance the communication efficiency and gives users (drivers) 

better experience.  

• It is anticipated that the proposed research will provide strong justification for CAV 

manufacturers, technology companies, and the road agencies to invest in connectivity 

equipment and facilities, and therefore, will have a higher stake in CAV deployment. 

Similarly, the need for additional investment in the development and deployment of 

intelligent infrastructure can be justified. We expect that the research will provide proof 

that connectivity-equipped AVs and connectivity investments for HDVs can greatly 

benefit the entire traffic stream in the sense that it will enhance operational efficiency and 

mobility.  

• Justification for wide adoption of 5G/LTE for reduced latency that results in enhanced 

mobility and safety, especially in the context of large-scale networks such as urban areas  

• The impacts of the research will hopefully give a strong justification to both CAV 

company and DOT’s investment in installing connectivity facilities, and that investments 

in connectivity facilities can greatly benefit the entire transportation system by enhancing 

mobility and safety.  

• We expect that the development of an innovative AI for CAV controls, at large-scale 

networks comprised of signalized intersections, will yield positive effects on the transport 

system and society in general. These includes reduced crashes, travel efficiency (reduced 

travel time) which translate into lower vehicle operating costs, higher economic 

productivity, and more free time for social activities.  

• Six graduate students that worked on this project will enter the workforce in 2023 to help 

support the workforce that will implement new technologies such as those developed in 

this study. 

• Parts of the research outcomes were incorporated in a graduate level class (the Purdue 

University course in Spring 2020 and Fall 2021 “CE 597 – Artificial intelligence and 

machine learning for autonomous vehicle operations, Part I and II.” Therefore, the 

students, who will soon be entering the workforce, benefitted from the outcomes of this 

research through an academic platform. This helps enlarge the pool of people trained to 
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develop knowledge and utilize the technologies developed in this research, and to put 

them to use when they enter the workforce. 
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APPENDIX 

 

Published Related Work 

Paper 1: Du, R., Chen, S., Dong, J., Ha, P. Y. J., & Labi, S. (2021). GAQ-EBkSP: A DRL-based 

Urban Traffic Dynamic Rerouting Framework using Fog-Cloud Architecture. In 2021 IEEE 

International Smart Cities Conference (ISC2) Proceedings, IEEE. 

 

Abstract 

Dynamic rerouting framework can improve urban traffic management by mitigating urban traffic 

congestion. Emerging technologies such as fog-computing offers low-latency capabilities and 

facilitates the information exchange between the vehicles and infrastructure systems, and this 

fosters dynamic rerouting efficiency. In this study, a 2 stage-method combining GAQ (Graph 

Attention Network- Deep Q Learning) and EBkSP (Entropy Based k Shortest Path) is proposed 

using a fog-cloud architecture to reroute the vehicles in a dynamic urban environment to achieve 

improved travel efficiency. First, GAQ analyzes the traffic conditions on each road and for each 

fog area and assigns a road index based on the information attention from both local and 

neighboring areas. Second, the route for each vehicle is assigned using EBkSP based on the 

vehicle priority and route popularity. The results demonstrate attainment of higher speed and 

lower total travel time for each vehicle in the network, thereby indicating the efficacy of the 

proposed framework in dynamic rerouting. 

 

Paper 2: Ha, P. Y. J., Chen, S., Du, R., Dong, J., Li, Y., & Labi, S. (2020). Vehicle connectivity 

and automation: a sibling relationship. Frontiers in Built Environment, 6, 199. 

https://doi.org/10.3389/fbuil.2020.590036 

 

Abstract 

The evolution of scientific advances has often been characterized by the amalgamation of two or 

more technologies. With respect to vehicle connectivity and automation, recent literature 

suggests that these two emerging transportation technologies can and will jointly and profoundly 

shape the future of transportation. However, it is not certain how the individual and synergistic 

benefits to be earned from these technologies is related to their prevailing levels of development. 

As such, it may be considered useful to revisit the primary concepts of automation and 

connectivity, and to identify any current and expected future synergies between them. Doing this 

can help generate knowledge that could be used to justify investments related to transportation 

systems connectivity and automation. In this discussion paper, we attempt to address some of 

these issues. The paper first reviews the technological concepts of systems automation and 

systems connectivity, and how they prospectively, from an individual and collective perspective, 

impact road transportation efficiency and safety. The paper also discusses the separate and 

common benefits of connectivity and automation, and their possible holistic effects in terms of 

these benefits where they overlap. The paper suggests that at the current time, the sibling 

relationship seems to be lopsided: vehicle connectivity has immense potential to enhance vehicle 

automation. Automation, on the other hand, may not significantly promote vehicle connectivity 

https://doi.org/10.3389/fbuil.2020.590036
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directly, at least not in the short term but possibly in the long term. The paper argues that future 

trends regarding market adoption of these two technologies and their relative pace of 

advancement or regulation, will shape the future synergies between them.  
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