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Stride time (ST) fluctuations contain long-term correlations and provide important 
information about locomotor health [1]. Linear and non-linear ST analysis methods 
have differentiated between healthy locomotor function and those at risk of falls 
[2], motor diseases [3] or with previous history of injury [4]. A recent systematic 
review reported that wearable sensors demonstrated excellent validity and 
reliability for calculating linear ST metrics, and poor-to-moderate validity and 
reliability for non-linear ST metrics [5]. A low number of high-quality studies, 
varying methods, and limited number of strides were cited as potential reasons for 
the findings. Therefore, this study aimed to assess the agreement between several 
wearable sensors and force plates in quantifying ST variability using published 
recommended methods [6].  
 
Method: Sixteen participants (6 f/ 10 m, height 176 ± 9 cm, mass 77 ± 14 kg, age 
25 ± 6 y) completed three sessions over three weeks. Procedures were approved 
by the the Departments of Defence and Veterans' Affairs and La Trobe University's 
Human Research Ethics Committee (#302-20). Participants completed a 12-min 
walking trial on a force-instrumented treadmill at a self-selected walking speed 
during each session. Four sensors (Vicon Blue Trident, Axivity, Xsens Dot, APDM 
Opal) [1000 Hz, 200 Hz, 120 Hz, 128 Hz] were attached to the heel of each 
participant’s boot, while a Plantiga sensor [500 Hz] was embedded in a custom 
insole. All time series were downsampled to 120 Hz. Heel contacts were identified 
from the force plates using detection of the peak anteroposterior centre of 
pressure displacement, whereas detection of the peak vertical acceleration data 
was used to identify heel contacts for the wearable sensors. ST was calculated as 
the time interval between successive heel contacts of the right foot. Linear 
measures included ST mean, standard deviation (SD), and coefficient of variation 
(CV), whereas non-linear measures included detrended fluctuation analysis alpha 
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(DFA) and sample entropy (SampEn). Relative and absolute agreement was 
assessed using Pearson’s r and intraclass correlation coefficients, respectively, 
comparing each metric calculated from the wearable sensors to that calculated 
from the force plates. 
 
Results: The Opal APDM sensor had moderate-to-excellent agreement (r = 0.6 – 
0.99) while the Axivity (r = 0.84 – 0.99), Blue Trident (r = 0.79 – 0.99), XSens DOT (r 
=  0.85 – 0.99), and Plantiga (r = 0.83 – 0.99) had good-to-excellent agreement 
across metrics when compared with the force plates (Fig. 1).  
 
 
 
 
 
 
 
 
 
 
Conclusions: Non-linear methods exhibited reduced agreement (r 0.6 – 0.92) 
compared with linear methods (r 0.94 – 0.99), consistent with previous systematic 
reviews. Non-linear methods such as DFA and SampEn are more likely to be 
sensitive to error due to exploring the temporal structure of a time series rather 
than the magnitude of variability. The results show that wearable sensors could 
provide a portable, cost-effective solution to analyse ST using linear and non-linear 
methods.  
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Fig. 1: Relative (a) and absolute (b) agreement of 
sensors and force plates in the calculation of 

       



ISEA 2022 – The Engineering of Sport 14, Purdue University, 6-10 June 2022 

Corresponding author email: p.slattery@latrobe.edu.au 3 
 

 


