
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Center for Connected and Automated 
Transportation Lyles School of Civil Engineering 

6-2022 

Development of In-Vehicle Information Dissemination Development of In-Vehicle Information Dissemination 

Mechanisms to Reduce Cognitive Burden in the Information-Rich Mechanisms to Reduce Cognitive Burden in the Information-Rich 

Driving Environment Driving Environment 

Shubham Agrawal 
agrawa3@clemson.edu 

Irina Benedyk 
birina@buffalo.edu 

Srinivas Peeta 
peeta@gatech.edu 

Follow this and additional works at: https://docs.lib.purdue.edu/ccat 

Recommended Citation Recommended Citation 
Agrawal, Shubham; Benedyk, Irina; and Peeta, Srinivas, "Development of In-Vehicle Information 
Dissemination Mechanisms to Reduce Cognitive Burden in the Information-Rich Driving Environment" 
(2022). Center for Connected and Automated Transportation. Paper 4. 
http://dx.doi.org/10.5703/1288284317467 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/ccat
https://docs.lib.purdue.edu/ccat
https://docs.lib.purdue.edu/civl
https://docs.lib.purdue.edu/ccat?utm_source=docs.lib.purdue.edu%2Fccat%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages


Final Report #23
June 2022

Development of In-Vehicle Information 
Dissemination Mechanisms to Reduce Cognitive 
Burden in the Information-Rich Driving 
Environment
Shubham Agrawal
Irina Benedyk
Srinivas Peeta



 

  
 

 

 

Report No. 23        Report Date: June 2022 

Project Start Date: 8/15/2017 

Project End Date: 12/31/2020 

 

 

Development of In-vehicle Information Dissemination 

Mechanisms to Reduce Cognitive Burden in the 

Information-rich Driving Environment 
 

 

Shubham Agrawal 

Postdoctoral Fellow 

Clemson University 

Irina Benedyk 

Assistant Professor 

University at Buffalo 

Srinivas Peeta 

Frederick R. Dickerson Chair & Professor 

Georgia Institute of Technology   



 

 

ACKNOWLEDGEMENT AND DISCLAIMER 

Funding for this research was provided by the Center for Connected and Automated Transportation 

under Grant No. 69A3551747105 of the U.S. Department of Transportation, Office of the Assistant 

Secretary for Research and Technology (OST-R), University Transportation Centers Program. The 

contents of this report reflect the views of the authors, who are responsible for the facts and the 

accuracy of the information presented herein. This document is disseminated under the 

sponsorship of the Department of Transportation, University Transportation Centers Program, in 

the interest of information exchange. The U.S. Government assumes no liability for the contents 

or use thereof. 
 

 

Suggested APA Format Citation: 

Agrawal, S., Benedyk, I., and Peeta, S. (2022). Development of In-vehicle Information 

Dissemination Mechanisms to Reduce Cognitive Burden in the Information-rich Driving 

Environment, Technical Report Nr. 23, Center for Connected and Automated Transportation, 

Purdue University, West Lafayette, IN. 

 

Contact Information 

Samuel Labi 

3000 Kent Ave, West Lafayette, IN 

Phone: 7654945926 

Email:  labi@purdue.edu  

 

Srinivas Peeta 

790 Atlantic Dr NW, Atlanta, GA 

Phone: 4048942300 

Email:  peeta@gatech.edu  

 

CCAT 

University of Michigan Transportation 

Research Institute 

2901 Baxter Road 

Ann Arbor, MI  48152 

 

uumtri-ccat@umich.edu  

(734) 763-2498 

www.ccat.umtri.umich.edu 

 

 

mailto:labi@purdue.edu
mailto:peeta@gatech.edu
mailto:uumtri-ccat@umich.edu
http://www.ccat.umtri.umich.edu/


 

i 

 

Technical Report Documentation Page 

1. Report No. 

 23 

2. Government Accession No. 

N/A 

3. Recipient’s Catalog No. 

N/A 

4. Title and Subtitle 

Development of In-vehicle Information Dissemination Mechanisms to Reduce 

Cognitive Burden in the Information-rich Driving Environment   

5. Report Date 

June 2022 

6. Performing Organization Code  

N/A 

7. Author(s) 

Shubham Agrawal, Irina Benedyk, Srinivas Peeta 

8. Performing Organization Report No.  

N/A 

9. Performing Organization Name and Address 

Center for Connected and Automated Transportation 

Purdue University, 550 Stadium Mall Drive, W. Lafayette, IN 47907;   

and University of Michigan Ann Arbor, 2901 Baxter Road, Ann Arbor, MI  48109 

10. Work Unit No. 

N/A 

11. Contract or Grant No. 

Contract No. 69A3551747105 

12. Sponsoring Agency Name and Address 

U.S. Department of Transportation 

Office of the Assistant Secretary for Research and Technology 

1200 New Jersey Avenue, SE, Washington, DC  20590 

13. Type of Report and Period Covered 

Final Report. 8/15/2017 - 12/31/2020 

14. Sponsoring Agency Code 

OST-R 

15. Supplementary Notes 

Conducted under the U.S. DOT Office of the Assistant Secretary for Research and Technology’s (OST-R) University 

Transportation Centers (UTC) program. 

16. Abstract 

The diversity and complexity of real-time travel information provided en route to drivers has steadily increased over the years. 

While it generally has positive impacts by enabling drivers to make more informed travel choices with confidence, several studies 

have reported the possible negative implications of poorly-designed information delivery systems. The key reason for this 

underlying ineffectiveness is the lack of adequate consideration of human and psychological factors in real-time information 

design and its delivery. This study measures drivers’ brain electrical activity patterns to evaluate driver cognition under real-time 

information provision using insights on the localization of brain functions from the neuroscience domain. The brain electrical 

activity patterns of 84 participants are collected using an electroencephalogram (EEG) in an interactive driving simulator 

environment. The impacts of real-time auditory travel information characteristics (amount and content) and different time stages of 

interaction with information provision (before, during and after) on the frequency band powers of EEG signals in different brain 

regions are analyzed using linear mixed models. Study results illustrate that drivers exert more cognitive effort to perceive and 

process real-time information on complex routes in terms of the road environment and traffic interactions. Further, insufficient 

real-time travel information may evoke increased attention to internal processing and memory retrieval on routes characterized by 

higher travel time uncertainty. Also, driver anxiety may increase due to information recommending switch to routes with higher 

travel time uncertainty and complex driving environment. The study findings can aid information providers, both private and 

public, as well as auto manufacturers to incorporate driver cognition and psychology in designing real-time information and their 

delivery systems. 

17. Key Words 

Real-time information, Driver cognition, Driving simulator, 

Electroencephalography 

18. Distribution Statement 

No restrictions.  

19. Security Classif. (of this report) 

Unclassified 

20. Security Classif. (of this page) 

Unclassified 

21. No. of Pages 

31 pages 

22. Price 

N/A 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 

 

 

 



 

ii 

 

 

Table of Contents 

Table of Contents .......................................................................................................................................... ii 

List of Figures .............................................................................................................................................. iii 

List of Tables ............................................................................................................................................... iii 

1. INTRODUCTION ................................................................................................................................ 4 

2. METHODOLOGY ............................................................................................................................... 7 

2.1. Driving Simulator ......................................................................................................................... 7 

2.2. Scenario design ............................................................................................................................. 7 

2.3. Participants .................................................................................................................................... 9 

2.4. Electroencephalogram (EEG) ..................................................................................................... 10 

2.5. Data Analysis .............................................................................................................................. 12 

3. RESULTS AND DISCUSSION ......................................................................................................... 13 

4. CONCLUDING COMMENTS ........................................................................................................... 18 

5. SYNOPSIS OF PERFORMANCE INDICATORS ............................................................................ 20 

6. OUTPUTS, OUTCOMES, AND IMPACTS ...................................................................................... 20 

6.1. List of research outputs (publications, conference papers, and presentations) ........................... 20 

6.2. Outcomes .................................................................................................................................... 21 

6.3. Impacts ........................................................................................................................................ 21 

6.4. Tech Transfer .............................................................................................................................. 21 

REFERENCES ........................................................................................................................................... 22 

 

  



 

iii 

 

List of Figures 

Figure 1 Human brain anatomy .................................................................................................................... 6 

Figure 2 Experiment roadmap illustrating real-time information provision locations .................................. 7 

Figure 3 Driving simulator equipment .......................................................................................................... 8 

Figure 4 Participant age and gender distribution .......................................................................................... 9 

Figure 5 Information scenario distribution by route and experiment run ................................................... 10 

Figure 6 EEG electrode locations as per International 10-20 System......................................................... 11 

Figure 7 Time windows near information provision location ..................................................................... 12 

Figure 8 Linear mixed model results for freeway route .............................................................................. 15 

Figure 9 Linear mixed model results for arterial route ............................................................................... 16 

 

List of Tables 

Table 1 List of real-time auditory travel information provided to drivers ………………………………. 8 

Table 2 Brain regions and corresponding EEG channels ………………………………………………. 9  

 



 

4 

 

1. INTRODUCTION 

The diversity of real-time travel information has increased over the years with advances in 

information and communication technologies. Advanced traveler information systems (ATIS) 

assist drivers in making more informed travel choices (e.g., departure time choice and route choice) 

by providing them with pre-trip and en route real-time information (Ben-Elia and Avineri, 2015; 

Jou, 2001; Peeta and Yu, 2005; Yu and Peeta, 2011). Drivers now have access to multiple 

information sources (e.g., public infrastructure and personal devices) that can provide a variety of 

real-time information such as downstream traffic conditions, turn-by-turn navigation, weather and 

pavement conditions, and forward collision warnings in different modalities (e.g., visual and 

auditory). 

The provision of relevant and accurate en route information can provide several benefits to 

travelers, including increased cognitive decisiveness and reduced travel time uncertainty (Ettema 

and Timmermans, 2006; Song et al., 2017). But concurrently, delivering ill-designed or untimely 

information can lead to information overload. This can have negative safety implications, and 

adverse effects on drivers’ experience with and trust in information systems (Abe and Richardson, 

2006; Birrell and Young, 2011; Green, 2000). Even well-designed information delivered to drivers 

can have severely reduced benefits depending on their cognitive state, such as insufficient attention 

or stress (Brookhuis and de Waard, 2010). The complexity and amount of information is bound to 

increase even further in the era of connected and automated transportation. Thus, it is critical to 

evaluate the cognitive effects of real-time travel information for improving the effectiveness and 

trustworthiness of ATIS. This study addresses this issue by analyzing the impacts of real-time 

travel information characteristics (amount and content) on driver cognition and psychology. 

Several studies have evaluated the impacts of information provision on driver decision-making 

behavior and driving performance. Most existing driver behavior models under real-time 

information provision capture the impacts of road/route characteristics, generalized travel costs 

(e.g., travel time and fuel consumption), heterogeneity in individual characteristics (e.g., age and 

trip purpose), and real-time information characteristics (e.g., amount and content) (Agrawal et al., 

2016; Ben-Elia et al., 2013; Bonsall, 1992; Dia, 2002; Han et al., 2013; Peeta et al., 2000; Peeta 

and Yu, 2004). Some route choice models captured the role of information accuracy (Ben-Elia et 

al., 2013), multiple information sources (Hato et al., 1999) and past experience with information 

(Ben-Elia et al., 2008). A few studies have also analyzed the compliance of drivers towards real-

time travel information (Chen et al., 1999; Srinivasan and Mahmassani, 2000), and the 

heterogeneity in value of real-time travel information for drivers (Chorus et al., 2006; Kim and 

Vandebona, 1999; Zhang and Levinson, 2008). A few driver route choice models have been 

proposed based on well-defined behavioral theories, such as bounded rationality (Gao et al., 2011), 

prospect theory (Razo and Gao, 2013), and regret theory (Chorus et al., 2008). Although these 

theoretical models capture the limitations of human cognition and inconsistencies in human 

behavior, but they do not explicitly analyze the cognitive effects induced by real-time information. 

Paz and Peeta (2008, 2009a, 2009b, 2009c) developed traffic routing models under real-time travel 

information provision that are consistent with drivers’ behavioral responses (for example, 

compliance) towards different information characteristics. However, these models often assume 

seamless perception, processing, and utilization of real-time information by drivers, and thereby, 
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ignore the human factors and psychological aspects on drivers’ decision-making process in an 

already cognition-heavy driving task.  

Limited efforts have been made to incorporate the impacts of real-time travel information that 

goes beyond the tangible benefits to the drivers by factoring the cognitive effects of information 

in modeling driver decision-making behavior (Song et al., 2017). But these models rely on 

subjective measures (e.g., self-reported questionnaires) to estimate psychological effects of 

information, which are often criticized for their associated memory biases such as source 

misattribution and transience as well as absent-mindedness and individual biases and beliefs (Choi 

and Pak, 2005; Schacter, 1999; Spector, 1994). 

Previous studies have analyzed driver interactions with in-vehicle infotainment systems (IVIS) 

on drivers using either driving or secondary-task performance.  For example, Maciej and Vollrath 

(2009) evaluated the deviations in lateral position, eye gaze behavior and subjective measures of 

distraction under manual- and speech-based IVIS interactions. Coleman et al. (2016) used 

detection-response task to estimate cognitive workload under interactive voice-based IVIS. 

Jamson and Merat (2005) reported reduction in driving performance (e.g., reduced speed and 

shorter time-to-collision) while interacting with visual or auditory IVIS. Pettitt et al. (2007) 

employed GOMS (Goals, Operators, Methods and Selection Rules) approach to model visual 

demand of IVIS. Abe and Richardson (2006) analyzed driving performance and subjective 

measures of trust-in-system to evaluate real-time collision warning systems. In the context of 

information modality, past studies have associated auditory information with better driver 

performance in terms of reaction time compared to visual information (Liu, 2001; Ma et al., 2016).  

Although these studies use objective measures to estimate driver cognitive performance, 

secondary-task performance measures fail to capture the cognitive and psychological impacts of 

information as they mainly inform on the level of distraction or workload distribution due to the 

secondary task, while driving performance measures are unable to differentiate between 

inattention blindness towards information from ease of perception and processing. Moreover, it 

can be expected that the impacts of interactions with real-time travel information will be different 

from non-travel related information systems. In this context, we evaluate the cognitive and 

psychological impacts of auditory real-time travel information on drivers by analyzing their 

objective physiological data, that is, variations in driver’s brain electrical activity measured using 

an electroencephalogram (EEG), which provide more direct insights on driver cognition compared 

to secondary-task or driving performance. 

The advances in biosensing technologies and driver monitoring systems have enabled 

unobtrusive, real-time driver psychophysiological analysis. Some studies have developed methods 

to estimate driver’s level of attention and cognitive workload associated with information systems 

using physiological factors such as eye blink/gaze behavior (Benedetto et al., 2011; Faure et al., 

2016), heart rate (Heine et al., 2017; Tjolleng et al., 2017), brain electrical activity (Berka et al., 

2005), facial expressions, or a combination of them (Haak et al., 2009; Ji et al., 2004). Further, 

there is a growing consensus that brain electrical activity data collected using EEG provides better 

estimates of human attention compared to other physiological data like functional magnetic 

resonance imaging (fMRI), functional near-infrared (fNIR) spectroscopy, galvanic skin response, 

heart rate variability, and pupillometry (Berka et al., 2007; Wilson, 2002). However, most EEG 

studies in the driving context are limited to assessing driver fatigue (Gharagozlou et al., 2015; 
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Jagannath and Balasubramanian, 2014; Jap et al., 2009; Kar et al., 2010; Li et al., 2012; Morales 

et al., 2017; Zhao et al., 2012), drowsiness or sleep deprivation (Barua et al., 2019; Brown et al., 

2013; Chen et al., 2018; Johnson et al., 2011; Lin et al., 2005; Perrier et al., 2015), and distraction 

(Almahasneh et al., 2014; Sonnleitner et al., 2014), and that too in an oversimplified driving 

environment. A few efforts have been made in the past to model driver behavior using EEG. For 

example, Yang et al. (2018) developed a classification algorithm for driving aggressiveness and 

stability based on EEG measures. Therefore, to address the existing gap of cognitive assessment 

of information systems in a realistic driving environment, this study evaluates the cognitive and 

psychological impacts of auditory real-time information in a network-level driving simulation 

environment with dynamic ambient traffic by analyzing EEG data. The experiment design elicits 

realistic attitude and behavior towards real-time information from the participants as their route 

choices have considerable impacts on their travel time and compensation for participating in our 

experiments (more details are provided in Section 2.1). The real-world replica of a network-level 

roadmap also allows to capture the cognitive effects of road environment complexity on driver 

cognition. 

This study draws inferences using insights from neuroscience literature for explaining the 

observed differences in drivers’ brain electrical activities under auditory real-time travel 

information. A brief overview of EEG and brain functionalities is presented below.  

EEG measures the underlying electrical activity of the brain, mainly cerebrum, using 

electrodes (small metal disks) that are placed on the scalp. Cerebrum is the largest portion of the 

human brain and can be divided into four regions/lobes (as illustrated in Figure 1): frontal, parietal, 

temporal and occipital. The functionalities of each brain lobe have been extensively discussed in 

the literature. Frontal lobe plays an important role in task planning, working memory, attention, 

and language articulation (Chayer and Freedman, 2001). It also shares the semantic and syntactic 

processing of auditory information with the temporal lobe (Friederici, 2011). Parietal lobe is 

associated with verbal-semantic processes (Doppelmayr et al., 2005) and visual attention (Bisley 

and Goldberg, 2010). Parietal and frontal lobes are also responsible for body motor functions 

(Marcus and Jacobson, 2011). Temporal lobe is generally associated with auditory information 

perception, memory and language interpretation, while the occipital lobe is associated with visual 

information processing (Abhang et al., 2016a). 

 

Figure 1 Human brain anatomy 
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2. METHODOLOGY 

2.1. Driving Simulator 

This study uses a fixed-base driving simulator equipment featuring a full-scale driving cockpit 

with automatic gear box, turn signals and steering wheel with force-feedback. A network-level 

roadmap that replicates real-world northern Indianapolis, Indiana is created using OKTAL 

SCANeRStudio® 1.4 software (OKTAL, 2017). The driving environment is projected on three 

wide LCD screens that provide a field-of-view of around 120 degrees. The drivers can choose 

between two routes, freeway (blue) and arterial (yellow), to reach their destination and have two 

options to switch routes during the trip as illustrated in Figure 2. To ensure realistic driving 

environment, a microscopic traffic simulator (AIMSUN 6.2) is integrated to generate dynamic and 

responsive ambient traffic consistent with the two traffic condition scenarios (with and without 

road accident). A road network map displaying drivable roads in grey highlight and vehicle’s 

current GPS location in the simulator is provided on a tablet screen which was placed on the 

simulator dashboard as illustrated in Figure 3. Each route has two information provision locations 

and two accident locations (as illustrated in Figure 2). The maximum number of accidents in each 

experiment run is limited to one.  

 

 

Figure 2 Experiment roadmap illustrating real-time information provision locations  

 

2.2. Scenario design 

Four auditory real-time travel information provision scenarios are created. They include: (i) no 

information (NI), (ii) travel time on current route (CT), (iii) travel times on current route and alternative 

route (AT), and (iv) prescriptive information informing drivers about downstream congestion and 

recommending alternative route (PI). CT provides insufficient travel information to the drivers, that is, no 

information about the alternative route or route recommendation. PI is available only in scenarios with road 

accident. The same information is also provided on a smartphone afterwards in case drivers do not 

understand the auditory information. The scenarios also had provision for visual real-time travel 

information on freeways via variable message sign (VMS) which is located after the auditory information 

provision location. This study only uses data near first information provision location (marked as ‘[1]’ in 

Figure 2) to mitigate the effects of VMS and avoid the interaction effects with multiple real-time 
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information in a single trip. The real-time auditory travel information provided to the participants in this 

experiment are presented in Table 1. 

 

 

Figure 3 Driving simulator equipment 

 

Table 1 presents the real-time auditory travel information that was provided to drivers under four 

information scenarios via personal device on the freeway and arterial routes for two traffic congestion 

scenarios. 

 

Table 1. Real-Time Auditory Travel Information that was provided to Drivers 

Scenario Accident 
Current Route 

Freeway Arterial 

NI Yes/No - - 

CT 

No 
Travel time to destination via I-465 & 

I-69 is 19 minutes 

Travel time to destination via 86th 

Street & Allisonville road is 25 

minutes 

Yes 
Travel time to destination via I-465 & 

I-69 is 27 minutes 

Travel time to destination via 86th 

Street & Allisonville road is 35 

minutes 

AT 

No 

Travel time to destination via I-465 & 

I-69 is 19 minutes; via 86th Street & 

Allisonville Road is 16 minutes 

Travel time to destination via 86th 

Street & Allisonville road is 25 

minutes; via I-465 & I-69 is 14 

minutes 

Yes 

Travel time to destination via I-465 & 

I-69 is 27 minutes; via 86th Street & 

Allisonville road is 22 minutes 

Travel time to destination via 86th 

Street & Allisonville road is 35 

minutes; via I-465 & I-69 is 20 

minutes 

PI 

No - - 

Yes 
Congestion ahead. Take 86th Street & 

Allisonville Road 
Congestion Ahead. Take I-465 & I-69 
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2.3. Participants 

Participants were recruited from the community through advertisements in a university-wide 

email newsletter, paper fliers, and word of mouth. The following inclusion criteria is used to recruit 

participants: (1) being 18 years of age or older, (2) having a valid driver’s license, (3) do not wear 

corrective glasses (as we also collected eye tracking data), (4) no predisposition to motion sickness, 

and (5) no self-reported physical or mental impairments. All recruited participants self-reported 

no medication or caffeine ingestion for at least 8 hours prior to the experiment. Participants signed 

up for the experiment through the experiment website.  

Participants were asked to drive three times in the simulator with randomly assigned 

information scenarios. Participants were compensated (with a maximum of $60) based on a point-

based reward system that emulates their intent to complete the trip within assigned time limit and 

observe all traffic rules. All participants were instructed to drive as if they are commuting to work. 

A basic level of familiarity with the road network and information sources was created for all the 

participants in the practice run during the introduction phase. Participants were informed that the 

freeway route is 16 miles long and it takes 21 minutes, on average, to reach destination under 

normal traffic conditions, while the arterial route is 11 miles long but takes 25 minutes. Then, 

participants were asked about their preferred route and a fast-forwarded driving video of that route 

with several pauses to emphasize important sign boards and turns was shown to the participants to 

enhance their familiarity with that route. 125 participants were recruited in total for the experiment, 

out of which only 92 completed all three runs with valid EEG data (discussed in Section 2.4) 

around the first auditory information provision location. The data is further filtered down to 84 

participants to include only right-handed participants as dexterity has been known to cause 

differences in brain activity (Bernard et al., 2011). The final participant pool consists of 45 males 

(27.2 ± 6.7 years) and 39 females (25.0 ± 7.0 years) as illustrated in Figure 4. Figure 5 illustrates 

the distribution of information scenarios grouped by the traveled route at the first information 

provision location for all experiment runs.  

 

Figure 4 Participant age and gender distribution 
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Figure 5 Information scenario distribution by route and experiment run 

 

2.4. Electroencephalogram (EEG) 

Drivers’ brain electrical activity data is collected using B-Alert X24 EEG system (Advanced 

Brain Monitoring, 2017). The EEG electrodes (or channels) were placed according to the 

International 10-20 system as shown in Figure 6 (Klem et al., 1999). The brain regions and their 

corresponding EEG channels are presented in Table 2. The mastoids are used as a reference for 

measuring electrical signal. The data is collected with a sampling rate of 256 Hz.  

 

Table 2 Brain regions and corresponding EEG channels 

Brain Region EEG Channels 

Prefrontal lobe Fp1, Fp2 

Frontal lobe F3, F4, Fz, F7, F8 

Temporal lobe T3, T4, T5, T6 

Parietal lobe P3, Pz, P4 

Occipital lobe O1, O2 

Central sulcus C3, C4, Cz 

Mastoids A1, A2 
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Figure 6 EEG electrode locations as per International 10-20 System 

 

Prior to data analysis, raw EEG signal is processed to remove contaminations (also known as 

artifacts). ABM’s B-alert software is used to remove five types of known artifacts: EMG 

(electromyogram for muscle movement), eye blinks, excursions, amplifier saturations and spikes 

(B-Alert, 2009). EEG signal is then divided into epochs of 1-second duration, and power spectral 

density (PSD) (i.e., decomposition of signal power over a frequency range) of each epoch is 

computed by performing fast Fourier transformation. Next, PSD for each epoch is averaged over 

3 epochs by applying 50% overlapping window to smooth the data. This study analyzes the EEG 

power within four frequency bands: delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz) and beta (13-

30 Hz). The band powers are calculated by averaging the PSD within respective frequency 

bandwidth. Four time windows around information provision location are defined to evaluate the 

information impacts at different time stages of interaction as illustrated in Figure 7: (i) 10 seconds 

before the information provision (𝑡0), (ii) first instance of the information (𝑡1), (iii) second instance 

of the information (𝑡2), and (iv) 10 seconds after the information (𝑡3). The information time length 

varies between 5 to 10 seconds depending on the scenario. The average log-power of every band 

(hereafter referred to as band power) for each time window is computed by averaging respective 

1-second epoch band powers.  

In the context of EEG frequency bands, each band is associated with certain cognitive state or 

activity. For example, beta band power is higher during anxiety, stress, problem solving and 

focused attention, while alpha band power increases with inability to focus and relaxed state of 

mind, and decreases with focused attention or anxiety (Abhang et al., 2016b). High theta band 

power is often associated with drowsiness and fatigue (Craig et al., 2012; Klimesch, 1999), but 

could also increase with increase in task demand related to attention, memory and affective 

processing (Golocheikine and Aftanas, 2001). High delta band power is the main characteristic of 

sleep, but can also occur during increased attention to internal processing or memory retrieval in 

a wakeful state by temporarily suppressing non-relevant neural activity (external perception) 

(Harmony, 2013; Harmony et al., 1996). 

          

  

  

  

  

  

    

  

      

    

    

    

     

      



 

12 

 

 

 

Figure 7 Time windows near information provision location 

 

2.5. Data Analysis 

Linear mixed models (LMMs; also known as multilevel models) are used to analyze the 

difference in band powers for each EEG channel (19 channels), EEG band (4 bands), run (3 runs), 

and route (2 routes).  In contrast to simple linear models, LMMs can analyze data with non-

independent or correlated errors due to the underlying hierarchical structure (such as repeated 

measurements from same participant) in the data. LMMs incorporate both fixed effects (parameter 

does not vary) and random effects (parameter is treated as a random variable). In this study, fixed 

effects include information scenarios, time windows and their interactions. Band powers in 

multiple time windows for each participant are modeled as normally-distributed random effects. 

No information (NI) scenario and pre-information time period 𝑡0 are chosen as references for 

information scenarios and time windows, respectively.  

The basic model form is as follows: 

 

bp ~ 𝛽0 + 𝛽info + 𝛽time + 𝛽info∗time +  𝛾participant + 𝜀, 

 

where: 

 bp denotes the band power as dependent variable, 

 𝛽0 the intercept, 𝛽info the coefficient for information scenario, 

 𝛽time the coefficient for time window, 

 𝛽info∗time the interaction effects coefficient for information scenario and time window, 

 𝛾participant the random effects for participant repeated measures, and 

 𝜀 the normally distributed error term. 

 

The experiment scenarios are designed to create similar ambient traffic conditions within the 

analysis time boundary (i.e., the four time periods near information provision location) on specific 

route. Although micro-level traffic interactions can contribute to unwanted noise in the model, this 

study deliberately allows free interactions with the ambient traffic for analyzing EEG data in 

realistic driving conditions to enhance ecological validity. Moreover, the choice of NI and 𝑡0 as 

references allow the analysis of information impacts on drivers while segregating the effects of 

systematic route characteristics (e.g., road curvature, traffic lights, etc.) and macro-level traffic 

conditions to some extent.  
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3. RESULTS AND DISCUSSION 

The LMM results for freeway and arterial routes are illustrated in Figure 8 and Figure 9, 

respectively, as brain-maps. The brain-maps in the first row (i.e., NI-𝑡1, NI-𝑡2 and NI-𝑡3) and first 

column (i.e., CT-𝑡0, AT-𝑡0 and PI-𝑡0) represent the main effects of time stages of interaction and 

information scenarios, respectively, while other brain-maps represent their interaction effects. The 

colormap indicates the change in band powers due to main effects and interaction effects, with red 

indicating positive coefficient and blue indicating negative coefficient. The statistical significance 

level of 99% and 95% are represented by solid circle and hollow circle, respectively, in the figures. 

The model intercepts denote the baseline brain-maps (i.e., NI-𝑡0) and are not shown in the figures 

as their values are significantly higher than the effects. 

Since the participants do not have any prior experience with or expectation of information 

provision in the first experiment run, the observed systematic differences in EEG band power are 

most likely caused by route-specific features (e.g., sign boards and road curvature) and ambient 

traffic conditions. These differences are illustrated by the run 1 model coefficients of NI scenarios 

(i.e., NI-𝑡1, NI-𝑡2 and NI-𝑡3 brain-maps) for both freeway and arterial routes. As illustrated in 

Figure 8, there are little-to-no differences in EEG band power on freeway. The slight decrease in 

delta and theta band powers, especially in sensory regions of the brain (i.e., temporal and occipital 

regions), suggest systematic impacts of driving environment (i.e., road characteristics and traffic 

interactions) near information provision location. This reasoning is further supported by the 

significantly higher differences in band powers on arterial as illustrated in Figure 9, which has a 

more complex driving environment than freeway. The steadily decreasing delta and theta band 

powers over time in frontal region on arterial suggest diminishing memory retrieval or attention 

that arise from driver interaction with road objects (e.g., street name sign or traffic signal) during 

time period 𝑡0. This is consistent with the experiment road network as the information provision 

location is immediately after an intersection comprising of several road objects (as illustrated in 

Figure 2). These results indicate that the driving environment near information provision location 

affects EEG patterns. 

The results illustrate that delta and theta band powers increase with time on arterial in run 1, 

mainly in left frontotemporal region, under all three information scenarios (CT, AT and PI) which 

could be a result of increased attention to internal processing (Harmony, 2013) as well as memory 

retrieval processing (Golocheikine and Aftanas, 2001) after receiving real-time travel information. 

Further, this increase is more pronounced on CT compared to AT and PI. This suggests that 

insufficient information under CT, that is, lack of travel time information on alternative route or 

any specific route recommendation, results in higher cognitive task demand (memory retrieval and 

internal processing). On freeway, delta and theta powers mostly remain unchanged under CT, 

while slightly increased under AT and PI. This suggests that drivers most likely had to spend lower 

cognitive effort to process information on freeway compared to arterial, especially under 

insufficient information. Furthermore, the revealed route choices in run 1 shows that among drivers 

traveling on arterial, 3 out of 6 drivers under NI, 1 out of 11 under CT, 0 out of 6 under AT and 0 

out of 4 under PI chose to continue on arterial after the first decision-making location. In contrast, 

13 out of 17 drivers under NI, 12 out of 15 under CT, 7 out of 16 under AT and 0 out of 7 under 

PI stayed on freeway. Two key observations can be made from these revealed route choices: (i) 

most drivers on arterial switched their route under information provision, and (ii) all drivers 
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followed the route recommendation under PI in run 1. The first observation is consistent with the 

fact that travel time uncertainty is typically higher on arterial routes than freeway due to the 

presence of traffic signals and more complex traffic interactions (Billings and Yang, 2006), which 

may have affected route switching decision. While the second observation suggests greater driver 

compliance with route recommendation in unfamiliar travel environment.  

Alpha band power is mostly unchanged in run 1, except an initial decrease followed by an 

increase in the temporal and occipital region under AT and PI on arterial. Lower alpha waves are 

associated with increased conscious effort and anxiety, while higher alpha waves represent a 

relaxed state (Abhang et al., 2016b). This suggests that drivers require more conscious effort 

during information perception due to either more amount of information units, or negative 

information content in their travel context (“congestion ahead” under PI), which gradually 

decreases post-information (𝑡3). This is also evident with lower beta power under CT and AT on 

arterial, which could manifest from driving distraction under semantic task (Almahasneh et al., 

2014) such as information perception. The slightly higher decrease in beta power under AT 

compared to CT on arterial, and little-to-no change on freeway also suggests that the level of driver 

distraction under real-time travel information provision does not only depend on the amount of 

information (AT has twice the information amount as CT), but also the complexity of the driving 

environment (arterial is more complex than freeway). On the other hand, the significant increase 

in beta band power on freeway under PI during 𝑡2 and 𝑡3 suggests higher anxiety and increased 

arousal (Abhang et al., 2016b; Morales et al., 2017) among drivers due to the recommended route 

switch from freeway to arterial. Even though it is easier for the drivers to perceive and process 

information on freeway (as discussed earlier), the unfavorable information content resulting in a 

seemingly difficult route choice decision can induce anxiety.  

Several intermediate learning effects can be observed in run 2 where participants either 

overreact or underreact to the real-time information. For example, the mostly unaffected delta and 

theta band powers under NI suggest reduced impacts of route and traffic characteristics, possibly 

due to the inattention towards driving environment caused by anticipation of real-time information. 

The reduced alpha activity on arterial under NI can be caused by increased alertness (Golocheikine 

and Aftanas, 2001) and simple memory tasks (Harmony, 2013), such as pinpointing the 

information provision location from recognizable landmarks on arterial. Higher beta activity on 

freeway under NI suggests increased drivers’ attention to external stimuli in anticipation of 

information and possible increase in anxiety when the information is not received. The slight 

increase in theta band power under CT on arterial does suggest higher task demand (e.g., memory 

retrieval) in case of insufficient information, but overall, the effects of information are minimal on 

band powers on the arterial route in run 2. The increase in theta band power under PI on freeway 

suggests that attentional and memory task demand increases when descriptive travel time is not 

provided. The excessive decrease in alpha and beta band powers under CT and PI suggests 

increased conscious effort, most likely due to precognition as a result of increasing familiarity with 

the experiment process, and lower anxiety. Premeditated decision could also be the cause of lower 

anxiety, as 3 out of 4 participants driving on freeway stayed on freeway under PI in run 2 compared 

to 0 out of 7 in run 1. Overall, the current experiment design limits the ability to make concrete 

inferences for the second experiment run because of the overlapping presence of learning effects 

with the equipment (i.e. driving simulator), road network and information sources. 
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Figure 8 Linear mixed model results for the freeway route  
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Figure 9 Linear mixed model results for the arterial route 
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The final run is characterized by the combined impacts of driver fatigue (as participants have 

spent almost 2 to 2.5 hours in the laboratory including around 1 to 1.5 hours of simulator driving), 

drowsiness, increased overall familiarity with the driving environment, and the “end-spurt” effect 

that occurs when the participants know that the experiment is in its final stage (Morales et al., 

2017). On the arterial route, the delta and theta band power in run 3 under NI shows a similar 

decrease after the information provision location as in run 1, but with reduced magnitude and 

opposite temporal evolution pattern. This could be due to faster recognition of road characteristics 

with increased familiarity.  

A similar effect is observed under descriptive information scenarios (CT and AT) as well 

where the delta and theta band power in the left frontotemporal region is prominent similar to run 

1, but decreases with time unlike run 1. This suggests a quicker memory retrieval of experiential 

information which could be attributed to increased accessibility to relevant information from 

repeated driving tasks in the same traffic network in a short period of time. The reduced theta 

power in the parietal region under AT and CT could be a result of reduced drowsiness after the 

auditory information provision (during 𝑡1, 𝑡2 and 𝑡3). More focused experiments can be designed 

in the future to analyze the cognitive and psychological impacts of real-time information provision 

under driver fatigue.  

The widespread decrease in alpha band power under information provision on arterial in run 3 

indicates a more conscious effort for information perception and processing. This suggests that 

increase in familiarity with complex driving environment may allow drivers to spend more 

cognitive resources on real-time information by reducing cognitive load due to driving itself. The 

results illustrate almost no interaction effects of time and information on EEG band powers on 

freeway in run 3. 
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4. CONCLUDING COMMENTS 

This research focuses on evaluating the cognitive and psychological effects of auditory real-

time travel information on drivers from the perspective of neurophysiology and driver route choice 

behavior. EEG is used to measure brain electrical signals of the drivers in a driving simulator 

environment with a network-level roadmap. Drivers can choose between two routes, arterial and 

freeway, to reach their destination. A point-based reward system, which incentivizes drivers for 

reaching the destination on time and penalizes rash driving behavior such as over-speeding, is 

employed to mimic realistic route choice behavior. Further, a microscopic traffic simulator is 

integrated with the driving simulator to generate responsive ambient traffic.  Four auditory 

information scenarios with varying information characteristics (amount and content) are created 

to provide drivers with real-time travel information prior to making route choice decisions. 

The differences in frequency band powers of the EEG signals near the information provision 

location with respect to information characteristics and time stages of interaction with information 

(i.e., before, during and after information provision) are analyzed using linear mixed models. A 

detailed account of the model results is presented in the previous section. Three key inferences can 

be made from the results.  

First, information perception and processing while driving on a route with several roadside 

objects and complex traffic interactions require more cognitive resources. Thus, providing real-

time auditory information, such as from smartphones, in such driving environments could pose a 

risk to driver safety by distracting them from their primary driving task.  

Second, insufficient real-time travel information can result in higher cognitive task demand, 

particularly when traveling on routes characterized by high travel time uncertainty. But at the same 

time, perceiving and processing more information requires more conscious effort from the drivers. 

Future research can focus on analyzing such impacts and designing information systems to provide 

the optimal amount of information to drivers under different driving environments while managing 

distraction.  

Third, the recommendation to switch to a more complex route with higher travel time 

uncertainty (i.e., freeway to arterial in this study) can cause higher anxiety in drivers compared to 

its counterpart. Driving under anxiety and stress have been known to deteriorate driving 

performance and, thereby, negatively affect the driver’s safety. Therefore, redesigning information 

content alongside information amount is just as important for better, and potentially safer, 

information systems from the perspective of driver cognition. These inferences can aid in 

improving future real-time information systems.  

The study limitations are as follows. First, the sample population consists mainly of millennials 

who are university students, which means that the results may not reflect the behavior of general 

population. Second, the interaction effects of routes and runs are ignored as they are modeled 

separately due to limited sample size with valid EEG data. In future studies, such interaction effects 

can be captured with focused experiment design and larger sample size. Third, the experiential and 

learning effects of other information sources (i.e., VMS and second information provision) on run 

2 and run 3 are ignored. Also, the familiarity with equipment, road network and information 

sources are assumed to depend only on the number of prior driving runs, when in reality route 

choices and experienced information scenario may affect the participant’s level of familiarity. 

Possible future research directions may include developing hybrid driver behavior models with 
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driver physiological data under real-time information provision, evaluating other characteristics of 

real-time travel information (e.g., source and modality), analyzing the impacts of driver fatigue on 

real-time information perception/processing and route choice decision-making behavior, and 

developing an integrated real-time information system and driver monitoring system to provide 

information based on driver’s psychophysiological state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

20 

 

5. SYNOPSIS OF PERFORMANCE INDICATORS 

The research from this was advanced. The research from this project was disseminated to 145 

people from industry, government, and academia at several conferences, including the 2017 

INFORMS Annual Meeting in Houston, Texas, 2018 International Conference on Travel Behavior 

Research in Santa Barbara, California, 2018 INFORMS Annual Meeting in Phoenix, Arizona, 

2019 INFORMS Annual Meeting in Seattle, Washington, and 2019 International Conference on 

Applied Human Factors and Ergonomics, Washington D.C. This project supported 2 students at 

the doctoral level.   

Research Performance Indicators: 9 conference and workshop articles and 1 peer-reviewed 

journal article were produced from this project. 

The outputs, outcomes, and impacts are described in the following sections. 

 

 

6. OUTPUTS, OUTCOMES, AND IMPACTS 

6.1. List of research outputs (publications, conference papers, and presentations) 

• Agrawal, S., & Peeta, S. (2021). Hybrid route choice model incorporating latent cognitive effects 

of real-time travel information using physiological data. Transportation Research Part F: Traffic 

Psychology and Behaviour, 81, 223–239. https://doi.org/10.1016/j.trf.2021.05.021 

• Agrawal, S., & Peeta, S. (January 2021). Hybrid route choice model incorporating latent cognitive 

and psychological effects of real-time travel information using physiological data [Poster 

presentation]. 100th Annual Meeting of the Transportation Research Board (TRB), virtual. 

• Agrawal, S., Benedyk, I., & Peeta, S. (October 2019). Evaluating the impacts of real-time travel 

information on driver physiology [Paper presentation]. INFORMS Annual Meeting, Seattle, WA. 

• Agrawal, S., Benedyk, I., & Peeta, S. (July 2019). Evaluating the impacts of real-time auditory 

travel information provision on driver cognition using EEG spectrum analysis [Paper 

presentation]. 10th International Conference on Applied Human Factors and Ergonomics 

(AHFE), Washington, D.C. 

• Agrawal, S., Benedyk, I., & Peeta, S. (March 2019). Modeling driver physiological state using 

EEG under auditory real-time travel information provision [Poster presentation]. 105th Purdue 

Road School Transportation Conference and Expo, Purdue University, West Lafayette, IN. 

• Agrawal, S., Benedyk, I., & Peeta, S. (February 2019). Modeling driver physiological state using 

EEG under auditory real-time travel information provision [Poster presentation]. Autonomous 

Vehicles Workshop organized by Institute for Pure & Applied Mathematics (IPAM), University 

of California, Los Angeles, CA. 

• Agrawal, S., Benedyk, I., & Peeta, S. (November 2018). Evaluating the cognitive effects of real-

time travel information using psychophysiological analysis and their implications for driver 

decision-making [Paper presentation]. INFORMS Annual Meeting, Phoenix, AZ. 

• Agrawal, S., Benedyk, I., Peeta, S. (presenter), & Song, D. Y. (July 2018). Evaluating driver 

cognitive state under real-time travel information provision using physiological factors and its 

impacts on route choice behavior [Paper presentation]. 15th International Conference on Travel 

Behavior Research (IATBR), Santa Barbara, CA. 

• Agrawal, S., Benedyk, I. (presenter), & Peeta, S. (March 2018). Evaluating the cognitive effects 

of real-time travel information using physiological indicators [Poster presentation]. 2018 Global 

Symposium on Connected and Automated Transportation and Infrastructure, Ann Arbor, MI. 

• Agrawal, S., Benedyk, I., D. Song, & Peeta, S. (October 2017). Quantifying impacts of real-time 

https://doi.org/10.1016/j.trf.2021.05.021
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travel information on route choice behavior using psychophysiological analysis: A driving 

simulator-based study [Paper presentation]. INFORMS Annual Meeting, Houston, TX. 

 

6.2. Outcomes 

This project advances the understanding of real-time information systems on driver’s latent 

cognition and psychology. These latent aspects are explicitly measures and evaluated using 

physiological data (brain electrical activity) measured by an electroencephalogram (EEG). Thus, 

it overcomes the potential memory biases associated with existing survey-based instruments to 

analyze cognitive and psychological effects of information. By collecting data in a driving 

simulator with realistic network-level driving environment and responsive ambient traffic, this 

research enhances the ecological validity of the findings.  

 

6.3. Impacts 

Real-time information has significantly become more complex, diverse, and ubiquitous in 

recent years. Drivers now have access to real-time information from a variety of sources. Although 

more information enables drivers to make more informed travel decisions, poorly designed en 

route information can lead to negative cognitive and psychological implications for drivers (e.g., 

driver distraction). This project investigates the cognitive and psychological effects of real-time 

information in driving simulator environments using objective physiological data, which allows 

overcoming certain limitations of survey-based instruments (e.g., memory biases). Study results 

can aid real-time information providers (private and public) and auto manufacturers to incorporate 

the latent cognitive and psychological effects of information in designing real-time information 

and its delivery systems for improving road safety and user experience. From the perspective of 

traffic operators, an understanding of driver cognition and psychology under information can help 

improve route choice behavior models under information provision to better predict and 

subsequently manage traffic conditions. 

 

6.4. Tech Transfer 

In the execution of this project, the research team undertook a number of technology transfer 

activities. First, the research team published one article in a technical journal with a wide 

readership, high reputation, and high impact factor. The team also presented the project research 

to a diverse group of audience at multiple conferences. Further, a number of tech transfer activities 

were undertaken as part of this project, such as communication with other universities through 

webinars and forums. These tech transfer activities undertaken by the research team through the 

course of this project are listed in Section 6.1. 
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Abstract: 

The proliferation of information systems is enabling drivers to receive en route real-time travel 

information, often from multiple sources, for making informed routing decisions. A robust 

understanding of route choice behavior under information provision can be leveraged by traffic 

operators to design information and its delivery systems for managing network-wide traffic. 

However, most existing route choice models lack the ability to consider the latent cognitive 

effects of information on drivers and their implications on route choice decisions. This paper 

presents a hybrid route choice modeling framework that incorporates the latent cognitive effects 

of real-time information and the effects of several explanatory variables that can be measured 

directly (i.e., route characteristics, information characteristics, driver attributes, and situational 

factors). The latent cognitive effects are estimated by analyzing drivers’ physiological data (i.e., 

brain electrical activity patterns) measured using an electroencephalogram (EEG). Data was 

collected for 95 participants in driving simulator experiments designed to elicit realistic route 

choices using a network-level setup featuring routes with different characteristics (in terms of 

travel time and driving environment complexity) and dynamic ambient traffic. Averaged EEG 

band powers in multiple brain regions were used to extract two latent cognitive variables that 

capture driver’s cognitive effort during and immediately after the information provision, and 

cognitive inattention before implementing the route choice decision. A Multiple Indicators 

Multiple Causes model was used to test the effects of several explanatory factors on the latent 

cognitive variables, and their combined impacts on route choice decisions. The study results 

highlight the significant effects of driver attributes and information characteristics on latent 

cognitive effort and of route characteristics on latent cognitive inattention. They also indicate 

that drivers who are more attentive and exert more cognitive effort are more likely to switch from 

their current route by complying with the information provided. The study insights can aid traffic 

operators and information service providers to incorporate human factors and cognitive aspects 

while devising strategies for designing and disseminating real-time travel information to 

influence drivers’ route choices. 
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