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TRIPLE POROSITY MODEL

mesopovre — connecting
micropores and interstice

Such material shows excellent
low frequency absorption due to
its sorption process inside the
pores, which brings this material
into our interest to further study
its properties.

The bulk modulus of different
scales are connected in series,
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T, Tm, T denote the particle radius,
mesopore radius, and micropore radius.
bp, ¢m, Gn, and ¢, denote the porosity
on intergranular scale, mesoscale, micro-
scale, and the overall porosity. The relation
between the porosities on different scales:

bep = (.bp + (1 - (pp)[(pm + (1 - ¢m)¢n]
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MEASUREMENT

The particle stacks were measured in vertically-positioned
standing wave tube with two microphones, following
standard E1050.

The stacks were 30mm-thick, and rigidly backed.

The test result in medium tube is valid up to 3200 Hgz,

while in small tube it is valid up to 6400 Hz.

—ila

inter-noise
Qoﬂl 1-4 AUGUST




PORO-ELASTIC MODEL

Three waves are propagating in the porous ,Rigidly backed 30 mm poro-elastic layer

material: —— Transfer matrix
- ) I= | stable approach
Compressional wave in frame g 08
. . . E
Compressional wave in fluid phase S o6l
Shear wave in frame © A
9 O 4 1\
a 1\
. . = I\
The poroelastic model was built based on the § 0ol [\
stable approach, proposed by Dazel, Groby, < /
4
Brouard, and Potel in 2013. 0l-=-mmm=s l
102 10° 10

Frequency [HZz]

By comparing the absorption coefficient ““

obtained from the transfer matrix approach

. : 1.5 x 106 0.92
and the stabilized approach, one can find
. . i lostor | v
perfect matching at low frequencies, before
6000 0.004 0.27

the transfer matrix approach begins to

diverge. ﬂ
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PORO-ELASTIC MODEL

GAC model - rigid
D, - Configurationa

b - Langmuir constant

¢p - Intergranular porosity

| diffusivity

|
I .
: ¢p 2 b I Pm- Mesoscale poros'lty
: I ¢, - Microscale porosity
, ] . .
| bm T D, : 1, - Particle radlus.
I ;| Tm- Mesopore radius Frame
' - Micropore radius
1 T P K.,
:_ Pn n l Cavities/Pores ~ ° Ps
_____ | Kf-Fluid phase bulk modulus K, ps Activated
P T _I; _____________ | Pegq - Fluid equivalent density carbon
gy - f —J L _p_eq_ J L '[_)b_ _| I pp - Frame bulk density particles
___________________________ -
E E, - Frame modulus I
0 v - Poisson’s ratio |
1 - Loss factor, E = Ey(1 + jn) :
1%
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PARTICLE SWARM OPTIMIZATION

All parameters are fitted with constrained particle swarm algorithm, which is realized by a
package available at https://github.com/sdnchen/psomatlab
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https://github.com/sdnchen/psomatlab

FITTING RESULTS

Sample A in Medium Tube

Sample A in Medium Tube
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Lower bound 0.105 0.01 0.2 0.260 0.1 0.3 5x 1077
Fitted value 0.1111 5.2526 0.3637 0.4278 0.1671 0.5518 5.3967 x 107
Upper bound 0.2125 10 0.5 0.476 0.4 0.8 1x 107>
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FITTING RESULTS

1 Sample B in Small Tube 0.05 Sample B in Small Tube
—Rigid model ' —1/4 Wavelength - Structural
—Poro-elastic model —1/4 Wavelength - Airbarne
0.8 Poro-elastic, micropore closed 0.04 1 Pack Bed Thickness
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Fitted value 0.1160 4.5014 0.2000 0.3524 0.4668 0.4989 7.2657 x107° 8.8559 x 10711
Upper bound 0.161 10 0.5 0.476 0.8 0.55 1x 107> 5x 10710
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CONCLUSIONS

The poro-elastic model can predict the behavior of the particle stack at high frequencies,
where rigid model generates similar results.

The poro-elastic model can capture the resonance pealk,
at the frequency where the stack thickness corresponds to a quarter wavelength of
structural wave.

In some cases, a second peak in absorption coefficient is also predicted by the poro-elastic
model,

at the frequency where the stack thickness corresponds to three quarter wavelengths of
structural wave.

The fitting results from poro-elastic model gives reasonable bulk density prediction,
in these two cases, this prediction is constrained in +5% range of measured value.

The absorption coefficient is significantly benefited from the micropores,
which is consistent with the conclusion drew from the rigid model. ||
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