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Background (1/3) 

■ Tire/road noise can be a dominant source of cabin and pass-by noise for Electric Vehicles 

■ The air-cavity mode is known to be a significant source of in-cabin vehicle noise, especially at frequencies 
near 200 Hz 
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Background (2/3) 

■ This mode splits into two, a fore-aft and a vertical mode, when a tire is deformed by contact with the road, since 
geometrical symmetry is lost - this effect is referred to as a 'frequency split' 

■ Higher level of interior noise & dynamic forces at the hub can occur if the two peaks are close to tire's structural modes 

Split in air-cavity mode, Yamauchi and Akiyoshi [3] Two acoustic modes for loaded tire [3] 
4/25 
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Background (3/3) 

■ Tire rotation expands the frequency split owing to the Doppler effect which causes a difference in phase speeds 
in of acoustic wave propagation in the forward and backward circumferential directions within the tire cavity 

■ Structural modes also split and shift owing to the Doppler effect [6], broadening the frequency range of 
acoustic/structural interaction 

Split in structural mode for rolling tire, Abaqus [4] Split in forces at the hub for rolling tire, Abaqus [4] Split in acoustic mode for rolling tire, Yuting [5] 
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Objective 

■ Observe 'Frequency-split' of fundamental cavity mode for deformed tires, including rotation effects, in 
simulation prior to performing experiments for two modeled tires 

■ The influence of rotation on forces at the hub will be investigated 

BIi Rim Width Aspect ratio Inflation Rated load Remark 

R18 18 inch 235 mm 50 35 psi 5496 N Max. at 60km/h 

R20 20 inch 265 mm 35 35 psi 4812 N Max. at 60km/h 

Stage 1. Test on static tires 

Shaker at 135° from contact patch 

Transition Stage 2. 
Test on rolling tires 
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■ Steady-State Transport Analysis (SSTA) makes it possible to simulate rolling tires without implementing 
time-based transient analysis, using frequency-based, harmonic analysis 

■ Angular velocity (w) can be defined by making the transformation from a local axis to a global coordinate 
system 

■ Solutions converge faster in the acoustic domain as a result of modeling material flow along streamlines 
inside the acoustic mesh under rotation, while the structural mesh remains a conventional Lagrangian 
mesh 

1. Symmetric Model Generation 
{SMG} 

• Treadband (2D shell} 
• Sidewall (2D shell} 
• Air (3D solid} 

2. Static Analysis 

• Inflation analysis 
• Foot print analysis 

Contact Patch 

3. Steady State Transport 
{SST) 

• Modal analysis 
• Harmonic analysis for rolling tire 

U, Magnitude 
+l.452e•02 
+1.33le•02 
+1.2t0e-02 
+1.089e·02 
+9.680e·03 
+8.470e-03 
+7.260e-03 
+6.0SOe-03 
+4.840e-03 
+3.6~·03 
+2.420e•03 
+1.21C)e-03 
+0.000e+OO 

z 

x ...1., Dynamic load j 7/25 



FE Model 

■ Quarter-symmetric model was created to represent the cross-sectional geometry 

■ Rim and contact patch were considered to be rigid bodies here 

Parameters R18 R20 

Rim [inch] 18 20 

Width [mm] 235 265 

Aspect ratio 50 35 

Mass [kg] 12.7 13.2 

Stiffness [N/mm] 306 349 

Inflation [MPa] 0.24 0.24 

Rated load [NJ 5496 4812 

z 

X 

Harmonic input at leading edge 

Rotation 

. ~ w 
Fixed ~ , 

Rim 

Tread band 

Sidewall 

Contact patch 

/ f Load (Displacement) 8/25 



.

Material properties 

■ An equivalent constant thickness and input properties concerning reinforcement belts and carcass, such as 
alignment, surface area, and spacing, were also embedded in shell elements 

■ Air properties were determined for an inflated tire at room temperature, 28°C , similar to the test environment. 
<Tire structure> 

Parameters Part R18 R20 

Treadband 12 8 
Thickness [mm] 

Sidewall 6 6 

Density [kg/m3] 

Treadband 1520 1690 

Sidewall 1013 1120 

Treadband 150 150 

Young' s modulus 
Sidewall 50 5 

(£) [MPa] 

Belt (2) 25,000 150,000 

Carcass (1) 900 900 

Poisson' s ratio (v) All 0.3 0.3 

,r----..__ Grooving
Tread 

Belit: 
Niylbn Fabric 

Shoul:der Strip Steell Belit, 
transverse to the tread 

1. Carcass 
Steell beU1 l1engthwise

2. Carcass towards the tread 
Inner Liner 

Sidewall! -

Bead Fill:er 

<Air> Rim Strip 

Air density [kg/m3 ] 4.3 

Bulk modulus [MPa] 0.52 

Tire composition, 
courtesy of Wikipedia 9/25 



-------------------- -------------------

/------- ----------, 
',, 

Rim 
(rigid) 

Fixed 

1 ~~ 

Measured 

Sidewall 

fat leading edge Contact Patch 
(rigid) U(F) 

Mobility and Dispersion 

■ Mobility data can be obtained by "measuring" surface velocity (V) and input force (f) for the deformed tire for 106 
points along sidewall, as for experimental results obtained by using Laser Doppler Vibrometer 

■ Wavenumber components (k0 ) can be identified by applying Discrete Fourier Transform to the mobility data 
spatially distributed along sidewall 

1. Inflation 

2. Deformation 

3. Modal analysis 

4. Harmonic analysis (static) ' 
5. Harmonic analysis (dynamic) ' 

10/25 
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 V2 
+ 1.512e+00 
+ 1.257e+00 
+ 1.003e+00 
+7.479e-01 
+4.931e-01 
+2 .384e-01 
-1 .638e-02 
-2.7 11e-01 
-5.259e-01 
-7.807e-01 
-1.035e+00 
-1.290e+00 
-1.545e+00 

X 

t 
Step:harmonic t tt Increment 104: Frequency = 203.5 
Primary Var: V, V2 Complex : Real 
Deformed Var: U Deformation Scale Factor : +4 5e+03 

fo: fundamental cavity mode 
fr : ring frequency 
fc : cut-on frequency
n5 : mode number on sidewall 
Li(S) : mode interval on sidewall 
Li(T) : mode interval on tread

11/25

Verification in the absence of rotation for non-deformed tire, Mobility, R18 

■ The results confirm that the two patterns are in a good agreement, especially near 200 Hz, close to the acoustic 
cavity mode 

■ The pattern indicates the occurrence of natural structural modes at various frequencies, the order of the mode 
increasing with frequency 
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' fr=290 Hz 

-20 0 20 40 

wavenumber rad-1 

Verification in the absence of rotation for non-deformed tire, Dispersion, R18 

■ All of the structural modes are placed at equivalent positions with the same phase speed, and also the 
acoustic cavity mode appears at the same frequency and wavenumber in both cases 
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Verification in the absence of rotation for non-deformed tire, Mobility, R20 

■ Good agreement between the two results in terms of structural patterns and the appearance of the 
fundamental cavity mode near 200 Hz ~v.V2~ 
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40 

Verification in the absence of rotation for non-deformed tire, Dispersion, R20 

■ Demonstrates the reliability of the simulation in reproducing wave propagation from 100 Hz to 300 Hz 
for statically coupled tires. 
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The influence of rotation on the mobility relation for deformed tire, R18 

■ The frequency split increased from 7.1 Hz to 16.6 Hz when the speed increased from O km/h to 60 km/h 

■ A sub-structural mode at 140 Hz, for instance, can be seen in the right figure, indicating that structural modes are also 
split due to the rotation effect 
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The influence of rotation on the dispersion relation for deformed tire, R18 

■ A tilting effect can be seen in the dispersion curves, caused by the different phase speeds of the 
positive and negative-going structural waves in the circumferential direction. 



The influence of rotation on the acoustic pressure for deformed tire, R18 

■ Phase speed of fore-aft mode is slower, decreasing natural frequency at 60 km/h 

■ Phase speed of vertical mode is faster, increasing natural frequency at 60 km/h 

Fore-aft mode, f H Vertical mode, fv 
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The influence of rotation on the mobility relation for deformed tire, R20 

■ The frequency split increased from 4.6 Hz to 16.6 Hz when the speed increased from Okm/h to 60 
km/h, accompanied by splitting of structural modes 
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The influence of rotation on the dispersion relation for deformed tire, R20 

■ The tilting phenomenon in the right curve shown can also be observed, owing to the different 
phase speeds in the two wave propagation directions 
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The influence of rotation on the acoustic pressure for deformed tire, R20 

■ Phase speed of fore-aft mode is slower, decreasing natural frequency at 60 km/h 

■ Phase speed of vertical mode is faster, increasing natural frequency at 60 km/h 
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The influence of rotation on the frequency split for deformed tire, R18 

■ The split does not change significantly up to 20 km/h, and then it increases in proportion to the 
rotation speed, behavior which matches qualitative expectations 
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The influence of rotation on the frequency split for deformed tire, R20 

■ The relation between the frequency split and rotation speed is almost linear, except at speeds 
lower than 20 km/h 

Relation between rotation speed and frequency split
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Rotation Speed f H [Hz] Iv [Hz] Llf [Hz] 

0km/h 196.2 200.8 4.6 

5 km/h 199.2 201.8 2.6 

10 km/h 198.7 202.8 4.1 

15 km/h 199.2 202.8 3.6 

20 km/h 197.2 202.8 5.6 

40 km/h 194.7 205.8 11. 1 

50 km/h 193.7 206.8 13.1 

60 km/h 192.2 208.8 16.6 



The influence of rotation on forces at the hub for deformed tire, R18 
■ The force at the hub near 200 Hz is determined by an interaction between the air-cavity modes and the neighboring structural modes 

■ The peak is decreased in both the horizontal and vertical directions in the rotating case, which implies that the rotation not only affects the 
split in the acoustical mode, but also has an effect on the structural modes, which, in turn, affects the resultant force levels 
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The influence of rotation on forces at the hub for deformed tire, R20 

■ The largest response in the vertical direction occurs at Okm/h and it tends to decrease as speed increases, while, 
in contrast, the horizontal force is generally increasing with increasing speed, reaching a maximum at 60 km/h. 
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■ FE simulations based on steady-state transport analysis were used to predict the acoustic mode 
frequency split for rolling tires 

■ Two candidate tires were investigated after first confirming the validity of the simulations through 
comparison of mobility and dispersion diagram with previously measured experimental results for the 
non-deformed case 

■ Both tires showed an increase in the frequency split as the rotation speed was increased, beginning 
at a speed of 20 km/h. Under 20 km/h, there was not a significant change in the frequency split. 

■ The force at the hub is observed to be a strong function of rotation speed, since it is affected by 
interaction of the split air-cavity modes and the split structural modes that result from rotation 

■ In the next stage of this work, hub force data measured in the laboratory for rolling tires will be 
quantitatively compared with the simulation results to demonstrate their reliability 
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