Purdue University

Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

10-20-2021

The Acoustical Properties of Air Saturated Aerogel Powders

Yutong Xue *Midea Corporate Research Center*, xyt@alumni.purdue.edu

J Stuart Bolton *Purdue University*, bolton@purdue.edu

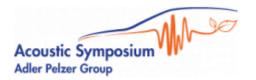
Hasina Begum University of Sheffield, hbegum3@sheffield.ac.uk

Kirill Horoshenkov University of Sheffield, k.horoshenkov@sheffield.ac.uk

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

Xue, Yutong; Bolton, J Stuart; Begum, Hasina; and Horoshenkov, Kirill, "The Acoustical Properties of Air Saturated Aerogel Powders" (2021). *Publications of the Ray W. Herrick Laboratories.* Paper 248. https://docs.lib.purdue.edu/herrick/248

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.


The acoustical properties of air-saturated aerogel powders

Yutong Xue¹, J. Stuart Bolton¹, Hasina Begum², Kirill V. Horoshenkov²

20 October 2021

Presentation structure

- Aim of the study
- Materials characterization
- Experimental acoustical analysis
- Theoretical model
- Results & future work

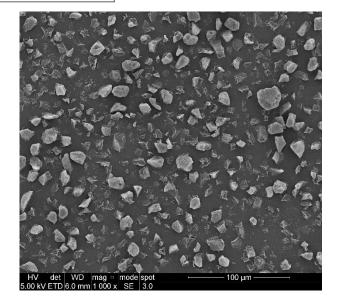
2

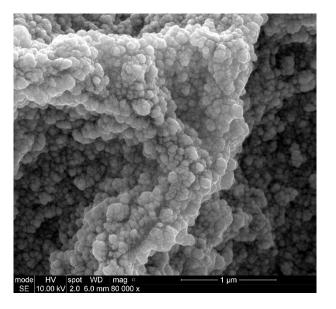
Aim

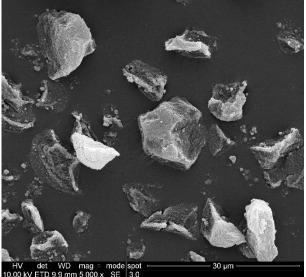
- What physical processes control the acoustic absorption/ attenuation mechanisms of light, loose aerogel powders?
- How can we use a Biot-type viscoelastic model to predict the absorption coefficient of two aerogels powders (1-40 μm)?

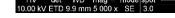
Aerogel powders

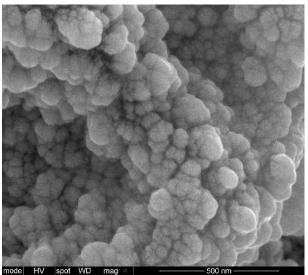
• Type 1 – Enova IC3100

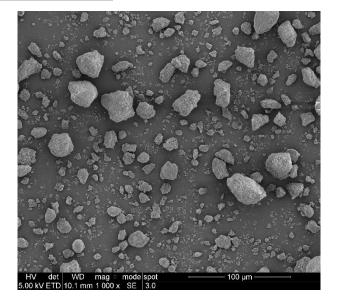

• Type 2 – JIOS AeroVa D20

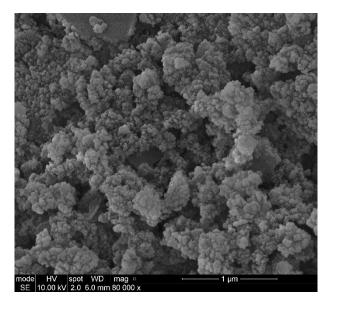

Colour	White	Color	White	
Darticla ciza rango	1.40.00	Particle Size Range	1 ~ 20 µm	
Particle size range	1-40 μm	Pore Diameter	20 nm	
Pore diameter	~20 nm	Bulk Density	0.04 ~ 0.1 g/cm ³	
Bulk density	120-150 kg/m ³	Surface Chemistry	Superhydrophobic	
Thermal conductivity	0.012 W/m.K at 25 °C	Thermal Conductivity	0.017 ~ 0.022 W/m·k	
		Surface Area	600 ~ 800 m /g²	
Surface area	600-800 m ² /g	Porosity	> 90%	
Porosity	> 90%	Temperature Range	-200°C ~ 1,600°C	

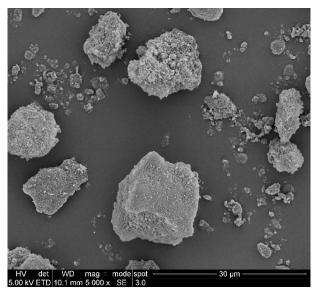


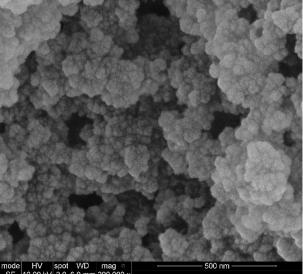



Type 1 Enova IC3100

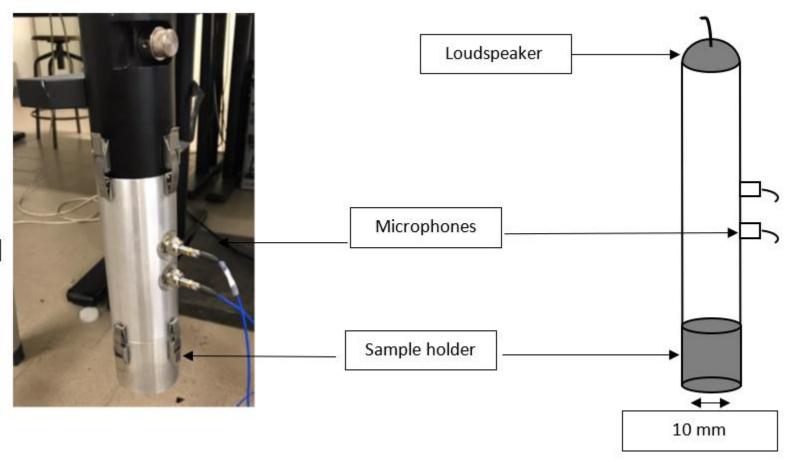


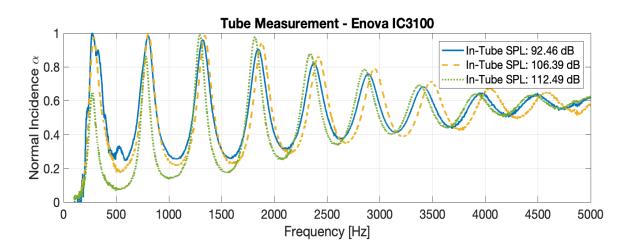

spot WD mag 0.00 kV 2.0 6.0 mm 200 000 x

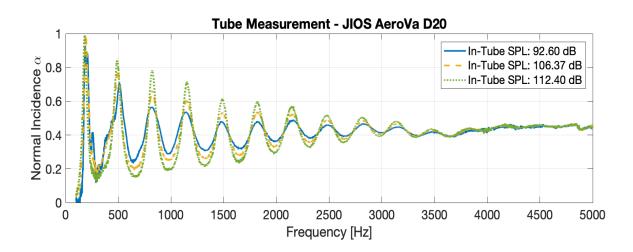




Type 2 JIOS AeroVa D20




Acoustic measurements



Impedance tube measurements

- Lightly damped, depth resonances
- Large peak values of absorption occur at unusually low frequencies
- Heights of the peaks, decreased with increasing sound pressure level (SPL)
- Aerogel sample stacks behave non-linearly

8

Acoustical theory

- 2 models used to predict the frequency-dependent equivalent density ρ_e and bulk modulus k_f
- 5-parameter JCA model: airflow resistivity, σ; (ii) porosity, φ; (iii) tortuosity, α_∞; (iv) viscous characteristic length, Λ; and (v) thermal characteristic length, Λ'
- 3-parameter Páde approximation model: median pore size, s_b , porosity, ϕ , and standard deviation of the pore size, σ_s
- Biot theory used to account for the frame elasticity
- Other ambient parameters used: η=1.82×10⁻⁵ Pa s, c₀=343 m/s, ρ₀=1.21 kg/m³, B²=0.71, γ=1.402

Results

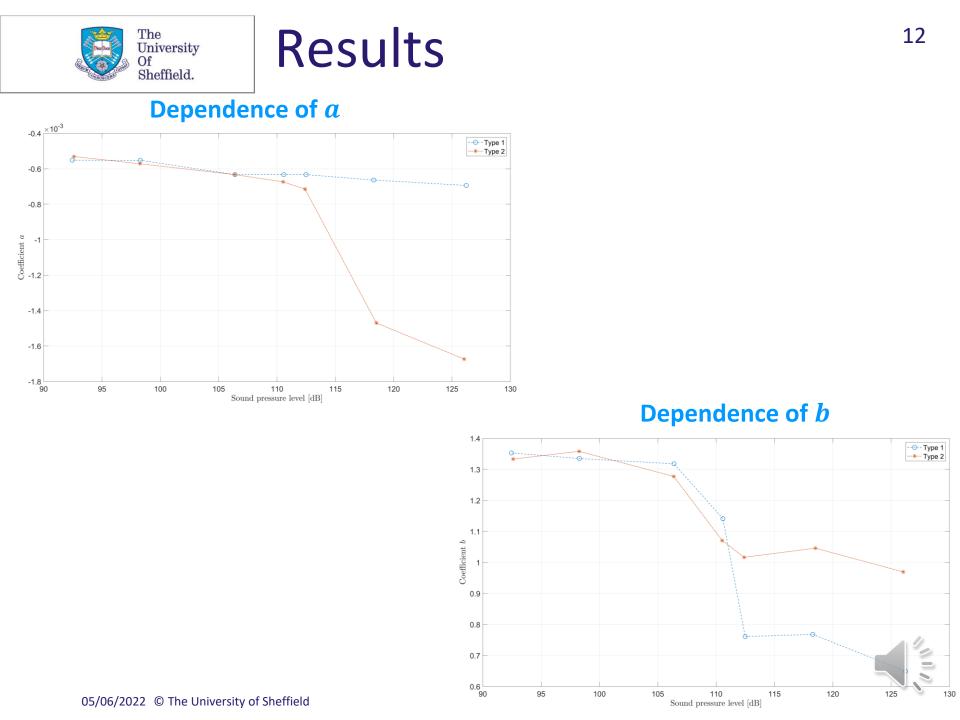
- MATLAB built-in numerical optimization function "particleswarm"
- Manual and empirical adjustment was used η_m =0.2, E_1 =775 Pa and v=0.396

JCA-Biot

Material	σ [Rayls/m MKS]	φ	α∞	Λ [μm]	۸' [µm]	ρ _b [kg/m³]	Е ₁ [Ра]	v
Type 1	10.5×10 ⁶	0.999	3.0	36.1	36.1	35.5	775	0.396
Type 2	10.5×10 ⁶	0.999	3.0	36.1	36.1	94.0	775	0.396

3P-Biot

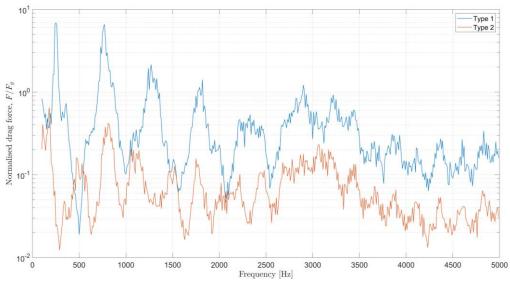
Material	φ	s _b [μm]	σ _s	ρ _b [kg/m³]	E ₁ [Pa]	v
Type 1	0.999	14.7	0.756	35.5	775	0.396
Type 2	0.999	14.7	0.756	94.0	775	0.396

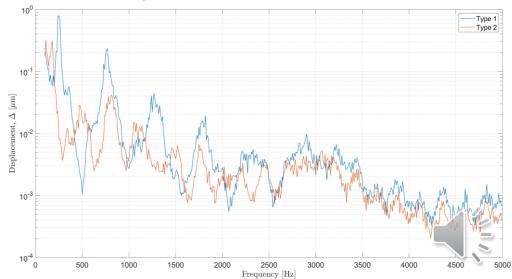


Results

$\log_{10}\eta_m = af + b$

This congruence allowed the introduction of a 4900-step loss factor that decreased logarithmically with increasing frequency





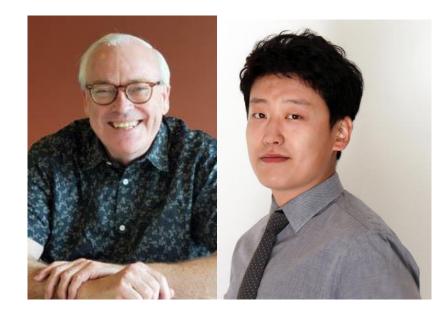
Results

Normalized drag force

Displacement of air molecules

Conclusions & Future work

- (1) Bulk density for Type 2 (94 kg/m³) was twice that of Type 1 (35.5 kg/m³), but when characterized using the models, the values were smaller (Type 1: 38.7 kg/m³, Type 2: 104.9 kg/m³). The aerogel's mass density might vary under different standing wave tube input voltages due to non-linearity.
- (2) A small but finite elasticity expressed in terms of the Young's modulus of both materials' solid frame structure needs to be introduced in the modeling process to ensure a good fit of the sound absorption over a broad range of frequencies.
- (3) An additional sound absorption mechanism could not be captured by the Biot-type poro-elastic model and needs to be considered to provide better fits in the high frequency region (i.e., above 2000 Hz)
- (4) The loss factor required to fit the measured data at low frequencies (i.e., below 2000 Hz) is higher than is physically reasonable for an elastic porous medium. An additional loss mechanism may be working at low frequencies to contribute to the non-linearity of the sound absorption.



Acknowledgements

The University Of Sheffield.

