
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

CTRC Research Publications Cooling Technologies Research Center 

2022 

Modeling the formation of efflorescence and subflorescence Modeling the formation of efflorescence and subflorescence 

caused by salt solution evaporation from porous media caused by salt solution evaporation from porous media 

Rishav Roy 

Justin Weibel 
jaweibel@purdue.edu 

Suresh V. Garimella 

Follow this and additional works at: https://docs.lib.purdue.edu/coolingpubs 

Roy, Rishav; Weibel, Justin; and Garimella, Suresh V., "Modeling the formation of efflorescence and 
subflorescence caused by salt solution evaporation from porous media" (2022). CTRC Research 
Publications. Paper 392. 
http://dx.doi.org/10.1115/1.4054263 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/coolingpubs
https://docs.lib.purdue.edu/cooling
https://docs.lib.purdue.edu/coolingpubs?utm_source=docs.lib.purdue.edu%2Fcoolingpubs%2F392&utm_medium=PDF&utm_campaign=PDFCoverPages


1 

 

Modeling the Formation of Efflorescence and Subflorescence Caused by 

Salt Solution Evaporation from Porous Media 

Rishav Roy, Justin A. Weibel*, Suresh V. Garimella 

School of Mechanical Engineering and Birck Nanotechnology Center 

Purdue University, West Lafayette, Indiana 47907 USA 

ABSTRACT 

Understanding the dynamics of precipitation and crystallization as salt solutions evaporate from 

porous media is of importance in the context of preservation of historical monuments, understanding soil 

nutrient content, and design of porous evaporators for use in distillation plants.  Transient advection-

diffusion equations govern the salt mass fraction profile of the solution inside the porous medium.  These 

governing equations are solved to obtain the solute mass fraction profile within the porous medium as 

well as the effloresced salt crust.  Further accounting for precipitation allows a study of the formation and 

growth of efflorescence and subflorescence.  Crystallization experiments are performed by allowing a 

NaCl solution to evaporate from a porous medium of copper particles and the subflorescence trends 

predicted by the model are validated.  The modeling framework offers a comprehensive tool for 

predicting the spatio-temporal solute mass fraction profiles and subsequent precipitation in a porous 

medium. 

Keywords: porous media; efflorescence; subflorescence; solute transport; evaporation 
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1  INTRODUCTION 

Evaporation of salt solutions from porous media often leads to the formation of salt crystals either 

inside the medium or on its surface.  Driven by evaporation, the mass fraction of the salt solution 

increases over time and crystals form when the local saturation (defined as the ratio of the local ion mass 

fraction to the equilibrium ion mass fraction) reaches critical supersaturation.  When the crystals form on 

the surface of a porous medium it is referred to as efflorescence, and if formed inside the medium it is 

referred to as subflorescence [1].  Efflorescence formed on the outside of the medium does not influence 

its internal structural integrity.  On the other hand, subflorescence blocks the internal pores and often 

proves detrimental to the structural integrity of the medium [2–4].  It is important to understand the 

effects of salt content and crystallization in the context of preserving buildings and historical monuments 

[5–7] and understanding the nutrient profile of soil [8–10].  Modulating the process of solute transport 

driven by evaporation has applications in the production of catalysts [11,12].  Understanding evaporation 

of salt solutions from porous media can also be important for applications in distillation plants.  Porous 

evaporators are well-known for their high efficiency of energy conversion from solar insolation to steam 

generation [13–15].  Utilizing porous evaporators in distillation processes, such as in multi-effect 

distillation (MED) plants [16,17], can improve the thermal efficiency of the plant as well as reduce the 

overall size by potentially reducing the number of distillation stages.  Use of novel porous materials has 

also been proposed to enhance the efficiency of solar desalination [18–22] and in distillation units of 

ocean thermal energy conversion (OTEC) plants [23].  However, such evaporators typically handle high 

saline mass fractions and will have an associated risk of subflorescence occurring inside the porous 

evaporator medium, leading to eventual failure.  It is thus necessary to understand the dynamics of salt 

crystallization and how it depends on parameters such as evaporation flux, saline mass fraction, and 

medium pore size. 

Several aspects of these crystallization dynamics have been investigated.  The formation of 

efflorescence [8,24] and its impact on the evaporation rate [25] has been examined experimentally.  A few 
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efforts have focused on examining the efflorescence pattern due to heterogeneities in the constituent 

particle size [26–29].  Subflorescence in the medium has been observed using optical imaging [25,30] or 

x-ray microtomography [31,32].  Several studies have developed theoretical models and utilized 

numerical methods to evaluate the mass fraction profile of salt ions within a porous medium during 

evaporation of a salt solution.  Transient advection-diffusion equations for transport in porous media are 

the most commonly solved governing equations.  These equations follow the standard equations for 

continuum modeling of macro-scale transport with a consideration of the porosity, but ignore pore-scale 

dynamics.  Some calculate the mass fraction profile inside the porous medium during the initial stage of 

evaporation preceding the occurrence of any precipitation [8,31,33], and as such, cannot be applied to the 

evaporation process once crystallization initiates.  A few investigations include the effects of precipitation 

and dissolution by considering a reaction term [24,34], but they are limited to the evaluation of the mass 

fraction profile within an effloresced salt precipitate and do not predict the occurrence of subflorescence.  

Yet other approaches utilize pore-network model simulations [26,27,35,36] which model the void volume 

as a network of cylindrical throats connecting the pores.  Pore-scale simulations, although 

computationally expensive, are a useful tool to understand solute transport at the microscale.  However, 

these studies also focus only on the dynamics of the evaporation process prior to crystallization.  There is 

a need for a modeling approach which can evaluate solute transport inside the porous medium before and 

after the onset of crystallization, and hence predict the formation and subsequent growth of efflorescence 

and subflorescence.  The predictive capabilities of the existing models in the literature are summarized in 

Table 1. 

The present work considers a porous medium filled with salt solution that is subjected to evaporation 

at the top surface and continually replenished from below by a saline source at a fixed mass fraction.  A 

numerical solution of the macroscale transient advection-diffusion equation yields the mass fraction 

profile within the porous medium.  The processes of precipitation and dissolution are also considered by 

the inclusion of a reaction term.  This consequently imparts the capability of predicting the growth of 
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efflorescence on the surface of the medium and the subsequent solute transport through the porous 

effloresced structure as well.  The amount of subflorescence within the medium is also predicted as a 

result of the inclusion of the reaction term.  The dependence of the efflorescence and subflorescence 

trends on the evaporation flux and the mass fraction of the saline solution source are investigated.  To the 

best of our knowledge, such a comprehensive predictive analysis, considering all transport processes 

occurring inside the porous medium and the effloresced salt structure, has not yet been done.  We also 

perform a series of experiments to replicate these behaviors predicted by the numerical solution, and in 

particular, demonstrate that crystallization can be prevented by controlling the operating conditions and 

the amount of subflorescence can be controlled if crystallization does occur.  The advantages of the 

modeling framework we present in this study in comparison to those in the literature are summarized in 

Table 1. 

 

Table 1.  Summary of the existing models in the literature to study solute transport through a porous 

medium, and a comparison with the modeling framework presented in the current work. 

Prediction 

capability/characteristic 

Existing models in the literature 

Presented 

modeling 

framework 

Advection-

diffusion 

equation 

[8,31,33] 

Precipitation-

dissolution 

equation [24,34] 

Pore-network 

model 

[26,27,35,36] 

Onset of crystallization Yes No Yes Yes 

Mass 

fraction 

profile in: 

Porous 

medium 
Yes No Yes Yes 

Effloresced 

salt 
No Yes No Yes 

Efflorescence growth No Yes No Yes 

Subflorescence growth No No No Yes 

Pore-scale dynamics No No Yes No 

Computational expense Low Low High Low 
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2 MODELING APPROACH AND PREDICTIONS 

The process of evaporation-driven wicking of a solution of sodium chloride (NaCl) through a porous 

medium is considered in our work.  NaCl has been chosen as the salt of interest owing to its abundance in 

seawater and its consequent widespread presence in distillation plants.  The porous medium properties are 

represented as spherical copper particles to facilitate a comparison with our experiments (described later 

in Section 3).  However, the modeling approach is not restricted to these material choices.  The model 

considers the one-dimensional domain shown in Figure 1 in which a source of NaCl solution (at fixed 

mass fraction) feeds the porous medium from below while water evaporates from the top that is open to 

an ambient. Equations describing the advection and diffusion of NaCl through the porous medium are 

solved numerically to obtain the spatial and temporal variations of NaCl mass fraction.  Precipitation in 

the form of efflorescence as well as subflorescence is then predicted.  The boundary conditions and the 

coordinate system employed in the governing equations are shown in Figure 1.  A second domain above 

the porous medium represents the porous effloresced salt crust, and is added to the governing equations 

only once efflorescence starts.  The coordinate along the length of the channel is z and the subscripts p 

and s refer to the values corresponding to the porous domain and the salt crust domain, respectively.  The 

length of the porous medium domain, Lp, is taken as 20 mm and Ls is the salt crust length, which is 

computed while solving the equations. 
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Figure 1.  Schematic diagram of the one-dimensional solution domain showing the source of salt solution, 

the porous medium, the subfloresced salt below the top surface of the porous medium, and the effloresced 

salt on top of the porous medium.  The associated boundary conditions and coordinate systems are shown 

alongside the zones. [1 column wide] 

2.1 Governing Equations 

The transport of salt through the porous medium is described by the following 1D transient advection-

diffusion equation: 

 ( ) ( ) * p

p p p p p p p

p p p

w
w U w D

t z z z
  

   
+ =       

 (1) 

where   is the density of the salt solution assumed to be 1000 kg/m3, p is the porous domain porosity 

taken as 0.65, wp is the mass fraction of NaCl (g of NaCl/g of solution), Up is the interstitial velocity of 

the solution through the medium, and * 0.33

p pD D=  is the effective diffusion coefficient of NaCl in water.  
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Here D = 1.3×10-9 m2/s [34] and the factor 
0.33

p  accounts for the effects of tortuosity [37].  The density, 

porosity, and diffusion coefficient are held constant in the domain. 

The salt solution wicks into the medium at zp = 0 from an infinite source of mass fraction w0.  This is 

represented by the boundary condition: 

 0( 0, )p pw z t w= =  (2) 

Water evaporates from the top surface at zp = Lp that is exposed to the ambient air.  There must be a 

balance between the advective and diffusive fluxes of NaCl at the top surface because the salt cannot 

escape into the ambient air.  This is expressed in the boundary condition: 

 
*( , ) 0

p p

p

p p p p p p p

p z L

w
U w z L t D

z
 

=


= − =


 (3) 

The interstitial velocity of the solution inside the medium is calculated from the evaporation flux at the 

top surface and remains invariant throughout the medium 

 
"

p

p

j
U


=  (4) 

The pores are assumed to be filled with the salt solution from the source at the start of the process and 

thus the initial condition is 

 ( ) 0, 0p pw z t w= =  (5) 

If the source mass fraction w0 < 1, this implies that the solution is undersaturated everywhere within the 

medium initially.  The mass fraction, and equivalently the saturation (defined as S = w/wsat where wsat is 

the equilibrium ion mass fraction and is equal to 0.264 for NaCl in water [24,34]), increases within the 

medium in time because evaporation depletes water and leaves behind salt ions which accumulate in the 

medium.  Steady state is achieved when ion transport by diffusion balances ion transport by advection.  
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Crystallization will initiate if and when the local saturation at any location reaches the critical 

supersaturation (denoted by Scrit and taken as 1.6 [38]).  However, when advection of ions is weak (due to 

a low evaporation rate), crystallization will never occur if the steady state is achieved with a mass fraction 

profile below the critical supersaturation throughout the domain.  Hence, we first analyze the mass 

fraction profile at steady state. 

2.2 Steady-State Analysis 

The transient term in equation (1) vanishes at steady state.  The equation can be non-dimensionalized by 

taking /p p pz z L=  and reduces to the following form 

 

2

2

p p

p p

w w
Pe

z z

 
=

 
 (6) 

The mass fraction profile within the medium is dictated by the Péclet number defined as */p p pPe U L D= , 

the ratio of ion transport by advection to that by diffusion.  Equation (6) is solved for the steady-state 

mass fraction profile ( )0( ) exp Pe p p pw z w z= , where the maximum mass fraction of NaCl within the 

medium occurs at the top surface, ( ) 01 exp(Pe)p pw z w= = .  A low Pe resulting from a relatively low 

evaporation flux can prevent the maximum mass fraction within the medium from exceeding the critical 

supersaturation value Scrit, consequently preventing any crystallization.  On the contrary, if Pe is high due 

to a higher evaporation flux, the local saturation can exceed Scrit.  In such a situation, efflorescence and 

subflorescence can occur.  Equating the maximum steady-state mass fraction to the value at critical 

supersaturation, w0exp(Pe) = Scritwsat, gives the threshold Pe number beyond which crystallization will 

occur: 

 

0

log critS
Pe

S

 
=  

 

 (7) 

where S0 = w0/wsat is the saturation of the NaCl source. 
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2.3 After the Onset of Crystallization 

Crystallization in the form of efflorescence and subflorescence occurs if Pe exceeds the threshold 

value given in equation (7).  Once the critical supersaturation is exceeded and crystallization initiates, the 

governing equation and the boundary conditions change due to precipitation/dissolution of NaCl in the 

medium.  A crust of NaCl grows on the top of the porous medium as efflorescence and simultaneously 

precipitation occurs within the medium close to zp = Lp, leading to subflorescence.  Two distinct domains 

are analyzed: i) the porous medium domain and ii) the effloresced salt crust domain.  As shown in Figure 

1 a different coordinate variable zs is defined for the salt crust domain.  The porous domain is represented 

by zp which varies from 0 to Lp while zs varies from 0 to Ls; zp = Lp is coincident with zs = 0.  The 

equation governing the transport of salt in both zones is: 

 ( )*i i i
i i i i i v r i sat

i i i

w w w
U D a k w w

t z z z
   

   
+ = − − 

    

 (8) 

The subscript i can be either p or s to represent the properties of the porous medium or the salt crust 

domains, respectively.  As discussed above in Section 2.1, 
* 0.33

i iD D= .  It is important to note that once 

critical supersaturation is exceeded, secondary nucleation occurs at a saturation value of 1.  This is 

implicitly indicated in the reaction term in equation (8) where the driving force for precipitation is 

proportional to (wi – wsat).  Equation (8) also has an inherent assumption of spatially invariant velocity 

along the domain length.  This assumption and the associated implications on the solution accuracy, are 

discussed in detail in Section S1 of the Supporting Information.  The additional term on the right side of 

equation (8) accounts for precipitation/dissolution of salt in the medium, where 
( )3 1

v

b

a
r

−
=  [34] is the 

pore surface area per unit volume and kr is the reaction coefficient.  Widely varying values of the reaction 

coefficient have been reported in the literature, from O(µm/s) [39] to O(mm/s) [34].  The wide range of 

values reported necessitated a sensitivity analysis which is discussed in detail in Section S4 of the 

Supporting Information.  In this study, we have taken the reaction coefficient as 1 µm/s.  The pore radius 
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rb is estimated as rb = 0.21Dp for a sintered copper powder wick [40], where Dp is the copper particle 

diameter taken as 200 µm to imitate the experimental conditions described later in Section 3.  It is 

important to note that the additional reaction term is locally activated in the porous domain only once the 

local saturation exceeds critical supersaturation.  For the salt crust domain, however, the reaction term is 

always active because the local saturation must have exceeded Scrit for the domain to exist.  The boundary 

condition for the porous domain at zp = 0 remain unchanged, as given by equation (2).  The boundary 

condition at the top of the salt crust domain is obtained by modifying equation (3) to account for the 

growth of salt [34]: 

 ( )( )* 1
s s

s s

s s
s s s s s s s s crz L

s z L

w dL
U w D w

z dt
    

=

=


− = + −


 (9) 

where cr  is the NaCl crystal density equal to 1.8 g/cm3 and the subscript s refers to properties 

corresponding to the salt crust domain.  A wide range of numbers have been reported for the salt crust 

porosity from 0.1 [34] to 0.43 [8] and a value of 0.4 is taken in this study.  The sensitivity analysis 

discussed in Section S4 of the Supporting Information studies the impact of varying salt crust porosity.  

The interstitial velocity Us is obtained by performing mass balance at the top surface zs = Ls of the salt 

crust: 

 ( )( )'' 1 s
s s s cr s

dL
U j

dt
   = + + −  (10) 

The two domains are coupled by equations for equality of mass fraction (equation (11)) and solute flux 

(equation (12)), and continuity equation at the boundary between the two domains (equation (13)): 

 ( , ) ( 0, )p p s sw z L t w z t= = =  (11) 

 
* *

0

0
sp p

sp p

p s
p p p p p s s s s szz L

p s zz L

w w
U w D U w D

z z
   

==

==

 
− = −

 
 (12) 
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 p p s sU U =  (13) 

Using equations (11) and (13), equation (12) can be simplified to  

 
* *

0sp p

p s
p p s s

p s zz L

w w
D D

z z
 

==

 
=

 
 (14) 

The evaporation rate is assumed to be constant throughout the simulated time.  However, it can vary 

because of changing ambient conditions and suppression of vapor pressure due to the presence of a solute. 

A comprehensive analysis would include evaluation of evaporation rate based on other such 

considerations.  Modeling the evaporation rate, however, is beyond the scope of this work but once 

determined, a dynamically changing evaporation rate can be incorporated into the model by simply 

plugging it into the boundary condition represented in equation (10).  It should also be noted that the flow 

velocity in the porous medium and the effloresced salt crust are not constants but change dynamically.  

This dynamic behavior is captured by equation (10) which predicts the flow velocity in the salt crust and 

subsequently the flow velocity in the porous medium is calculated using equation (13). 

2.4 Numerical Solution 

An explicit finite-difference method (FDM) is utilized to solve the equations.  Spatial gradients are 

approximated by second-order central difference schemes while the temporal gradients are approximated 

by a first-order forward difference scheme, resulting in an explicit method.  Starting from the initial 

condition given by equation (5) and using the discretized forms of equation (1), and the boundary 

condition equations (2) and (3), we solve for the mass fraction inside the porous domain and march 

forward in time till the saturation at zp = Lp reaches critical supersaturation.  Beyond this time, equations 

(8) and the corresponding boundary condition equations (9)-(13) need to be solved numerically in both 

the domains.  The solutions of equations (1) and (8) are hereafter referred to as pre-crystallization and 

post-crystallization calculations, respectively.  Implementing FDM on the salt crust domain is not trivial 

because the domain length changes over time.  To overcome this issue, the governing equation is 
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modified by transforming the coordinates, ( ) ( ), ,s sz t z t→  where / ( )s s sz z L t= , such that the salt crust 

length is normalized to 1 at all times.  This coordinate transformation changes equation (8) to 

 ( )
* 2

2 2( ) ( ) ( )

s s s s s
s s v r sat

s s s s s

U z dL D
a k w

t L t L t dt z L t z

  
   

   
+ − = − − 

   

 (15) 

where ( , )sz t  is the mass fraction in the salt crust domain as a function of the transformed variables. 

The FDM numerical scheme imposes constraints on the spatial and temporal discretizations to avoid 

numerical instabilities as described in detail in Section S2 of the Supporting Information.  These 

constraints impose unrealistic bounds for time discretization ( t  ~ O(10-10 s)) while solving for the salt 

crust domain soon after the onset of crystallization.  To circumvent this issue, equation (15) is solved for 

the salt crust domain with a quasi-steady state assumption till the crust length reaches a threshold value 

(Ls = 10-4 m) beyond which the constraint on time discretization relaxes (Δt ~ O(10-2 s)) and the explicit 

FDM is used to solve the equation.  The explicit FDM and the quasi-steady state solution are respectively 

described in Sections S2 and S3 of the Supporting Information. 

The amount of salt precipitated outside the medium (efflorescence) is calculated at the end of each 

time step.  The increase in the amount of efflorescence is calculated by integrating the reaction term over 

the length of the salt crust domain and over a small period of time.   

 ( )
( )

0

n s

n

t t L t

v r s sat s
t

a k w w dz dt
+

−   (16) 

The increase is reflected in the growth rate of the domain length which, in turn, gives the added length of 

the salt crust for the next time step. 

 
( ) ( )

( )

( )
0

1

sL t

v r s sat ss

s cr

a k w w dzdL t

dt



 

−
=

−


 (17) 

The calculations then continue for a user-defined length of time, set as 24 hr in this study.   
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The amount of salt precipitated inside the medium, which is a direct measure of the amount of 

subflorescence, can be calculated at each instant from the mass fraction profile inside the porous medium 

domain.  A precipitate measure, p, is defined as the amount of local precipitation per unit cross-sectional 

area at a point inside the porous domain.  It is calculated by integrating the reaction term from equation 

(8) over a differential length 

 ( ) ( ), ( , )p v r p p sat pp z t a k w z t w z= −   (18) 

where pz  is the spatial discretization employed in the FDM.  The total precipitation per unit cross-

sectional area within the medium, P, over a period of time (t = 0 to t = T) is calculated as 

 ( )
0 0

( )
pT L

v r p satP T a k w w dzdt= −   (19) 

It is worth noting that the model assumes that precipitation inside the domain does not affect the 

medium porosity which is reasonable for the low precipitation amounts observed, O(10-7 g/mm2).  If the 

amount of subflorescence became comparable to the pore volume (e.g., it is estimated that precipitation 

on the order of 10-5 g/mm2 would be required to reduce porosity by ~10 %), then pore-blocking and 

consequent reduction in porosity would need to be accounted for while solving the equations.  Pore-

blocking due to subflorescence is expected to be more prominent for cases where a porous medium is 

drying, which is fundamentally different from the case we have considered.  In our case, the evaporation 

front remains at the top surface as it is continuously fed by the salt solution from the bottom; hence, 

precipitation will be in the form of both efflorescence and subflorescence. For a drying porous medium, 

however, once the evaporation front recedes into the medium, precipitation would occur solely as 

subflorescence which would have led to pore-blocking. 

2.5 Model Predictions 

The evaporation flux, j”, and the source mass fraction, w0, are the two input parameters varied in the 

simulations performed.  The simulated period of time is 24 hr.  A representative simulation result 
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corresponding to a source mass fraction of 0.2376 (S = 0.9) and an evaporation flux of 1.3×10-4 kg/m2s 

(Pe = 3.55) is shown in Figure 2.   

 

Figure 2.  Saturation profiles of the salt solution a) at t = 30 min, 60 min, and 90 min within the porous 

domain before crystallization begins and b) at t = 10 hr, 17 hr, and 24 hr within the porous and salt crust 

domains after the onset of crystallization.  [1.5 columns wide] 

Figure 2 a) shows the saturation profiles inside the porous domain before the onset of crystallization.  

The profiles are shown at increasing times (t = 30 min, 60 min, and 90 min).  At any instant, the 

saturation profile inside the medium increases monotonically as zp varies from 0 to Lp.  While only a 

single case is shown here, the shape of this curve is dictated by the Pe number.  A higher Pe number 

implies that the advection affect is stronger (or diffusion effect lower) and results in a sharper gradient 

close to zp = Lp.  Conversely, a stronger diffusion effect smears out the saturation profile and makes the 

gradient more gradual.  The mass fraction, and hence the saturation, within the porous domain increases 
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over time driven by evaporation.  Once the saturation at zp = Lp reaches the critical supersaturation value 

of 1.6, crystallization initiates in the medium and the calculations transition to post-crystallization stage. 

Saturation profiles within the porous medium and the salt crust domains are shown in Figure 2 b) at 

t = 10 hr, 17 hr, and 24 hr.  Contrary to the pre-crystallization stage, saturation decreases in this stage.  In 

the post-crystallization stage, the local saturation is governed by complicated interactions of advection, 

diffusion, and salt precipitation.  Advection increases the local salt mass fraction.  On the other hand, 

diffusion transports ions away from a higher saturation region and hence reduces the local salt mass 

fraction and smears out the local gradients.  Precipitation of salt acts as a sink for the salt ions and reduces 

the saturation locally.  The reaction term is active in a region close to zp = Lp within the porous medium 

domain (causing subflorescence) and the salt crust domain (causing efflorescence).  Precipitation in turn 

dictates the local saturation and hence the above-mentioned regions are of interest (viz., close to zp = Lp 

within the porous medium and the salt crust domain, where precipitation occurs).  With the onset of 

crystallization, the precipitation term is activated and acts as an ion sink.  Precipitation occurs in the form 

of efflorescence as well as subflorescence, both increasing with time after the onset of crystallization.  

Diffusion, in conjunction with precipitation, overpowers the replenishment of ions by advection and 

reduces the local saturation.  This can be seen in Figure 2 b) where the saturation curves inside the porous 

medium and salt crust domains shift to lower saturation values with increasing time.  The strength of the 

diffusive term also reduces within the porous medium on account of the decreasing gradient.  The 

decreasing saturation in turn decreases the rate of precipitation since it is proportional to (w-wsat).  This 

self-limiting behavior is expected to eventually drive the saturation profile towards a steady state.  It is 

worth noting that the predicted salt mass fractions within the effloresced salt are relatively high (e.g. ~ 1.2 

at 10 and 17 hr for the case shown in Figure 2) compared to the solubility limit.  This is likely a result of 

the relatively low value of the reaction coefficient (1 µm/s) and the relatively high critical supersaturation 

(1.6) considered in this work. 
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Three cases with different Pe of 1.64, 2.32 and 3.55 (all with a fixed S0 = 0.9) are run for an extended 

period of time (t = 50 hr) to observe the saturation profiles inside the porous domain, the growth of salt 

crust, and the amount of subflorescence.  Figure 3 a) shows the saturation profiles inside the porous 

domain from t = 40 hr to t = 50 hr.  The shaded regions corresponding to each Pe represent the variation 

of the corresponding saturation curves starting from t = 40 hr (shown by a solid line at the right edge) to 

t = 50 hr (solid line at the left edge).  The reaction term from equation (8) is active only within the red-

shaded region from zp = 19.6 mm to zp = Lp = 20 mm, which shows the depth to which subflorescence is 

predicted to occur inside the porous domain.  This region is hereafter referred to as the subflorescence 

zone.  The inset shows a magnified view of the green boxed region.  A sharp change in the gradient of the 

saturation profile can be observed for the case of Pe = 1.64 within the subflorescence zone, which can be 

attributed to the fact that the governing equation (equation (8)) is solved with the reaction term inside the 

subflorescence zone, but this reaction term is omitted outside this zone.  The advective flux is the same in 

and outside the subflorescence zone and therefore the diffusive flux (and hence the gradient of the 

saturation profile) has a mismatch.  Figure 3 b) and Figure 3 c) respectively show the evolution of the salt 

crust length and the amount of subflorescence with time for the three cases. 

As expected, crystallization starts earlier with increasing Pe (at t = 10.3 hr, 5 hr, and 2.1 hr for Pe = 

1.64, 2.32 and 3.55, respectively), as is evident from Figure 3 b).  The salt crust length always increases 

thereafter.  Saturation values within the majority of the salt crust length remain above S = 1 (similar to the 

behavior shown in Figure 2 b)) and hence precipitation increases the crust length.  The growth of 

subflorescence shown in Figure 3 c) is, however, not monotonic and can be explained by looking closely 

at the saturation profiles within the porous domain.  As shown in Figure 3 a), the shaded region, which 

represents the variation of the saturation curve in time, is wide for Pe = 1.64 and 2.32, and narrow for 

Pe = 3.55, implying that the saturation curve is very close to a steady state for Pe = 3.55 but not so for 

Pe = 1.64 and 2.32.  The saturation inside the porous domain is higher than 1 for the case of Pe = 1.64 at 

all the times shown, which implies that the difference (w-wsat) > 0, and hence only precipitation occurs.  
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This can be seen in Figure 3 c) where the line for Pe = 1.64 shows that the amount of subflorescence 

increases with time.  This rate of increase, however, decreases on account of the reducing saturation 

inside the subflorescence zone.  For the case of Pe = 2.32, the saturation profile is greater than 1 

everywhere inside the subflorescence zone at t = 40 hr, but it falls below 1 before t = 50 hr.  In contrast to 

Pe = 1.64, this implies that (w-wsat) < 0 and the precipitated salt starts dissolving in the subflorescence 

zone, reducing the amount of subfloresced salt.  This effect is more prominent for the case of Pe = 3.55, 

where (w-wsat) < 0 in the subflorescence zone from t = 40 hr to t = 50 hr and the amount of subflorescence 

(line corresponding to Pe = 3.55 in Figure 3 c)) decreases over time.   

 

Figure 3.  a) Saturation profiles inside the porous domain from t = 40 hr to t = 50 hr for three Pe numbers 

with the arrow showing the direction of time and the solid lines at the right and left edges of the shaded 

regions showing the profiles at t = 40 hr and t = 50 hr, respectively.  The region in the green box is 

magnified and shown in the inset.  The red-shaded region shows the depth to which subflorescence is 

predicted to occur.  Evolution of b) salt crust length and c) the amount of subflorescence per unit cross-

sectional area with time at the three Pe numbers.  The source saturation is S0 = 0.9 for all the cases. [2 

columns wide] 

The amount of precipitation per unit cross-sectional area inside the porous domain at the end of a 

24 hr time period is calculated for several cases spanning a range of Pe numbers from 0.28 to 3.55 and 
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source saturations, S0, from 0.1 to 0.9.  The results are presented in the form of a grayscale contour plot in 

Figure 4, with darker shades representing higher amounts of precipitation.  The solid blue curve 

represents the threshold Pe as predicted by equation (7).  For combinations of Pe and S0 below the blue 

curve, steady state is achieved before any crystallization occurs in the medium.  On the other hand, 

crystallization, both as efflorescence and subflorescence occurring simultaneously, would be observed 

only for combinations of Pe and S0 above and to the right of this blue curve.  Combinations of Pe and S0, 

close to the blue curve but above it, require more than 24 hr to observe any crystallization which explains 

the white region above the blue curve.  The amount of subflorescence increases with increasing Pe and S0 

which is evident by the increasing darkness of the shade towards the top-right corner of the plot.  Markers 

for the experimental cases (to be discussed later in Section 3) are also indicated in the plot. 

 

Figure 4.  Contour plot showing the amount of precipitation per unit cross-sectional area inside the porous 

domain after t = 24 hr as a function of the Pe and the saturation of the source of salt solution (S0).  The 

markers indicate the observations of the evaporation experiments (circle for no crystallization, triangle for 

efflorescence but no subflorescence, and star for efflorescence and subflorescence), performed on copper 

particle porous media.  [1 column wide] 

The numerical model developed here has the capability to predict the saturation profiles within the 

porous domain as well as the effloresced salt crust domain.  In addition to predicting the spatial 
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distribution of mass fraction and its temporal evolution in both the domains, a critical utility of the 

modeling framework is the ability to predict precipitation in the medium, both in the form of 

efflorescence and subflorescence, as well as the rates at which they occur.  This model thus offers a 

unique capability to comprehensively study the process of evaporation-driven transport of solute in a 

porous medium. 

3 EXPERIMENTS 

Experiments are performed to mimic the domain and boundary conditions considered in the model.  

To first summarize the experimental approach, a porous medium is prepared by filling copper particles 

into a microchannel.  This particle column is continually fed by a saline source of a known concentration 

from the bottom.  Evaporation from the top surface drives the flow of the saline solution through the 

porous medium.  The rate of evaporation is calculated by measuring the amount of water lost to the 

ambient via evaporation.  The occurrence of any precipitation in the particle column (efflorescence and 

subflorescence) is observed visually.  The dependence of subflorescence on the evaporation rate and 

source saturation is studied for comparison to the model.   

A saline solution is prepared by adding anhydrous sodium chloride (Sigma-Aldrich®) to deionized 

(DI) water and magnetically stirring the mixture for 30 min.  The saturation of the solution is controlled 

by controlling the amount of sodium chloride added.  Multiple solutions of varying saturations are 

prepared and used as saline sources.  The porous medium is comprised of copper particles in the size 

ranges of 180-212 μm or 90-106 µm.  The particles are rendered hydrophilic by first cleaning with dilute 

HCl (1:2 by volume in DI water) for 30 s followed by oxidation in an alkaline solution (2 M NaOH and 

0.1 M (NH4)2S2O8) for 1 hr and drying by heating in an oven set at 200 °C for 1 hr.  The hydrophilic 

copper particles are then packed inside a glass microchannel of 2 mm inner diameter, resulting in a 

column diameter to particle diameter ratio of ~10 or 20.  Spatial variations of variables across any cross-

section can therefore be neglected and the transport processes can be assumed to be one-dimensional 
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along the length of the particle column.  The porosity of the packed copper particles is measured 

separately as 0.65 (see Section S4 of the Supporting Information).  The bottom end of the vertically 

oriented microchannel is capped with a filter paper (Whatman® Grade 1) held in place by an O-ring 

(2.2 mm inner diameter) as shown in the magnified view in Figure 5a).  The filter paper prevents the 

copper particles from falling out but is permeable for the salt solution to pass through.  The microchannel 

is suspended by passing it through a tapered rubber plug which seals into a test tube (16 mm diameter) 

filled with NaCl solution such that the lower end of the microchannel is immersed in the solution.   

The test tube assembly is placed on top of a weighing balance (Sartorius Entris™ II Essential 

Analytical Balance).  The weight is recorded every 5 min while simultaneously imaging the channel from 

the top using a high-magnification lens (VH-Z100R, Keyence) attached to a CCD camera (EO-5023M 

2/3” Monochrome, Edmund Optics), as well as from the side by a different lens (50 mm f/1.7 prime lens, 

Minolta augmented by a 2x Macro Focusing Teleconverter, Vivitar) and CCD camera (EO-1312M 1/2” 

Monochrome, Edmund Optics) as shown in Figure 5 a).  The relative humidity and temperature of the 

ambient close to the open top mouth of the microchannel are measured at the start of each experiment 

using a humidity/temperature meter (OMEGA RHXL3SD).  Each experiment consists of allowing 

evaporation from the top of the microchannel to the ambient for a period of 24 hr, after which the rubber 

plug is removed from the test tube and transferred to a Styrofoam holder, and the channel is imaged from 
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the side using a DSLR camera (D5200, Nikon) and the high-magnification lens (VH-Z100R, Keyence) to 

check for any presence of subflorescence; this post-test imaging setup is shown in Figure 5 b). 

 

Figure 5.  Schematic diagram describing the experimental setup for a) characterizing the evaporation rate 

and observing the particle column from the top and the side and b) checking for presence of 

subflorescence after the test. [2 columns wide] 

The top-view lens is focused on the top surface of the copper particle column from which water 

evaporates to the ambient.  The onset of crystallization and the subsequent growth of efflorescence is 

captured in this view.  The side-view imaging during the evaporation test is performed only for general 

monitoring of the evaporation process.  The cumulative water lost via evaporation at any instant of time 

during the test is calculated as the difference between the initial weight and the weight recorded at that 

instant.   

Multiple experiments were performed by changing the source saturation while the ambient air was 

fairly invariant with a temperature of 22.5±0.5 °C and a relative humidity of 35.7±1.0 % close to the 

mouth of the microchannel.  Evaporation occurs naturally from the top of the microchannel and its flux 

was not a controlled parameter. However, the height of the copper particle column and hence the distance 

between the top of the column and the top of the microchannel was slightly different between the cases 

and caused different evaporation fluxes to be observed.  It is also important to note that in many of the 
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experiments, a salt crust formed on the side walls of the microchannel above the top surface of the 

particle column.  Salt solution wicking into the porous salt crust on the side walls induces additional 

evaporation and would cause significant deviation from the one-dimensional behavior that is sought.  

Hence, any test cases with significant side wall crystallization as observed from the side-view 

visualizations are discarded.   

The results from a representative evaporation test are shown in Figure 6.  The mass fraction of the salt 

solution source is 0.222 which corresponds to a saturation of S0 = 0.84, the length of the copper particle 

column is ~ 23 mm, and the associated Pe number is 0.53.  Figure 6 a) plots the evaporated mass against 

time, with symbols marking the mass at times of 2 hr, 12.5 hr, and 20 hr from the start of the experiment 

corresponding to the top-view images of the particle column shown in Figure 6 b).  Two hours into the 

test, the particles are clearly visible along with the salt solution, evidenced by the glistening reflections 

from the liquid-vapor interfaces.  A salt crust forms on the top surface starting at ~ 8 hr.  The glistening 

effect is no longer visible once the salt forms a crust over the entire top surface, as in the top-view image 

at 12.5 hr.  The effloresced salt is prominently visible near the end of the experiment in the image from 

20 hr.  The mean evaporation rate is extracted by fitting a linear model to the evaporated mass over the 

time period of interest.  The mean evaporation flux is initially higher (4.39×10-5 kg/m2s from t = 0 to 

t ≈ 8 hr), but reduces to 1.69×10-5 kg/m2s from t ≈ 8 hr to t = 24 hr.  This reduction is coincident with the 

initiation of efflorescence and happens invariably for all the cases tested.  We speculate that the 

evaporation rate decreases due to efflorescence forming a crust over the entire evaporating surface, an 

effect which has been documented in the literature [26,41].  Subflorescence, if it were to occur, would 

begin only after the onset of crystallization within the copper particle column near the top evaporating 

surface.  The lower mean evaporation rate calculated for the later portion of the experiment after 

crystallization is thus of interest with respect to the formation of subflorescence; hence the Pe numbers of 

the experiments shown on the contour plot in Figure 4 are calculated using these lower evaporation rates.   
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Figure 6.  a) Mass of water evaporated during a period of 24 hr from a copper particle column connected 

to a salt solution source at a saturation S0 = 0.84.  b) Top-view images of the particle column at three 

instants showing the particles with no efflorescence at 2 hr and with efflorescence at 12.5 hr and 20 hr.  

The scale bar in each image represents 100 µm. [1.5 column wide] 

The side-view imaging using the DSLR camera is performed post-test to explore for the presence of 

subflorescence.  Figure 7 shows the side-view photographs side-by-side with schematics for test cases 

with a solution source saturation of S0 = 0.92 at two Pe numbers of a) 0.23 and b) 1.96.  Efflorescence 

occurs but without any noticeable subflorescence for the lower Pe case, as a clear distinction can be seen 

between the copper particles in the lower part of the image and the effloresced white salt crust on top.  

Both efflorescence and subflorescence are observed for the higher Pe case. The solid white region in the 

top portion of the image shows the effloresced salt crust, while the copper particles below have embedded 

subfloresced salt.  These regions are also depicted in the accompanying schematics, where the copper 

particles are shown along with the crystalline precipitated salt.  
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Figure 7.  Side-view images of the copper particle domain viewing the top of the column after t = 24 hr 

corresponding to experiments conducted by using a solution source saturation of S0 = 0.92 at Pe numbers 

of a) 0.23, showing efflorescence without subflorescence and b) 1.96, showing efflorescence along with 

subflorescence, accompanied by schematics showing the copper particle domain and the crystallized salt.  

The scale bar in the photographs represents 200 µm. [1.5 columns wide] 

All of the test cases performed were classified based on the observation of the type of crystallization 

from the side-view images as having i) no crystallization, ii) efflorescence, but no subflorescence, or iii) 

both efflorescence and subflorescence.  The Pe and S0 of the test cases along with the observation of the 

type of crystallization is depicted by markers in Figure 4.  As predicted by the numerical model, only 

efflorescence is observed when the Pe is not high enough, for solution source saturations of S0 = 0.57, 

0.76, 0.84 and 0.92 (shown by the triangular markers).  At higher Pe numbers for S0 = 0.92, 

subflorescence is observed in addition to efflorescence (star markers).  We also observe steady-state 

evaporation without any precipitation inside the medium for S0 = 0.25 and Pe = 2.28 (circular marker).  

The primary trend predicted by the numerical model, viz., the amount of subflorescence within the 

medium increases with higher S0 and Pe values, is observed in our experiments as well.  We note, 

however, that the purpose of the experiments is not to validate the numerical predictions, but to merely 

confirm the trends predicted by the model.   
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We offer the model developed here as a comprehensive tool to evaluate the mass fraction profiles 

within a porous medium subject to evaporation.  The primary capabilities of the model are to: i) evaluate 

the solute saturation profile within the porous medium and the effloresced salt crust, ii) predict the growth 

rate of efflorescence, and iii) predict the amount of subflorescence within the porous medium.  The model 

uses parametric values such as reaction coefficient, salt crust porosity, critical supersaturation, and 

diffusion coefficient from the literature.  A wide range of values have been reported for some of these 

parameters such as the reaction coefficient and the critical supersaturation, and hence the accuracy of the 

model predictions is intrinsically tied to the accuracy to which these values can be specified.  The system 

behavior depends strongly on these parameters, as discussed in Section S4 of the Supporting Information, 

and thus without accurate a priori knowledge of these parameters, a direct validation of the model against 

the experiments is not possible.  The predictive capabilities of the model will thus benefit as these 

parameters become available with more precision and a validation can be performed with appropriate 

experiments.  

4 CONCLUSIONS 

The dynamics of salt crystallization driven by evaporation of a salt solution from a porous medium 

has been investigated.  A comprehensive model is developed to predict the mass fraction profiles inside a 

porous medium by solving the transient advection-diffusion equation with an accounting of precipitation 

and dissolution of salt after the local saturation exceeds critical supersaturation.  This approach further 

offers the unique capabilities of predicting the mass fraction profile inside the effloresced salt crust which 

allows a calculation of salt crust growth rate, as well as calculation of the amount of precipitation inside 

the porous medium – a direct measure of subflorescence.  The dynamics of salt crystallization is shown to 

be a strong function of the saturation of the salt solution source and Pe of flow within the medium 

(determined by the evaporation flux).  Temporal evolution of the saturation profiles, the salt crust length, 

and the amount of subflorescence inside the medium are analyzed.  It is observed that for higher Pe the 

saturation profile within the porous medium reaches a steady state.  The salt crust length keeps increasing 
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due to continuous efflorescence for all the Pe number cases investigated, while the amount of 

subflorescence first increases but can later decrease when the solute saturation inside the porous medium 

reaches sub-saturation values.  Experiments are conducted to check the subflorescence trends predicted by 

the model.  To mimic the boundary conditions of the model, a microchannel filled with copper particles is 

connected to a source of salt solution and is allowed to evaporate to the ambient from the open top of the 

particle column.  Experiments were performed to observe cases with i) no crystallization, ii) efflorescence 

without subflorescence, and iii) efflorescence and subflorescence.  The expected trend of observing 

subflorescence with increasing source saturation, S0, and Pe is experimentally verified.  With calibration 

of the necessary model inputs, this approach can be broadly utilized as a predictive tool for solute 

transport and precipitation in porous media driven by evaporation. 
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