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ABSTRACT 

Zhang, Libo MS, Purdue University, August 2018. Optimized Angles of the Swing 
Hyperspectral Imaging Tower for Single Corn Plant. Major Professor: Jian Jin, 
Assistant Professor. 

During recent years, hyperspectral imaging systems have been widely applied 

in the greenhouses for plant phenotyping purposes. Current imaging systems are 

mostly designed as either top view or side view imaging mode. Top-view is an ideal 

imaging angle for top leaves which are often more flat with more uniform reflectance. 

However, most bottom leaves are either blocked or shaded from top view. From side 

view, most leaves are viewable, and the entire structure can be imaged. However, 

at this angle most of the leaves are not facing the camera, which will impact the 

measurement quality. At the same time, there could be advantages with certain 

tilted imaging angle between top view and side view. Therefore, it’s important to 

explore the impact of different imaging angles to the phenotyping quality. For this 

purpose, we designed a swing hyperspectral imaging tower which enables us to rotate 

the camera and lighting source to capture images at any angle from side view (0◦) to 

top view (90◦). 36 corn plants were grown and divided into 3 different treatments: 

high nitrogen (N) and well-watered (control group), high N and drought-stressed, and 

low N and well-watered. Each plant was imaged at 7 different angles from 0◦ to 90◦ 

with an interval of 15◦ . According to different treatments applied on experimental 
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samples, two comparative pairs were set up: drought-stressed group vs. control group 

(Pair 1); N-deficiency group vs. control group (Pair 2). In this study, normalized 

difference vegetation index (NDVI) and relative water content (RWC) were computed 

and compared to determine optimized imaging angle(s). For NDVI, the imaging angle 

near to top view is optimized to separate Pair 1, while, the imaging angle near to 

side view is optimized to distinguish Pair 2. For RWC, partial least square regression 

(PLSR) models were applied to predict pixel-level RWC distribution of each plant, 

and higher imaging angles (close to top view) are better to tell the RWC distribution 

difference in Pair 1. In conclusion, higher imaging angles (close to top view) are 

better to separate different water treatments, while, lower imaging angles (close to 

side view) are better to separate different N treatments. 
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1. INTRODUCTION 

1.1 Plant phenotyping systems 

Both DNA sequencing and precise quantification of plant traits are crucial 

for improving crop yields. An important task in the area of plant science is to un-

derstand how the connection performs between plant genotype and its phenotype 

(observable characteristics). Plant phenotyping techniques, thus, are utilized by re-

searchers to explicate this correlation (Rahaman et al., 2015). Plant phenotyping is a 

comprehensive method to evaluate complicated plant traits such as growth, tolerance, 

morphology, physiology, biochemistry, ecology and yield (Li et al., 2014; Dhondt et 

al., 2013). During recent years, to provide quantitative analysis of plant features 

and accelerate progress in breeding for novel traits, plant phenotyping platforms have 

been widely applied in the growth chamber or greenhouse (Tester and Langridge, 

2010; Fiorani and Schurr, 2013; Xiong et al., 2017). 

These imaging platforms consist of hyperspectral cameras, artificial lighting 

source, mechanisms and computers, which work together to non-destructively capture 

plant traits under controlled conditions (Fahlgren et al., 2015; Klukas et al., 2014). 

PHENOPSIS (Granier et al., 2006) was developed to take images of Arabidopsis from 

top view to understand genotype-environment effects on plant growth. PhenoArch 
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(Sadok et al., 2007) is a phenotyping platform to capture images of a variety of species 

such as corn, wheat and sorghum under particular drought, temperature and light 

conditions, with cameras installed on the top view. GROWSCREEN (Walter et al., 

2007; Nagel et al., 2012) integrates modern standard single-image processing proce-

dures with an automated setup to rapidly acquire high-quality images of different 

plant species, and it focuses on the top-view imaging. Also, some breeding corpo-

rations, such as DuPont Pioneer and Monsanto, have developed automated plant 

phenotyping facilities in the greenhouse to analyze characteristics of corn, sorghum 

and other species from top view and side view. 

From top view, more flat leaf surface can be imaged and reflectance intensity 

is more uniform. It’s an ideal imaging angle for top leaves, but most bottom leaves are 

either blocked or shaded. In many cases, the bottom/lower leaves are more sensitive 

to environmental stresses, and show stress symptoms earlier than other leaves. From 

side view, we can obtain the entire structure of plants so that we’re able to quantify 

leaves, plant heights and shoot areas (Hartmann et al., 2011). However, the leaves are 

not facing the side-view camera in most cases. The contents of several elements were 

found to be different among the margin, midrib and blade of a corn leaf (Sumner, 

1977). For instance, the content of N in the midrib is less than that in the blade or 

margin. As a consequence, leaf biochemical contents might be inaccurately predicted 

based on side-view images. Both top view and side view imaging are imperfect. A 

tilted imaging angle could be a good compromise between them. 
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1.2 PROSAIL model 

PROSAIL is a combination of PROSPECT (leaf optical properties model) 

and SAIL (canopy bi-directional reflectance model). At the leaf level, PROSPECT 

works on the simulation of directional-hemispherical reflectance of plants from 400 to 

2500 nm (Jacquemoud and Baret, 1990; Schaepman-Strub et al., 2006; Jacquemoud 

et al., 2009). It uses two input variables: the leaf structure parameter (compact layers 

specifying the average amount of cell walls) and the leaf biochemical contents. At 

the canopy level, SAIL allows estimates of canopy architecture such as leaf area index 

(LAI) and leaf angle distribution by using bi-directional reflectance measurements. 

The bi-directional reflectance depends upon the direction of incident radiation and 

the direction from which the surface is being viewed. 

PROSAIL has been widely used to simultaneously estimate the canopy bio-

physical/structural variables in agriculture and plant physiology due to its ease of 

use and general robustness (Salas and Henebry, 2014). In this study, the reflectance 

simulation in the range of 400 to 1000 nm, using the PROSAIL 5B package, was devel-

oped in Matlab R2016a software. The main input parameters (Table 1.1) include leaf 

structure parameter (N), chlorophyll content (Cab), equivalent water thickness (Cw), 

dry matter content (Cm), brown pigments content (Cbp), leaf area index (LAI), aver-

age leaf angle (LIDF a), hot spot parameter (sL), soil reflectance (ρs), ratio of diffuse 

to total incident radiation (SKY L), solar zenith angle (θs), viewing angle (θv), and 

relative azimuth angle (ϕsv). In this PROSAIL model, a standard corn plant uses the 
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Table 1.1. 
Main variables of PROSAIL model including PROSPECT and SAIL 

Model Symbol Quantity Unit 

PROSPECT 

SAIL 

N 

Cab 

Cw 

Cm 

Cbp 

LAI 

leaf structure parameter 

chlorophyll a + b content 

equivalent water thickness 

dry matter content 

brown pigments content 

leaf area index 

− 

−2µg·cm

−2g·cm

−2g·cm

− 

− 

LIDF a average leaf angle deg 

sL hot spot parameter − 

ρs soil reflectance assumed Lambertian or not − 

SKY L ratio of diffuse to total incident radiation − 

sza or θs solar zenith angle deg 

vza or θv viewing zenith angle deg 

raa or ϕsv relative azimuth angle deg 

−2 −2following parameters: N = 1.518, Cab = 58.0 µg·cm , Cw = 0.0131 g·cm , Cm = 

0.003662 g·cm−2 , Cbp = 0.0, LAI = 3.0, sL = 0.01, ρs = 0, SKY L = 0.277. To 

make the simulation as simple as possible, the solar zenith angle (θs), viewing zenith 

angle (θv) and relative azimuth angle (ϕsv) were all set as 0, which means the light-
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ing source and camera face down on the top of the plants. Thus, only the average 

leaf angle (LIDF a) was changing in this model. There exist 4 different outputs: 

hemispherical-directional reflectance factor in viewing direction (rdot), bi-directional 

reflectance factor (rsot), directional-hemispherical reflectance factor for solar incident 

flux (rsdt), and bi-hemispherical reflectance factor (rddt). According to the introduc-

tion above, the bi-directional reflectance factor was picked and its spectra (Fig. 1.1) 

show that reflectance intensity changes a lot with the average leaf angle increasing. 

After normalizing the spectra, we found that there exist shape changes among spec-

tra of different average leaf angles (Fig. 1.2). Then, normalized difference vegetation 

index (NDVI) was calculated to numerically exhibit the differences of 10 differential 

average leaf angles, and it decreases from 0.910 to 0.857 with the angle going up from 

0 to 90 degrees (Fig. 1.3). If we rotate the camera and lighting source instead of 

the average leaf angle, imaging angle will affect the prediction of plant biochemical 

contents (e.g. NDVI). 

1.3 Research objectives 

According to the PROSAIL model, leaf reflectance spectra change at differ-

ent imaging angles. However, current plant phenotyping systems only focus on side 

view or top view imaging mode. A tilted imaging angle could be a good compromise 

between them. Therefore, this research aimed to explore an optima between the side 

and top view imaging modes, and our objectives are listed below. 
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1. Design and build a swing hyperspectral imaging tower that enables us to capture 

images of plants at any angle from side view to top view 

2. Grow corn plants in 3 different treatments (drought-stressed group, control 

group, and N-deficiency group), and image these plants with the designed swing 

hyperspectral imaging tower 

3. Develop Matlab algorithms to process hyperspectral images, and determine op-

timized angles for NDVI and RWC indices by means of statistical analysis 

Fig. 1.1. Reflectance spectra of a standard corn plant with different 
average leaf angles (ALA) from the bi-directional PROSAIL model 
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Fig. 1.2. Normalized reflectance spectra of a standard corn plant with 
different average leaf angles (ALA) from the bi-directional PROSAIL 

model 

Fig. 1.3. Average normalized difference vegetation index (NDVI) of a 
standard corn plant with different average leaf angles (ALA) from the 

bi-directional PROSAIL model 
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2. MATERIALS AND METHODS 

2.1 Hyperspectral imaging tower structure 

To capture hyperspectral images from different viewing angles, a swing hy-

perspectral imaging tower was designed and built. It enables us to rotate the hyper-

spectral camera and lighting source to capture images of plants at any titled angle. 

This swing hyperspectral imaging system (Fig. 2.1) mainly consist of a line scanning 

hyperspectral camera (MSV-500 with mirror scanner, Middleton Spectral Vision Co., 

USA) with a 5.5 mega pixel sCMOS sensor, the assembled lighting source coupled with 

backlit halogen bulbs (MR16 GU10 Brushed Nickel, Lithonia Lighting Inc., USA), 

an angle detection sensor (MTi-300-AHRS, Xsens Technologies B.V., Netherlands) 

with roll/pitch static typical orientation errors of 0.2 degree, the rotating function 

components including winch, pulley, bearing and rod, and a Dell Precision Tower 

5810 computer with the spectral imaging software (MSV.measure zyla mirrorscan, 

Middleton Spectral Vision Co., USA) used to adjust imaging parameters including 

integration time, frame rate, spectral resolution, image ROI, scanning start position, 

scanning end position, and scanning speed. 

The hyperspectral camera (Fig. 2.2) is connected to the winch with the steel 

wire rope and supported by 40×40 mm aluminum extrusions on the bottom. When 
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Fig. 2.1. Structure of the swing hyperspectral imaging tower: outside 
and inside settings 

(Top: outside; Bottom: inside) 

(1. black cloth; 2. frame; 3. winch; 4. computer; 5. pulley; 6. steel rope; 
7. light source; 8. rod and bearing; 9. corn plant; 10. rotating support) 
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taking images, only the two mirrors inside the mirror scanner move instead of the 

entire camera, which makes the system more stable. The MTi-300 sensor was fixed on 

the same surface with the camera to read pitch angles. A small fan was installed on 

the top of the camera to avoid overheating. The whole system was covered by Black 

Felt fabric to minimize the influence of ambient lights during the plant scanning. 

Also, the ground underneath the plants was covered by this fabric to minimize the 

impact of light reflectance on the floor. 

Fig. 2.2. Schematic of the hyperspectral camera installation in the swing 
hyperspectral imaging tower 

(1. fan; 2. camera; 3. camera support frame; 4. mirror scanner; 5. 
MTi-300 sensor; 6. rope pothook) 
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2.2 Experimental samples 

As described in Table 2.1, a total of 36 corn plants (genotype: Hybrid B73 

x Mo17) were grown for this research. In the greenhouse, the lighting intensity, 

temperature and air flow velocity are distinct at different positions. For example, the 

region, closer to the air conditioner, has a lower temperature, leading to plants growing 

more slowly there. To reduce the effects of this so-called micro-environment in the 

greenhouse (Sharma et al., 1999), these corn plants were allocated in a randomized 

block design. 

Table 2.1. 
Summary table of experimental samples 

Samples corn plants 

Genotype hybrid B73×Mo17 

Experiment design randomized block design 

Growing location horticultural greenhouse at Purdue 

Treatments 400 ppm N fertilizer 400 ppm N fertilizer 75 ppm N fertilizer 

well watered drought stressed well watered 

Conditions WW WS SW 

Replicates 12 12 12 

Stage V8 V7 V8 
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Rates of fertilization are often given in parts per million (ppm) of N. Parts 

per million is a convenient unit of measurement for indicating the concentration of 

fertilizer solutions. It states the content of a fertilizer solution independent of the 

fertilizer analysis (Pimentel et al., 2005). The corn plants were divided into 12 blocks. 

In each block, there were 3 plants treated with 3 different treatments: 400 ppm N 

fertilizer and well-watered (control), 400 ppm N fertilizer and drought-stressed, and 

75 ppm N fertilizer and well-watered. When irrigating, we guaranteed that each pot 

achieved saturation. Finally, the leaves of the drought-stressed plants were a little bit 

curling (Fig. 2.3); only the very bottom leaves of the N-deficiency plants started to 

become yellow (Fig. 2.4). In this study, leaf collar method was used to determine leaf 

stages of corn plants by counting the number of leaves with visible leaf collars. As 

Abendroth et al. described, the leaf collars are the light-colored and collar-like bands 

located at the base of exposed leaf blades, and theyre near the spots where the leaf 

blades contact with the stems of plants. This method starts with the lowest, short 

and round-tip true leaf, and ends with the uppermost leaf with a visible leaf collar. 

When imaged, the drought-stressed plants were at V7 stage, while, the well-watered 

plants were at V8 stage. 

These corn plants were grown in the 9-inch-diameter and 8.75-inch-height 

plastic pots with the Fafard 52 mix soil. This soil source had a PH range of 5.5 

to 6.5 and approximately contained 60% pine bark together with peat moss, perlite, 

vermiculite, dolomitic limestone and gypsum. The corn plants were sowed on October 

17th, 2017 and imaged on November 28th, 2017, which indicates that the whole 
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Fig. 2.3. Two corn plants from the control group and drought-stressed 
group separately 

(Left: control; Right: drought-stressed) 

Fig. 2.4. Two corn plants from the control group and N-deficiency group 
separately 

(Left: N-deficiency; Right: control) 



14 

growing period was 40 days. All the 36 corn plants were grown in the Horticulture 

greenhouse (40◦25’16.2”N, 86◦54’53.0”W) at Purdue University, West Lafayette, IN, 

USA. 

2.3 Image acquisition 

After finishing the assembly of the swing hyperspectral imaging tower, we 

executed a test. A corn plant was imaged at 11 different angles from side view (0◦) 

to top view (90◦). In Fig. 2.5, at 0◦ , the entire plant structure is visible, but the 

leaf blades cover a lot of view; at 90◦ , the leaf surface is more flat, but the bottom 

leaves are blocked or shaded by the top leaves; at a tilted angle, like 45◦ or 60◦ , we 

can see not only the entire plant structure (leaves and stem), but also more complete 

leaf surface (blade, margin and midrib). 

When both the imaging tower and experimental samples were ready, we 

started the formal experiment. To finish the experiment in one day, 7 imaging angles 

were picked from side view to top view with an interval of 15 degrees. Before imaging, 

a variety of parameters of the hyperspectral imaging device were calibrated (Table 

2.2). First of all, the camera focusing was adjusted to the optima to guarantee the 

high quality of images. And then, the integration time (12 milliseconds), frame rate 

(50 fps), scanning start position (12 degrees) and scanning end position (-11.1 degrees) 

were determined according to the size of the largest plant. To decrease the dimensions 

of images and save storage space, the spectral binning (×2) was applied. The optical 



15 

(a) 0◦ (b) 10◦ (c) 20◦ 

(d) 30◦ (e) 40◦ (f) 45◦ 

(g) 50◦ (h) 60◦ (i) 70◦ 

(j) 80◦ (k) 90◦ 

Fig. 2.5. Showcase images of a corn plant at 11 different imaging angles 
from side view to top view 
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resolution was approximately 1.22∼1.33 nm, and there were 500 bands in the spectral 

range of 380∼1017 nm. The plants were allocated 2.3 meters away from the camera 

lens, and their center heights roughly equaled to the rotating pivot, which ensured the 

distance between the plants and camera lens consistent at different imaging angles. 

At the beginning, the swing imaging tower was set at side view (0◦), and 36 

corn plants were put inside the tower and scanned one by one in the order of drought-

stressed group, control group and N-deficiency group. Compared with imaging each 

plant at all angles before the next plant, this prevented the corn plants from staying 

inside the hot tower for too long time. After 0◦ imaging was done, the hyperspectral 

camera was adjusted to 15◦ using the hand winch, and all the plants were imaged 

again in the same order. This cycle was repeated until top view (90◦) imaging was 

completed. At last, all the 36 corn plants were imaged at 7 different angles from 

side view to top view with an interval of 15◦ . A polyvinyl chloride (PVC) panel was 

scanned as white balance to calibrate the images. The objective of the white balance 

calibration was to minimize the effects of the uneven intensity of the lighting source 

in different bands. 

The whole experiment was completed in the workshop environment (40◦41’63.6”N, 

86◦91’97.1”W) where the steady indoor temperature (20◦C) helped us minimize the 

impacts to plants of changing temperature during the imaging work. 

https://1.22�1.33
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Table 2.2. 
Specifications of the hyperspectral camera for image acquisition 

Parameters Corresponding settings 

Camera model ZYLA-5.5-USB3 

Gain mode 12-bit (low noise) 

Shutter mode rolling 

Readout rate 280 MHz 

Spatial binning ×1 

Spectral binning ×2 

Spectral range 380−1017 nm 

Optical resolution 1.22-1.33 nm 

Integration time for plants 12 ms 

Integration time for white balance 7.7 ms 

Frame rate 50 fps 

Scan start position 12 deg 

Scan end position -11.1 deg 

Image spatial dimension 1848×2204 (samples×lines) 

Image Spectral dimension 500 (bands) 

Distance between lens and plants 2.3 meters 
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2.4 Ground truth measurements 

To provide references to data analysis, ground truth measurements were 

conducted after imaging. The measurements mainly contained soil plant analysis 

development (SPAD), relative water content (RWC), leaf nitrogen content, and fresh 

and dry weights. Methods to take and calculate these indices are introduced below. 

2.4.1 Soil plant analysis development 

The soil plant analysis development (SPAD), which indicates relative chloro-

phyll content, is widely used by researchers and farmers all over the world, and the 

SPAD-502Plus meter was designed to help users improve crop quality by providing an 

indication of the amount of chlorophyll content in the leaves of plants (Reyes et al., 

2017). The chlorophyll content can be used to determine the healthy conditions of 

plants. The SPAD-502Plus tells the relative chlorophyll concentration by measuring 

the leaf absorbance in the red and near-infrared bands (Pagola et al., 2008), which 

means SPAD values are relative numbers without units. In this study, the SPAD-

502Plus meter was utilized to measure chlorophyll contents of top-collared leaves on 

each of which 3 spots were measured (Yuan et al., 2016). 

In the box plot of average SPAD values of top-collared leaves (Fig. 2.6), 

for Pair 1, the control group always has higher values than the drought-stressed 

group, which indicates drought stress leads to less chlorophyll content in the leaves; 

meanwhile, for Pair 2, the control group has much higher values than the N-deficiency 
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group, which means the N-deficiency treatment causes much less chlorophyll content 

in the leaves. 

Fig. 2.6. Box plot of average SPAD values of top-collared leaves in 3 
different treatments 

2.4.2 Relative water content 

Relative water content (RWC) is an appropriate measure of plant water 

status in terms of the physiological consequence of cellular water deficit. In this 

study, a simple but widely-used measure method was applied. It estimates the ratio 

of the current water content of the leaf sample to the maximum water content it can 

hold at full turgidity (Turner, 1981; Matin et al., 1987). In other words, it measures 

water deficit in the leaf sample. Generally, the RWC ranges between 98% in the 

turgid leaves and 40% in the severely drought leaves. 
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After SPAD measurement, a piece of leaf sample on the top-collared leaf of 

each plant was cut off and weighed to obtain leaf sample weight (W ). The samples, 

then, were immediately hydrated to full turgidity under the normal room lighting and 

temperature. About 8 hours later, the surface humidity on the leaf samples were well 

dried lightly and quickly with the filter paper. And then, the samples were weighed 

to get the fully turgid weight (TW ). At last, the leaf samples were put inside the 

dry oven (persistently at 60◦C) for approximately 24 hours to obtain the dry weight 

(DW ). All the weights were recorded with four decimals after gram (g). The RWC 

was calculated by the formula (eq. 2.1) below: 

RW C(%) = [(W − DW )/(TW − DW )]×100% (2.1) 

where, W − sample fresh weight 

TW − sample turgid weight 

DW − sample dry weight 

From the box plot of RWC of top-collared leaves in 3 different treatments 

(Fig. 2.7), the control group has much higher values than the drought-stressed group, 

while, the N-deficiency group has a little bit higher values than the control group. 

2.4.3 Leaf nitrogen content 

To measure leaf nitrogen contents, we cut top-collared leaves off, and then 

put them in the dry oven (persistently at 60◦C) for at least one week until their weights 
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Fig. 2.7. Box plot of RWC of top-collared leaves in 3 different treatments 

were constant. The dry leaf samples were pounded to powders transferred to labeled 

test tubes later. In this thesis, the Thermo Scientific FlashEA 1112 Nitrogen and 

Carbon Analyzer for Soils, Sediments and Filters (CE Elantech, Lakewood, NJ, USA) 

was used as the N analyzer. The FlashEA 1112 is based upon oxidation of samples 

by “flash dynamic combustion” which converts organic and inorganic substances into 

combustion gases. In the analyzer, N and carbon enter a chromatographic column 

and then to a thermal conductivity detector that generates electrical signals. At last, 

the percentage of N and carbon was recorded as leaf N content. 

In the box plot of leaf nitrogen contents of top-collared leaves in different 

treatments(Fig. 2.8), when comparing the drought-stressed group and control group 

(Pair 1), we found that the former has a little bit higher values than the latter, which 
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indicates drought-stressed leaves contain higher N percentage than well-watered leaves 

under the same N concentration of fertilizers; meanwhile, in Pair 2, the control group 

has much higher leaf nitrogen contents than the N-deficiency group, which means the 

N-deficit leads to less N percentage over carbon in the top-collared leaves. 

Fig. 2.8. Box plot of leaf nitrogen contents of top-collared leaves in 3 
different treatments 

2.4.4 Fresh and dry weight 

At the end of this experiment, all the plants including leaves and stems were 

cut down at the position close to root, and then weighed to record fresh weights. Later 

on, they were put into the dry oven (persistently at 60◦C) to obtain dry weights. The 

dry weights can be referred as biomass of plants. 
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From the box plots of fresh and dry weights of plants in different treatments 

(Fig 2.9 & Fig. 2.10), the control group always has the highest fresh and dry weights, 

while, the drought-stressed group always has the lowest fresh and dry weights. The 

drought stress severely impacts the growth of plants. Although the N deficit also 

affects the accumulation of biomass in the plants, it’s not so severe as the drought 

stress does. 

Fig. 2.9. Box plot of fresh weights of plants (leaves and stems) in 3 
different treatments 

2.5 Image segmentation 

To obtain morphological properties of plants and analyze their spectra, we 

have to segment the plants out of the background. Matlab algorithm utilizing the 

“red edge” region (in this study, we used 680 to 732 nm) was developed to achieve this 

goal. The red edge region contains high information in the vegetation spectra, caused 
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Fig. 2.10. Box plot of dry weights of plants (leaves and stems) in 3 
different treatments 

by the combined effects of strong chlorophyll absorption in the red wavelengths and 

high reflectance in the near-infrared (NIR) wavelengths (Collins, 1978; Elvidge and 

Chen, 1995). 

In most cases, the reflectance intensity of plants extremely goes up in the 

red-edge region, while, the reflectance intensity of the background decreases in this 

range. As a consequence, there exist two different characteristic curves, whose tails 

end up with significant discrimination, but their centers intersect. To enlarge the dif-

ference at the tails and minimize the impact of crossover in the middle, the convolution 

methodology was applied, and a vector of integers from -20 to 20 were multiplied to 

the reflectance intensity vector in the red-edge region. Below is the kernel of this 

hyperspectral image segmentation algorithm: 
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lin = transpose(−20 : 20); 

convolution = lin0 ∗ transpose(squeeze(img(:, :, I680 : I732))))/(lin0 ∗ lin); 

seg = convolution > threshold; 

Where, lin stands for the integer vector multiplied to reflectance intensity 

vector in the red-edge region; convolution means the result after multiplication; plant 

indicates the segmentation result after using threshold. 

In this study, 7 was picked as the threshold for corn plants, above which 

are plant pixels, while, behind which are pixels belonging to the background. The 

morphological operation “bwareaopen” was subsequently applied to obtain optimiz-

ing segmentation results. In Fig. 2.11, the segmentation results of a corn plant at 

different imaging angles are illustrated. After segmentation, we can exact many kinds 

of morphological traits such as total leaf area (TLA), major axis length, minor axis 

length, eccentricity, solidity and convex area. Furthermore, we can utilize spectra of 

plants to directly compute various indices such as normalized difference vegetation in-

dex, nitrogen reflectance index (NRI) and structure insensitive pigment index (SIPI), 

and to indirectly predict relative water content (RWC) through building statistical 

models. In this thesis, we focus on NDVI and RWC indices to compare different 

imaging angles from side view to top view. 
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(a) 0◦ (b) 15◦ (c) 30◦ 

(d) 45◦ (e) 60◦ 

(f) 75◦ (g) 90◦ 

Fig. 2.11. Binary images for segmentation results of a corn plant at 
different imaging angles from side view to top view with an interval of 

15◦ 
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3. RESULTS AND DISCUSSION 

3.1 NDVI 

The normalized difference vegetation index (NDVI) is a standardized index 

allowing us to display the greenness of plants (Jackson et al., 1983). It takes advantage 

of the contrast of chlorophyll’s high absorption in the red band and its high reflectivity 

in the near-infrared (NIR) band. Generally, in the NIR band, healthy leaves display 

higher reflection than the N-deficiency or diseased leaves do; while, in the visible 

band, healthy leaves reflect less than the N-deficiency or diseased leaves do. The 

reflection differences in the red and NIR bands enable us to monitor the greenness 

or chlorophyll pigment content in the leaves (Enciso et al., 2017). Moreover, NDVI 

can be used to estimate leaf water content and other physiological variables (Tucker, 

1979). NDVI is calculated on the pixel basis as the normalized difference between the 

red and NIR bands (eq. 3.1): 

NIR − RED 
NDV I = (3.1)

NIR + RED 

Where, NIR is the reflectance intensity of near-infrared band, and RED is 

the reflectance intensity of red color band. As described by Behmann et al., 800 nm 

was picked as NIR, and 680 nm was selected as RED. 
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3.1.1 Plant level 

In TIBCO Spotfire, the data visualization and analytics software, the box 

plot of averaged NDVI through all the pixels on each plant (plant-level NDVI) in 

3 treatments at different imaging angles was generated (Fig. 3.1). For the control 

group, NDVI values slightly go up with the imaging angle increasing, while, for the 

N-deficiency group, the values extremely rise with the angle increasing especially at 

the lower imaging angles. However, the drought-stressed group presents a different 

trend, NDVI values increasing at the beginning, decreasing later on, and increasing 

again at last. The control group always has higher NDVI values than the other two 

groups. Because during vegetative growth, both the drought stress and N deficiency 

significantly decrease chlorophyll a, chlorophyll b and total chlorophyll content (Lei 

et al., 2006; Baresel et al., 2017). 

To see which imaging angle(s) discriminate Pair 1 and Pair 2 most signif-

icantly, the t-test was applied, and p-values were computed for different imaging 

angles. The t-test analyzes the means of two populations, and is commonly used to 

test the difference between the samples with small sizes. From the bar chart of t-test 

result of plant-level NDVI in two comparative pairs at different imaging angles (Fig. 

3.2), x-axis stands for imaging angles from side view to top view, and y-axis means 

-log(p − value). Thus, the difference is bigger when the y-axis value is larger. For the 

drought-stressed group and control group (Pair 1), the difference is becoming larger 
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Fig. 3.1. Box plot of averaged NDVI through all the pixels on each plant 
(plant-level NDVI) in 3 treatments at different imaging angles from side 

view to top view 
(Note: Ctrl means the control group, Dr means the drought-stressed 

group, and Ndef means the N-deficiency group.) 

at higher imaging angles; meanwhile, for the N-deficiency group and control group 

(Pair 2), the difference is becoming larger at lower imaging angles. 

3.1.2 Pixel level 

Averaged NDVI through all the pixels on one plant doesnt take into account 

the stress distribution across the plant. To explore the difference in stress distribution, 

NDVI value of each pixel was calculated with the same formula (eq. 3.1), and the 
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Fig. 3.2. Bar chart of t-test result of averaged NDVI through all the 
pixels on each plant (plant-level NDVI) in 2 comparative pairs at 

different imaging angles from side view to top view 

colormaps of NDVI distributions on the whole plants were generated. In Fig. 3.3, 

warmer colors refer to for high NDVI values, while, colder colors refer to low NDVI 

values. Generally, the top leaves contain more chlorophyll, so they display more 

redness than bottom leaves. The control plant always exhibit more redness than 

the other two plants at all the imaging angles. The shooting area and height of the 

drought-stressed plant are smaller than plants in the other two treatments. The N-

deficiency plant display more blueness on the very bottom leaves and leaf collars, but 

the blueness is gradually blocked by top leaves, and the difference between the N-

deficiency and control plants becomes smaller at higher imaging angles; however, the 

difference between the drought-stressed and control plants becomes larger at higher 

imaging angles. 
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(a) 0◦-drought (b) 0◦-control (c) 0◦-N-deficiency 

(d) 15◦-drought (e) 15◦-control (f) 15◦-N-deficiency 

(g) 30◦-drought (h) 30◦-control (i) 30◦-N-deficiency 

(j) 45◦-drought (k) 45◦-control (l) 45◦-N-deficiency 
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(m) 60◦-drought (n) 60◦-control (o) 60◦-N-deficiency 

(p) 75◦-drought (q) 75◦-control (r) 75◦-N-deficiency 

(s) 90◦-drought (t) 90◦-control (u) 90◦-N-deficiency 

Fig. 3.3. Colormaps of pixel NDVI of 3 corn plants in 3 different 
treatments at different imaging angles from side view to top view 
(Note: x-axis means horizontal pixel number and y-axis means 

perpendicular pixel number) 

To quantify the differences of NDVI distributions in two comparative pairs 

at different imaging angles, the Bhattacharyya distance (Cha and Srihari, 2002) was 

applied. It measures the similarity of two discrete or continuous probability distri-
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butions. In this study, histograms were used to obtain discrete probability distribu-

tions. For discrete probability distributions p and q over the same domain X, the 

Bhattacharyya distance is defined below (eq. 3.2 & eq. 3.3): 

Xp
BC(p, q) = p(x)q(x) (3.2) 

x∈X 

DB(p, q) = − ln(BC(p, q)) (3.3) 

Where, BC is the Bhattacharyya coefficient for discrete probability distribu-

tions, and DB is the Bhattacharyya distance between the two probability distributions 

p and q. 

By computing histograms over the same domain, discrete probability distri-

bution of pixel NDVI was generated for each plant. For plants in each treatment, their 

probability distributions were averaged as one distribution. At different imaging an-

gles, these averaged probability distributions were compared, and the Bhattacharyya 

distances were calculated in two comparative pairs. In the bar chart of Bhattacharyya 

distances of pixel-level NDVI distributions in 2 comparative pairs at different imaging 

angles (Fig. 3.4), x-axis is the imaging angles from side view to top view with an 

interval of 15◦ , and y-axis stands for the Bhattacharyya distances. The difference is 

bigger when the Bhattacharyya distance is larger. The trends, showed in Fig. 3.4, 

are almost consistent with that from the t-test result of plant-level NDVI (Fig. 3.2). 

However, in Fig. 3.4, Pair 1 has the biggest Bhattacharyya distance at 75◦ , while, 

Pair 2 has the biggest Bhattacharyya distance at 15◦ . It’s explicit that the imaging 
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Fig. 3.4. Bar chart of Bhattacharyya distances of pixel-level NDVI 
distributions in 2 comparative pairs at different imaging angles from side 

view to top view 

angle a little bit tilted from top view is optimized to compare NDVI difference be-

tween different water treatments, and the imaging angle a little bit tilted from side 

view is optimized to tell NDVI difference between different N treatments. 

3.2 RWC distribution 

As described in Chapter 2, the relative water content (RWC) is another 

important index for plant phenotyping. To compare RWC conditions at different 

imaging angles, the plants in the drought-stressed group and control group (Pair 1) 

were selected. In this study, we focus on RWC distributions on the whole plants in-

stead of just representing RWC of one plant with one average value. To achieve this, 
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partial least square regression (PLSR), one of the reliable analytical tools for model-

ing, was applied to predict the relative water content of each pixel on the plants. First 

of all, PLSR models were built at each imaging angle using the average spectra of 

plants (independent variables) and the ground truth measurements (dependent vari-

ables). Because of properties of the hyperspectral camera sensor and lighting source, 

450∼900 nm wavelengths were picked to decrease the noise. To avoid overfitting, 

rigorous validation is necessary (Westerhuis et al., 2008). The leave-one-out method, 

using an entire model to fit all the data except a single point, was applied to cross 

validate the prediction models. It’s one of the most powerful cross-validation methods 

(Yu et al., 2014). The cross-validation R squares of these PLSR models from 0◦ to 90◦ 

are 0.898, 0.925, 0.954, 0.923, 0.937, 0.937 and 0.929, respectively. From this point of 

view, 30◦ has the optimized PLSR fitting to the ground truth RWC measurements. 

Then, at each imaging angle, RWC of each pixel was predicted using the correspond-

ing PLSR model developed above. Histograms and Bhattacharyya distances were 

repeated to illustrate pixel-level RWC distribution distributions on the corn plants 

and to compare the differences in Pair 1 at different imaging angles. 

Using the same method of pixel-level NDVI distribution analysis, probability 

distribution of pixel-level RWC distribution was generated for each plant in Pair 1 

at each imaging angle. To decrease the noise and improve the accuracy, we removed 

outliers of predicted pixel-level RWC distribution for each plant. Because the PLSR 

models were developed based on RWC of top-collar leaves, the prediction values of 

uppermost leaves with more water contents could be larger than 100%, while, the 
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prediction values of very bottom leaves or stems with much less water contents could 

be smaller than 0. In this study, we focus on RWC distributions on the whole plants 

and distribution differences at different imaging angles instead of precisely predicting 

all the pixel-level RWC values. 

Fig. 3.5. Bar chart of Bhattacharyya distances of pixel-level RWC 
distributions between the drought-stressed group and control group at 

different imaging angles from side view to top view 

According to the prediction results, the range from -50 to 250 was opted 

as the comparison domain between the drought-stressed group and control group at 

different imaging angles. For each treatment, all the probability distributions were 

averaged as one distribution, and then these averaged distributions were compared 

at different imaging angles. In the bar chart of Bhattacharyya distances of pixel-

level RWC distributions in Pair 1 at different imaging angles (Fig. 3.5), x-axis is 
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the imaging angles from side view to top view with an interval of 15◦ , and y-axis 

stands for the Bhattacharyya distances. The larger distance means bigger difference 

between these two groups. The approximate trend is that the distance increases with 

the imaging angle rising from 0◦ to 90◦ . Therefore, higher imaging angles are better to 

tell pixel-level RWC distribution differences, which is consistent with the conclusion 

from the NDVI comparison of different water treatments. 
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4. CONCLUSIONS 

According to the PROSAIL model, leaf reflectance spectra change at different 

imaging angles, leading to indices (e.g. NDVI) inconsistent at differential angles. 

However, current plant phenotyping platforms only focus on top view or side view. 

In this study, a swing hyperspectral imaging tower that enables us to rotate the 

camera and lighting source to capture images of plants at any imaging angle from 

side view (0◦) to top view (90◦) was designed and built; a randomized block design 

with 36 corn plants in 3 different treatments (high N and drought-stressed, high N 

and well-watered, N-deficiency and well-watered) was implemented; hyperspectral 

images of these corn plants were captured at 7 angles with an interval of 15◦ , and 

these images were processed using algorithms developed; optimized imaging angles 

for NDVI and RWC indices were determined by means of statistical analysis. 

For averaged NDVI through all the pixel on each plant (plant-level NDVI), 

between the drought-stressed group and control group (Pair 1), the difference is be-

coming larger at higher imaging angles (near to top view); meanwhile, between the 

N-deficiency group and control group, the difference is becoming larger at lower imag-

ing angles (near to side view). For pixel-level NDVI distribution, it’s more explicit 

that the imaging angle a little bit tilted from top view is optimized to compare NDVI 
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difference between different water treatments, while, the imaging angle a little bit 

tilted from side view is optimized to tell NDVI distribution difference between differ-

ent N treatments. For pixel-level RWC distribution, higher imaging angles (close to 

top view) are better to tell the RWC distribution difference between different water 

treatments. 

In conclusion, higher imaging angles (close to top view) are better to tell 

NDVI and RWC differences between the drought-stressed and control groups, while, 

lower imaging angles (close to side view) are better to tell the NDVI difference be-

tween the N-deficiency and control groups. In other words, higher imaging angles 

(close to top view) are more suitable to separate different water treatments, while, 

lower imaging angles (close to side view) are more suitable to separate different N 

treatments. 
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5. RECOMMENDATIONS 

This study shows that optimized imaging angles are different for different N 

and water treatments. The higher imaging angles (close to top view) are better to 

separate different water treatments, and the lower imaging angles (close to side view) 

are better to separate different N treatments. Therefore, researchers need to adjust 

the imaging modes (side view or top view) according to the treatments applied on 

experimental samples. In this study, we only focus on corn plants at V7 and V8 

stages. For other species, more experiments should be implemented. 
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