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Fire prediction systems rely on meteorological descriptors and fuel characteristics to 

determine fire risk at national scales. However, at a regional scale, anthropogenic dynamics play 

an important role in determining fire ignition, as well as spatial and temporal distributions. Under 

an increasing fire activity scenario projected for the next century, Mediterranean ecosystems are 

particularly fragile regions. Fire variability driven by human stressors is the main threat to the 

native vegetation and human populations in these regions. The inclusion of anthropogenic 

indicators on fire prediction systems, especially within Mediterranean ecosystems, is key to 

developing accurate predictions and effective fire management efforts. As the relationship between 

human dynamics and fire is complex, it is important to first understand the landscape and 

socioeconomic perspectives of the human component in these regions and then to identify which 

specific anthropogenic indicators have the most significant effects on fire in order to include them 

in the fire predictions systems.  

The first case study (CHAPTER 2) focuses on understanding and selecting the landscape 

transitions, intensity rates, and patch characteristics that have a significant effect on fire variability 

in Chile. Landsat eight scenes were classified based on spectral signatures to derive four land use 

categories between two-time intervals. The classification outputs were used to perform a change 

detection and intensity analysis. The second case study (CHAPTER 3) focuses on selecting the 

most significant socioeconomic variables that affect fire in Chile and integrates all the significant 
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anthropogenic descriptors into a fire prediction model. To do so, spatial analysis tools were used 

to understand spatial distribution patterns of fire frequencies. Furthermore, regression models were 

used to select the most relevant human variables affecting fire frequency change. Finally, based 

on the data over dispersion and zero frequency characteristics, a zero-inflated model was used to 

simulate fire frequency predictions. The output predictions were then compared against a climate-

based prediction model to evaluate fire prediction accuracy at a regional scale.  

In the first case study (CHAPTER 2), regional differences were found in land use transition 

and characteristics. Twenty-seven percent of the area experienced a change in land use mainly 

associated with decreases in agriculture and increases in forest/plantation areas. Both transitions 

significantly decreased the landscape homogeneity. Across space, both landscape transitions and 

characteristics significantly affected fire frequency changes. The highest increases in fire 

frequency were related to increases in landscape heterogeneity, increases in forest/plantations 

(patch mean area) fragmented into multiple (patch number) distant patches (patch density), and 

decreases in urban and bareland areas.  

In the second case study (CHAPTER 3), the spatial distribution of the fire activity was 

clustered towards the southern regions in years with extreme fire events, categorizing the area as 

an oscillating hotspot. The socioeconomic variables had a significant effect on fire frequency. 

Increases in fire frequency were related to increases in poverty percentage and road access. 

Opposite socioeconomic characteristics were related to decreases in fire frequency. Furthermore, 

50% of the fire frequency was explained by the integration of the socioeconomic and landscape 

descriptors.  Furthermore, all the socioeconomic characteristics affecting the fire frequency also 

had a significant effect on reducing the landscape homogeneity. All the significant descriptors 

were incorporated into a fire prediction model (LE Social model) and the output was compared to 
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current climate model outputs and observed fire frequency. The LE Social model had a better 

goodness of fit (1.52) than the climate model (1.73). The LE Social model had a higher accuracy 

in the predictions in regions located towards the southern areas of the country. On the other hand, 

the climate models had higher accuracy in regions located towards the north. Finally, the accuracy 

of both models was reduced when predicting extreme fire frequencies due to the reduce seasonality 

and spatial distribution of those events that might be explained by a different driver not included 

in this study.  

Results from the study highlight the strong impact of landscape and socioeconomic 

variables on the fire frequency. At the landscape level, both intensity and transition played an 

important role in fire frequency change. Furthermore, sites that meet the landscape criteria 

described in the first case study (CHAPTER 2) have a higher susceptibility to increases in fire 

frequency. Therefore, those areas should be considered as priority areas for management. 

Furthermore, despite the previous conceptions about the relevance of climate variables on fire 

predictions, the second case study (CHAPTER 3) found that the accuracy of the fire predictions 

using climate descriptors is regional-dependent. The effectiveness of the fire prediction models 

was highly dependable to the socioeconomic, landscape, and climate differences but temporal 

dynamics (year differences) as well. Therefore, the incorporation of the internal anthropogenic 

characteristics on fire predictions accuracy does have an effect in areas with high landscape 

heterogeneity and poverty levels. These results may provide important insight to help improve 

current fire prediction systems.  

  

 



1 

 

 CLIMATE AND ANTHROPOGENIC EFFECTS ON FIRE 

FREQUENCY AND THEIR IMPLICATIONS FOR FIRE PREDICTION 

SYSTEMS IN MEDITERRANEAN ECOSYSTEMS 

 Fire activity worldwide 

Fire activity has historically been controlled by anthropogenic and natural processes since 

the development of terrestrial flora (Bowman et al. 2009). Fire affects stand replacement, 

vegetation structure, composition changes and ecosystems productivity worldwide (Pausas and 

Ribeiro 2013, Pausas et al. 2017). Furthermore, fire is consistently used as a tool for anthropogenic 

activities that play an important role in human development (Bowman et al. 2011). However, fire 

has also had severe effects on natural resources, economies and human lives (Bowman et al. 2009, 

Chuvieco et al. 2014).  Inside the United States, fire expenditures were more than $11.6 billion in 

2010 (Geneva Association 2014, INE 2017).  Fires have caused mortality in several countries; for 

example, 1890 people died in 2009 in Japan because of fire activity (Geneva Association 2014, 

INE 2017). The increasing number of uncontrolled fire events registered in the last decades has 

exceeded the capacity of the current predictions and management systems to prevent and assess 

fire variability (Bowman et al. 2009). 

The effect of fire on vegetation depends on the ignition source (cause), frequency 

(seasonality and occurrence) and the intensity (fire behavior) of the event, which might improve, 

degrade or maintain the ecology of a site (Cochrane 2009). The combination of fire frequency, 

intensity, ignition source, spatial distribution, and severity comprise a fire regime (Bowman et al. 

2009, Keeley 2009). Furthermore, the cause-effect relationship between fire regimes and human-

environment interactions is complex, where fire regime changes can be caused by a combination 

of landscape dynamics related directly or indirectly to human activities (Veblen et al. 2000, Marlon 
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et al. 2008, Bowman et al. 2011). Interchangeably, changes in fire regimes have a direct and 

indirect effect on ecosystems and humans (Vázquez et al. 2002). In addition to the influences of 

climate on fire regimes, shifting fire regime have an effect on climate, where both variables affect 

global warming (Bowman et al. 2009, Jolly et al. 2015).  Between 1997 and 2001, burning of 

biomass accounted for 63% of the CO2 global greenhouse gas emissions (Bowman et al. 2009). 

The current world’s CO2 emissions related to fire activity is comparable to half of the emissions 

released by fossil fuels (Bowman et al. 2009). The receptivity to capture the interaction between 

human-climate and fire activity is highly dependent on seasonal and spatial scales (Hantson et al. 

2016). Effects that are captured at one particular scale can be completely missed at a different scale 

(Levin 1992). The complexity of fire regime interactions combined with scale-dependent 

processes increase the difficulty to understand the connectivity between human-climate-fire 

relationships and how they are affected one by the other (Bowman et al. 2011).  

 Climate change and fire activity 

Continuous changes in climate regimes around the world have affected the severity and 

intensity of fire events (González et al. 2011). Asia and Latin America have been the regions with 

the highest increases in fire activity (Bowman et al. 2009). During the El Niño-Southern 

Oscillation (ENSO) of 1997-1998, South Asia spent more than $9 billion on fire management and 

health issues related to fire events (Bowman et al. 2009, Jolly et al. 2015). In addition, the same 

event in Latin America cost more than $10 billion during the same period to assess fire damages 

(Bowman et al. 2009). Drastic climate regimes are associated with long drought periods and 

shorter wet seasons. Climate seasonality can affect the fire dynamics either by drying out the 

biomass available for burning or by stimulating the growth of grasses that become also flammable 

fuel during droughts (Bowman et al. 2009, Cochrane 2009). Climate oscillations such as the ENSO 
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are predicted to increase in frequency for the next decades (Cochrane 2009, González et al. 2011), 

and such weather instability has increased the uncertainty about the current systems to predict and 

prevent fire damage (Chuvieco 2003). However, as climate changes could increase the risk of 

specific locations to experience intensive fire events (Knorr et al. 2016), other factors such as 

ecological cycles, vegetation dynamics and human activities can also increase the risk of fire 

ignition (Bowman et al. 2009).  At a global or local scale, fire activity is constantly interacting 

with social, landscape, and climate factors (Hantson et al. 2016). Historically, several countries 

have experienced fire frequency fluctuations outside of the average fire intervals, where climate 

affects the fluctuation intensity but political, economic, and social characteristics affect the ignition 

(Chuvieco 2003).  Despite the relevance of climate dynamics, the socio-economic interactions 

have a major effect over the natural cycles and change the landscape shape affecting the fire 

regimes (Castro et al. 1998), where more than 90% of the fire events registered worldwide are 

related directly or indirectly to human activities (Chuvieco 2003, Jolly et al. 2015).  

 Socio-economic and landscape changes affect fire regimes 

Anthropogenic changes are occurring all over the world from economic development and 

infrastructure establishment to agriculture production shifts. However, most of the rapid changes 

in landscape transition as in socio-economic patterns is occurring within geographical clusters 

(Porter 2000). These rapid growing clusters have been primarily associated with increases in 

population size and urbanization rates where increases in both regional growth rates produce a 50% 

increase in fire probability of ignition (Knorr et al. 2016). Current increases in fire activity seem 

to be related to rapid increases in population dynamics within dry ecosystems. Climate 

characteristics and anthropogenic variations have made Mediterranean ecosystems one of the most 

affected by fire fluctuations (Chuvieco 2003). On the other hand, within moist ecosystems, fire 
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activity increases is mostly affected by climate changes (Knorr et al. 2016). Therefore, the 

understanding of both climate and human effects over fire is key to direct fire management efforts 

appropriately within each region.  

The way that the human component interacts with fire is case specific but in general, it is 

associated with negligence, arson, land abandonment and conflicts within the urban-rural interface 

(Chuvieco 2003). However, one of the biggest challenges in trying to understand the human 

component is that it could be evaluated either as spatial or non-spatially explained patterns 

(Bowman et al. 2011). Therefore, the integration of the human component into fire management 

should involve economic, demographic and landscape perspectives in order to capture both direct 

and indirect effects (Sarmiento and Frolich 2002). The landscape perspective accounts for the 

social variables that have an effect on the land such as land use types, change, intensity, access 

(roads), structures (electric lines, buildings), etc. (Syphard et al. 2008, Moreno et al. 2011, 

Carmona et al. 2012). On the other hand, the economic-demographic perspective involves social 

variables related to population characteristics based upon location as density, poverty, profits, 

education, etc. (Jennings 1999). As mentioned before, the inclusion of those perspectives becomes 

a challenge with scale variations where “the occurrence of patterns can disappear or emerge going 

from one scale to other” (Koning et al. 1998). Therefore, scale selection is key to understanding 

the connection between socioeconomic factors and fire ignition. In addition, the differences 

between scales and the relative effect on the socioeconomic variables significance can efficiently 

focus the management forces to target specific fire drivers in each scale. 

 Fire risk estimation and prediction 

The fire assessment at a local or global scale could be determined by analyzing the 

interaction between the fire hazard risk and the fire ignition vulnerability (Chuvieco 2003). The 
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fire hazard risk describes the number of flammable sources accumulated and the fire ignition 

vulnerability evaluates the site susceptibility to burning (Castro et al. 1998). Despite the 

controversy over the use of the terms fire risk and fire danger, I refer to fire risk as the combination 

of the fire hazard and the fire ignition vulnerability (Castro et al. 1998, Chuvieco 2003). Multiple 

methods have been developed to estimate fire risk involving the integration of variables into 

mathematical indexes (Chuvieco 2003). All methods differ on the temporal and spatial scales 

selected, variables and procedures used to develop the indexes. The fire risk estimation could be 

classified into long-term and short-term indexes based on the type of variables that are used (Ayanz 

et al. 2003). The long-term indexes use variables that change over long time intervals but that do 

not have a significant change in shorter intervals. An example of a long-term index variable could 

be topography. On the other hand, short-term indexes are based on dynamic variables that 

constantly changing as vegetation moisture content, wind speed or temperature (Chuvieco 2003). 

Even inside of the same category, the long and the short-term methods could use different direct 

or indirect calculations of the same variables to estimate fire risk, which creates variations on the 

predictions when comparing different indexes (Morgan et al. 2014). Worldwide, fire risk 

assessment methods have been implemented in different countries (Lee et al. 2002, Chuvieco 2003, 

Bedia et al. 2014). A summary of some of the methods is found in Table 1.1. The methods 

described in the table have been modified throughout time adapting the temporal and spatial scales. 

Despite the continuous updating and improving of the methods, advantages and disadvantages still 

exist.   

The relationship between anthropogenic characteristics and fire activity might involve a 

wide amount of indicators and perspectives to try to explain the association between them 

(Chuvieco 2003, Carmona et al. 2012, Andersson et al. 2016). Several studies have focused on 
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analyzing the relevance of socioeconomic variables over fire frequency (Xavier-Viegas 1999, 

Chuvieco 2003, Pérez-Vermin, G., Márquez-Linares, M.A., Cortes-Ortiz, A., Salmerón-Macias 

2012, Bedia et al. 2014, Chuvieco et al. 2014), but they considered a larger amount of variables 

and the results are not comparable between studies (Table 3). In addition, fire risk indexes decrease 

their applicability for management when incorporating larger numbers of variables (Ayanz et al. 

2003). Consequently, integration of social variables for fire prediction requires detailed selection 

and preparation of variables in order to accurately explain the human interactions with fire. The 

current fire prediction approaches focus on the natural or vegetation causes of fire ignition and 

propagation by misleading the effect of human influences (Chuvieco 2003). Most of the current 

research and fire models have well studied fire behavior but less is known about the causality 

behind the fire events related to human interactions. Much research is needed to understand and 

implement the human-caused fire dimension on the current fire prediction systems (Chuvieco 

2003).  

One of the major concerns regarding the use of the current fire prediction systems is the 

inclusion of the human dimension, despite the multiple studies and current evidence pointing out 

the relevance of the anthropogenic effects over fire (Leone et al. 2003). In order to assess fire 

accurately, the estimates should include both, the danger and the fire vulnerability as indexes to 

predict fire risk. Fire danger contemplates the fire behavior characteristics as propagation potential 

(fuel characteristics). On the other hand, fire vulnerability focuses no ignition probability (cause), 

the ecological, economic, and social value of a location (Chuvieco 2003, Keeley 2009, Chuvieco 

et al. 2014). Most of the current fire prediction system contemplates only the fire danger aspect, 

focusing on the propagation characteristics overlooking the ignition probability related to human 

characteristics (Bowman et al. 2011). This gap of knowledge increases the differences between 
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observed and predicted fire events especially in areas where the fire matrix is driven by human 

activity. Several clustered regions with rapid anthropogenic transitions show this problem (Table 

1.2). According to the Institute of Forest Conservation of Honduras (ICF), in 2015, 95% of the fire 

events registered in this country were human related. In addition, reports from the Center for 

International Forestry Research (CIFOR) in 2003 reported that 44% of the fire events in Indonesia 

were directly associated with agricultural production and forest clearing activities. Furthermore, 

85% of Chile’s fire activity is driven by human interactions (CONAF 2014). Nevertheless, those 

are only a few examples of the countries in which the human-driven fire activity demands effective 

and accurate systems, which includes the anthropogenic dimension.  Although temperature and 

precipitation variations might affect the fire regimes in different regions around the world, there is 

the uncertainty of the associated effects related to the human interactions on fragile habitats.  

 Risk of fire in Mediterranean ecosystems  

Nowadays, the accelerated human population has been associated with increases in fire 

activity that in conjunction with the dry conditions of these regions have made the Mediterranean 

ecosystems one of the most affected by fire variability (Syphard et al. 2009). Mediterranean 

ecosystems are concentrated within five coastal regions of the world, occupying 2% of the Earth 

surface (Cox and Underwood 2011). Historically, these regions have been targeted for human 

development due to the suitable locations and environmental conditions. Over 250 million people 

live in the region where five important cities are located (i.e. Rome, Santiago de Chile, Cape Town, 

Los Angeles and Perth) (Cox and Underwood 2011). Therefore, with an increase in population, 

there is high pressure over the land and resources of those areas.  Furthermore, anthropogenic 

ignitions have significantly changed the fire activity by affecting the timing and spatial distribution 

of fires (Syphard et al. 2009). Chile is the Mediterranean region with the highest potential for 
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biodiversity conservation (75%) based on the natural vegetation without direct anthropogenic 

impact (i.e. agriculture, plantation, grasslands)(Cox and Underwood 2011). Unfortunately, 

repeated burns have affected the vegetation where more than half of the native forest has been lost 

as result of human-induced fires (Ubeda and Sarricolea 2016). Little is known about how the 

spatial distribution of fire is changing in the Mediterranean ecosystems of Chile due to human 

activity and what specific anthropogenic characteristics have the highest impacts on fire frequency 

changes.  

 Chile’s case study 

Historically, Chile has used prescribed fire as a tool for land clearing and agricultural 

purposes since the colonization period (Díaz-Hormazábal and González 2016). However, fire 

registries became available until 1964 as developed by the Forest Police Department (Díaz-

Hormazábal and González 2016). After 1974, fire regulations changed and the National Forest 

Corporation of Chile (CONAF) was designated as an official fire authority to record the fire 

activity. Around 200,000 uncontrolled fire events have been registered since 1964, affecting more 

than two million hectares of agricultural and forest lands (Moreno 2000, Carmona et al. 2012, 

Díaz-Hormazábal and González 2016). The uncontrolled fire activity has been one of the most 

intensive disturbances for Chile’s landscape (Castilla et al. 2016). The historical records of fire 

frequency in Chile show an eightfold increment of fire incidence over the last four decades 

(CONAF 2014). The upward tendency of fire activity was originally observed in the early 70’s 

(6,000 fire events per year registered between 1970-1984) (Díaz-Hormazábal and González 2016). 

Consequently, fire frequency peaks were registered in 1990 (6,600 events), 2003 (7,500 events) 

(CONAF 2016). In January 27, 2017, the active fire system of NOAA registered 119 fire alerts 

occurring simultaneously in the country (Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. 
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A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. 

Kommareddy, A. Egorov, L. Chini, C. O. Justice, 2017). The unprecedented episode highlighted 

the current changes in fire regimes experience in the country.  Furthermore, the future fire 

frequency has been predicted to increase (Pechony and Shindell 2010, Díaz-Hormazábal and 

González 2016), and with it the uncertainty of the causes driving the unprecedented fire activity 

changes and possible major effects on the ecosystem, economy, and society.   

Chile has undergone political, social, and economic transitions since 1930. The population 

growth and the increase of urbanization rates led to a rapid industrialization development, which 

also influenced agriculture production at the beginning of the 20th century (Robles Ortiz 2003). 

The production matrix of the country changed from mineral exports to agricultural products, which 

led to transportation development (Robles Ortiz 2003). The transitions had an effect on the 

landscape where the urbanization patterns and the reduction of the native Mediterranean vegetation 

have induced fragmentation and landscape homogenization (Aguayo et al. 2009). On the other 

hand, the economic diversification influenced by government policies as economical subsidies, 

and infrastructure trends, had a significant effect on Chile’s society (Aguayo et al. 2009, Heilmayr 

et al. 2016). The changes in production patterns have incentivized the instauration of the forest 

plantation industry (Heilmayr et al. 2016). During the last decades, forestry plantation area has 

expanded dramatically producing several impacts over the social, economic and landscape patterns 

of the country (Huber and Iroumé 2006, Andersson et al. 2016, Heilmayr et al. 2016). Those 

transitions might be affecting the fire regimes changes in the country but the mechanisms of how 

that is happening are still unknown. 

Spatial analysis has reported some evidence of changes in the geographic spatial 

distribution of the fire hotspots in Chile possibly related to the accelerated landscape dynamics 
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(Heilmayr et al. 2016). Historically, most of the fire events were located in the Mediterranean 

ecosystems of the country, where regions from Valparaiso to Bio Bío are located (Peña-fernández 

and Valenzuela-palma 2004, CONAF 2016). Nowadays, the accelerated landscape transition 

might start to affect the fire distribution in other ecosystems but there is no evidence of those 

changes (Peña-Fernandez & Valenzuela-palma, 2004). Land use changes are mainly occurring 

between the 33° and 38° south latitudes where most of the country agriculture and wood production 

are located (Díaz-Hormazábal and González 2016).  The effect of the accelerated landscape 

changes and the possible implications for shifts in fire distribution are uncertain and further 

research is required in order to adjust the current management approach.  

The fire trends in Chile are seasonally dependent (González et al. 2011). The fire events 

initiate in late August and finish in early May (Díaz-Hormazábal and González 2016), with most 

of the ignitions occurring between December and February (CONAF 2014). Evidence has shown 

that 80% of the fires registered during the fire season are categorized as low-intensity events (<5ha) 

affecting 11% of the burned area (Díaz-Hormazábal and González 2016). On the other hand, high-

intensity fires (>200ha), represent only 1% of the fire events and affect 44% of the burned land 

(CONAF 2014). As current changes in fire regimes can affect fire spatial distribution, fire 

seasonality could change as well and may be related to human and climate interactions (Pechony 

and Shindell 2010). The fire initiation causes vary from natural ignition (climate) to intentionally 

provoked activities (human). There is evidence to suggest that > 85% of fires registered in Chile 

are related to human activities (CONAF BIRF 1999). In some areas, reports indicate higher values 

such as in the Maule region where 97% of the uncontrolled fires are human-related (Díaz-

Hormazábal and González 2016). Some studies have associate fire evens to transportation 

accidents, recreation, and production activities (Díaz-Hormazábal and González 2016) where most 
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of the ignition fuels have been identified on grassland areas and plantations (75% of the events) 

(Ubeda and Sarricolea 2016), but specific landscape transitions and characteristics have not been 

associated with changes in fire dynamics.  

The National Institute of space research (INPE) of Brazil developed the current fire 

prediction system (FPS) used in Chile and several other South American and Central American 

countries. The FPS predictions are based on the number of drought days to quantify the risk of fire 

occurrence in a given vegetation type (CONAF 2014). Furthermore, the FPS was developed 

considering climatic (Precipitation and Temperature) and vegetation (Fuel source) characteristics 

as the main input for fire prediction (CONAF 2014) and does not include human variables as in 

the other systems used worldwide. Both vegetation characteristics and climatic variations have 

been shown to be relevant in the understanding of fire activity in countries where most of the fires 

are wildfires (Chuvieco 2003, González-Ollino, D., Rodríguez-Vignoli 2004). On the other hand, 

in countries like Chile where most of the fire frequency is human-driven, the inclusion of 

anthropogenic drivers could be a key element for fire management. Despite all the related literature 

about this issue (Table 1.3), the inclusion of both landscape and economic-demographic 

perspective variables have not been adapted to current systems. In order to improve the current 

fire prediction systems, the incorporation of all the aspects describe above could be key in order 

to efficiently manage the future fire regime changes.  

 Justification for study 

Global fire activity has changed from a climate-induced to a human-driven fire regime 

(Pechony and Shindell 2010). Current fire prediction systems rely on meteorological outputs and 

fuel characteristics to determine fire risk, not including the human dimension (Chuvieco 2003). 

This becomes a greater issue within areas where most of the fire variability relies on social-
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landscape interactions. Mediterranean ecosystems are often targeted for urban development. 

However, the biodiversity value of these ecosystems is severely threatened by the fire variability 

caused by human ignitions (Syphard et al. 2009). The accuracy of the current fire prediction system 

is a challenge within this particular region where fire ignition is predominantly human-based. 

Furthermore, the restricted geographical distribution of Mediterranean ecosystems, unprotected 

conservation status, and dry conditions combined with accelerated human development (Cox and 

Underwood 2011) increases the pressure to improve efficiency of fire risk detection within these 

areas. The connectivity between fire regimes and human-environment interactions is complex but 

the understanding of socio-economic drivers and landscape transitions is key to accurately assess 

the fire risk. From selection of spatial and temporal scale to evaluation of variables, multiple 

factors should be considered in order to capture the effect of anthropogenic variation in fire 

changes. Current literature has begun to move towards the understanding of the connectivity 

between these elements. However, more research is required to understand both direct and indirect 

effects of anthropogenic indicators affecting fire variability within Mediterranean regions and the 

inclusion of those into fire prediction systems.   

 Summary of objectives  

The objective of this study is to analyze the effect of anthropogenic drivers on fire 

frequency variability and the inclusion of human indicators to improve fire frequency predictions 

based on two case studies in Chile. More specifically, in order to account for the complexity of the 

human dimension, each case study focuses on different anthropogenic perspectives. The first case 

study will investigate the effect of landscape transitions on the fire frequency changes. The specific 

questions are the following i) What are the particular transitions that are driving the landscape 

changes over the area. ii) What are the characteristics of the landscape changes? iii) What are the 
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specific landscape characteristics and transitions affecting the fire frequency changes and iv) Does 

the speed of the transitions affects the fire frequency changes? The second case study evaluates 

the integration of socioeconomic descriptors into a fire prediction system while accounting for 

spatial distribution changes, selection of variables and prediction accuracy. The specific questions 

are i) Are there changes in the spatial distribution of fire activity? ii) What are the most significant 

socio-economic characteristics affecting fire frequency? iii) How are socioeconomic and 

landscape variability connected to fire frequency changes? and iv) How does the inclusion of 

socioeconomic and landscape indicators improve fire frequency prediction systems? Both case 

studies focus on a Mediterranean ecosystem, which is the targeted ecosystem to improve fire 

prediction systems. Results and implications of this study are described in chapter two and three. 

A synthesis of the results, fire management implications and future steps are described in chapter 

four. 
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Table 1.1 Description of multiple fire prediction systems used around the world comparing variables, scales and descriptive 

characteristics ( Adapted from Ayanz et al. 2003) 

Location Category Index name Variables Scale 

Europe 

Long-term 

Fire Probability 

Index 

Fuel source availability 

Topography 

Socio-Economic Variables 

1 km2 

Vulnerability Index 

Potential erosion: soil type, slope, and rainfall 

Level of protection: rareness, environmental interest 

Distance to settlements: number of human lives and settlements 

1 km2 

Short term 

Meteorological 

Index 

Fine dead fuel moisture content 

Fuel water content 

The initial rate of propagation 

Quantity of fuel 

Atmospheric conditions 

50 km 

Vegetation stress 

index 

Fuel moisture content 

Time window 

16km2 

 

Fire potential Index 

Live-ratio (NDVI) 

The moisture content of dead vegetation 

Fuel type 

Meteorological variables 

16 km2 

USA Short term 

National Fire 

Danger Rating 

System 

Burning index 

Spread component 

Energy release component 

Ignition component 

1 km2 

Australia Short term 
McArthur’s Fire 

Danger System 

Fine fuel Availability submodels:  

Drought factor: moisture status of fuel, moisture gradient in the fuel bed, the intensity 

of the fire, chemical and mechanical structure of fuel and the horizontal and vertical 

structure of the fuel 

Keetch drought index: soil moisture content, time since last rainfall event, maximum 

daily temperature, 24-hour rainfall 

Surface fine fuel Moisture: Ambient air temperature  

Relative humidity 

The rate of Spread: Surface fine fuel moisture 

Wind speed 

The difficulty of Suppression: Dryness of the fuel 

 

Canada Short term 

Canadian Forest 

Fire Danger Rating 

System 

Subsystems:  

Forest Fire weather index: fuel type, dry bulb temperature, relative humidity, wind 

speed, accumulated rainfall.  

 

 

2
2
 



 

 

Forest Fire Behavior Prediction: fuel type, topographic situations. 

New 

Zealand 
Short term 

Adaptation of the 

Canadian Forest 

Fire Danger Rating 

System 

Temperature 

Relative Humidity 

Wind direction 

Rainfall 

4 km2 

South 

America 
Short term Fire Risk Index 

Precipitation 

Temperature 

Relative Humidity 

Vegetation Type 

60km 
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Table 1.2 Comparison between the fire causality due to human and natural ignitions in several 

countries around the world* 

Country Human Ignition 

(%) 

 Natural 

Ignition (%) 

Reference 

EU  1-2% Chuvieco et al.  2003 

France   29.7% Chuvieco et al.  2003 

Spain 25% 30% FAO 1990 

Greek island  50% Kailidis 1992 

Finland  10% Larjavara et al 2002 

Canada  40% Chuvieco et al.  2003 

Turkey 59%  Chuvieco et al.  2003 

Austria 50%  Chuvieco et al.  2003 

Portugal 32%  Chuvieco et al.  2003 

Chile 85%  CONAF 2015 

Honduras 95%  ICF 2015 

Indonesia 44%  CIFOR 2003 

*Values apply for some regions of the country, do not necessarily extrapolate to the entire country and specific year 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 1.3 Summary of a literature review evaluating the effect of human dimensions on fire frequency and intensity. Description of 

variables and effects assessed from each paper. 

Paper Title Effect Variables Reference 

Abandonment of traditional 

activities in wildland/rural areas  

The increase of forest fuel 

accumulation 

Temporal evolution of agrarian active 

population 

Temporal variation of agriculture 

Carvacho 1998 

Chuvieco et al 1996b 

Abandonment of traditional 

activities in wildland/rural areas 

in privately own forests 

Lack of traditional silviculture and 

care of the forest 

Forest area (public and private, 

managed and no managed, with and 

without commercial value) 

Chou 1992 

Pérez and Delgado 1995 

Vega-García et al 1993, 1995 

Depopulation of rural areas Decrease of the active population in 

rural areas, abandonment of 

croplands, spontaneous natural 

vegetation colonization, increase in 

forest fuel sources  

Change of forest and agricultural 

surface 

Romero and Perry 2002 

Increase use of forest as a 

recreational resource 

The increase of visits to the forest, 

increase the risk of negligence fire 

events 

Distance and accessibility to touristic 

areas  

Distance to roads and urban areas 

Abhineet et al 1996, Alcazar et al 

1998, Benvenuti et al 2002, 

Bradshaw et al 1987, Brass et al 

1983b, Castro and Chuvieco 1998 

Chou 1992,1993, Vega Garcia et 

al 1996 

Human presence, population 

increase, and urban growth 

More pressure on wild lands The increase of the urban/wildland 

interface, urban/forest interface, 

population number and density, urban 

area, city lights density 

Chuvieco et al 1999, Pérez and 

Delgado 1995, Chuvieco et al 

1998, Dagorne et al 1994, 

Donoghue and Main 1985 

Population increase in rural 

villages during summer holidays 

More amount of waste- ignition 

sources 

Location of rubbish’s dumps Alcazar et al 1998 

Aged rural population Traditional management methods-

increase probability of propagation 

Age rate Chuvieco et al 1999 

Agriculture Fire use to eliminate harvesting 

wastes – an increase of propagation 

risk 

Agricultural area and forest area 

interface 

Chuvieco et al 1999, Pérez and 

Delgado 199, Milani et al 2002, 

Leone et al 2002b 

Cattle grazing  Fire use to maintain herbaceous 

vegetation  

The density of livestock, 

grassland/forest interface, distance to 

livestock 

Chuvieco et al 1999, Leone et al 

2002, Perez and Delgado 1995, 

Oleveira et al 2002 

Electric lines Ignition by accident Distance to electric lines  Alcazar et al 1998, Oleveira et al 

2002, Bradshaw et al 1987 
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Engines and Machines working in 

or close to the forest area 

Ignition by accident Agrarian machinery density Chuvieco et al. 2003 

Hunting Activities Ignition by accident Hunting licenses Ayanz et al. 2003 

Landscape structure Fire propagation for the 

abandonment of plots 

Fragmentation index and landscape 

diversity  

Pérez and Delgado 1995, Romero 

and Perry 2002 

Presence of roads, railroads, 

tracks, and accessibility 

Human pressure- ignition by accident Length and density of roads and 

railroads  

Abhineet et al 1996, Milani et al 

2002, Dagorne et al 1994 

Military maneuvers and quarries 

explosions 

Ignition by accident Military areas Ayanz et al. 2003 
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 EFFECT OF LANDSCAPE TRANSITIONS ON FIRE 

FREQUENCY IN THE CENTRAL ZONE OF CHILE 

 Abstract 

Changes in fire regimes can be triggered by a series of factors that vary temporally.  Most 

of these changes in fire regimes are linked to landscape structural changes that are directly or 

indirectly related to human activities. Chile’s landscape has undergone a series of accelerated 

transitions throughout history, including agricultural expansion and tree plantation establishment.  

These changes in production dynamics and fire activity could be related to internal landscape 

dynamics. The goal of this study was to analyze the landscape transition patterns in the Center 

zone of Chile and the effect of those transitions on fire frequency between 2014-2017. Landsat 8 

OLI TIRS Level 1 imagery was used to derive a change detection contingency table (CT). The CT 

was used to perform an intensity analysis. Overall, 27.2% of the area changed between 2014-2017. 

The Maule region showed the most significant rate of transition between agriculture and 

forest/plantation area (P<0.001). The majority of the change was categorized as an exchange where 

agriculture and urban/burned areas had active transition rates higher than the uniform intensity 

(>9.08%). Intensive transitions where forest/plantation area increased were related to decreases in 

agriculture areas (Uniform transition >3.95%). Increases in agricultural areas were related to a 

reduction in bare soil areas (Uniform transition >1.85%). Conversion from bare soil to 

forest/plantation area, categorized as a passive transition, significantly affected the fire frequency 

change. Transitions between agriculture to the forest, bare soil to other and forest to other 

(p<0.001) were categorized as active transitions where increases in the rates of those transitions 

can trigger changes in the fire frequency of the area (3.95, 1.38, and 3.47% respectively). Fire 

frequency is more likely to change in areas where active transitions occur and where those 
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transitions follow low patch density, a high number of patches and high mean patch area (p<0.001).  

These results highlight that transition intensity and landscape characteristics can increase fire risk 

vulnerability, whereas the inclusion of this element into fire prediction systems could improve fire 

risk assessment in areas with similar landscape patterns.     

 Introduction 

 Fire dynamics 

Fire activity has influences on stand replacement and triggers most of the structure and 

composition changes over vegetation worldwide (Bowman et al. 2009, Pechony and Shindell 

2010). The fire has played an important role in human development as a tool for improvement; 

however, the fire has also had severe effects on natural resources, economies and human lives 

(Bowman et al. 2009). Inside the United States, fire expenditures related to damage control were 

more than $11.6 billion in 2010 (Geneva Association 2014, INE 2017). The impacts of fires have 

also been a cause of mortality in several countries; for example, 1890 people died in 2009 in Japan 

because of fire activity(Geneva Association 2014, INE 2017). The increasing number of 

uncontrolled fire events related to human ignitions has exceeded the capacity of the current fire 

prediction and management systems to prevent and assess the fire damage (Bowman et al. 2009). 

In contrast with future projections pointing at fire regimes shifting (Pechony and Shindell 2010), 

that increase the uncertainty of the effectiveness of current systems, to accurately predict, prevent 

and monitor fire variability (Watson et al. 2005, Chuvieco et al. 2010). The effective allocation of 

fire resources relies on the understanding of the causes triggering the fire regime changes at the 

local scale (Pechony and Shindell 2010).   

Fire frequency and intensity are two important concepts for use in fire risk assessment. The 

fire intensity is determined by the previous condition of the vegetation (Morgan et al. 2014) and is 



29 

 

commonly used to map land use changes in order to prioritize management of areas after fire 

events (Chuvieco et al. 2014). Although fire intensity is a key component to understanding fire 

behavior, fire frequency is an important element to understanding fire ignition (Chuvieco 2003, 

Cochrane 2009). Both components in combination with spatial variability, severity, and 

seasonality determine a fire regime (Bowman et al. 2009).  The understanding of fire regimes 

begins with understanding the stimulus behind the fire initiation (Gabban et al. 2008, Knorr et al. 

2016). 

The causes driving the fire activity worldwide have changed from climate to human-

climate interactions (Pechony and Shindell 2010). In order to determine priority areas for fire 

management, most of the current Fire Prediction Systems (FPS) rely on meteorological outputs 

and fuel characteristics (Chuvieco et al. 2010, 2014) to determine when and where fire ignition 

will occur and how the fire will behave (Bowman et al. 2009). However, current patterns within 

Chile have observed an upward trend on fire frequencies in areas with exponential socio-economic 

and production transitions (Carmona et al. 2012), under covering the possible relevance of 

including landscape transitions on fire frequency predictions (Moreno et al. 2011) not only in Chile 

but also in regions where the fire initiation is driven directly or indirectly by human activity. 

 Landscape changes 

Landscape transitions can be triggered by social, political, economic or ecological drivers 

(Heilmayr et al. 2016). However, transition speed and quality have strongly relied on agriculture 

production system changes that have an internal and external influence on the landscape dynamics 

of the sites involved (Foley 2005, Heilmayr et al. 2016). Chile has undergone significant landscape 

transition across history, combining agricultural expansion and forestry plantation establishment 

(Heilmayr et al. 2016). Most of the changes have been triggered by colonization, political reforms, 
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production incentives and population redistribution (Clapp 1998). Nowadays, Chile’s production 

system has a shift into a rapid establishment of forest plantations (1986-2001) (Heilmayr et al. 

2016). Native forest areas were reduced 21% of the country surface between 1975 and 2000. 

Simultaneously, are of forestry plantations areas has increased from 5% to 36% over the same time 

interval (Echeverria et al. 2006, Heilmayr et al. 2016). Several studies have reported significant 

production changes along the countryside (Toro and Gessel 1999, Aguayo et al. 2009). 

Simultaneously, the area covered by urban settlements have doubled its size in the last 40 years as 

result of socioeconomic transitions occurring at the same time (Aguayo et al. 2009). Despite the 

short-term, long-term, local and country land use analysis that have already been done in Chile 

related to land use changes (Echeverria et al. 2006, Aguayo et al. 2009, Díaz-Hormazábal and 

González 2016, Schultz et al. 2016) the direct effect of the accelerated shift in landscape transition 

on the fire activity of the country have been poorly studied. Furthermore, similar patterns are 

occurring around the world (Turner et al. 1994, Mladenoff and Baker 1999, Moreno et al. 2011) 

were improving the knowledge of the speed and extent of landscape transitions could lead to a 

deeper understanding of the fire dynamics over those areas. 

  Chile’s Fire Activity 

The elements causing the fire regime changes vary depending on the country, from natural 

to accidental or intentional ignitions. The uncontrolled fire activity has been one of the most 

intensive threats to Chile’s natural resources and population (Ubeda and Sarricolea 2016). The 

historical record of fire frequency has shown an increment of almost eight times the incidence of 

fire events over the last four decades (CONAF 2014).On January 27, 2017, the Active Fire System 

NOAA registered 119 fire alerts occurring simultaneously over the country (NOAA 2017). There 

is evidence that suggests that more than 80% of fires registered are related to human activities 
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associated with production activities (CONAF 2014). Furthermore, the interaction between urban-

wildland interface is considered one of the most important factors that have increased the fire risk 

in some regions (Radeloff et al. 2005, Jolly et al. 2015, Díaz-Hormazábal and González 2016). 

Therefore, in response to the radical increases of the fire activity and evidence highlighting the 

possible relevance of landscape transition over the fire frequency changes, an improved 

understanding of the relation between both, landscape characteristics and fire frequency changes 

are needed.  

The aim of this study is to understand and describe the landscape transition and intensity 

over the central zone of Chile and to evaluate the effect of those transitions over the fire frequency 

changes. The specific questions we intend to answer are i) what are the particular transitions that 

are driving the landscape changes over the area? ii) Are those changes related to shifts or exchanges 

between the land uses? iii) What are the specific landscape characteristics and transitions affecting 

fire frequency changes over the Center Zone of Chile? and, iv) Is the speed of the transitions from 

passive to active (non-stationary) more likely to affect the fire frequency changes? 

 Materials and Methods 

 Study area 

The analysis was conducted using the central zone of Chile as a case study for the period 

2014-2017 (Figure A1). The central zone of Chile was selected based on its population, which is 

concentrated mostly in this area according to 2017 registries (INE 2017). Chile administrative 

divisions are classified as Regions, which are at the same time are conform by comunas. Within 

the study area, there are five major regions and 194 comunas that represent 73% of Chile’s 

population (Table A1). A “comuna” is considered the smaller administrative division of the 

country, which was selected as sampling units, for a total sample size of 194 comunas. The 
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predominant economic activities are a focus on the production of agriculture, wine yards, fruits, 

and timber plantations (Table A2) with annual increases in agriculture and timber plantation areas 

(1.1% yearly) (Schulz et al. 2010). 

 Land Use Data 

Landsat 8 OLI TIRS Level 1 imagery for the period extended from January 2014 to January 

2017 was downloaded from the Earth Explorer of USGS (Table A3). The data was selected based 

on the season, the quality and the availability. Time wise the data was acquired with a time 

separation of less than a week between scenes of the same year and between years. All data was 

selected for Chile’s summer season, to increase the accuracy of the classification, and with less 

than 10% cloud cover.  

All the layers from the same scene were stacked using the Erdas Imagine 2013 Software. 

For this case study, only bands 1-8 were selected for evaluation during the stacking process. The 

possible band's combinations were tested based on the differences in pixel values of the evaluated 

land uses and the variation along the band's pixels. The bands that showed the higher differences 

in pixel value and visual color differences between land uses were selected using spectral profiles 

and surface profiles comparisons. No differences were found between bands 1, 2, 3, 4, and 8. The 

band combination between 5, 6, and 7 were selected where the bands had the highest differences 

between each other when evaluating possible land use separation. The three bands were stacked 

and the scenes from similar days were mosaic and geographically corrected.   

An unsupervised data classification was used to classify the imagery for this study. Detail 

of category descriptions is available in Table A4. The data were classified using the ISODATA 

classification where the classification specifications were 150 classes, 50 iterations, and 2 SD. The 
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classification was performed using an R5-G6-B7 color adjustment where most of the color 

differences between land uses were visible in other to separate the land uses. The classification 

was then recorded into four categories relevant for this study. The classification process was 

performed simultaneously for all the years and dates analyzed. The four categories classification 

for each year was evaluated through an accuracy assessment. As there were no suitable complete 

reference data available for the dates selected, the accuracy assessment was developed using 800 

random points (200 per category evaluated) based on the Catastro thematic maps (CONAF BIRF 

1999) and Google Earth Pro data and additional reference maps from the Forest Corporation of 

Chile (CONAF). The accuracy assessment was based on the Kappa Statistics not accepting less 

than 0.8 of Kappa value (Table 2.1).  

 Change detection analysis and Landscape Homogeneity 

The land use transitions were evaluated through time and space. First, the time evaluation 

was accomplished using a post-classification change detection analysis (CDA) between 2014 and 

2017 classification outputs. The CDA was performed using a Matrix Union reporting the transition 

area per land use as a function of the pixel count and size. The change detection analysis was 

evaluated using the methodology of Pontius & Santacruz, 2014. In addition, post-classification 

techniques were used to obtain the Contingency Table (CT). The spatial characteristics of the 

transitions, the intensity rate and uniform intensity (UI) of them were calculated using Pontius & 

Santacruz, 2014; Zakaria Aldwaik & Gilmore Pontius Jr, 2012 methods.  

Quantity, exchange, shift, and intensity were calculated using the CT. In addition, the table 

was used to derive the intensity analysis.  Second, the spatial patterns of landscape characteristics 

were evaluated through the Shannon Evenness Index (SHEI) (Li and Reynolds 1993) (Equation 

1), use to represent homogeneity based on the areas extracted from the classification process for 
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each year separately. In addition, the land use change per year was evaluated using methods of 

Aguayo et al., 2009; Echeverria et al., 2006. 

Equation 1  SHEI = (-∑ (Pi*Ln (Pi))/Ln (m)) 

In the SHEI equation, Pi represents the proportion of the landscape occupied by the land use 

and m represents the number of land uses evaluated. SHEI index is a value between 0 and 1 that 

represents the dominance of a land use over a specific area, where values close to zero represent areas 

that are basically covered by only one land use (e.g., as agriculture), and values close to 1 represent 

areas that are covered by different land uses where none of them dominate the land cover. In addition, 

FRAGSTATS 3.3 software was used to calculate additional patch characteristics. The parameters were 

selected based on Dezhkam, Jabbarian Amiri, Darvishsefat, & Sakieh, 2016 (Table A5). FRAGSTATS 

calculates land use categories metrics based on Shape, Area and Aggregation characteristics, which is 

used as a measure of landscape fragmentation (Pijanowski and Robinson 2011). The patch 

characteristics were calculated using the output classification with and without majority neighborhood 

adjustments. As no significant differences were found, the data without smoothing is presented in this 

chapter. 

 Fire frequency and weather data 

The fire frequency records (2014-2017) were available at the Fire Information for Resource 

Management System (FIRMS) of NASA.  For the studied time interval, the fire data was selected 

based on the fire frequency annual curve presented by CONAF (Figure A2), where fire events 

registered between August 1st and June 30th were selected for each year.  The fire data was used to 

calculate the Fire frequency represented as fire counts per sample unit.  
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The weather stations data between August 1st and June 30th per year was available at the 

Climate Explorer tool of Chile. The precipitation expressed as daily average (mm) and the Average 

Temperature (°C) of the explorer tool was used to estimate the weather variables for the comunas 

were no weather stations were found. The data interpolation was accomplished using a co kriging 

interpolation method using as covariate the 1 km resolution elevation data (Global 30 Arc-Second 

Elevation GTOPO30a) available at the USGS website.  

 Statistical Analysis  

Fire frequency was evaluated as a function of both patch characteristics and landscape 

transitions through multiple linear regressions models. The stepwise analysis was used in order to 

select the best-fitted model describing the fire frequency. In addition, the spatial autocorrelation 

of the sample unit was evaluated an accounted for using a weighted matrix based evaluated through 

a Moran’s test following Bivand, Pebesma, & Gomez-Rubui, 2008; Ward & Gleditsch, 2007.  

 Results 

 Change Detection Analysis 

Twenty-seven percent of the area experienced land use transition between 2014-2017, 

where the spatial distribution of the change was not homogeneous between regions and land uses. 

The change detection output for the period 2014-2017 is shown in Figure 2.1. Within the time step, 

the land use persistence was 72.74% with an average of 9.08% change per year. The regional 

change differences between land use and years are presented in table 2.2 and 2.3. Overall. The area 

had decreases in agriculture land and increases in forest/plantation areas (four out of five regions 

shown this trend). Valparaíso and Bio Bío are the regions that had the highest annual increment 

on forest/plantation (5.14% and 2.26% respectively). On the other hand, agriculture had the highest 
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annual decrease within Maule and Bio Bío (2.61% and 5.42% respectively), where most of the 

observed change is clustered along the coastline of both regions. Overall, the Bio Bío Region 

transition the most (29.17%) compared to the other regions of the country. 

 Transition Analysis 

At a time interval level, the land use change during 2014-2017 was classified as Exchange 

(23%), Shift (3%) and Quantity (2%). The overall pattern of the land use change based on the 

segmentation of the change between three categories is shown in Figure 2.2. Most of the transition 

was occurring interchangeably between two dominant categories in the same location (Exchange). 

In addition, a small fraction of the area was shifting between three or more categories, which 

highlights that the land use changes does not follow a direct transition pathway (Quantity). 

Furthermore, within shift areas, multiple intermediate stages happened in order to get from one 

land use to the other (shift) not as a sharp transition as was usually thought.  

At a category level, Bareland and forest/plantation are the classes that had the largest gain 

in annual change area and agriculture had the largest losses. On the other hand, agriculture and 

urban/burned were the categories with intensity rates higher than the UI (9.08%), which classifies 

them as active or non-stationary (transition speed higher than average) (Figure 2.3).  Therefore, all 

land use transitions associated with both categories are meaningful explaining changes over the 

area. At a transition level, figure 2.4 and 2.5 detailed each category gain and losses of area 

respectively, and the classes that are targeted (non-stationary) or avoided (stationary) to receive or 

donate land. Bareland and agriculture are the largest contributors to forest/plantations increases.  

Furthermore, the rate at which forest/plantations receive area from agriculture is higher than the 

UI (8.83%>3.95%), which categories agriculture as a targeted category to transition into 

forest/plantation areas (Figure 2.4). In contrast, urban/burned (4.94%>3.47%) and agriculture 
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(4.44%>3.47%) are targeted receivers when deforestation occurs (Figure 2.5). Bareland increases 

are related to a reduction in forest/plantation and urban/burned areas, where urban/burned is a 

targeted category for bareland conversion (20.01%>6.80%). Furthermore, agriculture 

(7.97%>6.56%) and urban/burned (15.93%>6.56%) are targeted categories to receive bareland, 

which is associated with crops rotation and construction. On the other hand, agriculture areas 

increased as result of bareland reductions (2.04>1.85%) also mostly associated with crops rotation 

seasonality; in contrast with agriculture losses associated with forest/plantations installment 

(3.83%>2.32%). Finally, urban/burned areas are interchangeably gaining (1.89%>1.38%) and 

losing (2.47%>1.48%) area from bareland. 

 Landscape Characteristics 

There are patch characteristics heterogeneity between land uses.  The forest/plantations and 

urban/burned categories are the ones that have the higher patch density (number of patches/100 

ha). The category that comprises most of the landscape area within a patch was bareland, where 

lower values for the agriculture and urban/burned categories can be related to higher 

fragmentation. In terms of patch shape, most of the land uses are non-squared (values > 0), where 

bareland and forest/plantation had the most irregular shapes, which could be relevant for fire 

activity.  

 Fire and landscape transitions 

Differences in patch characteristics between land uses had a significant effect on the fire 

frequency changes throughout space (Table 2.4) and time (Table 2.5).  First, the patch 

characteristics and the land use transitions were analyzed as a function of the fire frequency 

changes between 2014-2017. The best-fitted model of the patch characteristics that had a 

significant effect on the fire frequency is shown in table 4 (F7, 186=29.41, R2= 0.507, p <0.01). First, 
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increases in landscape heterogeneity (SHEI values close to 1) were associated to increases in fire 

frequency, where heterogeneity relates to the number of land use in the area, the more land uses 

presented the more heterogeneity. Second, increases in forest/plantation area segmented into 

fragmented distant patches were related to increases in fire frequency, in contrast with larger 

homogenous forest/plantation areas across space that were associated with a reduction in fire 

frequencies. On the contrary, across time, increases in landscape homogeneity towards dominance 

on forest/plantation had a significant effect increasing fire frequencies (F 1, 192=32.16, R2=0.13, p 

< 0.01) (Data not shown). On the other hand, decreases in the number and density of urban/burned 

and bareland were related to increases in fire frequency (rural areas). The best-fitted model of the 

fire frequency change between 2014-2017 as a function of land use change is shown in table 2.5 

(F4, 189=20.79, R2= 0.291, p <0.01). Throughout time, both increases in forest/plantation 

installment and urban/burned areas produced significant effect over fire frequency increases. 

Furthermore, reductions in bareland and agriculture areas were associated with increases in fire 

frequency as well.  

At a regional scale, the Maule region was the one that increased the most the fire frequency 

between 2014-2017 (Figure 2.6), where the transition from forest/plantation to bareland had the 

highest increased in fire frequency in this region.  On the other hand, within Bio Bío region, 

changes in agriculture and bareland towards forest/plantations had the highest fire frequency 

changes. Overall, the land use transition that is significantly associated with fire frequency changes 

is shown in figure 2.6. Land use change in agriculture to forest/plantation, bareland to 

forest/plantation, bareland to urban/burned, and forest/plantation to urban/burned had a significant 

effect over fire frequency changes (F 15, 44=3.53, R2=0.392, p <0.01). 
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The criteria to select the most relevant transitions for fire management on the central zone 

of Chile was based on transitions that had both landscape significance and significant effect on fire 

frequency.  The resulted transitions were classified as stationary and non-stationary. A stationary 

class refers to changes in land use that are slower than the average transition rate (transition rate < 

UI). In this scenario, bareland to forest/plantation was the stationary transition that had effects on 

fire frequency. On the other hand, the non-stationary class represents the transitions that are 

changing faster than the average transition rate (transition rate > UI). Agriculture to 

forest/plantations (>3.95%), bareland to urban/burned (1.38%), and forest/plantation to 

urban/burned (3.47%) are considered both actively (non-stationary) changing on the landscape and 

significantly affecting fire frequency when transitioning higher than the UI. Finally, when 

combining both active transitions with patch characteristics, transition higher than UI combine 

with changes in forest/plantation area towards increases in landscape heterogeneity are likely to 

increase fire frequency within a region. 

 Discussion  

 Change detection and transition 

The central zone of Chile is experiencing an accelerated land use transition mostly 

associated towards reduction in agriculture areas and increases in forest/plantations. Several 

studies have reported similar or higher transition rates from previous time intervals from 23% 

(1986-2011)(Heilmayr et al. 2016), 27.4% (1999-2009)(Carmona et al. 2012) and 40% (1979-

2000)(Aguayo et al. 2009). The studies related to landscape change in Chile started in 1970’s 

(Fuentes 1979, Clapp 1998), where native forest declines were associated to an national agriculture 

production shift incentivizing plantation installment (Heilmayr et al. 2016). Despite previous 

studies reported larger native forest area conversion into tree plantation areas at the late 
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nineties(Aguayo et al. 2009, Andersson et al. 2016, Heilmayr et al. 2016), the results of this paper 

highlight the transition tendency of agriculture land into forest/plantations between 2014-2017. At 

a local scale, increases in plantation areas have been previously associated with increases in 

economic challenges for farmers related market availability and water availability for irrigation 

(Huber and Iroumé 2006, Andersson et al. 2016) which probably explain the current agriculture 

reduction tendency. Other studies associate the reduction in agriculture areas as a result of 

increases in migration from rural to urban settlements based on the skill set required for job 

positions on plantations companies(Andersson et al. 2016). This argument could also support the 

significant increased on transition rate related to urban/burned areas moving towards possible 

growth in urban areas found in this paper.  Historically, Chile has undergone several production 

transitions, especially in the coastal areas during the 70’s where the production of wheat was 

reduced as result of soil erosion related to extensive monocultures installment, and the introduction 

of exotic species (Pinus radiata)(Fuentes 1979, Pausas and Keeley 2014). Most of the land use 

change observed in this study was localized within the coastline of Maule and Bio Bío regions. 

Both areas have showed the highest increases in forest/plantations and reduction in agriculture 

areas, which could be related to the high concentration of the timber industry and the highest rates 

of native forest deforestation (53% reduction between 1973-2000) found in both regions (Peña-

fernández and Valenzuela-palma 2004, Echeverria et al. 2006, Heilmayr et al. 2016).  

The high speed of the transitions driving the landscape changes is mostly associated to 

forest/plantations related to increases in tree plantations installment (Fuentes 1979, Nahuelhual et 

al. 2012, Heilmayr et al. 2016, Ubeda and Sarricolea 2016). Although transitions into 

forest/plantations have increased the area of this land use, at a slower rate, tree stands are also 

being replaced by deforestation to install agricultural plots (Chuvieco 2003). Furthermore, 
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deforestation of tree stands is also moving towards human disturbance either through fire events 

(Carmona et al. 2012) or logging for firewood (Echeverria et al. 2008). In addition, a type of 

rotation between the tree stands and the bareland was observed in the landscape where 

forest/plantation areas are shifting towards bareland also observed for agriculture areas 

(Nahuelhual et al. 2012). Furthermore, bareland is also being replaced by human settlements as 

infrastructure development (Fay and Morrison 2007) or affected by disturbance events as fire 

(Nahuelhual et al. 2012). In terms of patch characteristics, as forest/plantations and urban/burned 

patches have the highest density across the landscape. High patch density could be related to the 

transition of native forest from homogeneous large areas into fragments as result of deforestation 

(Echeverria et al. 2008). But also could be related to the conversion of spread agriculture patches 

into tree stands across the landscape (Clapp 1998).  

 Fire frequency vulnerability 

Changes in patch characteristics across the landscape and variations in the land transition 

rate have significant implications on fire frequency within sites. First, regions that presented the 

most accelerated shifts are more likely to present fire activity changes (Ubeda and Sarricolea 

2016). Maule and Bio Bio were the regions that presented most of the changes in both landscape 

and fire frequencies associated with rotations between bareland and forest/plantations (Díaz-

Hormazábal and González 2016).  This could be related to the increase in homogeneity and large 

areas occupied by the same species, with similar characteristics (age) contrasted with high 

densities which affects the fuel matrix of the area (Peña-fernández and Valenzuela-palma 2004) 

Furthermore, the species that are used for tree plantations (Pinus radiata and Eucalyptus globulus) 

are both fast-growing species that have flammable foliage. Therefore, combined with the harvest 

method where most of the aerial biomass is left on site could increase fire vulnerability 
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(Nahuelhual et al. 2012, Heilmayr et al. 2016). In addition, across space, increases in landscape 

heterogeneity (transition towards forest/plantations installment) mostly at peripheral areas of cities 

produce fire frequency change by reducing urban-wildland interface (Kerby et al. 2007, Syphard 

et al. 2008). As a result, reductions in landscape connectivity from fragmentation are more likely 

to affect fire seasonality, distribution, and frequency because the probability of fire spread by 

human activity increased into patchy systems (Archibald et al. 2012). Fire selectivity move 

towards pine plantation patches and shrubland in presence of native forest, and crops (Barros and 

Pereira 2014). On the other hand, across time, rapid installment of forest/plantations patches 

increases landscape homogeneity (dominance by one land use) which could change fuel loading, 

which also increases fire vulnerability(Syphard et al. 2008).  

Second, transitions between forest/plantations and urban/burned areas significantly 

affected fire frequency. Most of the tree stands are located surroundings human settlements where 

the access and susceptibility to burn increase (Mikusiński et al. 2003, Díaz-Hormazábal and 

González 2016, Ubeda and Sarricolea 2016). In addition, one of the main causes of fire within the 

central zone of Chile is the burning of arson, which increases the vulnerability of accidental fires 

near surrounding vegetation (Pausas and Keeley 2014). Finally, transition between agriculture and 

forest/plantations also increase susceptibility to fire frequency change. This study found that 

increases in forest/plantations were associated to decreases in agriculture areas which suggest the 

probability if finding tree stands surrounded by agriculture land. Increases in tree stands proximity 

to agriculture areas increase probability of accidental fires because prescribed fires are used  as 

tool for vegetation clearing and grass regrowth in farmlands (Gill and Williams 1996). 

Furthermore, the Bio Bio region presented most of the transitions related to the increase in tree 
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stands as the result of the conversion of agriculture land and bare soil to forest-plantation areas 

that have an effect on the changes in the regional fire frequency. 

The results of this paper suggest that relative changes within specific landscape transitions 

and patch characteristics can have a significant effect on fire activity in sites with human-driven 

fire matrices. Similar patterns have been evaluated around the world where the integration between 

landscape dynamics and the urban-rural interface is key to understand fire activity (Cardille et al. 

2001, Syphard et al. 2006, 2008, Parisien and Moritz 2009). Despite differences on environmental 

characteristics within sites, regions in Spain (Moreno et al. 2011), and California(Radeloff et al. 

2005, Syphard et al. 2008) highlight the significance of landscape structure and variability to 

predict fire activity. Therefore, the understanding of key land use change, transition rate and patch 

characteristics to suggest improvement on fire management. As in this case study, specific active 

transitions related to increases in forest/plantations, reduction in agriculture and increases in 

urban/burned areas associated with specific transition rates change the local fire frequency activity.  

 Conclusions 

Despite the previous conceptions about the effect of climate on fire frequency, this study 

did not find a strong effect of this variable on fire frequency in Chile. This could be related to the 

strong impact of landscape dynamics in countries where the fire matrix is human-driven, whereas, 

in countries with natural-driven matrices, climate plays an important role as an ignition source. In 

addition, the climate could play an important role in Chile determining fire propagation and 

behavior, but not frequency. Furthermore, landscape descriptors prove to be relevant in 

understanding the fire frequency of the center zone of Chile. This could be used as an insight for 

current fire prediction systems improvement. Finally, both intensity and transition play an 
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important role on fire frequency were areas that meet the landscape criteria susceptible to fire 

described in this study should be considered as priority areas for management in terms of fire 

activities. 
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 Table 2.1 Accuracy assessment for the 2014 and 2017 LULC* classifications. Output-based on 

800 reference points equalized distributed between classes 

 

*LULC=Land use land cover  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Year Class Name Producers 

Accuracy (%) 

Users  

Accuracy (%) 

Overall 

Accuracy and 

Kappa Statistics 

2014 Forest/Plantation 84.26 91.00 Overall= 86.50 

Kappa=0.80 Bareland 87.00 97.00 

Agriculture 93.22 76.39 

Urban/Burned 76.74 58.93 

2017 Forest/Plantation 88.83 91.96  Overall= 88.78 

Kappa = 0.83 Bareland 88.32 94.50 

Agriculture 91.80 82.96 

Urban/Burned 80.70 70.77 
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Table 2.2 Change detection analysis comparing the land use persistence and rate of change 

between and within the Central Zone of Chile regions and land use classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Region 

Persistence 

(%) 

Change 

(%) 

Annual Change by Land Use (%) 

Forest/  

Plantation Bareland Agriculture 

Urban/    

Burned 

Maule 73.18 26.82 0.03 -0.53 -2.61 11.51 

Metropolitana de 

Santiago 73.15 26.85 1.1 1.82 -1.59 -10.95 

Libertador General 

Bernado O'Higgins 72.75 27.25 -0.51 -1.33 -0.09 15.71 

Valparaíso 77.96 22.04 5.14 1.63 1.12 -16.78 

Bio Bío 70.83 29.17 2.26 -0.4 -5.43 4.15 

Total 72.74 27.26 Change Rate per Year = 9.08% 
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Table 2.3 The proportion of land use change by region expressed as a percentage between 2014 

and 2017. Positive values relate to increases of the land use class and negative values relate to 

the class decreases between years 

 

 

 

 

 

 

 

 

  

Maule Forest/Plantations Bareland Agriculture Urban/Burned 

Total 2014 36.29 43.18 15.18 5.35 

Total 2017 36.31 42.50 13.99 7.20 

Change (17-14) 0.08 -1.59 -7.84 34.52 

Annual Change 0.03 -0.53 -2.61 11.51 

Metropolitana de Santiago Forest/Plantations Bareland Agriculture Urban/Burned 

Total 2014 11.46 68.75 8.43 11.37 

Total 2017 11.83 72.50 8.03 7.63 

Change (17-14) 3.290 5.469 -4.761 -32.853 

Annual Change 1.10 1.82 -1.59 -10.95 

General Bernardo O'Higgins Forest/Plantations Bareland Agriculture Urban/Burned 

Total 2014 25.01 56.54 12.79 5.65 

Total 2017 24.63 54.29 12.76 8.32 

Change (17-14) -1.520 -3.981 -0.256 47.127 

Annual Change -0.51 -1.33 -0.09 15.71 

Valparaíso Forest/Plantations Bareland Agriculture Urban/Burned 

Total 2014 8.98 75.40 5.21 10.41 

Total 2017 10.36 79.08 5.39 5.17 

Change (17-14) 15.423 4.879 3.363 -50.335 

Annual Change 5.14 1.63 1.12 -16.78 

Bio Bío Forest/Plantations Bareland Agriculture Urban/Burned 

Total 2014 49.98 27.22 20.56 2.24 

Total 2017 53.37 26.90 17.21 2.52 

Change (17-14) 6.790 -1.194 -16.280 12.452 

Annual Change 2.26 -0.40 -5.43 4.15 
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Table 2.4 Best-fitted model of the relationship between of the patch characteristics between land 

uses and fire frequency estimated as fire counts per comuna. Acronyms of the variables are 

described as followed: Shannon Evenness Index (SHEI), number of forest patches (NPF), 

number of urban/burned patches (NPUB), density of forest patches (PDF), density of bareland 

patches (PDBL), density of urban/burned patches (PDUB), and mean patch area of forest (PAF). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Variables  Estimate Std. Error T value Pr (>|t|) 

SHEI 1.460 0.852 1.714 0.088 

NPF 0.000 0.000 5.628 <0.01 

NPUB -0.000 0.000 -2.451 0.015 

PDF -0.064 0.028 -2.261 0.024 

PDBL -0.074 0.034 -2.177 0.032 

PDUB -0.033 0.011 -3.040 0.002 

PAF 0.053 0.002 2.638 0.009 

Fire Frequency Model: F 4,189= 29.41, R2 = 0.507, P<0.01  
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Table 2.5 Fire frequency changes as a function of the land use change by class. Acronyms of the 

variables stand for CF= Change in forest/plantation, CBL=Change in Bareland, CAG=Change in 

agriculture, CUB=Change in Urban/Burned area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Variables Estimate Std. Error T value Pr (>|t|) 

CF 3.196 0.957 3.337 0.001 

CBL -0.236 1.440 -0.164 0.869 

CAG -3.358 0.920 -3.647 <0.001 

CUB 2.939 0.452 6.490 <0.001 

Fire Frequency Change Model: F 4,189= 20.79, R2 = 0.290, P<0.01 
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Figure 2.1 Change detection analysis for the central zone of Chile. A) LULC classification for 

2014, B) LULC classification for 2017, and C) Change/No Change comparison between 2014-

2017. 
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Figure 2.2 Classification of the landscape change between 2014-2017 divided as exchange, 

quantity, and shift.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Analysis of the annual change in area and intensity between land use categories. The horizontal bars extended to the left of the zero 

represent the annual change area expressed as hectares lost and gain. The horizontal bars extended to the right of the zero represent the annual 

change intensity as a percentage. Stationary between categories is defined using a uniform intensity percentage (UIP) (pointed line) in the 

annual intensity change. The classes which intensity change is lower than the UIP are considered dormant categories (stationary) and the 

classes which values are higher than the UIP are considered active categories (non-stationary). 
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Figure 2.4 Analysis of gain area and intensity between categories. The bars extended to the left of 

the zero represent the annual transition area (ha) by category. The bars extended to the right of the 

zero represent the annual transition intensity (%) by category. Each transition is evaluated TO 

(class name listed in the upper left side of each plot considered as “land receiver”) and FROM 

(class names listed inside the plot considered as “land donors”) for each category.  This process 

allows identifying specific land use shifts between categories. In addition, the intensity change is 

classified into two types: “avoid” and “targeted” using as a threshold a uniform intensity 

percentage (UIP) or visualize as the pointed line in the figure.  The classes which intensity change 

is lower than the UIP are considered avoided to donate land to the receiver class, and classes with 

higher transition intensity than the UIP are considered targeted to shift towards the receiver class. 
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Figure 2.5 Analysis of loss area and intensity between categories. The bars extended to the left 

of the zero represent the annual transition area (ha) by category. The bars extended to the right 

of the zero represent the annual transition intensity (%) by category. Each transition is evaluated 

FROM (class name listed in the upper left side of each plot considered as “land donor”) and TO 

(class names listed inside the plot considered as “land receivers”) for each category.  This process 

allows identifying specific land use shifts between categories. In addition, the intensity change 

is classified into two types: “avoid” and “targeted” using as a threshold a uniform intensity 

percentage (UIP) or visualize as the pointed line in the figure.  The classes which intensity change 

is lower than the UIP are considered avoided to receive land from the donor class, and classes 

with higher transition intensity than the UIP are considered targeted to receive land from the 

donor class. 
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Figure 2.6. Fire frequency changes between 2014-2017 as a function of the land use transition between 

regions located in the central zone of Chile. Land use transition names stand for AG=Agriculture, 

BL=Bareland, F=Forest/Plantations, and UB=Urban/Burned. 
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 INTEGRATION OF SOCIO-ECONOMIC AND 

LANDSCAPE VARIABLES IN FIRE FREQUENCY PREDICTIONS 

 Abstract 

Anthropogenic changes have affected the spatial and temporal distribution of fire activity 

worldwide. The Mediterranean ecosystems are the ones with the highest degradation due to the 

fire variability induced by population development.  However, despite the high impact of the 

human component in human-driven fire regimes, most of the current fire prediction systems (FPS) 

do not account for them. Furthermore, the accuracy of the predictions might be reduced within 

regions dominated by human-driven fire matrices and continuous spatial variations of fire 

distribution. The aim of this study was to select and integrate socioeconomic descriptors into a fire 

prediction system while accounting for spatial distribution changes, selection of variables and 

prediction’s accuracy. Spatial analysis tools were used to understand spatial distribution patterns 

of fire frequency. Furthermore, a combination of regression models were use to select the most 

relevant human variables affecting fire frequency change. Finally, a zero-inflated model was used 

to simulate fire frequency predictions compared against observing fire frequency and a climate 

model within the Mediterranean ecosystem of Chile. The fire frequency increases were 

significantly affected by changes in socioeconomic and landscape drivers. Changes in poverty, 

roads, and education level combine with highly fragmented forest explained fifty percent of the 

variance in fire frequency. Furthermore, the results highlight a change in the spatial distribution of 

the fire activity clustering from the center to the southern regions in years with the highest fire 

frequencies. The accuracy of fire prediction models is highly dependent on internal regional 

dynamics related to socio-economic, landscape and climate differences.  Fire frequency 

predictions integrating socioeconomic and landscape had a higher overall agreement when 
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compared to the observed fire frequency in regions located towards the south. On the other hand, 

in northern regions, climate models had a higher accuracy. Both models had low accuracy when 

predicting extreme events. As consequence, changes in fire spatial distribution correlated with 

extreme fire frequencies might be mispredicted with the current systems.  

 Introduction 

 Worldwide fire condition  

The causes driving fire activity worldwide have changed from climate to human-climate 

interactions (Pechony and Shindell 2010). Fire activity reconstructions from the last two 

millennials have estimated that prior 1870, fire activity was driven by climate change. After the 

industrial revolution, unprecedented changes in fire regimes around the world have been driven by 

anthropogenic causes (Marlon et al. 2008). Furthermore, fire simulations predict a 5-35% increase 

in fire activity for the following decades associated with population growth patterns, socio-

economic development and greenhouse gas emissions (Pechony and Shindell 2010).  

The social interactions have an effect on the natural cycles and change the landscape shape 

affecting the fire regimes (Castro et al. 1998). About 90% of the fire events registered worldwide 

are related directly or indirectly to human activities (Chuvieco 2003, Jolly et al. 2015). The 

increasing number of uncontrolled fire events related to human ignitions has exceeded the capacity 

of the current fire prediction and management systems to prevent and assess the fire damage 

(Bowman et al. 2009). Future projections pointing at shifting fire regimes (Pechony and Shindell 

2010), increase the uncertainty of the current fire policies effectiveness and raise concerns over 

the efficiency of the current systems to accurately predict, prevent and monitor fire variability 

(Watson et al. 2005, Chuvieco et al. 2010). 
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 Fire Assessment 

Effective fire assessment involves the understanding of fire variability, vulnerability, and 

risk given a time and spatial scale (Chuvieco et al. 2010). Fire risk systems (FRS) are used as tools 

to predict fire initiation that rely on meteorological outputs and fuel characteristics (Chuvieco et 

al. 2010, 2014). FRS is used to determine planning, and monitoring activities to establish when 

and where fires have a higher probability of ignition (Chuvieco et al. 2014). Fire frequency and 

intensity are two important concepts for fire risk assessment. Fire intensity is determined by the 

previous condition of the vegetation and is commonly used in spatial analyses to prioritize 

management areas post-fire (Morgan et al. 2014). Although fire intensity is a key component to 

understand fire behavior, fire frequency is important for understanding fire ignition (fire initiation) 

(Chuvieco 2003). Both components in combination with spatial variability, severity, and 

seasonality determine a fire regime (Bowman et al. 2009).  Fire regimes are also affected by the 

hazard risk or a number of flammable sources accumulated and second, the fire ignition 

vulnerability, which is a descriptor of a site susceptibility to burn based on human resources 

(Castro et al. 1998). Effective allocation of fire resources relies on the understanding of fire 

regimes, hazard, and vulnerability. In addition,  the sensitivity of the FRS to detect the interaction 

between the vulnerability and hazard components is dependent upon scale (Perera et al. 2004) and 

the understanding of how the spatial and temporal distribution is changing at a local scale (Pechony 

and Shindell 2010).   

The estimation of the fire risk involves the integration of variables into indexes. All indices 

used vary with the time and spatial scales selected, predictors and procedures used to develop the 

indices (Perera et al. 2004). A detailed comparison between the methods is listed in Table 1.1 

Chapter 1. Different FRS have been used in different countries and have been modified by 

changing time and spatial scales (Chuvieco 2003, Perera et al. 2004, Chuvieco et al. 2014). 
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However, despite continuous updating and improvement of the methods, there still exists 

limitations in assessing shifting of fire regimes and spatial distributions (Chuvieco 2003). The 

implementations of both fire spatial distribution changes and human-climate interactions are key 

to effectively predict fire activity (Chuvieco et al. 2010). One of the major concerns regarding the 

efficiency of the current FPS is the limitation of including both components. The integrated fire 

risk assessment should consider the danger and vulnerability variables to accurately predict fire 

risk (Chuvieco et al. 2014). Fire danger, as explained before, contemplates the ignition (cause) and 

propagation (fuel characteristics). On the other hand, fire vulnerability is related the socio-

economic value of a given location (Chuvieco 2003, Chuvieco et al. 2014). Most of the current 

fire prediction systems contemplate only the fire danger aspect focusing on propagation and 

overlooking the ignition and vulnerability components related to human-related characteristics. 

 Mediterranean ecosystems vulnerability 

At a global or local scale, fire activity is driven by a series of social, landscape, and climate 

interactions (Hantson et al. 2016). Historically, several countries have experienced fire frequency 

fluctuations outside of the average fire intervals (Hantson et al. 2016). The patterns related to those 

fluctuations are linked to climate and atmospheric conditions but mostly related to political, 

economic, and demographic dynamics (Chuvieco 2003). Within Mediterranean ecosystems, fire 

temporal and spatial distribution have been associated with increases in human population 

(Syphard et al. 2009). Historically, these regions have been targeted for human development due 

to the suitable locations and environmental conditions. Mediterranean ecosystems are concentrated 

within five coastal regions of the world occupying 2% of the Earth surface (Cox and Underwood 

2011). Over 250 million people live in the region where five important cities are located (i.e. Rome, 

Santiago de Chile, Cape Town, Los Angeles and Perth) (Cox and Underwood 2011). Specifically, 
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the Mediterranean region of Chile has the highest potential for biodiversity conservation (75%) 

based on the natural vegetation without direct anthropogenic impact (i.e. agriculture, plantation, 

grasslands)(Cox and Underwood 2011). Unfortunately, repeated burns have affected the 

vegetation where more than half of the native forest has been lost as result of human-induced fires 

(Ubeda and Sarricolea 2016). Few is known on how the spatial distribution of fire is changing in 

these ecosystem due to the human activity and what specific anthropogenic characteristics are 

having the highest impacts of fire frequency changes.  

 Anthropogenic characteristics 

 Most of the current studies of fire models have emphasized fire behavior but little is known 

about the connectivity between fire and human interactions. Furthermore, the implementation of 

the connectivity within current FRS is poorly understood (Cardille et al. 2001, Chuvieco 2003, 

Syphard et al. 2008). The multidimensionality of the human component expressed as economic, 

demographic or landscape patterns increases the complexity of the inclusion of the human 

dimension within FRS. It is relevant to delineate the key characteristics affecting fire patterns and 

the spatial and temporal influence of those descriptors in fire regimes (Cardille et al. 2001, Peña-

fernández and Valenzuela-palma 2004, Syphard et al. 2008, Pérez-Vermin, G., Márquez-Linares, 

M.A., Cortes-Ortiz, A., Salmerón-Macias 2012). Several studies have analyzed the effect of 

multiple social variables over fire parameters (Xavier-Viegas 1999, Chuvieco 2003, Pérez-Vermin, 

G., Márquez-Linares, M.A., Cortes-Ortiz, A., Salmerón-Macias 2012, Bedia et al. 2014, Chuvieco 

et al. 2014), but the large number of variables considered makes it difficult to compare the results 

across studies. On the other hand, not including the human component could affect the accuracy 

of the current systems in countries where the fire matrix is mainly driven by human-caused events.  

Moreover, the fire prediction models have less applicability in the field when incorporating larger 
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numbers of variables. Consequently, integration of social variables for fire prediction requires 

prioritization of variable selection in order to efficiently explain the human interactions with fire.   

  

The aim of this study was to evaluate the integration of multiple socio-economic 

descriptors into a fire prediction system while accounting for spatial distribution changes, selection 

of variables and prediction accuracy focusing on Mediterranean ecosystems. It is assumed that the 

applicability of this study is focused on areas with human-driven fire matrices.  The specific 

questions are: where should the FRS focus the resources based on the historical fire spatial 

distribution patterns?  What are the most significant socio-economic characteristics affecting fire 

frequency and how they are connected to landscape variability? Finally, how does the inclusion of 

those descriptors improve fire frequency prediction systems related to current approaches?   

 Materials and Methods 

 Study area 

The analysis was conducted in the central zone of Chile, which was selected based on its 

socio-economic and demographic characteristics (INE 2017). The area has five administrative 

regions where 73% of the country’s population is located (Table 3.1). The smallest regional 

administrative division, the comuna, was considered as a sample unit for this study, which included 

194 comunas geographically located inside the study area. The study area is located between 

latitudes 32° and 38°S and longitude 70° and 73°. The central zone of Chile has a population of 

13,475,550 and 115,551.1 km2 of land area. The area has fluctuations in yearly precipitation 

oscillating between 100-700 mm (Falvey and Garreaud 2007). The elevation within the area varies 

between zero masl in the coastal areas to 5000 masl in the Andes Mountains. The area has 

predominantly a Mediterranean climate with drastic vegetation transitions between the coast and 
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the steepest areas whereas aspect changes have an effect on vegetation structure and composition 

(Armesto and Martίnez 1978). The landscape is heterogeneous across the regions where VII 

(Maule) has the highest cultivated land (Donoso et al. 1999). The predominant economic activities 

are the production of agriculture, wine yards, fruits, and timber plantations (Table 3.2) with annual 

increases in agriculture and timber plantation areas (1.1% yearly) (Schulz et al. 2010). 

 Data sources and processing 

The selection of socio-economic variables was based on previous study results that 

highlight the relevance of those social characteristics over the area (Chuvieco 2003, Carmona et 

al. 2012, Andersson et al. 2016). The socioeconomic variable characteristics and sources are 

detailed in Table 3.3. The variables were divided into three groups based on the data characteristics 

(Table 3.3). The population and poverty data were extracted from the 2013 National Census. The 

demographic data presented a high correlation between variables within sites (0.80). To reduce the 

overestimation of this variable, the Poverty (%) was created representing the percentage of people 

in poverty in relation to the total population of a site. On the other hand, the access data was 

available in a shapefile format, so the variables within this group were calculated using the spatial 

analysis tools of ArcGIS PRO 2.0.  

The landscape characteristics, land use, and weather data were extracted from Chapter 2. 

For each of the land uses (Forest/Plantations, Bareland, Agriculture, and Urban/Burned) based on 

(Schulz et al. 2010) considered in this study, the landscape characteristics (Pijanowski and 

Robinson 2011, Dezhkam et al. 2016) were quantified following Case study 1 methodologies 

(Table 3.4 and 3.5). Weather station data between August 1 and June 30 per year was available at 

the Climate Explorer tool of Chile. Precipitation expressed as daily average (mm) and the average 

daily temperature (°C) of the explorer tool (Centro del Ciencia del Clima y Resiliencia 2017) were 
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used to estimate the weather variables for the comunas where no weather stations were found. The 

data interpolation was accomplished using a co kriging interpolation method using as covariate 

the1 km resolution elevation data (Global 30 Arc-Second Elevation GTOPO30a) (USGS n.d.).  

The fire frequency records (2000-2017) were available at the Fire Information for Resource 

Management System (FIRMS) of NASA.  For the studied time interval, the fire data was selected 

based on the fire frequency annual curve presented by the forest corporation of Chile (CONAF 

2016), where fire events registered between August 1 and June 30 were selected. The data was 

available as point features. For each site, the total fire frequency was calculated using the spatial 

analysis tools of ArcGIS PRO 2.0. Finally, the climate data was downloaded from the climate 

explorer database of Chile. The two variables used to create a simulation for this model were 

average temperature (C) and accumulated precipitation (mm) interpolated using kriging methods 

available in Chapter 2.  

 Fire Frequency Analysis 

The historic fire trends were analyzed for the interval between 2000 and 2014. First, the 

significant fire location across space was analyzed through an Optimized Hot Spot Analysis 

(OHSA). Values higher > 90% confidence interval were considered significant hot and cold spots 

cluster across space. The significant fire locations across time were evaluated using an Emerging 

Hot Spot Analysis (EHSA) based on a space-time cube created with the 15 years data considered 

for the OHSA, using each year as a bin step for the analysis. Both analyses were performed using 

ArcGIS PRO 2.0.   
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 Integration of Variables  

The relationship of variables was analyzed using multiple regression models.  First, the 

spatial autocorrelation of the sample units was evaluated and accounted for using a weighted 

matrix based evaluated through a Moran’s test following (Ward and Gleditsch 2007, Bivand et al. 

2008). In addition, co-linearity between the variables was analyzed and transformation (log +1) 

was done for required variables. The stepwise model comparison was used in order to select the 

best-fitted model. The two relationships that were studied were the socio-economic to fire 

frequency (fire counts) variables and, the socio-economic to landscape variables (SHEI). The best-

fitted model selection was based on the lowest AIC value of the models. Finally, a global model 

was created considering the effect of socio-economic and landscape variables over the fire 

frequency. The most significant variables of the best-fitted models were used as based predictors 

for constructing the fire frequency prediction model.  

 Model Integration 

The 14 significant predictors were used in combination with the climate data to create two 

models: LE-Social or socio-economic landscape model and a climate model. The variables were 

group analyzed through a principal components analysis (PCA) to account for correlation between 

the variables. The PCA output did not present any significant trends in the axis so the PCs were 

not used. Then, a random subsample of half of the data (97 sample units) was taken in order to 

create and evaluate the model. The other half of the sites were used later on in the model validation 

process.   

As the fire frequency data has a significant amount of zeros, a Zero-Inflated Negative 

Binomial model (ZIP-negbin) was considered. The ZIP model was divided into two sections, a 

Poisson count model and a logit model.  The zero fire frequencies are modeled independently from 
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the remaining values of the response variable through a logit model (Hanks et al. 2011) this is used 

for the Poisson count section of the model. First, the fire frequency was transformed in a binary 

variable (zero=fire absence, 1=fire presence) and analyzed through binomial GLM, incorporating 

one variable at a time to select the predictors that are more associated with the zero fire frequency. 

After, the models were compared based on the AIC values, selecting the model with lower AIC 

and less number of variables. Then, the ZIP model was created using the previously selected 

predictors for the log it section of the ZIP model. On the Logit model, the predictors were added 

one by one to select the best model with the fewest amount of variables. Finally, the model with 

the lowest AIC was selected after a stepwise comparison. The same procedure was follow for the 

climate model. 

 Model validation 

The second subsample of the data (97 sites) was used to evaluate the model predictions. 

Using the predict function of the software, based on the setting “Response”, the observed fire 

frequency for the sites was compared to the predicted values of the model. The observed and the 

predicted fire frequencies were evaluated through quantitative and qualitative analysis. First, the 

quantitative differences were evaluated through a goodness of fit value based on the Poisson 

residuals of both models. The qualitative differences were evaluated through a Matrix Union 

analysis using overall agreement percentage (Shao et al. 1995, Wynne and Jenness 2005). 

 Results 

The spatial distribution of the fire frequency in Chile between 2000-2014 is clustered in 

specific locations within the country (Figure 3.1). The hot spots are concentrated in the central 

zone of Chile (>95% confidence) and mainly in the regions Valparaíso, General Bernardo 
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O’Higgins, Metropolitana de Santiago, Maule, and Bio Bío. Throughout the time interval analyzed, 

there were yearly differences on the fire frequency patterns, whereas, in the years where the high 

frequency was recorded (99% confidence), there was a clustering tendency of the fire activity 

moving towards the southern regions, the Araucanía (Figure A3). On the other hand, in years with 

intermediate or low fire activity recorded (<95% confidence), the hot spots were clustered within 

central and northern regions.  

The EHSA output classifies the center zone of Chile as an oscillating hotspot between 

2000-2014. Oscillating hotspots are areas that have had significant fire activity clustering (99% 

confidence) > 70% and < 90% on the time steps analyzed. Therefore, the regions located in the 

central zone of Chile are the focus areas that require a deeper fire monitoring. On the other hand, 

areas located north or south of the central zone of Chile were classified as sporadic, intensifying 

or persistent cold spots. Those categories mean that cold spots were found between 70-90% of the 

time steps analyzed within those areas so no significant fire activity occurred there between 2000-

2014. For those regions, there is no necessity to increase the grain of resolution for fire analysis. 

Furthermore, the OHSA output highlights that most of the significant hotspots are located along 

the coastlines of the Bio Bío and Maule regions. The yearly outputs of the OHSA highlight three-

time steps where the fire spatial distribution shifted (2000-2002, 2008-2009, 2011) but overall, 

there is a significant hotspot pattern across the remaining time steps.  Finally, no areas showed 

persistent hotspots (significant fire activity in >90% of the time steps analyzed) between 2000-

2014 which explains possible fire frequency variations across time.  

Fire frequency increases in the Central zone of Chile are significantly affected by changes 

in socio-economic and landscape drivers. Half of the fire frequency variation is explained by both 

groups of predictors  (Table A6). The overall and individual regression analysis between the fire 



77 

 

frequency changes and the socio-economic and landscape descriptors are presented in Figure 3.2. 

The best-fitted model (Table A6) that describes the overall relationship between the groups of 

variables explained 56% of the variation in the fire frequency (F11, 182 = 23.28, P<0.01). Within 

this model, sites with higher poverty level (percentage of the population in poverty), road access, 

education, and forested areas (number and size of the patches) were likely to have higher fire 

frequencies. In addition, sites with reduced bareland (empty-land) area and low infrastructure 

development were also likely to present higher fire frequencies. Therefore, sites with opposite 

socio-economic and landscape characteristics are more likely to present lower fire activity. 

Individual regression analyses between the groups of variables (Landscape Homogeneity-

Socio-economic, Socio-economic-Fire Frequency, and Landscape Homogeneity-Fire Frequency) 

are available in Table A7, Table A8 and Chapter 2 Table 2.4. First, the relationship between 

landscape homogeneity and socio-economic drivers is available at Table A7. Socio-economic 

drivers significantly affect landscape homogeneity levels (dominated by one land use) (F5, 

188=21.63, P<0.01, Adj. R2=0.34). Within this relationship, increases in poverty levels and road 

access within sites significantly increases landscape heterogeneity values (SHEI values close to 

1). In addition, reduction in overall site expenses combined with low rates of education registration 

is related to increases in landscape heterogeneity. Therefore, sites with the opposite characteristics, 

such as reduced poverty levels, roads access and higher income and education levels are more 

likely to present more homogeneous landscapes (SHEI values close to 0). Furthermore, the 

relationship between landscape homogeneity and socio-economic descriptors is bidirectional (F1, 

192=65.62, R2=0.2508, P<0.001), where sites poverty level is significantly affected by changes in 

landscape homogeneity.  
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Second, the relationship between social drivers and fire frequency is presented in Table 

A8. Socio-economic drivers have a significant effect on the fire frequency in the central zone of 

Chile (F3, 190=42.03, Adj. R2=0.389, P<0.01). Within this analysis, increases in poverty and road 

access in conjunction with reduced site expenses are associated with higher fire frequencies. 

Therefore, reduced poverty level and lower road access in conjunction with higher site expenses 

are linked to lower fire frequencies. Is important to highlight that poverty levels, road access, and 

expenses level affect both, directly and indirectly, landscape homogeneity and fire frequency 

simultaneously. Furthermore, the portion of the variance explained by the landscape descriptor on 

the fire frequency changes is available in table 2.4 of Chapter 2. In summary, the individual 

significant effect of the landscape over fire frequency increase is driven by the reduction of 

bareland patch area and density combined with increases in forest patch area, density and shape 

values. Finally, the variance partitioning between the variable groups shows that landscape 

characteristics have a direct effect on fire frequency (50%) than the direct effect associated to the 

socio-economic descriptors. Moreover, the effect of the socio-economic descriptors on the fire 

frequency is larger when accounting for both the direct and indirect relationship of the socio-

economic variables between both fire frequency (38%) and landscape homogeneity changes 

(34%). 

Improvements of the fire frequency predictions on the Central Zone of Chile at a regional 

scale are the result of the integration between the LE Social (Landscape and socio-economic 

variables) and the climate models (Figure 3.3). The output of the best-fitted models for both, the 

LE-Social and the climate models are available on the Table A9 and Table A10. When comparing 

both prediction models, the LE-social model had a better goodness of fit (goodness of fit =1.52, 

AIC=1328.8) than the climate model (goodness of fit=1.73, AIC=1440.56). The overall residuals 
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distribution shows that the accuracy of both models is reduced when predicting extreme values. 

Therefore, accuracy increases when intermediate fire frequency values are predicted. On the other 

hand, when comparing the observed fire frequency with both, LE-Social and Climate models 

output, the climate model had a higher overall agreement (42.2%) than the LE-Social model 

(35.5%) (Table A11). However, at a regional scale, differences in the overall agreement between 

observed and predicted fire frequency by each model were found (Figure 3.3).   

The results showed that regional differences in landscape, socio-economic and climate 

characteristics influence the model's accuracy and therefore the relevance of the selection for 

specific fire frequency prediction models in each region. The LE-Social model had a higher overall 

agreement compared to the observed fire frequency in regions located towards the southern portion 

of the central zone of Chile. Those regions are Maule and Bio Bío with 39.05% and 35.30% of 

overall agreement respectively. In contrast with the northern regions where the climate model had 

a higher overall agreement when comparing to the LE Social model. Those regions are Valparaíso, 

Metropolina de Santiago and General Bernardo O’Higgins with 56.09%, 69.73%, and 48.20% 

respectively.    

 Discussion 

 Fire Frequency: Spatial Distribution 

The fire frequency activity in Chile is clustered within the Central Zone of the country with 

intermittent year oscillations towards the southern regions. Similar fire clustering trends have been 

found in previous time intervals (Castillo, Garfias, Julio, & Gonzalez, 2012; Peña-Fernández & 

Valenzuela-Palma, 2004; Ubeda & Sarricolea, 2016) that support the significance of the central 

zone of Chile as a predominant fire region. Historically, Chile’s fire frequency have shown an 
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upward trend between 1984-2016 (Díaz-Hormazábal & González, 2016; Peña-Fernández & 

Valenzuela-Palma, 2004) but previous records highlight increases since the 1970’s (CONAF 2014). 

The Valparaiso, General Bernardo O’Higgins, Metropolitana de Santiago, Maule and Bio Bío  

were defined as the regions where fire activity was concentrated (Ubeda and Sarricolea 2016). 

However, recently there is been an observed reduction in the fire frequency for the Valparaiso and 

General Bernardo O'Higgins regions (Ubeda and Sarricolea 2016).  The results of the OHSA in 

combination with previous evidence (Peña-fernández and Valenzuela-palma 2004, Aguayo et al. 

2009, Castillo et al. 2012, Heilmayr et al. 2016, Ubeda and Sarricolea 2016) suggest a possible 

shift in focus on the spatial distribution of fire incidence on the Maule, Bio Bío, and Araucanía. 

As fire frequency is negatively correlated with fire intensity, simulations between 1976-2016 

found that the regions in the central zone of Chile that had the lowest fire frequencies (Valparaiso 

and GBOH) are actually those accounting for the largest fires (Castillo et al. 2012). Therefore, 

further management approaches should include both, regions with higher frequency and higher 

fire intensity.  

Similar to Chile’s clustering patterns, other regions in the world have been shown to have 

heterogeneity on the fire distributions and shifts in the spatial distribution of fire (Brown et al. 

1999, Moreno 2000, Taylor and Skinner 2003, Syphard et al. 2008). The understanding of the 

clustering dynamics and spatial transitions of fire is relevant to delimitate the spatial resolution 

and to capture fire variability within fire prediction systems (Mladenoff and Baker 1999). Current 

fire prediction systems are designed to analyze the overall fire activity in larger areas within a 

singular-sized grain at a time, where within clustered areas internal fire dynamics might be missed. 

Despite the deep understanding of scale relationships, the complexity of the integration of 

simultaneous scale systems is limited (Parisien and Moritz 2009). This result suggests the 
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integration of fire prediction systems that combine sharp and coarse prediction resolutions 

simultaneously in order to capture hotspots and cold spots fire dynamics and to increase efficiency 

in fire resources allocation. Furthermore, the time scale is relevant when observing intermittent 

fire dynamics within specific regions, as in Chile’s case study where oscillating regions should be 

accounted for fire resource investing. 

 Socio-economic, landscape and fire connectivity 

More than 50% of the change in fire frequency in the central zone of Chile is explained by 

socio-economic and landscape factors. The predominant characteristics driving the change are 

related to the poverty level, transportation access, education and landscape heterogeneity increases. 

The connection between the three components (socio-economic, landscape and fire frequency) is 

complex. This study demonstrates the interconnectivity between them and highlights interspecific 

dynamics occurring with Chile’s scenario. However, these connections are observed around the 

world in countries with human-driven fire matrices and changing production dynamics (Cardille 

and Ventura 2001, Cardille et al. 2001, Syphard et al. 2006). As the reason that the variables are 

connected to one another is possibly case-specific, the overall trend observed in different scenarios 

reinforces the connectivity between them outside the case-specific boundaries.  

Multiple studies have analyzed the positive correlation between population and fire 

frequency (Moreno 2000, Cardille and Ventura 2001, Cardille et al. 2001). Moreover, internal 

local characteristics of population growth (as poverty and education) and expansion (as access) 

can determine fire variability and spatial distribution (Syphard et al. 2006, Parisien and Moritz 

2009). In Chile, in the last decades,  socio-economic dynamics have been driven by a production 

transition from an agriculture to a tree plantation-based economy (Castillo et al. 2012, Heilmayr 

et al. 2016, Ubeda and Sarricolea 2016). Despite the national economic benefit incentivized by the 
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plantations, at a local level, several studies have reported negative social and ecological effects 

correlated to them (Chuvieco 2003, Huber and Iroumé 2006, Andersson et al. 2016, Ubeda and 

Sarricolea 2016). From a fire perspective, CONAF has reported Maule and Bio Bio as the regions 

with the highest proportion of fires initiated at plantations areas compared to the native forest 

(CONAF 2016). This paper highlights both regions as those with the highest changes in fire 

frequency, with most of the change within landscape transitions related to forest/plantation. More 

than 80% of the fire events result from accidental or intentional causes (CONAF 2016). Within 

Bio Bio region alone, more than 60% of the fires are categorized as intentional. These causes could 

be related to discrepancies between indigenous communities (Mapuche) located within this areas 

and the social discontent expressed by them as result of the establishment of plantations 

(Andersson et al. 2016, Ubeda and Sarricolea 2016).  Within this context, the interconnection 

between economic shifts, landscape transition and social impacts at a regional level is relevant to 

understanding changes in fire activity. Previous studies relate increases in poverty levels linked to 

farmers displacement as consequence of the replacement of agriculture lands into plantation areas 

(Peña-fernández and Valenzuela-palma 2004, Castillo et al. 2012). Furthermore, this study found 

that increases in heterogeneity towards forest/plantations and specific patch characteristics are 

highly related to fire frequency changes. On the other hand, further characteristics related to the 

plantations by themselves can increase the area vulnerability to fire (i.e., fuel loading changes, 

species flammability, and harvesting techniques) (Ubeda and Sarricolea 2016). In this context, the 

combination of all the factors in contrast with urban-rural interface expansion (Moreno 2000) may 

increase fire vulnerability in Chile. However, case-specific scenarios in other regions in Spain 

(Moreno 2000), California (Syphard et al. 2006), and the Midwest US (Cardille et al. 2001) have 

assessed the three components over fire dynamics. The evidence suggests that the relevance of the 
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inclusion of both socio-economic and landscape drivers within fire predictions systems is key to 

increase accuracy on predictions.  

 Fire frequency predictions  

 Results from the study highlight the strong impact of landscape and socioeconomic 

variables over the fire frequency predictions. However, the accuracy of the fire predictions using 

climate and anthropogenic descriptors is regional-dependent. In regions located towards the south, 

Landscape-Social model predictions have higher accuracy whereas, in northern regions, climate 

models seem to be more effective. Therefore, the predictions differences between the models 

highlight the relevance of both local dynamics and regional scale in areas with significant fire 

clusters. This results contrast with the current fire prediction system that uses the same set of 

descriptors to generate predictions for the entire country. Furthermore, in combination with coarser 

resolutions, this system might not capture the regional fire variability, therefore could mispredict 

the fire activity within those areas. This suggests that the possible integration between both, 

climate-based and anthropogenic-based models, could give a more effective and adapted 

prediction system.  

 Currently, the fire prediction system of Chile, as well as other systems in the world, 

focuses on climate-based descriptors to make national fire predictions (Chuvieco 2003). 

Furthermore, nowadays most of the research has focused on the effect of climate in fire activity 

(Pausas and Keeley 2014), and how climate affects the southern regions of Chile (Moreno 2000, 

Ubeda and Sarricolea 2016). However, the results of this study highlight those climate-based 

models might not be the most suitable prediction systems within fire-clustered regions (southern 

regions of the country). Therefore, these results integrate the idea that internal regional dynamics 

related to landscape and socio-economic interactions at a local level are relevant to determine fire 
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prediction models accuracy, specifically in areas where most of the fire is occurring. Charcoal 

studies have described that historically, climate conditions used to drive the fire ignition and the 

fire spread around 13000-12200 14C yr B.P in Chile (Moreno 2000). However, this study’s results 

suggest that fire ignition might no longer be driven by climate conditions. We suggest that climate 

interacting with landscape transitions (Chapter 2), and the socio-economic drivers that have shaped 

the landscape are the main forces for fire variability within this region.  

 Conclusions 

This study proposed three main insights to improve fire frequency predictions and 

management in countries where the fire frequency variations are driven by human activities as 

Chile.  First, fire-clustering patterns suggest the relevance of integrating multiple resolution 

approaches to focus fire resources and greater spatial resolution detail in areas where significant 

hotspots are located. Second, the fire frequency variations are significantly affected directly or 

indirectly by changes in socioeconomic characteristics and landscape transitions. Finally, the 

accuracy of fire prediction models is highly dependent on internal regional dynamics related to 

socio-economic, landscape, climate differences but also temporal dynamics (year differences). 
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Table 3.1 Description of the population, area, and climate characteristics of the regions located 

within the central zone of Chile 

Region Population 

2017 

Population 

(%) 

Area (Km2) Climate 

Valparaiso 1,859,672 10.10 16,396.10 Temperate Mediterranean 

Metropolitana 7,482,635 40.72 15,403.20 Mediterranean 

LGBOH* 934,671 5.08 16,387.00  Temperate Mediterranean 

Maule 1,057,533 5.75  30,296.10 Temperate Mediterranean 

Bio Bio 2,141,039 11.65 37,068.70 Temperate humid and dry 
*GBOH=Libertador General Bernardo O’Higgins 
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Table 3.2 Regional production distribution between crops in the central zone of Chile (Ministerio 

de Agricultura, 2007) 

Region Regional Production (%)* Production 

Valparaíso 37.7 

34.2 

10.7 

Tree Plantations 

Fruit Plantations 

Forage Plants 

Metropolitana de Santiago 35.8 

17 

14.4 

10.7 

8.2 

Fruit Plantations 

Vegetables  

Forage Plants 

Cereals 

Vineyards  

Libertador General Bernardo 

O’Higgins 

38.8 

21.5 

15.6 

9.9 

Tree Plantations 

Fruit Plantations 

Cereals 

Vineyards 

Maule 94 Tree plantations, cereals, 

fruits, forage, vineyards 

Bio Bío 79 Tree Plantations 
*Percentage on the total production of the region 
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Table 3.3 Description of the databases used to estimate socio-economic descriptors 

Group Variable Acronyms Units Source 

Demographics Population Poverty (% 

of the 

population) 

# per site The National 

Statistics Institute 

of Chile 

Poverty # per site The National 

Statistics Institute 

of Chile 

Education Elementary 

School 

Registration  

Reg. B # students 

registered 

National System 

of Municipal 

Information 

Middle School 

Registration 

Reg. M # students 

registered 

National System 

of Municipal 

Information 

Economic Income Income % of site income 

in relation to 

total income 

National System 

of Municipal 

Information 

Expenses Expenses % of site 

expenses in 

relation to total 

expenses 

National System 

of Municipal 

Information 

Access Roads  Roads Total length 

(meters) 

Chilean Congress 

Library 

Railroads Railroads Total length 

(meters) 

Chilean Congress 

Library 
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Table 3.4 Description of the land use categories used for the unsupervised classification based on  

Schulz, Cayuela, Echeverria, Salas, & Rey Benayas, 2010 parameters 

Forest/Plantations Dense (>75%) canopy cover and timber plantations  

Bareland Exposed rock, and sand or dry riverbeds, dunes, cleared land and 

degraded areas.  

Agriculture Includes shrubland, grasslands and irrigated and non-irrigated 

agriculture, fruits, and  vineyards  

Urban/Burned Areas with domestic or industrial infrastructure and burned areas, both 

categorizes as a disturbance.  In addition, water and Ice represent a small 

fraction of this category (<10%), but based on the majority of data 

related to disturbance, the name of the category is based on Urban and 

Burned areas (>80% of category data) 
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Table 3.5 Description of the patch characteristics acronyms evaluated per land use 

(Forest/Plantations, Bareland, Agriculture, and Urban/Burned) in the Central Zone of Chile 

comunas based on parameters of Dezhkam et al., (2016) and Pijanowski & Robinson (2011) 

SHEI Shannon Evenness Index 

NP Number of patches  

PD The density of patches (number of patches per 100 ha) 

PA Mean patch area (m2) 

PShape Patch Shape 

LPI Large Patch Index 
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Figure 3.1 Emerging hot spot analysis output for the fire frequency events registered between 

2000-2014 in Chile. 
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Figure 3.2 Diagram of the connectivity between fire frequency, socioeconomic, and landscape 

variables. Values inside and outside the triangle represent the variance (R2) explained by 

individual (outside) and global (inside) regression models. The arrows represent the groups of 

variables involved in the individual regression analysis (socio-economic and fire frequency, 

socio-economic and landscape, and landscape and fire frequency) the variables within each group 

are listed next to the arrows. Variables that are listed within straight-line boundaries have a 

positive effect on the response variable (Exp. Increases in poverty produce an increase in fire 

frequency). On the other hand, variables listed in pointed line boundaries have a negative 

relationship with the response variable (exp. decreases in education produce increases in fire 

frequency).  
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Figure 3.3 Comparison between observed and predicted fire frequency models for the central zone of 

Chile. A) Observed fire frequency registered in the fire season between 2013-2014. Each of the tables 

surrounding A represent the regions located within the central zone of Chile. B) Output fire frequency 

prediction using the Socio-economic-Landscape model. C) Output fire frequency prediction using 

the climate model. Values located within the circles represent the overall agreement percentage 

between fire frequencies observed and models prediction for each region. 
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 SYNTHESIS OF RESULTS, IMPLICATIONS FOR FIRE 

PREDICTION SYSTEMS AND FUTURE RESEARCH 

RECOMMENDATIONS  

 Synthesis of Results  

Fire regime variability has been driven by climate changes in the last two millennials 

(Pechony & Shindell, 2010). However, charcoal reconstruction relates fire variations after the 

industrial revolution to the interaction between anthropogenic and climate activity (Bowman et al., 

2011; Pechony & Shindell, 2010). Despite the relevance of climate change in future fire 

projections, specific locations are likely to experience intensive fire events (Knorr, Arneth, & Jiang, 

2016) as a result of political, economic, landscape and demographic fluctuations (Bowman et al., 

2009; Castro & Chuvieco, 1998; Chuvieco, 2003; Hantson et al., 2016). Anthropogenic stressors 

can directly or indirectly affect fire regimes, as 90% of the fire ignitions registered worldwide are 

the result of human interactions with the landscape (Bowman et al., 2011; Chuvieco, 2003; Jolly 

et al., 2015; Marlon et al., 2008; Veblen, Kitzberger, & Donnegan, 2000). Anthropogenic 

interactions can change multiple fire regime characteristics, from ignition and frequency to 

seasonality and spatial distribution (Syphard, Radeloff, Hawbaker, & Stewart, 2009). Furthermore, 

the complexity of this relationship is scale-dependent which increase the difficulty to understand 

the connectivity between human-climate-fire (Bowman et al., 2011).  

Fire management agencies use fire prediction systems (FPS) to understand fire activity. 

FPS rely on meteorological descriptors and fuel characteristics to predict fire probability of 

ignitions. Despite the multiple studies and current evidence pointing out the relevance of the 

anthropogenic effects on fire (Leone, Koutsias, Martínez, Vega-García, & Allgower, 2003), the 

FPS do not consider anthropogenic factors as an indicator for the predictions. At a regional scale, 

anthropogenic dynamics play an important role in determining fire ignition, as well as spatial and 

temporal distributions (Balch et al., 2017). The accuracy of the current fire prediction system is 

challenged within regions where fire ignition is predominantly human-based, as is the case for 

Mediterranean ecosystems (Syphard et al., 2009). Mediterranean ecosystems are high biodiversity 

areas with a restricted geographical distribution covering less than 5% or the Earth surface (Cox 

& Underwood, 2011). The environmental suitability of Mediterranean ecosystems makes this 

region particularly susceptible to anthropogenic pressures. Furthermore, the biodiversity value of 
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these ecosystems is severely threatened by the fire variability caused by human ignitions (Syphard 

et al., 2009).  

Chile is the Mediterranean region with the highest potential for biodiversity conservation 

(75%) based on the natural vegetation without direct anthropogenic impact (i.e. agriculture, 

plantation, grasslands) (Cox & Underwood, 2011). Unfortunately, repeated burns have affected 

the vegetation where more than half of the native forest has been lost as result of human-induced 

fires (Ubeda & Sarricolea, 2016). The inclusion of anthropogenic indicators on fire prediction 

systems, especially within Mediterranean ecosystems, is key for developing accurate predictions 

and effective fire management efforts. As the relationship between human dynamics and fire is 

complex, it is important to understand first the landscape and socioeconomic perspectives of the 

human component in these regions and then to identify which specific anthropogenic indicators 

have the most significant effects on fire in order to include them in the fire predictions systems.  

The purpose of this study was to analyze the effect of anthropogenic drivers on fire 

frequency variability and the inclusion of human indicators to improve fire frequency predictions 

using Chile’s Mediterranean ecosystem as a study area.  In order to account for the complexity of 

the anthropogenic stressors, each case study focused on different perspectives of the human 

component. The landscape perspective accounts for the social variables that have an effect on the 

land such as land use types, change, and intensity, etc. (Carmona, González, Nahuelhual, & Silva, 

2012; J. M. Moreno, Viedma, Zavala, & Luna, 2011; Syphard et al., 2008). On the other hand, the 

economic-demographic perspective involves social variables related to population characteristics 

based on location as density, poverty, profits, education, transportation access etc. (Jennings, 1999). 

The first case study focused on understanding the landscape transitions, intensity rates, and patch 

characteristics and selecting the landscape indicators that have a significant effect on fire 

variability (Chapter 2). The second case study focused on selecting the most significant 

socioeconomic variables that affect fire ignition. In addition, this case study integrated all 

significant anthropogenic descriptors in multiple fire prediction models (GLM, ZIP, and ZINB), 

selected the most suitable model to predict fire, and compared the model predictions against the 

observed fire frequency and climate models outputs (Chapter 3). 
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 Landscape transitions  

The spatial distribution of the land use transition speed and characteristics was not 

homogeneous across the regions within the study area (Figure 2.1, Chapter 2). Twenty-seven 

percent of the land went through a land use change mainly associated with decreases in agriculture 

areas and increases in forest/plantations (Table 2.2, 2.3, Chapter 2). Most of the land use transition 

was dominated by two active or non-stationary (i.e. transition speed higher than average) 

categories (23% exchange) affecting the landscape (Figure 2.2, Chapter 2). Those categories were 

agriculture and urban/burned, with an intensity rate higher than the uniform intensity (UI) of 9.08% 

(Figure 2.3, Chapter 2). However, a small fraction of the area was categorized as shifting between 

three or more categories (3% shift). At a transition level, reductions in bareland and agriculture are 

the target contributors to forest/plantations increases at a rate higher than 3.95%. In contrast, 

urban/burned and agriculture are the target categories to receive area from forest/plantations when 

deforestation occurs (>3.47% UI) (Figure 2.4, 2.5, Chapter 2).  

 Fire frequency changes 

There were significant differences in the patch characteristics between land use transitions, 

and the differences between them had a significant effect on the fire frequency changes throughout 

space (Table 2.4, Chapter 2) and time (Table 2.5, Chapter 2). Increases in landscape heterogeneity 

(SHEI values close to one) produced a significant effect in fire frequency. Across space, increases 

in forest/plantations fragmentation were related to increases in fire frequency as well. The fire 

probability of ignition by human activity increased with reductions in landscape connectivity from 

the fragmentation that also affected the fire seasonality, distribution, and frequency (Archibald, 

Staver, & Levin, 2012). However, across time, landscape homogeneity dominated by 

forest/plantations installment significantly increased fire frequency where fire selectivity moves 

towards pine plantations (dominant production activity in the area) (Barros & Pereira, 2014). 

Landscape transitions both, stationary and non-stationary, had a significant effect on the fire 

frequency change (Figure 2.6, Chapter 2). A stationary class refers to changes in land use that are 

slower than the average transition rate (transition rate < UI). In this scenario, bareland to 

forest/plantation was the stationary transition that had effects on fire frequency. On the other hand, 

the non-stationary class represents the transitions that are changing faster than the average 

transition rate. Agriculture to forest/plantations, bareland to urban/burned, and forest/plantation to 
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urban/burned are considered both actively changing the landscape and significantly affecting fire 

frequency. Finally, sites that present both active transitions and significant patch characteristics 

are likely to have an increase in fire frequency. The results of this study suggest that relative 

changes within specific landscape transitions and patch characteristics can have a significant effect 

on fire activity in sites with human-driven fire matrices. Similar patterns have been evaluated 

around the world where the integration between landscape dynamics and the urban-rural interface 

is key to understanding fire activity (Cardille, Ventura, & Turner, 2001; Parisien & Moritz, 2009; 

Syphard et al., 2008; Syphard, Franklin, Keeley, & Keeley3, 2006). Despite differences in 

environmental characteristics within sites, regions in Spain (Moreno et al., 2011), and California 

(Radeloff et al., 2005; Syphard et al., 2008) highlight the significance of landscape structure and 

variability in predicting fire activity. 

 Fire spatial distribution and socioeconomic effects 

The spatial distribution of the fire activity is clustered within the central zone of the country 

with intermittent year oscillations (Figure 3.1, Chapter 3). In years with high fire frequency, 

however, there was a tendency of the fire clusters moving towards the southern regions (Figure 

A3). Previous studies support the significance of this area as a fire activity hotspot throughout 

history (Castillo, Garfias, Julio, & Gonzalez, 2012; Peña-Fernández & Valenzuela-Palma, 2004; 

Ubeda & Sarricolea, 2016); therefore, this area should be prioritized for management efforts. 

Socioeconomic and landscape descriptors had a significant effect on fire frequency changes, 

explaining >50% of the fire variance. The predominant characteristics driving the change were 

poverty level, transportation access, education and landscape heterogeneity increases (Figure 3.2, 

Chapter 3, Table A6, and A8).  Socioeconomic drivers significantly affected landscape 

homogeneity levels (SHEI) whereby increases in poverty levels and road access within sites 

significantly increase landscape heterogeneity values (SHEI values close to 1) and fire activity. In 

addition, reduction in overall site expenses combined with low rates of education registration was 

related to increases in landscape heterogeneity (Table A7). It is important to highlight that poverty 

levels, road access, and expenses level affect both, directly and indirectly, landscape homogeneity 

and fire frequency simultaneously. Finally, the variance partitioning between the variable groups 

shows that landscape characteristics have a more direct effect on fire frequency (50%) than the 

direct effect associated with the socio-economic descriptors. Moreover, the effect of the socio-
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economic descriptors on the fire frequency is larger when accounting for both the direct and 

indirect relationship of the socio-economic variables between both fire frequency (38%) and 

landscape homogeneity changes (34%). Furthermore, the connection between socioeconomic, 

landscape and fire regimes changes have been observed in other Mediterranean regions of the 

world (P. I. Moreno, 2000; Syphard et al., 2006). Despite the background, processes driving the 

socioeconomic and landscape changes are different; the overall trend observed in different 

scenarios reinforces the connectivity between them outside the case-specific boundaries (Cardille 

& Ventura, 2001; Cardille et al., 2001; Syphard et al., 2006).  

 Fire prediction model 

The integration of socioeconomic and landscape characteristics into fire prediction systems 

increase fire prediction accuracy for areas with high landscape heterogeneity and high poverty and 

access level. Regional differences were found when comparing the climate and the LE-Social 

model's accuracy (Table A9, A10). Evidence suggests that the relevance of the inclusion of both 

socioeconomic and landscape drivers within fire predictions systems is key to increasing accuracy 

of predictions. Therefore, the prediction differences between the models highlight the relevance of 

both local dynamics and regional scale in areas with significant fire clusters (Figure 3.3, Chapter 

3). However, this study’s results suggest that fire ignition might no longer be driven by climate 

conditions in regions located towards the south of the central zone of Chile; whereas in the northern 

regions, use of climate conditions might be accurate enough. We suggest that climate interacting 

with landscape transitions (Chapter 2), and the socioeconomic drivers that have shaped the 

landscape are the main forces for fire variability within this region (Chapter 3).  

 Results from Chapter 2 indicate that landscape transition, speed, and characteristics had a 

significant effect on fire frequency increases. In particular, within the Mediterranean ecosystem of 

Chile, transitions faster than the uniform intensity rate from agriculture to forest/plantation and 

increases in urban/burned area as result from deforestation or bareland reduction significantly 

affected fire activity. Furthermore, changes related to tree stands rotations between bareland and 

forest/plantations increased fire vulnerability when combined with large patch area fragmented 

into multiple (patch number) distant patches (patch density), in areas with low urban and bareland. 

Areas that meet the landscape transition criteria should be considered as a priority for fire 

management. Findings from Chapter 3 highlight the relevance of socioeconomic and landscape 
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characteristics on fire frequency predictions in areas with human-driven fire activity. Furthermore, 

despite the previous conceptions about the relevance of climate variables on fire predictions, the 

results prove that the accuracy of the fire predictions using climate descriptors is regional-

dependent. These results suggest that because the regional internal dynamics determine the model's 

accuracy, the climate and LE-Social models should be integrated into one index to improve fire 

prediction systems to account for both climate and human-driven dynamics. Furthermore, as is the 

case for Chile’s FPS, other regions in the world are relying on climate-based models to make 

national predictions and determine fire management resources. However, these results indicate 

that climate-based models alone might not be the most suitable models to predict fire within fire 

clusters experiencing the large landscape and socioeconomic dynamics. As the Mediterranean 

regions are experiencing similar fire fluctuations as Chile’s case study, this result gives particular 

insights for variables selection and model comparisons to improve FPS in these regions. This could 

possibly change the current climate-based approach to predict fire, to a human-climate integration.   

 Implications for fire prediction models and future research  

The spatial distribution of the fire activity has changed within years with high fire 

frequency in the central zone of Chile. As northern regions might experience a reduction in fire 

incidence, southern regions might be exposed to higher fire frequencies (Díaz-Hormazábal & 

González, 2016). The understanding of the spatial fire variability is relevant to delimitate areas for 

investing fire resources. Because changes in the spatial distribution of fire are occurring, increased 

focus should be on the relevance of areas that are now experiencing higher fire frequencies. In 

addition, as fire activity is likely to change related to future projections (Pechony & Shindell, 2010) 

and continuous landscape transitions (Peña-Fernandez & Valenzuela-palma, 2004), fire 

seasonality and further changes in spatial distribution might occur as well. Therefore, fire 

distribution (space and time) should be constantly monitored. So far, the central zone of Chile is 

considered the fire hotspot where the fire predictions systems now require a higher accuracy and 

sharper resolution in order to give effective predictions. 

Landscape characteristics and transitions have a significant effect on fire frequency. As 

specific land use changes and transition rates have been identified as the main drivers of the fire 

change in the central zone of Chile, management agencies should consider corresponding areas 

that are vulnerable to fire increases as priority areas for management. Furthermore, regulations 
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should focus towards transition speed and yearly transitioned area. On the other hand, as areas 

experiencing land use rotation from bareland to forest/plantation had a significant increase in fire 

activity, harvesting techniques, and species flammability could be managed in order to reduce the 

fuel available for burning. Chile’s silvicultural approach in Pinus radiata plantations focuses 

mainly on clearcuts leaving aerial biomass on the ground when harvesting, for the next rotation 

(Salas et al., 2016). This can affect fuel loading and increase the risk of fire (Ubeda & Sarricolea, 

2016), so regulation agencies can also consider alternative harvesting methods that reduce fuel 

loading.  

Poverty level and access had a significant effect on fire variability. Sites that fit these 

criteria are dominantly located within the urban-wildlife interface, surrounding the periphery of 

urban centers. In contrast to the accelerated land use conversion in this interface from agriculture 

towards forest/plantations, these are highly vulnerable areas. Fire resources should be available at 

these locations, and as fires are dominantly human-ignited, environmental education and research 

within these areas are relevant to understand people perspective related to the fire.  As there is a 

high interconnectivity between socioeconomic and landscape changes where education, 

transportation, production dynamics, and poverty have a significant role in fire variability, regional 

management should focus on these characteristics in fire campaigns efforts.  

The integration of landscape and socioeconomic characteristics improve fire predictions 

accuracy in the southern regions of the central zone of Chile. As the climate model proved to be 

relevant for the northern regions, the integration of both models should be considered in order to 

address fire variability in the entire region. Despite our findings, both models had reduced accuracy 

in predicting extreme fire activity. Considering fire projections (Pechony & Shindell, 2010) that 

fire extremes are more likely to occur, improvements for both models are still needed to address 

this issue. In addition, there is no differentiation between coast-valley-mountain areas that can 

affect the fire activity as they have different dynamics, as most of the change in the landscape was 

observed in the coastal area. In addition, future research should aim to understand seasonal 

variability caused by anthropogenic stressors.  

We found the most significant indicators in both socioeconomic and landscape settings that 

influence fire variability, and we were able to integrate the anthropogenic stressors into a fire 

prediction model. Furthermore, we found a suitable statistical model to use for fire predictions and 

were able to understand accuracy differentiation of model predictions depending on regional 
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dynamics. Those characteristics were not identified for the central zone of Chile before. However, 

there is still work to be done on integrating both climate and landscape-social models into fire 

predictions. Furthermore, as mentioned before, the inclusion of those perspectives becomes a 

challenge with scale variations where “the occurrence of patterns can disappear or emerge going 

from one scale to other” (Koning, Veldkamp, & Fresco, 1998). Therefore, scale selection is key to 

understanding the connection between socioeconomic factors and fire ignition. In addition, the 

differences between scales and the relative effect on the socioeconomic variables significance can 

efficiently focus the management forces to target specific fire drivers in each scale. Although the 

effects of temporal and spatial scales on model accuracy was out of the scope of this study, further 

research should integrate this analysis in order to find a suitable resolution to capture the effect of 

both climate and anthropogenic activity on fire ignitions.  

Although the results of this study were focused on the Mediterranean ecosystem of Chile, 

other Mediterranean regions are experiencing the same trends in fire variability and anthropogenic 

stressors. However, despite the background, dynamics driving the fire activity are possibly case-

specific for each region; the overall trend observed in different scenarios reinforces the 

connectivity between landscape-socioeconomic drivers outside the case-specific boundaries. 

Therefore, these study results give particular insights for variable and model selection and 

integration on the accuracy of fire prediction systems in other Mediterranean regions. 
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APPENDIX 

 

 

 

 

 

 

 

 

 

 

 

  

Figure A 1 Central Zone of Chile- Location of the study A) Chile, B) Zoom of the 

regions located in the Central Zone of Chile. 
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Figure A 2 Fire annual seasonal distribution for the Center Zone of Chile 

(CONAF 2015). 
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Figure A 3 Historical fire frequency clusters between 2000-2014 in Chile based on an Optimized 

Hot Spot Analysis 
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*GBOH=Libertador General Bernardo O’Higgins 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table A 1 Description of the population, area, and climate characteristics of the regions located 

within the central zone of Chile. 

Region Population 

2017 

%Population Area (Km2) Climate 

Valparaiso 1,859,672 10.10 16,396.10 Temperate Mediterranean 

Metropolitana 7,482,635 40.72 15,403.20 Mediterranean 

LGBOH* 934,671 5.08 16,387.00  Temperate Mediterranean 

Maule 1,057,533 5.75  30,296.10 Temperate Mediterranean 

Bio Bio 2,141,039 11.65 37,068.70 Temperate humid and dry 
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Table A 2 Regional production distribution between crops in the central zone of Chile 

(Ministerio de Agricultura, 2007). 

*Percentage on the total production of the region 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Region Regional Production (%)* Production 

Valparaíso 37.7 

34.2 

10.7 

Tree Plantations 

Fruit Plantations 

Forage Plants 

Metropolitana de Santiago 35.8 

17 

14.4 

10.7 

8.2 

Fruit Plantations 

Vegetables  

Forage Plants 

Cereals 

Vineyards  

Libertador General Bernardo 

O’Higgins 

38.8 

21.5 

15.6 

9.9 

Tree Plantations 

Fruit Plantations 

Cereals 

Vineyards 

Maule 94 Tree plantations, cereals, 

fruits, forage, vineyards 

Bio Bío 79 Tree Plantations 



117 

 

Table A 3 Description of the Landsat 8 OLI TIRS Level 1 scenes used for the unsupervised 

classification. Map projection UTM Zone 18-19, Datum WGS84 (cell size = panchromatic 15m, 

reflective and thermal 30 m) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Dataset scene Acquisition 

Date 

Path Row Scene Cloud Cover 

(%) 

LC82330832014025LGN00 01/25/2014 233 83 3.32 

LC82330872014025LGN00 01/25/2014 233 87 6.49 

LC82330852014025LGN00 01/25/2014 233 85 0.56 

LC82330842014025LGN00 01/25/2014 233 84 3.51 

LC82330822014025LGN00 01/25/2014 233 82 0.69 

LC82330862014025LGN00 01/25/2014 233 86 0.25 

LC80010852014032LGN00 02/01/2014 1 85 0.02 

LC80010842014032LGN00 02/01/2014 1 84 0.01 

LC82330862017017LGN00 01/17/2017 233 86 1.14 

LC82330832017017LGN00 01/17/2017 233 83 0.68 

LC82330852017017LGN00 01/17/2017 233 85 0.12 

LC82330842017017LGN00 01/17/2017 233 84 0.49 

LC82330872017017LGN00 01/17/2017 233 87 5.13 

LC82330822017017LGN00 01/17/2017 233 82 0.95 

LC80010852017024LGN00 01/24/2017 1 85 5.33 

LC80010842017024LGN00 01/24/2017 1 84 0.61 

https://earthexplorer.usgs.gov/metadata/4923/LC80010852014032LGN00
https://earthexplorer.usgs.gov/metadata/4923/LC80010842014032LGN00
https://earthexplorer.usgs.gov/metadata/4923/LC82330862017017LGN00
https://earthexplorer.usgs.gov/metadata/4923/LC80010852017024LGN00
https://earthexplorer.usgs.gov/metadata/4923/LC80010842017024LGN00
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Table A 4 Description of the land use categories used for the unsupervised classification based 

on  (Schulz et al. 2010) parameters 

Forest/Plantations Dense (>75%) canopy cover and timber plantations  

Bareland Exposed rock, and sand or dry riverbeds, dunes, cleared land and 

degraded areas.  

Agriculture Includes shrubland, grasslands and irrigated and non-irrigated 

agriculture, fruits, and  vineyards  

Urban/Burned Areas with domestic or industrial infrastructure and burned areas, both 

categorizes as a disturbance.  In addition, water and Ice represent a small 

fraction of this category (<10%), but based on the majority of data 

related to disturbance, the name of the category is based on Urban and 

Burned areas (>80% of category data) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



119 

 

Table A 5 Description of the patch characteristics acronyms evaluated per land use 

(Forest/Plantations, Bareland, Agriculture, and Urban/Burned) in the Central Zone of Chile 

comunas based on (Pijanowski and Robinson 2011, Dezhkam et al. 2016) parameters. 

SHEI Shannon Evenness Index 

NP Number of patches  

PD The density of patches (number of patches per 100 ha) 

PA Mean patch area (m2) 

PShape Patch Shape 

LPI Large Patch Index 
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Table A 6 Best fitted model of the relationship between socio-economic, landscape descriptors 

and fire frequency (fire counts as response variable) 

Variables  Estimate  Std. Error T value Pr(>|t|) 

Poverty 2.745e-02 1.021e-02 2.690 0.007 

Roads 7.873e-07 3.794e-07 2.075 0.039 

Reg. M 4.853e-05 

 

1.618e-05 3.000 0.003 

BL -9.256e-06 4.259e-06 -2.173 0.031 

NPF 1.500e-04 3.493e-05 4.294 2.85e-05 

PDF -5.479e-02 2.830e-02 -1.936 0.054 

PDBL -4.590e-02 2.872e-02 -1.598 0.111 

PDUB -5.279e-02 9.952e-03 -5.304 3.26e-07 

PAF 1.073e-01 4.095e-02 2.620 0.009 

PShapeBL 4.671e-02 3.036e-02 1.539 0.125 

LPIF -2.176e-02 1.152e-02 -1.889 0.060 

Fire Frequency Model (Log+1) : F 11,182=23.38, R2=0.561, P<0.01 
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Table A 7 Best fitted model of the relationship between socio-economic descriptors and 

landscape homogeneity (SHEI). 

Variables  Estimate  Std. Error T value Pr(>|t|) 

Poverty  8.356e-03 1.655e-03 5.048 1.05e-06 

Roads  2.364e-07 5.682e-08 4.161 4.82e-05 

Railroads 1.283e-06 6.149e-07 2.086 0.0383 

Expenses -2.311e-03 1.145e-03 -2.019 0.0449 

Reg. B -2.778e-06 1.433e-06 -1.939 0.0540 

Landscape homogeneity model: F5, 188=21.63, R2= 0.348, P<0.01 
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Table A 8 Best fitted model of the relationship between socio-economic descriptors and fire 

frequency (fire counts). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Variables  Estimate  Std. Error T value Pr(>|t|) 

Poverty 5.648e-02 1.019e-02 5.545 9.76e-08 

Roads 2.430e-06 3.747e-07 6.487 7.41e-10 

Expenses -1.147e-02 7.740e-03 -1.482 0.140 

Fire frequency model (Log+1): F 3,190=42.03, R2=0.389, P<0.01 



123 

 

Table A 9 Zero-inflated negative binomial output of the landscape-socio-economic descriptors 

and fire frequency. 

Variables Coef Std. Error z P>|z| 

Negative Binomial     

Poverty  

Log-NPF 

Log-LPIF 

Log- PAF 

Log (Theta) 

0.011 

0.802 

-0.787 

1.619 

-0.238 

0.012 

0.103 

0.188 

0.328 

0.114 

0.949 

7.771 

-4.177 

4.928 

-2.081 

0.342 

7.77e-15 

2.95e-05 

8.30e-07 

0.037 

Zero-Inflated     

Poverty 

Log-NPF 

Log-LPIF 

Log- PAF 

0.023 

4.426 

-6.523 

2.719 

0.156 

3.167 

4.264 

1.990 

0.148 

1.397 

-1.530 

1.366 

0.883 

0.162 

0.126 

0.172 

AIC= 1328.89  Theta= 0.787 
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Table A 10 Zero-inflated negative binomial model for the climate descriptors as a function of 

fire frequency. 

Variables Coef Std. Error z P>|z| 

Negative Binomial     

Temperature 

Precipitation 

Log (Theta) 

-0.110 

0.0009 

-0.562 

0.039 

0.0003 

0.128 

-2.798 

2.786 

-4.384 

0.0051 

0.0053 

1.16e-05 

Zero-Inflated     

Precipitation -0.007 0.002 -3.222 0.0012 

AIC=1440.56  Theta= 0.569 
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Table A 11 Comparison between the landscape-socio-economic model and the climate model 

values as a function of the observed fire frequency represent as overall agreement. 

*The total value represents the overall agreement for the entire area as a function of the observe fire frequency. 

** LGBOH= Libertador General Bernardo O’Higgins 

 

 

 

 

Region Overall Agreement (%) 

Climate Model LE-Social Model 

Valparaíso 56.09 46.81 

Metropolitana 69.73 17.24 

LGBOH** 48.20 37.14 

Maule 38.52 39.05 

Bio Bío 21.04 35.30 

Total* 42.20 35.77 
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