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Osteoarthritis (OA) is a painful and debilitating disease affecting 27 million people 

nationwide and is often characterized by the degradation of articular cartilage. The loss of 

lubrication in synovial joints is a major contributor to cartilage damage, and damage can be 

prevented if proper lubrication is restored through supplemental lubricant treatments. Hyaluronic 

acid (HA) injections are on the market today, but there is little clinical evidence to support that 

these products are effective in treating the long-term effects of osteoarthritis. Lubricin, a 

lubricating proteoglycan found in the human synovial fluid, has become a potential alternative to 

HA injections. Overall, lubricin has proven to be more efficient than HA as a lubricant. However, 

as a native molecule, it is still susceptible to enzymatic degradation and depletion factors that are 

over expressed within OA joints. Synthetically derived molecules show the possibility of resisting 

these enzymatic degradations.  Here, we engineered a biomimetic lubricin proteoglycan mimic 

that is designed to imitate the lubrication effects of native lubricin but withstand enzymatic 

degradation. The lubricin mimic was synthesized using a chondroitin sulfate backbone with 

collagen II and HA binding peptides to promote adhesion to the cartilage surface and interaction 

with the synovial fluid components. Our synthesized molecule was shown to reduce the kinetic 

coefficient of friction at the articular surface to a level comparable to that of native synovial fluid. 

Confocal imaging of the articular cartilage surface after lubricin mimic treatment showed binding 

of the molecule at the surface even after friction testing. Overall, our biomimetic lubricin shows 

potential as a long-term supplemental lubrication treatment for OA patients. 
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CHAPTER 1.  INTRODUCTION 

1.1 Osteoarthritis: An Unmet Clinical Need 

Osteoarthritis (OA) is a multifactorial disorder of synovial joints1 affecting approximately 

27 million Americans aged 25 years and older2. The most prominent and disabling symptom of 

OA is pain that is associated with the progressive loss of lubrication and load-bearing capacity of 

articular cartilage3. Pain is a source of high unemployment rates in sufferers, which makes OA one 

of the leading causes of disability nationwide4,5. Currently, there is no cure for OA, and existing 

treatments cost the US healthcare system nearly $185.5 billion annually6. These treatments 

concentrate on pain management, but do little to stop the progressive wear of the articular 

cartilage7,8. In severe cases of OA, surgery is a common solution to alleviate pain, improve 

function, and delay the possibility of total joint replacement9. But even after these procedures, the 

symptoms of OA are still reoccurring since the native cartilage is severely degraded if not gone, 

and there are no current clinical treatments for its restoration. Recently, progress has been made in 

engineering cartilage-like tissues that are able to withstand and support the compressive and tensile 

forces in weight bearing synovial joint10,11. Because these tissue-engineered cartilage constructs 

lack the lubrication properties present in native articular cartilage, they would eventually be worn 

down over time. Therefore, a reliable and sustainable way to lubricate synovial joints affected by 

OA is critical, not only to increase the functionality of future engineered cartilage constructs, but 

also as a preventative measure to treat cartilage degradation in the early stages of OA. 

OA can have a wide variety of pathological causes that make treatment difficult, but it is 

usually characterized by the breakdown of articular cartilage12. The degradation of articular 

cartilage is often a direct result of the loss of lubrication. Once failure of cartilage lubrication 

occurs, it is believed that excessive mechanical forces applied to the joint, especially friction, 

accelerate cartilage wear13. The exact cause of lubrication loss is unclear.  Mechanical and 

biochemical factors are often blamed, but one common hypothesis is that the over expression  of 

matrix metalloproteinases (MMPs) leads to the degradation of the cartilage extra-cellular matrix 

(ECM),  at which lubricating molecules such as hyaluronic acid (HA) and lubricin localize14. 

MMPs are enzymes responsible for the remodeling of cartilage tissue by degrading the ECM that 

is quickly restored by chondrocytes, the primary cell type found in cartilage. When there is a large 
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increase in MMPs, degradation occurs at a much faster rate, and the restorative abilities of the 

chondrocytes fail to maintain a balance15. Other hypotheses include mechanical factors such as 

excessive friction applied to the cartilage surface and misalignment of joints16. Altogether, in order 

to successfully treat OA through lubrication restoration, it is important to take into consideration 

both the mechanical and biochemical factors that lead to a loss of lubrication in synovial joints. 

The current treatments of OA are limited and most fail to successfully reverse/stop the 

progress of the underlying symptoms. Mild OA symptoms are treated with acetaminophen and 

topical or oral non-steroidal anti-inflammatory drugs (NSAIDs)8 but only give small to moderate 

success in pain relief. These drugs can also cause liver damage, gastrointestinal problems, renal 

toxicity, and cardiovascular problems7. Oral narcotics, opioids, and tramadol are also used for pain 

relief, but have minimal success and cause a variety of negative side effects17. Corticosteroid 

injections have a short term effect, require multiple injections, and may even cause additional 

damage to cartilage18. Non-pharmaceutical remedies including exercise, weight loss, thermal 

modalities (hot and cold packs), and assistive devices (canes, crutches, prosthetics) can be effective 

to increase mobility and temporarily alleviate pain, but fail to address the underlying causes8.   

While all these treatments work to mitigate the mild symptoms of OA, especially pain, 

their effectiveness often becomes situational and many of the drug-based therapies have 

concerning side-effects. When the progress of OA is severe, surgical procedures are used, 

including arthroscopy (removal of loose pieces of cartilage and damaged tissue), osteotomy (joint 

preserving surgery by improving joint alignment and stability), and joint fusion9. Most of these 

surgical procedures work to temporarily relieve arthritis pain, and whether they work better than 

medication or non-pharmaceutical remedies is debated. Joint replacement surgery is considered to 

be the last option for OA treatment and is only done in severe cases when the joint becomes 

completely non-functional. However, there are many risks associated with this procedure such as 

irreparable damage, infection, and persistent pain. It is common for these joint replacements to fail 

with time, and their functionality and life is limited compared to a healthy synovial joint19.  

Researchers have been studying and developing supplemental lubricant injections for the 

synovial fluid as a way to reverse the loss of lubrication20.  This procedure is generally known as 

tribosupplementation or in other cases viscosupplementation, when the lubricant works to increase 

the viscosity of the synovial fluid8. One practiced treatment involves intra-articular injections (IA) 

of HA. Unlike many other pharmaceuticals, this approach is considered safe, but the actual long-
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term benefits remain inconclusive.  There is little clinical evidence to support that HA injections 

are effective in treating the long-term effects of OA. In fact, most current studies show that these 

treatments are susceptible to enzyme degradation and a low residency time, which would require 

frequent and repetitive injections20.  

Current research has also focused on making synthetic lubricant injections, which mimic 

the functions of native lubricating polymers, but are not the same in structure21,22,23. Because of 

this difference in structure, synthetic molecules show potential for resistance to degradation after 

injection into diseased joints. However, these engineered structures must be able to function and 

interact accordingly within the native environment of the synovial joint. Despite the promise of 

current lubricant treatments to decrease friction and protect cartilage, better solutions can be made 

to increase the residency and efficiency of these lubricating molecules. In order to develop a better 

solution, a thorough understanding of the synovial joint structure and function as well as the key 

players involved in boundary lubrication is needed.  This will be discussed throughout the rest of 

the introduction as well as a review on the efficacy of current synthetic and biologically relevant 

lubrication treatment methods.  

1.2 Synovial Joint Structure and Composition 

 Synovial joints, also known as diarthroidal joints, are the most common and movable type 

in the body.  The presence of lubricating synovial fluid encapsulated by joint ligaments 

distinguishes this type of joint from others within the body24. OA most commonly occurs within 

the weight bearing synovial joints including the hip and the knee, which is why obesity is such a 

major risk factor of OA25. The synovial joint can be broken down into four major components: 

articular cartilage, synovium, joint cavity filled with synovial fluid, and joint capsule ligament 

(Figure 1.1a) 26,27.  Ultimately, articular cartilage and the synovial fluid are the main constituents 

that contribute to the proper lubrication properties of healthy and OA synovial joints. 

1.2.1 Articular Cartilage 

Articular cartilage is a thin layer of specialized connective  tissue that provides the weight 

bearing and lubrication properties of synovial joints28,29. Overall, articular cartilage is a very dense 

structure, lacking blood vessels and nerves that are found in other tissues16. Chondrocytes are the 

cell types embedded within cartilage and produce the structural proteins that form the ECM.  The 



4 

 

major components of the ECM are water, type II collagens (COL2),  proteoglycans, aggrecan, and 

noncollagenous proteins such as fibronectins30,27. The resulting osmotic pressure created within 

the solid and fluid components of the ECM work in harmony to support the mechanical forces 

applied to cartilage16. The water is retained in the ECM by aggrecan, the primary structural 

proteoglycan that is composed of a core protein with glycosaminoglycan (GAG) side chains, 

chondroitin sulfate (CS) and keratin sulfate (KS)31. Altogether, these components are what create 

the depth dependent layers of cartilage: the superficial zone, the middle zone, the deep zone, and 

the calcified zone (Figure 1.1c)32.  

The superficial zone of cartilage is primarily responsible for providing resistance to shear 

and tensile forces through both lubrication and structural factors32. The fibers and chondrocytes in 

this area are densely packed and aligned parallel to the articular surface and in the direction of 

joint articulation, allowing for an efficient gliding motion during movement33.  This zone is the 

major area for expression of proteoglycan 4 (PRG4), otherwise known as lubricin34. Here lubricin 

is in contact with the synovial fluid and together they provide the articular surface with constant 

lubrication35. The middle zone functions to provide the first line of resistance to compressive 

forces, and is composed of proteoglycans and thicker collagen fibrils.  The deep zone provides the 

greatest resistance to compressive forces and acts as an anchor, attaching the cartilage to the 

subchondral bone33. Without the protection of the superficial zone, the deeper layers of cartilage 

are unable to resist the sheer and tensile forces present in a functioning joint. Studies have shown 

that the loss of the superficial layer of cartilage quickly accelerates cartilage deterioration, leading 

to the disease state of OA36.   
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1.2.2 Synovial Fluid 

The synovial fluid is an important viscous lubricant that allows nutrients and regulatory 

chemicals to travel across the synovial joint27. The main components of the synovial fluid are 

concentrated blood plasma and molecules that are responsible for the low friction and wear 

properties of the articular cartilage surface27. These molecules include lubricin and hyaluronic 

acid37,38. The synovial fluid is surrounded by the synovium, a thin, fibrous, vascular envelope that 

houses type B synoviocytes that are responsible for secreting lubricating proteins into the synovial 

fluid. Here, these lubricants interact with the cartilage surface and each other, allowing for low 

friction between surfaces39. In joints affected by OA, it is typical for the synovial fluid to become 

less viscous and lose mechanical and biochemical properties resulting in the wear and tear of 

cartilage. 

 

 

 

 

Figure 1.1 a) Structure and composition of synovial joint. b) Depicting two types of 

lubrication: fluid film (pressurized fluid) and boundary (points of contact). c) Depth-

dependent layers of articular cartilage. Adapted from26. 
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1.3 Articular Cartilage Lubrication: Role and Function 

The synovial joint withstands the applied shear and compressive forces by minimizing the 

coefficient of friction (COF) at the articular cartilage surface. The COF of articular cartilage 

interacting with human synovial fluid is usually around 0.005. In fact, the measured COFs of 

articular cartilage still remain the lowest out of any given material40. The mechanisms through 

which the synovial joint achieves these low friction properties involve a combination of 

biomechanical and biomolecular factors, which can be divided into two types of lubrication: fluid 

film and boundary41.  

1.3.1 Fluid Film Lubrication 

Fluid film lubrication is characterized by pressurized fluid within the ECM and between 

the articulating cartilage surfaces (Figure 1.1b)41, which can bear significant portions of the load42. 

Up to 90% of the applied load can be supported by ECM and synovial capsule due to the their high 

water and retention properties42. Fluid film lubrication is only active when opposing cartilage 

surfaces slide with respect to each other43. In a long term loading position, all of the fluid flows 

out between the surfaces and another type of lubrication, boundary lubrication, must take place at 

the points of contact44.  

1.3.2 Boundary Lubrication 

Boundary lubrication is the most studied mechanism in the context of clinical lubrication 

treatments. It is characterized by low friction properties achieved through the presence of lubricant 

molecules located at points of surface-surface contact, referred to as asperities (Figure 1.1b)44. This 

mode of lubrication is considered important for the protection and maintenance of articular 

cartilage, since 10% of the total cartilage surface makes contact with the opposing layer45. These 

areas of contact are the most susceptible to wear and degradation due to the higher friction forces 

applied within surface-surface contact. Furthermore, the initial degradation of articular cartilage 

often happens in areas that use boundary lubrication as a mode of friction reduction. Once the 

superficial boundary layer of articular cartilage is removed at these asperities, severe symptoms of  

OA will occur at an increasing rate36. 

 

 



7 

 

1.4 Boundary Lubrication Key Players: Proposed Mechanisms 

At present, there are two key players that are considered to be involved, individually or in 

combination, in controlling friction of articular joints: (1) hyaluronic acid and (2) lubricin. The 

structure and composition of each of these lubricants has been extensively studied, but the exact 

functioning mechanisms are unknown. Further research is needed to determine their specific roles, 

which would significantly accelerate the progress of developing the most efficient and optimal 

lubrication treatments. Currently, there are many hypotheses as to how much of a role each plays 

in reducing friction at the articular cartilage surface, and to why these molecules stop functioning 

during OA. 

1.4.1 Hyaluronic Acid 

Hyaluronic acid is a major component of the ECM and is intertwined with collagen fibrils 

to function as a backbone for the attachment of proteoglycans, such as aggrecan and proteoglycan 

4 (lubricin). It is abundant throughout the synovial fluid and contributes to the overall viscosity46. 

HA is generally found at concentrations of 3-4 mg/mL within the synovial fluid and the structure 

can vary in size from 0.5 MDa to 7 MDa47,  which gives rise to varying viscosities within the 

synovial joint. 

In general, the mechanisms of HA are often debated, but a current hypothesis is that HA 

acts as an enhancer in lubrication, improving the function of other lubricants, rather than 

functioning as a boundary lubricant independently48,49. Researchers believe HA aids lubrication 

by increasing the viscosity in the synovial fluid, hence the reason HA is presently the number one 

component used in viscosupplementation treatments of OA8. This idea dates back to 1970, when 

Radin et al found that separation of HA from bovine synovial fluid reduced the viscosity, but 

concluded that its role was non-essential and did not affect the boundary lubrication of the treated 

fluid50. Later studies have argued that HA does play an important role in boundary lubrication and 

has been verified using cartilage-cartilage interfaces by Swann et al. and a number of other 

researchers51,52,53,54.  Each of these studies acknowledged that HA depends on viscosity and 

concentration in order to effectively lubricate. Other studies have shown that HA does not appear 

to have boundary lubricating properties when studied in vitro, but acts synergistically with other 

lubricants such as lubricin48,49. In 2007, Schmidt et al. found that HA did not significantly increase 

the lubrication properties of a cartilage-cartilage interface on its own, and instead, only enhanced 
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the lubrication of PRG446,55. In addition to providing viscosity to the synovial fluid, Tadmor et al. 

showed evidence that suggested chemical binding of HA to the cartilage surface is necessary to 

initiate a reduction in friction56 and, in another study, wear reduction57. Despite contradictions 

within the research, there is evidence to show that HA does play a significant role in boundary 

lubrication, but the exact role has yet to be determined. 

In joints affected by OA, the concentrations of HA have shown to decrease compared to 

those of healthy individuals45. One cause of the loss of HA is the over expression of HA degrading 

enzymes, which include hyaluronidase, β-D-glucuronidase, and β-Nacetyl-hexosaminidase58. HA 

is thought to play a role in preventing the development of OA, so joints with increased HA 

degradation are susceptible to further progression of OA symptoms, specifically, the loss of 

cartilage lubrication59. It is proposed that HA stimulates the production of tissue inhibitors of 

matrix metalloproteinase (TIMP-1) in chondrocytes14, as well as inhibiting neutrophil-mediated 

cartilage degradation and reduces IL-1 induced ECM degeneration60. With this evidence, the 

presence of HA probably plays a role in reducing the enzymatic degradation of the ECM and other 

important lubricants within the joint. In fact, articular chondrocytes cultured in the presence of HA 

have a significantly greater rate of extracellular matrix production compared with chondrocytes 

cultured without HA61. Ultimately, the underlying causes of HA degradation are important to 

understand since HA injection treatments will still be susceptible to these cleaving enzymes. For 

this reason many current studies are focusing on creating HA injections that are resistant to 

degradation by enzymes such as hyaluronidase62. 

1.4.2 Lubricin/SZP/PRG4  

Lubricin, also commonly known as superficial zone protein (SZP) or proteoglycan 4 

(PRG4), is large glycoprotein found in the superficial zone of articular cartilage and the synovial 

fluid63. While still used interchangeably, evidence suggests that lubricin and SZP are different 

molecules, in which lubricin is produced by synoviocytes64 and SZP created by articular 

chondrocytes at the superficial zone65. The difference between these two compounds is their size; 

the molecular weight of lubricin is 227 Da and the molecular weight of SZP is 345 Da. This 

variance can be explained by alterations during post-translation glycosylation66. Even so, SZP and 

lubricin are considered to be the same in functional applications.  Native lubricin is encoded by 

PRG4 consisting of N- and C- terminal regions that are connected by a long repetitive mucin-like 
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domain. The N-terminal region contains somatomedin B-like (SMB) and heparin-binding 

domains, while the C-terminal region consists of a hemopexin-like domain67. The functional part 

of lubricin that is thought to be responsible for lubrication is the repetitive mucin-like domains. 

These domains attach to lubricating O-linked oligosaccharides and other ECM components 

including aggrecan and type VI collagen68. The N-terminus promotes binding between lubricin 

molecules, and the hemopexin domain facilitates attachment to the ECM69. This protein has been 

found to be highly conserved across species, allowing for experimental conclusions developed in 

in vivo animal studies to be directly translatable to humans.  

In general, lubricin is considered to be the critical lubricant for articular cartilage and is 

currently the most studied among the acknowledged lubricant molecules. Lubricin was discovered 

by Swann et al. following its isolation from bovine synovial fluid70,71. Since then, the hypothesis 

that lubricin functions as the primary boundary lubricant has become increasingly popular49. In 

2007, Schmidt et al. found that lubricin significantly increased the lubrication properties of a 

cartilage-cartilage interface, and with the addition of HA, the COF decreased even more46. Many 

mechanisms behind this function have been proposed, but most researchers believe that lubricin 

functions as a lubricant by adsorbing strongly to the cartilage surface, and due to its highly 

hydrated structure, the layers formed are sterically repulsive, lowering the COF72,73. Using 

recombinant lubricin constructs, Jones et al. found that the C-terminal domain controls binding 

and localization of lubricin to articular.   This study also indicated that the N-terminal region may 

be responsible for lubricin-lubricin interactions73. A series of studies concluded that without 

lubricin, proper lubrication cannot occur, which is unlike the findings in HA studies. These lubricin 

studies include a number of rodent gene knockout models74,75 as well as mammalian models of 

OA76,77. In 2012, Drewniak et al. subjected the joints of PRG4 -/- mice to 26 hours of cyclic 

loading.  They found that the COF within these joints was significantly higher than those of PRG4 

+/+ mice, concluding that the lack of lubricin reduces protection against mechanical wear78. 

Additionally, the lubricant properties of lubricin were studied in vitro, demonstrating boundary-

lubricating ability among a number of surfaces (i.e. cartilage-glass71 and latex-glass35,7648,49,66 ). 

These findings further support the hypothesis that lubricin is a highly surface active molecule 

which can adhere to a variety of surfaces39,79. Altogether, there is strong evidence to conclude that 

lubricin acts directly as a boundary-lubricant unlike HA, and its interaction with HA increases 

these lubrication properties even further80. However, it is unclear how these molecules specifically 
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interact to increase lubrication. Further research is needed to understand the exact mechanisms of 

interaction between lubricin and HA.  

In joints affected by OA, native lubricin was found to be ineffective in reducing friction in 

arthritic articular cartilage due to its low concentration when compared to healthy individuals46,81. 

This could be partly explained by the lack of growth factors such as TGF-β, which is known to up 

regulate the expression of SZP82,83. Furthermore, interleukins (IL-1β and IL-6) and TNF-α have 

increased expression with progressing OA and are associated with reducing the synthesis of 

PRG483,84 and increasing expression of MMPs, which are major contributors to cartilage 

degradation15. For these reasons, current studies are focusing on creating lubricin treatments that 

are resistant to degradation enzymes such as MMP and depletion factors such as IL-1β. Ultimately, 

the underlying causes of lubricin degradation are important to understand in order to effectively 

treat the loss of lubrication in diseased joints.       

1.5 Proposed Lubricant Treatment Solutions 

 The current progress in engineering cartilage-like tissues has revealed that the proper 

lubrication of these constructs is critical for their success85,10. Therefore, recent studies have 

focused on developing a reliable way to create compatible and proper lubrication as the next step 

towards successful tissue engineering treatments. Another major focus of these studies is to use 

these lubrication methods for IA supplementation at the beginning stages of OA in order to prevent 

further progress of the disease. The solutions for developing successful lubrication range from 

using purified native lubricants to synthetic molecules designed with the native lubricating 

abilities.   

1.5.1 Native Lubricant Treatments 

Hyaluronic acid injections have been used to treat osteoarthritis since 1998, when the FDA 

approved a treatment that was composed of HA extracted from rooster combs86. Since then, many 

HA treatments have been developed that are derived from a number of sources such as the vitreous 

body, umbilical cords, and bacteria87. The naturally occurring HA drugs on the market include 

Hyalgan®, Orthovisc®, and Euflexxa®.   

Overall, studies show that HA IA injections may be effective, but the efficacy seems to be 

circumstantial. In a 6 month clinical study, Hyalgan® was administered to the knee every 5 weeks 
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until a final biopsy was done to analyze cartilage damage88. Only a third of the patients saw 

improvement of OA cartilage degradation, showing that the effectiveness of Hyalgan® as a 

lubricant treatment varies from patient to patient88. When compared to native synovial fluid, 

commercial HA treatments were limited, and despite increased viscosity, did not provide sufficient 

boundary lubrication48,55. For improved lubrication efficiency, high molecular weight HA 

treatments have been used (Orthovisc®, and Euflexxa®). Low molecular weight HA allows for 

penetration into the synovium to reduce swelling, but it does not have the elastoviscosity of higher 

molecular weight HA47. Euflexxa® showed similar benefits to Hyalgan®. It effectively reduced 

pain, but whether or not it is able to stop the long term progression of cartilage degeneration is 

inconclusive89. 

Although studies have found that HA IA injections can work to alleviate symptoms, 

particularly pain, it does not always benefit patients. This could be due to the varying symptoms 

of OA that change from individual to individual. As such, HA treatments might benefit one 

symptom better than another. Also, there is the likely possibility that HA does not function mainly 

as a lubricant, and instead plays a key role in other mechanisms of action that are involved in pain 

reduction, such as the inhibition of tissue nocieptors90. Also, HA treatment has been shown to work 

similar to NSAIDs by giving direct anti-inflammatory effects that suppress inflammatory 

mediators and proteases 60. Further evidence shows HA injections may inhibit MMP activity, 

blocking the degradation of articular cartilage17. Even so, HA injections are probably not the most 

efficient method to restore the loss of lubrication, especially when in comparison to the native 

synovial fluid or lubricin20.  

To improve the efficiency of HA treatments, modified HA products have been developed 

for the market today, including Synvisc®, Synvisc-One®, and Durolane®87. These products are 

composed of synthetically-altered cross-linked (Synvisc®, Synvisc-One®) and stabilized forms 

(Durolane®) of HA91,92,47. Cross-linked HA (Hylan G-F 20) is formed using a mixture of hylan A 

and insoluble hylan B cross-linked by hydroxyl groups. Hylans have higher molecular weights and 

increased viscosity compared to HA, as well as nearly double the resident time92,47.   Non-animal 

stabilized hyaluronic acid (NASHA, Durolane®) is a cross-linked form of HA produced by 

treatment of bacterial produced HA.  NASHA is a biocompatible gel with greater viscoelastic 

properties, greater pain reduction, and longer persistence in synovial joints than native HA91.   
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Studies have shown that synthetically derived HA-like treatments may be effective, but the 

significance varies between researchers. Waller et al. compared the function of Hylan G-F20 to 

that of human synovial fluid and PBS in an in vitro study using bovine cartilage93. They found that 

the COF for Hylan G-F 20 was significantly higher than the value measured for synovial fluid. 

Additionally, there was no significant difference between the COF of PBS and Hylan G-F 20.  This 

suggests that the effectiveness of Hylan G-F 20 is minimal and lacks the ability to function 

independently as a lubricant. In a clinical study, IA injections of Synvisc® and a saline control 

were administered to the metatarsophalangeal joint (big toe) of patients.  Pain was the factor 

measured, and there was no significance between the control and  Synvisc®94.  A long-term study 

was done to determine the lasting effects of Hylan G-F 20 overtime. In this experiment, multiple 

treatments of hylan injections were able to delay total knee replacement surgery by about 4 years, 

but it did not halt joint degradation95. Overall, these studies show no significant evidence that 

synthetic hylans prevent the progression of OA. 

Tribosupplementation using purified human lubricin is currently being studied for its 

clinical use. Recently, two studies have done in vivo testing of lubricin IA injections. Teeple et al. 

reintroduced native lubricin (LUB) into rat joints post-traumatically and demonstrated a disease-

modifying effect20.  In this study, cartilage histology and damage in OA-induced rats (via ACL 

transaction) were analyzed after 4 weeks of weekly LUB injections. There was significantly less 

damage in OA joints treated with LUB compared to those which received none. This study also 

included the same test with HA-injections for a comparison and found that, independently, HA did 

little to stop the degradation of cartilage20. The effects of LUB+HA injections were also analyzed. 

These results supported the hypothesis given in Greene et al. that LUB+HA interactions in vivo 

are important for optimized lubrication abilities80. Jay et al. used lubricin derived from 

synoviocytes to administer IA injections into OA-induced rat joints65.  By performing injections 

twice a week for 32 days, they found that there was a reduction in cartilage damage. Later, they 

performed a similar experiment to analyze the persistence of lubricin in vivo after 35 and 70 days 

following a single injection. The results showed that a single IA injection of concentrated lubricin 

reduced COL2 degradation and improved load bearing in the affected joint. Furthermore, increased 

immunostaining for lubricin was observed in the lubricin-treated animals after 35 and 70 days, 

suggesting that this method of treatment has more long-term effects than present HA treatments. 

While the studies mentioned above show that lubricin injections can slow the rate of cartilage 
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degradation, one study concluded that lubricin injections cannot reverse the damage done to the 

subchondral bone.  This suggests that lubricin injections are most useful as a treatment in the early 

stages of OA when the subchondral bone has not been damaged96. 

Overall, lubricin shows great potential as a lubrication treatment for OA. Unlike HA, there 

is little dispute among scientists about its lubrication efficiency, and in vivo studies consistently 

show better results than HA IA injections.  Regardless, there are some factors that need to be 

considered. As mentioned before, OA joints are often associated with an over expression of IL-1β, 

TNF-α, and IL-6, which decrease the native lubricin concentration leading to loss of the cartilage 

boundary layer46,97. LUB, being a native lubricant, will be exposed to these elements and as a result 

degradation will occur. Multiple injections and higher dosages will need to be administered to 

counteract the effects of IL-1β, IL-6, and TNF-α, and to sustain long-term effectiveness.  

1.5.2 Recombinant Lubricant Treatments 

One problem in using lubricin as a commercialized treatment is finding an abundant and 

available source. To address this, scientists have developed recombinant methods to produce 

lubricin in large enough amounts for clinical use.  So far, two recombinant lubricin treatments are 

being studied:  LUB:1 and rhPRG4. 

In 2009, Flannery et al. produced LUB:1 by reducing the number of mucin-like repeats 

found in lubricin to optimize production in Chinese hamster ovary cells98.  The removal of two-

thirds of the mucin-like repeats from LUB:1 had no effect on its binding and localization to the 

superficial layer of cartilage. In addition, LUB:1 significantly improved boundary lubrication for 

cartilage explants that were subjected to friction testing, when compared with PBS treatments 

alone. Treatment of injured rat knee joints with LUB:1 resulted in reduced cartilage degradation 

and structural damage based on OA pathology scores98. Vugmeyster et al. furthered this research 

by using a radioactive label on LUB:1 to determine localization on the joints and residency time68.  

LUB:1 was found to specifically localize to the points of injury on the articular cartilage surface 

and was found to persist for about 2-4 weeks after inter-articular injections.  

 Researchers also studied rhPRG4, a full-length recombinant human PRG4, to test for its 

lubricating ability and protective qualities. In a recent study, Kwiecinski et al. found that rhPRG4 

can bind to the cartilage surface and function as an efficient boundary lubricant, demonstrating 

abilities that match those of native lubricin99.  Similar results were found by Jones et al., in which 
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they further characterized binding interactions of lubricin and rhPRG4 to the cartilage surface73. 

According to Abubacker et al., the lubricating abilities of rhPRG4 were further enhanced by the 

addition of hyaluronic acid100. In vivo tests further support the in vitro studies previously 

mentioned. One study administered IA injections of rhPRG4 to OA-induced rat joints, and found 

the reduction of cartilage damage with the rhPRG4 treatment was the same as treatment with native 

lubricin65. Contrary to the results found in Abubacker et al., an in vivo study performed by Waller 

et al. concluded that the addition of HA to rhPRG4 injections did not reduce cartilage damage any 

more than rhPRG4 alone101.  

Altogether, research shows that recombinant lubricin treatments work just as effectively as 

native lubricin injections. Therefore, the same considerations should be made regarding their 

susceptibility to degradation in OA joints. Overall, the effects of lubricin treatments need further 

evaluation, specifically on how they influence the activities of cartilage-degrading enzymes. The 

long-term effectiveness of lubricin has yet to be evaluated, and the role lubricin plays in enzymatic 

resistance will significantly determine the persistence of lubricin treatments. Currently, researchers 

are addressing this issue by developing synthetic lubricant treatments that mimic the function of 

lubricin but lack the structure targeted by native degradation enzymes.  

1.5.3 Synthetic Lubricant Treatments 

Synthetic lubricants are a recent development in the treatment of OA.  These molecules are 

designed to resist degradation as well as mimic the functions of native boundary lubricants21,22,23. 

Wathier et al. synthesized a large-molecular weight polyanion that was found to possess 

lubricating properties for cartilage in vitro21.  The polymer was shown to not be readily degraded 

by hyaluronidase, due to its structure. In this ex vivo study, they subjected HA, Synvisc®, and their 

engineered lubricant to cartilage surfaces and found that the lubrication abilities of the polymer 

matched those of native synovial fluid and even exceeded those of Synvisc®21. Even so, further 

studies need to be done to determine what interactions the polymer might have with the multiple 

components of the synovial joint.  

Recently, a synthetic lubricant has been developed that consists of a polyglutamic acid 

(PGA) backbone onto which poly(2‐methyl‐2‐oxazoline)s (PMOXA) and hydroxybenzaldehydes 

(HBAs) are alternatively grafted23. These grafted copolymers bind to the exposed amino acids of 

collagen type II in degraded cartilage through the HBA domains on their molecules.  Following in 
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vitro friction testing, they determined that their grafted copolymer reduced the friction of degraded 

cartilage to that of healthy native cartilage23. Even further, they showed that their molecule was 

able to reduce enzymatic degradation of collagen II compared to no treatment present102.  

Samaroo et al. has mimicked the bottle brush structure of lubricin by using polyethylene 

glycol (PEG) grafted onto a polyacrylic acid (pAA) core22. A thiol group was attached to the 

terminus of pAA and anchored the structure to the cartilage surface. The lubricating efficacy of 

this polymer was similar to that of recombinant lubricin according to in vitro friction testing results. 

They also determined that the binding ability of the polymer and lubrication were highly correlated 

and future experiments will focus on ways to increase the adsorption of the polymer to the cartilage 

surface22.  

Overall, there are a wide range of opportunities that can be found within the development 

of synthetic lubricants. Until recently, most research has focused on the use of native lubricants 

for the treatment of OA, but factors including susceptibility to degradation become problems for 

these types of treatments. The use of a well-designed synthetic treatment could be the solution. 

Recently, biomimetic polymers have been engineered to possess lubricin function as well as 

resistance to degradation21,22. If these lubricin-mimics function according to their design, they 

would provide greater lubrication efficacy than current HA treatments.  However, research has yet 

to be done to establish the in vivo properties of these lubricin-mimics. 

1.6 Motivation for Development of Biomimetic Lubricin 

Current treatments for OA are limited and fail to prevent the progression of the disease. In 

recent years, OA-research has shifted focus from general symptom relief to a more targeted 

approach to prevent and even reverse symptoms of the disease, especially cartilage deterioration. 

The loss of lubrication in the synovial joints is a primary reason for the decrement of articular 

cartilage13. Therefore, it is believed that further damage to articular cartilage can be avoided if 

proper lubrication is restored through lubricant supplement treatments. HA injections and other 

lubricant supplements are on the market today, but there is minimal clinical evidence to support 

that these products are effective in treating the long-term effects of OA. Overall, lubricin proves 

to be more efficient than HA as a lubricant in vivo and in vitro, but it is susceptible to degradation 

by enzymes and depletion factors that are over expressed within joints suffering from OA. 

Synthetic molecules show promise of resistance to these degradation enzymes, but they must also 
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be designed so they are able to be biocompatible within native cartilage as well as reduce friction 

at the cartilage surface. Therefore, there is a significant need for the development of a synthetic 

lubricant treatment that can provide the efficiency of native lubricants while also being able to 

withstand enzymatic degradation. This resistance to degradation enzymes would improve long 

term effects and overall success of the treatment. To address this need, our laboratory has 

developed a biomimetic lubricin that is designed to mimic the lubrication effects of native lubricin, 

but withstand enzymatic degradation from hyaluronidase, MMPs, and aggrecanase. Our synthetic 

lubricin mimic is able to reduce friction at the articular cartilage surface and shows potential to be 

used as a lubricant treatment for patients suffering with osteoarthritis. 
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CHAPTER 2.  SYNTHESIS AND CHARACTERIZATION OF 

A LUBRICIN MIMIC 

Our laboratory has developed a biomimetic lubricin molecule that is designed to mimic the 

lubrication effects of native lubricin, while also withstanding enzymatic degradation from enzymes 

such as hyaluronidase, MMPs, and aggrecanase. The synthetic lubricin mimic lacks the specific 

cleavage sites targeted by hyaluronidase103 and aggrecanse104. Furthermore, our design of 

biomimetic lubricin does not include the core protein present in native lubricin which is susceptible 

to proteolytic enzymes including MMPs. As a result, our synthesized lubricin mimic most likely 

can withstand degradation due to increased expression of MMPs in osteoarthritic joints105. The 

biomimetic lubricin we developed is composed of a chondroitin sulfate (CS) backbone with 

covalently attached HA and collagen II binding peptides resulting in the formation of a 

peptidoglycan (Fig. 2.1a).  Peptidoglycans are molecules characterized by peptides attached to 

glycosaminoglycans (GAG). Chondroitin sulfate, a GAG found in lubricin and other cartilage 

proteoglycans, was used for this biomimetic molecule due to both its presence in cartilage and its 

negative charge. This negative charge is important for proper lubrication at the articular cartilage 

surface106. This lubricin mimic was designed to bind to collagen II at the articular cartilage surface 

through the addition of collagen II-binding peptides on the backbone. Since lubricin is known to 

interact with HA in vivo, HA-binding peptides were added to the CS backbone to further mimic 

lubricin’s function49. Given that these peptidoglycans are designed to be resistant to hyaluronidase, 

this interaction could also protect HA from enzymatic degradation.  

A lubricin mimic was developed previously in our lab that was termed mLUB due to its 

ability to mimic lubricin. mLUB has already demonstrated significant lubrication properties 

through in vitro tests on cartilage surfaces107. mLUB was also designed with a CS backbone with 

covalently attached collagen type II binding peptides and HA binding peptides. For a number of 

reasons, we decided to change the way these peptidoglycans were synthesized which resulted in 

slight alterations to the finalized lubricin mimic structure (Fig.2.1b).  mLUB was previously 

synthesized through an oxidation process that included a BMPH (N-β-maleimidopropionic acid 

hydrazide) crosslinker that covalently attached the peptides to the backbone. This method was 

relatively time intensive and required opening up the rings on the CS backbone, resulting in a 

random coil polymer as opposed to the more rigid structure of unmodified CS. The stability of the 
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molecule was compromised due to the oxidation step, which reduced shelf-life of the molecules.  

To remedy this, our lab switched to EDC (1-ethyl-3-[3-dimethylaminopropyl] carbodiimide 

hydrochloride) chemistry to conjugate peptide hydrazides to the CS backbone through an amide 

bond (Fig.2.1b).  This method was quicker, kept the structural integrity of the CS backbone, and 

was more stable when compared with the previous mLUB design.  

 

 

 

 

Figure 2.1. A) Design of biomimetic lubricin. B) Schematic of lubricin mimic 

synthesis using EDC chemistry and peptide hydrazides. 
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2.1 Synthesis of Peptide Hydrazides 

The use of EDC chemistry to synthesize the lubricin mimic required slight alterations to 

the peptides attached. The peptides were synthesized in our lab to include a GSG amino acid spacer 

and a functional hydrazide group. These additions allowed the peptide to attach to the CS 

backbone. A total of four different peptides were synthesized which included the collagen II 

binding peptide (WYRGRLGSG), the HA binding peptide (GAHWQFNALTVRGGGSG), and 

biotinylated versions of each. These peptides were abbreviated as WYR, GAH, bWYR, and bGAH 

and had the corresponding molecular weights of 1065, 1728, 1291, and 1955 Da, respectively. The 

functional biotin group was added at the C-terminus to allow for future analysis and 

characterization of the peptidoglycans. Successful peptide synthesis was determined by mass 

spectroscopy in conjunction with the HPLC curves.  The peptides were purified using HPLC and 

each major peak from the trace was collected and analyzed by mass spectroscopy to confirm the 

presence of the synthesized peptide. The peptides were repurified if major contaminants were 

indicated in the HPLC curves. Figures 2.2 and 2.3 verify that WYR and GAH were successfully 

made. Figure 2.4 and 2.5 also verify the synthesis of the biotinylated versions of WYR and GAH. 

Each HPLC trace indicates the peak collected that corresponds with the mass spectroscopy results. 
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Figure 2.2. Analysis of WYRGRLGSG-hydrazide synthesis.  A) HPLC curve of 2nd 

purification. B) Matrix-assisted laser desorption ionization time-of-flight (MALDI 

TOF) mass spectrometry results. 
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Figure 2.3. Analysis of GAHWQFNALTVRGGGSG-hydrazide synthesis.  A) HPLC 

curve of 2nd purification. B) Matrix-assisted laser desorption ionization time-of-flight 

(MALDI TOF) mass spectrometry results. 

 

Collected Peak 

(bGAH) 



22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Molecular Weight of 
biotin-WYR – 1291 Da 

0 5 0 0 1 0 0 0 1 5 0 0

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

m L

m
A

U

2 1 5  n m

2 5 4  n m

2 8 0  n m

A) 

B) 

Figure 2.4. Analysis of biotin-WYRGRLGSG-hydrazide synthesis.  A) HPLC curve of 

2nd purification. B) Matrix-assisted laser desorption ionization time-of-flight (MALDI 

TOF) mass spectrometry results. 
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Figure 2.5. Analysis of biotin-GAHWQFNALTVRGGGSG -hydrazide synthesis.  A) 

HPLC curve of 2nd purification. B) Matrix-assisted laser desorption ionization time-of-

flight (MALDI TOF) mass spectrometry results. 
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2.2 EDC Chemistry: Troubleshooting Peptidoglycan Synthesis 

To synthesize the lubricin mimic, a series of trouble shooting steps were taken to attach the 

peptides to the CS backbone using EDC chemistry. We started by determining the best way to add 

and quantify two different peptides to the same backbone. Since WYR and GAH had similar 

absorbance and fluorescence for many of the methods we investigated, it was difficult to determine 

how much of each peptide was on the CS backbone.  Eventually, a 2-step process was developed 

where one type of peptide was added to the reaction, purified, and quantified. The process was 

then repeated with the second peptide. The bound peptides were quantified using a Nanodrop 2000 

spectrophotometer using absorbance at 280 nm since the CS backbone showed no absorbance at 

this wavelength (Fig. 2.6a). A set of standards was made for both of the peptides. These standards 

were used to calculate the number of mols of peptide bound per one mol of CS (Fig. 2.6b). This 

method was able to quantify the number of peptides attached within ~2 to 3 mols per mol CS. 

Because of this uncertainty, there are cases where efficiencies are determined to be greater than 

100% or less than 0%. 

 

 

  
Figure 2.6. A) Absorbance curves @ 280 for CS, WYR, and GAH with varying 

concentrations.  B) Concentration standards for WYR and GAH for peptide 

quantification. 
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The order of peptide addition during peptidoglycan synthesis was considered. A 2:6:1 ratio 

of GAH:WYR:CS was synthesized to determine the best peptide order. The EDC concentration 

was also varied for the 2nd peptide addition to determine if increasing the molar ratio of EDC would 

increase the efficiency of the 2nd peptide conjugation. These molecules were denoted as 

2GAH_6WYR_CS or 6WYR_2GAH_CS depending on which order the peptides were added. The 

peptide listed first on the molecular abbreviation was the first peptide reacted and the next peptide 

listed was the second addition.  The numbers preceding the peptide abbreviation indicate the ratios 

of peptide added per CS. It is important to note that our CS backbone has ~86 carboxyl groups that 

are activated by EDC (Fig. 2.1b).  We wanted to use excess EDC to activate all carbonyl groups, 

in order to maximize peptide addition during each reaction. At first, 100 mols of EDC were added 

per mole of CS, ensuring that the ~86 carboxyl groups were activated. Later, concentrations of 200 

and 400 mols of EDC per mole CS were tested as well. Overall, the coupling efficiencies were 

lower for the second peptide addition when compared to the first. It was determined that adding 

2GAH first allowed for better coupling of the 6WYR in the second step.  Increasing the molar ratio 

of EDC to CS decreased the coupling efficiencies for the second peptide addition.  

 

Table 2.1. Peptidoglycan synthesis and peptide quantification of 2GAH_6WYR_CS.  A 

range of 100-400 molar ratios of EDC to CS were used during 2nd peptide addition. 
 

1st Peptide Addition 

Targeted 
Molecule 

EDC Added 
(mols per CS) 

Peptide Added 
(mols per CS) 

Absorbance 
@ 280 nm 

Peptide Bound 
(mols per CS) 

Coupling 
Efficiency 

2GAH_CS 100 2 0.364 1.81 90.29% 

6WYR_CS 100 6 0.997 4.92 81.92% 

2nd Peptide Addition 

Targeted 
Molecule 

EDC Added 
(mols per CS) 

Peptide Added 
(mols per CS) 

Absorbance 
@ 280 nm 

Peptide Bound 
(mols per CS) 

Coupling 
Efficiency 

2GAH_6WYR_CS 100 6 1.118 3.65 60.83% 

6WYR_2GAH_CS 100 2 1.147 0.70 35.21% 

6WYR_2GAH_CS 200 2 1.036 0.17 8.45% 

6WYR_2GAH_CS 400 2 0.988 -0.01 -0.39% 

 

Based on the results reported in Table 2.1, we continued with the addition of 2GAH first. 

The EDC concentration was held constant at 100 mols/mol CS for the following troubleshooting 

steps.  Next, we analyzed the 2nd peptide coupling efficiency of WYR following the addition of 
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various WYR molar concentration ranging from 6-10 peptides per CS backbone. This was done 

to test whether increasing the molar ratio of WYR to CS would increase WYR conjugation to CS 

during the 2nd peptide addition step. The coupling of increased WYR per CS was hypothesized to 

enhance the binding of the peptidoglycan to the cartilage surface. Based on the results shown in 

Table 2.2, we determined that there was little increase in WYR conjugation to the CS backbone 

when increasing the initial reaction molar ratio from 6:1 to 10:1. The efficiency of the second 

peptide conjugation decreased as more peptide was added.  

 

Table 2.2. Peptidoglycan synthesis and peptide quantification with 2GAH and varying molar 

ratio of WYR to CS for 2nd peptide addition. 
 

1st Peptide Addition 

Targeted 
Molecule 

EDC Added 
(mols per CS) 

Peptide Added 
(mols per CS) 

Absorbance 
@ 280 nm 

Peptide Bound 
(mols per CS) 

Coupling 
Efficiency 

2GAH_CS 100 2 0.382 1.96 98.23% 

2nd Peptide Addition 

Targeted 
Molecule 

EDC Added 
(mols per CS) 

Peptide Added 
(mols per CS) 

Absorbance 
@ 280 nm 

Peptide Bound 
(mols per CS) 

Coupling 
Efficiency 

2GAH_6WYR_CS 100 6 1.030 3.37 56.25% 

2GAH_8WYR_CS 100 8 1.076 3.64 45.54% 

2GAH_10WYR_CS 100 10 1.165 4.17 41.68% 

 

We hypothesized that a side reaction was occurring in the EDC reaction for the first peptide 

addition which prevented effective conjugation of the second peptide to the CS backbone. The 

high concentration of EDC added in the first step (100 mols/mol CS) could have been altering the 

carboxyl groups, through an O to N-acylurea conversion, making the carbonyl groups unavailable 

for reaction during the second peptide addition108. As a remedy, the concentration of EDC was 

decreased during the first peptide addition to reduce the number of carboxyl groups potentially 

lost due to an N-acylurea conversion of the intermediate compound (Fig 2.1b). This allowed for 

more available carboxyl groups to be activated during the second peptide addition. Thus, the molar 

ratio of EDC to CS was reduced to from 100:1 to 25:1 during the first peptide addition. A 25:1 

molar ratio of EDC:CS was high enough to activate the number of carboxyl groups required for 

peptide addition but low enough to not activate less than 1/3 of the available ~86 carboxyl groups 

present on each CS backbone. With the reduction in EDC for the first peptide reaction, there was 
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an increase in peptide coupling efficiency for the second reaction (Table 2.3). From these results, 

we concluded that using a 100:1 molar ratio of EDC per CS in the first reaction was impeding 

peptide conjugation during the second peptide addition presumably through permanent 

conjugation of EDC to the CS backbone. The synthesized 2GAH_15WYR_CS molecule shown in 

Table 2.3 was the basis for our preliminary friction experiments described later in the thesis.   

 

Table 2.3. Peptidoglycan synthesis and peptide quantification with limited EDC during first 

peptide addition. 
 

1st Peptide Addition 

Targeted 
Molecule 

EDC Added 
(mols per CS) 

Peptide Added 
(mols per CS) 

Absorbance 
@ 280 nm 

Peptide Bound 
(mols per CS) 

Coupling 
Efficiency 

2GAH_CS 25 2 0.412 2.13 106.74% 

2GAH_CS 25 2.4 0.451 2.37 98.61% 

5GAH_CS 25 5.5 1.007 6.06 110.15% 

2nd Peptide Addition 

Targeted 
Molecule 

EDC Added 
(mols per CS) 

Peptide Added 
(mols per CS) 

Absorbance 
@ 280 nm 

Peptide Bound 
(mols per CS) 

Coupling 
Efficiency 

2GAH_10WYR_CS 100 10 2.055 10.10 101.04% 

2GAH_15WYR_CS 100 15 2.311 13.20 87.97% 

5GAH_20WYR_CS 100 25 3.383 20.49 81.95% 

 

Following the successful 2nd peptide addition of WYR to the CS backbone, our goal was 

to make a series of peptidoglycans with varying numbers of WYR and/or GAH bound to the CS 

backbone to be analyzed for friction testing.  A set of lubricin mimic variations were chosen for a 

friction testing experiment that was designed to determine which formulation resulted in achieving 

the lowest coefficient of friction at the cartilage surface.  For this experiment set up, the selected 

ratios of WYR:GAH for each biotinylated molecule were 15:2, 10:2, 10:5, 10:10, and 10:15. As a 

starting point, a number of steps were taken to troubleshoot the synthesis of 10:5 and 10:10 

WYR:GAH ratios to optimize the EDC reactions with the addition of single biotinylated peptide 

on each CS molecule (Tables 2.4 and 2.5).   

Two different methods of peptidoglycan synthesis were tested.  The first method involved 

adding a biotinylated GAH separately from the regular GAH peptide for separate peptide 

quantification.  This process involved repeating the entire EDC chemistry reaction three times for 

each different peptide addition (Table 2.4). The second method involved adding both the 



28 

 

biotinylated and regular GAH at the same time which resulted in a 2-step peptide addition reaction 

(Table 2.5).  Grouping biotin-GAH with GAH in a single EDC reaction did not allow for separate 

quantification of each peptide. Instead, the grouped peptides were quantified using the same 

standard measured for GAH on the nanodrop. The addition of biotin-GAH and GAH at the same 

time was done to determine if better peptide conjugation efficiency could be obtained by repeating 

the EDC reaction only two times instead of three. Also, the 2-step peptide addition method was 

quicker and more convenient than the 3-step process.  

For 3-step peptide addition, Table 2.4 shows that there was sufficient coupling of the 1st 

and 2nd peptide. The biotinylated GAH was added first to the entire batch, which was split into 

groups for each additional reaction. The 3rd peptide addition resulted in lower efficiencies for all 

of the reactions.  The highest efficiency of 40.76% for third peptide addition was seen for the 

bGAH_4GAH_10WYR_CS molecule. This high efficiency was due to the lower amount of 

peptide (5GAH) being added during the 2nd addition. When the GAH addition was before the WYR 

addition, there was significant conjugation for both 5 and 10 GAH. However, this led to very little 

WYR addition during the last peptide addition.  Overall, the 3-step method did not improve the 

quantity of peptide addition to the CS backbone. 
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Table 2.4. Biotinylated peptidoglycan synthesis with a 3-step peptide addition. 

 

1st Peptide Addition 

Targeted Molecule 
EDC Added 

(mols per CS) 
Peptide Added 
(mols per CS) 

Absorbance 
@ 280 nm 

Peptide Bound 
(mols per CS) 

Coupling 
Efficiency 

bGAH_CS 10 1.2 0.157 0.78 64.81% 

2nd Peptide Addition 

Targeted Molecule 
EDC Added 

(mols per CS) 
Peptide Added 
(mols per CS) 

Absorbance 
@ 280 nm 

Peptide Bound 
(mols per CS) 

Coupling 
Efficiency 

bGAH_10WYR_CS 30 12 1.586 8.66 72.13% 

bGAH_9GAH_CS 30 10.8 1.545 10.00 92.63% 

bGAH_4GAH_CS 30 4.8 1.009 5.23 108.90% 

3rd Peptide Addition 

Targeted Molecule 
EDC Added 

(mols per CS) 
Peptide Added 
(mols per CS) 

Absorbance 
@ 280 nm 

Peptide Bound 
(mols per CS) 

Coupling 
Efficiency 

bGAH_10WYR_9GAH_CS 100 9.9 1.723 0.43 4.39% 

bGAH_10WYR_4GAH_CS 100 4.4 1.620 0.07 1.64% 

bGAH_9GAH_10WYR_CS 100 11 1.861 1.92 17.41% 

bGAH_4GAH_10WYR_CS 100 11 1.721 4.48 40.76% 

bGAH_10WYR_EDC_CS 100 0 1.721 n/a n/a 

bGAH_9GAH_EDC_CS 100 0 1.095 n/a n/a 

bGAH_4GAH_EDC_CS 100 0 0.748 n/a n/a 

 

The 2-step method showed slightly higher peptide conjugation efficiency than the 3-step 

method. However, the calculated number of peptide bound per CS remained significantly lower 

than the targeted molar ratio for the final peptide addition. The best peptide conjugation was seen 

for 10WYR_(9GAH+bGAH) _CS, which only resulted in 5.59 GAH bound per CS vs the targeted 

amount of 10GAH per CS. So far, we have been unable to conjugate greater than 15 mols of 

peptide per CS backbone using two subsequent peptide additions.  
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Table 2.5. Biotinylated peptidoglycan synthesis with 2-step peptide addition. 
 

1st Peptide Addition 

Targeted Molecule 
EDC Added 

(mols per CS) 
Peptide Added 
(mols per CS) 

Absorbance 
@ 280 nm 

Peptide Bound 
(mols per CS) 

Coupling 
Efficiency 

10WYR_CS 30 12 1.739 10.61 88.41% 

(9GAH+bGAH)_CS 30 12 1.351 9.13 76.07% 

(4GAH+bGAH)_CS 30 6 1.026 6.31 105.12% 

2nd Peptide Addition 

Targeted Molecule 
EDC Added 

(mols per CS) 
Peptide Added 
(mols per CS) 

Absorbance 
@ 280 nm 

Peptide Bound 
(mols per CS) 

Coupling 
Efficiency 

10WYR_(9GAH+bGAH)_CS 100 11 2.481 5.59 50.86% 

10WYR_(4GAH+bGAH)_CS 100 5.5 1.882 0.78 14.14% 

(9GAH+bGAH)_10WYR_CS 100 11 1.886 3.49 31.76% 

(4GAH+bGAH)_10WYR_CS 100 11 1.197 0.68 6.18% 

10WYR_EDC_CS 100 0 1.099 n/a n/a 

(9GAH+bGAH)_EDC_CS 100 0 1.078 n/a n/a 

4GAH+bGAH)_EDC_CS 100 0 0.720 n/a n/a 

 

As mentioned previously, the limited amount of peptide addition seen in Table 2.4 and 

Table 2.5 could be caused by permanent conjugation of EDC to CS during the first reactions which 

subsequently blocked peptide conjugation in the in the next.  Because of this concept, a group of 

molecules in the final peptide addition steps were reacted with EDC only without the peptide 

present. These molecules were listed in Tables 2.4 and 2.5 with EDC in the targeted molecule 

name to indicate that no peptide was added.  Isolated EDC addition was tested to determine if there 

was a change in molecule absorbance before and after the reaction. In theory, the absorbances 

should remain the same, but a change in absorbance might indicate the presence of permanent 

EDC conjugates attached to CS due to an O to N-acylurea conversion of the intermediate active 

compound. Our hypothesis was that if EDC was being permanently conjugated onto the carbonyl 

group, there would be an increase in molecular absorbance following the EDC only reaction. 

According to Table 2.4, there was a slight decrease in absorbance following the addition of EDC 

only for bGAH_9GAH_CS and bGAH_4GAH_CS.  A decrease in absorbance was also seen in 

Table 2.4 for all the molecules with the EDC only addition. The reduction in molecule absorbance 

@ 280 nm could be a result of contaminants and unbound EDC/peptide being present when the 
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first peptide addition was quantified. Following the subsequent EDC reaction, the unbound 

EDC/peptide and other contaminants were purified out of the sample before analysis.  

A series of reactions were performed to determine the minimal amount of EDC that was 

needed for efficient peptide addition.  These reactions were done to limit the amount of unwanted 

EDC conjugation to the CS carboxyl groups due to excess EDC present during the first peptide. 

Table 2.6 shows that with even a 1:1 molar ratio of EDC to peptide (12 mols per CS), there was 

sufficient coupling to the CS backbone. It is important to note that even though the 30:1 molar 

ratio of EDC resulted in better peptide coupling, the lower amounts show potential for increasing 

the coupling of the 2nd peptide addition.  Although no further peptidoglycan synthesis 

troubleshooting steps were taken, the results from Table 2.6 show potential for future optimization 

of biomimetic lubricin synthesis using EDC chemistry.  

 

Table 2.6. Synthesis of 10WYR_CS and 10GAH_CS with decreasing EDC. 
 

1st Peptide Addition 

Targeted 
Molecule 

EDC Added 
(mols per CS) 

Peptide Added 
(mols per CS) 

Absorbance 
@ 280 nm 

Peptide Bound 
(mols per CS) 

Coupling 
Efficiency 

10WYR_CS 30 12 2.550 14.21 118.42% 

10WYR_CS 20 12 1.958 11.82 98.53% 

10WYR_CS 12 12 1.788 10.31 85.93% 

10GAH_CS 30 12 1.664 12.28 102.32% 

10GAH_CS 20 12 1.399 9.48 79.01% 

10GAH_CS 12 12 1.400 9.49 79.07% 

2.3 Verification of EDC Conjugates Attached to Chondroitin Sulfate  

Throughout the EDC chemistry troubleshooting process there was reason to suspect the 

EDC was being permanently attached to the carboxyl due to an O to N-acylurea rearrangement.  

To verify this, FTIR and NMR analyses were done on CS only and CS +EDC dissolved in a D2O 

solution.  The EDC was added via a standard EDC chemistry reaction without the addition of 

peptide using 100 mols of EDC per CS backbone. The 1H-NMR analysis was done to quantify the 

amount of EDC present per CS backbone (Fig. 2.7) and a 13C-NMR analysis was performed as an 

additional verification of differences between the prepared samples (Fig. 2.8). Following the NMR 
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analysis, an FTIR spectrum was measured for each sample to determine if the EDC present in the 

CS+EDC sample was attached to the CS backbone (Fig 2.9 and 2.10).  

 The 1H-NMR spectra of the CS and CS+EDC samples show clear differences (Fig. 2.7).  

Specifically, the CS+EDC spectrum shown in Figure 2.7b has a distinct peak at 1.0 ppm that is not 

seen in the CS only spectrum. The peak at 1.0 ppm in Fig. 2.7b is associated with the protons found 

in the two CH3 groups that are attached to an amine at the end of the EDC molecules (Fig. 2.1b). 

With this information, we were able to calculate the number of EDC molecules present per CS 

backbone in the prepared sample. According to the peak values in Figure 2.7b, there were 

approximately 25 EDC molecules present per each CS backbone. Hence, ~25% of the initial EDC 

added to the CS+EDC sample remained after molecule purification.  The 13C-NMR also showed 

clear differences between the spectra (Fig. 2.8). There is a large peak at ~43 ppm in Figure 2.8b 

that is not present in Figure 2.8a.  This further indicates that EDC is present in the CS+EDC 

sample.  From both 1H and 13C NMR analysis we can conclude that there is EDC that remains with 

the CS following a standard EDC reaction. 
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CH3 from EDC 

A) 

B) 

Figure 2.7. 1H-nuclear magnetic resonance spectroscopy analysis of CS and CS+EDC dissolved 

in D2O. A) Spectrum for CS only. B) Spectrum for CS with the addition of 100 mols of EDC 

per mol CS. The peak with only EDC proton contribution is indicated. According to this 

spectrum, approximately 25 EDC molecules were present per each CS backbone.  



34 

 

 

 

 

Figure 2.8. 13C-nuclear magnetic resonance spectroscopy analysis of CS and CS+EDC 

dissolved in D2O. A) Spectrum for CS only. B) Spectrum for CS with the addition of 100 

mols of EDC per mol CS.  
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Although the NMR analysis showed the presence of EDC in the CS+EDC sample, this did 

not mean that EDC molecules were permanently conjugated to the CS backbone.  There was the 

additional possibility that EDC was not filtered out from the CS during the purification step.  To 

determine if EDC was attached to the CS backbone, an FTIR analysis was performed. Our area of 

interest on the FTIR spectrum was the peak that indicated the carboxyl group on the CS.  EDC 

will be permanently conjugated onto the carboxyl site of CS if active O-acylisourea was altered to 

N-acylurea during the EDC reaction. The 1605 cm-1 peak from the CS only sample shown in Figure 

2.10a indicates the carboxyl group found in our CS sample109. There is a significant reduction in 

this peak with the addition of EDC to the CS shown in Figure 2.10. This alteration most likely 

indicates the presence of permanently conjugated EDC at the carbonyl site reducing signal from 

the carboxyl groups in the FTIR spectra (Fig. 2.10). Additionally, the stable conjugation of EDC 

would create an amide bond with the CS backbone.  Chondroitin sulfate already contains one 

amide per disaccharide and the conjugation of EDC would create two in some disaccharides since 

not all the disaccharides react with the EDC. According to Yan et al., we determined that the amide 

I and II are present in our CS+EDC sample at the 1650 cm-1 and 1547 cm-1 peaks shown in Figure 

2.10b110. Overall, the FTIR analysis indicated that there was some permanent attachment of EDC 

to CS backbone at the carboxyl group region, even after quenching and purifying the CS+EDC 

reaction. 
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Figure 2.9. FTIR spectra of chondroitin sulfate (CS) and chondroitin sulfate reacted with 

EDC (CS+EDC) with peak values. A) Spectrum for CS sample. The 1605 cm-1 peak is 

associated with the carboxyl group. B) Spectrum for CS+EDC. The two amide groups 

are indicated by the peaks at 1650 cm-1 and 1547 cm-1.  

A) 

B) 
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In conclusion, we were able to successfully synthesize a 2GAH_15WYR_CS molecule 

which was used for preliminary friction studies shown in the next chapter. A decrease in EDC 

concentration from 100 mols/mol CS to 30 mols/mol CS during the first peptide addition allowed 

us to synthesize the 2GAH_15WYR_CS with 70-100% peptide conjugation.  However, this 

reduction in EDC did not seem to improve the coupling efficiency when a high molar ratio of 

GAH:CS was added subsequently with a high molar ratio of WYR:CS. Additional 2-peptide 

molecules were not able to be synthesized due to low conjugation efficiency of the second peptide 

addition. Adding 10GAH or more to the CS backbone significantly reduced the amount of WYR 

we were able to add or vice versa depending on the peptide addition order. The FTIR and NMR 

analysis showed that inefficient peptide coupling was caused by permanent EDC conjugation onto 

the CS backbone which blocked peptide attachment at the CS carboxyl site. During the EDC 

reaction, the active O-acylisourea intermediate formed by EDC and the CS carboxyl group was 

undergoing rearrangement to an inactive N-acylurea. This alteration caused EDC to remain bound 

Figure 2.9. Overlay of FTIR spectra of chondroitin sulphate (CS) and chondroitin sulfate 

reacted with EDC (CS+EDC). The area associated with the carboxyl group located on the CS 

in indicated. There is significant difference in this area between the two spectra. 

1550-1700 

CS carboxyl group 
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to the CS carbonyl site even after quenching and purifying the EDC reaction.  For future 

troubleshooting, an even smaller amount of EDC can be added for each peptide addition to limit 

the number of inactive N-acylurea formed, which inhibits the primary anime reaction of the peptide 

hydrazides.   We showed that even a 1:1 molar ratio of EDC and peptide added to CS resulted in 

sufficient peptide binding to the CS backbone.  
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CHAPTER 3.  COEFFICIENT OF FRICTION: PRELIMINARY STUDIES 

Our lubricin mimic was designed to reduce friction at the articular cartilage surface.  To 

test the lubrication properties of the synthesized peptidoglycans, a series of macroscale friction 

studies were performed. The goal of these preliminary friction studies was to determine which 

treatments to test in comparison to the lubricin mimic and to measure the lubrication properties of 

our initially chosen peptidoglycan design, 2GAH_15WYR_CS (Table 2.3). Coefficient of friction 

(COF) measurements were obtained using a rheometer with a cartilage-on-glass setup. In the 

beginning, half of the harvested cartilage osteochondral plugs were treated with 0.5% w/v trypsin 

in PBS for three hours at room temperature.  This was done to mimic the osteoarthritic condition 

of diseased cartilage.  The trypsin treatments degraded the proteoglycans within the extracellular 

matrix and destroyed the structural integrity of the cartilage111. For the first preliminary friction 

study, we used 2GAH_15WYR_CS as our lubricin mimic and PBS/trypsin as our negative control 

(Fig. 3.1).  We hypothesized that the trypsin would increase the friction compared to the non-

treated cartilage (WT).  We also hypothesized that the COF of the trypsin treated plugs would 

decrease with the addition of the lubricin mimic plus hyaluronic acid. Our initial study included 

treatments of PBS, 2GAH_15WYR_CS, high molecular weight HA, and low molecular weight 

HA to both native cartilage and trypsin treated cartilage. After testing, we did not see a significant 

difference in static COF between the twelve treatment groups shown in Figure 3.1. For the kinetic 

COF measurements, the 2GAH_15WYR_CS treatment was able to reduce the kinetic COF 

compared to the PBS control within the WT plug group (Fig. 3.1b). In the WT plugs, the 

2GAH_15WYR_CS kinetic COF was significantly lower than both the high and low molecular 

weight treatments of HA. This suggests that the lubricin mimic can reduce friction at the cartilage 

surface more than hyaluronic acid by itself. However, it was unclear if the addition of HA to the 

2GAH_15WYR_CS decreased the COF further than the lubricin mimic alone. Furthermore, the 

trypsin/PBS treatments did not increase the COF for either the static or the kinetic COF when 

compared to the WT/PBS (Fig. 3.1). Since we were using mature cartilage (18-36 months old 

bovine), the trypsin treatment might not have been necessary due to the cartilage degradation that 

was already present at harvest.  
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Figure 3.1. COF values measured at the cartilage surface comparing WT to trypsin 

treatments with the addition of 2GAH_15WYR_CS and hyaluronic acid.  HA1 is high 

molecular weight HA and HA2 is low molecular weight HA. Statistically significant 

differences are represented by different letters appearing over each column.  n = 3 for each 

treatment.  A) Static COF.  B) Kinetic COF. 
 

 

A) 

B) 
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An additional study was performed to determine if the trypsin treatment of the 

osteochondral plugs was necessary to induce an osteoarthritic state. In this study, the trypsin 

treatment time was varied (15 min, 1 hr, and 3 hr) to determine if the length of time influenced 

friction at the cartilage surface (Fig. 3.2). The results indicated that the trypsin treatment did not 

increase the static or kinetic COF (Fig. 3.2). For the kinetic COF, the friction decreased compared 

to the native cartilage with each of the various timed trypsin treatments to the osteochondral plugs 

(Fig. 3.2b). From this, we concluded that the trypsin treatment did not induce a diseased state at 

the articular cartilage surface.  This could be due to condition of the bovine knees that the plugs 

were harvested from. Many of the mature bovine knees already showed signs of degradation at the 

cartilage surface.  The decrease in kinetic friction due to the trypsin might be because the treatment 

did not roughen the cartilage surface; it just degraded the structure of the cartilage making it soft 

and sponge like.  The lack of structural integrity and the soft, porous characteristics of the trypsin 

treated cartilage were not indicative of an increase in friction between the cartilage surface and the 

glass plate. From this study, we concluded that the best negative control for our next experiments 

would be untreated osteochondral plugs after vigorous rinsing with PBS to remove any residual 

synovial fluid (SF). We also determined that the best positive control would be untreated cartilage 

plugs with the addition of synovial fluid to mimic the friction of native cartilage.  

 

 

Figure 3.2. COF values measured at the cartilage surface comparing WT to 15 min, 1 hr, and 

3 hr trypsin treatments.  Statistically significant differences are represented by different letters 

appearing over each column.  n = 7 for each treatment.  A) Static COF.  B) Kinetic COF. 
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From this point on, we did not use any trypsin treatment on the osteochondral plugs.  For 

the next experiment, all of the bovine osteochondral plugs we used were harvested, rinsed 

overnight, and stored in treatments of either PBS, HA, SF, or 2GAH_15WYR_CS until friction 

testing was completed. The results in Figure 3.3a shows that the static COF of SF was significantly 

lower than the rest of the treatments.  Aside from SF, the treatments showed the same static COF. 

On the other hand, the kinetic COF measurements for all the treatments with 2GAH_15WYR_CS 

were statistically lower than PBS and low molecular weight HA.  According to the results, the 

peptidoglycan and peptidoglycan + HA treatments matched the kinetic COF of native synovial 

fluid, whereas the PBS and HA treatments did not. These findings were consistent with the data 

displayed in Figure 3.1.  Data depicted in Figure 3.1 and Figure 3.3 suggest that 

2GAH_15WYR_CS reduced the kinetic COF at the articular cartilage surface.  

 

 

Our next step was to analyze which components of 2GAH_15WYR_CS were responsible 

for reducing the friction at the articular cartilage surface. Up to this point, 2GAH_15WYR_CS 

was the only peptidoglycan formulation we tested. We did not know if the addition of GAH or 

WYR, or both, was critical to the lubrication characteristic of the peptidoglycan. To test which 

components were necessary for the reduction of friction, we synthesized 2GAH_CS and 

15WYR_CS in addition to 2GAH_15WYR_CS. For friction testing, we used the same positive 

and negative controls of SF and PBS treatments, respectively.  In addition, osteochondral plugs 

Figure 3.3. COF values measured at the cartilage surface comparing PBS, 

2GAH_15WYR_CS, hyaluronic acid (HA), and synovial fluid (SF) treatments.  HA1 is 

high molecular weight HA and HA2 is low molecular weight HA Statistically significant 

differences are represented by different letters appearing over each column.  n = 4 for each 

treatment.  A) Static COF.  B) Kinetic COF. 
 

 



43 

 

were treated with only CS to see if CS without the addition of peptides contributed to cartilage 

surface lubrication. Hyaluronic acid treatments were not included for this experiment since we saw 

no significant reduction of COF in the earlier studies. According to the rheology results seen in 

Figure 3.4, we determined that the 15WYR_CS and 2GAH_15WYR_CS treatments had a 

significantly lower static COF than both PBS and 2GAH_CS.  The static COF of CS was 

statistically the same as all the treatments except synovial fluid (Fig. 3.4a). The kinetic COF of 

15WYR_CS was significantly lower than PBS and 2GAH_CS (Fig. 3.4b).  Based on both the static 

and kinetic COF, we concluded that the addition of 2GAH to the CS backbone was not a 

contributor to lowering the COF. The presence of 15WYR on the CS backbone has been consistent 

in showing a reduction in the kinetic COF (Fig. 3.1b, 3.3b and 3.4b).  The kinetic COF of synovial 

fluid was not statistically different from the rest of the treatments for this experiment. There was 

quite a bit of variability in the kinetic COF for the synovial fluid sample and the 

2GAH_15WYR_CS. The osteochondral plugs we used were harvested from adult bovine (18-36 

months) with unknown conditions.  Sometimes there was quite a bit of variability between batches 

of osteochondral plugs that were extracted. This could be a possible explanation for the synovial 

fluid treatment not having a lower kinetic COF than the rest of the treatments which was seen in 

previous experiments.  

 

Figure 3.4 COF values measured at the cartilage surface comparing PBS, SF, and 

2GAH_15WYR_CS and its separate components. Statistically significant differences are 

represented by different letters appearing over each column.  n = 4 for each treatment.  A) 

Static COF.  B) Kinetic COF. 
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In conclusion, the goal of these preliminary friction studies was to determine which 

treatments to test in comparison to the lubricin mimic and to see the lubrication properties of our 

initially chosen peptidoglycan design, 2GAH_15WYR_CS (Table 2.3). We determined that the 

use of a trypsin treatment on the osteochondral plugs as an osteoarthritis disease model was not 

needed for our friction testing experiments. This treatment has generally been used on healthy 

cartilage, specifically on cartilage harvested from young calves aged 3-6 months. Our 

osteochondral plugs were harvested from older cow knees (18-36 months) that already displayed 

signs of wear at the articular cartilage surface. We decided the best negative control (or disease-

like cartilage) was to test non-treated osteochondral plugs shaken vigorously overnight in PBS to 

remove residual synovial fluid. Some of these plugs were treated with synovial fluid afterwards as 

a positive control. Furthermore, we determined that hyaluronic acid treatments in addition to the 

peptidoglycan treatment did not contribute to reducing the COF. We found that the peptidoglycan 

alone was able to reduce the friction at the cartilage surface. One consideration we made was the 

amount of GAH that was added to the CS backbone. There was the possibility that only 2GAH 

peptides added per CS was not enough for significant HA binding to the molecule. We did not 

pursue this further since we were successful in reducing the COF with the 2GAH_15WYR_CS 

and 15WYR_CS alone. Additional studies could be done with increasing amounts of GAH peptide 

added to the peptidoglycan along with a corresponding HA treatment. Overall, these preliminary 

studies gave critical insight to the lubrication abilities of 2GAH_15WYR_CS.  
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CHAPTER 4.  LUBRICIN MIMIC REDUCES COEFFICIENT OF 

FRICTION AT ARTICULAR CARTILAGE SURFACE 

We designed our lubricin mimic to possess the same function as lubricin but not the same 

structure.  The main function of lubricin is to reduce friction at the articular cartilage surface, which 

was our primary targeted characteristic for synthesized biomimetic lubricin. Our lubricin mimic 

was designed to include both collagen II binding peptides (WYR) and HA binding peptides (GAH) 

attached covalently to a CS backbone (Fig. 4.1a and 4.1c). The collagen II binding peptides 

allowed the molecule to bind at the cartilage surface creating a protective boundary layer similar 

to that of native lubricin. The HA binding peptides would allow the lubricin mimic to also bind to 

HA at the cartilage surface, imitating the lubricin-HA interactions that occur within the synovial 

joint. We hypothesized that the attachment of HA to the lubricin mimic at the articular cartilage 

surface was necessary for proper lubrication due to previous studies showing lubricin/HA 

interactions48,49.  However, after the preliminary tests shown in Chapter 3, we saw that the addition 

of HA to the synthesized lubricin mimic did not reduce the friction at the articular cartilage surface 

more than the lubricin mimic alone. We also concluded that the 2GAH_15WYR_CS molecule was 

able to reduce friction more than PBS and HA alone. Because of this, we decided to run a series 

of friction tests to determine which components of the synthesized peptidoglycan were responsible 

for this reduction in friction.  Our goal was to determine if both WYR and GAH peptides attached 

to the CS backbone were necessary to reduce friction at the cartilage surface.  Furthermore, if only 

one type of peptide was needed, we wanted to determine whether varying the amount of peptide 

attached to the backbone affected the lubrication properties of the synthesized peptidoglycans.  

Ultimately, this study gave us the knowledge to formulate a biomimetic lubricin peptidoglycan 

with the best lubrication properties for the reduction of friction at the articular cartilage surface. 
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First, we synthesized the peptidoglycans that we planned for our friction testing experiment 

using the EDC chemistry method shown in Figure 4.1b. A series of WYR_CS and GAH_CS 

peptidoglycans with varying peptides amounts were made, as well as 2GAH_15WYR_CS (Table 

4.1). All of the peptidoglycans included the addition of one biotinylated peptide per CS backbone 

that was included with the overall peptide quantification.  Each of the WYR_CS molecules 

contained one biotinylated WYR and each of the GAH_CS molecules contained one biotinylated 

Figure 4.1. A) Design of biomimetic lubricin. B) Schematic of lubricin mimic synthesis 

using EDC chemistry and peptide hydrazides. C) Amino acid sequence of HA binding 

peptide (GAH) and collagen II binding peptide (WYR). 
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GAH.  The 2GAH_15WYR_CS was biotinylated with a biotin attached to one of the GAH peptides 

added to the CS backbone. The biotinylated peptide addition to the peptidoglycans allowed the 

molecules to be imaged at the cartilage surface using confocal microscopy for later analysis.  

To synthesize each of the peptide-CS formulations, a targeted molar ratio of peptide to CS 

was determined for each peptidoglycan, and the corresponding amount of peptide was added to 

each reaction with a 10% excess. This excess served to account for loss of peptide conjugation due 

to incomplete reaction and manual error. The peptide coupling efficiencies were determined by 

dividing the amount of bound peptide by the amount of peptide added. Despite numerous efforts, 

the EDC chemistry process was not always consistent; therefore, peptide quantification had to be 

done after each reaction.  Each peptidoglycan was synthesized so that the final amount of peptide 

conjugated was within 1-2 mols of the targeted amount. In Table 4.1 the amount of peptide 

conjugated for 15GAH_CS was around 12.3 mols GAH/mol CS, which is slightly lower than we 

targeted. However, we determined that there was enough difference in peptide bound between the 

10GAH_CS (8.9 peptides conjugated) and the 15GAH_CS (12.3 peptides conjugated) to use them 

for friction testing.  

 

Table 4.1. Biotinylated peptidoglycan synthesis and peptide quantification of varying 

peptide amounts of WYR_CS and GAH_CS.  The synthesis of 2GAH_15WYR_CS 

was also included. 

  

WYR Addition 

Molecule 
WYR added 

(mols per CS) 
Absorbance 
@ 280 nm 

Peptide Bound 
(mols per CS) 

Coupling 
Efficiency 

2GAH_15WYR_CS 16.5 2.074 13.15 79.70% 

5WYR_CS 5.5 1.076 5.528 100.51% 

10WYR_CS 11 1.596 9.034 82.13% 

15WYR_CS 16.5 2.236 14.627 88.65% 

GAH Addition 

Molecule 
GAH added 

(mols per CS) 
Absorbance 
@ 280 nm 

Peptide Bound 
(mols per CS) 

Coupling 
Efficiency 

2GAH_15WYR_CS 2.4 0.392 2.024 84.33% 

2GAH_CS 2.4 0.392 2.024 84.33% 

5GAH_CS 5.5 0.722 4.011 72.93% 

10GAH_CS 11 1.348 8.998 81.80% 

15GAH_CS 16.5 1.668 12.312 74.62% 
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We chose the peptidoglycan formulations shown in Table 4.1 for the friction testing 

experiment based on the number of peptides in the 2GAH_15WYR_CS molecule.  We included a 

2GAH_CS and a 15WYR_CS separately to determine which structure (or both) contributed to a 

reduction in friction at the articular cartilage surface. The 15GAH_CS was synthesized to match 

the number of peptides found in 15WYR_CS.  The reduction of friction could have been due to 

the higher number of peptides conjugated rather than the type of peptide added. Finally, 5 and 10 

ratios were made for both WYR_CS and GAH_CS to determine the minimum amount of peptide 

that was needed to reduce friction at the cartilage surface. 

The coefficient of friction (COF) for each treatment was measured with a rheometer using 

a cartilage-on-glass setup. Bovine osteochondral plugs were harvested, treated, and tested within 

a week after slaughter. Both static and kinetic friction measurements were analyzed for each 

sample. A sample treatment of synovial fluid was used as a positive control to mimic the COF of 

articular cartilage in the synovial joint. The negative control was PBS only, which was used to 

dissolve each of the other treatments. The results from the static COF were measured using one 

single data point from the 800 data points collected during the sample rotation on the glass plate.  

This type of measurement might not be the best representation of static friction with the setup we 

used, but we did see some significant differences of the static COF between samples. The results 

show that none of the treatments were able to match the static COF of synovial fluid.  However, 

15WYR was shown to reduce the static friction more than PBS, CS, and 2GAH. The 

2GAH_15WYR_CS also had a lower static COF than PBS and CS.  All the other treatments, 

excluding synovial fluid, were not statistically different from the CS or PBS samples.  This 

indicates that the presence of a high amount of WYR can reduce the static COF more effectively 

than the other peptidoglycans synthesized, including molecules with a high amount of GAH 

attached to the CS backbone. 

The kinetic COF for both 15WYR_CS and 2GAH_15WYR CS were statistically the same 

as the SF treatment. None of the other treatments were able to match the kinetic COF of the 

synovial fluid sample. The kinetic COF for the both the 15WYR_CS and 2GAH_15WYR CS were 

also much lower than the rest of the treatments that included synthesized peptidoglycans. The 

kinetic COF of 15GAH_CS was statistically the same as the PBS control which indicates that 

increasing the amount of GAH bound to the CS backbone did not improve the GAH_CS ability to 

lubricate the cartilage. The addition of WYR to the peptidoglycan is crucial for lowering the kinetic 
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COF.  If GAH is added to the CS backbone, the addition of WYR is needed as well. We did observe 

that the 10WYR_CS did not significantly reduce the kinetic COF. Based on these results, a higher 

collagen II binding peptide concentration of approximately 15 mols of WYR per mol CS is 

required to sufficiently reduce the kinetic COF. One explanation as to why such a relatively high 

number of WYR is needed involves how well the molecule is bound to the cartilage surface. 

Increasing the amount of WYR most likely increases how well the peptidoglycan can attach to the 

osteochondral plug surface allowing it to stay in place even during friction testing. Most likely, 

many of the treatments are rubbed off due to the high shear forces present during rheology testing 

of the osteochondral plugs. The strong attachment of the peptidoglycan creates a protective 

boundary layer at the articular cartilage surface. This mechanism is similar to how lubricin, a 

boundary lubricant, is able to reduce friction and protect the cartilage surface from degradation.  

 

 

 

 

In addition to mechanical testing, we wanted to analyze how well each of the treatments 

bound to the cartilage surface by using confocal imaging. The osteochondral samples were 

collected post-rheology, rinsed, fixed with 4% PFA and embedded in optimal cutting temperature 

(OCT) compound to be sectioned for imaging. Since the peptidoglycans contained a biotinylated 

peptide, we were able to visualize them through a microscope after staining with a streptavidin 

Figure 4.2. COF values measured at the cartilage surface comparing PBS, 

2GAH_15WYR_CS, 5,10,15WYR, 2,5,10,15GAH and synovial fluid (SF) treatments.  

Statistically significant differences are represented by different letters appearing over each 

column.  n = 8 for each treatment.  A) Static COF.  B) Kinetic COF. 
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antibody. From the confocal imaging we observed that some peptidoglycans were able to bind to 

the cartilage surface better than others (Figure 4.3). As expected, the images showed nothing 

present at the cartilage surface for the CS and PBS treated cartilage plugs. We saw more 

peptidoglycan bound at the plug surface for the WYR_CS formulations when compared to the 

GAH_CS formulations.  This further supports the claim that WYR is responsible for adsorbing the 

peptidoglycans to the cartilage surface. The 10WYR_CS samples showed a significant amount of 

molecule present but 10WYR_CS was still unable to significantly reduce the friction at the 

articular cartilage surface. There seems to be a few slight discontinuations of the 10WYR_CS 

molecule attached to the cartilage surface, especially when compared to 15WYR_CS. This 

suggests that a complete protective boundary layer is more effective at lowering the COF as 

indicated in the friction testing. We also observed that there is quite a bit of 10GAH_CS and 

15GAH_CS that remained on the surface despite GAH not being designed for cartilage binding.  

However, this is not surprising as HA is not only found in the synovial fluid but in the cartilage 

structure as well.  Although collagen II is the most prominent component of articular cartilage, 

there was enough HA present within the tissue to allow GAH_CS to bind as well. Ultimately, only 

the 15WYR_CS and 2GAH_15WYR_CS were seen to create a full protective boundary layer at 

the articular cartilage surface.  
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Figure 4.3. Confocal imaging of post-rheology cartilage samples. Each image shows the 

articular cartilage surface following sample treatment, testing, rinsing, and prepping for 

imaging. The chondrocytes were stained with DAPI (blue). The biotinylated peptidoglycan 

treatments at the cartilage surface were stained with Alexa Fluor® Streptavidin 633 (red).  
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In conclusion, we have successfully developed a lubricin mimic that significantly reduces 

the coefficient of friction at the articular cartilage surface. The addition of collagen II binding 

peptides to the synthesized peptidoglycan was shown to be crucial to the attachment of the 

molecule to the articular cartilage surface. Like lubricin, the key player in cartilage lubrication, 

our synthetic molecule is able to successfully create a protective boundary layer at the articular 

cartilage surface. Unlike previous designs, our biomimetic lubricin synthesized with only collagen 

II binding peptides does not require the addition of HA to successfully reduce friction at the 

articular cartilage surface. The benefits to this molecule formulation are not only ease of synthesis 

but also an increased potential for the molecule to reduce friction in the presence of degradation 

enzymes such as hyaluronidase that target HA, especially in an osteoarthritic condition. 

Furthermore, concentrations of HA are significantly reduced in joints affected by osteoarthritis. 

This would not hinder the effectiveness of our biomimetic lubricin since it does not require HA to 

successfully reduce friction at the articular cartilage surface by creating a protective boundary 

layer. With these considerations, our biomimetic lubricin shows potential as a long-term 

supplemental lubrication treatment for OA patients. 
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CHAPTER 5. MATERIALS AND METHODS 

5.1 Peptide Synthesis 

The collagen type II binding peptide WYRGRLGSG (WYR) and HA binding peptide 

GAHWQFNALTVRGGGSG (GAH) were synthesized using a protocol described in Coin et al. 

using standard Fmoc solid phase peptide synthesis112.  Both the GAH and WYR were synthesized 

on a Cl-(Trt)-Cl resin each with a GSG spacer and an added hydrazide group. Once the last amino 

acid was added, the peptides were cleaved off the resin using cocktail composed of 88% 

trifluoroacetic acid, 5% phenol, 5% dH2O, and 2% triisopropylsilane. Biotinylated peptides had 

an extra biotin group added at the C-terminus before peptide cleavage. To purify the peptides, a 

Vydac C18 column (Grace Davison Discovery Sciences, Deerfield, IL) was used on an ÄKTA 

Explorer 100 FPLC (GE Healthcare, Piscataway, NJ) with a 0.1% TFA and acetonitrile 

gradient. Matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass 

spectrometry on a Voyager DE PRO analyzer (Applied Biosystems, Foster City, CA) was used to 

verify the molecular weight of the peptides.  

5.2 Synthesis of Peptidoglycans 

Collagen type II and HA binding peptidoglycans were synthesized using EDC (1-ethyl-3-

[3-dimethylaminopropyl] carbodiimide hydrochloride) chemistry to conjugate peptide hydrazides 

to a chondroitin sulfate (CS) backbone with an amide bond. Using an 8M urea solution and 0.05 

mM EDC, the carboxyl groups on the CS backbone were activated at a pH of 4.5 for no more than 

5 minutes at room temperature. The CS backbone was then functionalized with either collagen 

type II binding (WYR) or HA binding (GAH) peptides to yield GAH_CS or WYR_CS. The total 

EDC reaction concentration for the addition of WYR to CS was 2 mg/mL. GAH was reacted with 

CS at a 4-5 mg/mL concentration. Biotinylated peptidoglycans were synthesized by reacting one 

mole of WYR-biotin or GAH-biotin per mole of CS with the addition of the non-tagged peptides.  

To stop the reaction, the pH was adjusted to 8 and allowed to sit at room temperature for 30 minutes 

before purification. The molecules were purified using size exclusion chromatography on 

an ÄKTA Purifier FPLC (GE Healthcare, Piscataway, NJ) with Bio-Scale Mini Bio-Gel columns 

packed with polyacrylamide beads (Bio-Rad Laboratories, Hercules, CA) and then lyophilized. 

https://www.sigmaaldrich.com/catalog/product/aldrich/233781?lang=en&region=US
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For molecules with both types of peptides attached (WYR and GAH), only one type of peptide 

was reacted at a time. After the first peptide addition, the entire process was repeated a second 

time once the first reaction had been purified and lyophilized. A Nanodrop 2000 

spectrophotometer (Thermo Scientific, Waltham, MA) was used to measure the absorbance @ 280 

nm of the synthesized molecules.  This measurement was used to quantify the final concentration 

of peptide attached to the CS backbone. Chondroitin sulfate was also synthesized with a hydrazide 

dye (Alexa Fluor® 488 hydrazide) attached for later confocal analysis.  Following activation of 

the CS with EDC, hydrazide dye was added at a 2:1 molar ratio of dye to CS. 

5.3 Tissue Harvest and Treatment 

Cylindrical osteochondral explants were harvested from 18-36 month old bovine knee 

joints obtained 24 hours after slaughter (Lampire Biological Laboratories, Inc., Pipersville, PA). 

The explants were taken from the load bearing regions of the femoral condyle using a 6-mm-

diameter coring reamer (Arthrex, Inc., Naples FL) and trimmed to a thickness of approximately 3-

4 mm. In order to remove residual synovial fluid, samples were shaken vigorously overnight at 

4°C in PBS containing a SigmaFAST protease inhibitor cocktail (PIC) tablet (Sigma-Aldrich, St. 

Louis, MO) and 0.5% penicillin/streptomycin. Cartilage samples were then randomly divided and 

completely submerged into a variety of treatment groups and stored at 4°C until mechanical testing 

took place. Samples were treated for at least 2 hours before mechanical testing began. Samples 

were not tested if stored for longer than a week in solution 4°C. All of the treatments were 

dissolved in PBS/PIC solution except for the bovine synovial fluid (Animal Technologies, Tyler, 

TX) which was aliquoted and frozen at -80°C. The chondroitin sulfate and peptidoglycan 

treatments were all dissolved at the same molar concentration of ~8.4, µmol which corresponded 

to ranges of 0.3 to 0.5 mg/ml76.  This is consistent with the concentrations of lubricin found within 

the synovial fluid. High molecular weight HA (hyaluronic acid sodium salt from rooster comb, 

~1-4MDa) (Sigma-Aldrich) and low molecular weight HA (hyaluronic acid sodium salt from 

streptococcus equi, ~100kDa) (Sigma-Aldrich) solutions were made at concentrations of 3 mg/mL, 

which is also similar to HA concentrations found in the synovial fluid76. For samples that had the 

treatment group of both a peptidoglycan and HA, the cartilage plugs were first stored in the 

peptidoglycan treatment until ~2 hours before mechanical testing when it was rinsed and then 

submerged in the HA treatment and stored at 4°C right up until the time of friction testing. 
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5.4 Measurement of Coefficient of Friction 

The procedure to measure the coefficient of friction (COF) at the articular cartilage surface 

was based off a protocol developed by Schmidt et al55. The treated osteochondral samples (~6mm) 

were tested used a cartilage-on-glass setup. The underlying bone for each sample was mounted onto a 

piece of sanding disc with super glue to allow for a better bond between to two rough surfaces.  The 

adhesive on the back of the sanding pieces allowed the samples to be mounted onto the center of a 20-

mm flat rheometer geometry head (AR G2, TA Instruments) using a customized alignment tool. The 

cylindrical tool was shaped to fit around the 20 mm rheometer head by cutting a 20 mm diameter circle 

into the tool. A ~6mm circle was cut exactly in the center of the 20 mm embedded section where the  

cleaned glass microscope slide was taped to the bottom plate of the rheometer. The geometry head was 

lowered enough for the cartilage plug to barely touch the glass slide. The different treatment solutions 

were pipetted on the glass to keep the plug from drying out. The rheometer software was set to 

compress the samples at a rate of 0.002 mm/second until a 45 N normal force was measured to make 

sure that the boundary layer of the cartilage plug was in direct contact with the glass surface. The plug 

then was held at the corresponding strain for 30 minutes in order for the sample to equilibrate.  This 

reduces the effects of fluid pressure from interfering with COF measurements.  The time chosen for 

sample equilibration was based off a preliminary run that allowed the samples to equilibrate for 1, 5, 

15, 30, 45, and 60 minutes (Fig. 5.1).  
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The time of 30 minutes was determined because it seemed to be the least amount of time needed 

that resulted in consistent normal forces when rotational testing was performed. A lower amount of 

time per run meant more samples could be tested within a set amount of time, which allowed for more 

Figure 5.1. Equilibration times for friction testing. 



56 

 

treatment groups and reps for each batch of osteochondral plugs. Next, the samples were rotated with 

an angular velocity of 0.08726 rad/sec for 2 minutes. Torque and normal force were measured with the 

software and used to calculate the COF with the following equation: 

 𝜇 =
𝑇

𝑅𝑒𝑓𝑓𝑁
 

Static COF was calculated by taking the maximum calculated coefficient of friction during the first 10 

degrees (~2 sec). The kinetic COF was calculated by averaging the COF calculated from the second 

rotation. For each round of friction testing, at least three samples (n=3) were tested per treatment with 

one rep of each different treatment done at a time in the same order.  All of the osteochondral plugs 

were tested within 5 days following harvest. 

5.5 Immunostaining of Peptidoglycans at Cartilage Surface 

After mechanical testing, the cartilage layer (~1 mm) was sliced off the osteochondral plugs 

and rinsed three times with PBS. The cartilage slices were fixed with 4% paraformaldehyde 

overnight at 4ᵒC and then rinsed three times with PBS.  A midsagittal cut was made through the 

cartilage samples to and the two halves were embedded in O.C.T compound (Tissue Tek) and 

frozen at -80ᵒC. The frozen samples were sectioned at 7µm thickness, air dried and stored at -20ᵒC 

until the immunostaining procedure was performed.  For detection of biotin-labeled molecules at 

the cartilage surface, the sections were rinsed with PBS to remove residual O.C.T. compound and 

blocked with 1% BSA (lyophilized powder, ≥96% (agarose gel electrophoresis), Sigma-Aldrich) 

for 30 minutes at room temperature. The sections were immunostained for 15 minutes at room 

temperature with Alexa Fluor® Streptavidin 633 (Thermo Scientific) diluted 1:200 in 1% BSA 

and counterstained with DAPI diluted 1:500 in the same solution. The sections were rinsed and 

mounted with ProLong Gold antifade mounting media (Thermo Scientific) before they were 

imaged under a confocal microscope (Leica Microsystems). Chondroitin sulfate samples with no 

biotinylated peptides attached were analyzed on the cartilage surface using an Alexa Fluor® 488 

hydrazide dye (Thermo Scientific) that was attached to the CS backbone through EDC chemistry. 
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CHAPTER 6.  CONCLUSIONS AND FUTURE WORK 

Current treatments for OA are limited and fail to prevent the progression of the disease. In 

recent years, OA research has shifted focus from general symptom relief to a more targeted 

approach centered around preventing and even reversing the symptoms of the disease, especially 

cartilage deterioration. The loss of lubrication in the synovial joints is a primary reason for the 

decrement of articular cartilage13. Therefore, it is believed that further damage to articular cartilage 

can be avoided if proper lubrication is restored through lubricant supplement treatments. HA 

injections and other lubricant supplements are on the market today, but there is minimal clinical 

evidence to support that these products are effective in treating the long-term effects of OA. 

Overall, lubricin proves to be more efficient than HA as a lubricant in vivo and in vitro, but it is 

susceptible to degradation by enzymes and depletion factors that are over expressed within joints 

suffering from OA. Therefore, there is a significant need for the development of a synthetic 

lubricant treatment that can provide the efficiency of native lubricants while also being able to 

withstand enzymatic degradation. This longevity will improve long term effects and overall 

success of the treatment. To address this need, our lab has developed a biomimetic lubricin 

peptidoglycan that has been designed to mimic the lubrication effects of native lubricin and reduce 

friction at the articular cartilage surface.  

Initially, the lubricin mimic was designed with both collagen II and hyaluronic acid (HA) 

binding peptides attached to a chondroitin sulfate backbone.  The addition of collagen II binding 

peptides was shown to be critical to the attachment of the molecule to the articular cartilage 

surface.  The HA binding peptides were included to facilitate the lubrication properties of the 

molecule by allowing HA to bind to the lubricin mimic. However, it was shown that the addition 

of HA to the lubricin mimic treatment was not necessary to lower the COF.  The lubricin mimic 

with collagen II peptides alone, without the addition of HA, was sufficient in reducing the friction, 

even matching the kinetic COF measured with synovial fluid. The benefits to this molecule 

formulation are not only ease of synthesis but also an increased potential for the molecule to reduce 

friction in the presence of degradation enzymes such as hyaluronidase that target HA, especially 

in an osteoarthritic condition. Furthermore, concentrations of HA are significantly reduced in 

joints affected by osteoarthritis. This would not hinder the effectiveness of our biomimetic lubricin 

since it does not require HA to successfully reduce friction at the articular cartilage surface by 
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creating a protective boundary layer. With these considerations, our biomimetic lubricin shows 

potential as a long-term supplemental lubrication treatment for OA patients. 

Although much progress has been made with the development of our designed biomimetic 

lubricin, there are many steps that need to be taken in order to produce a successful treatment for 

osteoarthritis. We had a few problems with synthesizing a peptidoglycan that contained higher 

peptide amounts.  The addition of both WYR and GAH to the same CS backbone often resulted in 

low peptide binding efficiency. Our conclusion was that EDC conjugates became permanently 

attached to the CS carboxyl site due to an O to N-acylurea alteration of the intermediate compound. 

The inactive N-acylurea formation blocked the peptides from binding to the CS backbone. We did 

not pursue this any further because we found that our synthesized peptidoglycan required only 

WYR to effectively reduce the COF at the cartilage surface. However, we have yet to test a 

peptidoglycan with a high amount of both WYR and GAH.  There is a possibility that this 

formulation could reduce the friction better than the WYR_CS peptidoglycan. In addition, 

improving the peptidoglycan synthesis process would allow us to saturate the CS backbone with 

higher amounts of WYR peptide. We concluded that increasing the molar ratio of WYR:CS from 

5 to 15 corresponded to an increase in lubrication ability. Molar ratios of WYR:CS higher than 15 

might further improve the ability of the lubricin mimic to reduce friction at the cartilage surface. 

To increase peptide conjugation, one solution would be to lower the amount of EDC to a 1:1 molar 

ratio of peptide added to reduce the amount of unwanted interactions caused by EDC. Another 

solution could be to add both peptides at the same time to the coupling reaction and use a different 

quantification method to analyze the peptides attached. 

We have stated the benefits to synthesizing a lubricin mimic that does not require the 

presence of HA to reduce the friction at the articular cartilage surface. However, there is a 

possibility that the addition of HA to a molecule with high amounts of both WYR and GAH could 

result in better lubrication characteristics than the peptidoglycan without the HA treatments. Future 

studies that focus on the effectiveness of HA addition to the lubricin mimic could include a binding 

analysis of HA at the cartilage surface as well as additional friction testing. Another important 

point to address is we only used two different types of HA in our testing. It is possible that the 

measured COF values for the cartilage treated with our lubricin mimic could be further reduced 

by using crosslinked HA and market brands such as Synvisc©.   
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 Even though our biomimetic lubricin was designed to withstand enzymatic degradation, no 

tests have been done to verify this. One way to analyze the ability for the synthesized lubricin 

mimic to withstand degradation would be by treating the molecule with enzymes including 

aggrecanase, hyaluronidase, and MMPs that are common markers for OA. Following enzyme 

treatment, the CS-based molecules can be analyzed using gel electrophoresis comparing the 

untreated samples to samples that were treated with degradation enzymes. 

One last important step to elucidate the potential for our synthesized lubricin mimic as a 

treatment of OA is to determine the residency time of the molecule in vivo. Current IA-injection 

treatments display low residency times and require multiple treatments in short spans of time. The 

elevated presence of degradation enzymes found in joints affected by OA contributes to the lack 

of time current treatments are able to remain effective. Because our lubricin mimic doesn’t have 

the same structure as lubricin or hyaluronic acid there is potential for the molecule to withstand 

much of the degradation caused by the OA disease state. 
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