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ABSTRACT 

Singh, Lovepreet MS, Purdue University, August 2018. Improving Precision for x86 
Binary Analysis Techniques. Major Professor: Mathias J. Payer. 

Static binary analysis is being used extensively for detecting security flaws in bi-

nary programs. Multiple solutions have been proposed to tackle challenges presented 

by static binary analysis. We propose two methods to improve these solutions for 

better precision on x86-64 binaries. First, we propose a machine learning based ap-

proach to detect compiler and optimization level for a binary program with the aim 

of augmenting existing heuristic based solutions to fine tune those heuristics. We are 

able to detect the aforementioned information with 83% precision on coreutils, binu-

tils and SPECCPU2006 binaries. Second, we propose an analysis to detect memory 

layout from a binary program’s perspective. This analysis aims to enhance existing 

solutions by allowing them to track values across loads and stores in fine grained 

memory locations. We are able to detect layout of stack objects with 56.3% accuracy 

for coreutils, binutils and SPECCPU2006 C binaries. 
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Chapter 1. INTRODUCTION 

Binary analysis is a fundamental technique for finding vulnerabilities in a program as 

no source code is required. Although, a binary has less information about the seman-

tics of a program, the benefits binary analyses offer surpass those of the source code 

analysis techniques. Since binary code is what actually gets executed on a machine, 

it offers much more accurate representation of execution semantics, as compared to 

source code. A compiler may not necessarily compile code to do what a program-

mer intends to do in source code [1]. With modern compilers pushing towards more 

aggressive techniques for optimizations and handling undefined behaviors in different 

ways, the difference between what is intended in source code and what is executed 

on the machine could be significant. 

However, analyzing binary code presents a set of challenges. Source code allows 

programmers to explicitly specify semantic meaning of constructs in a program. For 

example, a programmer could explicitly use a C struct data type to represent related 

set of information. Similarly, a programmer could use loops to execute similar code 

over multiple datasets. Programmers could also define functions, which represents a 

related block of code. During compilation, these semantic constructs are lost, since 

they present no meaningful information to the processor executing the binary code. 

Further, the binary code could be stripped of symbol information to prevent them 

from being reverse engineered, as is common in case of Commercial Off-The-Shelf 

(COTS) binaries. Binary code consists of a sequence of instructions, including logical 

and control flow instructions. Performing any meaningful modification to the program 

requires use of semantic meaning of constructs in the program, and retrieving this 

information from a binary is a challenging task. There have been multiple attempts 

to retrieve semantic constructs from binaries, like functions [2,3,3–5], data types [6], 

or control flow [7]. 
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1.1 Problem Statements 

This thesis focuses on retrieving compiler, optimization level, and memory lay-

out from point of view of a binary program, to improve precision of existing binary 

analyses techniques as well as enable new binary analyses. We explicitly focus on bi-

naries compiled for x86-64 architecture for both problems. The following subsections 

introduce the individual problems and benefits they offer to existing binary analysis 

techniques. 

1.1.1 Binary Optimization Detection 

Compilers such as GCC and LLVM offer multiple flags to affect the compilation 

process from source code to binary format. These flags are commonly grouped into 

four different optimization levels – O0, O1, O2 and O3 – starting from lowest to 

highest optimization. The particular modifications performed for each flag depends 

upon the compiler family. Each flag causes a deterministic change in the output 

binary, which could help in detecting the optimization level used to compile a binary 

executable. 

Detecting the optimization levels helps in tuning heuristics for binary analysis. 

For example, GCC offers the flag -finline-functions [8], which performs inlining 

of functions even when they are not declared inline in source code. On recognizing 

that a binary has been compiled using GCC with O3 optimization, which enables 

-finline-functions, an existing binary analysis technique to detect functions in the 

source code could learn that functions not marked inline could have been inlined 

during the compilation. Thereafter, the technique could use existing heuristics, such 

as code similarity measures on basic blocks, to find potential functions in source code 

which have been inlined by the compiler. As another example, Xandra [9] applied 

peephole optimization and register allocation on DARPA’s Cyber Grand Challenge 

(CGC) binaries for improving performance of defense protections, because the team 

noticed that few of the challenge binaries were not optimized. 
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Therefore, detecting the compiler family and optimization level used to compile a 

binary would lead to better results for binary analysis techniques which use heuristics. 

With our system, we are able to detect compiler and optimization level with 83% 

precision. 

1.1.2 Memory Layout Detection 

In high level languages like C, programmers could assign type semantics, such as 

primitive data type, composite data type, or union data type, to memory objects. 

Primitive data types include types such as char, int, and float. Composite data 

types include arrays and C structs. Union data type allow the same memory location 

to be used for more than one data types. Whereas, a binary program views memory 

as just a sequence of bytes without any explicit semantic meaning related to them. 

We aim to infer a higher level abstract layout of memory from a binary program’s 

perspective, based on how different memory objects are used in a binary program. 

Memory layout detection is an important problem in binary analysis to enable a 

family of modifications which include modifying memory layout, to a binary program. 

For example, if a value is spilled into a stack slot in an unoptimized binary, and later 

it is detected during an analysis that the value could be promoted to registers without 

the need of stack slot, the memory layout could be modified to remove the stack slot 

for that value, hence giving an optimized binary as output. Other modifications to 

stack layout, such as reshuffling of slots assigned to local variables, would also be 

possible if we infer the complete layout. As another example, if all arrays in a binary 

program are known with correct sizes, an analysis pass could add red zones at end of 

these arrays to help sanitize these issues during testing of binaries. 

Currently, we focus our analysis on binaries compiled from C programming lan-

guage only. We are able to detect 79.6% offsets for stack objects, and correct sizes 

(aggregate sizes in case of non-basic objects) for 56.3% stack objects. 
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Chapter 2. BACKGROUND AND RELATED WORK 

2.1 Binary Analysis 

Binary analysis involves analyzing binary encoded instructions and data, in order 

to recover information about an executable binary. ELF [10] and PE [11] are two 

popular binary file formats for executable binaries, used on Unix-based and Windows 

systems respectively. In this thesis, we focus only on ELF format binary executables. 

ELF format contains information about how to execute a piece of binary code – 

including code itself, global data used by the code, memory segments and permissions 

on them, or exception handling. Several tools, such as radare, IDA, or Binary Ninja, 

can read ELF files and present this information in a manner easier for binary analysis. 

Binary analysis techniques are broadly categorized into– Static binary analysis 

and Dynamic binary analysis techniques. Static binary analysis involves processing 

a binary without actually executing the binary. Hence, due to absence of runtime 

information, static analysis techniques can only approximate the actual behavior a 

binary would exhibit upon execution. But static analysis has an advantage of being 

able to explore all paths of execution which do not depend upon dynamic runtime 

targets. Dynamic binary analysis involves executing the binary under supervised 

conditions, for example by instrumentation or as child process, to collect information 

from the binary program. Dynamic binary analysis has an advantage of being accurate 

due to runtime values being observed. But it has a disadvantage of not being able 

to explore all possible paths of execution, for example in case of complex or non-

deterministic conditional control flows. 

Architectures provide different basic capabilities for executing code and binary 

programs use these capabilities, therefore abstracting these capabilities is an impor-

tant step during static binary analysis. Examples of such capabilities are – instruc-
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tion set, registers, or side effects of instructions. For this purpose, binary code is 

first converted to an Intermediate Representation (IR) in a process known as lifting, 

which provides an architecture independent representation of a program. Similarly, 

to abstract away high-level language features, source code is first converted to IR, 

and then multiple passes are applied to the IR before converting it to binary code. 

VEX IR is one such IR used for representation of binary code, whereas LLVM IR is 

commonly used for representation of source code. Source code based IR tends to be 

more refined than binary code based IR, due to more semantical information being 

present in source code. Single Static Assignment (SSA) is a form of representation of 

a program, where each variable gets assigned a value exactly once. Owing to single 

assignment of SSA representation, it provides better opportunities for analysis over 

the program. Abstract interpretation [12] involves interpreting operations performed 

by a program over a set of abstract objects in order to approximate the results of an 

actual execution of the program. Abstract interpretation is commonly [13, 14] used 

to retrieve approximation of semantics not explicitly present in a binary program. 

2.2 Memory Layout 

Programs execute logical statements on a working set of data. During compilation, 

a compiler tries to assign as many data values as possible to registers present in a 

specific architecture. But if the registers do not suffice for holding all the relevant 

data in the working set, these data values are spilled to primary memory storage, 

such as RAM. From point of view of a binary, the primary memory storage could be 

viewed as a list of consecutive memory chunks. Binaries without debug information 

neither have explicit indication about the type of data stored in each chunk, nor do 

they have explicit indication about semantic meaning of consecutive memory chunks 

which could be constructs in source code such as structs, or arrays. 

For a binary program, the primary memory for data storage could be divided 

into 3 broad areas – Global, Stack, and Heap. Each thread of execution in a binary 
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program may have its own Stack and Global storage area [15]. We describe these 

broad areas below: 

• Global. This includes global data that is accessible throughout the binary. For 

an ELF file, .rodata, .bss, and .data sections represent global data sections. 

Each thread of execution may also have its own instance of global data, present 

in .tdata and .tbss sections. Additionally, global variables used by a binary 

program may be present in Dynamic Shared Objects (DSOs). These are usually 

accessed using Global Offset Table (GOT), which is updated during dynamic 

linking when a binary program is executed [16]. 

• Stack. Upon invocation, each function is assigned memory space in Stack, to 

persist its working set of data. This space is intended to store data local to a 

function, since the memory space is reclaimed when the function returns back 

to its caller function. Similarly, each thread is assigned its own stack during 

execution to persist thread local data. 

• Heap. Memory space from heap is allocated at runtime. Therefore, it is com-

monly used to store data whose size will be known at runtime. Operating sys-

tems offer system calls and higher level APIs to allocate and deallocate memory 

from heap at runtime. Data stored in this space could be passed from one 

function to another, until the memory space is explicitly freed. 

2.3 Binary Optimization Detection 

Machine learning is a field involving use of optimization methods to create and rea-

son about models which allow machines to make complex decisions. Machine learning 

is currently used in various fields to perform tasks which previously seemed difficult 

for machines. These tasks involve detecting and classifying objects in images, solv-

ing CAPTCHAs and even driving cars. Machine learning has also found its way in 

binary analysis [2–4,17–20], for tasks such as detecting function boundaries, malware 
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detection and toolchain provenance for binaries. A previous work at toolchain prove-

nance [19] is limited to coarse grained optimization levels – High and Low. Based on 

a similar approach, we offer a fine grained optimization level detection, using features 

specifically targeted for this purpose. 

2.4 Memory Layout Detection 

Aggregate Structure Identification [21] aims at identifying memory layout by de-

composing memory, initially assumed to be a large aggregate object, into small units 

called atoms, using access patterns in a program. However, ASI assumes sizes of data 

references and data references to arrays to be known, which is not always the case 

in assembly code. Value Set Analysis [14] aims to find the over-approximation of 

possible set of values, in form of Reduced Interval Congruence (RIC), for any given 

a-loc at a point in a program. An a-loc could be a register or a memory location. 

VSA starts with a set of easily identifiable memory locations, such as globals and 

offsets relative to stack pointer, and find more memory objects using possible set of 

values for addresses loaded from existing a-locs. DIVINE [22] combines VSA with 

ASI to find structures of a-locs. Since VSA represents set of possible values using 

RIC, it is able to augment ASI using strides for arrays. Reps & Balakrishnan [23] 

improve upon the existing VSA by using context sensitive VSA algorithm. Our aim is 

similar to DIVINE, but involves address pattern analysis instead of tracking possible 

set of values for a-locs. Mycroft [24] generates type constraints over operations in 

Register Transfer Level (RTL) representation, and perform type reconstruction us-

ing these constraints to obtain structural information. However, it aims primarily at 

decompilation of binary programs instead of detecting layout of memory. 

For detecting memory layouts in binary programs, we build our analysis upon 

Fafnir. Fafnir is a framework built to apply static analyses over SSA form of IR for 

binary programs. The goal of this framework is to provide basic abstractions over the 

IR, which could be further refined by multiple analysis passes to give an IR as close 
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as possible to a source code based IR such as LLVM IR. Since a binary executable 

does not have explicit semantic information about the program, Fafnir allows quickly 

building a SSA form of IR for the binary executable, with the missing pieces of 

information termed as ”uncertainties”, and subsequent analysis passes reduce the 

amount of ”uncertainties” involved in the IR. Some examples of ”uncertainties” are 

– targets of indirect jumps and calls, distinction between code/data references and 

scalars, or types/structures of memory objects. Fafnir internally uses an intertwined 

Control Flow Graph (CFG) and Abstract Syntax Tree (AST) to represent individual 

functions. These functions are then related using a call-graph containing mappings for 

arguments passed and parameters received by caller and callee functions respectively. 

Figure 2.1 gives an example of a simplified AST generated by Fafnir, corresponding 

to a set of x86-64 assembly instructions. 
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| ... %1:$Unknown64 = rsp - 0x20 

| mov rax, [rsp-0x20] %2:$Unknown64 = Load(mem1, %1) 

| jmp 0xfoobar ... 

`-> mov rax, 0x08 %4:$Unknown64 = 0x08 << 0x02 

shl rax, 0x02 %5:$Unknown64 = %4 + rdi 

add rax, rdi %6:$Unknown64 = Phi(%2, %5) 

0xfoobar: mov [rsp-0x10], rax %7:$Unknown64 = rsp - 0x10 

%8:$Unknown0 = Store(mem1, %7, %6) 

(a) Example x86-64 code snippet, ar-
row represents a jump from some (b) Representative MIR for given assem-
other part of the code bly code 

0x08 0x02

OpShl rdi

OpAdd OpLoad

rsp 0x20

OpSubmem1

Phi

OpStore

OpSub

0x10

mem2

(c) Internal representation for given MIR 

Figure 2.1.: Example of MIR and internal representation for x86-64 assembly instruc-
tions 
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Chapter 3. BINARY OPTIMIZATION DETECTION 

3.1 Design 

This analysis aims to detect the compiler and optimization level used to convert 

high-level source code to a binary. In essence, our approach involves searching for 

features indicative of signatures for individual compiler and optimization level in a 

training set of binaries, and using machine learning to learn a model that classifies 

these features in unseen test binaries. The work flow is divided into 3 stages ( Fig-

ure 3.1) described below: 

• Feature collection. In the first stage, features are collected from the binary 

to create a feature vector representing the binary, in a high dimensional vector 

space. Binaries are obtained from source code by compiling them with multi-

ple compiler families and different optimization levels for each compiler family. 

Then specific features are extracted by processing the binary, and assigned la-

bels corresponding to the compiler and optimization level used for the binary. 

The collected feature vectors are split into 2 different sets – 70% for training 

(called training set) and 30% for testing (called testing set). 

• Training a classifier model. In the second stage, a classifier model is trained 

on the feature vectors in the training set, to classify these feature vectors into 

correct classes. The classes here correspond to all possible combinations of com-

piler families and optimization levels. The model is trained using 10-fold cross 

validation on the training set to learn best hyper-parameters for the classifier. 

• Classifying new binaries. In final stage, the model trained in second stage 

is used to classify feature vectors in testing set into classes. The model is then 

evaluated on the basis of how many feature vectors it correctly classifies. 
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Testing

30%

Binary 1

Binary 2

Binary 3

Binary n

Features

Feature
Extractor

70%

New
Binary

Trained
Classifier

Model

Cross Validation to
find

hyperparameters

Classifier ModelChoose best
hyperparameters

Test model

Report
Statistics

Compiler and
Optimization Level

Training

Figure 3.1.: Design for compiler and optimization detection 
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In this analysis, we assume that the binary contains a symbol table, to extract 

boundary information about functions present in the binary. 

3.2 Implementation 

3.2.1 Features Collected 

The features extracted are specifically targeted at deterministic effects of using 

different optimization flags during compilation. These features are present in all 

non-adversarial binaries compiled with general purpose compilers and they implicitly 

capture the compiler family. Following are the details for specific features: 

• Instructions on which load/store depends. Programmers store the data to 

be used in form of high-level abstraction called variables. Few of these variables 

get assigned to registers based on specific architecture the program is compiled 

for, and remaining variables are assigned to locations in memory. Given a real 

world application program, there are enough reads and writes from/to memory 

to extract meaningful features for classification of optimization levels. Our 

intuition is that the mnemonics of instructions used to read/write a value are a 

possible indicators of optimization level used. For example, to load an address 

and write a local variable at offset rsp - 0x8, a compiler may emit the different 

instructions at a low optimization level compared to instructions at a higher 

optimization level, as shown in Figure 3.2. 

mov eax, rsp 

sub eax, 0x08 lea eax, [rsp-0x08] 

mov [eax], 0x10 mov [eax], 0x10 

(a) Low optimization level (b) High optimization level 

Figure 3.2.: x86-64 instructions to load a value 
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• Average load/store dependency length. Similar to the argument above, 

the number of instructions on which a load/store instruction depends could 

differ across different optimization levels. For example, Figure 3.2 shows a load 

instruction depending on 2 instructions in case of low optimization level and 1 

instruction in case of high optimization level. Therefore, the average number of 

such instructions in a binary could be a possible indicator of optimization level. 

• Presence of stack canary. Stack canaries provide a protection against buffer 

overflow attacks. Compilers add a stack canary between variables local to a 

function and the return address on the stack. This prevents return address 

from being overwritten undetected. At higher optimization levels, a compiler 

may chose not to add a canary value in stack for a function, if the function is 

considered safe from buffer overflow attacks. Therefore, we use the percentage 

of functions which have stack canary added to their stack, as a feature. 

• Presence of loop/loopx instructions. Compilers may choose to use 

loop/loopx instructions for efficient code, at higher optimization levels. There-

fore, presence of such instructions is a possible indication of high optimization 

level. 

• Average number of rsp adjustments. To assign space for function local 

variables on a stack, compilers emit instructions to adjust pointer to the top of 

stack. Depending upon the optimization level, a compiler may emit multiple 

adjustments whenever space is needed, or combine them into as few adjustments 

as possible. Therefore, we use the average number of stack top pointer adjust-

ments for each function in the binary as a measure to detect the optimization 

level. 

• Function prologue. Frame pointer is generally used by compilers for easier 

addressing of variables and arguments on a function’s stack frame. For achieving 

this, the frame pointer of the previous function is pushed to the stack, and the 
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current stack top pointer value is moved to the frame pointer. The instructions 

for this task are present at the beginning of function, usually called function 

prologue. But at higher optimization levels, a compiler may decide to use the 

frame pointer register for a different purpose, hence ignore addition of function 

prologue at beginning of a function. Therefore, the percentage of functions in 

which a prologue is present acts as an indicator of the optimization level. 

• Function calls to constant address. Call to from a function to another 

functions may use a value stored in a register or a constant address for modifying 

control flow. Although not used in any optimizations, we detect percentage of 

calls made to constant address in a binary program to detect flags such as 

-fno-function-cse in GCC. 

• Number of pops following a function call. Compilers usually follow con-

ventions when a call is made to a function from within the code. These con-

ventions specify the role of registers across function call, and the role of caller 

and callee functions. Usually some registers are specified as caller save registers, 

which must be saved by the caller to preserve their values, since they may be 

clobbered by the callee function. So, a compiler could choose to push these 

values to the stack before the call, and pop these values to restore the register 

values after the call returns. Depending upon the optimization level, a compiler 

may choose to pop these values as soon as the call returns, or defer popping 

them until necessary. Therefore, the number of pop instructions just following 

a function call is a possible indicator for optimization level. 

• Code duplication. Similar code snippets could be present at multiple places 

in high-level source code, especially in large code bases. A compiler could choose 

to perform additional analyses at higher optimization levels to minimize code 

duplication. We use a code normalization technique, similar to [25], to roughly 

estimate the amount of duplicate code in the binary. 
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3.2.2 Feature Extraction 

We implement the feature extraction in Python using angr [26]. angr provides a 

framework to lift a binary to VEX IR, and perform analysis on top of it. First, the 

binary is loaded without loading its dependent libraries. To iterate over all functions 

in the binary, we use a list of starting address of functions in the binary, collected 

from the symbol table present in the binary. For each function, an accurate intra-

function Control Flow Graph (CFG) is computed. This CFG is used to compute 

an intra-function Control Dependence Graph (CDG) and Data Dependency Graph 

(DDG). All these analyses are provided out-of-the box by angr. 

Upon computing these graphs, we iterate over instructions in all basic blocks in 

each function, and compute values for each feature depending upon the instruction. 

For example, if the instruction is rsp - 0x01, the feature corresponding to stack 

adjustments is incremented. Similarly, if the instruction is a load/store from/to a 

memory location, all the instructions on which the address operand and value operand 

to this instruction depends are taken into account for load/store dependency length 

and mnemonics for load/store. To find the instructions on which load/store depends, 

Backward Slicing analysis provided by angr is used, which uses the CFG, CDG, and 

DDG computed earlier. After computing the features for each individual function, 

they are summarized into a feature vector for the binary as a whole. 

3.2.3 Classification 

After computing a feature vector for each binary, the feature vectors dataset is 

split randomly into two separate sets – 70% for training and 30% for testing. We 

use a MultiLayer Perceptron to learn a model on the training set because of its 

advantage for learning complex non-linear models. We perform a 10-fold Grid Search 

cross validation over different activation functions (namely identity function, logistic 

function, hyperbolic tan function and rectified linear unit function), number of hidden 

layers (from 1 to 20) and number of nodes in each hidden layer, to identify the hyper-
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parameters best suited for classification. We use a heuristic approach by randomly 

choosing the number of nodes in each hidden layer between number of input nodes 

and number of output nodes. This process of randomly choosing number of nodes 

in each hidden layer is performed 10 times for each value corresponding to number 

of hidden layers, to diminish the effect of randomness. The cross validation process 

assigns a mean accuracy to each combination of hyper-parameters, and hence allows 

to choose the hyper-parameters best suited for classification of data. The classifier 

trained with the best suited hyper-parameters is used to classify the feature vectors 

in the testing set. The evaluation script is implemented in Python, using machine 

learning related functionality provided by scikit-learn [27]. 

3.3 Evaluation 

We evaluate the system on 1,267 binaries – from coreutils, binutils, and SPEC-

CPU2006, compiled using GCC and Clang with optimization levels O0, O1, O2, O3, 

and Ofast. We skip few of them due to long time taken during feature extraction 

process . The dataset is split randomly into 70% training set and 30% testing set as 

mentioned above, and statistics are collected on the 30% test set of features. The 

statistics collection is done for 4 iterations with different training set and testing set 

splits and hyper-parameters are chosen independently for each iteration. Following 

are the best hyper-parameters over the grid search performed for each iteration: 

• Iteration 1: 

– Activation function: Hyperbolic tan function 

– Hidden layers: 9 

– Nodes in each hidden layer: [254, 258, 189, 43, 161, 56, 202, 73, 326] 
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• Iteration 2: 

– Activation function: Identity function 

– Hidden layers: 9 

– Nodes in each hidden layer: [231, 233, 118, 329, 170, 311, 56, 186, 75] 

• Iteration 3: 

– Activation function: Hyperbolic tan function 

– Hidden layers: 5 

– Nodes in each hidden layer: [132, 326, 342, 330, 227] 

• Iteration 4: 

– Activation function: Hyperbolic tan function 

– Hidden layers: 14 

– Nodes in each hidden layer: [153, 272, 125, 88, 173, 95, 227, 103, 49, 

326, 195, 75, 220, 180] 

Tables 3.1 to 3.4 show the confusion matrix for these 4 iterations: 

3.4 Discussion 

According to results in Tables 3.1 to 3.4, most misclassifications occur between 

binaries compiled with Clang using optimization levels O2 and O3. This could be 

explained by difference between effects of these optimization levels on a binary exe-

cutable. For Clang, optimization level O3 enables all passes enabled by O2, and an 

extra pass named -argpromotion [28]. This extra pass promotes an argument passed 

to a function from ”by reference” to ”by value”, if it could be proven that the ”by 

reference” argument is only loaded from memory. Since the features we choose fail 

to capture such modifications in a binary executable, the classification model fails to 

classify accurately between these classes. 
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Table 3.1.: Confusion matrix for compiler and optimization detection – Iteration 1. 
Bold text indicates correct classification. Italicized text indicates incorrect classifi-
cation. 

a b c d e f g h i j ←classified as/actual ↓ 

41 0 0 0 0 0 0 0 0 0 a=clangO0 

0 37 1 0 0 0 0 0 0 0 b=clangO1 

0 0 15 15 0 0 0 0 0 0 c=clangO2 

0 0 24 12 0 0 0 0 0 0 d=clangO3 

0 0 0 0 38 0 0 0 0 0 e=clangOfast 

2 0 0 0 0 43 0 0 0 0 f=gccO0 

0 0 0 0 0 0 37 1 0 0 g=gccO1 

0 0 0 0 0 0 1 40 2 0 h=gccO2 

0 0 0 0 0 0 0 1 36 0 i=gccO3 

0 0 0 0 0 0 0 0 0 35 j=gccOfast 

3.5 Summary 

To improve heuristics based binary analyses, we present a machine learning based 

approach to detect compiler and optimization level. Armed with this specific in-

formation, heuristics could be tuned to take into account the deterministic changes 

performed by the compiler during compilation process. We target features specifi-

cally for better classification among different optimization levels, which allows better 

precision on fine grained optimization levels. We evaluate the approach on generic 

Linux based utility binaries and are able to achieve 83% precision at classification of 

individual optimization levels along with compiler family. 
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Table 3.2.: Confusion matrix for compiler and optimization detection – Iteration 2. 
Bold text indicates correct classification. Italicized text indicates incorrect classifi-
cation. 

a b c d e f g h i j ←classified as/actual ↓ 

39 0 0 0 0 0 0 0 0 0 a=clangO0 

0 39 1 0 0 0 0 0 0 0 b=clangO1 

0 0 29 0 0 0 0 0 0 0 c=clangO2 

0 2 30 1 0 0 0 0 0 0 d=clangO3 

0 0 0 0 42 0 0 0 0 0 e=clangOfast 

1 0 0 0 0 47 0 1 0 0 f=gccO0 

0 0 0 0 0 0 33 4 1 0 g=gccO1 

1 0 0 0 0 0 0 40 1 0 h=gccO2 

0 0 0 0 0 0 0 1 30 0 i=gccO3 

0 0 0 0 0 0 0 0 0 38 j=gccOfast 

Table 3.3.: Confusion matrix for compiler and optimization detection – Iteration 3. 
Bold text indicates correct classification. Italicized text indicates incorrect classifi-
cation. 

a b c d e f g h i j ←classified as/actual ↓ 

40 0 0 0 0 0 0 0 0 0 a=clangO0 

0 38 1 0 0 0 0 0 0 0 b=clangO1 

0 1 20 20 3 0 0 0 0 0 c=clangO2 

0 1 23 14 2 0 0 0 0 0 d=clangO3 

0 0 0 5 31 0 0 0 0 0 e=clangOfast 

0 0 0 0 0 42 0 0 0 0 f=gccO0 

0 0 0 0 0 0 36 2 0 0 g=gccO1 

0 0 1 0 0 0 0 32 0 0 h=gccO2 

0 0 0 0 0 0 1 3 33 2 i=gccO3 

0 0 0 0 1 0 0 1 0 28 j=gccOfast 
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Table 3.4.: Confusion matrix for compiler and optimization detection – Iteration 4. 
Bold text indicates correct classification. Italicized text indicates incorrect classifi-
cation. 

a b c d e f g h i j ←classified as/actual ↓ 

43 0 0 0 0 0 0 0 0 1 a=clangO0 

0 36 1 2 0 0 0 0 0 0 b=clangO1 

0 0 1 35 0 0 0 0 0 0 c=clangO2 

0 0 2 35 0 0 0 0 0 0 d=clangO3 

0 0 0 0 37 0 0 0 0 0 e=clangOfast 

0 0 0 0 0 46 0 0 0 0 f=gccO0 

0 0 0 0 0 0 37 1 0 0 g=gccO1 

0 0 0 0 0 0 0 26 5 0 h=gccO2 

0 0 0 0 0 0 0 0 40 0 i=gccO3 

0 0 0 0 0 0 0 0 0 33 j=gccOfast 
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Chapter 4. MEMORY LAYOUT DETECTION 

4.1 Design 

The goal of this analysis is to detect the layout of stack, global, and heap regions 

of memory in binary programs. In essence, our approach uses address patterns to 

identify what structure an object at a particular memory location will have. For 

example, a C struct could be represented as a hierarchical object. We represent 

the inferred memory layout as a tree structure, called MemTree, separately for each 

function in a binary program. Therefore, a MemTree represents the view of memory 

from the standpoint of each function in the binary. 

Each MemTree consists of single root node with 4 child nodes, each child node 

representing a memory region – Global, Heap, Stack, and Unknown. Each of these 

memory region nodes further contain children nodes, called MemNodes, representing 

memory locations inside the respective region. At any point during the analysis, the 

Unknown region contains MemNodes which cannot be assigned to the other 3 memory 

regions. This helps in preserving uncertainty related to memory objects, until further 

analyses discover memory regions for them. 

The work flow for this analysis consists of multiple stages, represented in Fig-

ure 4.1, and described below: 

1. Basic MemTree construction. The first stage involves constructing a basic 

MemTree for individual functions, by identifying possible references using 3 

sources – load/store operations, heap allocation functions (currently malloc, 

any other memory allocators need to be explicitly provided) and signatures of 

functions provided by libc. Each node which represents an address in the SSA 

tree is associated with a MemNode in the MemTree. The SSA tree could have 
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multiple nodes for the same address, representing aliases, which are not handled 

at this stage in MemTree. 

2. Address Pattern analysis. The second stage involves running local abstract 

interpretation over subtrees corresponding to identified address nodes in SSA 

tree for each function, to identify address patterns that these nodes could pos-

sibly represent. 

3. Restructuring using identified patterns. In third stage, the structure of 

MemTree is modified for each function, using address patterns obtained from 

second stage. This stage adds the following information to MemTree: 

• Whether a MemNode represent an array element; 

• Parent-child relationship between two different MemNodes; 

• Whether two different MemNodes correspond to same address; 

• Identifying memory regions to which MemNodes belong; 

• Merging MemNodes in stack using offsets. 

4. Inter-function propagation. In the fourth stage, the address nodes and 

MemNode structures identified for individual functions are propagated across 

function boundaries by matching parameters passed and arguments received by 

functions. If new address nodes are identified during this stage and maximum 

iterations have not been performed 1 , the analysis proceeds to the second stage 

again to process only those nodes. Otherwise, the analysis proceeds to the final 

stage. 

5. Finalizing stack layout. In the final stage, we apply few heuristics using 

discovered offsets and sizes for memory objects, to enhance the layout of the 

stack obtained after fourth stage. 

1Maximum iterations help the analysis proceed if a loop occurs. Currently, no such case occurs, so 
it has been set to a very large value. 
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Figure 4.1.: MemTree analysis design 

4.1.1 Assumptions 

The current implementation of the analysis assumes availability of some auxiliary 

information. Note that these sources are not a fundamental requirement for the 

analysis, but rather a limitation of the current framework where those analyses are not 

yet implemented. With additional analysis passes this information can be recovered 

from binaries before proceeding to MemTree construction. The information assumed 

to be available is as follows: 

• Symbol Table. The analysis uses symbol table to identify function starts and 

sizes. Recent advancements in function recovery have achieved a high precision 

of > 95%, and the symbol table may be replaced by such techniques with 

additional engineering effort. 
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• LibC function signatures. Function calls to dynamically linked libraries, 

such as the libc, are particularly problematic as the function code is not present 

within the binary and hence cannot be analyzed. This results in the function 

being a black box and the analysis cannot reason about arguments or returns 

from these functions. To overcome this limitation, the analysis is preloaded 

with a large number of function signatures, automatically extracted from li-

braries built with debug information, for functions from libc. In theory, this 

requirement can be removed by analyzing the shared library and caching the 

results as a part of a preprocessing step. The recovered function signatures can 

then be reused across analysis of multiple binaries. 

• Argument Count for each function in binary. We assume the argument 

count for each function in the binary to be already known. This information is 

used in inter-function propagation stage of analysis. Without this information, 

spurious information can propagate across functions in absence of a perfect SSA 

tree. 

• Calling convention. We assume that all arguments passed and value re-

turned during a function call use general purpose registers specified by System 

V AMD64 [29] calling conventions. We currently do not handle arguments 

passed on stack or floating point registers (xmm0-xmm7). 

4.2 Implementation 

We implement MemTree in Rust leveraging the SSA AST provided by Fafnir. Each 

stage is implemented as a different pass over the SSA AST, allowing individual passes 

to run independently whenever required. We describe in detail the basic structure of 

MemTree and each of the stage below. 
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4.2.1 MemTree Structure 

A MemNode represents a memory object and its structure, at a given memory 

location. The following fields are stored in each MemNode: 

• Segment Type. The memory segment to which the address belongs. The 

possible values are – Global, Heap, Stack, or Unknown. 

• Offset. For MemNodes belonging to the stack segment, this field stores the 

offset from stack-top pointer at beginning of the function. For MemNodes 

belonging to the heap segment, this field stores the offset from the address where 

heap memory is allocated. For MemNodes belonging to the global segment, 

this field stores the absolute address of the memory location. For MemNodes 

belonging to the unknown segment, this field may store an absolute address, 

if it is calculable, otherwise it stays empty. For a child MemNode, described 

later, this field represents the offset of its address from the immediate parent 

MemNode’s address. 

• Allocation address. This field stores the instruction address where heap 

memory is allocated. This helps in keeping track of MemNodes belonging to 

heap segment, inside and across functions. For MemNodes in other segments, 

this field stays empty. 

• Size. This field stores the size of basic memory object present represented by 

the MemNode. Initially, the size is assigned using size of value loaded/stored 

from/in memory, as provided by the underlying framework. Later, it could be 

refined using other analyses, such as type detection, or using heuristics. 

• Aggregate Size. This field denotes the aggregate size of object allocated at a 

memory location in case it is a complex object, such as hierarchical object or 

array. This field is computed for MemNodes belonging to heap segment using 

argument to malloc, and by further analyses for MemNodes belonging to stack 

segment. 
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Each MemNode is connected to one or more nodes in SSA tree using MemRef 

edges as shown in Figure 4.6. The tree nodes correspond to root of address subtree 

for the particular MemNode. Since, multiple nodes in the SSA tree could possibly 

represent the same address, as shown in Figure 4.2, a MemNode can have multiple 

correspondences in SSA tree. Only Phi nodes in SSA tree are allowed to have multiple 

outgoing MemRef edges to different MemNodes, since they are capable of representing 

multiple addresses, as shown in Figure 4.3. Further, MemNodes are connected among 

themselves, or to Segment Nodes, using MemChild edges as shown in Figure 4.4. A 

MemChild edge from a Segment Node to a MemNode indicated that the MemNode 

and all its children belong to the particular memory segment. A MemChild edge 

from MemNode P to MemNode C indicate that C is a subfield of a hierarchical object 

located at address represented by P. The offset of a child MemNode is always relative 

to its immediate parent MemNode. The first field of a hierarchical object (at offset 0) 

and the parent of the hierarchical object are represented using the same MemNode, 

since they correspond to the same address. To represent an array, a MemNode can 

be connected to itself using a MemLoop edge, as shown in Figure 4.5. 

0x08rsp

+ 0x08

+ 0x08

-

Figure 4.2.: Different nodes (with thick border) representing same address in SSA 
form 
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Phi

- -

rsp 0x08 0x16

OpLoad

mem

Figure 4.3.: A Phi node (with thick border) could represent multiple addresses 

MemChild MemChild

Offset: 0

Offset: 8 Offset: 16

Figure 4.4.: MemNode representing a hierarchical object 

Offset: 0x16
Aggregate Size: 40
Size: 4 

MemLoop (10)

Figure 4.5.: MemNode representing an array 

4.2.2 Basic MemTree Construction 

Fafnir associates each function with a SSA AST and partially computed CFG. 

As first step, a basic MemTree intertwined with the SSA tree is constructed for each 
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function. First, heap allocation functions, like malloc, are identified in the SSA tree. 

For each such call, a MemNode belonging to heap segment is created, assigning it 

the address of the call-site. The first argument passed to malloc is evaluated, if 

it contains operations only on constants, to assign an aggregate size to the created 

MemNode. Then, use of stack-top pointer (rsp for x86-64 systems) in SSA tree 

is associated with a MemNode representing the stack-top pointer at beginning of a 

function. Next, function signatures collected for libc functions are used to identify 

address nodes in SSA tree, by matching argument passed and parameter received 

by the functions. This enables identifying address nodes that are passed outside 

the binary code, and also allows identifying structure of memory objects using the 

signature information. Lastly, address operand to all load/store operations in SSA 

tree are associated with MemNodes. Fafnir allows simple backward slicing, due to its 

tree structure, to find the subtree corresponding to the address operand. 

While creating a MemNode, the analysis tries to assign a segment to each 

MemNode, based on the address subtree, as shown in Algorithm 4.1: 

Algorithm 4.1 Procedure to classify MemNode for segments 

if address is constant ∈ data sections – .data, .rodata and .bss then 

Assign MemNode to Global segment 

else if address is at constant offset from stack-top pointer at beginning of function 

then 

Assign MemNode to Stack segment 

else if address is at constant offset from MemNode (say H) belonging to Heap 

segment then 

Assign MemNode to Heap Segment 

Add MemNode as child of H 

else 

Assign MemNode to Unknown Segment 

end if 
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The analysis also does a preliminary merge of MemNodes belonging to Global, 

Stack, and Heap Segments, based on absolute address, offset and allocation address 

respectively. Figure 4.6 shows a basic MemTree constructed for a function after this 

analysis. 

MemChild

Global
Segment

MemChild

Stack
Segment

MemChild

Heap
Segment

MemChild

Unknown
Segment

Offset: 0xfoobar

MemChild

MemTree root

Offset: -0x08

Offset: -0x16
MemChild

Allocation Address: 0xdeadbeef 
Offset: 0

Offset: 0x8

Offset: Unknown

rip

+

0x201807

MemRef

rsp

-

0x8

-

0x8

MemRef

MemRef

OpCall
malloc

+

0x8

MemRef

MemRef

OpLoad

+

rdi

MemRef

Figure 4.6.: Basic MemTree 

4.2.3 Address Pattern Analysis 

In the second step, address patterns for MemNodes created during basic MemTree 

construction or during inter-function propagation, are analyzed to allow more refine-

ments during subsequent steps. 

Based on underlying x86-64 ISA, we use four basic components of any address: 

1. Base. This represents a constant or variable value which forms the base address. 

It could represent registers like rsp, constants like global addresses, or values 
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loaded from memory. An address node classified as Base represents the starting 

address of an object in memory. Currently, we use Base pattern to also represent 

AlignedBase pattern, where alignment is performed using And operation on a 

node representing Base pattern. 

2. Offset. This represents a constant value relative to the Base, where the memory 

object is present. For example, in case of address rsp - 0x10, the value -0x10 

is identified as Offset. 

3. Index. This represents a variable value which is used to index into an object 

such as arrays. This also represents ModIndex pattern, where a Mod operation 

is applied on node representing Index pattern. 

4. Scale. This represents a constant value which is multiplied with an Index to 

scale it. This is useful in identifying stride of successive accesses in case of 

arrays. 

The four basic components are further combined to give 8 more relevant interme-

diate patterns as follows: 

1. OffsettedBase. This represents a Base address combined with a constant 

Offset using addition operation. Offsets can be negative to handle subtraction 

from Base address. An example of such an address is rsp - 0x10, where rsp is 

Base address and -0x10 is constant Offset. 

2. IndexedBase. This represents a Base address combined with a variable Index 

using addition operation. An index could be negative to represent decrement 

from Base address. An example of such address is rsp - rax, where rsp is Base 

address and -rax is variable used to index from base. 

3. ScaledIndex. This represents an Index variable scaled with a constant value 

using multiplication operation. Examples of this patterns are rax*4 and 

rax<<2, where rax is Index and 4 is Scale. 
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4. IndexedOffsettedBase. This represent a Base address combined with a con-

stant Offset and a variable Index using addition operations. An example of such 

address is rsp - 0x10 + rax, where rsp is Base address, -0x10 is constant 

Offset and rax is variable Index. 

5. ScaledIndexedBase. This represents a Base address combined with a 

ScaledIndex using addition operation. An example of such address is rsp -

rax*4, where rsp is Base address and -rax*4 is ScaledIndex. 

6. ScaledIndexedOffset. This represents a constant Offset combined with 

ScaledIndex using addition operation. An example of such pattern is 

-0x10 + rax*4, where -0x10 represents constant Offset and rax*4 represents 

ScaledIndex. 

7. ScaledIndexedOffsettedBase. This pattern combines all basic components 

and is the most general representation of a memory access. An example of such 

address is rsp - 0x10 + rax*4, where rsp is Base address, -0x10 is constant 

Offset, rax is variable Index and 4 is constant Scale. 

Using these 12 patterns, an abstract interpretation is performed over the nodes in 

SSA tree. This interpretation marks each node in SSA tree with all possible patterns 

the node could represent. For example, a constant node could represent either an 

Offset or a Scale. Similarly, value loaded from a location in memory could represent a 

Base or an Index. The patterns for operands of an operation are combined based upon 

the operation. For example, a multiplication operation combines two Scale patterns to 

give a Scale pattern, or an Index pattern with a Scale pattern to give a ScaledIndex 

pattern. These pattern combining rules have been determined heuristically based 

on common address patterns observed in binary programs. Appendix A lists down 

how various operators combine these patterns for performing abstract interpretation. 

During interpretation, the existing nodes in SSA tree are combined with new nodes 

representing addition and multiplication operations, so that each pattern captures 
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a subtree relevant to it. Figure 4.7 shows an example where two different subtrees 

represent the Base address and Offset from the Base address respectively. 

At the end of the interpretation, each node in the SSA tree has a list of associated 

address patterns it could represent. We discard address patterns associated to nodes 

in SSA tree that are currently not identified as address nodes. The list of address 

patterns might contain intermediate patterns that are irrelevant. Assuming that all 

address patterns have a Base address, we prune out all other patterns except the 

following – ScaledIndexedOffsettedBase, IndexedOffsettedBase, ScaledIndexedBase, 

OffsettedBase, IndexedBase and Base. A node could have multiple of these chosen 

patterns, so they are prioritized according to the complexity of the address pattern, 

in the order listed earlier. 

4.2.4 Restructuring using Identified Patterns 

The third step involves restructuring the MemTree based on address patterns from 

the second step. This step is further divided into sub-steps as follows: 

1. Calculating offsets. First, we try to resolve offsets values for MemNodes 

associated with patterns having Offset component in them. This step calculates 

the offset only if the subtree consists of values that are statically resolvable, 

such as constants and program counter. Calculating offsets helps in de-aliasing 

different MemNodes which have the same Base address and same Offset value, 

but are represented by different nodes in SSA tree. If for a node, Offset turns 

out to be 0 in its associated patterns, the patterns are removed from the list 

and corresponding patterns without Offset component are inserted into the list. 

2. Detecting loops. Based on our observations of address patterns for GCC 

corresponding to array accesses, we detected two common patterns: 

• Indexed/ScaledIndexed address. This consists of addresses where an 

Index or ScaledIndex is present along with a Base or OffsettedBase. For 
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example, rsp - 0x10 + rax*4 represents such an address. Currently, 4 

address patterns represent such addresses – ScaledIndexedOffsettedBase, 

ScaledIndexedBase, IndexedOffsettedBase, and IndexedBase. 

• Recursive Phi. This consists of a Phi node which resolves to multiple 

element accesses during runtime on successive interpretation. Figure 4.8 

shows an example of such a Phi node. Currently, a combination of Base 

and OffsettedBase or 2 OffsettedBase patterns, with the same Base address 

and different Offset values, represent such a recursive Phi node. However, 

these combinations of patterns could also result from other Phi nodes, such 

as shown in Figure 4.9. So, we specifically keep track if an OffsettedBase 

pattern arises due to a recursive Phi node during abstract interpretation. 

The patterns listed above detect the presence of an array at a given memory 

location. These patterns may assist in calculating array strides as well as array 

boundaries, using limits on indices using further analysis. 

3. Moving MemNodes to appropriate segments. Based on which segment 

the Base of an address lies inside, the MemNodes are moved to appropriate 

segments from the Unknown segment. For example, a MemNode having rsp as 

identified Base would be moved to Stack segment, and a MemNode having a 

Heap allocated MemNode as identified Base will be moved to Heap segment. 

4. Merge MemNodes on basis of identified Base. Due to currently present 

uncertainties in SSA tree across Phi nodes, there could be different MemNodes 

present for a single Base address. Propagating the Base address across Phi 

nodes help resolve this uncertainty and merge these MemNodes together. 

5. De-duplicating Stack MemNodes. More than one MemNode in Stack seg-

ment might have the same offset from stack-top pointer at the beginning of the 

function. These MemNodes represent the same memory object and are merged 

to a single MemNode. 
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6. MemNode adoption. If a MemNode is associated with one of the following 

patterns – ScaledIndexedOffsettedBase, IndexedOffsettedBase and Offsetted-

Base, it is moved to be a child of the MemNode corresponding to the identified 

Base of the respective pattern. Hence, these patterns help identify aggregate 

memory objects such as C structs. An exception to this procedure is when the 

identified Base is rsp, in which case the MemNodes are kept as it is, since these 

patterns would just represent normal stack access. 

To merge two MemNodes corresponding to the same memory object, we use a 

method similar to lazy decomposition in Aggregate Structure Identification [21], keep-

ing in mind the uncertainty present in MemTree and the resulting differences in tree 

structures. 

4.2.5 Inter-function Propagation 

The fourth step consists of propagating per function MemTree structure, obtained 

until this step, across functions by matching arguments passed by a caller function’s 

code and parameters received by the callee function’s code. This task is performed for 

all caller/callee present in the call-graph generated by Fafnir, until either a fix-point 

is reached, or a maximum number of threshold iterations occur. This task also uses 

the process of merging two MemNodes, but in two different SSA trees corresponding 

to different functions. We currently limit this process to propagate information from 

caller function to callee function only. In C programs, a callee might accept a (void 

*), which allows caller to pass pointer to any object to the callee. The callee uses 

other parameters to detect the type of memory object passed and processes it. Since 

the callee could process the same parameter in multiple ways, current analysis would 

assign a memory object structure, which is union of structures of all the inferred 

objects, to the parameter. Propagating this information to the caller in such a case 

would result in incorrect MemNode structure being inferred for the caller. This effect 

would affect multiple functions, in case the function accepting pointers to generic 
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object type is present deep inside the call-graph. Further, inter-function propagation 

might identify new address nodes in SSA trees. This occurs in case where an address, 

represented by a pointer in C, is not used inside the function defining it, but is passed 

to another function which uses it like a reference. These newly identified address nodes 

are stored, and steps starting from Address Pattern analysis are re-run on these nodes, 

until either inter-function propagation does not identify any new address nodes, or a 

maximum number of threshold iterations occur. 

The final step involves applying heuristics on Stack segment of MemTree to in-

crease the precision of inferred Stack layout. These heuristics assume that all offsets 

inside the stack region have been recognized correctly. This step is divided into fol-

lowing sub-steps in order: 

• Find aggregate size by last child’s offset. In case of hierarchical memory 

object, such as C struct, MemTree analysis may not have inferred correct ag-

gregate size for the corresponding MemNode. This heuristic allows correcting 

(or inferring) aggregate sizes of such memory objects. If the child at max-

imum offset for current MemNode is not an aggregate object, the aggregate 

size of current MemNode is set to max(current MemNode’s aggregate size, 

child MemNode’s offset + size of child MemNode). In case, the child at 

maximum offset is an aggregate memory object, the procedure is first applied 

recursively to the child MemNode, and the aggregate size of current MemNode is 

set to max(current MemNode’s aggregate size, child MemNode’s offset 

+ aggregate size of child MemNode). This heuristic does not infer correct 

size in case the last sub-field of a hierarchical memory object is not used at all, 

but allows to infer a minimum aggregate size of such an object. Algorithm 4.2 

represents this in a concise manner. 

• Subdue siblings by aggregate size. After fixing aggregate size of hierarchical 

memory objects using the heuristic above, this steps finds siblings of current 

MemNode whose offset lie within offsets covered by current MemNode’s offset 
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Algorithm 4.2 Heuristic procedure for finding aggregate size of hierarchical objects 

function FindAggregateSize(MemNode M) 

last child ← child of M at maximum offset 

if last child is not an aggregate object then 

M.aggregate size ← max(M.aggregate size, last child.offset+last child.size) 

else if last child is an aggregate object then 

FindAggregateSize(last child) 

M.aggregate size ← max(M.aggregate size, last child.offset+ 

last child.aggregate size) 

end if 

end function 
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and aggregate size. This is recursively performed for each child node of current 

MemNode. Algorithm 4.3 represents this in a concise manner. 

Algorithm 4.3 Heuristic procedure for refining structure of hierarchical objects 

function SubdueSiblings(MemNode M) 

children ← all children of M in decreasing order of offsets 

for child P ∈ children do 

for child S ∈ children, where S.offset > P.offset do 

if S.offset ∈ [P.offset + P.aggregate size] then 

Make S as child of P 

end if 

end for 

end for 

for child T ∈ children do 

if T has children then 

SubdueSiblings(T) 

end if 

end for 

end function 

• Recalculate sizes using offsets. The initial sizes assigned to MemNodes are 

based on the size of value loaded/stored from/to memory location represented 

by the MemNode. Fafnir currently depends on instruction opcodes to obtain 

this information. But these size values may not always be correct. For example, 

when using an ASCII character, with 1 byte size, the program may load 4 

bytes from an aligned address and perform operations on it to get the 1 byte 

character value. Performing multiple such operations may be faster to than 

load from an unaligned address. To fix incorrect sizes due to similar issues, 

the size of a MemNode is truncated depending on the next higher offset. In 

case of a hierarchical MemNode, the next higher offset is taken as the smallest 
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offset among its children. In all other cases, the next higher offset is taken from 

among the siblings of current MemNode. This procedure is applied recursively 

to all children of a hierarchical MemNode. Algorithm 4.4 represents this in a 

concise manner. 

Algorithm 4.4 Heuristic procedure for truncating size of basic memory objects 

function TruncateSize(MemNode M) 

children ← all children of M in increasing order of offsets 

for child P ∈ children - {child at maximum offset} do 

S ← MemNode next to P in children 

P.size ← min(P.size, S.offset-P.offset) 

end for 

lowest offset child ← child on M with smallest offset 

M.size ← min(M.size, lowest offset child.offset) 

for child C ∈ children do 

TruncateSize(C) 

end for 

end function 

4.3 Evaluation 

We evaluate MemTree implementation on coreutils-8.29, binutils-2.29, and SPEC 

CPU2006 C binaries. These binaries are compiled using GCC version 5.4.0 on an 

Intel Core i7-6700 CPU x86-64 machine, with O2 optimization level and with debug 

information. Currently, we fail to analyze 403.gcc from SPEC CPU2006 C binaries, 

due to an issue while constructing AST. We compare the stack layout inferred by 

MemTree with the ground truth obtained from the debug information. Before running 

inference using MemTree, the binaries are first stripped of debug information, using 

strip --strip-debug on a Linux system. 

https://binutils-2.29
https://coreutils-8.29
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4.3.1 Obtaining Ground Truth 

We obtain ground truth for stack layout of functions in a binary program from 

debug information embedded inside it in DWARF [30] format. DWARF is a stan-

dardized format for embedding source level debug information in binary executables. 

For ELF binaries compiled using GCC with DWARF information, multiple debug 

sections are embedded – for abbreviations, source line information, information re-

lated to unwinding stack, or information related to variables used in each function. 

We are interested in using information related to local variables in a function to ob-

tain the ground truth. This information is arranged hierarchically with Compilation 

Units (CUs) at the top level. Each CU corresponds to a compiled source file, and con-

tains multiple Debugging Information Entries (DIEs). Each DIE contains information 

about a basic entity, such as a function, local variable, parameter to a function, lexical 

blocks, or data types. DIEs have an associated tag, with prefix DW TAG, which helps in 

identifying the entity it corresponds to. Each DIE also has a set of attributes (prefixed 

with DW AT) related to it, which depending upon DIE tag contains information related 

to the entity such as its name, starting address in case of a function entity, type in 

case of a parameter or local variable, etc. DIEs corresponding to local variables in a 

function may 2 contain attributes for location description, named DW AT location, 

and for type description, named DW AT type. The attribute DW AT type points to an-

other DIE which contains information about the size of the type corresponding to the 

local variable. The attribute DW AT location is either a DWARF expression which 

on evaluation would result in location of the local variable, or a pointer to location list 

which contains multiple DWARF expressions each corresponding to a different range 

of program counter values inside the function. We use PyELFTools [31] to parse 

raw debug information in the binary executable and present it in form of objects in 

Python. PyELFTools also provides a generic framework for operating on DWARF 

expressions, which we augment by adding new operations introduced in DWARF 5 

2These attributes are not present at least in cases where the local variable was found to have constant 
value, and hence was inlined 
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standard. We use this framework to simulate calculation of location of local variable 

using DWARF expressions, and obtain the location value if it does not depend on 

runtime values. Currently, we assume all x86-64 registers except rip and rsp to be 

dynamic, but it might be possible to improve precision using static analyses to ob-

tain the values of other registers at a given address in the function. We also assume 

dereferencing operations on memory addresses to be dynamic. The procedure for 

extracting location of variables is summarized below: 

1: function processDWARF 

2: all DIEs ← getAllDIEs() 

3: for function DIE ∈ all DIEs do processBlock(function DIE) 

4: end for 

5: end function 

6: 

7: function processBlock(block DIE) 

8: for all child DIE ∈ children of block DIE do 

9: if child DIE corresponds to lexical block then processBlock(child DIE) 

10: end if 

11: if child DIE corresponds to variable then 

12: location containing DIE ← child DIE 

13: if child DIE is abstract instance then 

14: location containing DIE ← DIE at concrete instance 

15: end if 

16: if location containing DIE does not contain location attribute, or rep-

resent a constant value then 

17: skip this DIE 

18: end if 

19: possible locations ← empty list 

20: if form of location attribute is an expression then 



41 

21: possible locations.insert(tryEvaluateExpression(location 

expression)) 

22: else if form of location points to a location list then 

23: for location expression ∈ location list do 

24: possible locations.insert(tryEvaluateExpression(location 

expression)) 

25: end for 

26: end if 

27: type DIE ← DIE at offset pointed by value of type attribute 

28: type info ← getTypeInfo(type DIE) 

29: for location ∈ possible locations do 

30: assign variable of type info.size at location in stack 

31: end for 

32: end if 

33: end for 

34: end function 

35: 

36: function GetTypeInfo(type DIE) 

37: if type is pointer then 

38: type info.size ← ARCH PTR SIZE 

39: type info.is Reference ← true 

40: else if type is a base type, such as int or char then 

41: type info.size ← value of size attribute in type DIE 

42: type info.is Reference ← false 

43: else if ... then 

44: ... 

45: end if 

46: return type info 

47: end function 
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48: 

49: function TryEvaluateExpression(DWARF expression) 

50: Evaluate expression using augmented framework. 

51: if expression contained static components then 

52: return Offset from frame pointer 

53: else 

54: return None 

55: end if 

56: end function 

The current method for extracting ground truth has a possibility of missing local 

variables, because it only takes into consideration expression that can be evaluated 

without any runtime values. Also, DWARF information contains size corresponding 

to type of value stored at location, not the actual size assigned by the compiler on 

the stack. 

4.3.2 Evaluation Parameters 

The layout of stack inferred by MemTree is compared against the ground truth 

obtained from DWARF information on basis of following parameters: 

1. Correctly Recognized Offsets. Stack offsets recognized by MemTree present 

in ground truth 

2. Faulty Recognized Offsets. Stack offsets recognized by MemTree, but not 

present in ground truth 

3. Correctly Recognized Sizes. Size of memory objects recognized correctly, 

compared to ground truth, at each Correctly Recognized Offset 

4. Correctly Recognized Arrays. Number of offsets at which array structure 

is recognized by both MemTree and ground truth 
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5. Faulty Recognized Arrays. Number of offsets at which MemTree detects 

array structure, but ground truth does not 

6. Correctly Recognized Array Sizes. Number of offsets at which MemTree 

recognizes array size correctly (out of Correctly Recognized Arrays) 

7. Correctly Recognized Structs. Number of offsets at which C struct is rec-

ognized by both MemTree and ground truth 

8. Faulty Recognized Structs. Number of offsets at which MemTree detects C 

struct, but ground truth does not 

9. Correctly Recognized Struct Sizes. Number of offsets at which MemTree 

recognizes C struct size correctly (out of Correctly Recognized Structs) 

The current methodology used to compare C structs is incomplete, since it only 

compares the size of the C struct recognized vs the size of C struct according to 

ground truth. In the future, we intend to implement a better way of comparing C 

structs – using children offsets and sizes, in addition to struct sizes. Tables 4.2 to 4.4 

show detailed results of binaries on basis of these evaluation parameters. Table 4.5 

shows summary of these results for each binary suite. 
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Table 4.1.: Evaluation parameter abbreviations 

TO Total Offsets present in ground truth 

FO Faulty Recognized Offsets 

CRO Correctly Recognized Offsets 

CRS Correctly Recognized Sizes 

TA Total Arrays – Number of arrays according to ground truth 

(out of Correctly Recognized Offsets) 

FA Faulty Recognized Arrays 

CRA Correctly Recognized Arrays 

CRAS Correctly Recognized Array Sizes 

TSt Total Structs – Number of C structs according to ground 

truth (out of Correctly Recognized Offsets) 

FSt Faulty Recognized Structs 

CRSt Correctly Recognized Structs 

CRStS Correctly Recognized Struct Sizes 

Table 4.2.: MemTree results for coreutils-8.29. See Table 4.1 for abbreviations 

Binary Offset/Size Arrays C Structs 

TO FO CRO CRS TA FA CRA CRAS TSt FSt CRSt CRStS 

b2sum 54 465 48 32 10 0 4 0 6 4 6 6 

base32 41 307 37 25 5 0 4 0 7 5 7 6 

base64 40 307 37 26 5 0 4 0 7 4 6 6 

basename 27 250 26 19 1 0 1 0 6 2 6 6 

cat 42 277 40 32 1 0 1 0 6 3 6 6 

chcon 75 528 66 46 6 0 1 0 16 2 13 12 

chgrp 70 508 58 43 1 0 1 0 14 2 12 11 

chmod 62 477 55 41 1 0 1 0 12 2 10 9 

chown 78 528 65 49 1 0 1 0 14 2 12 11 

Continued... 

https://coreutils-8.29
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chroot 42 289 38 30 1 0 1 0 6 2 6 6 

cksum 30 254 28 19 2 0 1 0 6 3 6 6 

comm 42 327 36 21 8 0 6 0 6 2 6 6 

cp 165 1077 142 99 11 0 2 0 37 9 26 25 

csplit 45 334 33 24 1 0 1 0 9 2 9 9 

cut 39 294 36 28 2 0 1 0 6 2 6 6 

date 124 590 94 59 9 0 2 0 23 4 20 16 

dd 86 521 67 45 3 0 2 0 15 3 13 10 

df 123 675 102 80 2 0 2 0 23 2 19 15 

dircolors 31 288 30 23 1 0 1 0 6 2 6 6 

dirname 27 246 26 19 1 0 1 0 6 2 6 6 

dir 115 951 88 65 6 0 4 0 19 3 15 14 

du 121 806 100 71 2 0 1 0 14 3 9 8 

echo 28 239 26 19 1 0 1 0 6 2 6 6 

env 29 238 27 19 1 0 1 0 6 2 6 6 

expand 33 265 30 21 2 0 1 0 6 2 6 6 

expr 33 386 31 21 1 0 1 0 10 3 8 8 

factor 91 610 80 59 3 0 2 0 20 2 8 8 

false 27 231 26 19 1 0 1 0 6 2 6 6 

fmt 32 297 29 21 1 0 1 0 6 2 6 6 

fold 36 268 31 23 2 0 1 0 6 2 6 6 

getlimits 37 300 35 21 6 0 1 0 6 3 6 6 

ginstall 195 1248 163 115 11 0 3 0 43 9 30 27 

groups 29 261 28 21 1 0 1 0 6 2 6 6 

head 43 332 38 26 5 0 2 0 7 2 7 7 

hostid 28 242 27 19 1 0 1 0 6 3 6 6 

id 37 292 33 25 1 0 1 0 6 2 6 6 

join 40 368 35 25 2 0 2 0 6 3 6 6 

kill 31 261 30 22 2 0 1 0 6 3 6 6 

libstd-

buf.so 

1 8 1 1 0 0 0 0 0 0 0 0 

link 28 243 27 19 1 0 1 0 6 3 6 6 

ln 66 619 64 47 4 0 2 0 19 2 16 15 

Continued... 
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logname 28 242 27 19 1 0 1 0 6 3 6 6 

ls 115 953 88 65 6 0 4 0 19 3 15 14 

make-

prime-list 

1 18 1 1 0 0 0 0 0 0 0 0 

md5sum 44 315 42 30 2 0 2 0 8 2 8 6 

mkdir 109 686 89 66 3 0 2 0 22 3 17 14 

mkfifo 72 552 66 50 2 0 1 0 16 3 13 12 

mknod 78 562 70 54 2 0 1 0 16 3 13 12 

mktemp 39 336 37 26 2 0 2 0 7 2 7 7 

mv 155 1087 134 96 8 0 2 0 37 8 26 25 

nice 31 244 28 20 1 0 1 0 6 2 6 6 

nl 31 284 28 20 1 0 1 0 6 2 6 6 

nohup 34 274 32 21 1 0 1 0 6 3 6 6 

nproc 33 261 30 22 1 0 1 0 7 2 7 7 

numfmt 49 386 43 34 1 0 1 0 6 2 6 6 

od 92 590 71 44 11 2 2 0 9 2 9 7 

paste 32 262 31 22 1 0 1 0 6 2 6 6 

pathchk 30 246 29 22 1 0 1 0 6 2 6 6 

pinky 35 287 33 23 4 0 1 0 7 2 7 7 

printenv 27 239 26 19 1 0 1 0 6 2 6 6 

printf 65 369 48 34 3 0 2 0 8 3 8 6 

pr 84 483 57 39 3 0 1 0 12 2 10 10 

ptx 67 539 63 41 1 0 1 0 20 3 8 8 

pwd 35 267 34 27 1 0 1 0 11 2 11 11 

readlink 41 382 40 31 1 0 1 0 11 2 10 9 

realpath 41 403 40 31 1 0 1 0 11 2 10 9 

[ 60 329 46 34 2 0 2 0 10 2 10 8 

rmdir 54 292 42 31 2 0 2 0 8 2 8 6 

rm 70 535 58 43 1 0 1 0 13 2 11 9 

runcon 33 245 32 25 1 0 1 0 6 2 6 6 

seq 72 319 58 42 2 0 2 0 13 2 9 7 

sha1sum 46 335 44 31 3 0 3 0 8 2 8 6 

sha224sum 68 345 65 49 3 0 3 0 10 2 10 6 

Continued... 
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sha256sum 68 345 65 49 3 0 3 0 10 2 10 6 

sha384sum 49 370 46 31 3 0 3 0 10 2 10 6 

sha512sum 49 370 46 31 3 0 3 0 10 2 10 6 

shred 68 482 62 43 4 0 2 0 10 2 9 9 

shuf 54 488 48 34 2 0 2 0 8 3 8 7 

sleep 34 265 33 25 1 0 1 0 8 3 8 8 

sort 130 947 111 76 4 0 3 0 22 5 15 11 

split 53 362 42 29 3 0 1 0 7 4 7 7 

stat 107 541 78 61 2 0 2 0 16 2 15 13 

stdbuf 60 327 46 34 3 0 3 0 8 2 8 6 

stty 74 376 54 38 2 0 2 0 9 2 8 6 

sum 40 329 35 24 2 0 1 0 6 2 6 6 

sync 30 249 28 20 1 0 1 0 6 2 6 6 

tac 37 293 32 23 1 0 1 0 6 2 6 6 

tail 61 536 55 39 5 1 1 0 13 2 13 12 

tee 33 295 31 21 2 0 1 0 6 2 6 6 

test 58 304 44 34 1 0 1 0 10 0 10 8 

timeout 39 288 38 29 3 0 1 0 8 4 8 8 

touch 115 588 89 54 9 0 2 0 23 4 19 15 

tr 40 328 34 23 2 1 1 0 9 2 9 7 

true 27 231 26 19 1 0 1 0 6 2 6 6 

truncate 34 263 31 22 1 0 1 0 7 2 7 7 

tsort 31 308 30 21 2 0 2 0 7 3 7 7 

tty 27 233 26 19 1 0 1 0 6 2 6 6 

uname 30 239 26 19 1 0 1 0 6 2 6 6 

unexpand 32 270 29 21 1 0 1 0 6 2 6 6 

uniq 39 374 35 25 2 0 2 0 6 2 6 6 

unlink 28 242 27 19 1 0 1 0 6 3 6 6 

uptime 50 348 45 29 3 0 1 0 7 3 7 7 

users 28 268 27 19 1 0 1 0 6 3 6 6 

vdir 115 952 88 65 6 0 4 0 19 3 15 14 

wc 49 329 42 32 2 0 1 0 9 2 9 8 

whoami 28 242 27 19 1 0 1 0 6 3 6 6 

Continued... 
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who 67 362 52 36 8 0 2 0 9 2 9 7 

yes 29 257 28 20 1 0 1 0 6 3 6 6 

Table 4.3.: MemTree results for binutils-2.29. See Table 4.1 for abbreviations 

Binary Offset/Size Arrays C Structs 

TO FO CRO CRS TA FA CRA CRAS TSt FSt CRSt CRStS 

addr2line 1049 7620 825 594 55 1 9 0 119 17 49 31 

ar 1066 7868 836 595 58 1 12 0 122 18 45 27 

bfdtest1 1028 7443 808 584 53 1 9 0 116 13 47 30 

bfdtest2 1028 7459 807 583 52 1 7 0 116 13 47 29 

cxxfilt 1050 7611 824 594 54 1 9 0 119 17 49 31 

elfedit 15 183 14 9 1 0 0 0 3 2 3 1 

nm-new 1069 7711 838 599 54 2 7 0 120 18 42 24 

objcopy 1187 9034 925 662 67 1 10 0 134 19 56 37 

objdump 1391 8103 507 343 37 1 3 0 61 8 11 11 

ranlib 1066 7854 835 603 57 1 11 0 122 18 52 35 

readelf 336 1286 273 206 21 0 10 0 17 5 6 4 

size 1052 7634 827 595 56 1 9 0 119 18 49 31 

strings 1050 7622 824 595 54 1 10 0 118 18 48 31 

strip-new 1187 9044 922 655 64 1 9 0 134 22 49 30 

sysinfo 12 71 6 4 2 0 2 0 0 0 0 0 

Table 4.4.: MemTree results for SPECCPU2006 C binaries. See Table 4.1 for abbreviations 

Binary Offset/Size Arrays C Structs 

TO FO CRO CRS TA FA CRA CRAS TSt FSt CRSt CRStS 

bzip2 65 309 50 30 14 0 8 0 3 0 0 0 

gobmk 1160 9218 598 360 82 4 19 1 24 14 13 13 

h264ref 960 3719 878 580 116 0 75 4 49 13 26 0 

hmmer 513 2473 316 235 25 0 3 0 4 2 1 0 

lbm 26 81 23 18 2 0 0 0 2 0 2 2 

libquantum 54 630 49 27 2 0 0 0 10 0 4 4 

Continued... 

https://binutils-2.29
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mcf 20 90 19 18 1 0 0 0 0 0 0 0 

milc 304 1171 291 210 68 0 13 0 22 6 17 8 

sjeng 211 603 176 94 58 0 34 0 19 15 3 3 

sphinx 265 1665 243 171 28 0 7 0 5 6 4 4 

Table 4.5.: MemTree evaluation summary 

Suite TO FO CRO CRS TA FA CRA CRAS TSt FSt CRSt CRStS 

coreutils-8.29 5853 42213 5049 3616 285 4 168 0 1083 272 948 860 

binutils-2.29 13586 96543 10071 7221 685 13 117 0 1420 206 553 352 

SPECCPU2006 C 3578 19959 2643 1743 396 4 159 5 138 56 70 34 

From Table 4.5, we observe that MemTree is able to detect that a C struct is 

present at an offset with 58.3% accuracy, and accuracy for detection of array at a 

given offset is 41.6%. MemTree recognizes the correct size for 42.9% C structs, but 

fails to recognize correct size for almost all arrays. 

4.4 Discussion 

MemTree represents a memory view from a binary program’s perspective, which 

need not necessarily be the same as present in source code. For example, individual 

elements of an array object declared in source code could be accessed separately, 

instead of iterating over them, on basis of some other conditional variables. In this 

case, the binary would see those elements as fields of a hierarchical object instead of 

an array. For example, Figure 4.10 shows a code snippet from binutils-2.29 [32], 

where individual elements of part of an array are accessed. Another limitation of 

current implementation of MemTree is differentiating between array of hierarchical 

objects and a hierarchical object with array object as the first field. This limitation 

occurs because in both cases the Base would be the same. One way to overcome this 

limitation is to find the stride of iteration. If the stride is equal to the aggregate size of 

hierarchical object, the object represents an array of hierarchical objects. Contrarily, 

https://binutils-2.29
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if the stride is equal to the size of first element of hierarchical object, the object is 

a hierarchical object with first element as an array object. This solution requires 

accurate aggregate size, size and stride information. 

Two major sources of information about hierarchical objects are function sig-

natures and inter-function propagation. The reason is impossibility to distinguish 

between access to a basic object at a stack offset versus access to a field of an hierar-

chical object in same stack, where both objects are defined in the same function, since 

both accesses will be relative to the stack pointer. On the other hand, if a hierarchi-

cal object is passed as an argument to a function, the access to fields of the object 

would be relative to the respective argument register. Assuming compiler generated 

assembly code, it is uncommon to see local variables of caller function being accessed 

using offsets from passed arguments. Therefore, it would be safe to assume that the 

object passed as argument is a hierarchical object in such case. The same issue occurs 

when nested hierarchical objects are present. If a nested hierarchical object is passed 

a argument to a function, it would be impossible to differentiate between access to 

fields of the parent hierarchical object and fields of the child hierarchical object in 

callee function, since both accesses would be relative to the same argument register 

in the callee. However, if the child hierarchical object is further passed to another 

function, its structure could be retrieved. Structure detection could be further im-

proved using intrinsics based on additional information, such as function calls. For 

example, if we know the structure of one argument to memcpy, we could propagate 

the same structure to the another argument. 

Current MemTree analysis does not detect sizes for arrays correctly. But since 

we know the indices used to iterate over arrays, applying other analyses such as VSA 

could help in determining bounds of these indices, and hence the sizes for arrays. 

As mentioned earlier, the current ground truth extraction process has a limitation 

of being able to only extract local variables on stack with statically computable loca-

tion expressions. In future, we would like to explore better ways of extracting ground 

truth, one which allows extracting information about variables in heap and global 
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segment too. A possible way would be to instrument the compilation process to emit 

this information when IR gets translated to assembly code for a given architecture. 

Tables 4.2 to 4.4 show that MemTree recognizes too many false offsets on the 

stack. One of the reasons for this observation is use of stack to store transient values. 

Programs may push values in registers on stack and restore them later, in case a 

value needs to be preserved when a register gets overwritten. Such a case occurs 

when caller-saved register is used in callee-function. The compiler would choose to 

push the value in caller-saved register on stack, and restore it after the call returns. 

These operations are represented as loads and stores on stack in the underlying IR, 

to provide transparency across architectures. Therefore, MemTree infers them as 

memory objects. Since DWARF information contains locations for user-defined local 

variables in source code, these pushes and pops will cause few identified memory 

locations to be marked false positives. 

4.5 Summary 

Aiming at tracking of values across loads and stores from memory regions in a 

binary program, we present an abstract interpretation based approach which infers 

layout of memory in form of a hierarchical structure called MemTree. Our approach 

involves finding memory addresses and analyzing possible patterns they could rep-

resent. Based on these possible patterns and our observations of existing address 

patterns in binary programs, we infer structure of object present at a given memory 

address. Currently, we limit evaluation of this approach only to inferred stack layout, 

using partial information available from DWARF debug information present in binary 

executables as ground truth. We also discuss limitations of our approach in detecting 

structure of memory objects. 
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0x16

(c) The node with thick border represents 
Offset identified with abstract interpreta-
tion 

Figure 4.7.: Result of abstract interpretation 
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Phi

-

rsp 0x08

-

0x04

Figure 4.8.: Example of recursive Phi node (with thick border) representing a loop 

Phi

-

rsp 0x08

-

0x12

Figure 4.9.: Example of Phi node (with thick border) which gives same patterns as a 
recursive Phi node, but does not represent a loop 
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static int 

shmedia_parse_reg (char *src, shmedia_arg_type *mode, int *reg, 

shmedia_arg_type argtype) 

{ 

int l0 = TOLOWER (src[0]); 

int l1 = l0 ? TOLOWER (src[1]) : 0; 

... 

if (l0 == 'f' && l1 == 'v') 

{ 

if (src[2] >= '1' && src[2] <= '5') 

{ 

if (src[3] >= '0' && src[3] <= '9' 

&& ((10 * (src[2] - '0') + src[3] - '0') % 4) == 0 

&& ! IDENT_CHAR ((unsigned char) src[4])) 

{ 

*mode = A_FVREG_G; 

*reg = 10 * (src[2] - '0') + src[3] - '0'; 

return 4; 

} 

} 

... 

} 

... 

} 

Figure 4.10.: Array elements accessed individually 
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Chapter 5. SUMMARY 

We presents two methods to augment current binary analysis techniques on x86-

64 binaries, to use targeted heuristics and perform fine grained analysis. We use 

machine learning based approach to extract accurate information regarding compiler 

and optimization level used to compile a binary, to help fine tune heuristics for binary 

analyses. We use an abstract interpretation based approach to extract layout of 

memory from a binary program’s point of view for C binaries, to help existing binary 

analyses track values across loads and stores from memory. 
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APPENDIX 

Table A.1.: Pattern name abbreviations 

Abbreviation Pattern name 

B Base 

O Offset 

I Index 

S Scale 

OB OffsettedBase 

IB IndexedBase 

IO IndexedOffset 

SI ScaledIndex 

IOB IndexedOffsettedBase 

SIB ScaledIndexedBase 

SIO ScaledIndexedOffset 

SIOB ScaledIndexedOffsettedBase 

- No Pattern 

Table A.2.: Rules for combining address patterns across add, subtract and multiply 
operations. See Table A.1 for abbreviations 

Left Operand Pattern Right Operand Pattern OpAdd OpSub OpMul 

B B - - -

B O OB OB -

B I IB IB -

Continued... 
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B S - - -

B OB - - -

B IB - - -

B IO IOB IOB -

B SI SIB SIB -

B IOB - - -

B SIB - - -

B SIO SIOB SIOB -

B SIOB - - -

O B OB - -

O O O O -

O I IO IO -

O S - - -

O OB OB - -

O IB IOB - -

O IO IO IO -

O SI SIO SIO -

O IOB IOB - -

O SIB SIOB - -

O SIO SIO SIO -

O SIOB SIOB - -

I B IB - -

I O IO IO -

I I I I I 

I S - - SI 

I OB IOB - -

I IB IB - -

Continued... 
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I IO IO IO -

I SI SI SI SI 

I IOB IOB - -

I SIB SIB - -

I SIO SIO SIO -

I SIOB SIOB - -

S B - - -

S O - - -

S I - - SI 

S S S S S 

S OB - - -

S IB - - -

S IO - - SI 

S SI - - SI 

S IOB - - -

S SIB - - -

S SIO - - -

S SIOB - - -

OB B - - -

OB O OB OB -

OB I IOB IOB -

OB S - - -

OB OB - - -

OB IB - - -

OB IO IOB IOB -

OB SI SIOB SIOB -

OB IOB - - -

Continued... 



62 

OB SIB - - -

OB SIO SIOB SIOB -

OB SIOB - - -

IB B - - -

IB O IOB IOB -

IB I IB IB -

IB S - - -

IB OB - - -

IB IB - - -

IB IO IOB IOB -

IB SI SIB SIB -

IB IOB - - -

IB SIB - - -

IB SIO SIOB SIOB -

IB SIOB - - -

IO B IOB - -

IO O IO IO -

IO I IO IO -

IO S - - SI 

IO OB IOB - -

IO IB IOB - -

IO IO IO IO -

IO SI SIO SIO -

IO IOB IOB - -

IO SIB SIOB - -

IO SIO SIO SIO -

IO SIOB SIOB - -

Continued... 



63 

SI B SIB - -

SI O SIO SIO -

SI I SI SI SI 

SI S - - SI 

SI OB SIOB - -

SI IB SIB - -

SI IO SIO SIO -

SI SI SI SI SI 

SI IOB SIOB - -

SI SIB SIB - -

SI SIO SIO SIO -

SI SIOB SIOB - -

IOB B - - -

IOB O IOB IOB -

IOB I IOB IOB -

IOB S - - -

IOB OB - - -

IOB IB - - -

IOB IO IOB IOB -

IOB SI SIOB SIOB -

IOB IOB - - -

IOB SIB - - -

IOB SIO SIOB SIOB -

IOB SIOB - - -

SIB B - - -

SIB O SIOB SIOB -

SIB I SIB SIB -

Continued... 
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SIB S - - -

SIB OB - - -

SIB IB - - -

SIB IO SIOB SIOB -

SIB SI SIB SIB -

SIB IOB - - -

SIB SIB - - -

SIB SIO SIOB SIOB -

SIB SIOB - - -

SIO B SIOB - -

SIO O SIO SIO -

SIO I SIO SIO -

SIO S - - -

SIO OB SIOB - -

SIO IB SIOB - -

SIO IO SIO SIO -

SIO SI SIO SIO -

SIO IOB SIOB - -

SIO SIB SIOB - -

SIO SIO SIO SIO -

SIO SIOB SIOB - -

SIOB B - - -

SIOB O SIOB SIOB -

SIOB I SIOB SIOB -

SIOB S - - -

SIOB OB - - -

SIOB IB - - -

Continued... 
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SIOB IO SIOB SIOB -

SIOB SI SIOB SIOB -

SIOB IOB - - -

SIOB SIB - - -

SIOB SIO SIOB SIOB -

SIOB SIOB - - -
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Table A.3.: Summary of rules for combining address patterns across operations 

Operations Interpretation rules summary 

OpAdd All cases are valid, except pattern with Base com-

ponent cannot be added to another pattern with 

Base component and Scale can only be added to 

Scale 

OpSub Same as OpAdd, excluding cases where Base com-

ponent is present in right operand pattern 

OpMul Only Scale and Index can be multiplied. Special 

case is IndexedOffset and Scale to handle cases such 

as a[5*(i+1)] in C, since i+1 will be identified as 

IndexedOffset initially 

OpDiv, OpLsl, OpLsr, 

OpRol, OpRor 

Same as OpMul 

OpAnd Resulting node is Base or Index 

OpLoad Resulting node is Base or Index 

OpConst Resulting node is Scale or Offset. Also possibly 

Base, if node is known to be a reference 

OpZeroExt, OpSignExt, 

OpNarrow 

Remove all patterns from operand patterns which 

include Base component 

OpMod Resulting node is Index 

OpStore No pattern 

OpOr Resulting node is Index 

OpXor Resulting node is Index 

OpNot Remove all patterns from operand patterns which 

include Base component 

OpCall Resulting node is Base or Index 

* Resulting node can be any basic component, except 

for rip and rsp which are Base 
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