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ABSTRACT 

Author: Zeng, Yuqiang. PhD 
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Title: Tuning Thermal Transport in Thin Films 
Major Professor: Amy Marconnet 

Decades of research have enabled new understanding of thermal transport at the nanoscale. 

Leveraging this new understanding to tune heat conduction in thin films (TFs) is of significant 

interest for both fundamental and applications. This work explores tuning thermal conduction in 

TFs by structuring, strain engineering, and annealing. Specifically, three approaches are 

interrogated: 1) nanostructuring to achieve significant in-plane thermal conduction anisotropy in 

TFs; 2) strain engineering of thermal conductivity (k) of a basic structure in flexible electronics, 

Au-on-polyimide films, and a representative 2D material, graphene; and 3) high temperature 

annealing of reduced graphene oxide (RGO) films to enhance k. 

Nanostructuring is well known as an efficient method to modulate thermal conductivity. 

Extending beyond previous studies, this work investigates the directional dependence of the 

thermal conductivity introduced by anisotropic boundaries. Specifically, thickness modulators are 

introduced in TFs to structurally impact the thermal conduction anisotropy. Simulations, based on 

the phonon Boltzmann Transport Equation (BTE), demonstrate the ability to tune the in-plane 

thermal anisotropy ratio across an order of magnitude via modulating the thickness of the thin 

films. To predict the thermal conductivity of nanostructures, simplified Monte Carlo (MC) 

methods have been developed considering the expensive computational cost of solving the full 

BTE. We reevaluate the simplified MC methods and the applicability of these methods is evaluated. 

Beyond structural engineering, this dissertation explores strain engineering of thermal 

conductivity in nanostructured materials including flexible TFs and 2D materials. Past 

experimental study on the impact of strain on thermal conductivity is very limited due to the 

challenges of measuring k of thin films under controlled strain. This work develops fully suspended 

devices on flexible substrate for strain control and evaluation of strain-dependent k using a new 

electrothermal measurement method. By extending conventional electrothermal approaches, the 

new method allows accurate thermal conductivity measurements with minimal assumptions. 
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Finally, this dissertation investigates annealing as an effective method to tune thermal 

transport in RGO films. Both the electrical and thermal conductivity increases significantly as the 

annealing (or reduction) temperature increases. The measured electrical and thermal conductivity 

are analyzed using a 3D Mott variable range hopping model and a thermal conductivity integral 

model, respectively. Further, the application of RGO films for high temperature thermoelectrics 

and extreme temperature sensing is discussed based on the measured electrical and thermal 

conductivity across a wide temperature range (10 K - 3000 K). 

Key contributions of this dissertation include new understanding of engineering thermal 

conduction in TFs and characterization of thermal conductivity in strained TFs. The high in-plane 

thermal anisotropy ratio by nanostructuring is promising for directing heat flow in modern 

applications. Tuning thermal conductivity by strain control is of significant interest for modern 

devices with stress/strain such as flexible electronics and other devices with extreme 

thermomechanical stresses. For materials with an extremely high melting point, annealing at 

extreme temperatures by Joule heating suspended films enables additional modulation of the 

thermal conductivity. In summary, this dissertation enhances the understanding of tuning thermal 

transport with structuring, strain, and annealing through experimental and computational efforts. 
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1. INTRODUCTION 

Overview 

Experimental, theoretical, and computational efforts over the past several decades have 

enabled new understanding of thermal transport at nanoscale, especially in crystalline 

semiconductor thin films and low-dimensional materials. Lattice vibrations (phonons) are main 

heat carriers in these systems. Experimental results, combined with atomistic simulations, have 

advanced our knowledge of phonon transport. The spectral dependence and mean free path 

distribution of the energy carriers are critical to understand nanoscale heat conduction phenomena 

such as size effects, interface resistance, and ballistic transport. Nanostructuring significantly 

impacts the thermal conductivity due to the interaction of phonons and boundaries with length 

scales comparable to the phonon wavelengths and/or mean free paths. Nanowires and nanofilms 

generally have a significantly reduced thermal conductivity compared to the corresponding bulk 

materials, while extremely high thermal conductivity is observed in low-dimensional materials 

such as graphene and carbon nanotubes. Thermal conductivity anisotropy, specifically in terms of 

the in-plane k compared to cross-plane k, is observed in thin films due to the difference of the 

conduction paths. 

In addition to progress in fundamental thermal transport, thermal property data, enabled by 

newly developed thermal metrology,[1,2] for materials with nanoscale features has enabled more 

effective thermal design and management in micro/nano-electromechanical systems 

(MEMS/NEMS). Numerous thermal conductivity measurement techniques have been developed 

including electro-, optics-, and acoustic- based methods. However, existing thermal conductivity 

data shows large variations partly due to unavoidable sample-to-sample variations in 

nanostructured samples. In addition to the sample-to-sample variations, accurate thermal 

metrology is challenging and comparison studies of different techniques are limited. 

Despite such advances, thermal management in modern electronic devices is still 

challenging. Significant gaps remain between the new understanding of nanoscale thermal 

transport and improvement of thermal performance in electronic devices. Modern applications 

require unique thermal properties such as extreme thermal conductivity for heat removal and 

thermoelectrics and high thermal anisotropy for directing heat flow. Leveraging this new 
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understanding to engineer materials and obtain unique thermal properties, not naturally existing, 

could enable solutions to existing thermal challenges. 

Organization 

This work explores tuning thermal conduction in TFs by structuring, strain engineering, 

and annealing in three sets of studies: 1) anisotropic structuring that leads to a tunable in-plane 

thermal anisotropy ratio across an order of magnitude via modulating the thickness of the TFs; 2) 

strain engineering of thermal conductivity of a basic structure used in flexible electronics 

(polymer-supported metal films) and a representative 2D material (graphene); and 3) high 

temperature annealing which results in a significant increase in the thermal conductivity for 

reduced graphene oxide (RGO) films. 

As a basis for the experiments in all studies, Chapter 2 develops a simple, direct differential 

method based on electrothermal metrology for measuring thermal conductivity of thin films by 

extending conventional electrothermal approaches. The new method allows accurate thermal 

conductivity measurements with minimal assumptions. The effectiveness of this differential 

measurement technique is demonstrated by measuring thermal conductivity of a 200 nm silicon 

layer. The accuracy of conventional electrothermal approaches for extracting thermal conductivity 

is investigated by comparing to this new method. Further, a thermo-mechanical metrology 

platform is developed for studying strain dependent thermal transport taking advantage of strain 

control through flexible substrate. This metrology platform enables strain-dependent thermal 

characterization of micro/nanostructures. 

Past research proves nanostructuring as an efficient method to modulate thermal 

conductivity, but little work has looked at inducing anisotropy within the in plane directions of 

thin films. Chapter 3 investigates the directional dependence of thermal conductivity introduced 

by anisotropic boundaries. Specifically, thickness modulators are introduced in TFs to structurally 

impact the thermal conduction anisotropy. Simulations based on the phonon Boltzmann Transport 

Equation demonstrate a tunable in-plane thermal anisotropy ratio across an order of magnitude via 

modulating the thickness of the thin films. Moreover, the proposed structure is experimentally 

feasible and is promising for directing the heat flow pathways in modern applications including 

thermal management of electronic devices. For predicting thermal conductivity of nanostructures, 

simplified Monte Carlo methods have been developed as solving the full BTE is computationally 
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expensive. Chapter 4 reevaluates two main types of simplified Monte Carlo methods, and the 

applicability of these methods is evaluated. 

Beyond structural engineering, chapter 5 explores strain engineering of the thermal 

conductivity of polymer-supported metal films and multi-layer graphene films. Suspended 

samples on a flexible substrate combined with a custom-built mechanical stage enables strain 

dependent thermal conductivity characterization using the electrothermal method. 

Characterization of the strain-dependent thermal conductivity of materials enables us to probe the 

underlying thermal transport physics. Additionally, understanding thermal transport in strained 

micro/nanostructured materials is critical for applications related to flexible electronics and other 

devices with significant thermomechanical stresses. 

Chapter 6 investigates annealing as an effective method to tune thermal transport in RGO 

films. A unique two-step annealing process is applied to reduce the graphene oxide films. A 

considerable increase of electrical and thermal conductivity is observed for RGO films as the 

reduction temperature increases. The measured electrical and thermal conductivity are analyzed 

with a 3D Mott variable range hopping model and a thermal conductivity integral model, 

respectively. Further, the application of RGO films for high temperature thermoelectrics and 

extreme temperature sensing is discussed. 

Chapter 7 summarizes the dissertation work and suggests future work extending from this 

dissertation. 
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2. THERMAL CONDUCTIVITY MEASUREMENT METHODOLOGY1 

Background 

Nanostructured materials have attracted broad interest in last two decades due to their 

unique properties not naturally available in bulk materials. For example, past work shows the 

extension of both the upper and lower limits of thermal conductivity (k) by introducing 

nanostructures: nanoporous silicon exhibits extremely low thermal conductivity,[3–6] while 

thermal conductivity of graphene and carbon nanotube is surprisingly high.[7,8] Measurements of 

thermal conductivity at the micro/nanoscale are challenging in part due to the lack of a standard 

“four-probe” method for thermal metrology, which is readily available for electrical conductivity 

measurements. Numerous methods for measuring thermal conductivity have been developed 

including suspended electrothermal methods, thermoreflectance techniques, Raman spectroscopy, 

and other new measurement techniques.[9–14] 

Despite the immense progress in thermal metrology in micro/nanoscale over the past 

decades, accurate thermal measurements are still challenging. Existing thermal conductivity data 

for nanostructured samples shows large variations, but it is not yet clear whether variations are 

solely due to sample-to-sample variations or discrepancies between measurement techniques.[2,15] 

A widely investigated example is silicon thin films (TFs).[16–20] The standard silicon-on-

insulator (SOI) technology provides a high quality, ultrathin silicon device layer. Therefore, 

sample-to-sample variations are typically expected to be negligible in silicon TFs, but large 

variations in existing thickness-dependent thermal conductivity data still exist.[2] 

In addition to the variation from sample-to-sample, uncertainty from the measurement 

techniques needs to be considered. As an example, in a conventional nano/microscale 

electrothermal thermal measurement technique,[5,21] referred to here as the composite beam 

method, a long, suspended, rectangular sample (e.g. a strip of thin film silicon) is coated with a 

dielectric layer (for electrical insulation) and a metal layer that serves as both the heater and 

thermometer for the measurement. Joule heating in the composite beam elevates the temperature 

increasing the electrical resistance. Fitting the electrothermal response (i.e. the change in resistance 

1 This section reproduced with permission from Y. Zeng and A. Marconnet, Rev. Sci. Instrum. 88, 44901 (2017). 
Copyright 2017 American Institute of Physics 
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with increased current) to the solution extracted from the heat diffusion equation yields the thermal 

conductance of the composite beam structure. The thermal conductivity, k, of the sample film can 

be extracted from the measured conductance if the thermal conductivities of the dielectric and 

metal layers are estimated or known from measurement of a reference sample consisting of the 

metal and dielectric alone. However, several sources of error arise from the interfacial effects and 

the parallel heat conduction pathways. Furthermore, in the widely used suspended heater-

thermometer measurement technique first developed by Shi and colleague[9], a sample is 

suspended between two platforms that serve as heaters and thermometers to quantify thermal 

conductivity. Although this requires more extensive fabrication, the sample itself is fully 

suspended and does not require any coating of dielectric or metal layers. In addition to typical 

assumptions about contact resistances between the sample and the platforms and neglecting 

radiation heat losses, the thermal conductances of the support beams are typically assumed to be 

identical. One method to indirectly verify this assumption is to measure k twice: first using one of 

the suspended platforms as the heater and the other as the sensor, and then to reverse the orientation 

of the heat flow. The variation in the measured k in these two measurements demonstrates the 

nonuniformity of these two suspended platforms.[22] Even more importantly, in general, there is 

no way to quantify these nonuniformities and their impact on the thermal measurement a priori. 

Finally, a set of techniques involving free-standing membranes combined with contactless 

optothermal thermal conductivity measurement methods are promising to avoid the issue 

encountered in electrothermal methods. Recent optothermal measurements of free standing silicon 

thin films from Chávez et al.[23] and Cuffe et al.[24] provide new thermal conductivity data across 

a large range of thicknesses (from ~10 nm to ~1 micron), without the presence of any additional 

metal or dielectric films avoiding any impact of interfaces and parallel heat conduction pathways. 

But the variation in the measured data still exceeds the expected uncertainty of the measurement 

techniques. 

The Direct Differential Electrothermal Measurement Approach 

Here, we develop and validate a simple direct differential electrothermal measurement of 

thermal conductivity for suspended thin films. Specifically, to extract thermal conductivity of the 

sample, we develop a cross-beam structure similar to the T-type measurements previously used 

for fibers and nanotubes,[25,26] in which the bare sample extends at a right angle from the center 
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of a composite heating beam (see Figure 2.1 (b)). A two-step measurement, first of the cross-beam 

structure, then of the cross-beam structure with the sample removed by Focused Ion Beam (FIB) 

(see Figure 2.1 (c)), enables extraction of the sample thermal conductivity from a single sample. 

Removing the sample beam from the heater beam in the cross-beam structure via FIB makes this 

second measurement identical to the composite beam approach described above. This composite 

heater beam can be directly measured as a whole to determine an effective thermal conductance 

of the silicon plus coating layers, and the sample itself is free of any coating layers for direct 

measurement of the sample thermal conductivity. There is no need to assume fabrication 

uniformity or neglect interfacial effects for the sample in the new method. In addition to validating 

the new measurement technique, we use the data to interrogate assumptions applied for two 

conventional methods. Specifically, we (i) extract the sample thermal conductivity from the 

composite beam measurement alone to evaluate the assumption of negligible interfacial effects 

and assumed material properties, and (ii) extract the sample thermal conductivity from the cross-

beam measurement approach assuming the thermal conductance of the independent composite 

heater beam is the same as that of the heater in the cross-beam configuration since they are 

fabricated simultaneously. This second approach allows evaluation of the impact of assumed 

fabrication uniformity applied in previous electrothermal methods.[10,15,19] The effectiveness of 

the direct differential method is validated by measuring k of 200 nm silicon TF. Finally, we 

compare the measured thermal conductivity with previous literature results and with a kinetic 

theory model for thermal conductivity. 
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Figure 2.1: Top-view (a-c) SEMs and (d-f) schematics of the three measurement devices, as well 
as (g-i) cross-sections of the suspended beams in each measurement device. Each sample is 
configured with a standard four-probe electrical measurement configuration for the heater beam. 
The composite heater beam region in each of the suspended structures is false colored yellow in 
the SEM images. The diamond shape in each SEM indicates the edge of the suspended region. 
(a,d,g) The composite-beam structure of width Wc and length Lc consists of a single silicon beam 
coated with dielectric and metal layers. (b,e,h) The cross-beam structure has two additional 
sample beams of width Ws and length Ls extending at right angles from the center of the 
composite heater beam. These cross-beam samples have no additional layers of Al2O3 or metal 
as shown in the cross-section schematic. (c,f,i) The cross-beam structure after the sample beam 
is detached using FIB has a structure identical to the composite beam sample. The detached 
sample beam curls up at the top and bottom of the suspended region due to the unbalanced strain 
after the cut. In each SEM, the scale bar is 200 μm. 

2.2.1 Sample Fabrication 

Starting from a silicon-on-insulator (SOI) wafer, a standard lift-off process is used to define 

four-probe electrodes of 50 nm Cr/Pt (for the heater/thermometer) with 50 nm aluminum oxide (as 

an electrically insulating layer between the silicon and the metal). Then, the composite and cross 

beam structures are patterned by photolithography, and the Si and SiO2 layers are etched away by 
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Reactive Ion Etching using SF6 and CF4, respectively. After removing photoresist (PR), a 

conformal parylene layer is coated on the wafer to protect the front side in the following release 

step. A release window is defined by photolithography and the pattern is transferred to the parylene 

layer via oxygen plasma. XeF2 gas is then used to isotropically etch the Si substrate (suspending 

the measurement structures) and then the buried oxide layer is removed using a wet buffered HF 

etch. Finally, any remaining PR and parylene is etched away using oxygen plasma. For the direct 

differential electrothermal measurement, the sample beams in the cross-beam structures are 

detached using FIB after the initial electrothermal measurement. SEM pictures of fabricated 

composite-beam structure and cross-beam structure before and after the cut are shown in Figure 

2.1 (a-c). 

Note that for other potential sample films deposited on Si substrates with high etch 

selectivity over Si, the fabrication process can be greatly simplified. Devices can simply be 

released using XeF2 etch after the composite and cross beam definition. 

2.2.2 Measurement 

2.2.2.1 Composite Beam Structure 

First, consider Joule heating in the composite beam structure (a rectangular thin film 

sample, coated with a dielectric insulating layer and metal heater/thermometer layer). Current I 

flow through the metal layer generates heat which conducts to the ends of the beam, which are 

connected to the substrate that acts as a heat sink maintained at temperature To. The governing 

equation for one-dimensional heat conduction in this composite-beam structure and the relevant 

boundary conditions are given by 

d 2T I 2 R T( )
Gc 2 

  0 (2.1) 
dy Lc 

T(y Lc / 2) T0 (2.2) 

where kc, Ac, Lc, and Gc = kcAc are the effective thermal conductivity, total cross-section area, 

length, and thermal conductance of the composite beam, respectively. The temperature coefficient 

of resistance, α , is assumed to be constant in the temperature range of interest (40K – 320K) such 

that the resistance is given by 

R T( )  R T( 0) 1 m(T T0) (2.3) 
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where 𝑅(𝑇 ) is the resistance at a reference temperature 𝑇  . The analytical solution to the 

temperature profile can be determined: 

1  cos(I c y)  
T  T0   1 (2.4) 

m  cos(I c Lc / 2)  

where 𝛾  = 𝛼 𝑅(𝑇 )/𝐺 𝐿 . Then, the electrical resistance of the composite beam for a given 

applied current can be determined from 

R  R T( )tan(I L / 2) / (I L / 2) (2.5) 0 c c c c 

Thus, γc, which is directly related to the effective composite beam thermal conductance Gc, can be 

extracted by fitting experimental data for the increase in resistivity with applied current, provided 

that αm is determined using electrical resistance measured with low applied current. Geometrical 

dimensions are measured with a series of SEMs after the electrothermal measurement. All samples 

are configured with four-probe electrical connections to measure the average resistance of the 

sample as a function of applied heater current. 

2.2.2.2 Cross-Beam Structure 

Now, extending to the cross-beam structure, the heater beam and associated governing 

equation is identical to the composite beam case (Eq. (2.1)), but heat generated in the composite 

beam can also be dissipated through the sample located at the center of the composite beam. With 

the 1D approximation, the boundary condition at the center of the heater beam (y=0) becomes an 

energy balance 

T Gs (T ( y  0)  T0 ) (2.6) Gc y 
y 0 

Ls 

where Ls, ks, As, and Gs = ksAs are the length, thermal conductivity, cross-sectional area, thermal 

conductance of the sample film, respectively. The temperature profile in the heater beam is very 

sensitive to the thermal conductance of the sample beam as shown in Figure 2.2 (a), which allows 

accurate extraction of the thermal conductivity in sample beams in the measurement. With the 1D 

approximation, the electrical resistance of the cross-beam for a given applied current can be 

determined from 
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2Ls 4Gssin(I L / 2)  (1 cos(I L / 2)) c c c cL I G L c c c cR  R(T0 ) (2.7) 
GsI L cos(I L / 2)  sin(I L / 2) c s c c c cGc 
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Figure 2.2: (a) Temperature profile in the heater beam as a function of the ratio of the sample 
thermal conductance to the heater beam thermal conductance. Note that for increasing sample 
thermal conductance, the centerline temperature and the average temperature decrease. (b) Ratio 
of thermal conductivity extracted using 1D model (k1D) to the input value of thermal 
conductivity (kset) used in the 3D COMSOL model varying the aspect ratio of the heater beam. 
Note that as the aspect ratio increases, the extracted thermal conductivity k1D approaches the 
input value. Above an aspect ratio of 40, the error is less than 2.5%. A convergence test of the 
3D model is completed by increasing the number of mesh elements. Three pre-defined 
COMSOL mesh options are evaluated (finer, extra fine, and extremely fine, which correspond 
to 10014, 53513, and 122336 mesh elements for an aspect ratio of 100, respectively) and no 
significant variation in the result with varying mesh sizes verifies the convergence of the 
numerical simulation. 

Note that the sample beam does not have any metal or dielectric layers, thus the effective 

conductivity of the composite beam and the conductivity of the sample beam may not be identical. 

A full three-dimensional (3D) COMSOL model verifies accuracy of applying the one-

dimensional (1D) model to extract the sample thermal conductivity as a function of the aspect ratio 

(AR) of the heater beam (AR = Lc/Wc) for a sample conductivity of 100 W/(m K). Note that in 

this work the sample and heater beams have the same width and the length of the heater beam is 

twice the length of each sample beam (see Figure 2.1). As shown in Figure 2.2 (b), results extracted 

using 1D model are within 2.5% of the input value of thermal conductivity if the aspect ratio is 

greater than 40. 
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2.2.3 Experimental Configuration 

To extract thermal conductivity, a four-probe I-V sweep is performed with the applied 

heater current between -348 μA and +348 μA (in which the average temperature rise within the 

sample does not exceed ~10 K such that radiation losses are negligible). Joule heating in the beam 

increases the temperature of the metal film corresponding to an increase in the measured electrical 

resistance with increasing applied current as shown in below At each current level, the voltage 

acquisition starts 10 seconds after the current is applied, which is sufficient to ensure the steady 

state, and five measurements are recorded at 2-second intervals to confirm that steady state has 

been achieved. In practice, I-V sweeps can be performed simultaneously in several composite and 

cross beam structures. After the measurement of the cross-beam structure, the sample beams are 

detached using FIB. Then, another I-V sweep is applied for the modified structure. With the two-

step measurement of the cross-beam structure, we are able to extract the sample thermal 

conductivity using the direct differential method. In addition, the sample thermal conductivity can 

be estimated from the complete cross-beam measurement without the FIB cut when assumptions 

about material properties are introduced (see Section III.D.). 

900 
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-8 I2 [A2] x 10 

Figure 2.3: Measured increase in electrical resistance as a function of the square of the current 
for a cross-beam structure before (red squares) and after (blue circles) the FIB cut compared to 
that of a composite-beam structure (green triangles). For the cross-beam measurements, the 
change in the slope of this curve after the FIB cut is due to the removal of the sample beams and 
the corresponding increase in the thermal resistance of the structure. The variation in the fitted 
resistance at zero current, R0, between the composite- and cross-beam structures is due, in part, 
to fabrication nonuniformity. 

Here, the temperature is varied from 40 K to 320 K in ~10 K increments. All electrothermal 

measurements (i.e. the I-V sweeps) are performed in a Janis CCS - 150 cryostat with vacuum levels 

on the order of 1 × 10-4 Torr. The sample temperature is controlled and measured using a Lakeshore 
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model 325 temperature controller. It generally takes 25 - 30 minutes for the system to stabilize at 

each temperature. To ensure accurate temperature-dependent measurement, two temperature 

sensors, one on the cold finger and one on the sample stage, are used for control and measurement 

accuracy.[27] Two sensors are needed in order to perform accurate electrothermal measurements 

as the temperature coefficient of resistivity plays a key role in extracting thermal conductivity data. 

Deviations in the temperature readings between two sensors across the temperature range are 

always less than 1 K, as shown in Figure 2.4. 

1 
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-0.5 

-1 

T
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[K] 

Figure 2.4: Deviation in the measured temperatures between two sensors. The varying deviation 
implies the associated measurement error when only one sensor is used for temperature control 
and measurement. 

The electrical conductivity and the temperature coefficient of resistance are determined 

from the resistance measured at low current, where Joule heating is negligible. The electrical 

conductivity of the metal layer is calculated from the measured electrical resistance and 

geometrical dimensions measured using SEMs. From the electrical data, the thermal conductivity 

of the metal layer is estimated using Wiedemann-Franz law: km = LσT, where L is the Lorenz 

number and σ is the electrical conductivity. Thus, the thermal conductance of the metal layer is 

𝐺 (𝑇) = 𝐿𝐿 𝑇/𝑅(𝑇), where Lc is the length of the composite beam. The temperature coefficient 

of resistance is obtained by fitting Eq. (2.3) to the low-current experimental data. Considering the 

slight non-linearity of measured R(T), an estimate of the uncertainty in α is determined by fitting 

low-current electrical resistances around each reference temperature. That is, we calculate the 

temperature coefficient of resistance using electrical resistances at each sample temperature in 

three ways: (i) considering data points within ±10°C of the measurement temperature, (ii) 

considering the data points between the measurement temperature T0 and T0+20°C, and (iii) 


T

 
[K

] 
s 

50 100 150 200 250 300 



 
 

                 

                

    

              

            

             

          

              

              

             

                

              

                 

                 

              

              

                

            

              

             

              

                

              

      

             

               

              

     

     

13 

considering just the data points T0 -20°C and T0. From these three values, the range of uncertainty 

in the temperature coefficient of resistance α is determined to be on the order of 1%. 

2.2.4 Extracting Thermal Conductivity 

With the cross-beam measurements before and after the FIB cut, we extract the sample 

thermal conductivity using the direct differential method. In addition, the sample thermal 

conductivity can be determined from one-step measurement of the composite and cross beam 

structures when conventional assumptions are introduced. The composite beam measurements 

require assumed properties of the metal and dielectric layers and neglecting any interfacial effects. 

Evaluating the thermal conductivity of the cross-beam measurement without a FIB cut of the 

sample requires measurement of a composite heater beam fabricated simultaneously in the same 

process, and the assumption that the thermal conductance is identical to the heater beam in the 

cross-beam structure. By comparing the data to that measured with the direct differential method 

(i.e. the cross-beam before and after the FIB cut of the sample), the validity of these assumptions 

can be evaluated as no such assumptions are required in the developed new method. Thus, in this 

work, the direct differential method is developed to extract the intrinsic thermal conductivity of 

the silicon sample film and investigate the validity of these conventional assumptions. Three sets 

of data are presented here: (i) ks1 is the silicon thermal conductivity extracted from the composite 

beam measurement alone assuming metal and dielectric thermal conductivity and neglecting any 

interfacial effects; (ii) ks2 is the silicon thermal conductivity from the cross beam measurement 

assuming the thermal conductance from a simultaneously fabricated composite beam; and (iii) ks3 

is the silicon thermal conductivity from the direct differential cross beam measurement using the 

thermal conductance of the heater beam of the cross-beam structure itself (i.e. after the FIB cut). 

Note that ks3 is extracted from the direct differential measurement, while several assumptions are 

introduced to determine ks1 and ks2. 

First, the silicon conductivity is extracted from the composite beam structure alone. From 

the measured thermal conductance Gc1, the thermal conductivity of the sample layer (kS1) can be 

obtained if we assume negligible interfacial effects and estimate the thermal conductivity of the 

metal and dielectric layers: 

Gc  s kmA  d (2.8) k As  m k Ad 
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where km and kd are the thermal conductivity of the metal and dielectric layers, and Am, and Ad are 

the cross-sectional areas of the metal and dielectric layers, respectively. Here, the thermal 

conductivity of the dielectric layer is taken from literature,[28] while that of the metal layer is 

estimated based on Wiedemann–Franz law. Generally, this method is most accurate when 

conduction in the sample layer dominates over conduction in the metal and dielectric layers. 

In the second approach, we extract the silicon thermal conductivity (ks2) from the cross 

beam measurement using the thermal conductance from the composite beam measurement. Here, 

we assume that, since the composite-beam and cross-beam structures are fabricated in the same 

run and from the same SOI wafer with the same masks and dimensions, the composite beam 

thermal conductance will match that of the heater beam in the cross-beam structure. Although the 

thermal conductivity can be extracted in this way, the accuracy of this method relies greatly on the 

fabrication uniformity. Variations in thickness across the wafer and uniformity of post-fabricated 

dimensions critically impact the results. 

Finally, the silicon thermal conductivity (kS3) is determined from the developed direct 

differential method eliminating the need to make assumptions about fabrication uniformity, 

interfacial effects, or estimated material properties. After the initial electrothermal measurement, 

we cut the sample beams from the cross-beam structure using FIB, leaving a structure nearly 

identical to the original composite beam structure as shown in Figure 2.1 (c). An example plot of 

I2 vs. R in the cross-beam structure before and after the cut is shown in Figure 2.3. Using the same 

approach as described for the original composite beam, we directly measure the thermal 

conductance of the heater beam (Gc2). Thus, the thermal conductivity of the sample beams can be 

extracted using this thermal conductance Gc2, which has the fewest assumptions in the analysis. 

Further, there is no need to consider interfacial effects as thermal conductance of the composite 

beam is measured as a whole and the sample itself is free of any coating layers. 
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Figure 2.5: (a) Temperature-dependent thermal conductivity of a 200 nm thick silicon sample 
measured with the three measurement approaches. kS1 refers to the measurement from the 
composite beam alone, kS2 refers to the cross-beam data extraction assuming the thermal 
conductance from the composite beam, and kS3 refers to the data extracted using the direct 
differential method. Representative error bars are shown at 100, 200, and 300 K. (b) 
Temperature-dependent thermal conductance of the heater beam in composite-beam (Gc1a, Gc1b, 
and Gc1c) and cross-beam (Gc2) structures. Sample Gc1a is the composite beam fabricated on the 
wafer closest to the cross-beam sample, while the additional composite-beam structures (Gc1b 

and Gc1c) are farther away from the cross-beam structure and demonstrate the sample-to-sample 
variation of Gc. Representative error bars for Gc1a and Gc2 are shown at 100, 200, and 300 K. (c) 
Temperature-dependent thermal conductivity of 200 nm thick silicon film from the direct 
differential measurement, in comparison to 100 and 420 nm thick silicon thin films from 
literature[19,29]. The calculated thermal conductivity kcal (blue line) based on kinetic theory 
agrees well with temperature-dependent thermal conductivity measured in the present work. 

In short, the two-step, direct differential measurement of the cross beam structure before 

and after the FIB cut allows efficient, accurate, and direct extraction of sample thermal 

conductivity. In addition, comparison of measured k enables evaluation of the assumptions 

typically applied in micro/nanoscale thermal measurements. 
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2.2.5 Results 

2.2.5.1 Validation of the Experimental Method with 200 nm Thick Silicon 

The thermal conductivity and thermal conductance of a 200 nm thick silicon layer obtained 

from the direct differential method are shown in Figure 2.5. To evaluate the measured temperature-

dependent thermal conductivity, we analyze the thermal conductivity using the Callaway-Holland 

model:[30,31] 

k  
1

2 C j q,T v j q 2  j q,T  q 2dq (2.9) 
6 j q 

where Cj(q, T), vj(q), and τj(q, T) are the specific heat, group velocity, and relaxation time for 

phonon branch j, respectively. Group velocity is calculated using a fourth-order polynomial fit to 

the phonon dispersion relationship in the [001] direction.[32] The relaxation time for phonons in 

bulk silicon is determined by fitting to bulk silicon thermal conductivity data[33–35] and 

Matthiessen’s rule is used to calculate the relaxation time phonons in silicon TFs: 

1 1 1 1 
, , j boundary  j bulk q T,   j Umklapp,  j impurity  , (2.10) 

   where 𝜏 ,  = 𝐴𝑇𝜔 (𝑞) exp(−𝜃/𝑇), 𝜏 ,  = 𝐵𝜔 (𝑞)  , and 𝜏 ,  = 𝑣 (𝑞)/𝐶. 𝐴, 

𝐵 , 𝐶 , and 𝜃 are fitting parameters detemrmined by fitting to temperature dependent thermal 

conductivity of bulk silicon. Here, we use the same fitting parameters in the group velocity and 

relaxation time for bulk silicon as in Hopkins et al[34,35]. Calculated bulk silicon thermal 

conductivity agrees well with experimental data from Ho et al,[33] which confirms the selection 

of these fitting parameters. The reduced relaxation time due to boundary scattering is calculated 

based on the Fuchs-Sondheimer model:[36,37] 

 d  
s j q T,   F  , p j bulk, q T,  (2.11)  

j bulk q T,  


 , 

 d  
s j q T   ,  ,   F  , p  j bulk q T,  (2.12) 

 , q T,  j bulk 

where 𝛬 , (𝑞, 𝑇) is the phonon mean free path and p is the boundary specularity parameter. The 

reduction function for in-plane phonon transport is well defined as:[36,37] 
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 ds  31 p   1 1  1 exp  
F   , p   1   3 

 
5  d (2.13) 

   2 1     1 pexp   
Good agreement is achieved for the measured silicon thin films using this kinetic theory model, as 

shown in Figure 2.5 (c). In addition, a comparison with temperature-dependent thermal 

conductivity of silicon thin films (ds = 100 nm and 420 nm) from previous measurements[19,29] 

is shown in Figure 2.5 (c). Note the peak in thermal conductivity shifts to higher temperatures with 

decreased film thickness. 

2.2.5.2 Evaluation of Conventional Methods 

As kS3 is obtained directly from the differential measurement before and after the FIB cut, 

the accuracy of the other approaches at extracting thermal conductivity are investigated by 

comparison to kS3. Specifically, the comparison sheds light on the validity of assumptions in the 

other approaches. 

For the specific sample tested here, the measurement from the composite beam alone 

agrees well with direct differential method. There is no measureable difference between thermal 

conductivity of 200 nm silicon film with and without coating layers, which verifies the accuracy 

of the negligible interfacial effects assumption in this case. In part, this is because the thermal 

conductance of the silicon layer dominates the thermal conductance of the composite beam 

(𝑘 𝐴  ≫ (𝑘 𝐴  + 𝑘 𝐴 )) across the entire temperature range of interest. It is noteworthy that 

this method is based on estimation of the metal and dielectric properties, not direct measurements. 

Thus, its reliability should be evaluated case by case and is particularly suspect when the 

conductances are comparable. In addition, the thermal conductivity extracted using this method 

should be specified as k of the sample layer with coating layers. Thermal conductivity of sample 

films with and without coatings can be significantly different in some materials. An example is 

that thermal conductivity of suspended 2D materials, such as graphene, is generally higher than 

that of encapsulated or on-substrate graphene.[10,15] 

As for the assumption of fabrication uniformity, relatively large variation exists between 

the directly measured kS3 and indirectly extracted kS2 with the assumption that the composite beam 

and the heater within the cross-beam are identical. That indicates the inappropriateness of the 

assumption of uniformity in some cases. The difference of measured thermal conductance of the 

heater beam from three composite-beam (Gc1a-Gc1c) structures and one cross-beam (Gc2) structure, 
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as shown in Figure 2.5 (b), can explain the deviation of measured thermal conductivity of the 

sample film. Further, the deviation in the low current electrical resistance between the composite-

and cross-beam structures (see Figure 2.3 (b)) confirms some fabrication nonuniformity. Even 

though these structures are designed to be identical and fabricated simultaneously, variation in the 

fabricated structures are present and, thus, it is not reliable to assume identical Gc here. To confirm 

that, data from two additional composite-beam structures (Gc1b and Gc1c) farther away from the 

cross-beam structure demonstrate the relatively large variation of Gc across the wafer. 

These results highlight the importance of the direct differential measurement using the 

cross-beam heater thermal conductance rather than via indirect measurement or approximations. 

2.2.5.3 Uncertainty Quantification 

Uncertainty in the measured thermal conductivity is analyzed by evaluating the fitting of 

𝑅(𝐼) considering the variations in the different input parameters. Figure 2.6 shows uncertainty 

contributions of temperature coefficient of resistance, geometrical dimensions, etc. Experimental 

uncertainty arising from the temperature coefficient of resistance and geometrical dimensions can 

be significant. For dimensions measured using SEMs, the length, width, and thickness are assumed 

to be accurate within ±0.1%, ±1.0% and ±5.0%, respectively, based on multiple measurements 

within the sample structure. In addition, we estimate ±15% uncertainty in the thermal conductivity 

of the metal layer calculated using Wiedemann-Franz law and ±1% uncertainty in the temperature 

coefficient resistance. In both the composite- and cross-beam measurement, geometrical 

dimensions are the main source of uncertainty due to the nonuniformity of samples. 

The uncertainty contribution of temperature coefficient of resistance is generally small as 

R(T) for Pt/Cr is sufficiently linear throughout the experimental temperature range. In the 

composite-beam measurement, the uncertainty as a result of using estimated thermal conductivity 

of metal and dielectric layers increases with temperature. Here, the uncertainty due to this 

estimation is generally small as silicon layer carries most of the heat at 200 nm thickness. In other 

words, the composite-beam measurement is accurate when G of the sample layer is significantly 

higher than that of the metal and dielectric layers. However, its reliability needs to be reevaluated 

as the metal and dielectric layers carry more heat or the interface resistance is significant. To 

highlight this, the impact of the estimated metal thermal conductivity on the composite-beam 

measurement accuracy is analyzed analytically assuming that the thermal conductance of the metal 
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layer is half of the total thermal conductance Gc1. as shown in Figure 2.6 (g-i), the uncertainty as 

a result of using estimated thermal conductivity of metal and dielectric layers is significantly 

higher than for the thick silicon case (see Figure 2.6 (a-c)) as the metal thermal conductance is 

now half of the total thermal conductance. In these cases, the composite-beam measurement loses 

its accuracy due to its reliance on this estimation, while the direct differential cross-beam 

measurement approach does not. 

Furthermore, the thermal conductivity of 1.5 μm SiO2 deposited on Si substrate using 

plasma enhanced chemical vapor deposition (PECVD) is measured (see Figure 2.7) for verification 

of this analysis as the thermal conductances of the metal and sample layer are of the same order of 

magnitude. For the composite-beam measurement, it is important to design the structure with small 

thermal conductance of the metal and dielectric layers, compared with that of the sample layer. 

Note that in all measurements, the uncertainty in geometrical parameters (Lc, Ls, W and d) 

dominates over the uncertainty from other parameters in the data analysis. To reduce the 

uncertainty, samples should be prepared with good uniformity and thus with decreased uncertainty 

in geometrical dimensions. However, it is challenging to ensure excellent uniformity in 

micro/nanoscale fabrication. 
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Figure 2.6: Uncertainty contributions from various sources in (a - c) the composite-beam 
measurement and (d -f) the cross-beam measurement of 200 nm thick films at 100 K, 200 K, 
and 300 K. Note that in these cases the uncertainty in geometrical parameters (Lc, Ls, W and d) 
dominates over uncertainty from other parameters in the data analysis. (g - i) Uncertainty 
contributions from various sources in the composite-beam measurement at 100 K, 200 K, and 
300 K, respectively, assuming the metal thermal conductance is half of the total thermal 
conductance (as it would be for an ultrathin silicon sample). For this case, the uncertainty due 
to the estimated thermal conductivity of metal and dielectric layers dominates over uncertainty 
in geometrical parameters. The boxed numbers in each panel are the total absolute and relative 
uncertainty, respectively, for that measurement technique and temperature. 
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Figure 2.7: (a) Thermal conductivity of 1.5 μm SiO2 prepared by PECVD. In this case, the direct 
differential method is more accurate than the composite beam method, as shown in the error 
bars. Uncertainty contributions from various sources in (b) the composite-beam measurement 
and (c) the cross-beam measurement are analyzed. The boxed numbers in panel (b) and (c) are 
the total absolute and relative uncertainty, respectively, for that measurement technique and 
temperature. As thermal conductances of the metal and sample layer are of the same order of 
magnitude, uncertainty due to estimation of the metal thermal conductance becomes significant 
in the composite beam method and thus its uncertainty increases. Uncertainty contribution due 
to the estimation can be much larger as the metal carries most of the heat in the composite beam, 
which is common in characterization of ultrathin samples. The cross-beam measurements with 
FIB allow direct determination of sample thermal conductivity, which is not limited by the 
estimation accuracy. Further, the thermal conductivity obtained from the composite beam 
method is higher than that from the direct differential method, which implies the inaccuracy of 
the estimation. The thermal conductivity of PECVD SiO2 measured in this work is compared to 
thermal conductivity of bulk amorphous SiO2.[38] The thermal conductivity of PECVD SiO2 is 
generally lower than that of bulk oxide mainly due to its larger porosity.[39] 

2.2.5.4 Summary 

In this work, we demonstrate the effectiveness of a simple direct differential electrothermal 

measurement of thermal conductivity based on a cross-beam measurement structure with FIB. 

Comparison to the directly measured k, the accuracy of two conventional methods is investigated 

and the validity of related assumptions are discussed. These results highlight the advantages of the 
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direct differential method for accurate measurements of the thermal conductivity of nanostructures 

such as TFs due to the variations from sample-to-sample. This approach is broadly applicable to 

the measurement of the thermal conductivity of other micro- and nanostructures including 

nanowires and 2D materials. 

Extension for Combined Strain Control & Thermal Metrology 

A thermo-mechanical metrology platform is developed for studying strain dependent 

thermal transport taking advantage of strain control through flexible substrate. This method 

leverages electrothermal heaters/temperature sensors to measure thermal conductivity and builds 

on our past work with the cross-beam structures. An overview of the sample structure is shown in 

Figure 2.8. The patterned thin metal films act as a heater or resistive temperature sensor. In the 

measurement, using one of the metal beams as the heater and the other as the sensor. The 

temperature in the heating beam is parabolic and heat loss through the sample film impacts the 

temperature profile. Both the heater and sensor leverage the temperature-dependent electrical 

resistance of the metal to measure the spatially averaged temperature of the beam. 
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(a) (b) 

(c) (d) 

Figure 2.8: (a) Fully suspended electrothermal measurement device with patterned metal lines 
(yellow) on the sample layer (bright green), buried oxide layer (blue), and thin silicon substrate 
(dark green). The oxide layer is not necessary for sample layers with high etch selectivity 
compared to the substrate. (b) Geometry of the patterned metal lines on the suspended sample 
layer. (c) Heat conduction analysis of the suspended beam using COMSOL and (d) Temperature 
profile along several axial cutlines along the beam verifying one-dimensional heat transfer as 
the temperature are identical. 

Heat conduction in the heating beam is governed by the steady-state 1D heat diffusion 

equation: 

2 Thkc 2 
qh , (2.14) 

x 

T  0h,x0 , (2.15) 

y y V 1h h h(Lh Th  Th,xL ) / (Lh  )   , and (2.16) 
h2 2  I R h h h,0 h 

2 dTh k A V 1 2L yc c s s sI R  k A   (  )  , (2.17) h h c c dx x0 Ls s IsRs,0 s Ls ys 

where ∆Th (∆Ts) and ∆𝑇h (∆𝑇s) are the temperature rise and the average temperature rise of the 

heating (sensing) beam from 0 to Lh (Ls), respectively. For thermal analysis, the heating (sensing) 
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beam is divided into two parts of length Lh (Ls) and ∆𝑦  (∆𝑦 ) as shown in Figure 2.9 (b). kc and 

Ac are the thermal conductivity and cross-section area of the composite heating and sensing beams, 

respectively. Vh (Vs), Ih (Is), αh (αs), and Rh,0 (Rs,0) are the voltage, applied current, temperature 

coefficient of resistance, and resistance at the base temperature of the heating (sensing) beam, 

respectively, and 𝑞  = 𝐼 𝑅 /(𝐿 𝐴 ) is the volumetric heat generation rate of the heating beam 

from 0 to Lh. Based on the linear temperature dependence of the resistance, the average temperature 

rise of the heating and sensing beam are (Vh/Ih-Rh,0)/αhRh,0 and (Vs/Is-Rs,0)/αsRs,0. In the sensing 

beam, the applied current is small enough to ensure negligible Joule heating and a linear 

temperature profile along the beam. Thus, the temperature rise in the sensing beam results from 

the heat flow across the sample, but not its own heat generation. This helps determine the 

temperature rise profile along the sensor beam and enables extraction of the temperature at the 

cold end of the sample. 

Assuming constant temperature of at the supported ends of each beam, the analytic 

solutions for ∆Th and kc in terms of the measured power and temperature rises are 

q 2L y V 1 q L 2L  3yh 2 h h h h hT h (x)   x  ( (  )   )  x , and 
2k L (L y)  I R  6k L yc h h h h h,0 h c h 

(2.18) 

q L 4L  3yh h h h 

6 Lh  yhkc  . (2.19) 
V 1 2L  y V 1 2L  yh h h s s s(  )  (  )

 I R  L (L  y )  I R  L (L  y )h h h,0 h h h h s s s ,0 s s s s 

To extract thermal conductivity of the sample, an energy balance related to heat flow 

through the sample is computed as 

T  2TdT h,L s2 h hI R  k A  kA . (2.20) h h c c dx x0 L 

Therefore, the thermal conductivity is calculated from the measured power generation and 

temperature rises as 

2 2L  y V 1 q L 2L  3y
h h h h hI R  (  (  )   )  k A

h h c c 

L L (L  y)  I R  6k L  y
h h h h h ,0 h c hk  . (2.21) 

A q L2 L 2L  y V 1 V 1 2L  y
h h h h h s s s    (  )  (  )  

6k L  y L  y  I R   I R  L  y
c h h h h h ,0 h s s s ,0 s s s 
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To investigate the strain dependence of k, axial strain is applied to the sample based on 

flexible substrate. Figure 2.9 (c) shows the suspended device is bonded on a flexible substrate and 

stretching the substrate changes the strain of the device and sample as they are boned together 

using epoxy. A custom-built mechanical stage, as shown in Figure 2.9 (a), is used to apply the 

strain with micrometer actuators. The substrate is fixed on the stage for strain control and can be 

transferred to the cryostat for thermal measurements. The strain level is determined using high 

resolution microscopes after the measurements. 

(a) 

(b) (c) 

Figure 2.9: (a) Schematic of the custom-built mechanical stage for strain control, which allows 
stretching the flexible substrate with 10 μm resolution. (b) Top view of the sample holder 
detached from the microloading device with desired strain level. (c) Fully suspended devices 
bonded on a flexible substrate. 
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3. NANOSTRUCTURING FOR THERMAL CONDUCTION 
ANISOTROPY IN THIN FILMS2 

Overview 

For decades, the thermal conductivity (k) of nanostructured materials has been broadly 

studied and the measured k is generally reduced due to phonon size effects such as phonon-

boundary scattering[2],[40]. However, the directional dependence of thermal conductivity has not 

been investigated as frequently, but is necessary for a full understanding of the thermal 

conductivity tensor. Moreover, thermal conduction anisotropy is promising for directing the heat 

flow pathways in modern applications including thermal management of electronic devices.[41] 

Studies of thermal conductivity anisotropy are limited and the observed anisotropy ratio in 

natural materials is generally not high, even when the lattice and band structures are anisotropic, 

because of the diffusive nature of thermal transport. Recent thermal conductivity measurements of 

two dimensional (2D) materials demonstrate thermal conductivity anisotropy ratios up to ~3 for 

few-layer black phosphorus[13,42]. Given the demonstrated effectiveness of nanostructure 

engineering in tuning thermal conductivity, introducing appropriate anisotropic nanostructures 

should enhance thermal conduction anisotropy. 

In this chapter, we introduce thickness-modulated thin films (TFs) as shown in Figure 3.1 

to exploit the phonon boundary scattering and size effect in leading to anisotropic thermal 

conduction in the thin films. Specifically, the thin films of interest consist of alternating thick and 

thin strips leading to anisotropic structures not present in uniform films. We investigate the thermal 

anisotropy of thickness-modulated TFs of silicon, as an example material system, using full three-

dimensional (3D) simulations based on the frequency-dependent Boltzmann Transport Equation 

(BTE). We show an enhanced thermal anisotropy ratio (>10) due to phonons scattering with the 

introduced anisotropic boundaries, which is not present in corresponding bulk materials. 

2 This section reproduced with permission from Y. Zeng and A. Marconnet, Phys. Rev. Applied 9, 011001. 
Copyright 2018 American Physical Society 
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(a) (b) 

Figure 3.1: Schematic of the (a) thickness-modulated thin film and (b) unit cell for analysis. The 
two directions of interest are labeled as x and y directions. The region enclosed by green dashed 
lines in panel (a) is the unit cell used in our thermal simulations as shown in panel (b). The unit 
cell of size Lx x Ly x dm is comprised of a bottom layer of size Lx x Ly x d0 and a modulator of size 
∆x x Ly x ∆d. The anisotropy of the unit cell is adjusted by tuning the width and thickness of the 
modulator. To simplify the analysis, we use Lx = Ly = L and a fixed ratio L/d0 = 6 in all cases, 
which facilitates the anisotropy study by varying the width ratio WR= ∆x/Lx and the thickness 
ratio TR = dm/d0. The length of the unit cell varies from 30 nm to 600 nm and the smallest unit 
cell is of size L = 30 nm and d0 = 5 nm. A fixed temperature difference is applied along x or y 
directions and periodic boundary conditions are applied in the corresponding perpendicular in-
plane direction in each simulation. 

BTE & Monte Carlo Methods 

The BTE for phonons can be used to characterize thermal transport in non-metallic 

crystals[43]. The BTE is generally simplified with relaxation-time approximation considering a 

balance between reliability and complexity as 

f f  f loc 

Vgf   (3.1) 
t  

where f and 𝑓  are the distribution function and local distribution function, respectively, Vg is 

the phonon group velocity, 𝜔 is the phonon radial frequency, t is the time, and τ is the phonon 

relaxation time. As phonon follows a Bose-Einstein distribution, the equilibrium distribution at 

temperature T is 

eq 1
fT  (3.2) 

exp( ) 1 
k Tb 

where ħ and kb are Planck constant and Boltzmann constant, respectively. 
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The difficulty in directly solving BTE motivates the development of particle-based solution 

methods. Over the last decade, the development of Monte Carlo (MC) method for phonon transport 

has been one of significant achievements in micro- and nano- scale computational heat transfer. A 

major advantage of MC method is the convenient treatment of frequency dependence [44] and 

complicated geometries[34,45–49], which are critical for phonon transport in nanostructures. 

Furthermore, multiple scattering mechanisms can be included in the MC simulations 

independently. Therefore, the mechanisms are not lumped together via Matthiessen’s rule as often 

used in simplified models of phonon transport. One of the first comprehensive phonon transport 

model for silicon thin films was presented by Mazumdar and Majumdar[50] and the impact of 

phonon dispersion and polarization was investigated. Later, Mittal and Majumdar[51] performed 

a systematic MC study of the role of various phonon modes including optical phonons on thermal 

conductivity prediction in silicon thin films. Since then, many researchers have investigated 

phonon transport using MC technique. It has been applied in simulations of phonon transport in 

nanowires[52–54], nanoporous structures[45,55,56], and other phonon related transport 

phenomena[57–59]. 

However, there are two main disadvantages to these traditional MC methods. First, the 

statistical method itself requires a large number of computational particles and a long time to attain 

statistical meaningful results. Thus, the traditional MC method is computationally expensive. 

Second, the algorithm based on phonon number distribution results in a natural conservation of 

the total number of phonon bundles rather than conserving the total energy. Specifically, an 

unphysical step involving the addition or deletion of phonons is required to achieve approximate 

energy conservation after resampling of the new phonon bundles with new states in the scattering 

step. 

An energy-based variance-reduced Monte Carlo (VRMC) technique developed by Péraud 

and Hadjiconstantinou[60] overcame these two shortages in the traditional treatment. First, a 

variance-reduced formulation is introduced and only the deviation from equilibrium is simulated. 

The statistical uncertainty is largely reduced since only the deviation needs to be determined 

stochastically. Second, the energy-based formulation ensures a natural conservation of the total 

energy. All computational particles have the same amount of energy and thus the total energy is 

conserved as long as the number of particles is balanced. Moreover, the collision term in BTE can 

be linearized under small temperature differences and thus lead to a more efficient, decoupled 
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algorithm[61]. 

In section 3.2.1, the traditional Monte Carlo method is briefly described. Then in the 

following section (3.2.2), the variance reduced method is introduced and subsequently used for 

analysis of the modulated thin film structures. 

3.2.1 Traditional MC methods 

A traditional MC algorithm[50] starts from the initialization of phonons and repeats steps 

of emission, advection, and scattering of phonon samples until equilibrium. Specifically, the first 

step is to initialize the states of phonon bundles, which represent an appropriate number of particles. 

The accuracy of MC results can be improved as more phonon bundles are simulated and thus the 

computational cost increases accordingly. The number of phonon bundles is determined as a 

balance between the accuracy and computational cost. The phonon bundles are moved in each time 

step and its positions are updated. In this step, phonon colliding with boundaries should be 

considered, which can be specularly or diffusively reflected. The temperature and pseudo 

temperature are calculated in each subcell after this step. The next step is to decide scattered 

phonons according to its scattering probability and assign new states to scattered phonons based 

on the calculated distribution in the local cell. Besides, an emission step is necessary to maintain 

phonon flow through the unit cell. Phonon bundles can be emitted before the movement or after 

scattering step. These steps are repeated until statistically meaningful results attain. 

(1) Initialization 
This step is to set the initial states of phonon bundles, including its position, 

frequency, polarization, and velocity. The number of phonon is calculated using the Bose-

Einstein statistics: 

 
eq N  V  

c 

 D( , p) fT ( )d , (3.3) 
p0 

where wc is the cutoff frequency for a specific branch, V is the volume of a given system, 

and D(w,p) is the density of states and is given by 

1 3D(, p)  
3 

 ( (k, p) )d k . (3.4) 8 BZ 

Assuming an isotropic Brillouin zone and isotropic dispersion relation, the density of states 

is generally simplified as 
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k 2 

D( , p)  , (3.5) 
2 2Vg 

where the group velocity Vg  (k, p) . Once the number of phonon bundles Np is k 

determined, the number of phonons in a phonon bundle is N/Np. Phonon bundles are 

sampled based on corresponding probability density functions. For example, the 

probability of emitting a phonon bundle with frequency between w0 and w0+∆w is given 

by 

0  
eq  D(, p) fT ()d 

N 0 
p

  . (3.6) 
N eq  

c 

D(, p) fT ()d 
p0 

(2) Movement 
Phonons move with assigned velocities in this time step and the position is updated 

as 

r (t t)  r ( )t V t . (3.7) i i g i, 

The time step ∆t is selected to ensure the travel distance in one ∆t smaller than the length 

of subcell. In other words, phonon bundles can only travel subcell by subcell, without 

skipping any subcells. This guarantees the physical meaning of the following statistical 

calculation. Phonons may collide with the domain boundaries during the travel. These 

boundaries can be emission boundaries, imaginary periodic boundaries, or realistic 

surfaces/interfaces. Various types of boundary conditions have been used to process 

phonon-boundary scatterings[44,50,60,62]. These will be discussed in the subsequent 

sections. After the travel step, the temperature of each subcell is determined based on its 

phonon energy density, which is the total phonon energy in a given volume ∆V divided by 

the volume as 

NE eff eq   i   
c 

  D( , p) fT ( )d , (3.8) 
V V i ,V p0 

and the temperature is calculated by inverting the energy density. Similarly, the pseudo 

temperature Tloc can be calculated by inverting the pseudoenergy density as 
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E Neff i  D( , p) eq     

c 

 f ( )d , (3.9) 
loc V V i ,V  ( , p ,T ) p  ( , p ,T ) T 

i i i 0 i i i 

where 𝐸 is the pseudoenergy derived from the solution of BTE[44]. 

(3) Scattering 
In this step, the scattering probability of each phonon is calculated as 

t
Pi 1 exp( ) , (3.10) 

 (i , pi ,T) 

and the phonon is scattered once the calculated probability is greater than the sampled 

random number. Then, new frequencies, polarizations, and velocities are assigned for 

scattered phonons from the pseudo distribution ƒ/τ, which agrees with the BTE 

solution[44]. An additional substep adding or deleting phonons is required since the energy 

is not naturally conserved due to the randomly drawn frequencies of scattered phonons. 

This above process is limited to internal scatterings such as phonon-phonon scattering and 

impurity scattering. 

As for boundary scattering, it can be added as an extra term via the Mathiessen’s 

rule. But this simple treatment is believed to be inaccurate since boundary scattering occurs 

at the surfaces while internal scatterings are volumetric processes[63]. Instead, phonon-

boundary scattering is typically analyzed based on the geometry and specularity parameter, 

which is the probability that a phonon is specularly reflected at the surface. The specularity 

p is generally calculated using an analytical equation by Ziman[43] 

2 2 2pexp(4 k cos ), (3.11) 

where η is the root mean square surface roughness and θ is the angle of incidence. 

Compared to a random number, the phonon is specularly reflected if the random number 

is less than the calculated specularity or the phonon is diffusely reflected. When reflected, 

only the traveling direction is modified due to the reflection, while other states maintain 

the same. 

(4) Emission 
The hot and cold ends of the geometry emit phonons to maintain the temperature 

difference and phonon flow. The emission wall is generally analogous to a black surface 

for photon radiation. A periodic emission boundary condition with constant virtual 

temperature, developed by Hao et al.[44], enables the simulation using only one unit cell. 
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3.2.2 VRMC Methods 

The algorithm of VRMC is similar to the traditional MC algorithm, but with distributions 

in different formulations[60,61]. Multiplying the BTE by ħw, the energy-based BTE is obtained: 

e e eloc 

Vge   , (3.12) 
t  

where e = ħwf and eloc = ħwfloc. As phonons follow the Bose-Einstein distribution, an equilibrium 

eq eq state can be calculated by eT ()   fT . With a determined nearby equilibrium state, the 
eq eq 

energy-based deviational formulation of BTE is 

loc eq dd (e  e )  ee T d eq V e  , (3.13) 
t g  

 where 𝑒  = 𝑒 − 𝑒
 

. The variance-reduced algorithm, developed by Péraud and 

Hadjiconstantinou[60], is used to solve the deviational form of the BTE. Significant computational 

savings are achieved as only the energy deviation distribution needs to be determined 

stochastically rather than the whole energy distribution. A simplified collision operator reduces 

the computational cost further. The collision operator can be linearized as 

deT
eq 

loc eq eq e  eT  (Tloc Teq ) when Tloc –Teq is sufficiently small, which can be modified by setting 
eq dT 

the temperature difference across the simulation domain. With the linearized collision operator, 

loc eq the sampling process of scattered phonons based on (e eT ) / is greatly simplified as the 
eq 

probability to resample a computational particle with frequency between w0 and w0+∆w becomes 

  loc eq   eq 
0 (e  eT ) 0 deTeq eq D(, p) d D(, p) d  

p  p  dT 0 0 , (3.14)  loc eq  eq 
c c(e  eT ) deTeq eq D(, p) d D(, p) d  

p  dT 0 p  0 

where Tloc is decoupled from the probability function in the scattering step. This speeds up the 
computation considering the huge cost to calculate Tloc inversely. 
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Results & Discussion 

Previous BTE based simulations have demonstrated a decrease in the thermal conductivity 

of diameter-modulated nanowires and width-modulated nanoribbons.[53,64,65] In such structures, 

the thermal conductivity is reduced due to enhanced phonon scattering with boundaries. As these 

are one-dimensional structures, only thermal transport perpendicular to the modulation was 

investigated. However, in the thickness-modulated nanofilms, two directions can be evaluated: 

parallel to the modulation features (or “modulators”) and perpendicular to the modulation features, 

and little is known about phonon transport parallel to the modulators. Given that the phonon size 

effect dominates in the nanoscale, anisotropic boundaries imply anisotropic phonon boundary 

scattering rates and, hence, the possibility to enhance the thermal anisotropy in modulated 

nanofilms. A full study of thermal transport along both directions sheds light on the thermal 

anisotropy induced by anisotropic boundaries. 

We perform full 3D simulations of the modulated structure considering a unit cell (Lx x Ly 

x dm) with a continuous bottom layer (Lx x Ly x d0) and a modulator (∆x x Ly x ∆d) on top, as shown 

in Fig. 3.1. The anisotropy of the unit cell is controlled by tuning the width and thickness of the 

modulator. Corresponding aspect ratios are defined as WR = ∆x/Lx and TR = dm/d0. We use Lx = Ly 

= L and a fixed ratio L/d0 = 6 in all cases without loss of generality as the impact of varying L and 

d0 is evaluated as we vary WR and TR, respectively. In addition, we investigate the size effects of 

the unit cell by adjusting L from 30 nm to 600 nm. 

Note that in the y direction, the cross-sectional area for heat conduction is constant (Lx x do 

+ Δx x Δd), but for conduction in the x direction, the cross-sectional area alternates between Ly x 

do and Ly x dm as the thickness varies. Thus, here, the nominal thermal conductivity is defined 

based on the cross-sectional area of the unit cell at the center of the unit cell (e.g., the full height 

dm). Specifically, when extracting the thermal conductivity along x direction from the temperature 

gradient and heat flow rates, the nominal area for heat conduction is defined as Ly x dm. To avoid 

confusion in the varying areas when evaluating the anisotropy ratio, we define the thermal 

conduction anisotropy ratio based on the ratio of the heat fluxes required to maintain a given 

temperature gradient in that direction: 

qx 
(kA)eff ,x kxLx    (3.15) 

qy (kA)eff , y ky Ly 
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where (kA)eff and k are the effective thermal conductance and the nominal thermal conductivity, 

respectively. In all cases, γ=qx/qy=kx/ky as Lx=Ly=L is defined for all unit cells. And the 

equivalence of thermal anisotropy ratios based on the nominal thermal conductivity and the 

effective thermal conductance avoids confusion in the thermal anisotropy study. 

To compute the direction-dependent thermal conductivity, an efficient energy-based 

variance-reduced Monte Carlo (MC) algorithm adapted from the work of Péraud and 

Hadjiconstantinou[60] solves the BTE directly in the 3D unit cell. Periodic boundary conditions 

at appropriate faces allow thermal transport simulations using a single periodic unit cell[44]. In 

MC-based techniques, the BTE is solved by stochastically simulating phonon samples, which 

represent an ensemble of phonons. The standard algorithm starts from the initialization of phonons 

and repeats steps of emission, advection, and scattering of phonon samples until equilibrium. The 

computational cost is significantly reduced by solving the energy-based variance-reduced BTE[60]: 

loc eq dde (e  eT )  e 
Vg e

d  eq (3.16) 
t  

where 𝑒  is the energy-based deviation distribution from a deterministic nearby equilibrium, 
 

(𝑒  − 𝑒
 
) is the local deviation distribution, 𝑉  is the phonon group velocity, 𝑡 is the time, and 

𝜏 is the phonon relaxation time. Additional computational efficiency is achieved by solving the 

linearized BTE with small temperature differences and the energy deviation from a deterministic 

nearby equilibrium[61]. In this work, only acoustic phonons are considered and the phonon 

dispersion relationship is approximated using a fourth-order polynomial fit to the dispersion along 

the [001] direction[32]. We use the same relaxation times for (acoustic) phonon-phonon scattering 

as in Minnich et al.[66], and the impurity scattering rate is determined by fitting to the bulk thermal 

conductivity for a nearly pure silicon sample. With this approach, the calculated thermal 

conductivity for bulk Si at 300 K is 156.4 Wm-1K-1 using an impurity scattering rate of 𝜏  = 

3 × 10 𝜔  𝑠  , which agrees well with the experimental value of k = 155 Wm-1K-1.[67,68] 

Further, to validate our simulations accuracy in capturing the effect of phonon boundary scattering, 

we calculate thermal conductivities of silicon TFs across a wide-range of thicknesses (5 nm to 

5000 nm) using diffusive boundary conditions, which is reasonable for phonon transport in Si TFs 

at 300 K. Figure 3.2 illustrates the good agreement between the calculated thermal conductivity 

using our BTE model and recent experimental data for thickness-dependent silicon TFs[23,24]. 
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Figure 3.2: Thickness-dependent thermal conductivity of silicon TFs across a wide range of 
thicknesses. The calculated thermal conductivity, kMC, from our simulations agrees well with 
recent experimental data by Chávez-Ángel et al[23] and Cuffe et al[24], indicating that our 
model accurately captures the phonon boundary scattering effect. 

To understand how the modulations impact the thermal conduction anisotropy, we perform 

thermal transport simulations over unit cells with varying L, WR, and TR. Periodic boundary 

conditions are applied at the pseudo boundaries along the periodic directions, while all other 

boundaries are assumed to be diffusive. As a comparison, we compute the directional-dependent 

thermal conductivity of the unit cells based on heat diffusion equation (with no consideration of 

the phonon size effects) using a 3D COMSOL model for unit cells of the same geometry. As 

thermal conductivity is a material property in bulk systems, the calculated thermal anisotropy ratio 

is independent of the size of the unit cell. In contrast, as a result of the phonon size effects at the 

nanoscale, the thermal anisotropy ratio increases as the size of the unit cell shrinks from L = 600 

nm to L = 30 nm and the ratio approaches the corresponding bulk value as L increases, as shown 

in Figure 3.3 (a) and (b). This result highlights the importance of phonon size effects for enhancing 

thermal anisotropy, while the thermal anisotropy present in bulk scale is limited due to its single 

contribution from the different cross-sectional areas to conduct heat along x and y directions. Note 

that the anisotropy ratio can be as high as ~10 for a unit cell of size L = 150 nm and d0 = 30 nm, 

which is experimentally feasible in current nanofabrication using a standard silicon-on-insulator 

wafer. 
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Figure 3.3: Thermal anisotropy as a function of system size (L) and (a) thickness ratio (TR) for 
a fixed width ratio (WR = 0.8) and (b) width ratio for a fixed thickness ratio (TR = 10) using our 
Monte Carlo (MC) simulations (solid lines) compared to a fully diffusive finite element model 
(dashed lines). Note that the anisotropy ratio decreases as the unit cell size increases and trends 
towards the diffusive result as L increases past the dominant phonon mean free paths. (c) 
Thermal anisotropy ratio as a function of TR for the unit cells with WR =0.8 and L = 30 nm. (d) 
Thermal anisotropy ratio as a function of WR for the unit cells with TR = 10 and L = 30 nm. 
Adjusting either the WR or the TR can achieve tuning thermal anisotropy ratio across an order 
of magnitude and tuning both parameters enables significant anisotropy with nanoscale feature 
sizes. 

The anisotropy ratio increases with TR for all length scales (see Figure 3.3 (a) and (c)) 

including the diffusive regime. For the unit cell of L = 30 nm and WR = 0.8, the ratio is tuned from 

~2 to ~12 as TR varies from 2.5 to 10. A similar trend is observed for the effect of WR, as shown 

in Figure 3.3 (b) and (d). Note that either tuning WR or TR under appropriate conditions can adjust 

the thermal anisotropy ratio over an order of magnitude. For the direction parallel to the modulator, 

the y direction in this scheme, the reflected phonons have random y-direction velocity components. 

However, in the direction perpendicular to the modulator, though diffusive boundary scattering 

randomizes the phonon velocity, the updated velocity component along x direction are flipped for 

phonons reflected by the perpendicular boundaries. That indicates the modulator as a more 
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effective structure to confine phonons traveling perpendicular to the modulator. As the 

characteristic length of the modulator increases, suppression of phonons traveling parallel to the 

modulator is greatly reduced as the characteristic length of the modulator increases with the width 

and thickness, while our simulations show no significant reduction of the phonon suppression 

along x direction with increased characteristic length. As a consequence, the increase of thermal 

conductance along x direction with WR and TR is very limited when compared to the increase 

along y direction, as shown in Figure 3.4, which explains the observed high anisotropy ratio (> 10). 

Figure 3.4: (a) Nominal thermal conductivity k and effective thermal conductance (kA)eff as a 
function of TR for the unit cells with WR =0.8 and L = 30 nm. (b) Nominal thermal conductivity 
k and effective thermal conductance (kA)eff as a function of WR for the unit cells with TR =10 
and L = 30 nm. Note that both ky and (kA)eff,y increase significantly with TR and WR, though no 
similar increase along x direction. That explains the high anisotropy ratio observed in the unit 
cells with large WR and TR. 

In general, these structures are achievable using existing nanofabrication tools, but there 

are some limitations. Considering silicon as an example, achieving the desired thermal anisotropy 

with the increased TR requires a high aspect-ratio etch of silicon thin films. High anisotropic 

etching of silicon is practical given the reported etch aspect ratio up to 107 using deep reactive ion 

etch technique[69]. Another limitation is the size of the modulation features. Electron-beam 

lithography can define the pattern of the modulator as the unit cell shrinks to nanoscale, but is 

limited to ~ 10 nm resolution[70]. A conservative estimate demonstrates the experimental 

feasibility of fabricating the proposed structure of the unit cell of size L = 150 nm and d0 = 30 nm, 

which is predicted to achieve a thermal anisotropy ratio greater than 10. 

Romano and Kolpak[71] recently proposed nanoporous materials with anisotropic pore 

lattices with anisotropy ratio of > 10. Both their structure and our structure yield enhanced thermal 
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anisotropy ratios of > 10 by introducing anisotropic nanostructures. Our 3D structures offer 

additional flexibility of modulating the anisotropy due to the extra thickness modulation not 

available in 2D structures, which contributes to a relatively higher thermal anisotropy in our 

structures at relatively larger scales (L > 100 nm). In addition, our structures, based on continuous 

solid membranes, are more mechanically robust compared to porous films, which is a potential 

advantage for future applications in devices. In addition, the full 3D simulations using the MC 

method used in this report capture all boundary effects, which are critical for accurate predictions 

in nanoscale due to the correlation between phonon scattering with the boundaries. 

In summary, we investigate the possibility of controlling the thermal conduction anisotropy 

using thickness-modulated thin films. We solve directly the phonon frequency-dependent BTE in 

3D geometries of interest using an efficient MC algorithm. Our simulations capturing all phonon 

boundary scatterings demonstrate an increase in the thermal conduction anisotropy of an order of 

magnitude. The high thermal anisotropy, not naturally available in corresponding bulk materials, 

is promising for directing the heat flow pathways in thermal management related applications. 

Moreover, the proposed structure is experimental feasible with current nanofabrication technology 

and is advantageous for future applications in devices due to its mechanical robustness. 
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4. REEVALUATING THE SUPPRESSION FUNCTION FOR PHONON 
TRANSPORT IN NANOSTRUCTURES BY MONTE CARLO 

TECHNIQUES 

Thermal conductivity integral models including a suppression function to account for 

boundary scattering have had considerable success in explaining and predicting the thermal 

conductivity of nanostructures. However, the suppression function is analytically defined only for 

some simple structures, e.g., thin films and nanowires. For arbitrary nanostructures, Monte Carlo 

(MC) -based methods have been developed to calculate the suppression function. Here, we focus 

on two main types of MC-based methods: path sampling methods and ray tracing simulations. For 

the path sampling method, a more computationally efficient sampling algorithm is proposed based 

on the analytical solution of the average distance phonons can travel before a collision. The 

physical meaning of the path sampling method is rigorously given for the first time by comparing 

to the analytical solution of the BTE for symmetric structures. Several limitations of the path 

sampling method are discussed based on assumptions in the derivation. Ray tracing simulations 

are well defined when a converged boundary mean free path (MFP) can be found. However, 

convergence is not guaranteed for arbitrary structures. More generally, we propose a modified 

formula to approximate the full-range suppression function with a characteristic length, which is 

determined by fitting to the calculated suppression function at selected MFPs. Ultimately the 

accuracy of each calculated suppression function is evaluated by comparing the calculated thermal 

conductivity accumulation function for nanostructures including thin films, nanowires, and 

anisotropic modulated nanostructures. Our results provide guidance for selecting the appropriate 

techniques for calculating the suppression function and thereby predicting the thermal conductivity 

of nanostructures. 

Introduction 

Thermal transport in nanostructured materials is critical for many applications including 

modern electronics, thermoelectrics, and thermal management.[1,72,73] Phonons are dominant 

heat carriers in semiconducting and insulating materials.[43] For decades, phonon transport in 

nanostructures has been both experimentally and numerically investigated.[2,74–77] Previous 

experiments demonstrated the reduced thermal conductivity (k) of thin films (TFs),[19,40,78] 
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nanowires (NWs),[79–81] and nanoporous structures.[3,35,82–84] Numerous models based on the 

Boltzmann Transport Equation (BTE) have been developed to understand the reduction of 

k.[50,52,85–91] The general form for the BTE in the relaxation time approximation is 

f f
 v  f   DE 

t r  (4.1) 

where f is the distribution function, t is the time, v is the phonon group velocity, r is the position, 

f  f  fDE BE τ is the relaxation time, and is the small departure from the Bose-Einstein 

distribution fBE. Assuming isotropic dispersion, a simplified solution of the BTE is generally used 

to calculate the thermal conductivity of a nanostructure as[92] 

k  
1

3  
j 
CvjS(bulk , j , Lc )bulk , jd 

(4.2) 

bulk , jwhere C is the volumetric specific heat capacity per unit frequency, vj is the group velocity, 

is the bulk phonon mean free path (MFP), Lc is the characteristic length, S is the suppression 

function of thermal conductivity contribution by each mode, and j represents the phonon branches. 

The thermal conductivity integral model based on the suppression function has had 

considerable success in explaining the decreased k in nanostructures. However, the suppression 

function is analytically defined only for some simple structures (e.g., TFs and NWs). For arbitrary 

nanostructures, Monte Carlo (MC) -based methods have been developed to determine the 

nano, jnanostructure-dependent MFP, , including the effect of phonon-boundary scattering, which 

can be used for calculating the nanostructure thermal conductivity as 

k  
1

3  
j 
Cvj nano, jd 

(4.3) 

McGaughey and Jain[91] developed a free path sampling method and applied it to the 

thermal conductivity calculation of a polycrystalline bulk material and a thin film. Marconnet et 

al.[5] developed a similar random path sampling technique to investigate phonon transport in 

periodically porous silicon nanowires. The path sampling technique simulates phonon propagation 

from a random position until a scattering event, while ray tracing simulations by Hori et al.[87] 

calculated the boundary scattering MFP based on a transmission model and determined the 
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effective MFP using Matthiessen’s rule.[93] Further, Lee et al.[84] investigated phonon 

backscattering in silicon nanomeshes using the ray tracing method. Recently, Parrish et al.[94] 

compared calculations of k for silicon nanowires and nanoporous films by the MC-based methods 

highlighting the difference in the calculated phonon MFP-dependent k accumulation. However, in 

addition to discussions based on simulations of specific structures, there is a need to investigate 

the physical significance of the MC-based MFP calculation methods and understand the basic 

difference of these models in calculating thermal conductivity. 

Here, we focus on two main types of MC-based methods for calculating the suppression 

function: the path sampling method and ray tracing simulations. First, we propose a more efficient 

sampling method based on the analytical solution of the average distance phonons can travel before 

a collision. To evaluate the applicability of the path sampling method, we interrogate the physical 

meaning by comparing to the analytical solution of the BTE for symmetric structures. Next, the 

ray tracing simulation method is evaluated and we propose a modified analytical formula to 

approximate the full-range suppression function with a characteristic length, which is determined 

by fitting to the calculated suppression function at selective MFPs. Further, we compare the 

calculated suppression function and thermal conductivity accumulation in silicon nanostructures 

including TFs, NWs, and anisotropic modulated nanostructures. To facilitate the discussion of the 

suppression due to phonon-boundary scattering alone, isotropic bulk phonon properties are 

assumed in the calculations and nanostructures large enough of bulk-like phonon properties are 

considered.[95,96] For the calculation of thermal conductivity accumulation, we use the MFP 

dependent thermal conductivity contribution by first principle calculations of bulk silicon at 300 

K from Esfarjani et al.,[97] except for the thickness modulated TFs where the same input as our 

previous work[98] is used for a consistent comparison. The calculations are verified by comparing 

to analytical solutions for simple structures[36,37,99] and to published BTE-based simulations for 

complex nanostructures.[71,98] The results shed light on the appropriate MC methods for the 

accurate calculation of thermal conductivity of nanostructures. 
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Approach 

4.2.1 The Effective Mean Free Path 

When working with nano- and microstructures, there are two common methods of 

incorporating boundary effects into the mean free path: Matthiessen's Rule and the Suppression 

Function. Matthiessen's rule assumes scattering events are independent and incorporates boundary 

1 1
nano, j 1/ (bulk, j B )scattering along with intrinsic scattering processes as to find an average 

Bdistance between collisions, where is the boundary scattering MFP. In contrast, the 

suppression function essentially reduces the bulk MFP by a size-dependent parameter S: 

nano, j  Sbulk, j . Here, for the path sampling simulation, we focus on the definition based on the 

suppression function as the nanostructure MFP is determined by the bulk MFP and the 

nanostructure geometry. For the ray tracing method, an analogy is made between the two 

approaches. 

Further, note that the definition of "mean" is important to the understanding and use of the 

thermal conductivity integrals. Specifically, Eqn. (4.3) is not necessarily equivalent to Eqn. (4.2) 

nano, jif the follows the general definition of MFP, i.e., the average distance traveled by a phonon 

between successive collisions over all directions. For example, the thermal conductivity of thin 

films is anisotropic with different values in the in-plane and the cross-plane direction, while the 

MFP calculated by modeling the phonons as particles is an average over all directions. To capture 

the directional variations in k using Eqn. (4.3), the MFP in these models should be an average of 

the distance traveled by phonons weighted by the directional thermal conductivity contribution. In 

eff , jthis work, we define the effective MFP, , to avoid confusion with the definition of MFP in 

eff , jisotropic mediums. The can be expressed as 

eff , j  S(bulk , j , Lc ) bulk , j (4.4) 

where S now becomes a suppression function vector along with the directionality. Using this 

nano, jterminology, the is an equally-weighted average of the travel distance over all directions, 

eff , jwhile the is an average weighted by each phonon’s directional thermal conductivity 
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nano, j eff , jcontribution. The difference in and highlights the importance of including the 

directional contribution for accurate prediction of thermal conductivity. 

Additionally, an implicit assumption in the treatment is that phonon modes are nearly 

independent, and thus the suppression of each mode can be calculated separately. This assumption 

has to do with the calculation of temperature based on equilibrium or local equilibrium conditions 

of all phonon modes.[100] For diffusive heat conduction, the temperature distribution can be 

known via Fourier’s law, e.g., a linear temperature gradient for heat conduction across symmetric 

structures. The mode-dependent suppression by a separate treatment of each phonon mode 

combined with the predicted temperature distribution easily yields the suppressed thermal 

conductivity contribution. In contrast, to calculate the mode-dependent thermal conductivity 

contribution in ballistic transport, the temperature must be calculated by solving the mode-

dependent BTE, which is not resolved in both the MC methods discussed here. Without the 

temperature calculated by all modes, the suppressed thermal conductivity cannot be determined 

from the suppression of each individual mode alone. Thus, treating different phonon modes 

separately in the ballistic regime is not sufficient for calculating the mode-dependent thermal 

conductivity. Further, the separate treatment implies inconsistent physics for ballistic phonon 

transport. A separate treatment of small-MFP phonons indicates diffusive transport for these 

modes similar to Fourier’s law, while the treatment of long-MFP phonons suggests ballistic 

transport. 

4.2.2 Path Sampling Method 

The random path sampling method is based on simulations of a single scattering event 

(phonon-boundary scattering or intrinsic phonon-phonon scattering) for phonons randomly 

sampled within a structure. Briefly, the free path sampled from the distribution of bulk MFPs is 

truncated by the travel distance from the origin to the nearest scattering point, i.e. the potential 

point of collision with boundaries. For each nanostructure, the MFP is an average of the free paths 

generated by the sampling process. In previous work, at least 1000 free paths need to be sampled 

to give the effective MFP for each bulk MFP.[91] 

Rather than sampling free paths from a Poisson distribution for each MFP as in past 

work,[91,94] we propose a more computationally efficient sampling method using the analytically 

determined mean distance that a phonon can travel without a collision from the origin point O to 
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the nearest point P on the surface. For diffusive phonon-boundary scattering, the MFP for a phonon 

OP/bulk ) (1 etraveled along the direction OP can be calculated as bulk .[99] This treatment 

significantly speeds up computation compared to the previous procedure that repeated the 

sampling step many times to give the converged nanostructure MFP.[91] Figure 4.1(a) 

demonstrates the difference between these two sampling algorithms. Obviously, the computational 

efficiency is greatly improved as the nanostructure free path is analytically determined in the 

proposed sampling algorithm. 

More importantly, we interrogate the applicability of the path sampling method by giving 

a physical understanding to this method. Basically, this method originates from an intuitive 

understanding of phonon MFP without a rigorous derivation. To understand the physics, we 

compare the path sampling method to a particular solution of the BTE in symmetric structures, 

e.g., TFs and NWs, where some knowledge of the temperature distribution can be determined 

directly from the symmetry.[43] The BTE in steady state can be expanded as 

fBE fBE fBE fDE fDE fDE fDE v  v  v  v  v  v   x y z x y zx y z x y z  (4.5) 

where vx, vy, and vz are the phonon group velocity components along the x, y, and z direction, 

respectively. Consider 1D heat conduction along the x direction, the BTE can be simplified to a 

first-order differential equation with the assumed temperature distribution[99] if 

  f f BE BE v  v  0 y z x  y z  (4.6) 

This condition is easily satisfied for a 1D temperature gradient applied along a symmetric 

structure, e.g., a long film or wire of uniform cross-sections, as each cross-section perpendicular 

to the prescribed heat flow direction must have the same temperature and thus the same equilibrium 

distribution. From the simplified BTE, particular solutions have been obtained for phonon 

transport in thin films[36,37] and nanowires. The suppression function for symmetric structures 

with a cross-sectional area Ac as derived by Chambers[99] is 

OP/bulk , j 2S(bulk , j )  
3 
 (1 e )cos ddAc4 Ac (4.7) 
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where OP is the distance from a point O on the cross-section to a point P on the surface, dΩ is an 

element of solid angle along OP , and θ is the angle between OP and the thermal gradient. The 

eff , j calculated using Eqn. (4.4) and Eqn. (4.7) is 

OP/bulk , j 2eff , j  
3 
bulk , j (1 e )cos ddA 

4 Ac 
c 

(4.8) 

A comparison of this derived formula and the path sampling method demonstrates the 

equivalence between the method and the solution of Eqn. (4.8). Note that Eqns. (4.7) and (4.8) are 

not derived from the general solution of the BTE, but from a specific solution for the simplified 

BTE when the condition described by Eqn. (4.6) is met.[99] In other words, Eqn. (4.8) has nothing 

to do with the BTE if Eqn. (4.6) is not satisfied. Equivalently, the path sampling method is 

meaningless in this situation. Therefore, the applicability of the path sampling method can be 

judged by Eqn. (4.6). Here, this condition is referred to as the symmetry condition since the 

condition in Eqn. (4.6) depends on symmetry of the structures, i.e., all the cross-sections along a 

specific direction can be planes of symmetry and the equilibrium distribution varies in the only 

direction. 

(a) 

(b) 

Figure 4.1: Process flow for (a) the path sampling method and (b) ray tracing simulations. Steps 
used in previous algorithms are outlined in blue, while the extensions applied in this paper are 
outlined with green dashed lines. For the path sampling method, compared to sampling free 
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paths from a Poisson distribution for each MFP, the computational efficiency is greatly 
improved using the analytically determined nanostructure free paths. For the ray tracing 
approach, with the proposed approximation, the method can be applied to more arbitrary 
structures where no converged boundary MFP can be found. 

The suppression function calculated by the modified path sampling method is discussed in 

Section III for various nanostructures. The applicability of the path sampling method is predicted 

by Eqn. (4.6). The accuracy of the calculated suppression function and the prediction is determined 

by comparing to the analytical solutions or published BTE-based simulation results. Such a 

comparison reveals the limitation of the path sampling method when applied in certain structures, 

and the symmetry condition can be used to judge whether this method is appropriate in specific 

structures. 

4.2.3 Ray Tracing Method 

The ray tracing method calculates a geometry-dependent phonon-boundary scattering MFP 

based on ballistic transmission. When only ballistic transport is considered, the mode-dependent 

thermal conductivity is 

k j  
1 

Cvj B 
3 (4.9) 

and the thermal conductivity can be derived from the Landauer formula as[100] 

1  /2 
k j  fL  Cvj 12 ( )cos sind 

2 0 (4.10) 

where f is the geometry correction factor, L is the length of the nanostructure, θ is the incidence 

angle, and τ12 is the phonon transmission probability. Note that the f is generally calculated using 

Fourier’s law, which is strictly valid for diffusive transport only. From Eqn. (4.9) and (4.10), the 

B can be expressed as[87] 

3  /2 
B  

2 
fL 12 ( )cos sind 

0 (4.11) 

Assuming independent intrinsic and boundary scatterings, the effective MFP is determined 

via Matthiessen’s rule:[93] 

1 1 1
eff , j bulk , j B (4.12) 
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eff BThe calculation of and is meaningful when it converges with the length of the 

nanostructures, which is the case when boundary scattering is dominant over other scattering 

Bmechanisms. The suppression function can be written with the geometry-dependent for all 

modes as 

S j (bulk , j )  
1 

1 bulk , j / B (4.13) 

However, convergence is not guaranteed for phonon transport in arbitrary nanostructures, e.g., in-

plane transport in thin films. A more general method is to calculate the transmission probability 

eff , j bulk , jconsidering the intrinsic phonon scattering, and the corresponding to is[87] 

3  /2 
eff , j  fL  (bulk , j , )cos sind 

2  12 0 (4.14) 

To calculate the suppression function with fine resolution across a wide range of MFPs, ray tracing 

simulations need to be performed for a large number of MFPs. The mode-dependent simulation 

becomes much more computationally expensive compared to the mode-independent calculation of 

B . 

Thus, we propose that a characteristic length Lc can be determined by fitting to the 

calculated suppression function at several selective MFPs around the minimum confined size in 

nanostructures. This treatment agrees with the fact that boundary scattering MFP for 

nanostructures generally corresponds to the confined size, e.g., thickness for TFs,[31] diameter for 

NWs,[99] and distance between pore boundaries for nanoporous structures.[5] Therefore, a good 

sensitivity to Lc can be expected by fitting to the suppression function around the confined size 

rather than to full range of possible MFPs to improve computational efficiency. Given that for 

phonons with short MFPs the suppression function does not always trend towards 1 for complex 

structures as reported in previous BTE-based simulations,[71,101] we approximate the 

suppression function as 

S j (bulk , j  0) 
S j (bulk , j )  

1bulk , j / Lc (4.15) 
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The suppression function approximated by Eqn. (4.15) has a similar form as Eqn. (4.13). It can be 

S (bulk , j  0) S (bulk , j  0)  1
regarded as an extension of Eqn. (4.13) with a corrected j when j . 

The same physics remain in this approximation, i.e., intrinsic and boundary scatterings are still 

treated independently as shown in the denominator of Eqn. (4.15). Mathematically, the correction 

S j (bulk , j  0) 
of allows a better fitting of the calculated suppression functions compared to Eqn. 

(4.13). With this approximation, the ray tracing method can be applied to more arbitrary structures. 

Figure 4.1(b) outlines the modified algorithm with the additional steps that extend its applicability 

compared to the previous ray tracing simulations. 

In this case study, we calculate the suppression function by ray tracing simulations for 

Bvarious nanostructures. The is determined from Eqn. (4.11) for nanostructures with a 

converged boundary scattering MFP, otherwise the characteristic length Lc is calculated by fitting 

with Eqn. (4.15). The calculation results are compared to the analytical solutions or published 

BTE-based simulation results. The question to be answered is whether the mode-independent 

boundary MFP or characteristic length is sufficient to obtain the accurate mode-dependent 

suppression function and thereby accurate thermal conductivity predictions. 

Case Study: Phonon Transport in Si Nanostructures 

4.3.1 Thin Films and Nanowires 

In- and cross-plane phonon transport in thin films have been extensively investigated based 

on the BTE. Here, we consider phonon conduction suppressed due to the decreased thickness of 

TFs, while the lengths in other dimensions are assumed to be infinite. For the in-plane transport, 

the Fuchs-Sondheimer (F-S) solution[36,37] or the Chambers solution[99] can be used to 

analytically determine the suppression function. We compare the suppression function calculated 

by the MC techniques to the analytical solution. Figure 4.2(a) shows an excellent agreement 

between the analytical solution and the suppression function by the proposed path sampling 

Bmethod, while a converged by the ray tracing method cannot be found from Eqn. (4.11). The 

suppression function calculated at selective MFPs based on Eqn. (4.14) agrees well with the F-S 

Bsolution. Thus, although the does not converge with the length of simulation domain, fitting 
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Lc / dthe ray tracing results at several selective MFPs to Eqn. (4.15) gives = 2.33, where d is the 

film thickness. A reasonable agreement is observed for all phonon MFPs between the analytical 

Lc / dsolution and the suppression function calculated using = 2.33. This term corresponds to the 

so-called boundary scattering term in literature, which has generally been used as a fitting 

parameter to match the temperature-dependent thermal conductivity experimental data. This 

ultimately depends on the accuracy of the experimental results and other parameters in the fitting 

model. Here, we show that a well-defined Lc can be determined by fitting to the suppression 

function, and its accuracy in calculating in-plane k of TFs is shown in Figure 4.2(b). 

(a) (b) 
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Figure 4.2: (a) Suppression function for in-plane phonon transport in TFs. The suppression 
function calculated by the MC techniques agrees well with the Fuchs-Sondheimer (F-S) 

Bsolution. Though a converged does not exist, a reasonable agreement is observed for all 
phonon MFPs between the analytical solution and the suppression function calculated using 
Lc / d =2.33. (b) Thickness-dependent in-plane thermal conductivity of silicon TFs. With the 
suppression function, we calculate the k using the MFP-dependent thermal conductivity 
contribution by Esfarjani et al.[97] A good agreement is observed for in-plane k of TFs across a 
range of thicknesses, which verifies the accuracy of the suppression function approximated using 
the characteristic length. 

As for the cross-plane transport, Figure 4.3(a) shows a comparison between the semi-

analytical BTE solution[102] and the suppression function by the MC methods. Both the MC 

methods gives the same well-known limit[103] S B / d  3/ 4 for long phonon MFPs. The 

suppression function calculated by the MC methods agrees well with the solution for long mean 

free paths ( i / d >1). The deviation for short mean free paths ( i / d <1) is due to the separate 

treatment of each mode, which means the impact of ballistic effect on phonons of small MFPs is 

not considered in the MC techniques. This is unphysical as temperature is defined based on 

equilibrium or local equilibrium conditions of all phonon modes.[100] Fourier’s law itself cannot 
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capture the temperature slip at the boundaries and the nonlinear temperature profile across the film. 

The impact of the deviation for i / d <1 on calculating the k of extremely thin films is negligible 

as little heat is conducted by the modes of such small MFPs. For relatively thick films, the 

deviation has a larger impact on the calculation of k, e.g., cross-plane thermal conductivity of 

silicon TFs as shown in Figure 4.3(b), which is critical for predicting the onset of size effect in 

thermal conductivity of TFs. 

(a) (b) 

Figure 4.3: (a) Suppression function for cross-plane phonon transport in TFs. The suppression 
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function calculated by the MC methods agrees well with the published BTE-based solution[102] 

for i / d >1, and the deviation for i / d <1 is due to the separate treatment of each mode. (b) 
Thickness-dependent cross-plane thermal conductivity of silicon TFs. With the suppression 
function, we calculate the k using the MFP-dependent thermal conductivity contribution by 

Esfarjani et al.[97] The deviation of the suppression function for i / d >1 causes the deviation 
of k for relatively thick films. 

Next, the suppression function for square nanowires is calculated using the MC methods 

as shown in Figure 4.4(a). Similarly, we consider sufficiently long nanowires where axial heat 

conduction is in the diffusive regime. The good agreement is not surprising considering the 

Bsymmetry and the converged . Both the MC techniques give the same boundary scattering MFP 

as the Casimir limit:[104] B / D =1.12, where D is the side width of the square nanowire. Further, 

Figure 4.4(b) demonstrates the k of silicon NWs calculated using the suppression function across 

a range of side widths. 
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(a) (b) 

Figure 4.4: (a) Suppression function for axial phonon transport in NWs. A good agreement is 
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observed between the MC techniques, and both the MC calculations give the same boundary 

scattering MFP as the Casimir limit B / D =1.12. (b) Side width-dependent thermal 
conductivity of silicon NWs. With the suppression function, we calculate the k using the MFP-
dependent thermal conductivity contribution by Esfarjani et al.[97] 

4.3.2 Nanostructured Thin Films 

Phonon transport in nanostructured thin films has been one of the major topics of nanoscale 

heat transfer in past two decades. There have been discussions whether the coherent phonon 

transport causes the significantly reduced thermal conductivity.[2,3,5,35,55,84,94,105] Recently, 

more experimental and simulation results[83,84,94] supported that the particle-based model only 

can explain the decrease of thermal conductivity in silicon nanostructures, which implies that 

coherent transport is not dominant in the measurement regime. Here, we investigate the 

suppression function for phonon transport in thickness-modulated thin films[98] and nanoporous 

thin films[71] by the MC methods. Note that for these complex nanostructures the symmetry 

condition is not naturally satisfied. Therefore, the particular solution of the BTE equivalent to the 

path sampling method may not exist due to the lack of symmetry. 

Figure 4.5(b) presents the suppression function along the x and y direction for thickness 

modulated TFs (see Figure 4.5(a)). The suppression function by the ray tracing simulation using 

Eqn. (4.14) agrees well with the suppression function calculated in our previous work by solving 

the BTE.[98] As for the path sampling method, a good agreement is observed for the suppression 

function along the y direction where the cross-section is uniform along that direction, while the 

suppression function along the x direction with the modulated thicknesses deviates from the BTE 

result. The calculation results can be understood by examining the symmetry condition. This 

condition is satisfied for heat conduction along the y direction due to the same cross-section 

extruded along the y-direction. Therefore, the particular solution of the BTE can be solved by the 
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path sampling method. However, the symmetry condition is not met in the x direction due to the 

nonuniform cross-sections, and thus the path sampling method is devoid of physical significance. 

Figure 4.5 (c) and (d) demonstrate the thermal conductivity accumulation calculated using the 

Bdifferent suppression functions. As a converged cannot be found in the structure, we 

approximate the calculated suppression function with Eqn. (4.15) for calculating the full-range 

suppression function. A reasonable agreement is observed between the k accumulation function 

calculated using the approximation and the BTE-based simulation. As for the path sampling 

method, the agreement to the BTE result depends on whether the symmetry condition is satisfied 

in the specified direction, e.g., a large deviation along the x direction and a good agreement in the 

y direction. 

(a) 

(c) 

(b) 

(d) 
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Figure 4.5: (a) Schematic of the thickness modulated TFs and a unit cell of size Lx =Ly=30 nm, 
∆x=24 nm, d0=5 nm, and dm=50 nm. (b) Suppression function along the x and y direction for the 
thickness modulated TF. The suppression function along the x and y direction by ray tracing 
simulation agrees well with the published BTE-based simulation.[98] As for the path sampling 
method, the good agreement is observed in the y direction only, while there are large deviations 
for the values along the x direction. The impact of the suppression on calculating the thermal 
conductivity contribution is shown in (c) and (d) for the x and y direction, respectively. For a 
consistent comparison, the same input as our previous work[98] is used for the calculation of 
the k contribution, and the thermal conductivity is corrected with geometry factors calculated 
using COMSOL. Panel (a) reproduced and modified from our previous work with permission. 
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In 2D nanoporous thin films with anisotropic pores[71] as shown in Figure 4.6(a), 

symmetry does not exist in the x or y direction. Figure 4.6(b) displays the comparison between the 

suppression function calculated by the MC techniques and the published BTE result.[71] It is not 

surprising to observe the deviation between the suppression function calculated by the path 

sampling method and the BTE result as the particular solution equivalent to the path sampling 

method does not exist due to the loss of symmetry. In contrast, a reasonable agreement is observed 

between the suppression function calculated by the ray tracing method and the BTE result. 

Similarly, a characteristic length is determined using Eqn. (4.15) for calculating the full-range 

Bsuppression as a converged cannot be found for this system. Note that the x-direction 

suppression function calculated by the ray tracing simulation deviates from the BTE result for 

bulk phonons of < 50 nm, which can cause a large deviation of thermal conductivity for materials 

with most heat conducted by phonons of bulk around or smaller than this critical value. As phonon 

MFPs in silicon are around 1 µm, the deviation will not cause much errors in calculating thermal 

conductivity accumulation for silicon nanostructures as shown in Figure 4.6 (c) and (d). As for the 

path sampling method, the k accumulation along the x direction deviates from the BTE result. The 

deviation of the k accumulation along the y direction is relatively small due to the reasonable 

agreement of the suppression function for long MFPs. 
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Figure 4.6: (a) Schematic of the 2D nanoporous thin film with anisotropic pores and a unit cell 
of size Lx = 173.205 nm, Ly=57.735 nm and Lp=50 nm. (b) Suppression function along the x and 
y direction for the 2D anisotropic porous TF. The suppression function along the x and y 
direction by ray tracing simulation agrees well with the published BTE-based simulation.[71] 
For the path sampling method, a large deviation along both the x and y direction is observed as 
the particular solution equivalent to the path sampling method does not exist in the asymmetric 
structure. The impact of the suppression on calculating the thermal conductivity contribution is 
shown in (c) and (d) for the x and y direction, respectively. We calculate the k contribution using 
the MFP-dependent thermal conductivity contribution by Esfarjani et al,[97] and the thermal 
conductivity is corrected with geometry factors calculated with COMSOL. 

Summary 

Two main types of MC techniques, path sampling method and ray tracing simulation, are 

evaluated for calculating the suppression function and thermal conductivity accumulation for 

various nanostructures. The physical meaning of the path sampling method is elucidated by 

comparing to the analytical solution of the BTE for symmetric structures. An efficient sampling 

method, based on the analytical solution of the average distance phonons can travel before a 

collision, is used to calculate the effective mean free path. However, the particular solution of the 

BTE may not exist as required conditions on the temperature gradient within the cross-section are 

not satisfied in complex nanostructures, which suggests the limitation of the path sampling method 

in complex structures. Ray tracing simulations are more general due to the nature of transmission. 

The directional contribution is considered by counting the transmitted phonons. Though a 

converged boundary MFP does not always exist, we propose a modified analytical model to 

approximate the full-range suppression function with a single characteristic length. The 

characteristic length is determined by fitting to the calculated suppression function and a 

reasonable agreement to the BTE result is observed in the case study of several common 

nanostructures. In addition, it should be noted that both the MC techniques treat each mode 

separately, and thus the impact of ballistic effect on phonons of small MFPs cannot be incorporated 

in these models, e.g., phonon transport in cross-plane TFs and anisotropic porous TFs. Ultimately, 

this work provides insight into the suppression function of phonon transport in nanostructures by 

MC techniques, which is instructive for the choice of MC methods in calculating thermal 

conductivity of different nanostructures. 
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5. STRAIN ENGINEERING THERMAL CONDUCTION 

Beginning around the 1960s, much theoretical and experimental work on stress/strain 

dependent thermal conductivity of bulk semiconductors was conducted at low temperatures 

[106,107]. This prior work focused on the impact of stress/strain on electron-phonon interaction 

in doped semiconductors and its impact on thermal conductivity. Recently, strain engineering of 

thermal transport has renewed interest with the increasing importance of MEMS technologies and 

other novel optical and electronic devices which leverage strain-controlled films for functionality. 

Experimental data on the impact of strain on thermal transport in thin films is limited and 

sometimes conflicting. In part this is due to challenges in simultaneous measurement of thermal 

conductivity and control of mechanical strain at the length scales relevant to MEMS applications 

and modern devices. A systematic study of strain-dependent thermal conductivity is needed to 

shed light on thermal transport in strained thin films. Understanding thermal transport in strained 

micro/nanostructured materials is critical for applications related to flexible electronics and other 

devices with significant thermomechanical stresses. This chapter explores strain engineering of 

the thermal conductivity of polymer-supported metal films and multi-layer graphene films. 

Suspended samples on a flexible substrate combined with a custom-built mechanical stage enables 

strain dependent thermal conductivity characterization using the electrothermal method. 

Characterization of the strain-dependent thermal conductivity of materials enables us to probe the 

underlying thermal transport physics. 

Thermal Conductivity of Extremely Strained Au-on-Polyimide Films 

Flexible electronic devices typically contain inorganic films on a polymer substrate and it 

of significant practical and theoretical interest to investigate various properties of such structures. 

Indeed, the mechanical properties of polymer-supported metal films have been extensively 

investigated, e.g., characterizing the fracture strain. Supported metal films can be stretched beyond 

a strain of 20-50 %, while the fracture strain of free-standing metal films is only ~1%.[108–111] 

In the supported structure, the strain in the metal film is delocalized and thus it can be stretched to 

greater lengths. Though the mechanical properties are well characterized, the thermal conductivity 

of extremely strained metal-on-polymer structures has been scarcely investigated. 
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Figure 5.1: In-plane and cross-plane thermal conductivity of polyimide thin films from the 
literature. [112,113] The thermal conductivity anisotropy is attributed to the alignment of the 
polymer chains. 

Previous thermal conductivity measurements for strain-free polyimide films demonstrated 

a thermal conductivity anisotropy when comparing the in-plane k to the cross-plane k. Figure 5.1 

shows the in-plane k is 1-2 W/m-K and the cross-plane k is ~0.2 W/m-K. The thermal conductivity 

anisotropy is typically attributed to the orientation of the polymer chains.[112,113] Here, we 

perform an experimental study of thermal conductivity in extremely strained polyimide-supported 

Au nanofilms (100 nm Au on 25.4 µm polyimide). The 25.4 µm polyimide film (Kapton by 

DuPont) is ultrasonically cleaned with toluene, acetone, and methanol. Then, 100 nm Au layer and 

5 nm Cr adhesion layer are deposited on the polyimide using an E-beam evaporator. The Au-on-

polyimide composite film is cut into strips with desired length-to-width ratios for the mechanical 

stage (see Figure 5.2(a)). The electrothermal measurement is performed in a vacuum chamber to 

minimize convection losses. Figure 5.2 (b) and (c) shows the calibrated electrical resistance vs. 

temperature and an example of resistance variation vs. square of current, respectively. The 

measured in-plane thermal conductivity of the polyimide free of strain by this method is k0 = 1.9 

± 0.1 W/m-K, which agrees well with the prior results. 
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(a) 

(b) 

Figure 5.2: (a) The Au-on-polyimide strip with appropriate length-to-width ratios on the 
mechanical stage. A micrometer is used to control the strain of the strip. After strain is applied, 
the portion outlined in green detaches from the micrometer stage and is attached to the cryostat 
cold finger for temperature-controlled measurements. (b) The calibrated electrical resistance as 
a function of temperature for the free-strain Au-on-polyimide strip. (c) The electrothermal 
response, resistance variation as a function of square of current, for the free-strain Au-on-
polyimide strip. 

Further, we systemically investigate the impact of strain on the electrical resistance, 

temperature coefficient of resistance (TCR), and thermal conductivity. Figure 5.3(a) demonstrates 

the increased electrical resistance with the tensile strain. Quantitatively, the electrical resistance 

varies with the deformation as (L/L0)2, which agrees with the calculated electrical resistance 

assuming a constant volume of the metal layer during the deformation. The variation indicates that 

microcracks in the metal layer is not appreciable, or the variation will deviate from R/R0 = (L/L0)2. 

Figure 5.3(b) shows that the TCR decreases in a certain strain range and a plateau is reached at 

larger strains. This variation is attributed to the structure change of the nanocrystalline metal layer, 

but the physics is still unclear. Note that the change of TCR is important for metal-based flexible 

temperature sensors. Specifically, the variation of TCR with the strain needs to be considered when 

the flexible temperature sensor is stretched. Next, the thermal conductivity of strained Au-on-
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polyimide films is investigated. To extract the thermal conductivity of the polyimide, the thermal 

conductivity of the metal layer is estimated with Wiedemann-Franz law assuming ±15% 

uncertainty. The in-plane thermal conductivity of the polyimide increases with the tensile strain, 

e.g., a 60% enhancement is observed when the film is stretched beyond 25% (see Figure 5.3(c)). 

When the film is stretched, polymer chains tend to align along the tensile strain direction. The 

thermal conductivity along this direction increases due to the more organized polymer chains. 

Therefore, a significant increase can be expected for extremely strained polyimide due to 

realignment of the polymer chains. 

(a) 

Figure 5.3 Experimental evaluation of a Au-on-polyimide strip. (a) The electrical resistance 
varies with the deformation as (L/L0)2. (b) The TCR decreases with the tensile strain. (c) The in-
plane thermal conductivity increases with the tensile strain. A significant increase can be 
expected for extremely strained polyimide due to realignment of the polymer chains. 

Thermal Transport in Graphene and Strain Engineering 

Graphene has been extensively studied for both fundamental science and commercial 

applications due to its unique mechanical, electrical, and thermal properties since graphene was 

first exfoliated from highly oriented pyrolytic graphite [114]. For commercial applications, mass 
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production of high quality graphene is critical as the size of exfoliated graphene flakes is generally 

in the order of 10 μm. Many methods have been developed to obtain relatively large-scale, high-

crystallinity graphene including chemical vapor deposition [115–117] (CVD) on a metal catalyst 

such as Cu or Ni. Properties of exfoliated and CVD graphene have been broadly investigated in 

the past decade, which enables new understanding of transport phenomena in low-dimensional 

materials. 

Thermal transport in graphene has attracted significant interest. Its superior thermal 

conductivity, reported in the first experimental study of suspended graphene [8], demonstrates that 

graphene as a potential solution for thermal management in modern electronics. Further, layer-

dependent thermal conductivity measurements were performed to understand the inter-layer 

interaction. However, measurements based on electrothermal methods [15,118] revealed the 

thermal conductivity increases with number of layers, approaching the value of bulk graphite, 

which is opposite to the trend observed in Raman-based measurements [119]. It is unclear whether 

the conflict in the measurements is due to sample-to-sample variations (exfoliated and CVD 

graphene) or measurement techniques (Raman-based and electrothermal measurement). Later, 

more experimental studies, based on electrothermal measurements, focused on thermal 

conductivity of on-substrate graphene prepared by exfoliation and CVD method. A thermal 

conductivity reduction was observed in supported graphene compared to that of suspended 

graphene [10,120,121]. Molecular dynamics (MD) simulations attributed the reduction to a strong 

interaction between the substrate and graphene and thus a suppression of phonon transport [122]. 

While thermal conductivity of graphene has been intensively investigated, experimental 

study of tuning the thermal conductivity is limited [123], especially when compared to tuning 

electronic properties such as band-gap opening via strain [124–127]. By analogy with strain 

engineering of electronic properties, a natural question is how the phonon band structure, phonon 

scattering, and the thermal conductivity are impacted by strain. For supported graphene, it is of 

significant interest to reveal the impact of strain on the interfacial bonding between the graphene 

and substrate and the effective thermal conductivity. 

Although many computational studies have been performed, no experimental efforts, to 

our knowledge, have directly measured the impact of strain on thermal transport in graphene. But 

the simulation results are not consistent between models. For single layer graphene, Wei et al.[128] 

predicted that small tensile and compressive strains both decrease the thermal conductivity, but 
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other researchers demonstrate that tensile strain can largely enhance thermal conductivity [129– 

131], which is promising for the thermal management in microelectronics. For multi-layer 

graphene, Kuang et al. [131] predicted that the competition of increasing phonon lifetime and 

decreasing mode capacity leads an initial increase then decrease in thermal conductivity with 

increasing tensile strain and this response is dependent on the number of layers in the stack. 

Here, we perform a strain-dependent experimental study of thermal conductivity in 

supported graphene. The strain is transferred to the suspended sample by stretching the substrate. 

As for the on-substrate measurement, graphene on epoxy is selected due to its strong adhesion and 

broad applications in MEMS [132–138]. For the study of supported graphene, an epoxy (SU 8) is 

selected as a substrate due to its uniformity obtained via spin coating. Compared to the amorphous 

support layer such as silicon dioxide (SiO2), the epoxy can be elongated greater than 10% [139] 

while the SiO2 layer breaks around ~1.0% tensile strain [140]. Further, the low thermal 

conductivity [141] of the selected epoxy is beneficial here, as it ensures more heat is conducted 

through the graphene which is good for extracting the thermal conductivity of supported graphene. 

Another advantage is its high surface energy and good adhesion with graphene, which is not 

attainable with many other polymer-based substrates. As suggested in prior work [122], the 

polymer and amorphous substrate may scatter phonons in graphene similarly, so this measurement 

can be of broad interest for the study of strain dependence of the thermal conductivity of supported 

graphene. 

The thermal conductivity measurement is adapted from the electrothermal measurement 

method with strain control described in detail in chapter 2. We prepare ~10 nm multilayer graphene 

(MLG) films on copper (Cu) foils using a plasma enhanced chemical vapor deposition method 

[142,143]. Figure 5.4(a) shows the Raman spectral of MLG films transferred to SiO2/Si substrate. 

A 2 µm thick epoxy (SU 8) layer is spin coated on the MLG films. Then, the ultraviolet-exposed 

SU 8 is fully dried by a hard bake at 150 ˚C. Next, the Cu foil with MLG films is cut into strips 

with appropriate sizes. The MLG film on SU 8 is peeled off from the Cu foil. This method allows 

a dry and clean transfer of graphene and gives a large-scale continuous graphene films. The peel-

off MLG film on SU 8 is suspended over the electrodes on a flexible substrate for the 

electrothermal measurement (see Figure 5.4 (b)). Silver paste is used to provide a stable electrical 

contact and a reliable mechanical connection. Figure 5.4 (c) and (d) demonstrates the calibrated 
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electrical resistance as a function oftemperature and an example of resistance variation vs. square 

of current, respectively. 

(a) (b) 

(c) (d) 

Figure 5.4: (a) Raman spectral of MLG films transferred to SiO2/Si substrate. (b) The MLG 
films on SU 8, encircled by the green dashed lines, suspended over the electrodes on a flexible 
substrate. The strain of the sample is controlled by stretching the substrate. The scale bar is 1 
cm. (c) The calibrated electrical resistance as a function of temperature for the supported MLG 
films. (d) An example electrothermal response, resistance variation with the square of current, 
for the free-strain MLG films. 

To extract the thermal conductivity of graphene from the composite layer, we use the 

reported thermal conductivity 0.2-0.3 W/m-K for the SU 8 layer [144]. Given the high thermal 

conductivity of the MLG layer, the fraction of heat carried by the SU 8 layer is smaller than 5%. 

The thickness of the MLG layer is assumed to be 10 ± 0.5 nm, which is an estimation based on 

previous work by the same group [142,143]. Figure 5.5 (a) shows the temperature-dependent 

thermal conductivity of supported MLG films stretched by 0, 0.5%, and 1.0%. Thermal 

conductivity of the free-strain MLG film increases with the temperature from 300 K to 320 K, 

while no clear temperature dependence of thermal conductivity is observed for strained MLG films 

in such a small temperature range. A decrease of the thermal conductivity from 1090.2 ± 54.6 
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W/m-K to 789.2 ± 39.6 W/m-K is observed when the free-strain MLG layer is stretched 1%, as 

shown in Figure 5.5 (b). 

(a) (b) 

Figure 5.5: (a) Temperature-dependent thermal conductivity of supported MLG films stretched 
by 0, 0.5%, and 1.0%. (b) Thermal conductivity of supported MLG films at 300 K decreases 
with the tensile strain. A decrease of the thermal conductivity from 1090.2 ± 54.6 W/m-K to 
789.2 ± 39.6 W/m-K is observed when the free-strain MLG layer is stretched 1%. 

The decrease is understood using a simplified expression of thermal conductivity 

1 1 1 1k  
1

Cveff , where        .  i ,  def , and GB are the phonon mean free path due to eff i def GB 3 

intrinsic phonon-phonon scattering, phonon-defect scattering, and phonon-grain boundary 

scattering, respectively. Based on the previous simulations of single crystalline graphene, the 

phonon band structure does not vary much with 1% tensile strain, and thus the significant decrease 

observed in our measurement of polycrystalline MLG films is not likely due to the change of 

phonon band structure [128–131]. Therefore, we attribute the decrease to the impact of tensile 

strain on the probability of specular phonon transmission ( ptr ) across the grain boundaries, which 

 1 ptr relates the grain size lg to GB  lg   [145].The decrease of thermal conductivity with tensile 
1 p tr  

strain indicates the reduced specular transmission probability and thus the decreased effective 

phonon mean free path. 

Summary 

This chapter characterizes strain-dependent thermal conductivity study of Au-on-polyimide films 

and supported MLG films. Suspended samples on a flexible substrate combined with a custom-

built mechanical stage enables strain-dependent thermal conductivity characterization using the 
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electrothermal method. For the Au-on-polyimide film, the impact of strain on the electrical 

resistance, TCR, and thermal conductivity is investigated, which provides useful information for 

flexible electronics and flexible temperature sensors. A decrease of thermal conductivity with the 

tensile strain is observed for the supported MLG films. Based on a simple model, the decrease is 

attributed to the impact of tensile strain on the phonon transmission probability in polycrystalline 

MLG films. A more complete model needs to be built in the future to understand the strain effects 

on thermal transport in 2D materials. Further, the thermal metrology developed in chapter 2 

enables an accurate strain-dependent thermal conductivity measurement of microscale samples. 

Future work based on this will help illustrate the role of strain in thermal conductivity of 2D 

materials. 
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6. TUNING THERMAL CONDUCTIVITY OF REDUCED GRAPHENE 
OXIDE FILMS VIA ANNEALING3 

Introduction 

Carbon based nanostructures (e.g., graphene) exhibit unique mechanical, electrical, and 

thermal properties.[8,146,147] Graphene has shown promise as a material for thermal management, 

flexible electronics, and numerous sensors.[148–150] However, it is still challenging to produce a 

large-scale graphene film with high quality for commercial applications. Inspired by the excellent 

properties of nanostructures including graphene films, researchers are attempting to produce 

macroscale materials with nanoscale features. Often, this is a two-step procedure: first, mass 

production of the material (generally with relatively poor properties) and then processing to 

enhance the properties. For example, graphene oxide (GO) films can be mass produced from 

graphite using Hummer’s method.[151,152] Although these films have excellent mechanical 

properties, the electrical and thermal conductivity are typically very poor due to the disorder, 

defects, and impurities. Reducing these graphene oxide films via chemical, thermal and other 

methods significantly improves the electrical and thermal conductivity.9–21 In particular, reduced 

graphene oxide (RGO) films have been investigated as fast temperature sensors for the temperature 

range from ~80K to ~550K due to the significant temperature dependence of the electrical 

conductivity.[166–168] 

The electrical and thermal properties of the RGO films are critical to their application in 

systems such as flexible electronics, energy storage, and thermal management.[156,159,160] The 

four-probe method and the laser flash technique have previously been used to measure the 

electrical and thermal conductivity, respectively.[154,155,158,161–164,169,170] Although 

relatively consistent results are observed for the electrical conductivity data (> 1000 S/cm), 

existing thermal conductivity data for the RGO films shows large variations from 30 W/m-K to 

2600 W/m-K.[154,155,158,161–164,169,170] In addition to the sample-to-sample variation, the 

validity and accuracy of the thermal conductivity measurement technique needs to be considered. 

Unlike the widely applicable four-probe electrical conductivity technique, the validity of the laser 

3 This section reproduced from a paper with UMD and UC-Berkeley collaborators: Nature Energy 3, pages148–156 
(2018). 
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flash technique for measuring is questionable for high thermal conductivity thin films. Specifically, 

the method is accurate when the laser pulse is sufficiently short compared to the characteristic time 

of diffusion through the sample: tc =L2/(k/ρCp), where L is the sample thickness, k is the thermal 

conductivity, ρ is the density, and Cp is the heat capacity.[171–173] Considering the short tc of the 

measured RGO films (0.00003-0.12 µs for the reported RGO films with thickness L =10-50 µm, 

thermal conductivity k = 30-2600 W/m-K, density ρ = 1-2 g/cm3, and specific heat capacity Cp ~= 

0.72 J/g-K)[154,155,158,161–164,169,170] and the typical pulse width (20-1200 µs) of the 

commercial laser flash systems,[174] the accuracy of the thermal conductivity of RGO films in 

prior work by the flash method is uncertain. In addition, low-temperature thermal conductivity 

data is critical for understanding thermal transport mechanisms in RGO films, and previous work 

focused on measuring k above room temperature only. Therefore, there is a clear need to perform 

a temperature-dependent study of thermal transport in RGO films. 

In this work, a self-heating and –sensing electrothermal method is used to measure the in-

plane thermal conductivity of RGO films annealed at 1000 K, 2000 K and 3000 K (called “RGO 

1000K”, “RGO 2000K”, and “RGO 3000K”, respectively) in the temperature range from 10 K to 

300 K. The thermal conductivity increases substantially from 46.1 W/m-K to 118.7 W/m-K with 

increasing annealing temperature from 1000 K to 3000 K with a corresponding increase in 

electrical conductivity from 5.2 S/cm to 1481.0 S/cm. Further, the electrical and thermal 

conductivity at temperatures above 300 K are measured for specific applications. We report the 

electrical resistivity from 10 K to 3000 K to highlight the application of RGO films reduced at 

3000 K for sensing extreme temperatures. Compared to conventional temperature sensors, the 

RGO-based temperature sensors are unique due to its wide temperature range, high temperature 

sensitivity, and flexibility. With the measured thermal conductivity and the power-law temperature 

dependence assumption, the potential application of RGO films for high temperature 

thermoelectrics is investigated. 

GO Films Preparing & Annealing 

An aqueous GO solution is prepared with an improved Hummer’s method[151,152] and 3D 

printed to form uniform films. A two-step annealing process reduces the GO films to RGO 

films.[160,165,175] First, the GO films are annealed at 1000 K in a tube furnace under argon 

https://0.00003-0.12
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atmosphere and obtain good uniformity and electrical conductivity. Then, they are Joule heated to 

further thermally reduce the GO leveraging the high melting point of carbon-based materials. 

(a) (b) 

(c) (d) 

Figure 6.1: (a) Optical photograph and (b) thermal image taken with a 550 nm bandpass filter of 
a free-standing GO film while being reduced by Joule heating at 2300 K in vacuum. Note that 
the GO films can be Joule-heated to even higher temperatures with increasing electrical input. 
(c) The local temperature of the film as determined by fitting the measured emission spectrum, 
collected by a fiber-coupled spectrometer, to the Planck function. (d) Raman spectra of the RGO 
films reduced at 1000 K, 2000 K, 3000 K, respectively. For RGO films reduced at 3000 K, the 
clear 2D peak at 2700 cm-1 indicates the increased crystallinity. The scale bar is 1 mm in panel 
(a) and (b). 

Specifically, they are gradually Joule-heated to 2000 K or 3000 K for this work, and even higher 

temperatures are possible with increasing electrical input. An example of a free-standing 

electrically heated GO film at 2300 K in vacuum is shown in Figure 6.1(a-c). The temperature 

during Joule heating is determined by fitting the emitted radiation spectrum to the Planck 

2hc2 

distribution I (,T )  
5 

, where h, c, kB, and λ are the Planck constant, speed 
 exp(hc / (kBT 1)) 

of light in vacuum, Boltzmann constant, and wavelength, respectively. The emission intensity of 

the Joule heated RGO films is measured by a fiber-coupled spectrometer (Ocean Optics. Inc.). 

Although the ends of the sample are significantly colder, a large portion near the center of the 

sample achieves the desired annealing temperature. Figure 6.1(d) shows the Raman spectra of 

RGO films reduced at 1000 K, 2000 K, and 3000 K, respectively. For RGO films reduced at 3000 

K, the clear 2D peak at 2700 cm-1 indicates the increased crystallinity. Scanning electron 
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micrographs (SEMs) of the RGO films (see Figure 6.2) demonstrate the surface of the RGO films 

reduced at higher temperatures becomes smoother. 

(a) (b) (c) 

Figure 6.2: SEM images of RGO films reduced at (a) 1000 K, (b) 2000 K, and (c) 3000 K. The 
surface of the RGO films becomes smoother with higher reduction temperatures. The scale bar 
is 10 µm in the figures. 

Thermal Characterization 

Rectangular RGO strips with appropriate length-to-width ratios are prepared for one-

dimensional heat transfer analysis. The thermal conductivity of RGO films is investigated using 

both infrared (IR) thermal microscopy -based measurement and electrothermal measurement. In 

both measurements, current is applied in the suspended RGO films to generate heat and the total 

power generation is determined with a standard four-probe measurement. In the IR microscopy 

based measurement, the temperature profile along the RGO strip is obtained and the thermal 

conductivity is calculated by fitting to the temperature profile[176]. For the electrothermal 

measurement, with the calibrated temperature-dependent electrical resistivity, the thermal 

conductivity is measured at a wider temperature range (10K – 650K) with RGO films serving as 

both heater and thermometer. 

6.3.1 Infrared Microscopy 

Infrared (IR) thermal microscopy is a noncontact technique to obtain surface temperature 

mapping utilizing infrared radiation emitted from the surface. RGO films suspended over a trench, 

as shown in Figure 6.3 (a), are joule heated with applied current and the power is determined with 

an electrical four-probe measurement. Heat generated in the sample is transferred to the air via 

convection and to the substrate via heat conduction. Heat transfer along the sample can be 

described using 1D heat diffusion equation as 

2 2d T(x) I R
kA  0 [1(T(x) T )]hP T( (x) T )  0 and (6.1) 2 0 adx L 
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T (x   
Lf )  Tf , (6.2) 
2 

where A, P, and L are the cross-sectional area, perimeter, length of the suspended sample, Lf is the 

length of the region for heat transfer fitting analysis, and k and α are the thermal conductivity and 

temperature coefficient of resistance of the sample, respectively. T(x) is the temperature profile 

along the sample and T0, Ta, and Tf are the temperatures of the substrate, air, and the boundary of 

the fitting region, respectively. I and R0 are the applied current and the electrical resistance of the 

sample at T0 without Joule heating, respectively. Assuming a uniform convection heat loss 

coefficient (h = constant), the analytic solution of the diffusion equation is 

cosh(mx) g  g(Ta T0 ) cosh(mx)
T (x)  T  (T T )  ( 1) , (6.3) a f a cosh(mLf / 2) hP  g cosh(mLf / 2) 

where g = I2R0/L and m2 = (hP-αg)/kA when hP-αg > 0. Note the constant h assumption is only 

valid when the temperature rise of the sample is small compared to the substrate temperature. An 

example temperature profile along the sample and an example fitting are shown in Figure 6.3 (a) 

and (b), respectively. It is clear that the temperature profile is nearly 1D verifying the effectiveness 

of 1D solution. Figure 6.3 (c) shows the temperature dependent thermal conductivity of RGO films 

and the thermal conductivity increases with temperature in the investigated temperature range 

(293K – 373K). 
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Figure 6.3: (a) Temperature mapping of the RGO film suspended over a trench. The suspended 
sample is joule heated with applied current. Self-heat generation results in a parabolic 
temperature profile. (b) Thermal conductivity extraction by fitting to the temperature profile 
using the 1D solution. (c) Temperature-dependent thermal conductivity from 293K to 373 K. 

6.3.2 Electrothermal measurement 

The electrical conductivity of the RGO film varies linearly with temperature in a specific 

range, as illustrated by the linear trend in 1/R(T) vs T from 300 K to 630 K(see Figure 6.4 (a)). 

Figure 6.4 (b) demonstrates the temperature dependence of the electrical resistance from 10 K to 

300 K. Therefore, the RGO film can serve as both heater and thermometer for the thermal 

measurement in this temperature range. The four-probe electrothermal measurement of the 

suspended RGO film is performed in a high temperature probe station (see Figure 6.4 (b)) and a 

cryostat, respectively. Heat generated by Joule heating with an applied current is conducted 

through the RGO film to the substrate. Assuming negligible convective and radiative heat loss, the 

governing equation for one-dimensional heat conduction in the suspended RGO film is 

2d T 2 RkA 
2 
 I  0, where (6.4) 

dx L 
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T ( x   L / 2)  T0 
(6.5) 

and k is the thermal conductivity of the RGO film, I is the applied electrical current, R is the 

electrical resistance, T0 is the set temperature of the stage, A is the cross-section area, and L is the 

length of the suspended RGO film. The equation can be solved analytically, and the temperature 

profile is 

I 2R 2 I 2RL 
T(x) T(x) T0  x  (6.6) 

2kAL 8kA 

which describes the relation between the temperature profile and the thermal conductivity of the 

RGO film. The average temperature rise along the film is given by 

L/2 I 2RL 
T  T( )x dx / L  (6.7) L/2 12kA 

Here, the average temperature rise is decided with the calibrated temperature-dependent electrical 

resistance (see Figure 6.4 (a) and (b)). Note that the simple solution is obtained by assuming 

constant electrical resistance during the heating, which is valid only when the variation is small 

compared to the electrical resistance at the reference temperature T0.[176] Therefore, the solution 

of the thermal conductivity is 

I 2RL 
k  (6.8) 

12AT 

The thermal conductivity is extracted by fitting to the electrothermal response ∆R vs I2(see Figure 

6.4 (c) and (d)). The uncertainty due to the simplified solution is analyzed by calculating the 

thermal conductivity with R from R(T0) to R(𝑇). The other error source comes from the assumption 

of negligible radiative heat loss, which is questionable at high temperatures and needs to be 

investigated in future work. Thus, the measured thermal conductivity is overestimated at high 

temperatures, which leads to a conservative estimate of the thermoelectric performance. 
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Figure 6.4: (a) Linear 1/R(T) vs. T from 300 K to ~650 K, which reveals the RGO film can be 
served as both heater and thermometer. (b) Calibrated temperature-dependent electrical 
resistance from 10 K to 300 K using a cryostat. Unlike typical metal films, the electrical 
resistance decreases with increasing temperature. An example electrothermal response ∆R vs I2 

for RGO 3000 K in (c) a high temperature probe station and (d) a cryostat, respectively. 

Results & Discussion 

6.4.1 The Impact of Annealing Temperature on Electrical & Thermal Conductivity 

Figure 6.5(a) shows the room temperature thermal and electrical conductivity for samples 

annealed at 1000 K, 2000 K, and 3000 K. The properties increase significantly with increasing 

annealing temperature. Figure 6.5(b) demonstrates the temperature-dependent electrical 

conductivity of RGO films reduced at 1000 K, 2000 K, and 3000 K. The electrical conductivity 

increases with the reduction temperature, e.g., the electrical conductivity at 300 K of RGOs 

reduced at 1000 K, 2000 K, and 3000 K are 5.2 S/cm, 524.8 S/cm, and 1481.0 S/cm, respectively. 

Electrical transport in the RGO films can be understood by a three-dimensional (3D) Mott variable 

range hopping (Mott-VRH) model combined with thermal activation and quantum tunneling 

as[177] 
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H T
G T( )  G exp( )  G exp( a )  G (6.9) h 1/4 a tT T 

where Gh, Ga and Gt are the parameters for the contributions of Mott-VRH, thermal activation, and 

quantum tunneling, respectively, H is a hopping parameter, Ta is the characteristic temperature for 

thermal activation, and kBTa describes the thermal energy required to thermally excite carriers to 

the conduction band. By fitting the measured electrical conductance to Eqn. (6.4), a comparison 

between RGO 1000 K and RGO 3000 K shows a decrease of the thermal energy barrier from 20.8 

meV to 3.4 meV and an increase of the contribution due to quantum tunneling from 0.7 µS to 

0.021 S. Therefore, the contribution of thermal activation and quantum tunneling increases with 

the reduction temperature due to the more crystalline structure. 

Figure 6.5: (a) Thermal conductivity and electrical conductivity at 300 K for RGO 1000 K, 2000 
K, and 3000 K. (b) Normalized electrical conductivity σ(T)/σ300 K of the RGO films reduced at 
1000 K, 2000 K, and 3000 K versus T-1/4. The electrical conductivity data is fitted with a 3D 
Mott-VRH model. (c) Thermal conductivity of RGOs from 10 K to 300 K. A thermal 
conductivity integral model is used to analyze the measured thermal conductivity. 

Thermal conductivity of RGOs from 10 K to 300 K is shown in Figure 6.5(c). As the 

reduction temperature increases, Figure 6.5(a) shows the room-temperature thermal conductivity 

increases from 46.1 W/m-K for RGO 1000K to 118.7 W/m-K for RGO 3000K. To analyze the 
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measured thermal conductivity from 10 K to 300 K, we interpret the thermal conductivity using 

the Callaway-Holland model[30,31] 

1  2 2k  C (q T, )v (q) (q T, )q dq (6.10) 2 j j j6 j 

where q is the phonon wave vector, T is the temperature, and Cj(q, T), vj(q), and τj(q, T) are the 

specific heat, group velocity, and relaxation time for phonon branch j, respectively. The integration 

is performed over three acoustic phonon branches, i.e., in-plane transverse acoustic phonon, in-

plane longitudinal acoustic phonon, and out-of-plane transverse acoustic phonon. For each branch, 

the group velocity is calculated using a quadratic fit to the full dispersion of graphite with an 

isotropic dispersion approximation.[178] The phonon relaxation time in RGO films is determined 

by the Matthiessen’s rule, 

1 1 1 1 j  ph, j  B  other (6.11) 

M  v 2 Leff 4v j (q)N
j s , jwhere ph , j  

2
,  B  , and  other  

2 n 
are the relaxation time 

  j (q)T exp( / T ) v (q) qS j (q T)j j j 

due to three-phonon scattering,[159,178,179] phonon-boundary scattering, and scattering with 

other centers such as impurity, isotope and electron, respectively. Here, ħ is Planck’s constant, 

wj(q) is the phonon frequency, M is the unit cell mass of graphite, Γ is the measure of the interaction 

strength between phonon and other scattering centers,[159] S is the cross-section area of a carbon 

atom, and θj, vs,j, and γj are the branch-dependent average Debye temperature, sound velocity, and 

average Gruneisen parameter.[178] Leff is the characteristic length for the phonon-boundary 

scattering term combining phonon collision with film surfaces and edges of ordered sp2 or sp3 

clusters. Note that τother has a similar expression as that for the relaxation time of phonon-impurity 

scattering or phonon-isotope scattering, i.e., 4vj (q) / (qS2 
j (q)) .[159] However, with that 

expression, a good agreement between the calculated thermal conductivity and the temperature-

dependent experimental data is not achieved (with the only fitting parameter being Leff). To 

interpret the measured temperature dependence, we assume power-law temperature dependence T-

n for the lumped relaxation time τother due to phonon scattering with the other scatters such as 

impurities, isotopes, and electrons. An additional fitting parameter N is used for adjusting the 

magnitude of τother. 
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These fitting parameters are determined by fitting to the temperature-dependent thermal 

conductivity of RGOs from 10 K to 300 K. The extracted characteristic lengths for RGOs reduced 

at 1000 K, 2000 K, and 3000 K are 35 nm, 60 nm, and 65 nm, respectively. The increased Leff 

corresponds to the enlarged ordered sp2 or sp3 clusters with the higher reduction temperature. For 

the lumped scattering term, the fitting determines N = 2.7 × 106 for RGO 1000 K, N = 6.075 × 106 

for RGO 2000 K, and N = 2.7 × 107 for RGO 3000K. The reduced scattering rate 1/ τother indicates 

the decreased impurity or defect density for RGOs reduced at higher temperatures. The 

temperature dependence of the thermal conductivity is well explained with n = 3, which implies 

the lumped scattering term is temperature-dependent due to the interaction between phonons and 

the other scatters. With the thermal conductivity integral model, the improved thermal conductivity 

of RGOs is attributed to the increased Leff and the reduced scattering rate 1/ τother. 

6.4.2 Electrical & Thermal Conductivity of RGO 3000 K above 300 K 

In addition to electrothermal measurements from 10 K to 300 K, we measure the 

temperature-dependent electrical resistivity of RGOs reduced at 3000K from 300 K to ~3000 K 

(see Figure 6.6(a)) and discuss the application of RGO 3000 K as a temperature sensor for extreme 

temperature ranges. The measurement from 10 K to 3000 K is divided into three temperature 

ranges: 10 K to 300 K in a cryostat, 300 K to ~ 1100 K in a traditional oven, and ~1400 K to ~3000 

K using a Joule heating method. Note that the error bars represent the uncertainty in terms of 

repeated measurements, sample-to-sample variations, and nonuniform temperature across the film. 

With the measured electrical resistivity from 10 K to 3000 K, the temperature dependence indicates 

RGO 3000 K as a potential temperature sensor with an extremely wide temperature range. The 

fitting to the temperature vs. electrical resistivity data is performed with a third-order polynomial 

for T = 10 K - 300 K, a linear equation for T = 300 K - 1400 K, and a fifth-order polynomial for T 

= 1400 K - 3000 K. The temperature sensitivity of resistance temperature detectors (RTDs) is 

generally evaluated by temperature coefficient of resistance (TCR)   d / (0dT) , where  is 

the temperature-dependent electrical resistivity and 0 is the electrical resistivity at the reference 

temperature. The TCR is a constant when the resistivity varies linearly with the temperature, and 

the temperature can be easily known by solving a linear equation with the measured resistance. 

However, the linear variation is valid only for a small temperature range. Here, for a wide 
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temperature range, we use dρ/dT to describe the temperature sensitivity of RGO 3000 K as the 

temperature is ultimately determined by the resistance change. Figure 6.6(b) displays dρ/dT of 

RGO 3000 K from 10 K to 3000 K. Platinum is known as the best metal for RTDs with dρ/dT = 

0.041552 µΩ·cm/K at room temperature, while that of RGO 3000 K is higher than this value over 

the wide temperature range. A comparison with the traditional Platinum RTDs demonstrates the 

excellent temperature sensitivity of RGO 3000 K from 10 K to 3000 K. 

Besides the temperature sensitivity, the wide applicable temperature range of the RGO film 

is unique. Though not directly measured, the ρ-T trend suggests that the electrical resistivity would 

keep increasing as the temperature decreases below 10 K, while a constant value (the residual 

resistivity) is reached for metals at a similar low temperatures. For the high temperature limit, the 

carbon-based RGO film can survive at such temperatures due to its extremely high melting point 

(> 3000 K). Further, compared to fragile RTD elements, the RGO film is mechanically robust and 

flexible. The flexibility of printable RGO-based temperature sensors extends its capability for 

temperature measurements where optical detection is inaccessible 

Figure 6.6(c) shows a good agreement between the thermal conductivity of 3000K RGO 

measured with electrothermal method and IR microscope -based technique. Good agreement in 

thermal conductivity further verifies the accuracy of the measurement techniques. We assume 

power-law temperature dependence for thermal conductivity at temperatures above 630 K, and the 

high-temperature thermal conductivity is estimated with measured thermal conductivity from 300 

K to 630 K. With the measured power factor and estimated thermal conductivity at high 

temperature, we demonstrate the RGO films as a promising candidate for high temperature 

thermoelectrics. 
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(a) 

(b) (c) 

Figure 6.6: (a) Temperature vs. electrical resistivity for RGO 3000 K. The fitting is performed 
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with a third-order polynomial for T = 10-300 K, a linear equation for T = 300-1400 K, and a 
fifth-order polynomial for T = 1400-3000 K. (b) Temperature sensitivity dρ/dT of RGO 3000K 
from 10 K to 3000 K compared to that of platinum RTDs at room temperature. (c) Temperature-
dependent thermal conductivity of RGO films using electrothermal measurements. The thermal 
conductivity at high temperatures follows a (1/Tn) decreasing trend. 

Summary 

In conclusion, we report electrothermal measurements of in-plane thermal transport and 

electrical transport in RGO films reduced at 1000 K, 2000 K, and 3000 K in the temperature range 

between 10 K and 300 K. We observe a substantial increase of thermal conductivity at 300 K from 

46.1 W/m-K to 118.7 W/m-K when comparing RGO 1000K to RGO 3000K, and the 

corresponding increase of electrical conductivity is from 5.2 S/cm to 1481.0 S/cm. The impact of 

the reduction temperature on electrical and thermal transport is analyzed by a three-dimensional 
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(3D) Mott variable range hopping (Mott-VRH) model and a thermal conductivity integral model, 

respectively. Further, the RGO films reduced at 3000 K are demonstrated to be an effective 

extremely wide-range temperature sensor for the first time with several advantages over 

conventional temperature sensors. With the measured thermal conductivity above 300 K, the 

application of the RGO films for high temperature thermoelectrics is discussed. 
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7. SUMMARY 

This dissertation is devoted to a systematic research of tuning thermal conduction in thin 

films (TFs) by structuring, strain engineering and extremely high temperature annealing. The 

motivation is to modulate the thermal conductivity for various applications. For directing the heat 

flow pathways in modern applications, thickness modulated TFs with an in-plane thermal 

anisotropy ratio > 10 are proposed according to the Boltzmann Transport Equation (BTE) -based 

simulations. For the devices operated under stain, strain-dependent thermal conductivity of Au-

on-polyimide films and supported multi-layer graphene (MLG) films are critical to these 

applications. In addition, the electrical and thermal conductivity of reduced graphene oxide (RGO) 

films are important for applications such as thermoelectrics and temperature sensing. 

Prior work on phonon size effects focused on the reduced thermal conductivity due to 

nanostructuring, but little work has looked at thermal anisotropy within the in plane directions of 

thin films. Thickness modulated TFs are proposed to structurally impact the thermal conduction 

anisotropy. Simulations based on the BTE demonstrate a tunable in-plane thermal anisotropy ratio 

across an order of magnitude via modulating the thickness of the thin films. To predict the thermal 

conductivity of nanostructures, solving the full BTE can be computationally expensive. Simplified 

Monte Carlo methods have been developed for calculating the thermal conductivity of 

nanostructures. Two main types of simplified Monte Carlo methods are reevaluated. Especially, 

the applicability of these methods is evaluated based on the physical meaning of the methods. 

Beyond structural engineering, strain engineering of the thermal conductivity of polymer-

supported metal films and multi-layer graphene films is explored. Suspended samples on a flexible 

substrate combined with a custom-built mechanical stage enables strain dependent thermal 

conductivity characterization using the electrothermal method. Characterization of the strain-

dependent thermal conductivity of materials enables us to probe the underlying thermal transport 

physics. The thermal conductivity of the polyimide layer increases with the tensile strain due to 

the alignment of polymer chains. For strained MLG films, a decrease of thermal conductivity with 

tensile strain is observed. 

For a promising electrical and thermal conductivity, annealing is used to effectively reduce 

the RGO films and thus enhance the electrical and thermal conductivity. A unique two-step 

annealing process is applied to reduce the graphene oxide films. A considerable increase of 
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electrical and thermal conductivity is observed for RGO films as the reduction temperature 

increases. The measured electrical and thermal conductivity are analyzed with a 3D Mott variable 

range hopping model and a thermal conductivity integral model, respectively. With the measured 

electrical and thermal conductivity, the RGO film demonstrates as a promising candidate for high 

temperature thermoelectrics and extreme temperature sensing. 

In addition, this dissertation presents advances of thermal metrology. A simple, direct 

differential method based on electrothermal metrology is developed for measuring thermal 

conductivity of thin films by extending conventional electrothermal approaches. The new method 

allows accurate thermal conductivity measurements with minimal assumptions. The accuracy of 

conventional electrothermal approaches for extracting thermal conductivity is investigated by 

comparing to this new method. Further, a thermo-mechanical metrology platform is developed for 

studying strain dependent thermal transport taking advantage of strain control through flexible 

substrate. This platform provides a widely applicable method for measuring strain-dependent 

thermal conductivity of semiconductor TFs, 2D materials, and other materials of interest. 
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