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ABSTRACT 

Author: Yi, Soohyun. PhD 
Institution: Purdue University 
Degree Received: August 2018 
Title: (Postsecondary STEM Paths of High-Achieving Students in Math and Science: A 

Longitudinal Multilevel Investigation of Their Selection and Persistence). 
Major Professor: Marcia Gentry 

This study used a quantitative approach to investigate high-school students’ talent-

development pathways in STEM from 10th through 12th grades and for 8 years thereafter. The 

purpose of this study was to longitudinally investigate three important choices and 

accomplishments on the STEM talent development trajectory: a) selecting a STEM major in 

college; b) persisting with the STEM major until graduation; and c) selecting a career in STEM 

after college graduation. Given that students with gifts and talents are more likely to persist and 

succeed in STEM fields than average achievers, and understanding their unique needs may be 

the first important task to promote their talent and career development, this study concentrated 

on college bound high school students who achieve at high levels in math and science. I 

operationally defined students identified as high-achieving in math and science as those who 

scored in the 95th percentile or above in math or science in college entrance exams. Through an 

investigation, I used the longitudinal data of the Education Longitudinal Study of 2002 

(ELS:2002) of a nationally-representative cohort of U.S. students. Two inferential analytic 

methods were used to estimate the probabilities associated with each binary outcome variable: 

multilevel logistic regression model and discrete-time hazard model. 

Students identified as high-achieving by the criteria of this study were more likely than 

students who did not meet the criteria to enter postsecondary STEM education and to persist in 

STEM after college graduation. However, there were severe disproportions in the numbers of 

students identified as college bound high-achievers. Female, Black, Hispanic, Native American, 
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and other-race students, students from families of lower-quartile SES, and students who attended 

schools with higher levels of academic pressure were less likely to be identified as high-

achievers than students in the corresponding reference groups. Mathematics self-efficacy and 

advanced courses in math and science, as moderators, increased the probabilities of STEM 

entrance, regardless of the identification as high-achieving. In terms of STEM persistence and 

graduation, fewer Black, Hispanic, Native American, and other race students graduated from 

college with a STEM major compared to White and Asian students. The disparities in the 

probabilities of further persistence also existed by student- and school-level covariates. 

Unlike prior studies in STEM education, I controlled for the effects of high achievement 

in college entrance exams, thus, the results revealed the effects of some covariates were unique 

for students identified as high-achieving. Based on the baseline estimates of probabilities 

provided by this study, more research needs to be conducted to investigate reasons for the 

significant effects promoting or preventing desirable outcomes on STEM pathways. 



 
 

  

   

            

             

              

              

              

            

         

            

              

              

               

                

               

             

           

          

      

           

             

                

                

            

1 

CHAPTER 1 INTRODUCTION 

Given that Science, Technology, Engineering, and Mathematics (STEM) have been well 

recognized as the foundation of the U.S. economy and innovation, attracting and retaining 

prospective students in these fields is a serious national task. Recent national reports highlighted 

the necessity of motivating talented high school students to pursue math and science through 

quality STEM education (e.g., Committee on Prospering in the Global Economy of the 21st 

Century, 2007; Katehi, Pearson, & Feder, 2009; National Academy of Engineering, 2010; 

National Governors Association, 2007; The National Academies, 2007). 

In Preparing the Next Generation of STEM Innovators: Identifying and Developing Our 

Nation’s Human Capital, the National Science Board (NSB; 2010) diagnosed the current state of 

STEM education: “The U.S. education system too frequently fails to identify and develop our 

most talented and motivated students who will become the next generation of innovators” (p. 5). 

The board went on to argue that “elevating the ceiling” is not mutually exclusive with “raising 

the floor of base-level performance,” and both should be pursued in the U.S. education system 

(p. 10). Nevertheless, unknown variables still exist regarding the talent pool of high-achieving 

students in math and science, particularly the educational experiences and psychosocial 

developmental milestones during high school that promote entrance, persistence, and 

achievement in postsecondary STEM fields. 

Although a number of researchers have attempted to investigate student persistence 

within STEM pathways, studies concentrating on the pathways of talented high school students 

in math and science are scarce. In particular, it is unknown why high-achieving students in math 

and science, despite their high achievement in these fields, do not select, persist in, and succeed 

in postsecondary STEM pathways. To establish pertinent strategies and policies to recruit 
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competent high school students in these areas, more emphasis needs to be placed on 

understanding their characteristics and experiences, as well as the contextual variables 

influencing students’ decisions to pursue STEM pathways. 

Rationales for “All STEM for Some” 

Atkinson and Mayo (2010, p. 9) argued that the prevailing “Some STEM for All” 

approach, which focuses on expanding STEM education to all students, was neither effective nor 

economic. Instead, they suggested an “All STEM for Some” framework, which focuses on 

providing the best educational pipeline to those students who are interested in and capable of 

achieving in STEM (p. 9). They also suggested establishing a national STEM talent recruiting 

system in high schools to concentrate national endeavors promoting STEM education. 

Despite the national negligence towards talented students in secondary schools, the 

rationales for “All STEM for Some” are laudable. First, students with gifts and talents deserve 

the opportunity to reach their highest potential (NSB, 2010; Wyner, Bridgeland, & Diiulio, 

2007). Subotnik, Olszewski-Kubilius, and Worrell (2015) argued that the lack of support for 

talented students relates to prevalent myths that those talented students already have 

advantageous backgrounds, and will be able to independently achieve their accomplishments. 

However, approximately 3.4 million students achieving in the top quartile in the U.S. come from 

low-income families, and these talented students, if they lack educational resources, often fall 

behind their peers from affluent backgrounds (Giancola & Kahlenberg, 2016). 

Second, the secondary school age is a critical period for realizing and developing talents 

in math and science (Lee, 2012; Subotnik, Olszewski-Kubilius, & Worrell, 2011). Math and 

science are areas that have domain-specific developmental trajectories, starting at an early age, 

and the development of these talents mostly relies on the schooling system (Feldhusen, 2005; 
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Subotnik et al., 2011). Therefore, if educational systems neglect to identify and appropriately 

educate talented students during their secondary education, it is likely that they may lose the 

opportunity to develop these talents throughout their lives. Furthermore, schooling from a talent 

development perspective is even more important for underrepresented students (e.g., female 

students, Black and Hispanic students, students from low-income families) given that those 

students rely more on their high schools to explore their future academic career pathways, as 

well as to develop their talents. 

Third, from an economic standpoint, it is frequently argued that motivated and talented 

people in STEM undertake leading roles for national prosperity (Atkinson & Mayo, 2010; 

National Academy of Sciences, National Academy of Engineering, & Institution of Medicine, 

2007; NSB, 2010). This perspective often undergirds and drives leading countries in STEM to 

concentrate their national endeavors to deliver a quality education for talented students (Atkinson 

& Mayo, 2010). The “All STEM for Some” approach, which focuses on students who are 

interested in and capable of achieving in STEM, is more cost-effective in achieving this than the 

“Some STEM for All” approach (Atkinson & Mayo, 2010). 

Significance of the Study 

Given the critical need to understand the STEM paths of high school students, researchers 

have examined the effects of high school GPA and other achievement indices in math and 

science (e.g., SAT scores) that influence these pathways. They found that math and science 

achievement were consistent predictors for entrance, persistence, and achievement in 

postsecondary STEM fields (e.g., Astin, 1993; Smyth & McArdle, 2004; Nicholls, Wolfe, 

Besterfield-Sacre, Shuman, & Larpkiattaworn, 2007). In addition to high school achievement 

indices, a number of variables were found to influence students’ decisions for and persistence in 
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STEM paths. In terms of student-level variables, sex, race, first language, parents’ STEM 

profession, and self-efficacy were critical determinants for STEM persistence (Besterfield-Sacre, 

Moreno, Shuman, & Atman, 2001; Chimka, Reed-Rohads, & Barker, 2008; Leslie, McClure, & 

Oaxaca, 1998). Characteristics of high schools and postsecondary institutions (e.g., type, size) 

were also found to influence student STEM persistence (e.g., French, Immekus, & Oakes, 2005, 

Maple & Stage, 1991; Tyson, Lee, Borman, & Hanson, 2007, Wang, 2013). However, despite 

the need to concentrate on the talented students who are most likely to be motivated and to 

achieve in STEM fields, researchers have not investigated the unique needs of those students. 

Furthermore, although motivational factors and learning experiences in high school matter for 

talent and career development in academic domains, their moderating roles, alleviating risk-

factors or promoting catalysts in STEM paths, have not been studied with respect to 

developmental trajectories. 

A noteworthy trend in recent studies regarding STEM education and policy is the 

increased use of advanced longitudinal analytic techniques with large national datasets. To 

examine the longitudinal patterns of students’ persistence, achievement, and graduation rates in 

postsecondary education and their associations with predictors, survival analysis and logistic 

regression analysis have frequently been used. Survival analysis enables estimation of the hazard 

probability of an event occurrence (e.g., persistence/graduation in college with a STEM major) 

and estimation of when the event is likely to occur, as well as insight into whether event 

occurrences increase, decrease, or remain constant over time. (Singer & Willet, 2003). Min, 

Zhang, Long, Anderson, and Ohland (2011), using a nonparametric survival analysis, found that 

engineering students were most likely to leave an engineering major during their third semester, 

and these students tended to be female, White, and have SAT math scores lower than 550. 
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Chimka et al. (2008) and Zwick and Sklar (2005) also used survival analysis with STEM college 

students to investigate student graduation and its predictors. Logistic and probit modeling have 

been also used to estimate the probability of attaining dichotomous outcomes (e.g., graduation in 

STEM) and their predictors (Chen & Soldner, 2013; Nicholls et al. 2010; Zhang et al. 2004). 

Given the need to extend understanding concerning high school high-achieving students 

in math and science, this study concentrated on this group of students. I applied multiple 

longitudinal analytic techniques to investigate when and why those students select, persist in, 

achieve well in, and depart from STEM paths. Using the national longitudinal panel data, it was 

possible to investigate these longitudinal patterns and their underlying factors by following 

cohorts from their early teenage years to their postsecondary years. Several features distinguish 

this study from previous research. In particular, this study: 

● Follows up with college bound high school students identified as high-achieving in math 

and science to examine their entrance, persistence, and achievement in postsecondary 

STEM education, as well as further persistence in STEM fields; 

● Focuses on the STEM paths after controlling for the effects of high school achievement 

to examine whether or not the developmental and career decision patterns of high 

achievers are the same as for average-achieving students; 

● Highlights failures (e.g., failing to graduate from college in eight years), obstacles, and 

the needs of young talented students in postsecondary STEM education by examining the 

factors influencing failure and success; 

● Uses multilevel modeling including school-level variables as well as student-level 

variables to examine the impact of school characteristics on students’ decisions and 

performance in STEM; 
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● Investigates the moderating roles of motivational factors and advanced learning 

experiences in high schools to extend understanding of how these factors are differently 

influenced by student demographic backgrounds. 

Purpose of the Study 

The purpose of this study was to longitudinally investigate three important choices and 

accomplishments on the STEM talent development trajectory: (a) selecting a STEM major in 

college; (b) persisting with the STEM major until graduation; and (c) selecting a career in STEM 

after college graduation. The research questions are as follows: 

Research Question 1. Are secondary school students identified as high-achieving in math 

and science more likely to select their postsecondary education paths in STEM compared to non-

identified students included in the ELS:2002? 

Research Question 2. After entering postsecondary STEM paths, when are students 

identified as high-achieving most likely to complete an undergraduate program in a STEM field? 

Which variables most significantly influence completion rates in postsecondary studies? 

Research Question 3. Are STEM undergraduate students who were identified as high-

achieving in high school more likely to select graduate programs or occupations in STEM after 

college graduation compared with other STEM undergraduate students? 

Definition of Key Terms 

Students identified as high-achieving in math and science 

This study concentrates on high-achieving students in high school math and science. For 

a high school student, a variety of achievement indices are available, such as high school grade 

point averages (GPA), college entrance exams (e.g., SAT, ACT, SAT subject exams, AP exams), 

state achievement tests (e.g., Iowa Tests of Educational Development, Indiana Statewide Testing 
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for Educational Progress-Plus), and national-level achievement tests (National Assessment of 

Educational Progress). Of the indices, this study used college entrance exams as the only 

criterion for identifying high-achieving students, because the other indices were not standardized 

across schools and states, and/or the opportunities to take certain tests were not equivalent for all 

students of interest in this study. I operationally defined students identified as high-achieving in 

math and science as students who scored at or above the 95th percentile in one or more of the 

following: SAT math, ACT math, and SAT subject exams in math and science. I also included 

students who scored 5 (extremely well qualified) on AP exams in math and science. I use the 

term “non-identified students” to refer to students not identified by the criteria. 

STEM fields 

In this study, following the Classification of Instructional Programs (CIP), STEM fields 

include: mathematics, physical sciences, biological/life sciences (including agriculture and 

related sciences, natural resources and conservation, biological and biomedical sciences), 

computer and information sciences, and engineering and technologies (including engineering, 

engineering technologies, and science technology). 

Secondary education 

Secondary education indicates the education level between primary/elementary education 

and higher education. Specific grade-levels included in secondary education differ by countries 

and schools. This study, following the definition of the International Standard Classification of 

Education (ISCED: United Nations Educational, Scientific and Cultural Organization, 2011), 

considers secondary education in two stages: lower secondary education and upper secondary 

education. Lower secondary education includes a curriculum designed to give a basic education 

to students after 6 years of primary/elementary education, and its standard duration is 3 years. 
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Upper secondary education is designed to prepare students for higher level academic or 

vocational studies, and its standard duration is 3 years. In line with the U.S. education system, 

this study uses the term “secondary education” to indicate a schooling system for Grades 7-12. 

This range includes junior high schools/middle schools, as well as (senior) high schools. The 

phrase “high school education” always refers to the senior high school level, rather than to junior 

high schools. 
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CHAPTER 2 LITERATURE REVIEW 

Conceptual Models of Talent Development in STEM 

The paradigm of talent development provides a conceptual framework explaining how 

talented high school students in math and science could successfully identify and develop their 

talents on the developmental trajectory. As an alternative to the traditional gifted education 

paradigm, which failed to explain how individuals transform potential in youth to outstanding 

accomplishment in adulthood, the talent development paradigm has emerged, using the concept 

of talent development pathways to link childhood potential with adulthood accomplishment (Dai 

& Chen, 2013). Distinct features included in talent development theories are summarized as 

follows: 

● Giftedness/talent is demonstrated in a specific domain; 

● Giftedness/talent is malleable along the continuum of the developmental process; 

● Giftedness/talent developmental trajectories vary within, and between, domains; 

● Creativity, productivity, and psychosocial variables matter for the successful 

development of talent; 

● Expertise, eminence, and contribution to society in adulthood are the desirable outcomes 

of talent development. 

Since the paradigm highlights the developmental process of talent in a specific domain, it 

is particularly fit for explaining why and how those who have academic potential in math and 

science could or could not develop their talents. Furthermore, this conceptual framework is 

concerned with career development beyond academic success in high school, and therefore 

provides an extended framework of talent development comparable with the career development 

process over a whole lifetime. In this section, I briefly introduce three key theories regarding 
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talent and career development that are appropriate for explaining the talent trajectories of high-

achieving high school students in math and science, and I suggest an integrated conceptual 

framework that was used in this study. 

Differentiated Model of Giftedness and Talent 

Gagné (1985; 2005; 2015) developed the Differentiated Model of Giftedness and Talent 

(DMGT) and has revised it over the years. A key concept in the DMGT is the differentiation 

between giftedness and talent; according to the theory, giftedness is closely linked to a person’s 

natural abilities, demonstrated in at least one domain, and talent refers to systematically 

developed abilities (giftedness) in at least one field. The DMGT is a model explaining how 

giftedness transforms into talent. Gagné (2015) defined talent development as “the systematic 

pursuit by talentees, over a significant period of time, of a structured program of activities 

leading to a specific excellence goal” (p. 20). Learning and practice, in the talent development 

process, are important mechanisms that enable the transformation of giftedness into competence 

or expertise in a domain. Two catalytic factors (intrapersonal catalysts, environmental catalysts) 

and a chance factor determine the success or the failure of talent development. Intrapersonal 

catalysts include physical and mental traits, motivation, volition, and awareness of self and 

others; environmental catalysts include macro- and micro-level factors to do with the 

surroundings or milieu, and resources. Chance influences all the precedent factors for 

transforming talent that individuals cannot tightly control. The index of successful talent 

development is individual accomplishment above the 90th percentile among peers with a similar 

investment in the same field. 
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Mega-Model of Talent Development 

The recently proposed mega-model of talent development (Subotnik et al., 2011) 

integrates compelling components of existing talent development theories. The model contains 

five key principles explaining talent development: (a) abilities are important and malleable; (b) 

developmental trajectories vary by domain; (c) opportunities should be offered to young talented 

individuals; (d) psychosocial factors determine the success of talent development; and (e) 

eminence is the desirable outcome of talent development. Providing multi-dimensional factors 

determining and influencing talent development, the basic framework of the mega-model is 

similar to the DMGT, but it extended the previous model by addressing the disconnect between 

childhood giftedness and adult eminence. In the model, the talent development process involves 

several transitions; potential in childhood transforms into competencies, competencies into 

expertise, and expertise into eminence in (late) adulthood. In the trajectories of specific domains, 

creativity has a crucial role in producing outcomes of excellence. 

When applied to mathematical talent, the model provides important insights into 

secondary education from talent development perspectives. First, mathematical talents can be 

recognized early, and be demonstrated clearly by consistent achievement in adolescence. Second, 

those talents are developed by training and education in line with the schooling system. And 

third, psychosocial factors are important at every stage to make outstanding accomplishments. 

Social Cognitive Career Theory 

The Social Cognitive Career Theory (SCCT; Lent, Hackett, & Brown, 1994; 1996) 

explains how individuals form their career interests, perform, and make decisions on a career 

path. Although the model is not a talent development theory, given the fact that talent is a 

developmental concept, which transforms into adulthood achievement and expertise in a domain, 
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this career development model provides an important insight to elaborate on the missing pieces 

when explaining talent development beyond adolescence. In fact, the SCCT framework can be 

appropriately applied in cases regarding academic interest, choices, and performance. Lent and 

his colleagues (2004) explained the reasons for the conceptual overlap between academic and 

career development, as well as the continuum for the school-to-work transition of students. Due 

to the strength of their reasoning, the SCCT has been widely used as a conceptual foundation in 

studies regarding the transition into postsecondary education, and persistence in a career domain 

after high school graduation, particularly in STEM fields. 

The model was designed to integrate, in a parsimonious manner, numerous psychological 

and social variables used in a variety of career development models (Lent, Brown, & Hackett, 

2004). Principally inspired by Bandura’s social cognitive theory (1986), this model emphasizes 

the role of the interplay between cognitive processes and social processes in influencing an 

individual’s behavior in career development. Like other talent development models, a key 

concept of the SCCT is the interaction between person and environment, determining overt 

actions, which influence situations, and in turn influence thoughts and behaviors relevant to 

career development. 

Three central variables are incorporated in the SCCT: (a) self-efficacy, (b) outcome 

expectations, and (c) personal goals. The concept of self-efficacy is derived from Bandura’s 

theory, and refers to an individual’s beliefs about their capabilities “to organize and execute 

course of action required to attain designated types of performances” (Bandura, 1986, p. 391). 

Self-efficacy is acquired and continuously modified through personal performance, vicarious 

learning, social persuasion, and physiological and affective states. Of these four sources, 

personal performance is the most influential. Outcome expectations are the beliefs “about the 



 
 

  

            

             

                

    

             

             

               

        

             

           

              

            

     

                 

             

             

            

            

     

           

            

            

             

13 

consequences or outcomes of performing particular behaviors” (Lent et al., 2004). Like self-

efficacy, outcome expectations can be acquired through learning experiences. A goal is defined 

as “the determination to engage in a particular activity or to affect a particular future outcome” 

(Lent et al., 2004). 

Those three key variables come into play in three interlocking models concerning career 

interest, choice, and performance: (a) the interest development model, (b) the career choice 

model, and (c) the performance model. Interest is an important determinant for career choice and 

performance. Individual environment, experiences, self-efficacy, and outcome expectations 

crucially influence the formation of career interests. The career choice model incorporates the 

developmental process of career interest, which influences career choice actions and 

performance. In the performance model, the level of accomplishment and persistence in a career 

is defined by the outcome of the interaction between previous performance/ability, self-efficacy, 

outcome expectations, and performance goals. 

Another important facet of the SCCT is that it offers an explanation for the roles of sex, 

race, and other socioeconomic factors in career development. Lent and his colleagues viewed 

these factors from a social constructivist perspective, in which individuals internalize the social 

influence of the factors. These socially constructed factors influence learning experiences and 

contextual influences, and moderate career interests, goals, choices, and career choice actions. 

Theoretical model of the study 

Integrating the three promising conceptual models that explain talent and career 

development, this study offered a hypothetical model for talent and career development 

specifically in math and science during adolescence and early adulthood including both 

secondary and postsecondary education. In this study, I concentrated on college bound students 
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who achieved well in math and science during high school, and I identified those students by 

their scores on standardized college entrance exams. Good achievement in college entrance 

exams, particularly in math- and science-related subjects, is mostly required to be admitted into 

colleges in STEM fields. Not only that, but achievement in such subjects is important for 

providing fundamental background knowledge for continued studies in STEM fields. Therefore, 

I hypothesized that students who were interested in STEM fields beyond secondary education 

were likely to prepare for, take, and achieve highly on those exams. Furthermore, given that 

explicit achievement in an academic domain should be demonstrated on a talent development 

trajectory by late adolescence (Feldhusen, 2005), college entrance exams in math and science 

can be used as appropriate indices to identify talented students who are likely to enter, persist in, 

and achieve well on STEM pathways. 

Within the scope of talent development theories (e.g., Gagne, 2005; Feldhusen, 2005; 

Subotnik, Olszewski-Kubilius, & Worrell, 2011), three milestones should be achieved during 

adolescence and early adulthood for talent development in academic domains such as 

mathematics and science. These are as follows: (a) the identification of personal potential within 

a domain, (b) the development of potential into competence and early expertise through training 

and education, and (c) the explicit demonstration of career decisions within the domain. Since 

developing talents in math and science mostly relies on schooling systems, the roles of secondary 

and postsecondary education are especially important because achievements, psychosocial 

attitudes, commitment, and career goals become more evident during this period (Feldhusen, 

1998; 2005). 

Figure 1 represents the theoretical model of this study. This study restricted the sample to 

college bound high-achieving students in math and science, identified through twelfth-grade 
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standardized achievement college admissions test scores in math and science. In accordance with 

research purposes, the theoretical model shows controlled effects: how and why talented students 

in math and science, after achieving well in high school, develop or don’t develop their talents. I 

assumed that environmental factors, experiences of advanced learning in the domain, and 

psychosocial development during secondary education crucially influenced those talented 

adolescents’ career decisions and achievements in college. Environmental factors included 

student-level factors (sex, race, SES) and school-level factors (school average SES, and school 

climate, particularly regarding academic pressure) that a student cannot control. These factors 

interplay with controllable factors: motivation (mathematics self-efficacy), the math and science 

learning experience in high school (influenced by taking advanced courses in math and science), 

and the learning experience in postsecondary institutions (including STEM course-taking, high-

impact activities). To limit the effects of variations between the advanced courses that secondary 

school students can take for their talent development, this study restricted consideration of 

advanced courses to AP and IB courses, given that those programs were relatively standardized. I 

also hypothesized that motivation and learning experiences not only influenced desirable 

outcomes in postsecondary education in STEM fields, but also moderated the risk factors and 

impetus of environmental factors in the pursuit of STEM studies. Three important outcome 

variables were measured in the lives of those who had been on postsecondary STEM paths: first, 

entrance into STEM fields; second, graduation from postsecondary institutions with a STEM 

major; and third, further persistence, such as having a job in STEM fields and/or continuing 

STEM studies in graduate schools. The years in the timeline in Figure 1 represent the time at 

which students were likely to experience each event or the time at which the psychological 

variables were measured. 
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Figure 1. Theoretical Model of the Study: A Talent Development Path in STEM. “Adv. Courses in high school” is college-preparatory 
courses in math and science such as AP and IB. PSE= postsecondary education. 



 
 

   

   

             

               

                

              

             

            

              

               

               

            

            

       

              

               

                

           

           

              

              

             

              

  

17 

STEM Pathways 

The metaphors of “pathway” and “path” are commonly used in the STEM education 

literature. Both terms indicate “a trail that one (a student) constructs along contours of the 

terrain” (Adelman, 1999, p. 10); in other words, they indicate academic and career paths that are 

created by students. Since the fields of STEM usually require postsecondary education for talent 

development, success in postsecondary paths has been the major concern of the literature. 

Entrance, persistence, and performance are three key outcome variables in research on 

postsecondary STEM pathways. Those three outcome variables are also in line with the literature 

of talent and career development; talented high school students in math and science are expected 

to get into postsecondary institutions to continue their studies; they are expected to build strong 

competencies in postsecondary institutions; they are expected to complete a degree while 

demonstrating early expertise in STEM, and eventually to successfully proceed onto expert-level 

paths (graduate schools or the workplace). 

Given the calls for research investigating the reasons why the STEM pipeline is leaking 

in the U.S. (e.g., NSB, 2010), many researchers have investigated how and why U.S. students 

enter or do not enter, persist or give up, and achieve or underachieve in postsecondary STEM 

education. The “why” questions were particularly well discussed within the literature. 

Researchers studying STEM pathways have investigated the positive and negative factors 

surrounding students that influence their entrance into, and performance on STEM paths. In this 

section, I summarize the findings and research models of empirical studies regarding those three 

key outcome variables in postsecondary STEM paths. The literature that took these key 

outcomes as dependent variables and explored the factors that influence them is reviewed in 

Table 1. 



 
 

   

 

           

           

               

                

             

              

            

               

                

                 

             

            

            

             

                  

              

             

          

 

                 

             

           

18 

Entrance 

Despite the abundance of literature regarding college students’ persistence in and 

completion of postsecondary STEM education, academic choices and students’ entrances into 

STEM paths have received less focus (Wang, 2013). Although the number of studies is limited, 

high school achievement and the study of math and science curricula have been found to be 

consistent predictors of student choice regarding entrance into STEM studies at colleges and 

universities (e.g., Adelman, 1999; Nicholls et al., 2007; Seymour & Hewitt, 1997; Wang, 2013). 

In particular, curricula emphasizing math and science were positively associated with entrance 

into STEM fields (Adelman, 1999). Wang (2013) used a structural equation model based on the 

SCCT, and found that student achievement in math in grades 10 and 12 positively influenced a 

student’s intent to major in a STEM field, finally leading to the student entering a STEM field 

during postsecondary education. He also found that a positive interplay between high school 

math achievement and mathematics self-efficacy increased the chances of entrance into STEM. 

In terms of student background, male students, students financially dependent on family, 

students whose parents received higher education, White and Asian students, and students who 

didn’t need to work were more likely to enter a STEM major (e.g., Chen & Weko, 2009; Gruca, 

Ethington, & Pascarella, 1988; Wang, 2013). These findings are consistent with the talent and 

career development theories, and are particularly in line with the SCCT; learning experiences 

and motivation facilitate talented students choosing STEM majors in college. 

Persistence 

It has been a national problem that more than half of the college students who at one 

point declared a STEM major later withdrew their academic choice during their postsecondary 

education (e.g., Chen, 2009; Higher Education Research Institution, 2010; Lowell, Salzman, 
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Bernstein, Henderson, 2009; National Science Board, 2012). In the literature, persistence in a 

STEM field after declaring a STEM major during postsecondary education is usually referred to 

as enrollment status in a STEM major. In studies, the periods of observation were usually 4 to 6 

years of undergraduate programs. Given this time span, persistence status is a variable that can 

change with time; it indicates enrollment status in a STEM major between the declaration of a 

study major and the end of the study (college graduation in the field). It is usually presented as a 

dichotomous variable (e.g., 1 = enrolled in a STEM major or graduated, 0 = dropped out of 

school or switched to another major). 

The underlying factors of STEM persistence in postsecondary education can be 

categorized into two groups: high school factors and postsecondary education factors. In terms of 

high school factors, achievement and a rigorous math and science curriculum were consistently 

associated with STEM persistence (e.g., Chang, Sharkness, Hurtado, & Newman, 2014; Chen & 

Soldner, 2013; French, Immekus, & Oakes, 2005; Mendez, Buskirk, Lohr, & Haag, 2008; 

Watkins, 2013). Affective and motivational factors also played important roles towards student 

persistence. Eris, Chachra, Chen, Sheppard, Ludlow, Rosca, Bailey, and Toye (2010) found that 

the students who persisted in an engineering major had greater confidence in their math and 

science skills, and had experienced mentoring during high school. Intrinsic motivation in 

academic domains was also significantly associated with persistence in STEM fields (French et 

al., 2005). 

In terms of postsecondary education, students who had fewer credit hours and performed 

poorly in STEM majors were more likely to switch to other majors (Chen & Soldner, 2013). In 

contrast, research project experience and an intensive STEM major curriculum were positively 

associated with persistence. Like other educational outcomes, individual variables that students 
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could not control were also found to negatively influence STEM persistence. After declaring 

their major in STEM, students were more likely to drop out from their STEM paths if they were 

female, had a father whose education level was lower, or were Black and Hispanic students 

(Chimka et al., 2008; Min, Zhang, Long, Anderson, and Ohland, 2011; Zwick & Sklar, 2005). 

Performance and future career choice 

More desirable outcomes are achieved when students have high academic performance in 

college, and make career choices in STEM beyond a bachelor’s degree, than from mere entrance 

and persistence in the fields while attending college. Given that talents should be explicitly and 

consistently demonstrated in different forms of achievement and accomplishment from early 

adulthood (Subotnik et al., 2011), college performance is a crucial index for predicting a 

successful path in a STEM field. French, Immekus, and Oakes (2005) used a hierarchical linear 

model to examine the effects of cognitive and non-cognitive factors on college GPA in STEM 

fields. Adopting a stepwise procedure, they found that SAT scores, high school rank, and sex 

(female) were the best predictors for college achievement. Motivation and integration were less 

important than those variables. Tyson (2011) examined the factors influencing high or low 

achievement in college-level physics and calculus, using multinomial logistic regression models, 

and found that the taking of calculus courses in high school was the strongest predictor. 

As is the case concerning college entrance and achievement, further career choices in 

STEM fields after college graduation are critical on the continuum of talent development for 

math and science talents. The Study of Mathematically Precocious Youth (SMPY) provided 

empirical evidence regarding the career choices of high-ability students in mathematics who 

were identified and educated in their youth. Benbow and Arjmand (1990) categorized these high-

ability students by their academic and career performance. High-achieving groups contained 
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individuals who attended graduate school for mathematics or sciences, or who attended medical 

schools. Low-achieving groups contained individuals who majored in science but finished with a 

low GPA, or who dropped out of college, or who did not complete high school. Using stepwise 

linear discriminant function analysis, they found that great performance during college 

preparation (AP math and science courses, college courses in math and science taken during high 

school, college-level exams), being encouraged to attend college, and having positive attitudes 

toward mathematics played important roles in high achievement beyond college graduation. 

Lubinski, Webb, Morelock, and Benbow (2001) sampled 320 exceptionally high-ability 

students who scored over 700 in SAT math and over 630 in verbal before the age of 13, and 

tracked them for ten years after the base-year study. They found that the participants were likely 

to pursue doctoral degrees (at a rate more than 50 times the base rate expectation in the U.S.), 

and were more likely than their peers to achieve scientific, technical, or occupational 

accomplishments by their early 20s (e.g., scientific publications, software development, 

inventions). Among precocious SMPY cohorts, students who scored higher on SAT math were 

more likely to achieve occupational accomplishments in STEM fields than other students of the 

cohort (Park, Lubinski, & Benbow, 2007; 2008). Ability patterns were also important for 

determining academic and career choices. Lubinski et al. (2001) compared three ability patterns 

using SAT math and verbal scores (i.e., high-math, high-verbal, and high-flat groups), and found 

that a high ability in math before the age of 13 was associated with the pursuit of science and 

technology in course preferences at high school, and choice of major at college. 

The subsequent SMPY studies highlighted the important roles played by preferences, 

motivational factors, and educational experiences during adolescence in advancing occupational 

accomplishment in adulthood. Achter, Lubinski, Benbow, and Eftekhari-Sanjani (1999), using 
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discriminant function analysis, found that a study of value, such as the value placed in 

theoretical, aesthetic, social, religious, or economic studies, in conjunction with SAT scores 

obtained at the age of 13, could predict college majors. They grouped participants into three 

categories based on their college major: humanities, math or science, or something else. The 

results showed that students who scored higher on SAT math and considered theoretical and 

economic studies to be important were more likely to study college majors related to math or 

science than other students. Robertson, Smeets, Lubinski, and Benbow (2010) also argued that a 

study of vocational interests refined the prediction of academic and career choices and lifestyle 

preferences were a likely indicator of career persistence. Regarding Advanced Placement (AP) 

programs, Bleske-Rechek, Lubinski, and Benbow (2004) found that more than 70% of 

participants who had taken one or more AP courses or exams had later completed a graduate 

program, as opposed to 43% for students who had not taken those courses. 
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The scope of the study 

In summary, high school achievement in math and science, as indicated by either high 

school GPA or standardized test scores (e.g., SAT math), is known to be the best predictor of 

entrance, persistence, and performance in postsecondary STEM education (e.g., Adelman, 1988; 

Astin, 1993; Nicholls, Wolfe, Besterfield-Sacre, Shuman, & Larpkiattaworn, 2007; Zhang, 

Anderson, Ohland, & Thorndike, 2004). This means that high achievers in high school math and 

science are most likely to select, persist in, and achieve well on STEM pathways. However, little 

is known about the pathways after controlling for the effects of high school achievement; in 

other words, it is unknown whether or not the developmental and career decision patterns of high 

achievers are the same as for average-achieving students. It is important to fill in the missing 

pieces because talented students are more likely to persist and succeed in STEM fields than 

average achievers, and understanding their unique needs may be the first important task to 

promote their talent and career development. 
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Table 1 

A Review of the Factors Influencing Postsecondary STEM Paths 

Study Data DV/Grouping Analytic Method Significant IV 

Entrance 

Adelman 
(1999) 

High School & 
Beyond/Sophomore 
(HSBS) 

Entrance into STEM fields Correlation High school math and science curriculum 

Nicholls et al. 
(2007) 

Cooperative 
Institutional Research 
Program 

The time students first registered 
in STEM/students who would be 
pursuing a non-STEM degree 

Independent t-test SAT math score 
High school GPA 
Self-ratings of mathematical ability, computer 
skills, academic ability 

Wang (2013) Educational 
Longitudinal 
Study:2002 
(ELS:2002) 

Entrance into STEM fields of 
study within 2-years of high 
school graduation 

SEM 12th-grade math achievement 
Exposure to math and science courses 
Math self-efficacy beliefs 
College readiness in math and science 
Financial aid 
Enrollment intensity 
Academic interaction 
Having children 
Work hours 

Persistence/Attrition 

Burtner (2005) Pittsburgh Freshman 
Engineering Attitudes 
Survey 

Enrollment status in engineering 
school 

Discriminant 
function analysis 

Expectations and perception of the 
engineering profession 
Confidence 

(Continued) 
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Table 1 Continued 

Study Data DV/Grouping Analytic Method Significant IV 

Chen & 
Soldner 
(2013) 

Beginning 
Postsecondary 
Students Longitudinal 
Study & 
Postsecondary 
Education 

Leaving a STEM major Multinomial probit 
model 

Precollege preparation 
Institution first enrolled 
STEM courses 
STEM performance 

Transcript Study 

Chen & 
Soldner 
(2013) 

Beginning 
Postsecondary 
Students Longitudinal 
Study, Postsecondary 
Education Transcript 
Study 

Switching to another major Multinomial probit 
model 

Fewer credit hours in STEM 
Poor performance in STEM 

Chimka, et al. 
(2008) 

Collected by study Declaring and persisting with a 
STEM major until graduation 

Hazard/Survivor 
model 

SAT math scores 
ACT science scores 
Gender 

Eris et al. 
(2010) 

Persistence in 
Engineering (PIE) 

Persistence status: those who 
either graduated or are still 
working toward graduation in an 
engineering degree 

Repeated measure 
ANOVA 

High school mentor 
Confidence in math and science skills 
Confidence in professional and interpersonal skills 
Confidence in solving open-ended problems 
Perceived importance of math and science skills 
Exposure to project based learning 

French et al. 
(2005) 

Collected by study University enrollment & 
enrollment in an engineering 
major 

GPA 
SAT math scores 
High school rank 
Intrinsic motivation 

(Continued) 
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Table 1 Continued 

Study Data DV/Grouping Analytic Method Significant IV 

Min et al. 
(2011) 

Multiple-Institution 
Database for 
Investigating 
Engineering 
Longitudinal 
Development 
(MIDFEILD) 

The hazard of leaving engineering 
fields 

Hazard/Survivor 
model 

SAT math scores 
Gender 
Ethnicity 

Mendez et al. 
(2008) 

Collected by study Declared and graduated with a 
STEM major 

Logistic regression High school GPA 
Freshman year GPA 
Number of science and engineering courses taken 

Nicholls et al. 
(2010) 

National Educational 
Longitudinal Study of 
1988 (NELS:88) 

STEM path departure and time of 
leaving/Graduation 

Logistic regression & 
hazard/survivor 

model 

Standardized test scores (ACT, SAT) 
Measures of skill and performance in math and 
science classes 
Family composition 
Native language 
Type of high school 
Father’s highest education level 
Student expectation for educational attainment 
Ethnicity 
Gender 

Tyson et al. 
(2007) 

Florida Longitudinal 
Education and 
Employment Dataset 

Graduated with a STEM major Logistic regression Mathematics course-taking 
Science course-taking variables 

Watkins et al. 
(2013) 

Collected by study Retention for 6 years Logistic regression SAT math scores 
ACT composite scores 
Average load aid 
Average gift aid 
Cumulative GPA 

(Continued) 
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Table 1 Continued 

Study Data DV/Grouping Analytic Method Significant IV 

Zhang et al. Southeastern Graduation in engineering Logistic regression High school GPA 
(2004) University SAT math scores 

and College Coalition SAT verbal scores 
for Engineering Citizenship 
Education 

Performance and Further Career 

French et al. Collected by study College GPA of engineering HLM SAT verbal scores 
(2005) students SAT math scores 

High school rank 
Gender 

Tyson (2011) Florida Department Achievement in college physics Multinomial logistic High school calculus achievement 
of Education PK-20 and calculus regression analysis 
Education Data 
Warehouse 

Benbow & Study of High achiever group: attending Discriminant AP math and science courses 
Arjmand Mathematically graduate school in math and function analysis College courses in math and science taken as a 
(1990) Precocious Youth science, or attending medical high school student 

(SMPY) Cohort 1 school College-level exams 
Comparison group: having low Encouragement to attend college 
college GPA, dropping out of Parental education levels 
college, or failing to complete Attitude toward mathematics 
high school 

Achter et al. SMPY Math and science college major Discriminant Study of values – theoretical, analytic 
(1999) function analysis SAT math scores 
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Achievement as an Index for Identifying Talents 

Under the No Child Left Behind (NCLB, 2001) act and the Every Student Success Act 

(ESSA, 2015), achievement tests have been used in schools across the U.S. more than ever 

before. These tests are used not only to compare the scores of students within a grade and across 

different grades, but also to make diagnostic and high-stakes decisions concerning educational 

settings (Kubiszyn & Borich, 2010). In gifted and talented education, standardized achievement 

test scores have frequently been used, in addition to the use of IQ or aptitude tests, to identify 

students with high ability (Ziegler & Raul, 2000). The 2014-2015 State of the States Report 

(National Association for Gifted Children & The Council of State Directors of Programs for the 

Gifted, 2015) reported that achievement is the second most commonly used criterion in the states 

for the identification of gifted children after multiple criteria. 

Unlike IQ and aptitude tests, which measure the extent to which a student is capable, 

achievement tests measure what students have learned. Pyryt (2004) found that the use of 

achievement test scores was an effective method for identifying gifted students. Pyryt, using 

discriminant function analysis, examined whether multiple criteria, including group-administered 

IQ scores, achievement test scores, honor roll status, teacher nomination, arithmetic ability, 

leadership ability, artistic ability, and musical ability, could correctly distinguish between those 

students already identified as gifted, and those of average ability. Use of the criteria could 

correctly classify 78.1% of the gifted students, and group-administered IQ tests as well as 

achievement test scores were the most effective predictors for identifying gifted students. The 

standardized discriminant function coefficient was .55 for group IQ scores and .52 for 

achievement test scores. 
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From the perspective of talent development in early adolescence, the Talent Search 

model, developed by Julian Stanley, used standardized achievement tests for above-grade-level 

testing to identify mathematically precocious youth. The SMPY adopted the identification model 

from the Talent Search, employing two steps in an identification procedure using standardized 

tests. In the first step, the study selected the students of grades 7-8 who scored in the top 3% on 

standardized achievement tests usually administered in schools. In the second step, those selected 

students took the SAT, an out-of-level test for which they had no preparation. The study then 

refined the selection to include only those students who scored 500 or higher on the SAT (Cohort 

1), and 700 or higher (Cohort 2) (Lubinski & Benbow, 2006). Based on the above-grade-level 

scores, the SMPY provided these talented students with accelerated programs. In longitudinal 

studies lasting 20-years and 35-years (Benbow, 1990; Benbow, 1992; Lubinski & Benbow, 

2006; Lubinski, Webb, Morelock, & Benbow, 2001; Robertson et al., 2010; Wai, Lubinski, & 

Benbow, 2005), the researchers found that these precocious youths were more likely to choose 

academic career paths and succeed in STEM fields compared with the base rate in the U.S. 

Furthermore, Cohort 2, consisting of those students who scored 700 or higher on the SAT, were 

more likely to earn a higher income and to have patents and tenure-track positions by the time 

they were middle aged, compared with the U.S. base rate. 

In the gifted education literature, the cutoff scores for identifying high-achieving students 

are not fixed across studies; rather, the cutoff scores on achievement tests have ranged from the 

90th percentile to the 97th percentile (Dai, 2013; Reis & McCoach, 2000; Ziegler & Raul, 2000). 

Although it is not explicitly mentioned in talent development theories, standardized achievement 

test scores are mainly appropriate for identifying talented students beginning in late adolescence, 
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as by this point talented individuals can be expected to have attained a certain level of expertise 

and to be gaining explicit achievements, rather than just exhibiting potential. 

Factors Associated with Postsecondary STEM Pathways 

A number of factors are associated with postsecondary STEM pathways as shown in 

Table 1. Among them, a rigorous high school curriculum and student motivation are the most 

frequently mentioned variables. In this section, I illustrate how the moderating and independent 

variables of this study were conceptualized using the literature, and how those variables were 

found to be associated with dependent variables on STEM pathways. 

College-level courses in math and science 

Advanced Placement (AP) and International Baccalaureate (IB) diploma programs are 

college-preparatory courses offered to high school students. Both programs provide advanced 

level courses in line with high school curricula to facilitate students in preparing for college-level 

academics, but the foci of the two programs are somewhat different. 

The AP program was developed in the United States in 1955, and has been administered 

in response to the issue that high schools did not provide enough quality, challenging courses to 

high-achieving students, and almost half of high school graduates who went to college did not 

graduate from there (Potter & Lena, 2000). The AP program offers 38 college-level courses, and 

exams in 20 subjects. Students choose the courses by consulting with their teachers or 

counselors, and take the courses in schools that have been audited by the College Board to 

ensure the quality of the AP curriculum. After taking the courses, students can also take AP 

exams, but taking the exams is not required. AP exams are intended to indicate readiness for 

placement in introductory college courses. Thus, the scores can be used not only for college 

admissions, but also for granting exemptions from introductory courses in colleges. A score 
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above 3 (out of 5) is usually considered equivalent to the completion of a college-level course 

(College Board, 2016). 

The International Baccalaureate Diploma Programme (IB or IBDP) was developed in 

Europe to provide an internationally standardized, rigorous college-preparation curriculum for 

high school students. The IB program provides a high-level curriculum that helps students to 

have a more holistic and in-depth mindset when entering academia. The program is composed of 

six subject groups, and students must take six subjects, three or four of which should be higher-

level courses. Students must also meet three core requirements (Extended Essay, Theory of 

Knowledge, and Creativity, Activity, Service) and pass the subject exam to receive an IB 

diploma. Unlike students who usually take two or three AP courses a year in grades 11 and 12, 

IB candidates enroll in IB prep courses in grades 9 and 10, and in full courses in grades 11 and 

12. Students who do not pursue the IB diploma can still take individual IB courses. 

College-prep programs have been dramatically growing during the last sixty years. In 

2016, approximately 2,600,000 students from grades 9 to 12, and across 21,953 schools, took AP 

exams. This number of students is almost double that of ten years ago, and triple that of fifteen 

years ago (College Board, 2016). Although the number of participating students in the U.S. is 

smaller than that of the AP program, the IB program has also been growing throughout the world 

as well as in the U.S. (International Baccalaureate, 2014). The growth in both programs is 

associated with several factors. First, the programs were systematically standardized across 

teachers and schools under the coordination of their respective agencies (e.g., College Board, 

IB), so that the quality of the curriculum is consistently maintained across schools. It signifies 

reciprocal benefits for students and schools; students, particularly those who are achieving 

above-grade-level and who are ready to study a college-level curriculum, can have advanced 
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opportunities to learn through the readily available curriculum. At the same time, AP and IB 

courses are options that schools can provide to high-achieving students with fewer concerns 

about the personnel and resources needed to develop and implement quality advanced courses 

(Kyburg, Hertberg-Davis, & Callahan, 2007). 

Second, the programs and exams have cumulative validity, particularly in terms of 

predictive validity. Although variations exist in the study findings, it is widely accepted that 

students who have taken AP courses and scored 3 or above on the AP exams are more likely to 

succeed in college and on their academic paths than students who have not taken those courses or 

exams. Taking courses in either program was associated with degree completion in college 

(Adelman, 1999; Mattern, Marini, & Shaw, 2013; Mathews, 2004) and with improved grades in 

similar college courses (Ewing & Howell, 2015; Keng & Dodd, 2008; Krista, Shaw, & Xiong, 

2009; Murphy & Dodd, 2009; Patterson & Ewing, 2013). In addition, taking AP courses in 

biology, calculus, chemistry, and physics was associated with career choices in STEM fields 

after college graduation (Robinson, 2003). Based on the cumulative predictive significance, 

universities in the U.S. have recently allowed undergraduates who took AP programs and scored 

3 or above on AP exams to be exempt from introductory courses in college (Lichten, 2007). 

Another potential benefit of AP and IB courses is their relative accessibility to students, 

including those who have disadvantaged backgrounds (e.g., students from families in poverty, 

students attending schools with large proportions of low-achieving students). AP and IB courses 

are even available to students who do not attend high school but want to prepare for college 

entrance. Although students who are Black, Hispanic, and American Indian/Alaskan Native, and 

students who come from low-income families are still underrepresented on AP programs 

(College Board, 2014), some researchers in education have argued that participation in AP 
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programs might be still beneficial for those students’ academic growth (Burton, Whitman, 

Yepes-Baraya, Cline & Kim, 2002; Kyburg, Hertberg-Davis, & Callahan, 2007). 

In terms of math- and science- related courses, the AP offers five courses in math and 

computer science, which include Calculus AB, Calculus BC, Computer Science A, Computer 

Science Principles, and Statistics, and seven courses in sciences, which include Biology, 

Chemistry, Environmental Science, Physics C: Electricity and Magnetism, Physics C: 

Mechanics, Physics 1: Algebra-Based, and Physics 2: Algebra-Based (College Board, 2016). The 

IB program offers two subject groups related to mathematics and science: experimental sciences, 

which includes Chemistry, Biology, Physics, Design Technology, Computer Science, and 

Environmental Systems and Societies, and mathematics, which includes Mathematical Studies at 

Standard and Higher levels. High school course-taking experiences in AP and IB math and 

sciences have been associated with entrance, persistence, and performance on postsecondary 

paths in general academic fields (e.g., Ewing & Howell, 2015; Mattern, Marini, & Shaw, 2013; 

Murphy & Dodd, 2009; Patterson & Ewing, 2013), as well as in STEM fields (Andersen & 

Ward, 2012; Ackerman, Kanfer, & Calderwood, 2013; Shaw & Barbuti, 2010; Tyson et al., 

2007; Robinson, 2003). Ackerman and his colleagues (2013) found that participation in AP 

STEM courses was positively associated with college GPA, STEM persistence, and graduation 

rates. Robinson (2003) found that students of underrepresented races who took AP calculus 

and/or science courses in high school were more likely to select engineering majors. 

Motivational factor: mathematics self-efficacy and the big-fish-little-pond effect 

Mathematics Self-Efficacy 

Mathematics self-efficacy (MSE) is defined as “a situational or problem-specific 

assessment of an individual’s confidence in her/his ability to successfully perform or accomplish 
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a particular task or problem” (Heckett & Betz, 1989, p. 262). MSE, based on the framework of 

the Social Cognitive Career Theory (Lent et al., 1994), has received much attention in 

educational research because of its ability to predict desirable outcomes in education. In terms of 

student performance in mathematics, MSE has been found to predict not only achievement in 

mathematics, but also key components in learning processes, such as choosing to do math-related 

tasks, problem-solving in mathematics, persistence in solving difficult problems, and attitudes 

towards mathematics during secondary education (Betz & Hackett, 1983; Hackett & Betz, 1989; 

Hoffman & Schraw, 2009; Pajares & Miller, 1995; Randhawa, Beamer, & Lundberg, 1993). 

Furthermore, MSE has become known as a key factor influencing student performance and 

career/academic decisions beyond secondary education, particularly in STEM fields. MSE can 

also be good predictor of interests, goals, choice of major, persistence, and performance on 

postsecondary STEM paths (See the review of Lent, Sheu, Singley, Schmidt, Schmidt, & 

Gloster, 2008). Zeldin and Pajares (2000) identified MSE as a crucial factor in leading women to 

be successful in STEM careers, many of which are in male-dominated fields. 

In addition to MSE’s ability to directly predict various desirable outcomes, MSE has also 

been extensively studied as a moderator when factored into relationships between other 

variables. In psychological and educational research, a moderator is referred to as a variable that 

“affects the direction and/or strength of the relation between an independent or predictor variable 

and a dependent or criterion variable” (Baron & Kenny, 1986, p. 1174). Baron and Kenny (1986) 

provided an example of a moderating variable in the controllability of life events, which affected 

the relation between life-event change and the severity of an illness. Brown, Lent, and Larkin 

(1989) found that efficacy beliefs moderated low-aptitude students’ persistence and performance 

across a variety of STEM majors. Specifically, students who had lower levels of aptitude but had 
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high levels of self-efficacy received GPAs one standard deviation higher than students who had 

lower levels of aptitude and also had low levels of self-efficacy. Hackett (1985), using a path 

analysis model, found that a student’s choice to enroll in an undergraduate major in a math or 

science related area could be mediated by MSE. In other words, MSE levels explained why there 

was a relation between high school math achievement (ACT math scores and high school math 

GPA) and choice of college major. After controlling for the effect of MSE, the relationship 

between high school math achievement and choice of college major became non-significant. 

The sources of MSE and self-efficacy in academic settings in general have also been 

studied across a variety of age-groups and domains (See the review of Usher & Pajares, 2008). 

Theoretically, self-efficacy beliefs are formed and changed as a student interprets information 

from four sources, including mastery experience, vicarious experience, verbal and social 

persuasions, and emotional and physiological indexes (Bandura, 1986, 1977). Of the four 

sources, mastery experience is the most important source. As an example of mastery experience, 

a student can strengthen his/her beliefs that the effort put into completing a task is worth 

repeating on a similar task if the first task was a success. The vicarious experiences gained 

through observing others also influence the formation of self-efficacy by providing normative 

comparisons. The verbal and social persuasions from significant others (e.g., parents, teachers) 

as well as emotional and physiological states (e.g., stress, anxiety) are also sources of self-

efficacy. In secondary education settings, school experiences incorporating these four factors are 

crucial in shaping student self-efficacy. To be specific, secondary school students are influenced 

by the classroom environment, the structure of instruction, their teacher’s self-efficacy, and their 

peers in the development of their MSE (Schunk & Meece, 2005). For example, in a competitive 

classroom that uses more achievement comparisons, students are more likely to decrease in self-
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efficacy, especially if those students feel that their achievement is not satisfactory (Schunk & 

Meece, 2005). Usher and Pajares (2006) found that middle school girls tended to rely on social 

persuasions (information from others) in their formation of self-efficacy. 

One important note concerning research into mathematics self-efficacy is that one should 

be cautious when selecting measures of MSE and outcome variables. Bandura (1986) cautioned, 

“ill-defined global measures of perceived self-efficacy or defective assessments of performance 

will yield discordances” (p. 397). Pajares and Miller (1995) elaborated the argument, suggesting 

“measures of self-efficacy should be specifically tailored to the criterial task being assessed and 

the domain of functioning being analyzed” (p. 190). Pajares and Miller showed that the specific 

details or examples given in the written context of MSE assessments (e.g., mathematics 

problems, tasks, courses) differently predicted the outcome variables. Efficacy beliefs specific to 

math-related courses were more strongly associated with choosing math-related majors than 

efficacy beliefs specific to other contexts (i.e., mathematics tasks, problems). But efficacy beliefs 

regarding solving mathematics problems were associated with performance in math problem 

solving. Schunk and Meece (2005) also argued that the inconsistency of findings in self-efficacy 

studies, particularly studies from developmental perspectives, may be due to variations in the 

specificity of MSE measurement across a range of domains and tasks. 

Big-Fish-Little-Pond Effect 

The big-fish-little-pond effect (BFLPE) refers to students’ lowered levels of academic 

self-concepts when exposed to learning environments with relatively higher-achieving students 

(Marsh, 1987). More recently, BFLPE has been investigated in terms of its stability over time, 

particularly focusing on transition from elementary to secondary school, and one from high 

school to postsecondary education. Prior studies found that the BFLPEs persisted for more than 
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two years after secondary school graduation, which negatively influenced vocational training, 

postsecondary education, educational achievement, and occupational aspirations (Marsh & 

O’Mara, 2010; Marsh, Trautwein, Lüdtke, Baumert, & Köller, 2007). The BFLPE has not yet 

been studied regarding postsecondary STEM paths. However, since this study concentrated on 

postsecondary paths of high-achieving students, it is assumed that high-achieving students’ 

academic self-concept might be influenced by more homogeneous environments in 

postsecondary STEM paths after transition from secondary education to postsecondary 

education, and which is also assumed to influence those students’ persistence and achievement in 

STEM paths. 

Coursework and high-impact activities in postsecondary education 

As summarized in Table 1 with regard to a student’s postsecondary education experience, 

taking courses in STEM fields is another important factor influencing student persistence and 

achievement in college STEM majors. Chen and Soldner (2013) found that the intensity of 

STEM course-taking and the type of math courses taken in the first year of an undergraduate 

program were associated with persistence in STEM fields during postsecondary education. They 

also found that taking fewer courses, taking less challenging courses, and withdrawing from or 

failing courses in STEM majors were associated with switching to non-STEM majors. However, 

research project experience and an intensive STEM major curriculum were positively associated 

with persistence. 

Individual backgrounds 

Sex 

Gender differences within STEM pathways have been studied, and it is widely accepted 

that female students are less likely than male students to begin, persist, and complete STEM-
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related degrees in postsecondary education (e.g., Astin & Astin, 1993; Besterfield-Sacre et al., 

2001; Cassell & Slaughter, 2006; Tyson et al., 2007; Zhang et al., 2004). Although a few 

researchers have argued that the gaps between male and female students have been narrowing in 

STEM education (e.g., Hill, 2007; Huang et al, 2000; Davenport, Davison, Kuang, Ding, Kim, & 

Kwak, 1998), most the studies with a large data set still show an underrepresentation of females 

in the fields. 

Some researchers investigated the reasons why female students were less likely to enroll, 

persist in, and complete STEM paths. A number of qualitative researchers found that 

psychosocial factors, rather than cognition or ability, significantly influenced sex differences. 

Erwin and Maurutto (1998), in their qualitative study, found that traditional attitudes towards sex 

roles, low self-esteem, and a male-dominated learning environment influenced low college 

enrollment and low persistence among female students in STEM fields. Wang (2011) found that 

the mathematics self-efficacy of female students was lower than among male students, despite 

comparable achievements. Davenport and his colleagues (1998) argued that the rigor and 

contents of the coursework affected the sex, rather than the number, of students; specifically, 

female students were less likely to take physics but more likely to take biology and chemistry. 

Longitudinal studies from the SMPY provided several findings regarding the distinctive 

paths of female students identified as high-achieving in math and science. Lubinski and Benbow 

(2006) found that, compared to their male counterparts, high-ability female students less 

frequently entered STEM careers requiring higher degrees and expertise, but the entry rates were 

much closer for careers and advanced degrees in non-STEM fields that require multidimensional 

abilities and preferences (e.g., law, medicine, social sciences). The SMPY research team argued 

that changes in lifestyle preferences played an important role in these decisions; female 
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participants became more holistic and community- and family-oriented as they aged, as opposed 

to men who became more career-focused and agentic after the completion of their graduate 

degrees. 

Race 

Black, American Indians/Alaska Natives, and Hispanics have historically been 

underrepresented in STEM fields (National Action Council for Minorities in Engineering; 

NACME, N.D.). The groups are not only underrepresented in high school advanced courses 

(Barnard-brak, McGaha-Garnett, & Burley, 2011), but also in academic and career paths in 

STEM fields. In high schools, students of these races are less likely to have opportunities to be 

on the most rigorous academic tracks or to take the most rigorous courses, such as higher-level 

math courses and Advanced Placement (AP) or International Baccalaureate (IB) courses (Bell, 

Rowan-Kenyon, & Perna, 2009; College Board, 2012; Oakes, 1992; Roderick, Coca, & 

Nagaoka, 2011; Roderick, Nagaoka, & Allensworth, 2006). 

According to NACME, Black, American Indian/Alaska Native, and Hispanic students 

who earned bachelor’s degrees in their postsecondary education were almost three times greater 

in 2011 than in 1977. Even so, most researchers have still found students of these races 

underrepresented in postsecondary STEM education (e.g., Bailyn, 2003; Kulis & Sicotte, 2002; 

Wang, 2011). Wang (2011) argued that ethnic disparities in STEM fields are detrimental because 

these disparities influence long-term social mobility and contribute to socioeconomic inequality 

for those underrepresented groups, particularly given that graduates from STEM fields are likely 

to earn high incomes and gain social status associated with occupations in their fields. Lewis and 

Connell (2005) found that African American students were likely to select math- and science-

related courses based on their interests and the courses’ utility values. Anderson and Ward 
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(2013), using nationally representative data, found that a higher course utility value and student 

mathematics achievement were associated with STEM persistence for Hispanic and African 

American students. However, mathematics and science self-efficacy were not associated with 

their persistence. Cooper (2011) identified the lack of same-race role models as a possible reason 

for the small number of students of underrepresented races in STEM fields. Wang (2011) found 

that exposure to math and science did not affect enrollment in STEM colleges for Hispanic and 

Black students, whereas it did significantly affect White students’ enrollment. On the other hand, 

mathematics self-efficacy mattered for the persistence of students of underrepresented races on 

STEM pathways, just as it mattered in the persistence of other ethnicities (White and Asian 

American students). 

Socioeconomic status 

Socioeconomic status (SES)1 refers to the relative status of an individual in access to and 

control over wealth, prestige, and power (Mueller & Parcel, 1981). A student’s SES reflects 

his/her family income, prestige, and power, and is known as an important variable that influences 

overall student outcomes in educational settings. However, researchers have given much less 

attention to the effect of SES on college students’ STEM pathways, compared to the effects of 

sex and race. Rather, SES has been studied in postsecondary education in general, particularly 

regarding its effect on entrance and completion. Most researchers found that gaps in SES could 

be related to levels of attendance and graduation from postsecondary institutions; students with a 

lower SES were less likely to enter and complete postsecondary paths than those with a higher 

SES (Carneiro & Heckman, 2002; Heckman, 2000), and were also less likely to enter and 

graduate from highly selective universities (Hill & Gordon, 2008; Hill & Winston, 2006). The 

1 I recognize the bias in the language of socioeconomic status (SES), but use the variable because ELS defines a 
composite variable as described as SES. 
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disparity also existed when the sample was restricted to high-ability students. Cardak and Ryan 

(2006) found that SES did not influence university attendance, but it did affect later performance 

at university. Wyner, Bridgeland, & Dilulio (2007) investigated achievement gaps among 

students identified as high-achieving, using K-12 and postsecondary data. They found that lower-

income students were less likely to achieve in Grades K-12, were less likely to graduate from 

college, and were even less likely to graduate from the most selective colleges than students from 

higher-income families. 

School factors 

Talent developmental theorists (Gagne, 2004; Feldhusen, 2005) have viewed schools as 

an important environmental catalyst for student talent development. Eccles and Roeser (2011), in 

a review paper concerning schools as developmental contexts during adolescence, explained the 

significance of schools in adolescence as “the place where adolescents are exposed to the 

culture’s fount of knowledge, hang out with their friends, engage in extracurricular activities that 

can shape their identities, and prepare for their future” (p. 255). Therefore, experiences at school 

influence students’ whole lives, and especially their adolescence, in areas “ranging from the 

breadth and depth of their intellectual capital to their psychological well-being to the nature of 

peer influences on their development” (p. 225). The researchers conceptualized a framework of 

school-factors taking an ecological approach, which incorporates factors from the macro-level of 

society and culture to the micro-level of individual classrooms within a school. 

The micro-level includes teacher qualifications and characteristics, the curriculum and 

academic work, teacher-student relationships, and the emotional atmosphere of the classroom. In 

particular, the curriculum delivered and academic work done in classrooms are important, 

because the content and structure of the curriculum directly influences students, not only by 
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cultivating their intellectual learning, but also by providing interest, meaningfulness, and 

challenge in the broad context of learning. A student’s needs and capacities should be matched 

by the curriculum taught to help students avoid boredom and low interest, which lead to 

diminished engagement and learning in the classroom. 

Eccles and Roeser also listed broader, school-wide factors that influence talent 

development, such as school culture, safety, the student body, and peer influences. On the 

macro-level, schooling systems (e.g., grade configuration, school transitions, school size), 

extracurricular activities, and service learning were included. The school context is especially 

important for students who have talents in math and science, as most of them develop these 

talents within the school system and context. In the following sections, I discuss these school 

factors in terms of their influence on student achievement and motivation, particularly regarding 

the development of talents in math and science. 

School poverty rate 

The influence of school-level socioeconomic status on student achievement has received 

attention in recent literature. Researchers have consistently found that a large proportion of 

students from low SES families in schools strongly correlates with low achievement (e.g., 

Crosnoe, 2009; Everson & Millsap, 2004; Lee & Burkham, 2002; Rumberger & Palardy, 2005). 

Poverty has been investigated not only at the student-level, but also at the school-level. 

Vanderharr, Muñoz, and Rodosky (2006) argued that school poverty rate is a stronger predictor 

of academic failure than student-level poverty. To be specific, the percentage of students who 

received federal meal subsides (free or reduced-price school meals) within a school was 

associated with the number of students who were under the state standards of achievement. 

Furthermore, despite a relatively small number of studies, school poverty has been found to be 
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negatively associated with student academic attitudes and motivation (Battistish, Solomon, Kim, 

Watson, & Schaps, 1995). Less qualified teachers and a lack of available school resources for 

use in educating students were found as possible reasons for the negative effects of impoverished 

schools on student achievement (Clotfelter, Ladd, Vigdor, & Wheeler, 2006; Myers, Kim, & 

Mandala, 2004). 

School-level poverty has received little attention from researchers in gifted research or 

from studies concentrating on students identified as high-achieving. Hébert and his colleagues 

found that a lack of resources, peer cultures, and low expectations for academic achievement in 

schools with high proportions of students from disadvantaged backgrounds negatively influenced 

high-ability students’ achievement and academic growth (Hébert, 1998; Hébert, 2001; Hébert & 

Reis, 1999). However, Burney (2010) found no significant effect of school poverty on the 

success of students on AP exams. She found that the percentage of students receiving free or 

reduced-price lunches in a school was not associated with the percentage of students passing AP 

exams within the school. 

School climate: academic pressure 

School climate has been conceptualized and investigated as an important variable that 

influences student achievement and psychosocial development. Although more recent studies 

have focused on how positive social atmospheres within schools affect psychosocial 

development during adolescence (e.g., Preble, 2011; Dewitt & Slade, 2014), academic values 

and the serious pursuit of learning in schools are also important to explain student school life and 

achievement (Sinclair, 1970; McDill, Rigsby, & Meyers, 1969). “Academic pressure” refers to a 

school climate that emphasizes academic excellence and conformity to specific academic 

standards (McDill, Natriello, & Pallas, 1986). Lee and Smith (1999) revealed that academic 
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pressure in schools positively predicted student achievement, not only in terms of academic 

performance, but also in terms of the time and effort students spent on academic work. Shouse 

(1996) argued that academic pressure could be a strong mediator, particularly in low-SES 

schools, if schools were organized communally. Andrade (2014), using two waves of 

longitudinal data, investigated whether academic pressure at school was associated with student 

academic performance and substance use. He found that higher levels of academic pressure at 

school were particularly associated with improvements in student academic performance. Most 

of the studies are outdated and did not investigate the relationship between academic pressure 

and student decisions to enter postsecondary education, however academic pressure is certainly 

worth studying, particularly because of its ability to be controlled by school members. 
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CHAPTER 3 METHODS 

The main purpose of this study was to investigate three important student choices and 

accomplishments on STEM pathways during late adolescence and into early adulthood: (a) 

choosing a STEM major in college, (b) persisting in the STEM major until graduation, and (c) 

selecting a career in STEM after college graduation. In this investigation, I used the Educational 

Longitudinal Study of 2002 (ELS:2002; Ingels, Pratt, Alexander, Jewell, Lauff, Mattox, Wilson, 

& Christopher, 2014), which followed students from the 10th grade (in the base year) up until 

eight years after high-school graduation. An important aspect of the current study was that it 

concentrated on students who achieved highly in secondary school math and science. In this 

chapter, I describe how I identified those students using multiple standardized test scores that 

demonstrated student achievement in math and science. 

I adopted two inferential analytic methods in answering the research questions. First, I 

used a set of logistic regression models to estimate the probabilities associated with each binary 

outcome variable (e.g., the probability that students selected a STEM major in college). I 

considered using a multilevel model to nest students within their schools. Second, I used a 

discrete-time hazard model to investigate the longitudinal patterns of student persistence in 

STEM majors at college. Compared to the logistic regression model, a discrete-time hazard 

model allowed me to estimate when students were most likely to experience a target event (e.g., 

college graduation with a STEM major) and to assess whether students persisted in their college 

STEM paths over the observed period. 

Research Questions 

The following research questions guided this study: 
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Research Question 1. Are secondary school students identified as high-achieving in math and 

science more likely to select postsecondary education paths in STEM compared with their 

peers? 

a. What is the probability that students identified as high-achieving select postsecondary 

education paths in STEM colleges? 

b. Are there any disparities in STEM entrance rates due to student-level (e.g., sex, SES, 

Race) or school-level variables (school-average SES, academic pressure)? 

c. Do mathematics self-efficacy and advanced courses in math and science during high 

school moderate the positive or negative effects of significant covariates? 

Research Question 2. After entering postsecondary STEM paths, when are students identified as 

high-achieving most likely to complete an undergraduate program in a STEM field? 

Which variables most significantly influence completion rates in postsecondary studies? 

a. What are the hazard probabilities that students identified as high-achieving graduate with 

a STEM major from a college or university? When are those students most likely to 

complete their undergraduate programs? 

b. Do any disparities in the student-level covariates result in different hazard probability 

functions? 

c. Do mathematics self-efficacy and advanced courses in math and science during high 

school moderate the positive or negative effects of significant covariates? 

Research Question 3. Are STEM undergraduate students who were identified as high-achieving 

in high school more likely to select graduate programs or occupations in STEM after 

college graduation compared with other STEM undergraduate students? 
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a. What is the probability that students identified as high-achieving select graduate 

programs or occupations in STEM after college graduation? 

b. Are there any disparities in the rates of the further persistence in STEM paths due to 

student-level or school-level variables? 

c. Do educational experiences during undergraduate programs (e.g., number of STEM 

courses taken, internship, research project) moderate the positive or negative effects of 

significant covariates? 

Data Set 

I used data from the Education Longitudinal Study of 2002 (ELS:2002), which includes 

data about a nationally representative cohort of U.S. students. The ELS:2002 was designed to 

investigate the transition of a national sample of 10th grade students through high school and 

into postsecondary education and the workplace (Ingels et al., 2014). The ELS:2002 dataset 

contains multiple variables collected from students, their parents, high school teachers, schools, 

and postsecondary institutions, as well as longitudinal data following the students through high 

school and their postsecondary education. Compared to other nationally representative 

longitudinal studies (e.g., National Longitudinal Study of the High School Class of 1972, High 

School and Beyond, National Educational Longitudinal Study of 1988, High School 

Longitudinal Study of 2009), the ELS:2002 is relatively recent, considering that the final follow-

up survey was completed in 2012, and it includes eight years of follow-up data after the students’ 

high school graduation. To address the research questions, I used the data files of ELS:2002/12 

Base Year to Third Follow-up Restricted data files with Postsecondary Transcripts. 
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Data collection 

The target population of the ELS:2002 was “spring-term sophomores in 2002 (excluding 

foreign exchange students) enrolled in schools” (Ingels et al., 2014, p. 20). The ELS:2002 

selected a sample using stratified cluster random sampling. Initially, 1,270 schools were selected, 

taking school characteristics into account to facilitate a nationally representative sample. Of 

1,220 eligible schools, 750 schools responded to the study request, with a weighted response rate 

of 68 percent. Weighted response rates were calculated using the ratio of the weighted number of 

completed surveys to the weighted number of in-scope sample cases (Ingels, Pratt, Rogers, 

Siegle, Stutts, & Owings, 2004). Twenty-six students per responding school were selected as 

sample students, but only 17,590 students were eligible given the definition of the target 

population. Of the eligible students, 15,360 students participated in the study, with an 

unweighted response rate 87.3 percent. The base year study of 2002 surveyed the students’ 

demographic information, achievements, and psychological states. Contextual data were also 

collected from the students’ parents, teachers, and school administrators using a survey. 

In the first follow-up study (2004), the sample was freshened, including eligible students 

from the base year sophomore cohort (n=16,530), as well as an additional cohort of seniors in 

2004 (n=240). The ELS:2002 senior cohort is overlapping but conceptually different from the 

sophomore cohort; the sophomore cohort consists of students who were enrolled in 10th grade in 

2002 and the senior cohort consists of 12th grade students who were enrolled in 2004. The 

sophomore cohort includes students who dropped out of school between 2002 and 2004, students 

who graduated early, and students who repeated a grade during the period (Ingels et al., 2005). 

However, since both cohorts are appropriate to address the research questions, and the variables 

of interest to this study were all collected after the first follow-up study (2004), I included the 
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senior cohort as well as the sophomore cohort so as to include as many students as possible. Of 

the eligible sample students, 14,930 students completed the survey and the unweighted response 

rate was 90.4 percent. High school transcripts of the participating students were collected in 

2004. 

The second follow-up survey in 2006 was administered to the eligible 15,890 students 

focusing on their postsecondary education and employment, and 14,150 students participated in 

the study. The final follow-up survey was conducted in 2012, six years after the second follow-

up survey (2006), and eight years after high school graduation (2004). Information was collected 

regarding the participants’ current status, postsecondary education, and employment. Of 15,720 

eligible members, 13,250 members participated in the final study. The unweighted response rate 

was 84.3 percent. Panel attrition rate in the final year study was 13.7 percent. Table 2 

summarizes sample response rates and panel attritions in the ELS:2002. 

Table 2 

Sample Responses and Panel Attritions in the ELS:2002 

High 
school 

BY F1 transcript F2 F3 

(Year of data collection) (2002) (2004) (2004) (2006) (2012) 

N of eligible students 17,590 16,520 16,370 15,890 15,720 

N of participating students 15,360 14,930 14,920 14,150 13,250 

Response rate 87.3% 90.4% 91.1% 89.0% 84.3% 

Attrition rate 2.8% 7.9% 13.7% 

Note. BY = base year; F = follow-up year. Attrition rate was calculated by the proportion of non-participating 
students in total students participating in the base year. All unweighted sample size numbers were rounded to the 
nearest ten. 
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Weights 

Due to the design of multi-stage probability sampling, I used a series of student-level and 

school-level weights to compensate for unequal selection probabilities and nonresponse. From a 

set of weights provided by the ELS:2002, I selected a student-level weight that was intended for 

analyses based on third-round follow-up data in combination with first-round and second-round 

follow-up data (see Table 7 for the list of variables in this study). The estimates, using the 

weight, represent approximations of the population of students enrolled in 10th grade in the 

spring of 2002 and the population of students enrolled in 12th grade in the spring of 2004 (Ingels 

et al., 2014). I also used a school-level weight for the estimation of multilevel logistic modeling. 

To incorporate the SAS command, PROC GLIMMIX, which I used for RQ 1 and RQ 3, a 

student-level scaled weight and a school-level weight needed to be specified. The scaled weight 

is the inverse of the conditional probability of selection, given that a school-level cluster was 

sampled. I calculated the scaled weights by the method suggested by Asparouhov (2006), which 

involves the following equation, where 𝑤௜௝ represents the unscaled weight: 

௡ೕ∗𝑤௜௝ = 𝑤௜௝ ൬ ൰. 
∑೔ ௪೔ೕ 

A variable list of weights is presented in Table 5. 

Sample 

Identification 

Out of a total of 13,250 students who completed their final surveys, students who 

achieved well in math and science during high school were identified using scores from 

standardized college entrance exams. I operationally defined a student identified as high-

achieving in math and science as one who scored in the 95th percentile or above in math or 

science (or both) in a college entrance exam or advanced level of 5 on the AP subject exam 
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(math/science). By definition, students identified as high-achieving were restricted to college-

bound students, but I simply use the term “students identified as high-achieving” to refer to them 

in this study. The rationales for using college entrance exam scores are as follows: (a) college 

entrance exams are standardized across the national cohort, (b) the exams are accessible to all 

students who intend to enter postsecondary education, as long as there is no equity issue 

concerning access, (c) scores from the exams reveal the college-readiness of students as well as 

their achievement and progress during secondary education. The latter, (c), is a desirable factor 

for identifying students as high-achieving from the perspective of talent development. Multiple 

test scores were used to identify high-achieving students, and those who met any one of the 

criteria were selected. The criteria for identifying high-achieving students were as follows: 

● An SAT math component score above the 95th percentile; 

● An ACT math component score above the 95th percentile; 

● SAT subject test scores in math (Mathematics 1, Mathematics 2) above the 95th 

percentile; 

● SAT subject test scores in science (Physics, Biology, Chemistry) above the 95th 

percentile; 

● An AP exam score of 5 (extremely well qualified) in math (Calculus, Statistics); 

● An AP exam score of 5 (extremely well qualified) in general science and computer 

science (Biology, Chemistry, Computer science, Environmental Science, Physics). 

Table 3 presents unweighted and weighted descriptive statistics of college entrance exam 

scores. It is noteworthy that 4,950 students did not have a score on college entrance exams; 

therefore, these students were excluded from identification. The unweighted statistics represent 

the estimates for sample students, and the numbers of students who took each exam are presented 
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in the first column of unweighted statistics. In terms of math component scores for SAT and 

ACT, the reported scores in the data set were scaled using the concordance method (Ingels et al., 

2014); thus, the scores may be higher or lower than the students’ actual SAT or ACT scores to 

compensate for the level of difficulty of these exams. The 95th-percentile scores in Table 3 

indicate the cut-off scores for identifying high-achieving students in math and science. The 

weighted estimates of the 95th-percentile scores were slightly lower than the unweighted 

estimates. Since the estimates using weights adjusted for disproportions in the sampling, I used 

the weighted estimates as the criteria scores for identifying high-achieving students in math and 

science. 
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Table 3 

Descriptive Statistics of College Entrance Exam Scores and Cutoff Scores for Identifying High-Achieving Students in Math and 

Science 

Unweighted Weighted 

Test Subject N M SD P95 M SE P95 

Estimate SE 

SAT Math 8,260 509.28 112.96 700 500.48 1.51 681.09 4.27 
ACT Math 8,260 21.57 5.28 31 21.17 0.07 29.85 0.14 

AP exam Biology 400 3.07 1.36 5 3.04 0.06 4.77 0.12 

Chemistry 260 2.73 1.33 5 2.74 0.08 4.53 0.17 
CS A 50 2.94 1.61 5 2.78 0.19 4.79 0.41 
CS B 20 2.68 1.53 5 2.78 0.17 4.32 NA 
Calculus AB 720 3.05 1.45 5 3.05 0.06 4.77 0.09 
Calculus BC 190 3.53 1.48 5 3.46 0.11 4.87 0.19 

PHY 120 2.70 1.38 5 2.62 0.07 4.36 0.10 
PHY CEM 40 2.86 1.59 5 2.56 0.09 4.65 0.13 
PHY ME 90 2.86 1.46 5 2.84 0.11 4.69 0.15 
Environmental 130 2.70 1.27 5 2.71 0.12 4.33 0.25 
Statistics 200 2.87 1.27 5 2.88 0.10 4.54 0.16 
Mathematics 1 650 583.77 95.01 730 571.38 4.17 715.50 4.49 
Mathematics 2 400 659.53 91.97 800 652.28 4.83 791.70 3.67 

SAT 
subject 

Physics 
Chemistry 

90 
90 

633.91 
608.54 

86.20 
105.41 

790 
770 

620.96 
587.45 

4.49 
8.12 

747.76 
760.08 

4.20 
13.66 

Biology 20 591.82 89.74 690 560.65 4.86 668.12 NA 
Note. P95 = 95th percentile score. CS = computer science, PHY = Physics, PHY CEM = Physics Electricity and Magnetism, PHY ME = Physics Mechanics. 
Note that 4,950 students did not have a score of college entrance exams in the dataset, weighted N = 1,362,031. All unweighted sample size numbers were 
rounded to the nearest ten. 
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Table 4 shows the unweighted and weighted numbers of students identified as high-

achieving by the criteria above. The numbers in Table 4, the students identified by each exam, 

include duplicates because some of the students took multiple exams for college entrance, and, 

among those students, some satisfied two or more of the identification criteria. The unweighted 

total number of students identified as high-achieving was 720, which represented 5.44% of the 

sample students. The weighted total number of students identified as high-achieving was 143,631 

(SD = 6,967), which was 4.37% of the population of students. 

Since none of the tests listed above were required for every high-school student, and 

equivalency does not exist between the tests, the equivalency of the different exam scores used 

for identification was uncertain. Furthermore, some students were identified by more than one of 

the criteria. To understand invariance among the exam scores, I calculated the mean ELS:2002 

mathematics assessment score for the group of students identified by each college entrance 

exam. The use of the ELS:2002 mathematics assessment was appropriate as the assessment was 

intended to be administered to all participating students in the ELS:2002, including non-college-

bound students. The exam aimed to measure student growth in mathematics achievement while 

minimizing ceiling effects (Ingels et al., 2014). Its components were constructed using previous 

assessments such as NELS:88, NAEP, and PISA. The assessment in the first follow-up year was 

administered to 87% of the student questionnaire sample (Ingels et al., 2005). The ELS:2002 

provided imputed data for student mathematics ability by model estimation using demographic 

variables (e.g., student sex, school type, parental education levels) as well as previous student 

abilities and aspirations. Figure 2 shows weighted estimates of the means and 95% confidence 

intervals of the ELS:2002 mathematics assessment scores corresponding to each college entrance 

exam score of students identified as high-achieving. The average score of all students identified 
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as high-achieving was 67.04, SE = .42, which was obviously higher than for non-identified 

students, M = 42.67, SE = .26. As seen in Figure 2, variances in the ELS:2002 assessment scores 

existed based on the college-exam groupings. But the figures show that the average math 

achievement scores of students, grouped by exam, were all high enough for the students to be 

regarded as high-achieving. Therefore, I kept using the identification criteria for students 

identified as high-achieving for the operational definitions. 
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Table 4 

Unweighted and Weighted Frequencies of the Identification by College Exam Score 

Test Subject 
SAT 

ACT 

AP 
exam 

SAT 
subject 

Math 

Math 

Biology 

Chemistry 

CS A 

CS B 

Calculus AB 

Calculus BC 

PHY 
PHY CEM 

PHY ME 

Environmental 

Statistics 

Mathematics 1 

Mathematics 2 

Physics 

Chemistry 

Biology 

Total (no duplicate) 

Unweighted 
N Percent 

510 3.81 

630 4.78 

30 0.22 

90 0.65 

10 0.09 

less than 10 0.02 

160 1.20 

70 0.56 

20 0.13 

10 0.07 

120 0.13 

less than 10 0.07 

20 0.17 

50 0.40 

30 0.24 

10 0.08 

less than 10 0.05 

less than 10 0.02 

720 5.44 

Weighted 

N Percent SE 
96,797 

123,596 

5,052 

15,935 

2,448 

248 

32,671 

15,021 

1,830 

857 

2,400 

1,888 

4,766 

6,893 

4,345 

1,110 

733 

258 

2.95 0.17 

3.76 0.20 

0.15 0.04 

0.48 0.07 

0.07 0.03 

0.01 0.01 

0.99 0.10 

0.46 0.07 

0.06 0.02 

0.03 0.01 

0.07 0.02 

0.06 0.02 

0.15 0.04 

0.21 0.04 

0.13 0.03 

0.03 0.01 

0.02 0.01 

0.01 0.00 

143,631 4.37 0.21 
Note. The number of students in each cell, except the total numbers, is duplicated because some of the students were identified by more than two different 
test scores. CS = computer science, PHY = Physics, PHY CEM = Physics Electricity and Magnetism, PHY ME = Physics Mechanics. All unweighted sample 
size numbers were rounded to the nearest ten. 
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Figure 2. Point Estimates and Confidence Intervals for the Average ESL:2002 Math Assessment 
Scores Corresponding to Each College Entrance Exam Score of Students Identified as High-
Achieving. The estimation was weighted. Error bars represent 95% confidence intervals. The 
point estimate for “NID” is the average math achievement score of non-identified students, and 
the point estimate for “HA” is the average math achievement score of students identified as 
high-achieving. 
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Sample composition 

Table 5 and Table 6 show the demographic information of students identified as high-

achieving and other students. Overall, the compositions were severely disproportionate in terms 

of student sex, race, and SES, particularly for the students identified as high-achieving. More 

male students were identified than female students (Figure 3); by weighted estimates, 5.59% of 

male students were identified, whereas 3.19% of female students were identified. The 

representation index (RI; Kitano & DiJiosia, 2002; Yoon & Gentry, 2009) was calculated to 

quantify the severity of underrepresentation (Figure 4). The RI is the ratio of the proportion of 

students identified as high-achieving from a given category (e.g., race, SES) to the proportion of 

students from that given category in total population. Given that female students comprised 

50.83 of total population but only 37.13% of female students were identified as high-achieving, 

the RI for female students is 0.73. An RI of less than 1.0 indicates underrepresentation, and an RI 

of greater than 1.0 indicates overrepresentation given an assumption that the proportion of a 

group of identified students in any categories should be equal to the proportion of the group in 

total population. The RI for male students was 1.28. 

In terms of race, it was obvious that students who were not White or Asian were 

underrepresented (Figure 5). Of the weighted number of students identified as high-achieving (N 

= 143,631 out of a total of 3,286,511), 0.88% were Black, 5.16% were Hispanic, and 2.2% were 

multiple races; in terms of proportions within each race, only 0.27% of Black, 1.39% of 

Hispanic, and 2.39% of multiple-race students were identified as high-achievers. The RIs also 

implied a severe underrepresentation by race, 0.06 for Black, 0.32 for Hispanic, 0.55 for 

multiple-race students whereas 3.54 for Asian and 1.28 for White students (Figure 6). The 

weighted number was not estimated for Native American students because of too small number 
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of identified students as high-achieving in the data set; Less than 10 students were identified as 

high-achieving out of 110 Native American students. From the results of the unweighted 

estimations, less than 10 students were identified out of 1,700 Black students. The numbers of 

identified Hispanic and multiple-race students were also small (approximately n = 30 and 20 

respectively, when rounded the unweighted numbers to the nearest ten). These numbers were too 

small to estimate the probabilities of dependent variables occurring by each race. However, this 

result was not surprising given the literature’s review that Black, Native American, and Hispanic 

students are traditionally underrepresented in STEM fields (Bailyn, 2003; Kulis & Sicotte,2002; 

NACME, N.D.; Wang, 2011). Based on prior studies (Bailyn, 2003; Kulis & Sicotte,2002; 

NACME, N.D.; Wang, 2011), I decided to merge these four races, Black, Hispanic, Native 

American, and mixed race, to perform the analyses for the main research questions. In contrast to 

these four racial groups, Asian and White students were identified as high-achievers by the 

criteria in much higher proportions. By weighted estimation, 15.44% of Asian students were 

identified as high achievers, and the proportion of Asian students out of the total number of 

students identified as high-achieving was 14.85%. Given that Asian students only composed 

4.2% of the population, this proportion was large. For White students, 5.58% were identified as 

high-achieving, and White students composed 76.92% of the population of students identified as 

high-achieving. 

The proportions based on the socioeconomic status of the students’ families were also 

imbalanced (Figure 7). Of the students identified as high-achieving, 67.57% were students with 

families in the first quartile of SES. In terms of proportions within each group, only 1.11% of 

students whose families were in the fourth quartile of SES were identified as high-achievers; 

1.58% of second-quartile students and 4.37% of third-quartile students were identified as high-
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achievers; whereas, 12.63% of the highest quartile students were identified as high achievers by 

the criteria of college entrance exams. The RI for students from families in the first quartile of 

SES was 0.15, but the RI for students from families in the fourth quartile of SES was 2.71 

(Figure 8). 
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Table 5 

Unweighted Frequencies and Proportions of the Sample by Sex, Race, and SES 

Identified as high-achieving Non-identified Total 

N Row% Col% N Row% Col% N Row% Col% 

Sex Female 290 4.13 39.94 6,690 95.87 53.40 6,980 100.00 52.67 

Male 430 6.90 60.06 5,840 93.10 46.60 6,270 100.00 47.33 

Race Asian 190 14.73 26.77 1,120 85.27 8.92 1,310 100.00 9.89 

Black 10 0.53 1.25 1,690 99.47 13.51 1,700 100.00 12.85 

Hispanic 30 1.54 4.02 1,860 98.46 14.81 1,890 100.00 14.23 

Multiple 20 3.56 3.05 600 96.44 4.76 620 100.00 4.66 

Native < 10 0.93 0.14 110 99.07 0.85 110 100.00 0.82 

White 470 6.12 64.77 7,160 93.88 57.15 7,630 100.00 57.56 

SES First 30 1.11 4.58 2,950 98.89 23.51 2,980 100.00 22.48 

Second 50 1.58 6.80 3,060 98.42 24.41 3,110 100.00 23.45 

Third 140 4.37 19.56 3,080 95.63 24.60 3,220 100.00 24.32 

Fourth 500 12.63 69.07 3,440 87.37 27.49 3,940 100.00 29.75 

Total 720 5.44 12,530 94.56 13,250 100.00 
Note. Row % indicates a proportion within sex, race, or SES. Col % indicates a proportion within an achievement group (i.e., high-achieving or non-identified 
students). All unweighted sample size numbers were rounded to the nearest ten. 
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Table 6 

Weighted Frequencies and Proportions of the Sample by Sex, Race, and SES 

Identified as High-achieving Non-identified Total 

N SD Row% Col% N SD Row% Col% N SD Row% Col% 

Sex Female 53,328 4,072 3.19 37.13 1,617,242 19,807 96.81 51.46 1,670,570 19,803 100 50.83 

Male 90,304 5,766 5.59 62.87 1,525,638 21,430 94.41 48.54 1,615,941 21,550 100 49.17 

Race Asian 21,326 1,701 15.44 14.85 116,778 4,170 84.56 3.72 138,104 4,345 100 4.20 

Black 1,258 524 0.27 0.88 468,635 13,168 99.73 14.91 469,893 13,178 100 14.30 

Hispanic 7,415 1,749 1.39 5.16 527,937 13,543 98.61 16.80 535,352 13,612 100 16.29 

Multiple 3,156 959 2.39 2.20 129,014 7,394 97.61 4.11 132,170 7,447 100 4.02 

Native NA NA NA NA 31,706 3,716 100.00 1.01 31,706 3,716 100 0.96 

White 110,475 6,508 5.58 76.92 1,868,811 19,082 94.42 59.46 1,979,286 18,897 100 60.22 

SES First 5,678 1,287 0.70 3.95 809,739 16,595 99.30 25.76 815,417 16,615 100 24.81 

Second 11,553 2,132 1.38 8.04 823,285 17,357 98.62 26.20 834,839 17,429 100 25.40 

Third 29,346 3,221 3.59 20.43 788,428 16,997 96.41 25.09 817,774 17,152 100 24.88 

Fourth 97,054 5,783 11.86 67.57 721,427 14,714 88.14 22.95 818,481 15,189 100 24.90 

Total 143,631 6,967 4.37 3,142,880 17,966 95.63 3,286,511 16,817 100 

Note. Row % indicates a proportion within sex, race, or SES. Col % indicates a proportion within an achievement group (i.e., high achievers or non-identified 
students). The weighted number of Native American students was not estimated because of too small number of Native American students identified as high-
achieving in the data set. 
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53,328 100% 

90% 

80% 

70% 

60% 

50% 

40% 

30% 

20% 

10% 

0% 
Female Male 

90,304 

1,617,242 1,525,638 

Not-identified identified 

Figure 3. Proportions of Students Identified as High-Achieving by Sex. The numbers represent 
the weighted frequencies of students for each category. Note that the total number of students is 
different by category: female = 1,670,570; male = 1,615,941. 

Figure 4. Representation Indices by Sex. The dotted line indicates a perfect proportion of 
representation. Error bars expanded to 95% confidence intervals. 
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1,258 7,415 3,156 100% 

90% 

80% 

70% 

60% 

50% 

40% 

30% 

20% 

10% 

0% 
White Asian Black Hispanic Multiple 

Not-identified 

110,475 

21,326 

1,868,811 116,778 468,635 527,937 129,014 

Identified 

Figure 5. Proportions of Students Identified as High-Achieving by Race. The numbers represent 
the weighted frequencies of students in each category. Note that the total number of students is 
different by category: White = 1,979,286; Asian = 138,104; Black = 469,893; Hispanic = 
535,352; Multiple = 132,170. The weighted number of Native American students was not 
estimated because of too small number of Native American students identified as high-achieving 
in the data set. 

Figure 6. Representation Indices by Race. The dotted line indicates a perfect proportion of 
representation. Error bars expanded to 95% confidence intervals. 
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5,678 11,553 29,346 100% 

90% 

80% 

70% 

60% 

50% 

40% 

30% 

20% 

10% 

0% 
First quartile Second quartile Third quartile Fourth quartile 

Not-identified 

97,054 

809,739 823,285 788,428 721,427 

Identified 

Figure 7. Proportions of Students Identified as High-Achieving by SES. The numbers represent 
the weighted frequencies of students for each category. Note that the total number of students is 
different by category: first quartile = 815,417; second quartile = 834,839; third quartile 
=817,774; fourth quartile = 818,481. 

Figure 8. Representation Indices by SES. The dotted line indicates a perfect proportion of 
representation. Error bars expanded to 95% confidence intervals. 
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Variables 

Student-level covariate variables 

This section describes how I defined and used student-level covariates for the analyses. 

Frequencies and proportions of students by student-level covariates are presented in a later 

section, Sample Composition. 

Female (Sex) 

A binary variable was used, taking “0” for male students and “1” for female students. 

Socioeconomic status (SES) 

The ELS:2002 data set contained a composite variable of socioeconomic status, 

constructed through a combination of mother’s education level, father’s education level, 

mother’s occupation, father’s occupation, and family income or income proxy. In other words, 

five components, mainly from parent data, were equally weighted and combined to indicate SES. 

If parent data were missing, student data were used to impute this information. I used a variable 

of quartile-coded SES that was available in the ELS:2002, where “1” indicated the lowest 

quartile and “4” indicated the highest quartile. 

Race 

I used a set of dummy variables of race included in the ELS:2002. In the data set, there 

were six categories of race: Asian, Black, Hispanic, Native American, White, and multiple races. 

I used the categories to understand the baseline frequencies. But, based on the results for the 

baseline frequencies, which revealed severe underrepresentation in Black, Hispanic, Native 

American, and other races (BHNO), I had to merge those underrepresented races. I present the 

baseline frequencies by race in the next chapter, Results. Therefore, I used three categories of 

race for the main analyses for the research questions: White, Asian, and BHNO. 
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School-level covariate variables 

School rate of the federal meal subsidy (SCMS) 

I used a variable (school percentage of students who received the federal meal subsidy: 

SCMS) showing the percentage of students in each school that receive the federal meal subsidy 

(free or reduced-price meals) to represent school-level poverty. A greater value indicates a larger 

proportion of students who received federal meal subsides in a school. For the participating 750 

schools, the average percentage of SCMS was 28.74. But it is noteworthy the variation was large 

(SD = 26.07) and the distribution was positively skewed (skewness = 0.79). The 25th percentile 

was 5, meaning that 25% of schools had 5 or less percent of students who received the federal 

meal subsidy. And the 75th percentile was 45, meaning that the other side of 25% of schools had 

45 or greater percent of students who received the federal meal subsidy. 

School climate: academic pressure (SCCL) 

I used five items to measure the climate of competitiveness at school: “teachers press 

students to achieve,” “learning is a high priority for students,” “students are encouraged to 

compete for grades,” “students are expected to do homework,” and “counselors/teachers 

encourage students to enroll in academic classes. The ELS:2002 asked school administrators to 

answer these questions using a 5-point Likert scale. Since no study had reported evidence of 

validity for the construct of school academic pressure using these items included in the 

ELS:2002, I investigated psychometric properties and the relation of academic pressure to 

overall achievement in mathematics before using the items in the study. The results for the 

psychometric properties are presented in the Results section. 



 
 

    

  

    

              

               

                 

          

           

         

               

                

                

             

             

             

            

              

      

    

               

               

                  

                

               

68 

Dependent variables 

Entrance into STEM fields 

This primary dependent variable of the study was coded using two criteria: (a) whether 

students had enrolled in a 4-year postsecondary institution (i.e., a college or university), and (b) 

whether students had selected a major in STEM. As stated, I used the CIP definition of STEM 

fields: mathematics, physical sciences, biological/life sciences (including agriculture and related 

sciences, natural resources and conservation, biological and biomedical sciences), computer and 

information sciences, and engineering and technologies (including engineering, engineering 

technologies, and science technology). I created two categories as follows: 0 = student has never 

selected a major in STEM or has never attended a postsecondary institution within eight years of 

high-school graduation; 1 = student has entered a college and has selected a major in STEM 

within eight years of high-school graduation. These categories were coded based on the 

postsecondary survey and postsecondary transcript data. A total of 1,030 students selected a 

major in STEM at a 4-year postsecondary institution, representing 7.77% of the participating 

students. From the weighted estimate, 34.98% of students identified as high-achieving and 

5.84% of non-identified students selected to enter in STEM. Detailed descriptive statistics of this 

variable are presented in Chapter 4. 

Persistence/graduation in STEM fields. 

To incorporate a discrete hazard model for persistence in STEM fields, three kinds of 

variables were needed: (a) a binary indicator of event, showing whether or not a student 

graduated in a STEM field, (b) a set of dummy variables covering the period from the initial time 

to the time of the graduation event, and (c) a binary indicator of censoring, showing whether 

students experienced the event during the observed period (i.e., right censored). In terms of the 
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binary indicator of event, “1” indicates graduation with a STEM major, and “0” includes a 

variety of drop-out cases from STEM majors: (a) college graduation with a non-STEM major, 

which implies one or more switches in major, (b) transferring to another college, and switching 

to a non-STEM major, and (c) dropping out from college completely. I restricted the sample only 

for students who had declared a STEM major as of 2006, in order to standardize the time metric, 

which is a requisite for incorporating hazard/survival modeling. A total of 600 students 

graduated from a 4-year postsecondary institution with a major in STEM at, representing 4.56% 

of the participating students. Based on the binary variable of STEM graduation, I created a 

dummy variable for each year in which a student received a bachelor’s degree with a STEM 

major: January 2006 through to January 2013. Consequently, a total of seven dummy variables 

was created. 

Further STEM persistence beyond undergraduate STEM programs 

I used two variables to identify whether students earned a graduate school degree or had 

an occupation in a STEM field after college graduation. Using a variable, “ever earned a 

postsecondary credential in a STEM field as of June 2013,” I considered the following answer 

suggestive of completion of a graduate school degree in STEM: “graduate credentials in a STEM 

field.” I also used a variable of “STEM occupation flag for student’s known current occupation 

as of F3” to determine further STEM persistence. By the operational definition of STEM in this 

study, I considered life and physical sciences, engineering, mathematics, and information 

technology to be STEM fields, but excluded social science, architecture, and health occupations. 

Of 13,250 respondents, approximately 2,820 skipped or missed the former question, and 2,320 

did the same with the later question. From weighted estimation, 0.39% of non-identified students 

and 6.08% of students identified as high-achieving had a graduate school degree in a STEM field 
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within eight years of graduating high school. In terms of occupations, 4.69% of non-identified 

students and 21.42% of students identified as high-achieving had a job in a STEM field after 

college graduation. 

Moderating variables 

Mathematics self-efficacy (MSE) 

The ELS:2002 contained five items measuring mathematics self-efficacy, which were 

measured in the base-year (Grade 10) and the first follow-up year (Grade 12). The items of the 

ELS:2002 were based on the PISA self-efficacy items (Ingels, Pratt, Rogers, Siegel, & Stutts, 

2004). The PISA study originally developed three items to assess self-efficacy, based around 

classroom activities in the general domain, but the ELS:2002 modified the original items and 

added further two. The ELS:2002 items were specific to a set of classroom tasks in mathematics, 

including mathematics text comprehension, comprehension of teacher instructions, completion 

of assignments, achievement in tests, and mastery of skills. A sample item is “I’m certain I can 

understand the most complex material presented by my math teacher.” (See Table 5 for all 

items). 

However, there is no study that provides validity evidence for this application of the 

general domain self-efficacy scale. Therefore, as a preliminary study, the factor structure, 

psychometric properties, and ability of the scale to predict math achievement scores were 

examined regarding validity evidence. After addressing the validity issue of the scale, I used the 

average scores from the reliable items measuring MSE in 12th grade. 

Advanced courses in mathematics and science (ADC) 

A variable was used representing the number of AP and IB courses related to math and 

science taken by students during high school. In the data set, students reported the number of AP 
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and/or IB courses in calculus, math, science, and computer science that they took while in high 

school. As I mentioned in the literature review, I selected AP and IB courses to represent 

advanced courses in high schools. Because these two programs provide the equivalent 

curriculum across schools, variations across programs are minimized (Burton et al., 2002; 

Kyburg, et al., 2007). 

STEM course credits in undergraduate programs (STCR) 

A variable representing the course credits in STEM taken in undergraduate programs was 

used. 

High-impact activities in undergraduate programs (HIGHIMP) 

I created a binary variable using two variables: (a) experience in the field, through an 

internship, co-op, field placement, student teaching position, or clinical assignment, and (b) 

experience working on a research project with a faculty member outside of the course/program 

requirements. 
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Table 7 

List of Variables in the Study 

Construct Description Measure Variable Name 

Dependent variable 

Entrance Declared a STEM major as of 2006 Major declared/undeclared F2B22 

Major as of 2006 F2B23A 

Graduation Attained a bachelor's degree in a 
STEM major, having declared a 
STEM major as of 2006 

Date of bachelor's degree 

STEM major/field-of-study indicator 

F3TZBACHLTDT 

F3TDSTEM1FLG 

Further persistence Entrance into a STEM graduate 
school 

Type of credential pursued when last 
attending PS school 

F3A13B 

Entrance into work related to a 
STEM major 

Ever had a job closely related to field 
of study 

F3B32 

Moderating variable 

HS mathematics self-
efficacy 

Average score of five items 
measuring mathematics 
self-efficacy 

Can do an excellent job on math tests 

Can understand difficult math texts 

Can understand difficult math classes 

F1S18A 

F1S18B 

F1S18C 

Can do an excellent job on math assignments F1S18D 

Can master skills in math class F1S18E 

(Continued) 
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Table 7 Continued 

Construct Description Measure Variable Name 

HS advanced courses in n of AP/IB courses taken in math Total AP/IB calculus F1RAPCA 
math and science and science 

Total AP/IB math courses F1RAPMA 

Total AP/IB science courses F1RAPSC 

Total AP/IB computer science courses F1RAPCS 

PSE STEM courses N of courses N of known STEM credits earned F3TZSTEM1ERN 

PSE high-impact activities Internship/co-op/field experience/student F3A14A 
teaching/clinical assignment 

Research project with faculty member outside F3A14B 
of course/program requirements 

Student-level covariates 

Sex Sex reported by student F1SEX 

Socioeconomic status A quartile coding of the composite score constructed from parental education, F1SES1QR 
family income, and parental occupations 

Race Black, Native Pacific Islander/Indian/Alaska, Hispanic F1RACE 

PS first year GPA GPA in first year of known attendance F3TZYR1GPA 

School-level covariates 

School-level Federal Meal % of student body receiving the federal meal subsidy (free/reduced-price lunch) F1A22A 
Subsidy 

(Continued) 
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Table 7 Continued 

Construct Description Measure Variable Name 

School climate: academic Teachers press students to achieve F1A38B 
pressure Learning is a high priority for students F1A38D 

Students are expected to do homework F1A38E 

Students are encouraged to compete for grades F1A38K 

Counselors/teachers encourage S to enroll in academic classes F1A38L 

Weight Panel weight, F1 and F3 HS transcript F3F1TSCWT 

School weight BYSCHWT 
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Analytic Techniques 

To address RQ 1, “Are secondary school students identified as high-achieving in math 

and science more likely to select postsecondary education paths in STEM compared with their 

peers?”, I estimated a multilevel logistic model to investigate the probabilities of attaining the 

desired dependent variables. RQ 2, “After entering postsecondary STEM paths, when are 

students identified as high-achieving most likely to complete an undergraduate program in a 

STEM field? Which variables most significantly influence completion rates in postsecondary 

studies?”, was analyzed using a discrete-time hazard model to estimate the probabilities of a 

hazard occurrence (graduation from an undergraduate program in a STEM field) on the discrete-

time trajectory defined by seven time points between January 2006 and January 2013, evenly 

spaced a year apart. RQ 3, “Are STEM undergraduate students who were identified as high-

achieving in high school more likely to select graduate programs or occupations in STEM after 

college graduation compared with other STEM undergraduate students?”, was analyzed using a 

multilevel logistic model. 

Because all participating students were nested in schools, I considered using multilevel 

modeling. However, since RQ 2 restricted the data to those students who entered a STEM 

undergraduate program by the second follow-up year (unweighted N = 1,030, 7.8%) to 

standardize the time metric, the number of students per school was reduced to an average of 

2.04, which made multilevel modeling ineligible (McNeish & Stapleton, 2016; Snijders & 

Bosker, 2012). Therefore, I used student-level models to address RQ 2. For the baseline models 

for RQ 1 and RQ 3, I estimated intraclass correlation coefficients (ICC) to examine school-level 

effects on each dependent variable. The estimated variances of school means on outcome 

variables were statistically examined to determine if they were significantly greater than zero 
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(Raudenbush & Bryk, 2002). If the ICCs and the estimated variances implied significant school-

level effects, I adopted multilevel modeling, nesting each student in a school. 

Preliminary analysis 

Understanding the baseline characteristics of the scales and the sampled students was 

essential in reliably interpreting the results of further analyses regarding the main research 

questions. Before I estimated models to address the main research questions, I investigated the 

psychometric properties of the scales to be used in the main analyses in terms of their validity 

evidence. In addition, I examined the baseline probabilities of individuals being identified as 

high-achieving students. I also presented, as preliminary analyses, the unweighted and weighted 

frequencies at which the dependent variables occurred, as well as unweighted estimates of 

descriptive statistics of moderating variables. 

Scale validation 

Psychometrically sound scales are prerequisite for conducting a statistical analysis. 

Among the variables of interest, mathematics self-efficacy (MSE) and school climate of 

academic pressure (SCCL) needed to be examined regarding their factor structure and 

psychometric properties. Therefore, I analyzed the two constructs and suggested evidence of 

validity regarding them. Given that both constructs already had theoretical backgrounds, I 

performed confirmatory factor analysis (CFA) to examine their factor structures. For both 

constructs, a one-factor model was specified and estimated. I evaluated goodness-of-fit indices 

for the model using multiple criteria (Vandenberg & Lance, 2000): .90 or above for the Tucker-

Lewis index (TLI; Tucker & Lewis, 1973), .06 or less for the root mean square error of 

approximation (RMSEA; Steiger, 1990), and .08 or less for the standardized root mean square 
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residual (SRMR; Bentler, 1995). I also evaluated item properties using factor loadings and by 

looking at internal consistency. 

In addition to factor analysis, I also examined whether the factor structure of MSE was 

equivalent between students identified as high-achieving and other students not identified as 

high-achieving sampled in the ELS:2002. This measurement invariance analysis investigated 

whether students identified as high-achieving had unique perceptions of MSE compared to their 

peers. Since SCCL was not rated by students, but by school administrators, I did not examine 

measurement invariance in terms of a school climate scale. I employed five sequences of the 

measurement invariance tests, as recommend by Brown (2015): (1) comparing the CFA models 

of each group, (2) testing equal form, (3) testing equal factor loadings, (4) testing equal indicator 

intercepts, and (5) testing equal factor variances. Since the chi-square test is sensitive, especially 

for invariance tests with large sample sizes (Kline, 2010; Sass, 2011), I used model fit difference 

tests to evaluate whether significant invariance existed between two nested models. A change of 

< −.010 in Comparative Fit Index (CFI) and >.015 in Root Mean Square Error of Approximation 

(RMSEA) indicated non-invariance between the groups (Chen, 2007). 

Finally, as evidence of the validity based on relations to other variables, I performed 

discriminant function analysis to investigate whether each item measuring mathematics self-

efficacy and the academic pressure of school climate predicted student achievement in math and 

science. In the model for MSE, the dependent variable was identification as a high-achiever in 

math and science. In the model for school climate, the binary dependent variable was school 

math achievement, which was defined using the school average of ELS:2002 mathematics 

assessment scores. The high-achieving group of schools included the top quartile of schools (N = 

120), and the other group included the other three quartiles of schools (N = 320). 
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Descriptive statistics of dependent and moderating variables 

Since the dependent variables in this study were all binary variables, I estimated the 

unweighted and weighted frequencies of achieving the three main dependent variables: entry into 

a STEM field, graduation, and further persistence in a STEM occupation or graduate school 

degree. The weighted estimates enabled me to gauge the proportions of the student population 

who experienced the dependent variables of interest. The weighted frequencies were also 

estimated for student-level covariates (sex, race, and SES), and I graphically presented the 

disproportions according to these covariates. For moderating variables, which were measured 

with ordinal or interval scales, means and standard deviations were estimated. 

Probabilities of students being identified as high-achievers 

In addition to descriptive statistics for dependent and moderating variables, I also 

examined the probabilities of students being identified as high-achievers in math and science, as 

a baseline investigation. The binary variable of identification was neither a dependent nor a 

moderating variable; thus, the main research questions did not address the probability of being 

identified as a high-achiever and did not address potential disproportionate representations of 

covariates. However, it could be hypothesized that achieving the 95th percentile in college 

entrance exams was disproportionate to student- and school-level covariates (e.g., sex, race, SES, 

SCFL), and that most high-school students were not able to control against any potential 

negative effects of those covariates on their STEM pathways. It was important to understand 

these baseline disparities among students identified as high-achieving so as to best interpret the 

results of the main research questions. 

To achieve this purpose, I performed a set of multilevel logistic analyses to estimate odds 

ratios indicating the extent to which students in each demographic category (e.g., female, Asian) 
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were likely to be identified as high-achievers rather than non-high-achievers. Since school-level 

covariates were also considered, I first estimated the ICC with a null (baseline) model of a two-

level logistic model. 

Multilevel logistic regression model 

A logistic regression model estimates the probability that a binary dependent variable 

occurred (𝑦௜௝ = 1). Given that the dependent variable is coded with 0 and 1, the group-dependent 

probability is 

ே ௡ 
1 

𝑃෠ = ෍ ෍ 𝑌௜௝ 𝑆 
௝ୀଵ ௜ୀଵ 

where S is the total sample size, N is the number of groups, and n is the number of individuals in 

group j (Snijders & Bosker, 2013). Since research questions 1 and 3 concern comparing 

probabilities in terms of covariates and identification, I estimated the odds ratios using the 

estimated log-odds. The odds represent the ratio of the probability of success to the probability of 

failure: 

Odds = P / (1 − P). 

For example, if the probability of a female student’s entrance into a STEM field is 0.2, the odds 

are 0.2/0.8 = 0.25, which means that the ratio of the probability of entrance to the probability of 

non-entrance for female students is 1/4. The odds ratio is the ratio between odds of this kind. If 

the probability of a female student’s entrance is compared to the probability of a male student’s, 

the odds ratio is 

ைௗௗ௦೑೐೘ೌ೗೐ ௉೑೐೘ೌ೗೐/(ଵି௉೑೐೘ೌ೗೐)
Odds ratio = = .

ைௗௗ௦೘ೌ೗೐ ௉೘ೌ೗೐/(ଵି௉೘ೌ೗೐) 
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Using logistic regression modeling, I first estimated the log-odds of student entrance into 

postsecondary STEM paths as a function of predictors. The log-odds are the transformed 

probabilities using logarithms, defined by: 

logit(P) = ln( 
௉

).
ଵି௉ 

The odds ratio can also be computed using the exponentiated log-odds of the predictors: 

Odds ratio = exp{logit(γ)} 

where logit(γ) is the log-odds of the predictor. For example, if the log-odds of the variable of sex 

for STEM entrance are 1, the odds ratio for the variable is exp(1) = 2.72, which implies that the 

odds of female students are 2.72 times the odds of male students entering into STEM fields. 

Using the estimated log-odds, I estimated odds ratios to enable comparisons between groups. 

In a baseline model (Model A), only a random intercept was included, and the odds 

probability was estimated: 

୔୰(௬೔ೕୀଵ|௫೔ೕ)
𝑙𝑜𝑔𝑖𝑡(𝑦௜௝ = 1|𝑥௜௝) = logit ൬ ൰ = 𝛽଴ + 𝑢௝,

ଵି୔୰(௬೔ೕୀଵ|௫೔ೕ) 

where i represents an individual, j represents a school, 𝛽଴ indicates the overall mean probability 

on a logistic scale, and 𝑢௝ is the school-level residual. The dependent variable was the binary 

variable of entrance into postsecondary STEM fields. Given that school-level residual variance 

was estimated on a logistic scale while individual-level residual variance was on a probability 

scale in the multilevel logistic modeling, the individual-level variance was corrected using the 

following equation, 

σୣ
ଶ = πଶ/3, 

which gives the variance of standard logistic distribution. The corrected variance was used to 

calculate the intraclass correlation coefficient (ICC, Snijders & Bosker, 1999). In this study, the 

ICC for the baseline model was calculated by the formula 



 
 

    

  

                

           

                

         

     

  

    

            

        

   

          

                 

               

                  

             

              

               

              

              

81 

𝜏଴
ଶ 

ICC = 
𝜏଴

ଶ + πଶ/3 

where 𝜏଴
ଶ is the intercept variance and 𝜏଴ is the level-two standard deviation of 𝑢௝ . 

To address RQ 1, estimating the probabilities of high-achievers selecting postsecondary 

educational paths in STEM, compared with their peers, I added a variable to Model B that 

students identified as high-achieving (HA), which was defined as 

𝑙𝑜𝑔𝑖𝑡 ( 𝑦௜௝) = 𝛽଴௝ + 𝛽ଵ𝐻𝐴௜ 

𝛽଴௝ = 𝛾଴଴ + 𝑢଴௝ 

𝛽ଵ = 𝛾ଵ଴. 

A model adding student-level and school-level covariates was defined as Model C: 

𝑙𝑜𝑔𝑖𝑡 ( 𝑦௜௝) = 𝛽଴௝ + 𝛽ଵ𝐻𝐴௜ + 𝛽ଶ𝑆𝑒𝑥௜ + 𝛽ଷ𝐴𝑠𝑖𝑎𝑛௜ + 𝛽ସ𝐵𝐻𝑁𝑂௜ + 𝛽ହ𝑆𝐸𝑆௜ 

𝛽଴௝ = 𝛾଴଴ + 𝛾଴ଵ𝑆𝐶𝑀𝑆௝ + 𝛾଴ଶ𝑆𝐶𝐴𝑇௝ + 𝑢଴௝ 

𝛽௞ = 𝛾௞଴ for the remaining k = 1 through 5. 

The variable of race was input as a dummy variable. White was the reference group, and Black, 

Hispanic, Native American, and other races (BHNO) were categorized into a single group due to 

the small number of identified students in each one. Asian was the third group. In Model D, after 

examining the effects of the covariates, I added two-way interaction terms between identification 

and each covariate to examine whether the effects of the covariates differed for students 

identified as high-achieving and those not identified as such. Then, in Model E, I included 

moderating variables, MSE and advanced courses in math and science (ADC), and their two-way 

interaction effects with each covariate, in addition to the variables examined in Model D. 
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Model F was the final model. Based on the results of Model E, I added three-way 

interaction terms for identification, each covariate, and each moderator, and the significant 

variables remained in the final model. A possible full model is as follows: 

𝑙𝑜𝑔𝑖𝑡 ൫ 𝑦௜௝൯ = 𝛽଴௝ + 𝛽ଵ𝐻𝐴௜ + 𝛽ଶ𝑆𝑒𝑥௜ + 𝛽ଷ𝐴𝑠𝑖𝑎𝑛௜ + 𝛽ସ𝐵𝐻𝑁𝑂௜ + 𝛽ହ𝑆𝐸𝑆௜ + 𝛽଺𝑀𝑆𝐸௜ + 

𝛽଻𝐴𝐷𝐶௜ + 𝛽଼𝐻𝐴 ∗ 𝑆𝑒𝑥௜ + 𝛽ଽ𝐻𝐴 ∗ 𝐴𝑠𝑖𝑎𝑛௜ + 𝛽ଵ଴𝐻𝐴 ∗ 𝐵𝐻𝑁𝑂௜ + 

𝛽ଵଵ𝐻𝐴 ∗ 𝑆𝐸𝑆௜ + 𝛽ଵଶ𝐻𝐴 ∗ 𝑀𝑆𝐸௜ + 𝛽ଵଷ𝐻𝐴 ∗ 𝐴𝐷𝐶௜ + 𝛽ଵସ𝑀𝑆𝐸 ∗ 𝑆𝑒𝑥௜ + 

𝛽ଵହ𝑀𝑆𝐸 ∗ 𝐴𝑠𝑖𝑎𝑛௜ + 𝛽ଵ଺𝑀𝑆𝐸 ∗ 𝐵𝐻𝑁𝑂௜ + 𝛽ଵ଻𝑀𝑆𝐸 ∗ 𝑆𝐸𝑆௜ + 

𝛽ଵ଼𝐴𝐷𝐶 ∗ 𝑆𝑒𝑥௜ + 𝛽ଵଽ𝐴𝐷𝐶 ∗ 𝐴𝑠𝑖𝑎𝑛௜ + 𝛽ଶ଴𝐴𝐷𝐶 ∗ 𝐵𝐻𝑁𝑂௜ + 𝛽ଶଵ𝐴𝐷𝐶 ∗ 

𝑆𝐸𝑆௜+𝛽ଶଶ𝐻𝐴 ∗ 𝑀𝑆𝐸 ∗ 𝑆𝑒𝑥௜ + 𝛽ଶଷ𝐻𝐴 ∗ 𝑀𝑆𝐸 ∗ 𝐴𝑠𝑖𝑎𝑛௜ + 𝛽ଶସ𝐻𝐴 ∗ 

𝑀𝑆𝐸 ∗ 𝐵𝐻𝑁𝑂௜ + 𝛽ଶହ𝐻𝐴 ∗ 𝑀𝑆𝐸 ∗ 𝑆𝐸𝑆௜ + 𝛽ଶ଺𝐻𝐴 ∗ 𝐴𝐷𝐶 ∗ 𝑆𝑒𝑥௜ + 

𝛽ଶ଻𝐻𝐴 ∗ 𝐴𝐷𝐶 ∗ 𝐴𝑠𝑖𝑎𝑛௜ + 𝛽ଶ଼𝐻𝐴 ∗ 𝐴𝐷𝐶 ∗ 𝐵𝐻𝑁𝑂௜ + 𝛽ଶଽ𝐻𝐴 ∗ 𝐴𝐷𝐶 ∗ 

𝑆𝐸𝑆௜ + 𝛽௞௝ 

𝛽଴௝ = 𝛾଴଴ + 𝛾଴ଵ𝑆𝐶𝑀𝑆௝ + 𝛾଴ଶ𝑆𝐶𝐴𝑇௝ + 𝑢଴௝ 

𝛽௞௝ = 𝛾ଵଵ𝐻𝐴 ∗ 𝑆𝐶𝑀𝑆௜௝ + 𝛾ଵଶ𝐻𝐴 ∗ 𝑆𝐶𝐴𝑇௜௝ + 𝛾ହଵ𝑀𝑆𝐸 ∗ 𝑆𝐶𝑀𝑆௜௝ + 𝛾ହଶ𝑀𝑆𝐸 

∗ 𝑆𝐶𝐴𝑇௜௝ + 𝛾଺ଵ𝐴𝐷𝐶 ∗ 𝑆𝐶𝑀𝑆௜௝ + 𝛾଺ଶ𝐴𝐷𝐶 ∗ 𝑆𝐶𝑀𝑆௜௝ + 𝛾ହଷ𝐻𝐴 ∗ 𝑀𝑆𝐸 

∗ 𝑆𝐶𝑀𝑆௜௝ + 𝛾ହସ𝐻𝐴 ∗ 𝑀𝑆𝐸 ∗ 𝑆𝐶𝐴𝑇௜௝ + 𝛾଺ଷ𝐻𝐴 ∗ 𝐴𝐷𝐶 ∗ 𝑆𝐶𝑀𝑆௜௝ 

+ 𝛾଺ସ𝐻𝐴 ∗ 𝐴𝐷𝐶 ∗ 𝑆𝐶𝑀𝑆௜௝ 

𝛽௞ = 𝛾௞଴ for the remaining k = 1 through 29. 

All categorical and continuous variables were grand-mean centered for better 

interpretability. Each model was evaluated by a likelihood-ratio test and goodness-of-fit indices 

to determine which predictors would remain in the final model. I adopted the multiple imputation 

method to treat missing data. In doing so, I created five imputed datasets for the analyses and 

merged the estimated coefficients using PROC MIANALYZE in the SAS software. The 
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estimated model fits (deviance tests) for each piece of imputed data had to be combined by the 

methods suggested by Little and Rubin (2002). The combined test statistic is as follows: 

̅𝑀𝐶 
− (𝑀 − 1)𝑉 

𝑞 ሚ𝐶 = ,
𝑀 + (𝑀 + 1)𝑉 

where M is the number of imputed data, q is the degrees of freedom, and V is the sample 

variance of the square root, which was calculated by 

ଵ തതതതതଶெ𝑉 = ∑ (ඥ𝐶௠ − √𝐶) .௠ୀଵ ெିଵ 

Each subsequent model was compared with a saturated model using deviance statistics; if the 

difference in the deviance statistics between the two nested models was significant, the 

subsequent model provided a better fit than the previous model (Snijders & Bosker, 1999). I also 

reported the average Bayesian Information Criterion (BIC) of the five pieces of imputed data to 

complement the deviance statistics. BIC is particularly useful when any two models are 

compared, even if they are not nested. If both model fits of a subsequent model decrease in 

comparison with the previous model, the subsequent model is supported. 

A similar set of multilevel logistic models were estimated to address RQ 3, “Are STEM 

undergraduate students who were identified as high-achieving in high school more likely to 

select graduate programs or occupations in STEM after college graduation compared with other 

STEM undergraduate students?” In this case, the odds were defined according to the persistence 

of students in STEM, as shown through entrance into STEM occupations or graduate studies 

after college graduation. A further factor in this case was the addition of moderating variables 

from students’ undergraduate programs (credits of STEM courses taken [STCR], high impact 

activities [HIMP]) instead of high-school experiences (MSE, ADC). The possible final full 

model was: 
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𝑙𝑜𝑔𝑖𝑡 ൫ 𝑦௜௝൯ = 𝛽ଵ𝐻𝐴௜ + 𝛽ଶ𝑆𝑒𝑥௜ + 𝛽ଷ𝐴𝑠𝑖𝑎𝑛௜ + 𝛽ସ𝐵𝐻𝑁𝑂௜ + 𝛽ହ𝑆𝐸𝑆௜ + 𝛽଺𝑀𝑆𝐸௜ + 

𝛽଻𝐴𝐷𝐶௜ + 𝛽଼𝐻𝐴 ∗ 𝑆𝑒𝑥௜ + 𝛽ଽ𝐻𝐴 ∗ 𝐴𝑠𝑖𝑎𝑛௜ + 𝛽ଵ଴𝐻𝐴 ∗ 𝐵𝐻𝑁𝑂௜ + 

𝛽ଵଵ𝐻𝐴 ∗ 𝑆𝐸𝑆௜ + 𝛽ଵଶ𝐻𝐴 ∗ 𝑆𝑇𝐶𝑅௜ + 𝛽ଵଷ𝐻𝐴 ∗ 𝐻𝐼𝑀𝑃௜ + 𝛽ଵସ𝑆𝑇𝐶𝑅 ∗ 

𝑆𝑒𝑥௜ + 𝛽ଵହ𝑆𝑇𝐶𝑅 ∗ 𝐴𝑠𝑖𝑎𝑛௜ + 𝛽ଵ଺𝑆𝑇𝐶𝑅 ∗ 𝐵𝐻𝑁𝑂௜ + 𝛽ଵ଻𝑆𝑇𝐶𝑅 ∗ 𝑆𝐸𝑆௜ + 

𝛽ଵ଼𝐻𝐼𝑀𝑃 ∗ 𝑆𝑒𝑥௜ + 𝛽ଵଽ𝐻𝐼𝑀𝑃 ∗ 𝐴𝑠𝑖𝑎𝑛௜ + 𝛽ଶ଴𝐻𝐼𝑀𝑃 ∗ 𝐵𝐻𝑁𝑂௜ + 

𝛽ଶଵ𝐻𝐼𝑀𝑃 ∗ 𝑆𝐸𝑆௜+𝛽ଶଶ𝐻𝐴 ∗ 𝑆𝑇𝐶𝑅 ∗ 𝑆𝑒𝑥௜ + 𝛽ଶଷ𝐻𝐴 ∗ 𝑆𝑇𝐶𝑅 ∗ 𝐴𝑠𝑖𝑎𝑛௜ + 

𝛽ଶସ𝐻𝐴 ∗ 𝑆𝑇𝐶𝑅 ∗ 𝐵𝐻𝑁𝑂௜ + 𝛽ଶହ𝐻𝐴 ∗ 𝑆𝑇𝐶𝑅 ∗ 𝑆𝐸𝑆௜ + 𝛽ଶ଺𝐻𝐴 ∗ 

𝐻𝐼𝑀𝑃 ∗ 𝑆𝑒𝑥௜ + 𝛽ଶ଻𝐻𝐴 ∗ 𝐻𝐼𝑀𝑃 ∗ 𝐴𝑠𝑖𝑎𝑛௜ + 𝛽ଶ଼𝐻𝐴 ∗ 𝐻𝐼𝑀𝑃 ∗ 𝐵𝐻𝑁𝑂௜ + 

𝛽ଶଽ𝐻𝐴 ∗ 𝐻𝐼𝑀𝑃 ∗ 𝑆𝐸𝑆௜ + 𝛽௞௝ 

𝛽଴௝ = 𝛾଴଴ + 𝛾଴ଵ𝑆𝐶𝑀𝑆௝ + 𝛾଴ଶ𝑆𝐶𝐴𝑇௝ + 𝑢଴௝ 

𝛽௞௝ = 𝛾ଵଵ𝐻𝐴 ∗ 𝑆𝐶𝑀𝑆௜௝ + 𝛾ଵଶ𝐻𝐴 ∗ 𝑆𝐶𝐴𝑇௜௝ + 𝛾ହଵ𝑆𝑇𝐶𝑅 ∗ 𝑆𝐶𝑀𝑆௜௝ + 𝛾ହଶ𝑆𝑇𝐶𝑅 

∗ 𝑆𝐶𝐴𝑇௜௝ + 𝛾଺ଵ𝐻𝐼𝑀𝑃 ∗ 𝑆𝐶𝑀𝑆௜௝ + 𝛾଺ଶ𝐻𝐼𝑀𝑃 ∗ 𝑆𝐶𝑀𝑆௜௝ + 𝛾ହଷ𝐻𝐴 

∗ 𝑆𝑇𝐶𝑅 ∗ 𝑆𝐶𝑀𝑆௜௝ + 𝛾ହସ𝐻𝐴 ∗ 𝑆𝑇𝐶𝑅 ∗ 𝑆𝐶𝐴𝑇௜௝ + 𝛾଺ଷ𝐻𝐴 ∗ 𝐻𝐼𝑀𝑃 

∗ 𝑆𝐶𝑀𝑆௜௝ + 𝛾଺ସ𝐻𝐴 ∗ 𝐻𝐼𝑀𝑃 ∗ 𝑆𝐶𝑀𝑆௜௝ 

𝛽௞ = 𝛾௞଴ for the remaining k = 1 through 29. 

The same method as described above was used to evaluate each model to determine the 

predictors that would remain in the final model. 

Discrete-time hazard model 

A discrete-time hazard model enables estimation of the hazard probability of an event 

occurrence (e.g., graduation from postsecondary education with a STEM major) and 

investigation of when the event is particularly likely to occur, as well as whether those 

occurrences increase, decrease, or remain constant over time (Allison, 1982; Singer & Willett, 

1993). Note that “hazard” in this study refers to a positive outcome, graduation from 
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postsecondary education with a STEM major, and “survivor” refers to a negative outcome, not 

graduation from postsecondary education with a STEM major. To address RQ 2, I estimated a set 

of discrete-time hazard functions with a maximum likelihood method (Barber, Murphy, Axinn, 

& Maples, 2000; Singer & Willett, 2003). Note that I included in the sample only those who 

graduated high school on time and who had entered STEM fields as of 2006, in order to 

standardize the time metric, because it was a requisite for incorporating hazard modeling. In this 

model, the hazard probability is defined as the probability that a student graduated from a 

postsecondary education institution with a STEM major within eight years of high school 

graduation. The hazard function is as follows: 

𝑛 𝑒𝑣𝑒𝑛𝑡𝑠 𝑗 
ℎ൫𝑡௝൯ = 

𝑛 𝑎𝑡 𝑟𝑖𝑠𝑘 𝑗 

where 𝑛 𝑒𝑣𝑒𝑛𝑡𝑠 𝑗 represents the number of students who experience the event in time 

period 𝑗, assuming that the event has not occurred before, and 𝑛 𝑎𝑡 𝑟𝑖𝑠𝑘 𝑗 represents the number 

of students at risk during time period 𝑗. The survivor probability, S(𝑡௝), is the probability that an 

individual did not experience the hazard event (college graduation in STEM) during the observed 

period. In this case, “survivor” refers to a student who did not graduate during the observed 

period. 

The time metric was a year, and I created binary event indicators during the observed 

period, D, using the data provided in terms of the month and year of college graduation. A total 

of seven event indicators were created, one for each year between January 2006 and January 

2013. 

Before estimating a set of hazard models for students identified as high-achieving (RQ 2), 

I estimated the baseline hazard probabilities for all the students, including non-identified 
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students, who had entered STEM fields as of 2006, and I examined whether the hazard and 

survivor probabilities differed by identification. 

To address the main research question, I restricted the sample only to college bound 

students identified as high-achieving. I estimated the log hazard odds of the event, based on 

logistic regression models. To begin with, a baseline model (Model A) was fitted with no 

covariate, 

ℎ൫𝑡௜௝൯ 
𝐿𝑜𝑔𝑖𝑡ൣℎ൫𝑡௜௝൯൧ = 𝑙𝑜𝑔 ቈ ቉ = 𝛼ଵ𝐷ଵ௜௝ + 𝛼ଶ𝐷ଶ௜௝ + ⋯ + 𝛼଻𝐷଻௜௝ = 𝛽଴௝ 

1 − ℎ൫𝑡௜௝൯ 

where α is the intercept representing the log odds of the event occurrence, and D is a 

dummy variable representing event occurrence at time t. Student-level covariates and moderators 

were added to the subsequent model. Model B included student-level covariates, and I added two 

moderators and their interactions with covariates in Model C. Only significant variables were 

remained in the final model, Model D. The possible full model is as follows: 

𝐿𝑜𝑔𝑖𝑡[ℎ(𝑡௜)] = 𝛼ଵ𝐷ଵ௜ + 𝛼ଶ𝐷ଶ௜௝ + ⋯ + 𝛼଻𝐷଻௜௝ + 𝛽ଵ𝑆𝑒𝑥௜ + 𝛽ଶ𝑅𝑎𝑐𝑒௜ + 𝛽ଷ𝑆𝐸𝑆 + 

𝛽ସ𝑀𝑆𝐸௜ + 𝛽ହ𝐴𝐷𝐶௜௝ +𝛽଺𝑆𝑒𝑥 ∗ 𝑀𝑆𝐸௜ + 𝛽଻𝑅𝑎𝑐𝑒 ∗ 𝑀𝑆𝐸௜ + 𝛽଼𝑆𝐸𝑆 ∗ 𝑀𝑆𝐸௜ + 

𝛽ଽ𝑆𝑒𝑥 ∗ 𝐴𝐷𝐶௜ + 𝛽ଵ଴𝑅𝑎𝑐𝑒 ∗ 𝐴𝐷𝐶௜ + 𝛽ଵଵ𝑆𝐸𝑆 ∗ 𝐴𝐷𝐶௜. 

In this study, a plot for fitted survival functions provides the information about how many 

more and how much faster a group of students graduated with a STEM major than the other 

group of students, whereas a plot for fitted hazard functions is useful to understand when the 

graduation was most likely to happen. Therefore, for the baseline estimation, I presented both 

types of plots. For comparing between groups, I presented fitted survival functions only. 
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CHAPTER 4 RESULTS 

Preliminary Analysis 

In this section, I present preliminary results. I investigated the psychometric properties of 

the scales to be used in the main analyses in terms of their validity evidence and examined the 

baseline probabilities of individuals being identified as high-achieving students. 

Scale validation 

Mathematics self-efficacy questionnaire 

Confirmatory factor analysis 

I examined the factor structure and internal consistency of the Mathematics Self-Efficacy 

Questionnaire (MSEQ; Ingels et al., 2004) to collect evidence of validity based on the internal 

structure. Since the MSE construct already had a theoretical background, I performed 

confirmatory factor analysis. A hypothetical one-factor model was specified and estimated using 

Mean- and Variance-Adjusted Maximum Likelihood (MLMV). Descriptive statistics, inter-item 

Pearson correlations, and covariance matrices that were used in the analyses are presented in 

Table 8. 
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Table 8 

Descriptive Statistics and Inter-Item Correlation/Covariance Matrix for Mathematics Self-Efficacy Questionnaire 

Response Percentage Correlation/Covariance 

Item 1 2 3 4 M SD Skew Kurt MSE1 MSE2 MSE3 MSE4 MSE5 

MSE1 8.8 42.8 30.0 18.4 2.58 0.89 -0.82 0.17 -- .55 .54 .52 .56 

MSE2 15.4 43.7 28.2 12.8 2.38 0.89 -0.68 0.24 .70 -- .62 .49 .55 

MSE3 14.4 40.5 29.8 15.3 2.46 0.92 -0.80 0.15 .67 .75 -- .51 .57 

MSE4 5.3 29.3 39.1 26.4 2.86 0.87 -0.80 -0.23 .68 .63 .64 -- .56 

MSE5 8.3 32.7 34.0 25.0 2.76 0.93 -0.93 -0.14 .69 .66 .67 .70 --

Note. For the correlation/covariance matrix, the left side of the diagonal represents inter-item correlation coefficients and the right side represents covariance 
coefficients. MSE1= can do excellent job on math tests; MSE2 = can do excellent job on math tests; MSE3 = can understand difficult math class; MSE4 = 
can do excellent job on math assignments; MSE5 = can master math class skills. The anchors of the scale were: 1 = almost never; 2 = sometimes; 3 = often; 
4 = almost always. Unweighted sample size was 10,230 when rounded to the nearest ten. 
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Model fit statistics for the one-factor model (Model 1) are presented in Table 9. The 

model fit statistics mostly indicated an acceptable fit (CFI = .980, TLI = .960, SRMR = .020, 

RMSEA = .111, 90% CI [.104, .118]), but RMSEA exceeded the recommended criterion for an 

adequate model fit: a value less than .80 (Vandenberg & Lance, 2000). Given that the 

justification of a model is not solely based on overall model fits, but has to also rely on localized 

areas of strain and the interpretability of the model (Brown, 2015), I also checked modification 

indices (MI) and factor loadings to evaluate the one-factor model (Model 1). The modification 

indices implied that an item, MSE2, had correlated errors with other items: MI = 534.10 with 

MSE3, MI = 202.43 with MSE4, and MI = 122.84 with MSE5. Factor loadings for the five items 

ranged from .69 to .77. 

Based on the results, I modified the model in two ways; in Model 2, I specified a correlated 

error between MSE2 and MSE3, and in Model 3, I excluded MSE2 completely. Model 2 and 

Model 3 obviously showed better fits than Model 1 (Model 2, CFI = .996, TLI = .989, SRMR = 

.010, RMSEA = .058, 90% CI [.050, .067]; Model 3, CFI = .999, TLI = .996, SRMR = .005, 

RMSEA = .037, 90% CI [.026, .049]), which implied that MSE2 deteriorated the model fit of 

Model 1, due to correlated errors with other variables. Correlated errors usually exist between 

items that are similarly worded, reverse-worded, or differentially inclined to social desirability 

(Brown, 2015). In fact, the wording and the meaning of MSE2 (can understand difficult math texts) 

were similar to other items (e.g., can understand difficult math classes). Since correlated errors 

imply the interdependence of errors among items (Brown, 2015), a factor model with correlated 

errors might not be a preferred model, particularly if there is no theoretical background supporting 

the correlated errors. Therefore, I decided to exclude MSE2 from the scale, and Model 3 was the 

final model for MSE (CFI = .999, TLI = .996, SRMR = .037, RMSEA = .037, 90% CI [.026, 



 
 

    

               

    

  

  

          

          

          

          

          

                    
               

 

  

            

  
 
  

 
  
 

  
   

 

 
 

     

 
     

     

     

 

  

              

           

                 

                 

                

90 

.049]). Factor loadings and the internal consistency coefficient for Model 3 (Cronbach’s α = .89) 

are presented in 

Table 10. 

Table 9 

Model Fit Statistics for the Factor Models of Mathematics Self-Efficacy 

χ2 df CFI TLI RMSEA [90% CI] SRMR 

Model 1 631.984 5 0.980 0.960 0.111 [.104, .118] 0.020 

Model 2 143.633 4 0.996 0.989 0.058 [.050, .067] 0.010 

Model 3 29.698 2 0.999 0.996 0.037 [.026, .049] 0.005 

Note. Model 1 is a 1-factor model specified with all five items; Model 2 is a 1-factor model specified with 
correlated errors between MSE2 and MSE3; Model 3 is a 1-factor model excluding MSE2. 

Table 10 

Factor Loadings and Internal Consistency of the Final Model of Mathematics Self-Efficacy 

Factor 
loading SE 

Corrected 
item-total 
correlation 

Cronbach’s 
α if item 
deleted 

Cronbach’s 
α 

MSE1 0.73 0.01 0.77 0.86 

MSE3 

MSE4 

0.73 

0.71 

0.01 

0.01 

0.74 

0.76 

0.87 

0.86 
0.89 

MSE5 0.78 0.01 0.78 0.85 

Measurement invariance 

In addition to factor analysis, I examined the measurement invariance of the MSEQ 

between students identified as high-achieving and non-identified students sampled in the 

ELS:2002. A factor model with four items was estimated for each of the two groups (RMSEA > 

.000, 90% CI [.000, .080], CFI = 1.000 for high-achievers, RMSEA = .036, 90% CI [.024, .048], 

CFI = .999 for non-identified students). Table 11 summarizes the results of a set of measurement 
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invariance tests. The model fits from equal form testing, in which two separate models are 

simultaneously tested with two groups, were at acceptable levels (RMSEA = .032, 90% CI [.020, 

.044], CFI = .999). Based on the demonstrated equality of equal form, I tested the equality of 

factor loadings by restricting all factor loadings equally across the two groups. The model fit 

difference tests indicated acceptable levels of invariance (∆RMSEA = .008, ∆CFI =.002), which 

implied that the overall factor loadings were equivalent across the two groups. Next, I examined 

the equality of indicator intercepts and found that constraining all indicator intercepts equally 

across the two groups did not significantly degrade the model fits (∆RMSEA = .004, ∆CFI 

=.002). Based on the measurement invariance (i.e., equal factor loadings, equal indicator 

intercepts), I tested the population heterogeneity. Equal factor variance was confirmed 

(∆RMSEA = .002, ∆CFI > .000); however, the test for equality of latent means was negative 

(∆RMSEA = .038, ∆CFI > .016). The non-invariance of latent means implied that MSE of 

student identified as high-achieving, which was measured as a latent construct, was significantly 

greater than the MSE of other students. Given that the factor loadings and indicator intercepts 

were invariant between the two groups, the comparison of the latent means between the two 

groups was interpretable. The unstandardized parameter estimate for the latent mean of students 

identified as high-achieving was .94 (SE = .05), which indicated that students identified as high-

achieving scored .94 units above non-identified students on the construct of mathematics self-

efficacy. 
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Table 11 

Test Statistic of Measurement Invariance of the Mathematics Self-Efficacy Questionnaire 

adj 𝜒ଶ df adj 𝜒ଶ  df RMSEA [90% CI]  RMSEA CFI  CFI TLI  TLI 

Single group solutions 

Full sample (N = 10,230) 29.70 2 0.037 [0.026, 0.049] 0.999 0.996 

High-achieving (N = 520) 1.52 2 0.000 [0.000, 0.080] 1.000 1.001 

Non-identified (N = 9,710) 26.55 2 0.036 [0.024, 0.048] 0.999 0.997 

Multi-group comparisons 

Equal form 24.64 4 0.032 [0.020, 0.044] 0.999 0.997 

Equal factor loading 64.85 7 46.49*** 3 0.040 [0.032, 0.049] 0.008 0.997 0.002 0.995 0.002 

Equal indicator intercepts 110.82 10 56.45*** 3 0.044 [0.037, 0.052] 0.004 0.995 0.002 0.993 0.002 

Equal factor variance 111.77 11 3.98* 1 0.042 [0.035, 0.050] 0.002 0.995 0.000 0.994 0.001 

Equal latent mean 405.68 12 384.13*** 1 0.080 [0.074, 0.087] 0.038 0.979 0.016 0.979 0.015 

Note. Sample sizes were rounded to the nearest ten. *** p < .001, * p < .05 
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Discriminant function analysis 

I performed discriminant function analysis (DFA) to examine how effectively the items 

of MSE predicted student achievement in math and science. Discriminant function analysis 

yielded a Wilks’ Lambda of .96 (df = 4, p < .001), indicating that this set of MSE items 

significantly differentiated the two groups. However, only 4% of the variance in student 

achievement was explained by the discriminant function composed of the four items of MSE. 

The structure matrix is presented in Table 12. Burns and Burns (2008) suggested that .30 of the 

estimate ought to be the cut-off between important and less important variables. Based on this 

criterion, all the items were soundly loaded on the function. With the estimated function, 96.1% 

of students were correctly classified into the two groups. 

Table 12 

Results of Discriminant Function Analysis for Mathematics Self-Efficacy 

Variable Structure Matrix 

MSE 1 .79 

MSE 3 .94 

MSE 4 .70 

MSE 5 .87 

Eigenvalue .04 

Wilks’ Lambda .96*** 

Canonical correlation .20 
*** p < .001 
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School climate scale—academic pressure 

Confirmatory factor analysis 

A hypothetical one-factor model for the academic pressure of school climate scale was 

specified with five items, and the model was estimated with Mean- and Variance-Adjusted 

Maximum Likelihood (MLMV). Descriptive statistics, inter-item correlations, and covariance 

matrices are presented in Table 13. 

Model fit statistics indicated acceptable fit for the one-factor model with 5 items (CFI = 

.982, TLI = .963, SRMR = .025, RMSEA = .066, 90% CI [.028, .108]). However, the factor 

loading of SCCL4, “students are expected to do homework,” was low (standardized estimate = 

.188). An identical model excluding SCCL4 was estimated as Model 2, and this yielded better 

model fits (CFI = .992, TLI = .975, SRMR = .025, RMSEA = .018, 90% CI [.000, .133]). The 

factor loadings of the four items were all acceptable based on the criteria of .30 suggested by 

Burns and Burns (2008) (Table 15). Cronbach’s alpha was 0.81. 
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Table 13 

Descriptive Statistics and Correlation/Covariance Matrix for School Climate Scale – Academic Press (N = 440) 

Response Percentage Correlation/Covariance 

Item 1 2 3 4 5 M SD Skew Kurt SCCL1 SCCL2 SCCL3 SCCL4 SCCL5 

SCCL1 0.0 2.3 19.1 37.3 41.2 4.18 .82 -.59 -.57 .44 .41 .11 .29 

SCCL2 1.1 10.3 41.6 34.2 12.8 3.47 .88 -.06 -.27 .60 .41 .16 .24 

SCCL3 0.7 3.7 16.7 32.9 46.1 4.20 .89 -.95 .36 .57 .52 .09 .30 

SCCL4 8.5 24.8 35.8 22.2 8.7 2.98 1.08 .05 -.59 .13 .17 .01 .13 

SCCL5 0.0 0.7 10.7 35.5 53.2 4.41 .71 -.90 -.03 .51 .39 .48 .18 
Note. For the correlation/covariance matrix, left side of the diagonal represents correlation coefficients and right side of it represents covariance 
coefficients. SCCL1 = teachers press students to achieve; SCCL2 = learning is high priority for students; SCCL3 = students expected to do homework; 
SCCL4 = students are encouraged to compete for grades; SCCL5 = counselors/teachers encourage students to enroll in academic classes. The anchors of 
the scale were: 1 = not at all accurate; 2 = not at all accurate-somewhat accurate; 3 = somewhat accurate; 4 = somewhat accurate-very accurate; 5 = 
very accurate. 
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Table 14 

Model Fit Statistic for the Factor Models of School Climate of Academic Pressure 

χ2 df CFI TLI RMSEA [90% CI] SRMR 

Model 1 14.52 5 .982 .963 .066 [.028, .108] .025 

Model 2 5.95 2 .992 .975 .067 [.000, .133] .018 

Note. Model 1 is a 1-factor model specified with all five items; Model 2 is a 1-factor model excluding SCCL4. 

Table 15 

Factor Loadings and Internal Consistency of the Final Model of School Climate of Academic 

Pressure 

Factor 
loading SE 

Corrected 
item-total 
correlation 

Cronbach’s 
α if item 
deleted Cronbach’s α 

SCCL1 .66 .03 .70 .72 

SCCL2 

SCCL3 

.63 

.64 

.04 

.04 

.61 

.64 

.76 

.75 
.81 

SCCL5 .43 .03 .55 .79 
Note. SCCL1 = teachers press students to achieve; SCCL2 = learning is high priority for students; SCCL3 = 
students expected to do homework; SCCL5 = counselors/teachers encourage students to enroll in academic 
classes. 

Discriminant function analysis 

I also examined how each item of academic press was associated with school math 

achievement. The discriminant function yielded a Wilks’ Lambda of .81 (df = 4, p < .001), which 

indicated that the overall construct of the academic pressure of school climate significantly 

differentiated the two groups. However, approximately 19% of variance in the dependent 

variable was explained by the discriminant function of the four items of MSE (canonical 

correlation = .44). The structure matrix is presented in Table 16. By the criteria of Burns and 

Burns (2008) who suggested loadings equal or greater than 0.30, all the items soundly loaded on 
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the function. With the estimated function, 77.9% of schools were correctly classified into the two 

groups. 

Table 16 

Results of Discriminant Function Analysis for School Climate of Academic Pressure 

Variable Structure Matrix 

SCCL1 .95 

SCCL2 .70 

SCCL3 .65 

SCCL5 .44 

Eigenvalue .23 

Wilks’ Lambda .81*** 

Canonical correlation .44 

*** p < .001 

Descriptive statistics of dependent and moderating variables 

Descriptive statistics of dependent variables 

Entrance into STEM fields 

Table 17 shows the unweighted and weighted frequencies of student entrance into 

postsecondary STEM fields. The frequencies were estimated by sex, race, and SES. As with the 

results of a preliminary analysis, which purpose was to provide detailed representation of the 

descriptive statistic, I presented the results in terms of race according to six racial categories, as 

originally coded in the data set. A third of the students identified as high-achieving entered a 4-

year undergraduate program in a STEM field, which was much higher than the percentage for 

non-identified students (6.31%). Male students and students whose families were in the highest 

quartile of SES were more likely to enter into STEM, both for and non-identified students. Asian 
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students, out of the six categories, were the most likely to enter into a STEM field. However, 

considering that the research questions concern the probabilities of students identified as high-

achieving entering into STEM fields, the numbers of identified Black, Hispanic, multiple race, 

and Native American students (n = less than 10, 10, 10, and 0, respectively) were too low to 

estimate models, particularly considering the moderating effects. Therefore, I confirmed my 

previous decision that merging these four racial categories into one group (Black, Hispanic, 

Native American, and other races [BHNO]) would be better for the probability estimations of the 

main research questions. 

College graduation in STEM fields 

Since the second research question concerned probabilities among students who had 

entered into postsecondary STEM paths as of 2006, I estimated unweighted and weighted 

descriptive statistics with data concerning 1,010 students who had entered the fields as of 2006 

and had time variables indicating when they graduated from college (for the survival analyses). 

Table 19 shows the unweighted frequencies of student college graduation in STEM fields, and 

Table 20 gives the weighted frequencies. Overall, 55.25% of non-identified students graduated 

with a STEM major as of 2013, whereas 60.47% of students identified as high-achieving had 

done so. For the non-identified students, male (58.69%), Asian students (69.72%), and from 

families in the fourth quartile of SES (60.88%) graduated from colleges in STEM fields at a 

higher rate than other students; for example, female (48.90%), Black (26.65%), Hispanic 

(56.75%), Multiple (65.48%), students from families in the first quartile of SES (49.49%). But, 

for students identified as high-achieving, male (60.85%) and female (59.82%) graduated at the 

similar rates. 
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Graduate degrees in STEM fields 

The dependent variable of RQ 3 was a binary variable indicating further persistence in 

STEM, either through earning a graduate degree in a STEM field or having an occupation in the 

fields. I present descriptive statistics in separate tables for the sake of detail and clarity. Table 21 

gives the unweighted frequencies of students who had earned graduate degrees in STEM fields 

as of 2013, eight years after high-school graduation. Only 0.49% of non-identified students had 

earned graduate degrees in STEM fields, but 6.24% of students identified as high-achieving had 

done so. Unlike the patterns for the other two dependent variables, the differences by covariate 

were not noticeable, particularly given the small number of students who fulfilled the dependent 

variable. Table 22 gives the results of weighted estimation. 

Having an occupation in STEM fields after college graduation 

Table 23 gives the unweighted frequencies of students who had occupations in STEM 

fields after college graduation. Approximately 5% of non-identified students had an occupation 

in STEM, whereas 20% of students identified as high-achieving had one. Discrepancies by sex 

existed for this dependent variable: for non-identified students, 2.51% female and 7.79% male 

had an occupation in STEM, and for students identified as high-achieving, 10.76% female and 

26.79% male did so. It was also noteworthy that Asian students identified as high-achieving 

(20.21%) were no more likely to have an occupation in these fields than White (20.77%) and 

other-race students (13.64 – 22.22%, See Table 23) identified as high-achieving, which was not 

consistent with the proportions found with the other two dependent variables; Asian students 

identified as high-achieving were more likely to enter into postsecondary STEM fields and were 

more likely to graduate from college with a STEM major than students of other races. Students 

who had families in the fourth quartile of SES (22.29% of students identified as high-achieving 
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and 7.26% of non-identified students) were more likely to have an occupation in a STEM field 

than students from families of the other three quartiles of SES (Table 23). 
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Table 17 

Unweighted Frequencies and Proportions of Students Who Entered Postsecondary STEM by Sex, Race, and SES 

Identified as high-achieving (N = 720) Non-identified (N = 12,530) 

% within % within 

N sub-group N sub-group 

Sex Female 70 22.92 320 4.84 

Male 170 39.95 470 8.00 

Race Asian 80 39.38 120 10.83 

Black less than 10 33.33 120 6.91 

Hispanic less than 10 27.59 70 3.61 

Multiple less than 10 27.27 40 5.87 

Native 0 NA less than 10 1.87 

White 150 31.26 450 6.27 

SES First 10 30.30 90 3.02 

Second 20 32.65 140 4.68 

Third 40 30.50 210 6.68 

Fourth 170 34.14 350 10.25 

Total 240 33.15 790 6.31 
Note. Sub-group indicates a category in a covariate variable (e.g., female, Asian, second SES quartile). Percent within sub-group was estimated by a 
proportion of the number of sub-group within an identification group to a total number of the identification group. SES was quartile-coded: “first” quartile 
represents students whose families are in the bottom 25% of SES; and “fourth” quartile represents students whose families are in the top 25% of SES. All 
unweighted sample size numbers were rounded to the nearest ten. 



 
 

       

 

  

               

              

         

   

     

   

 

          

          

          

           

          

          

          

          

          

           

           

           

            
                      

                       
                         

 

102 

Table 18 

Weighted Frequencies and Proportions of Students Who Entered Postsecondary STEM by Sex, Race, and SES 

Identified as high-achieving (N = 143,631) Non-identified (N = 3,142,880) 

% within % within 

Weighted N SE sub-group Weighted N SE sub-group 

Sex Female 13,250 1,970 24.85 68,817 4,926 4.26 

Male 36,994 3,026 40.97 114,685 6,811 7.52 

Race Asian 8,500 1,078 39.86 13,380 1,504 11.46 

Black 488 365 38.79 32,864 3,781 7.01 

Hispanic 1,514 668 20.42 16,778 2,484 3.18 

Multiple 601 199 19.05 7,646 1,801 5.93 

Native NA NA NA 499 499 1.57 

White 39,140 3,153 35.43 112,337 6,651 6.01 

SES First 1,743 443 30.70 23,252 2,900 2.87 

Second 3,939 859 34.09 37,742 4,034 4.58 

Third 7,957 1,307 27.12 48,734 4,356 6.18 

Fourth 36,605 3,182 37.72 73,775 5,227 10.23 

Total 50,244 3,238 34.98 183,503 8,289 5.84 
Note. Sub-group indicates a category in a covariate variable (e.g., female, Asian, second SES quartile). Percent within sub-group was estimated by a 
proportion of the number of sub-group within an identification group to a total number of the identification group. SES was quartile-coded: “first” quartile 
represents students whose families are in the bottom 25% of SES; and “fourth” quartile represents students whose families are in the top 25% of SES. 
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Table 19 

Unweighted Frequencies and Proportions of College Graduation in STEM by Sex, Race, and SES 

Identified as high-achieving (N = 230) Non-identified (N = 770) 

% within % within 

N sub-group N sub-group 

Sex Female 50 62.35 160 54.30 

Male 90 62.59 300 62.63 

Race Asian 30 72.09 110 71.71 

Black 10 42.31 30 32.61 

Hispanic < 10 33.33 30 57.89 

Multiple < 10 54.55 20 56.67 

Native 0 NA 0 NA 

White 90 67.15 270 61.09 

SES First 10 44.44 40 51.47 

Second 20 51.43 60 46.34 

Third 30 58.93 110 57.14 

Fourth 80 71.93 260 65.90 

Total 150 62.50 460 59.38 
Note. Sub-group indicates a category in a covariate variable (e.g., female, Asian, second SES quartile). Percent within sub-group was estimated by a 
proportion of the number of sub-group within an identification group to a total number of the identification group. SES was quartile-coded: “first” 
quartile represents students whose families are in the bottom 25% of SES; and “fourth” quartile represents students whose families are in the top 25% of 
SES. All unweighted sample size numbers were rounded to the nearest ten. 
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Table 20 

Weighted Frequencies and Proportions of College Graduation in STEM by Sex, Race, and SES 

Identified as high-achieving (N = 51,048) Non-identified (N = 183,503) 

Weighted N SE 

% within 

sub-group Weighted N SE 

% within 

sub-group 

Sex Female 11,436 1,851 59.82 30,344 3,013 48.90 

Male 19,431 2,424 60.85 67,238 4,600 58.69 

Race Asian 3,265 679 76.56 12,131 1,379 69.72 

Black 2,220 936 30.93 6,761 1,477 26.65 

Hispanic 

Multiple 

Native 

1,304 

672 

NA 

768 

317 

NA 

28.90 

43.85 

NA 

7,334 

4,343 

NA 

1,585 

1,493 

NA 

56.75 

65.48 

NA 

White 23,405 2,648 69.74 67,014 4,730 58.63 

SES First 2,728 916 46.56 8,723 1,798 49.49 

Second 3,766 1,039 43.66 14,932 2,412 45.56 

Third 6,712 1,466 56.41 23,761 3,008 54.23 

Fourth 17,660 2,413 71.61 50,168 3,877 60.88 

Total 30,867 2,698 60.47 

 
 

       

 

  

              

              

      

  

     

  

 

          

          

          

          

          

          

          

          

          

          

          

          

          
                      

                      
                         

 
 

97,583 4,951 55.25 
Note. Sub-group indicates a category in a covariate variable (e.g., female, Asian, second SES quartile). Percent within sub-group was estimated by a 
proportion of the number of sub-group within an identification group to a total number of the identification group. SES was quartile-coded: “first” 
quartile represents students whose families are in the bottom 25% of SES; and “fourth” quartile represents students whose families are in the top 25% of 
SES. 
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Table 21 

Unweighted Frequencies and Proportions of Students Who Earned Graduate Degrees in STEM by Sex, Race, and SES 

Identified as high-achieving (N = 720) Non-identified (N = 12,530) 

% within % within 

Weighted N sub-group Weighted N sub-group 

Sex Female 20 6.25 30 0.60 

Male 30 6.24 40 0.40 

Race Asian 20 8.29 <10 0.72 

Black 0 NA 10 0.59 

Hispanic <10 10.34 <10 0.22 

Multiple <10 9.09 <10 0.34 

Native 0 NA 0 NA 

White 20 5.14 40 0.53 

SES First 0 NA <10 0.20 

Second <10 6.12 10 0.39 

Third 10 7.09 10 0.42 

Fourth 30 6.43 30 0.90 

Total 50 6.24 60 0.49 
Note. Sub-group indicates a category in a covariate variable (e.g., female, Asian, second SES quartile). Percent within sub-group was estimated by a 
proportion of the number of sub-group within an identification group to a total number of the identification group. SES was quartile-coded: “first” 
quartile represents students whose families are in the bottom 25% of SES; and “fourth” quartile represents students whose families are in the top 25% of 
SES. All unweighted sample size numbers were rounded to the nearest ten. 
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Table 22 

Weighted Frequencies and Proportions of Students Graduate School Degrees in STEM by Sex, Race, and SES 

Identified as high-achieving (N = 143,631) Non-identified (N = 3,142,880) 

% within % within 

Weighted N SE sub-group Weighted N SE sub-group 

Sex Female 5,094 981 5.64 6,413 1,716 0.42 

Male 3,641 1,107 6.83 5,783 1,418 0.36 

Race Asian 1,584 475 7.43 764 355 0.65 

Black NA NA NA 1,693 713 0.36 

Hispanic 609 361 8.21 669 390 0.13 

Multiple 156 117 4.93 1,146 870 0.89 

Native NA NA NA NA NA NA 

White 6,386 1,348 5.78 7,924 1,835 0.42 

SES First NA NA NA 1,085 539 0.13 

Second 492 304 4.25 2,730 986 0.33 

Third 1,983 777 6.76 4,056 1,560 0.51 

Fourth 6,261 1,194 6.45 4,325 1,102 0.60 

Total 8,735 1,455 6.08 12,196 2,216 0.39 
Note. Sub-group indicates a category in a covariate variable (e.g., female, Asian, second SES quartile). Percent within sub-group was estimated by a 
proportion of the number of sub-group within an identification group to a total number of the identification group. SES was quartile-coded: “first” quartile 
represents students whose families are in the bottom 25% of SES; and “fourth” quartile represents students whose families are in the top 25% of SES. 
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Table 23 

Unweighted Frequencies and Proportions of Students Who Had an Occupation in STEM by Sex, Race, and SES 

Identified as high-achieving (N = 720) Non-identified (N = 12,530) 

% within % within 

Weighted N SE sub-group Weighted N SE sub-group 

Sex Female 30 0.76 10.76 170 0.10 2.51 

Male 120 1.37 26.79 460 0.17 7.79 

Race Asian 40 0.84 20.21 80 0.07 7.07 

Black <10 0.20 22.22 50 0.06 3.19 

Hispanic <10 0.34 20.69 50 0.06 2.69 

Multiple <10 0.24 13.64 30 0.04 4.36 

Native 0 NA NA <10 0.01 2.80 

White 100 1.27 20.77 410 0.16 5.74 

SES First <10 0.31 15.15 80 0.07 2.82 

Second <10 0.37 14.29 100 0.08 3.37 

Third 20 0.67 17.02 190 0.11 6.07 

Fourth 110 1.35 22.29 250 0.12 7.26 

Total 150 1.50 20.39 620 0.19 4.97 
Note. Sub-group indicates a category in a covariate variable (e.g., female, Asian, second SES quartile). Percent within sub-group was estimated by a 
proportion of the number of sub-group within an identification group to a total number of the identification group. SES was quartile-coded: “first” quartile 
represents students whose families are in the bottom 25% of SES; and “fourth” quartile represents students whose families are in the top 25% of SES. All 
unweighted sample size numbers were rounded to the nearest ten. 
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Table 24 

Weighted Frequency and Proportions of Students Who Had an Occupation in STEM by Sex, Race, and SES 

Identified as high-achieving (N = 143,631) Non-identified (N = 3,142,880) 

% within % within 

Weighted N SE sub-group Weighted N SE sub-group 

Sex Female 25,264 2,548 27.98 108,898 6,670 7.14 

Male 5,505 1,036 10.32 38,478 3,851 2.38 

Race Asian 4,186 775 19.63 9,031 1,228 7.73 

Black 138 103 10.97 11,447 2,155 2.44 

Hispanic 1,159 545 15.63 11,756 2,065 2.23 

Multiple 247 158 7.84 5,719 1,467 4.43 

Native NA NA NA 952 674 3.00 

White 25,038 2,742 22.66 108,470 6,792 5.80 

SES First 725 452 12.78 19,314 2,528 2.39 

Second 1,592 658 13.78 27,737 3,526 3.37 

Third 5,537 1,225 18.87 46,312 4,414 5.87 

Fourth 22,914 2,500 23.61 54,013 4,674 7.49 

Total 30,768 2,741 21.42 147,375 7,637 4.69 
Note. Sub-group indicates a category in a covariate variable (e.g., female, Asian, second SES quartile). Percent within sub-group was estimated by a 
proportion of the number of sub-group within an identification group to a total number of the identification group. SES was quartile-coded: “first” quartile 
represents students whose families are in the bottom 25% of SES; and “fourth” quartile represents students whose families are in the top 25% of SES. 



 
 

     
  

     

   

             

              

                

                 

 

  

         

        

          

          

          

          

          

          

          

          

          

           

           

           

           

          

            

 

      

              

               

109 

Descriptive statistics of moderating variables 

Mathematics self-efficacy (MSE) 

Table 25 shows the unweighted means and standard deviations of MSE according to 

identification, sex, race, and SES. The mean of students identified as high-achieving was higher 

than that of non-identified students (high-achieving M = 3.29, SD = .72; and non-identified M = 

2.63, SD = .77). Male students and students from families of higher SES had higher levels of 

MSE. 

Table 25 

Means and Standard Deviations of Mathematics Self-Efficacy by Covariates 

Identified as high-achieving Non-identified 

N M SD N M SD 

Sex Female 240 3.09 0.77 4,340 2.58 0.77 

Male 360 3.41 0.65 3,670 2.70 0.76 

Race Asian 150 3.16 0.74 700 2.60 0.71 

Black 10 3.63 0.46 940 2.65 0.75 

Hispanic 20 3.30 0.80 1,010 2.58 0.76 

Multiple 20 3.02 0.79 350 2.59 0.77 

Native 0 NA NA 60 2.50 0.74 

White 410 3.33 0.70 4,950 2.65 0.78 

SES First quartile 30 2.92 0.78 1,590 2.55 0.73 

Second quartile 40 3.26 0.67 1,890 2.58 0.76 

Third quartile 120 3.26 0.69 2,070 2.63 0.79 

Fourth quartile 410 3.32 0.72 2,470 2.73 0.77 

Total 600 3.29 0.72 8,010 2.63 0.77 

Note. All unweighted sample size numbers were rounded to the nearest ten. 

Advanced courses in math and science 

Table 26 shows the unweighted means and standard deviations of the number of AP/IB 

courses that students took during high school. I present the statistics by identification, sex, race, 
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and SES. The means were 2.64 for students identified as high-achieving (SD = 1.85) and 0.27 for 

non-identified students (SD = .82). Overall, male and Asian students, as well as students from 

families of higher SES took more AP/IB courses than female, other-race, and lower-SES 

students. But, the average number of courses for students identified as high-achieving from 

families of lowest-quartile SES (M = 3.33, SD = 2.15) exceeded the number for non-identified 

students from families of highest-quartile SES (M = 0.15, SD = 0.62). 

Table 26 

Means and Standard Deviations of the Number of AP/IB in Math and Science by Covariates 

Identified as high-achieving Non-identified 

N M SD N M SD 

Sex Female 270 2.55 1.78 6,150 0.26 0.81 

Male 420 2.70 1.89 5,330 0.28 0.82 

Race Asian 190 3.39 1.86 1,010 0.73 1.39 

Black 10 3.22 2.22 1,500 0.12 0.52 

Hispanic 30 3.17 1.72 1,680 0.16 0.61 

Multiple 20 3.03 2.06 550 0.29 0.89 

Native <10 4.00 NA 100 0.10 0.41 

White 440 2.25 1.72 6,650 0.26 0.77 

SES First quartile 30 3.33 2.15 2,690 0.15 0.62 

Second quartile 50 2.23 1.77 2,800 0.15 0.62 

Third quartile 140 2.35 1.81 2,810 0.26 0.76 

Fourth quartile 470 2.72 1.83 3,190 0.49 1.07 

Total 690 2.64 1.85 11,490 0.27 0.82 

Note. All unweighted sample size numbers were rounded to the nearest ten. 
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STEM course-taking in college 

Table 27 shows the unweighted means and standard deviations of the number of credits 

of STEM courses that students took in college. Students identified as high-achieving took an 

average of 49.41 credits of STEM courses (SD = 40.33), but non-identified students took an 

average of 21.62 credits (SD = 27.02). For students identified as high-achieving, male (M = 

57.27), Asian (M = 56.04), Black (M = 55.90), and Hispanic (M = 60.40) students took more 

courses in STEM than female (M = 37.71), White (M = 45.91), and multiple-race students (M = 

48.42), but no remarkable difference was observed for SES. 

Table 27 

Means and Standard Deviations of STEM Credits Earned in College by Covariates 

High-achieving Non-identified 

N M SD N M SD 

Sex Female 280 37.71 34.97 5,490 20.16 23.40 

Male 420 57.27 41.80 4,340 23.47 30.91 

Race Asian 190 56.04 42.35 950 32.31 35.63 

Black 10 55.90 51.15 1,250 17.99 24.60 

Hispanic 30 60.40 47.65 1,310 16.98 23.34 

Multiple 20 48.42 44.37 450 20.46 26.22 

Native <10 44.00 NA 60 16.56 22.93 

White 450 45.91 38.30 5,820 21.85 26.26 

SES First quartile 30 46.91 40.89 1,850 17.16 24.04 

Second quartile 50 47.43 35.64 2,240 18.76 24.68 

Third quartile 140 49.48 41.53 2,570 22.06 27.05 

Fourth quartile 480 49.76 40.50 3,170 25.89 29.45 

Total 700 49.41 40.33 9,830 21.62 27.02 

Note. All unweighted sample size numbers were rounded to the nearest ten. 
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High-impact activities in college 

Table 28 shows the unweighted frequencies for student participation in high-impact 

activities in college, which was a binary variable. Among students identified as high-achieving, 

72.37% participated in at least one high-impact activity in college, whereas 45.89% of non-

identified students did so. For both students identified as high-achieving those not identified, 

female students were more likely to participate in at least one high-impact activity in college 

than male students. For students identified as high-achieving, Asian, Black, Hispanic, and other-

race students were more likely to participate than White students, but for non-identified students, 

White students were more likely to participate than were students of other races. 

Table 28 

Unweighted Frequencies and Proportions of Students Who Participated in High Impact 

Activities in College by Covariates 

Identified as high-achieving 

(N = 600) 

N Freq % 

Non-identified 

(N = 8,000) 

N Freq % 

5,490 2,770 56.39 

4,240 1,690 39.93 

910 420 45.97 

1,230 

1,300 

430 

500 

490 

190 

40.70 

37.28 

44.01 

60 30 39.06 

5,790 

1,880 

2,220 

2,510 

3,120 

2,850 

680 

890 

1,130 

1,770 

49.14 

35.92 

39.87 

45.10 

56.83 

9,730 4,460 45.89 

Sex Female 280 210 76.17 

Male 420 290 69.86 

Race Asian 190 150 79.06 

Black 10 <10 77.78 

Hispanic 

Multiple 

Native 

30 

20 

20 

20 

71.43 

80.00 

<10 <10 100.00 

White 450 310 69.06 

SES First quartile 

Second quartile 

Third quartile 

Fourth quartile 

30 

50 

140 

480 

360 

90 

30 

20 

62.50 

72.34 

65.69 

74.95 

Total 700 500 72.37 

Note. All unweighted sample size numbers were rounded to the nearest ten. 
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Multilevel logistic models of identification as high-achievers 

To examine the variance among schools in terms of student identification, I estimated a 

baseline model without any covariates (Model A). The ICC was 0.36, which implied that 36% of 

the variance in identification was accounted for by the schools. The estimated variance of the 

school intercept was 1.82 (SE = .05, p < .001), indicating that there was a significant variability 

among schools in the log-odds of a student being identified as a high-achiever. The baseline log-

odds of identification as a high-achiever in math and science was −3.99 (SE = .02, p < .001). 

Given the variability among schools, I continued to estimate two-level random intercept 

models. For Model B, I added student-level covariates to Model A. The student-level covariates 

were all categorical variables; thus, male, White, and the highest quartile of SES were set as 

reference groups. Model C included school-level covariates, which were grand-mean centered. 

Table 29 is the results for Model A, B, and C. In Model C, the school-level and student-level 

covariates were all significant. I compared the deviance statistic between Model B and Model C, 

which implied that Model C was better fitted (∆deviance statistic = 2121.8, p < .001). In Model 

C, all student-level covariates were significant. Female students were less likely to be identified 

than male students (γ= −2.62, SE = .02, p < .001, odds ratio = .50, 95% CI [.48, .52]). In terms 

of race, Black, Hispanic, and other-race students were less likely to be identified than White 

students (Black γ = −2.57, SE = .13, p < .001, odds ratio = .08, 95% CI [.06, .10]; Hispanic γ = 

−.57, SE = .05, p < .001, odds ratio = .56, 95% CI [.51, .63]; other γ = .28, SE = .07, p < .001, 

odds ratio = .28, 95% CI [.24, .32]). However, Asian students were more likely to be identified 

as high-achieving than White students (γ = 1.20, SE = .04, p < .001, odds ratio = 3.32, 95% CI 

[3.07, 3.58]). Students of highest-quartile SES were more likely to be identified as high-

achieving than students of lowest-quartile SES. School-level covariates were also significantly 
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associated with the probabilities of students being identified as high achievers. School 

percentage of students receiving federal meal subsidy (SCMS) was negatively associated with 

identification (γ = −.02, SE = .00, p < .001), but the odds ratio was .98 (95% CI [.98, .98]), 

implying that a student in a school with higher SCMS rates was less likely to be identified as a 

high achiever, but that the disproportion was not severe. School academic pressure was 

positively associated with the dependent variable, implying that a student who attended a school 

that exerted more academic pressure was more likely to be identified as a high achiever (γ = .47, 

SE = .02, p < .001, OR = 1.60, 95% CI [1.52, 1.67]). 
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Table 29 

Estimates for Multilevel Logistic Models of Being Identified as High-Achievers 

Model A Model B Model C 

Estimate SE Estimate SE Estimate SE 

Fixed effects 

Intercept -3.99*** 0.02 -2.41*** 0.02 -2.62 *** 0.02 

Sex Female -0.68*** 0.02 -0.69 *** 0.02 

Race Asian 1.30*** 0.04 1.20 *** 0.04 

Black -2.80*** 0.13 -2.57 *** 0.13 

Hispanic -0.70*** 0.05 -0.57 *** 0.05 

Other -1.33*** 0.07 -1.27 *** 0.07 

SES First quartile -2.03*** 0.04 -1.61 *** 0.04 

Second quartile -1.93*** 0.04 -1.66 *** 0.04 

Third quartile -0.74*** 0.02 -0.63 *** 0.02 

SCCL 0.47 *** 0.02 

SCMS -0.02 *** 0.00 

Random effects 

Intercept 1.82*** 0.05 1.00*** 0.03 0.72 *** 0.03 

Fit statistics 

Deviance 99,245 88,820 86,699 

Parameter 2 10 12 

BIC 99,259 88,887 86,778 
Note. Reference groups are male, White, the fourth quartile ofSES, respectively. SCCL = school climate – 
academic pressure, SCMS = school rate of federal meal subsidy. *** p < .001 
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Table 30 

Estimated Odd Ratios for the Identification by Covariates 

Covariate Reference Estimate [95% CI] 

Sex (Male) Female 0.50 [0.48, 0.52] 

Race (White) Asian 3.32 [3.07, 3.58] 

Black 0.08 [0.06, 0.10] 

Hispanic 0.56 [0.51, 0.63] 

Other 0.28 [0.24, 0.32] 

SES (Fourth) First quartile 0.20 [0.18, 0.22] 

Second quartile 0.19 [0.18, 0.22] 

Third quartile 0.53 [0.51, 0.56] 

SCCL (Lower) Higher 1.60 [1.52, 1.67] 

SCMS (Lower) Higher 0.98 [0.98, 0.98] 
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Multilevel Logistic Models of Entrance into Postsecondary STEM paths 

To examine whether entrance into STEM fields in postsecondary education differed 

between students identified as high-achieving and those not-identified as such, I estimated a set 

of logistic regression models with a binary dependent variable reflecting entrance into 

postsecondary STEM fields. 

Model A was a baseline model. The estimated ICC from Model A was approximately 

0.046, indicating that 4.6% of variance in the dependent variable was accounted for by variations 

between schools. The school-level variance was significant (𝜏଴଴ = .16, SE = .01, p < .001); thus, 

I continued to estimate two-level models. 

Model B contained a variable for identification as high-achieving in math and science 

(HA). The addition of the variable decreased the deviance statistic by 7,875 compared to the 

baseline model, which was significantly greater than the .05 critical value of 1 degree of 

freedom. Students identified as high-achieving in math and science were more likely to enter into 

postsecondary STEM paths than non-identified students (γ = 2.06, SE = .02, p < .001). The 

corresponding odds ratio was 7.85, meaning that the odds of postsecondary STEM entrance for 

students identified as high-achieving were 7.85 times the odds for non-identified students. 

Model C was a random intercept model that contained all the covariates (sex, race, SES, 

SCCL, SCMS). Deviance statistic decreased a statistically significant amount from the previous 

model (𝜒ଶ = 151,615 − 144,883 = 6,732, p < .05), which implied a significant improvement in 

the model. All the student-level and school-level covariates were significant in predicting 

entrance into postsecondary STEM fields. The log-odds of entering into postsecondary STEM 

fields were lower for female students than for male students (γ = −.72, SE = .02, p < .001), which 

led to an odds ratio of 0.49. In other words, the odds of STEM entrance for female students were 
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less than half of the odds for male students. The log-odds of STEM entrance were higher for 

Asian students than for White students (γ = .62, SE = .03, p < .001, OR = 1.86). However, 

students of BHNO were less likely to enter STEM paths than White students (γ = −.22, SE = .02, 

p < .001, OR = .55; γ = −.27, SE = .04, p < .001, OR = .80). It is noteworthy that the odds for 

Asian students entering the fields were 1.86 times the odds for White students; whereas, the odds 

for BHNO students were 0.80 times the odds for White students. Table 31 contains the results for 

Models A, B, and C. 

Table 31 

Estimates for Multilevel Logistic Models of STEM Entrance: Models A—C 

Model A Model B Model C 

Est. SE p Est. SE p Est. SE p 

Fixed effects 

Intercept -2.66 *** 0.01 -2.80 *** 0.01 -2.46 *** 0.01 

HA 2.06 *** 0.02 1.59 *** 0.02 

Sex Female -0.72 *** 0.02 

Race Asian 0.62 *** 0.03 

BHNO -0.22 *** 0.02 

SES 0.39 *** 0.01 

SCCL 0.14 *** 0.01 

SCMS >.00 *** >.00 

Random effects 

Intercept 0.16 *** 0.01 0.06 *** 0.01 0.04 *** 0.01 

Goodness-of-fit+ 

Deviance statistic 159,490 151,615 144,883 

BIC 159,503 151,635 144,956 

Note. + Goodness-of-fit indices were combined by the method as stated in previous chapter (Little & Rubin, 2002; 
Snijders & Bosker, 1999); Since I used multiple imputation, five pieces of model fits that were estimated from five 
different sets of imputed data should be combined. HA = high achiever in math and science; SCCL = school climate 
of academic pressure; SCMS = school rate of federal meal subsidy, BHNO = Black, Hispanic, Native American, and 
other races. * p < .05, ** p < .01, *** p < .001 
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Given the significance of all the covariates in Model C, I added interaction terms between 

high-achieving identification and each covariate to examine whether the effects of covariates on 

STEM entrance differed according to identification or non-identification as a high achiever. The 

results of the subsequent models, D, E, and F, are given in Table 32. 

For Model D, the deviance statistic significantly decreased compared to the previous 

model (𝜒ଶ = 144,883 − 144,042 = 841, p < .05), which indicated an improvement in the model. 

The log-odds of entrance into postsecondary STEM fields were lower for female students than 

for male students (γ = −.72, SE = .02, p < .001), and this gender difference did not differ with 

identification (γ = −.02, SE = .05, p = .69). In other words, for both students identified as high-

achieving and non-identified students, the odds of entrance into STEM fields for female students 

were less than half of the odds for male students (OR = .47 and OR= .49, respectively). 

However, the interaction effects of race and identification were significant when White 

students were compared with students with other races (Asian, γ = .14, SE = .07, p < .05; BHNO, 

γ = −.56, SE = .11, p < .001). Figure 9 represents the interaction effects. The differences in 

STEM entrance were greater for students identified as high-achieving than for non-identified 

students; the predicted probabilities for non-identified students were 0.13 for Asian, 0.08 for 

White, and 0.07 for BHNO whereas those of high-achieving students were 0.61 for Asian, 0.42 

for White, and 0.26 for BHNO students. 

Student SES was significantly associated with entrance into postsecondary STEM fields. 

Students from families of higher SES were more likely to enter the fields than students from 

families of lower SES (γ = .46, SE = .01, p < .001, OR = 1.58). But, the interaction effect with 

identification was significant (γ = −.62, SE = .03, p < .001) (Figure 10). For non-identified 

students, the odds ratio was 0.25, meaning that the odds of students from families of first-quartile 
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SES entering the fields were 0.25 times the odds for students from families of fourth-quartile 

SES. However, for students identified as high-achieving, the odds ratio was 1.62, which means 

that the odds for students from families of first-quartile SES was 1.62 times the odds for students 

from families of fourth-quartile SES. In other words, high achievement in college entrance 

exams in math and science increased the predicted probability of entrance from 0.04 to 0.49 for 

students from the first-quartile of SES families, holding other covariates constant. 

The two school-level variables and their interaction effects with identification were all 

significant (Table 32). As the levels of SCCL increased, the students were more likely to enter 

into postsecondary STEM fields (γ = .24, SE = .01, p < .001, OR = 1.27). However, a significant 

interaction effect implied that the probabilities increased a lot more, with identification, for 

students who attended schools with lower levels of SCCL than for students who attended schools 

with higher levels of SCCL (Figure 11). For non-identified students who attended schools with 

SCCL two standard deviations lower than average, the predicted probability was 0.04, and the 

odds ratio was 0.32, meaning that the odds of entrance for those students were 0.32 times the 

odds for students who attended schools with SCCL two standard deviations higher than average. 

However, the probability of entrance for students identified as high-achieving from schools of 

lower levels of SCCL was 0.63, and the odds ratio was 5.55, which means that the odds of those 

students was 5.55 times the odds of students identified as high-achieving who attended schools 

with higher levels of SCCL. 

SCMS was also significantly associated with entrance into postsecondary STEM fields, 

but the coefficient was nearly zero (γ > .0.00, SE = .0004, p < .001). The odds ratio was 1.00, 

which means that there is no actual difference between higher and lower percentages of SCMS. 

This significant result might result from large sample size. The interaction effect between SCMS 
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and identification was also significant (Table 9). For non-identified students, students who 

attended schools with higher SCMS rates were more likely to enter postsecondary STEM fields 

than students who attended schools with smaller proportions (OR = 1.44 when comparing the 

25th percentile and the 75th percentile of SCMS). However, for students identified as high-

achieving, those who attended schools with higher SCMS rates were less likely to enter STEM 

paths than students who attended schools with smaller proportions (OR = .53 when comparing 

the 25th percentile and the 75th percentile of SCMS). 



 
 

     
  

  

          

          

             

            
           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           
                    
                       

 
  

 

122 

Table 32 

Estimates for Multilevel Logistic Models of STEM Entrance: Models D—F 

Model D Model E Model F 

Est. SE p Est. SE p Est. SE p 

Fixed effects 

Intercept -2.49 *** 0.01 -2.59 *** 0.01 -2.59 *** 0.01 

HA 2.18 *** 0.03 1.63 *** 0.04 1.72 *** 0.04 

Sex Female -0.72 *** 0.02 -0.83 *** 0.02 -0.80 *** 0.02 

Race Asian 0.60 *** 0.04 0.58 *** 0.05 0.65 *** 0.04 

BHNO -0.16 *** 0.02 0.03 0.03 0.16 0.02 0.02 0.29 

SES 0.45 *** 0.01 0.40 *** 0.01 0.41 *** 0.01 

SCCL 0.24 *** 0.01 0.21 *** 0.02 0.19 *** 0.02 

SCMS >.00 *** >.00 >0.00 *** 0.00 0.00 *** 0.00 

HA*Sex Female -0.02 0.05 0.69 0.18 ** 0.05 0.19 *** 0.05 

HA*Race Asian 0.14 *0.08 0.73 *** 0.09 -0.05 0.14 0.70 

BHNO -0.56 *** 0.11 -1.10 *** 0.32 -0.36 0.22 0.10 

HA*SES -0.62 *** 0.03 -0.79 *** 0.03 -0.89 *** 0.03 

HA*SCCL -0.61 *** 0.04 -0.55 *** 0.04 -0.66 *** 0.05 

HA*SCMS -0.01 *** >0.00 -0.01 *** 0.00 -0.01 *** 0.00 

MSE 0.66 *** 0.02 0.68 *** 0.02 

ADC 0.56 *** 0.01 0.59 *** 0.01 

HA*MSE -0.03 0.03 0.42 -0.07 0.05 0.11 

HA*ADC -0.24 *** 0.02 -0.42 *** 0.02 

Sex*MSE Female 0.35 *** 0.02 0.32 *** 0.02 

Race*MSE Asian -0.08 0.05 0.10 -0.29 *** 0.05 

BHNO -0.67 *** 0.04 -0.70 *** 0.03 

SES*MSE -0.13 *** 0.01 -0.14 *** 0.01 

SCCL*MSE -0.10 *** 0.02 

SCMS*MSE >0.00 >0.00 0.08 >0.00 >0.00 0.41 
Note. HA = high achiever in math and science; SCCL = school academic pressure; SCMS = school rate of federal 
meal subsidy, BHNO = Black, Hispanic, Native American, and other races. * p < .05, ** p < .01, *** p < .001 

(Continued) 
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Table 32 Continued 

Model D Model E Model F 

Est. SE p Est. SE p Est. SE p 

Sex*ADC Female -0.15 *** 0.01 -0.15 *** 0.01 

Race*ADC Asian -0.29 *** 0.02 -0.38 *** 0.03 

BHNO 0.16 *** 0.02 0.14 *** 0.02 

SES*ADC 0.08 *** 0.01 0.04 *** 0.01 

SCCL*ADC -0.08 *** 0.01 -0.12 *** 0.01 

SCMS*ADC 0.01 *** >0.00 0.01 *** 0.00 

HA*Race*MSE Asian 0.82 *** 0.12 

BHNO 0.61 *** 0.16 

HA*SCMS*MSE >0.00 *>0.00 

HA*Race*ADC Asian 0.22 *** 0.05 

BHNO -0.30 *** 0.07 

HA*SES*ADC 0.16 *** 0.02 

HA*SCCL*ADC 0.07 ** 0.03 

Random effects 

Intercept 0.04 0.01 *** 0.10 0.01 *** 0.10 *** 0.01 

Goodness-of-fit+ 

Deviance statistic 144,042 133,471 133,235 

BIC 144,142 133,676 133,480 
Note. + Goodness-of-fit indices were combined by the method as stated in previous chapter (Little & Rubin, 
2002; Snijders & Bosker, 1999); Since I used multiple imputation, five pieces of model fits that were estimated 
from five different sets of imputed data should be combined. HA = high achievers in math and science; SCCL = 
school academic pressure; SCMS = school rate of federal meal subsidy, BHNO = Black, Hispanic, Native 
American, and other races. * p < .05, ** p < .01, *** p < .001 
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Figure 9. Predicted Probabilities of STEM Entrance, the Interaction Effect by Identification and 
Race. HA = students identified as high-achieving. BNHO = Black, Hispanic, Native American, 
and other races. 
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Figure 10. Predicted Probabilities of STEM Entrance, the Interaction Effect by Identification 
and SES. The variable of SES was grand-mean centered. To illustrate the interaction effect, I 
estimated probabilities at two higher and lower points of SES; “Lower SES” is the first-quartile 
SES, and “higher SES” is the fourth-quartile SES. 
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Figure 11. Predicted Probabilities of STEM Entrance, the Interaction Effect by Identification 
and School Climate of Academic Pressure. SCCL = school climate of academic pressure. The 
variable of SCCL was grand-mean centered. To illustrate the interaction effect, I estimated 
probabilities at two higher and lower points of SCCL: “Lower SCCL” is 2 SD below the grand 
mean, and “Higher SCCL” is 2 SD above the grand mean. 
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Figure 12. Predicted Probabilities of STEM Entrance, the Interaction Effect by Identification 
and School Rate of the Federal Meal Subsidy. SCMS = School Meal Subsidy. The variable of 
SCMS was grand-mean centered. To illustrate the interaction effect, I estimated probabilities at 
two higher and lower points of SCMS: “Lower SCMS” indicates the 25th percentile and 
“Higher SCMS” indicates the 75th percentile of SCMS. 
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Model E contained the two moderators, mathematics self-efficacy (MSE) and number of 

advanced courses taken (ADC), and their interaction terms with the covariates. The BIC 

decreased from Model D to Model E (𝜒ଶ = 144,042 − 133,471 = 10,571, p < .05), implying that 

the addition of the moderators and the interaction terms made the model fit of Model E better 

(See Table 32). 

The levels of MSE and ADC were positively associated with entrance into postsecondary 

STEM fields (γ = .66, SE = .02, p < .001 and γ = .56, SE = .01, p < .001, respectively). The 

interaction between MSE and identification as high-achieving was not significant (γ = −.03, SE 

= .03, p = .42), which meant that the effect of MSE on STEM entrance did not significantly 

differ with identification. In other words, MSE and entrance into STEM fields were positively 

associated for both groups (γ = .66, SE = .02, p < .001). However, the effect of the number of 

advanced courses taken on the probability of entrance did vary significantly according to 

identification (γ = −.24, SE = .01, p < .001). Figure 13 shows the interaction effects. For non-

identified students, the probability of STEM entrance dramatically increased, compared to 

students identified as high-achieving, as students took more advanced courses. When comparing 

1 SD above and below the average ADC, the odds ratio was 1.89, which means that the odds of 

entrance for more ADC were 1.89 times the odds for less ADC for students identified as high-

achieving, but the odds ratio for non-identified students was 3.06. 
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Figure 13. Predicted Probabilities of STEM Entrance, the Interaction effect by Identification and 
Advanced Courses in Math and Science. ADC = advanced courses in math and science. The 
variable of ADC was grand-mean centered. 

In terms of sex and MSE, although female students were less likely to enter STEM fields 

than male students (main effect γ = -0.83, SE = 0.02, p < .001), the probability of entrance more 

strikingly increased for female students than for male students as they had higher levels of MSE 

(interaction effect γ = 0.35, SE = 0.02, p < .001; OR = 3.90 at −2 SD of MSE, and OR = 1.37 at 

+2 SD of MSE when comparing male and female students) (Figure 14). Figure 15 represents the 

interaction effects of MSE and race. Asian students were more likely to enter STEM fields than 

White students (γ = .58, SE = .05, p < .001), and the difference was consistent regardless of 

MSE. For BHNO students, the main effect was not significant (γ = .03, SE = .03, p = .16) but the 

interaction effect was significant (γ = −.67, SE = .04, p < .001). This means that the probabilities 
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of entrance were not significantly different between White and BHNO students when controlling 

the other covariates contained in Model E. But, the probability of entrance for BHNO students 

decreased as MSE increased; in contrast, the probabilities of entrance for White and Asian 

students increased with MSE (comparing BHNO and White students, OR = 2.85 at −2 SD of the 

average MSE and OR = .38 at +2 SD of the average MSE). 

Figure 14. Predicted Probabilities of STEM Entrance, the Interaction Effect by Mathematics 
Self-Efficacy and Sex. MSE = mathematics self-efficacy. The variable of MSE was grand-mean 
centered. 
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Figure 15. Predicted Probabilities of STEM Entrance, the Interaction Effect by Mathematics 
Self-Efficacy and Race. The variable of MSE was grand-mean centered. BHNO = Black, 
Hispanic, Native American, and other races. 

To illustrate the interaction effects between MSE and categorical or continuous variables, 

I plotted graphs using the lower and upper values of the categorical and continuous variables. 

The interaction effect between MSE and SES was significant (γ = -0.13, SE = 0.01, p < .001). 

Figure 16 contrasts the predicted probabilities of STEM entrance for different levels of SES and 

MSE. “Lower SES” refers to the first quartile (bottom 25%) of SES and “higher SES” refers to 

the fourth quartile (top 25%). The odds of entrance for students from lower-SES families more 

steeply increased than the odds for students from higher-SES families as student MSE increased 

(OR = .17 at −2 SD of MSE and OR = .51 at +2 SD of MSE). The difference in STEM entrance 

probabilities between lower and higher levels of SCCL also decreased as the levels of MSE 
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increased (γ = -0.10, SE = 0.02, p < .001) (Figure 17). Students who attended schools with lower 

levels of SCCL were less likely to enter STEM fields than students who attended schools with 

higher levels of SCCL; but, the gap decreased as students had higher levels of MSE (OR = .25 at 

−2 SD of MSE and OR = .81 at +2 SD of MSE). 

Figure 16. Predicted Probabilities of STEM Entrance, the Interaction Effect by Mathematics 
Self-Efficacy and SES. The variable of MSE and SES was grand-mean centered. To illustrate the 
interaction effect, I estimated probabilities at two higher and lower points of SES; “Lower SES” 
is the first-quartile SES, and “higher SES” is the fourth-quartile SES. 
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Figure 17 Predicted Probabilities of STEM Entrance, the Interaction Effect by Mathematics Self-
Efficacy and School Climate of Academic Pressure. SCCL = school climate of academic 
pressure. The variable of MSE and SCCL was grand-mean centered. To illustrate the interaction 
effect, I estimated probabilities at two higher and lower points of SCCL: “Lower SCCL” is 2 SD 
below the grand mean of SCCL, and “Higher SCCL” is 2 SD above the grand mean of SCCL. 
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The interaction effects between ADC and the covariates were also all significant. Female 

students were less likely to enter postsecondary STEM fields than male students (γ = −.83, SE 

= .02, p < .001), and if the students took advanced courses two or more standard deviations 

above the average number of advanced courses taken by the whole sample, the odds for male 

students increased by 2.81 times the odds for female students (Figure 18). Of the students who 

took advanced courses two standard deviations below the average number of advanced courses, 

Asian students were most likely to enter postsecondary STEM fields compared with White and 

BHNO students (γ = -0.29, SE = 0.02, p < .001; OR = 3.29 compared with White students) 

(Figure 19). But, if the students took more advanced courses, up to two standard deviations 

above the average, BHNO students were most likely to enter STEM fields out of all the races (γ 

=0.16, SE = 0.02, p < .001; OR = 1.44 compared White students) (Figure 19). 

The gaps in STEM entrance probabilities between students of higher and lower SES 

increased as students took more advanced courses (Figure 20). If students took advanced courses 

two standard deviations more than the average number of advanced courses, the odds for 

students from families of top quartile SES increased to 5.48 times the odds for students from 

families of bottom quartile SES (γ = 0.08, SE = 0.01, p < .001). However, taking advanced 

courses reduced the gaps between different levels of SCCL (Figure 21). The differences in 

probabilities of STEM entrance gradually decreased as students who attended schools with lower 

levels of academic pressure took more advanced courses (OR = .19 for −2 SD of ADC and OR 

= .77 for +2 SD of ADC). As for the SCMS variable, taking advanced courses increased the 

probability of entrance only for students who attended schools with higher rates of SCMS 

(Figure 22). The odds for students in these schools were 0.23 times the odds for students who 

were in schools with lower rates of SCMS at two standard deviations below the average number 
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of advanced courses. However, the odds increased by 4.27 times when they took advanced 

courses two standard deviations above the average number of advanced courses. 
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Figure 18. Predicted Probabilities of STEM Entrance, the Interaction effect by Advanced 
Courses and Sex. ADC = number of advanced courses in math and science. The variable of ADC 
was grand-mean centered. 
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Figure 19. Predicted Probabilities of STEM Entrance, the Interaction Effect by Advanced 
Courses and Race. The variable of ADC was grand-mean centered. ADC = number of advanced 
courses in math and science. BHNO = Black, Hispanic, Native American, and other races. 
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Figure 20. Predicted Probabilities of STEM Entrance, the Interaction Effect by Advanced 
Courses and SES. The variables of ADC and SES were grand-mean centered. To illustrate the 
interaction effect, I estimated probabilities at two higher and lower points of SES; “Lower SES” 
is the first-quartile SES, and “higher SES” is the fourth-quartile SES. ADC = number of 
advanced courses in math and science. 
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Figure 21. Predicted Probabilities of STEM Entrance, the Interaction Effect by Advanced 
Courses and School Climate of Academic Pressure. The variable of ADC and SCCL was grand-
mean centered. To illustrate the interaction effect, I estimated probabilities at two higher and 
lower points of SCCL: “Lower SCCL” is 2 SD below the grand mean, and “Higher SCCL” is 2 
SD above the grand mean of SCCL. ADC = number of advanced courses in math and science. 
SCCL = school climate of academic pressure. 
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Figure 22. Predicted Probabilities of STEM Entrance, the Interaction Effect by Advanced 
Courses and School Rate of the Federal Meal Subsidy. The variable of ADC and SCMS was 
grand-mean centered. To illustrate the interaction effect, I estimated probabilities at two higher 
and lower points of SCMS: “Lower SCMS” is 2 SD below the grand mean, and “Higher SCMS” 
is 2 SD above the grand mean of SCMS. ADC = number of advanced courses in math and 
science. SCMS = school rate of the federal meal subsidy. 

Based on the results of Model E, I examined three-way interaction effects, in which I 

incorporated the moderating effects of MSE and ADC with identification and each covariate. 

Model F was the final model, which contained all the significant variables. Insignificant 

covariates (e.g., BHNO, γ = .02, SE = .02, p = .29) and two-way interaction terms (e.g., HA* 

BHNO, γ = −.36, SE = .22, p = .10) remained in the final model if they were parts of significant 

three-way interaction terms (e.g., HA*BHNO*MSE, γ = .61, SE = .16, p < .001), so that I could 
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estimate predicted probabilities and odds ratios for the significant three-way interaction terms. 

The value of BIC decreased from the previous model (133,676 − 133,480 = 190, p < .05). 

MSE had a significant moderating effect on the relation between identification and race, 

as well as the relation between identification and SCMS (Table 32). Figure 23 represents the 

interaction effect of identification, race, and MSE. Overall, the probabilities of STEM entrance 

increased as students had higher levels of MSE. However, the probabilities for non-identified 

BHNO students slightly decreased as levels of MSE increased. It is noteworthy that non-

identified BHNO students were more likely to enter into postsecondary STEM fields than White 

students when they scored two standard deviations below the average on MSE (OR = 3.04). But, 

when they scored two standard deviations above the average on MSE, the odds for non-identified 

BHNO students decreased by 0.35 times the odds for White students (OR = 0.35). For students 

identified as high-achieving, the probabilities of STEM entrance increased with increased levels 

of MSE. Also, among students identified as high-achieving, the moderating effect of MSE was 

particularly strong for Asian students identified as high-achieving with two standard deviations 

below the average MSE, their predicted probability of STEM entrance was lower than the 

probability for White students (OR = .80); but, if their MSE increased to two standard deviations 

above the average, the odds for Asian students identified as high-achieving increased by 4.08 

times the odds for White students. 

Figure 24 represents the interaction effect of identification, SCMS, and MSE. Among 

students identified as high-achieving, those who attended schools with higher rates of SCMS 

were less likely to enter into postsecondary STEM fields, but the gap decreased as student MSE 

increased (OR = .20 at −2 SD MSE and OR = .58 at +2 SD MSE). However, for non-identified 

students, those who attended schools with higher rates of SCMS were slightly more likely to 
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enter into postsecondary STEM fields than students who attended schools with lower rates of 

SCMS (OR = 1.57 at −2 SD MSE and OR = 1.39 at +2 SD MSE). 

The interaction effect of identification, race, and advanced courses in math and science 

was also significant (Asian γ = 0.82, SE = 0.12, p < .001; BHNO γ = 0.61, SE = 0.16, p < .001) 

(Figure 25). The probabilities for White students, regardless of identification or non-

identification as high achievers, increased as the students took more advanced courses in math 

and science (predicted probability ranged from .27 to .37 for students identified as high-

achieving, and predicted probability ranged from .02 to .20 for non-identified students). In 

contrast, the probabilities for Asian and BHNO students identified as high-achieving, did not 

change much, despite the increased number of advanced courses taken. For students not 

identified, who took two standards deviations below the average number of advanced courses, 

Asian students were more likely to enter postsecondary STEM fields than White and BHNO 

students (OR = 4.27 compared with White students). But, as students took more advanced 

courses, BHNO students were most likely to enter into postsecondary STEM fields (OR = 1.37 

compared with White students). 

Increased numbers of advanced courses were usually associated with increased 

probabilities of entrance into postsecondary STEM fields, but this was not so for students 

identified as high-achieving who were from the first quartile of SES families; the probability 

decreased from 0.56 at 2 SD below the average ADC to 0.40 at 2 SD above the average ADC 

(Figure 26). Both students identified as high-achieving and non-identified students from families 

of the fourth quartile of SES were more likely to enter into postsecondary STEM paths as they 

took more advanced courses in math and science. When they took two standard deviations above 

the average number of advanced courses, the probabilities were 0.34 and 0.35, respectively; 
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when they took two standard deviations below the average number, the probabilities were 0.03 

and 0.08. 

In terms of the interaction effect of identification, ADC, and school climate of academic 

pressure, a significant difference existed in the extent to which the probabilities increased with 

ADC (Figure 27). The probability of STEM entrance for students identified as high-achieving, 

who attended schools with lower levels of academic pressure was the highest and increased the 

most among the four groups (predicted probability = .31 at −2 SD of ADC and predicted 

probability = .54 at +2 SD of ADC). From the results, students identified as high-achieving, who 

attended schools with higher levels of academic pressure were least affected by the number of 

advanced courses taken (predicted probability = .16 at −2 SD of ADC and predicted probability 

= .23 at +2 SD of ADC). 
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Figure 23. Predicted Probabilities of STEM Entrance, the Three-Way Interaction Effect by 
Identification, Race, and Mathematics Self-Efficacy. The variable of MSE was grand-mean 
centered. BHNO = Black, Hispanic, Native American, and other races. 
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Figure 24. Predicted Probabilities of STEM Entrance, the Three-Way Interaction Effect by 
Identification, School Rate of the Federal Meal Subsidy, and Mathematics Self-Efficacy. The 
variable of SCMS and MSE was grand-mean centered. To illustrate the interaction effect, I 
estimated probabilities at two higher and lower points of SCMS: “Lower SCMS” indicates the 
25th percentile and “Higher SCMS” indicates the 75th percentile. SCMS = school percentage of 
students who received the federal meal subsidy. MSE = mathematics self-efficacy. 
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Figure 25. Predicted Probabilities of STEM Entrance, the Three-Way Interaction Effect by 
Identification, Race, and Advanced Courses. The variable of ADC was grand-mean centered. 
ADC = advanced courses in math and science. BHNO = Black, Hispanic, Native American, and 
other races. 
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Figure 26. Predicted Probabilities of STEM Entrance, the Three-Way Interaction Effect by 
Identification, SES and Advanced Courses. The variable of ADC was grand-mean centered. To 
illustrate the interaction effect, I estimated probabilities at two higher and lower points of SES; 
“Lower SES” is the first-quartile SES, and “higher SES” is the fourth-quartile SES. ADC = 
advanced courses in math and science. 
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Figure 27. Predicted Probabilities of STEM Entrance, the Three-Way Interaction Effect by 
Identification, School Climate of Academic Pressure and Advanced Courses. The variable of 
ADC was grand-mean centered. To illustrate the interaction effect, I estimated probabilities at 
two higher and lower points of SCCL: “Lower SCCL” is 2 SD below the grand mean of SCCL, 
and “Higher SCCL” is 2 SD above the grand mean. SCCL = school climate of academic 
pressure. 
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Discrete-Time Hazard Models of Persistence in Postsecondary STEM paths 

Baseline comparisons 

Before estimating a hazard model for students identified as high-achieving (RQ 2. What 

are the hazard probabilities of high-achieving students graduating with a STEM major from a 

college or university? When are those students most likely to complete their undergraduate 

programs?), I estimated hazard probabilities for all the students, including non-identified 

students, who had entered STEM fields as of 2006 (unweighted N = 1,010), and I examined 

whether the hazard probabilities differed by identification. As stated, the hazard probability in 

this study is defined as the probability that a student graduated from a postsecondary education 

with a STEM major within eight years of high school graduation. Thus, the survival probability 

is the probability that a student did not graduate from a postsecondary education with a STEM 

major within the observed period. 

Table 33 provides the estimated hazard and survival probabilities for all students. The 

table also includes the hazard and survival probabilities for students identified as high-achieving 

and non-identified students. Time was measured by the year that students graduated from college 

with a STEM major, and started in January 2006. As stated, hazard probability, H(t), describes 

the conditional probability of students experiencing the event in each time period. The largest 

group of students graduated from college with a STEM major in the first two years, H(t) = .27. 

However, considering that “year 1” indicates the third year after graduating from high school for 

the majority of the cohort, “year 2” actually means the fourth year after high-school graduation. 

The estimated probability for this time interval implied that more than a quarter of the students 

who started 4-year college programs with STEM majors after high-school graduation finished 

their college programs with STEM majors within four years. Within five years of high-school 
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graduation, 47% of students had finished a bachelor’s degree in STEM, and within seven years, 

58% had done so. Within nine years of high-school graduation, at which point the ELS follow-up 

study ended, 60% of students who had started a STEM degree as of two years after high-school 

graduation had completed their college degree programs with STEM majors. 

After estimating the baseline probabilities for all students, I estimated the hazard and 

survival probabilities in terms of identification (Table 33) and examined whether there were any 

differences. As seen in Figure 28 and Figure 29, students identified as high-achieving, were 

slightly more likely to complete their bachelor’s degrees in STEM fields than non-identified 

students, particularly within the second year; approximately 62% of students identified as high-

achieving, and 59% of non-identified students completed their STEM degrees by the end of the 

observed period. However, the difference was not statistically significant (β = .05, SE = .11, p 

= .63) when I fitted the discrete-time hazard model with the time dummy variables and a 

variable of identification. The result implied that among the students who had started college 

STEM majors as of 2006, the hazard probability of students identified as high-achieving, 

graduating college with a STEM major was not significantly different than the probability for 

non-identified students. 
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Table 33 

Estimated Hazard and Survival Probabilities for Postsecondary STEM Graduation 

All students High-achieving Non-identified 
Time 

H(t) S(t) H(t) S(t) H(t) S(t) 

1 0.01 0.99 0.00 1.00 0.01 0.99 

2 0.27 0.72 0.29 0.70 0.26 0.73 

3 0.27 0.53 0.19 0.51 0.20 0.53 

4 0.15 0.45 0.08 0.43 0.08 0.45 

5 0.06 0.42 0.03 0.39 0.03 0.43 

6 0.04 0.40 0.01 0.38 0.02 0.41 

7 0.01 0.40 0.00 0.38 0.00 0.41 

Note. A hazard event is operationally defined as college graduation with a STEM major. 
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Figure 28. Predicted Hazard Probabilities of College Graduation with a STEM Major. 
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Figure 29. Predicted Survival Probabilities of College Graduation with a STEM major. 
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Discrete hazard models for students identified as high-achieving 

To answer the main research question, I estimated a set of discrete-time hazard models 

with the data of students identified as high-achieving who entered into STEM fields as of 2006 

(unweighted N = 240). Model A was the baseline model, in which dummy variables for the time 

periods (D1 to D7) were included but no covariates were contained. I added student-level 

covariates in Model B, and Model C contained moderators (MSE and ADC) and their interaction 

terms with the covariates. Model D was the final model, in which only significant variables 

remained. 

Table 34 shows the results of the discrete-time hazard models. The model fit of Model B 

was an improvement on Model A (𝜒ଶ = 25). From the results of Model B, there were no 

significant differences in the graduation probabilities between male and female students and 

between White and Asian students. Comparing White and BHNO students, in every year from 

January 2006, BHNO students were less likely to experience the “event” of completing a 

bachelor’s degree in a STEM field than White students (β = −.67, SE = .27, p < .001). Students 

from families of higher SES were more likely to experience the event than students from families 

of lower SES (β = .34, SE = .10, p < .001). The results of Model C showed that MSE and the 

interaction terms of MSE and the covariates were not significant. 

Model D was the final model. Based on the results of Model C, only significant 

predictors remained in Model D; time variables, race, sex, and ADC were included. The 

deviance of Model D was lower than that of Model B (𝜒ଶ = 47), suggesting that Model D had 

better model fit than Model B. Figure 30 represents the contrasts in survivor functions by race, 

depicting the period-by-period differences in probabilities. BHNO students were less likely to 

graduate with a college degree in STEM than White and Asian students across all the observed 
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time periods. By the end of the study, nine years after high-school graduation, 39% of BHNO 

students identified as high-achieving who had declared majors in STEM fields as of 2006 had 

completed their bachelor’s degrees in STEM fields. This probability was remarkably low when 

compared to the other races; 70% of White students identified as high-achieving and 79% of 

Asian students identified as high-achieving who had declared majors in STEM as of 2006 

completed their bachelor’s degrees. The differences in the probabilities in terms of SES were 

also significant. Students from higher-SES families were more likely to graduate with STEM 

degrees than students from lower-SES families across all the time periods. Figure 27 shows the 

difference between students of two standard deviations above and below the average SES. By the 

end of the observed period, 64% of the students from lower-SES families had completed 

bachelor’s degrees in STEM fields, whereas 77% of the students from higher-SES families had 

completed their STEM degrees. Figure 32 contrasts the probabilities of graduation for students 

who took two standard deviations above and below the average number of advanced courses. 

Students who took more advanced courses in math and science at high school were more likely 

to complete their bachelor’s degrees in STEM than students who took fewer advanced courses. 

The final probabilities that students completed their college programs in STEM were 0.74 and 

0.66, respectively. 
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Table 34 

Results of Discrete-Time Hazard Models for STEM Graduation 

Model A Model B Model C Model D 

Est. p SE Est. p SE Est. p SE Est. p SE 

D1 *** -5.44 1.00 -5.46 *** 1.01 -5.46*** 1.01 -5.49*** 1.01 

D2 *** -0.87 0.14 -0.83 *** 0.19 -0.90* 0.22 -0.76*** 0.18 

D3 *** -0.96 0.18 -0.83 *** 0.21 -0.55*** 0.25 -0.70*** 0.21 

D4 *** -1.65 0.25 -1.50 *** 0.28 -1.44*** 0.35 -1.28*** 0.28 

D5 *** -2.43 0.37 -2.28 *** 0.39 -2.10*** 0.46 -2.03*** 0.39 

D6 *** -3.38 0.59 -3.22 *** 0.60 -3.21*** 0.74 -3.01*** 0.60 

D7 *** -4.47 1.01 -4.30 *** 1.01 -3.89*** 1.02 -4.09*** 1.01 

Sex >0.00 0.99 0.20 0.36 0.15 0.25 

Race Asian 0.37 0.17 0.27 -0.04 0.92 0.36 0.26 0.28 

BHNO -0.67 *** 0.27 -1.02** 0.33 -0.79** 0.28 

SES 0.34 *** 0.10 0.12 0.36 0.13 0.28** 0.11 

MSE 0.35 0.13 0.23 

ADC 0.43*** 0.11 0.28*** 0.06 

Race*MSE Asian -0.36 0.54 0.28 

BHNO -0.37 0.20 0.44 

SES*MSE -0.20 0.27 0.19 

Race*ADC Asian 0.03 0.90 0.22 

BHNO -0.41 0.06 0.22 

SES*ADC -0.10 0.26 0.08 

Fit Statistic 

Deviance 682 657 458 610 

Note. D1-7 are dummy variables for the time periods. *** p < .001, ** p <.01 
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Figure 30. Fitted Survival Functions by Race. BHNO = Black, Hispanic, Native American, and 
other races. 

Figure 31. Fitted Survival Functions by SES. 
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Figure 32. Fitted Survival Functions by the Number of Advanced Courses Taken. 

Multilevel Logistic Models of Further Persistence in STEM Fields 

To examine the third research question, concerning whether further persistence in STEM 

fields varied with identification, I estimated a set of multilevel logistic regression models with a 

binary dependent variable reflecting further persistence in STEM fields after college graduation. 

Model A was a baseline model. The estimated ICC was approximately 0.011, indicating 

that approximately 1.1% of variance in the dependent variable was accounted for by variations 

among schools. The school-level variance was significant (𝜏଴଴ = .19, SE = .01, p < .001) so I 

continued to estimate two-level models. Table 35 gives the results of Model A to Model C. 

Model B contained the variable of identification as a high achiever in math and science, 

based on college entrance exams. The addition of the variable decreased the deviance statistic by 

3,923 compared to the baseline model, which was significantly greater than the .05 critical value 

of 1 degree of freedom. Students identified as high-achieving in math and science were more 

likely to persist in STEM fields after college graduation than non-identified students (γ = 1.61, 
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SE = .02, p < .001). The corresponding odds ratio was 5.00, which means that the odds for 

students identified as high-achieving were five times the odds for non-identified students 

persisting in further careers in STEM fields after college graduation. 

Model C contained all the covariates (sex, race, SES, academic pressure of school, school 

percentage of federal meal subsidy). The deviance statistic showed a statistically significant 

decrease compared to the previous model (𝜒ଶ = 7,833, p < .05). All the student-level and school-

level covariates were significant in predicting further persistence in STEM fields after college 

graduation, except a dummy variable for Asian students. This meant that the probability of 

further persistence did not differ between Asian and White students. The log-odds for female 

students were lower than for male students (γ = −1.13, SE = .02, p < .001), which gave an odds 

ratio of 0.32. In other words, the odds of further persistence in STEM for female students were 

0.32 times the odds for male students. BHNO students were less likely to work or study in 

STEM fields after college graduation than White students (γ = −.49, SE = .02, p < .001, OR 

= .61). Family SES was positively associated with further persistence in STEM fields after 

college graduation (γ = .28, SE = .01, p < .001). The odds of persistence for students from 

families in the fourth-quartile SES were 2.32 times the odds for students from families in first-

quartile SES. However, school climate of academic pressure was negatively associated with 

further persistence (γ = −.09, SE = .01, p < .001). In other words, the log-odds of further 

persistence decreased by 0.09 of a unit when SCCL increased by a unit. 
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Table 35 

Estimates for Multilevel Logistic Models of Further Persistence: Models A—C 

Model A Model B Model C 

Est. SE p Est. SE p Est. SE p 

Fixed effects 

Intercept -2.80 *** 0.01 -2.91 *** 0.01 -2.33 *** 0.01 

HA 1.64 *** 0.02 1.19 *** 0.02 

Sex Female -1.13 *** 0.02 

Race Asian -0.01 0.04 

BHNO -0.49 *** 0.02 

SES 0.28 *** 0.01 

SCCL -0.09 *** 0.01 

SCMS >.00 *** >.00 

Random effects 

Intercept 0.19 *** 0.01 0.15 *** 0.01 0.11 *** 0.01 

Goodness-of-fit+ 

Deviance statistic 145,930 142,007 134,174 

BIC 145,943 142,027 134,233 

Note. + Goodness-of-fit indices were combined by the method as stated in previous chapter (Little & Rubin, 2002; 
Snijders & Bosker, 1999); Since I used multiple imputation, five pieces of model fits that were estimated from five 
different sets of imputed data should be combined. HA = high achievers in math and science; SCCL = school 
academic pressure; SCMS = school percentage of federal meal subsidy, BHNO = Black, Hispanic, Native 
American, and other races. * p < .05, ** p < .01, *** p < .001 

Model D contained two-way interaction terms of identification and each covariate, in 

addition to the variables in Model C. Table 36 shows the results for Model D, E, and F. The 

deviance statistic significantly decreased compared to the previous model (𝜒ଶ = 798, p < .05). 

The interaction effect of identification and BHNO was significant (γ = .29, SE = .11, p < .01). 

The gaps in the probabilities of persistence were greater for comparisons between non-identified 

students than comparisons between students identified as high-achieving. For example, the odds 

of persistence for White students identified as high-achieving were 1.20 times the odds for 
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BHNO students identified as high-achieving, but the odds for non-identified White students were 

1.60 times the odds for non-identified BHNO students (Figure 33). The gaps in the probabilities 

of persistence in terms of SES were greater for students identified as high-achieving. When 

comparing students from the first and fourth quartiles of SES, the odds of persistence for 

students identified as high-achieving from lower-SES families were 0.58 times the odds for 

students identified as high-achieving from higher-SES families; but, the odds ratio by SES was 

slightly lower, 0.42 comparing between higher- and lower-SES, for non-identified students 

(Figure 34). 

The interaction effects were remarkable for identification and school climate of academic 

pressure as well as identification and school percentage of federal meal subsidy (Figure 35 and 

Figure 36). For non-identified students, the probabilities of STEM persistence were equivalent 

regardless of the levels of school climate of academic pressure (OR = 1.00 when comparing 2 SD 

above and below the average SCCL). However, the odds ratio was 4.19 for students identified as 

high-achieving. This meant that the odds of persistence for students identified as high-achieving 

who attended schools with lower levels of academic pressure were almost 4 times the odds for 

students identified as high-achieving who attended schools with higher levels of academic 

pressure. In terms of SCMS rate (Figure 36), non-identified students who attended schools with 

lower rates of SCMS were more likely to persist in STEM after college graduation than non-

identified students who attended schools with higher rates of SCMS. However, the effects were 

reversed for students identified as high-achieving. Students identified as high-achieving who 

attended schools with lower SCMS rates were less likely to persist in STEM after college 

graduation than students who attended schools with higher rates (OR = .24). 
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Table 36 

Estimates for Multilevel Logistic Models of Further Persistence: Models D—F 

Model D Model E Model F 

Est. SE p Est. SE p Est. SE p 

Fixed effects 

Intercept -2.32 *** 0.01 -2.75 *** 0.02 -2.74 *** 0.02 

HA 1.65 *** 0.04 0.83 *** 0.06 0.95 *** 0.07 

Sex Female -1.14 *** 0.02 -1.15 *** 0.03 -1.12 *** 0.03 

Race Asian 0.08 0.05 .10 -0.29 *** 0.09 -0.42 *** 0.10 

BHNO -0.47 *** 0.02 -0.50 *** 0.04 -0.46 *** 0.04 

SES 0.29 *** 0.01 0.06 *** 0.01 0.08 *** 0.01 

SCCL 0.00 0.01 .96 -0.12 *** 0.02 -0.10 *** 0.02 

SCMS 0.00 *** 0.00 0.00 0.00 .22 0.00 0.00 .25 

HA*Sex Female -0.01 0.06 .90 0.13 *0.07 -0.13 0.17 .42 

HA*Race Asian -0.15 0.10 .13 -0.31 ** 0.12 -0.15 0.30 .63 

BHNO 0.29 ** 0.11 -0.31 *0.15 -6.42 *** 0.77 

HA*SES -0.11 *** 0.03 -0.02 0.03 .55 -0.40 *** 0.07 

HA*SCCL -0.60 *** 0.04 -0.57 *** 0.05 -0.03 0.13 .82 

HA*SCMS 0.02 *** 0.00 0.03 *** 0.00 0.04 *** 0.00 

STCR 0.03 *** 0.00 0.03 *** 0.00 

HIMP 0.25 *** 0.02 0.23 *** 0.02 

HA*STCR 0.00 *** 0.00 -0.01 *** 0.00 

HA* HIMP -0.04 0.07 .53 

Sex*STCR Female 0.00 *0.00 

Race*STCR Asian 0.00 0.00 .30 0.00 *0.00 

BHNO 0.00 *** 0.00 0.00 *** 0.00 

SES*STCR 0.00 0.00 .88 0.00 *** 0.00 

SCCL*STCR 0.00 0.00 .56 0.00 0.00 .66 

SCMS*STCR 0.00 0.00 
Note. HA = high achievers in math and science; SCCL = school climate of academic pressure; SCMS = school 
percentage of federal meal subsidy, BHNO = Black, Hispanic, Native American, and other races. 
* p < .05, ** p < .01, *** p < .001 

(Continued) 
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Table 36 Continued 

Model D Model E Model F 

Est. SE p Est. SE p Est. SE p 

Sex*HIMP Female 0.19 *** 0.04 0.18 *** 0.04 

Race*HIMP Asian -0.05 0.10 .64 

BHNO -0.05 0.05 .35 

SES*HIMP 0.10 *** 0.02 0.12 *** 0.02 

SCCL*HIMP 0.12 *** 0.03 0.07 *0.03 

SCMS*HIMP -0.01 *** 0.00 -0.01 *** 0.00 

HA*Race*STCR Asian -0.01 *0.00 

BHNO 0.02 *** 0.00 

HA*SES*STCR 0.02 *** 0.00 

HA*SCCL*STCR 

HA*Sex*HIMP 

HA*Race*HIMP Asian 

BHNO 

HA*SES*HIMP 

HA*SCCL*HIMP 

HA*SCMS*HIMP 

Random effects 

Intercept 0.08 **0.01 >0.00 >0.00 *** >0.00 *** >0.00 

Goodness-of-fit+ 

Deviance statistic 133,376 106,213 105,315 

BIC 133,475 106,330 105,573 

Note. + Goodness-of-fit indices were combined by the method as stated in previous chapter (Little & Rubin, 2002; 
Snijders & Bosker, 1999); Since I used multiple imputation, five pieces of model fits that were estimated from 
five different sets of imputed data should be combined. HA = high achievers in math and science; SCCL = school 
academic pressure; SCMS = school percentage of federal meal subsidy, BHNO = Black, Hispanic, Native 
American, and other races. * p < .05, ** p < .01, *** p < .001 



 
 

     
  

 

             
            

 

163 

Figure 33. Predicted Probabilities of Further Persistence in STEM, the Interaction Effect by 
Identification and Race. BHNO = Black, Hispanic, Native American, and other races. 
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Figure 34. Predicted Probabilities of Further Persistence in STEM, the Interaction Effect by 
Identification and SES. To illustrate the interaction effect, I estimated probabilities at two higher 
and lower points of SES; “Lower SES” is the first-quartile SES, and “higher SES” is the fourth-
quartile SES. 
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Figure 35. Predicted Probabilities of Further Persistence in STEM, the Interaction Effect by 
Identification and School Climate of Academic Pressure. To illustrate the interaction effect, I 
estimated probabilities at two higher and lower points of SCCL: “Lower SCCL” is 2 SD below 
the grand mean of SCCL, and “Higher SCCL” is 2 SD above the grand mean. SCCL = school 
climate of academic pressure. 
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Figure 36. Predicted Probabilities of Further Persistence in STEM, the Interaction Effect by 
Identification and School Rate of the Federal Meal Subsidy. To illustrate the interaction effect, I 
estimated probabilities at two higher and lower points of SCMS: “Lower SCMS” indicates the 
25th percentile, and “Higher SCMS” indicates the 75% percentile. SCMS = school rate of 
students who received the federal meal subsidy. 
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In Model E, I added two moderators, number of STEM credits in college and high-impact 

activities, and their two-way interaction terms with each covariate. The main effects of the two 

moderators were significant (Table 36). Students who took more STEM credits or engaged in at 

least one high-impact activity were more likely to persist in STEM fields after college graduation 

(γ = .03, SE > .00, p < .001 and γ = .25, SE = .02, p < .001, respectively). In terms of college 

STEM credits, the interaction effect with identification was significant. The differences in 

probabilities by number of college STEM credits were greater for students identified as high-

achieving than for non-identified students (Figure 37). 

The interaction effect of sex and college STEM credits was significant. The probabilities 

notably increased for male students as they took more STEM credits in their undergraduate 

programs (p = .03 and p = .13 when students took −2 SD and +2 SD of the average number of 

STEM credits, respectively). However, the probabilities did not change much for female students 

(p = .008 to p = .05 for the same changes) (Figure 38). The interaction effect of race and number 

of college STEM credits was also significant, but the differences in terms of race were not large; 

the odds ratio for White and BHNO students at 2 SD below the average number of STEM credits 

was 1.38, but the odds ratio at 2 SD above the average was 1.30 (Figure 39). 

The interaction effects were also significant for high-impact activities at college. High-

impact activities slightly increased the probability of female student STEM persistence if female 

students did not participate in any high-impact activities, and if they participated in at least one 

high-impact activity but the activities did not change the probability for male students (Figure 

40). The probability of persistence for students from the first-quartile of SES families increased 

as they experienced at least high-impact activity at college (p = .06 to p = .09), but the 

probability did not change for students from the fourth-quartile of SES families (Figure 41). 
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Students who attended schools with lower levels of academic pressure, if they did not participate 

in any high-impact activities at college, were more likely to persist in STEM after college 

graduation than students who attended schools with higher levels of school academic pressure 

(OR = 1.34, See Figure 42). However, if they did participate in at least one high-impact activity, 

the probabilities were almost equal regardless of school academic pressure (OR = 1.00). High-

impact activities were also significantly associated with the gaps in the probabilities of 

persistence in terms of the rates of SCMS. But the effect size was small (γ = -0.01, SE > 0.00, p 

< .001, OR = 0.99), and as seen in Figure 43, no meaningful interaction effect was found. 
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Figure 37. Predicted Probabilities of Further Persistence in STEM, the Interaction Effect by 
Identification and College STEM Credits. To illustrate the interaction effect, I estimated 
probabilities at two higher and lower points of STCR: “Lower STCR” is 2 SD below the grand 
mean of SCCL, and “Higher STCR” is 2 SD above the grand mean. STCR = STEM course 
credits earned in undergraduate programs. 
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Figure 38. Predicted Probabilities of Further Persistence in in STEM, the Interaction Effect by 
Sex and College STEM Credits. To illustrate the interaction effect, I estimated probabilities at 
two higher and lower points of STCR: “Lower STCR” is 2 SD below the grand mean of SCCL, 
and “Higher STCR” is 2 SD above the grand mean. STCR = STEM course credits earned in 
undergraduate programs. 
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Figure 39. Predicted Probabilities of Further Persistence in STEM, the Interaction Effect by 
Race and College STEM Credits. To illustrate the interaction effect, I estimated probabilities at 
two higher and lower points of STCR: “Lower STCR” is 2 SD below the grand mean of SCCL, 
and “Higher STCR” is 2 SD above the grand mean. STCR = STEM course credits earned in 
undergraduate programs. BHNO = Black, Hispanic, Native American, and other races. 
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Figure 40. Predicted Probabilities of Further Persistence in STEM, the Interaction Effect by Sex 
and High Impact Activities. 
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Figure 41. Predicted Probabilities of Further Persistence in STEM, the Interaction Effect by SES 
and High Impact Activities. To illustrate the interaction effect, I estimated probabilities at two 
higher and lower points of SES; “Lower SES” is the first-quartile SES, and “higher SES” is the 
fourth-quartile SES. 
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Figure 42. Predicted Probabilities of Further Persistence in STEM, the Interaction Effect by 
High School Academic Pressure and College High Impact Activities. To illustrate the interaction 
effect, I estimated probabilities at two higher and lower points of SCCL: “Lower SCCL” is 2 SD 
below the grand mean of SCCL, and “Higher SCCL” is 2 SD above the grand mean. SCCL = 
school climate of academic pressure. 
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Figure 43. Predicted Probabilities of Further Persistence in STEM, the Interaction Effect by 
High School Rate of Federal Meal Subsidy and College High Impact Activities. To illustrate the 
interaction effect, I estimated probabilities at two higher and lower points of SCMS: “Lower 
SCMS” is 2 SD below the grand mean of SCMS, and “Higher SCMS” is 2 SD above the grand 
mean. 
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Model F was the final model, which contained all significant variables including three-

way interaction terms. As seen in Table 36, the model fit (BIC) decreased compared to the 

previous model (difference = 106,330 − 105,573 = 757). The differences in the probabilities of 

further persistence in STEM after college graduation in terms of identification and race varied by 

the number of STEM credits students took at college (Figure 44). Taking more STEM credits at 

college increased the probability of persistence for Asian students identified as high-achieving; 

the probability for Asian students identified as high-achieving exceeded the probability for White 

students identified as high-achieving at two standard deviations above the average number of 

credits of college STEM courses (.43 for Asian students and .31 for White students who were 

identified as high-achieving). The predicted probabilities for non-identified BHNO students were 

almost zero regardless of the number of STEM credits earned, which was noteworthy in 

comparison to the non-identified students of other races, whose probabilities increased by taking 

more STEM credits. Taking more STEM credits in college also increased the probabilities of 

further persistence for students from higher-SES families and for non-identified students from 

lower-SES families. However, taking more STEM credits decreased the probability of 

persistence of students identified as high-achieving from lower-SES families; the predicted 

probability decreased from 0.29 to 0.16 at −/+2 SD of STEM credits even though the effect size 

was small (γ = 0.02, SE > 0.00, p < .001) (Figure 45). 
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Figure 44. Predicted Probabilities of Further Persistence in STEM, the Interaction Effect by 
Identification, Race, and College STEM Credits. Note that two lines are overlapped (high-
achieving BHNO and non-identified Asian), and that a line is flat along the y-axis (non-identified 
BHNO). 
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Figure 45. Predicted Probabilities of Further Persistence in STEM, the Interaction Effect by 
Identification, SES, and College STEM Credits. To illustrate the interaction effect, I estimated 
probabilities at two higher and lower points of SES; “Lower SES” is the first-quartile SES, and 
“higher SES” is the fourth-quartile SES. 
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CHAPTER 5 DISCUSSION 

This study began by addressing the question: why do high-school students identified as 

high-achieving in math and science, despite their high achievement in these fields, not select, 

persist, and succeed on STEM pathways after high school graduation? Through an investigation 

using data of a nationally representative cohort of U.S. students, I examined a hypothetical 

model of a talent development path in STEM (Figure 1) and found significant associations 

between several student- and school-level factors and traditionally desirable academic and career 

outcomes along STEM pathways. Based on the literature review, I defined the traditionally 

desirable academic and career choices on STEM pathways in terms of three key outcome 

variables: (1) entrance into postsecondary STEM education, (2) persistence and completion of 

postsecondary STEM education, and (3) further persistence in STEM fields after college 

graduation. Thus, the study concentrated on the longitudinal paths of college-bound students who 

prepared for college entrance while they were attending high schools and who pursued 4-year 

undergraduate programs in STEM. 

Throughout this investigation of the three key outcome variables, I examined the effects 

of uncontrollable and controllable factors on student decisions and persistence on STEM paths. 

Sex, race, and socioeconomic status were student-level uncontrollable covariates (i.e., variables 

that students could not choose or control) that crucially influenced them throughout their lives. 

School percentage of the federal meal subsidy (SCMS) and school climate of academic pressure 

(SCCL) were school-level covariates that students could not control. The significant effects of 

these uncontrollable variables provided a baseline understanding of the disparities along STEM 

career pathways. Given that high-school achievement in math and science was a crucial factor 

that influenced postsecondary STEM entrance, persistence, and achievement (Astin, 1993; 
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Smyth & McArdle, 2004; Nicholls et al., 2007), this study controlled for the effects of 

achievement in college entrance exams. Therefore, I could examine whether or not the effects on 

the dependent variable probabilities were the same for students identified as high-achieving and 

students not identified. Any significant interaction effects of high achievement and student- or 

school-level covariates implied that some academic and career decision patterns of high 

achievers differed from those of non-identified students. 

I also examined the effects of moderators: whether any negative effects of covariates 

were moderated by students’ levels of mathematics self-efficacy (MSE) or the number of 

advanced courses (ADC) that they took at high school. In contrast to the uncontrollable 

covariates, these moderators were controllable factors that the students could themselves 

influence. Of course, these variables could have been affected by the uncontrollable factors and 

other environmental factors that were not included in this study; for example, the number of 

advanced courses that students took during high school could have been significantly influenced 

by student race or school environment (Barnard-Brak et al., 2011; Bell et al., 2009; College 

Board, 2012; Oakes, 1992; Roderick et al., 2011; Roderick et al., 2006). Nevertheless, the 

significant effects of these controllable variables indicated that educators, policy makers, and the 

students themselves could make efforts to reverse the negative effects on STEM pathways of the 

uncontrollable factors. I examined the moderators’ effects with two-way and three-way 

interaction terms that measured the interaction of identification with each covariate with each 

moderator. I summarized and discussed the major findings as follows. 
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Discussion of Major Findings 

Preliminary investigations for gathering validity evidence 

Before investigating the main research questions, I analyzed and presented evidence of 

validity regarding two constructs of interest in this study: mathematics self-efficacy (MSE) and 

school climate of academic pressure (SCCL). I gathered evidence based on the internal structure 

and relations of these constructs to other variables (American Educational Research Association 

[AERA], American Psychological Association [APA], & National Council on Measurement in 

Education [NCME], 2014). 

In terms of the scale for MSE, the results of CFA supported a single-factor model using 

four items to measure the construct. Among the five items included in the ELS:2002, I excluded 

one item because of correlated errors with other variables, which implied the interdependence of 

errors among items and thus a violation of the assumption of a factor model without a relevant 

theoretical background. These results could be used as evidence of validity based on internal 

structure, suggesting that the four items of the MSE scale were internally consistent and 

conformed to the construct of MSE on which the proposed score interpretations were based 

(AERA et al., 2014). The results of discriminant function analysis implied that the four items of 

MSE were significantly associated student achievement in math and science, which added 

validity evidence based on relations to other variables. The revealed relation between MSE and 

achievement in math and science was particularly important, in terms of interpreting the MSE 

scores, as the significance of a scale is determined by its relation to other measures (Embretson, 

2007). 

The scale for school climate of academic pressure involved a hypothetical model. The 

ELS:2002 included items to measure the construct of school climate, but no evidence of validity 
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for it has been reported in published papers. School climate of academic pressure was a school-

level construct and referred to the atmosphere of competitiveness at school, as rated by school 

administrators on a 5-point Likert scale. I hypothesized the construct with five items included in 

the original ELS:2002 data set; but, from the results of CFA, I excluded one item due to a low 

factor loading. The adequate values of model fit indices, factor loadings, and internal consistency 

coefficients gave evidence of validity based on internal structure. I also found that the four items 

of the scale were associated with average school math achievement, which provided evidence of 

validity based on a relation to another variable. Even though this was not a thorough 

investigation gathering evidence of validity, but rather a preliminary examination, these results 

implied that the two scales could be used to measure the constructs of MSE and SCCL, 

respectively. 

Disproportions in the identification of high-achievers 

I operationally defined a student identified as high-achieving in math and science as one 

who scored in the 95th percentile or above in math or science in college entrance exams. Based 

on the literature review, I decided that the use of college entrance exam scores would be 

appropriate for the purpose of the study, given that talented individuals in math and science 

could be expected to have attained a certain level of expertise and be able to demonstrate explicit 

achievements in the fields by late adolescence (Feldhusen, 2005; Subotnik et al., 2011). 

Furthermore, these exams were standardized and accessible for the whole national cohort who 

intended to enter postsecondary education, so the exam scores were available for this 

investigation of students’ experiences in postsecondary education. As expected, students 

identified as high-achieving by the criteria of this study were more likely than non-identified 

students to enter postsecondary STEM education and to persist in STEM after college 
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graduation. These results supported the findings of prior studies; high achievement in math and 

science effectively predicts STEM entrance and persistence (e.g., Adelman, 1999; French et al., 

2005; Lubinski et al., 2001; Nicholls et al., 2007; Seymour & Hewitt, 1997; Tyson, 2011; Wang, 

2013). 

However, there were severe disproportions in the numbers of students identified as 

college-bound high-achievers, based on the uncontrollable covariates. Female, Black, Hispanic, 

Native American, and other-race students, students from families of the first quartile SES, and 

students who attended schools with higher levels of academic pressure were less likely to be 

identified as high-achievers than students in the corresponding reference groups. The 

disproportions were particularly severe by race and SES; only 0.27% to 2.39% of students of 

Black, Hispanic, Native American, or multiple races were identified as high-achieving, whereas 

15.44% of Asian and 5.58% of White students were identified as high-achieving. Furthermore, 

only 33% of students identified as high-achieving were from families of the lower three quartiles 

of SES, whereas 67% of students identified as high-achieving were from families in the top 

quartile of SES. These results are not surprising according to the prior research revealing that 

Black, Hispanic, Native American, and multiple races have been underrepresented and 

underserved in gifted education (e.g., Plucker, Burroughs, & Song, 2010; Plucker, Hardesty, & 

Burroughs, 2013; Yoon & Gentry, 2009). However, considering that achievement in college 

entrance exams in math and science can effectively predict the success of students on traditional 

STEM pathways (e.g., Smyth & McArdle, 2004; Nicholls et al., 2007), students in these groups 

(female, BHNO, lower SES) might have been disadvantaged from the start in terms of entering 

STEM paths, based on their college entrance exam scores. 
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In sum, using this identification method, students in the traditionally underrepresented 

groups within STEM education and fields (e.g., female, Black, Hispanic, Native, and low SES) 

were severely underrepresented as high-achieving in this sample. The implications of this are 

two-fold. First, the use of college entrance exam scores may under-identify students in 

traditionally underserved groups in STEM. If this is the result of these students experiencing 

disadvantages in their school and social environments, schools and society may need scaffolding 

and opportunity to develop their latent talents. Second, the underrepresentation is itself 

insightful. It suggests that disadvantaged (thus, non-identified as high-achieving) but talented 

students are likely to remain in disadvantaged environments in STEM after high-school 

graduation, rather than having another chance to develop their talents, as STEM fields usually 

require postsecondary education. Given that achievement in college entrance exams is a critical 

index representing the “expertise” and “explicit achievement” that talented students in STEM 

have developed at high school, it might be important for policy makers, researchers, and 

educators to investigate why college entrance exam scores were disproportionate in terms of 

student- and school-level covariates. 

Another limitation of this identification method is that it missed the opportunity of 

investigating talented students in untraditional career-development tracks. It is noteworthy that 

students identified as high-achieving by the criteria of this study, and therefore considered as 

talented students in the fields, were defined only in terms of the traditional talent-development 

paths of STEM. 

Entrance into postsecondary STEM 

Unsurprisingly, students identified as high-achievers in math and science were more 

likely to follow STEM pathways through postsecondary education than the non-identified 
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students. The odds of entrance for students identified as high-achieving students were 7.85 times 

the odds for non-identified students. The student-level and school-level covariates were all 

significant in predicting entrance, but the differences by covariate also differed by high-

achieving identification. Comparing the pattern of students identified as high-achievers with that 

of non-identified students, the gaps by race widened for high-achievers; White and Asian 

students were much more likely to enter than BHNO students (BHNO, OR = 0.49, Asian, OR = 

2.09 when White students were reference group). In terms of SES, lower levels of SES did not 

represent a disadvantage for students identified as high-achieving (OR = 0.25 when comparing 

the first-quartile of SES to the fourth-quartile of SES), but did for non-identified students (OR = 

1.62 when comparing the first-quartile of SES to the fourth-quartile of SES). For students 

identified as high-achieving, those with lower SES were more likely to enter STEM paths than 

students who had higher SES (OR = 1.62). These results are not consistent with previous studies 

of general students revealing that students with a lower SES were less likely to enter and 

complete postsecondary paths than those with a higher SES (Carneiro & Heckman, 2002; 

Heckman, 2000). Thus, it gives implications to policy makers and educators that a success on 

college entrance preparations might be a critical chance for talented students in math and science 

from lower SES families to develop their talents in STEM paths. However, school-level poverty 

did not yield the same results. For students identified as high-achieving those who attended 

schools with higher rates of federal meal subsidy were less likely to enter STEM than those who 

attended schools with lower rates of federal meal subsidy. These results are consistent to the 

findings of a study that school poverty rate is a stronger predictor of academic failure than 

student-level poverty (Vanderharr et al., 2006). 
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As expected, the two moderators increased the probabilities of STEM entrance, 

regardless of identification. But, for students identified as high-achieving, the number of 

advanced courses taken was more strongly associated with STEM entrance than for non-

identified students (OR = 1.89). As for the significant results of the three-way interaction effects, 

the two moderators affected the gaps in STEM entrance by covariate for students identified as 

high-achieving. The gaps by race widened as students identified as high-achieving had higher 

levels of mathematics self-efficacy (MSE). MSE increased the probabilities of STEM entrance 

for students identified as high-achieving and non-identified BHNO students, but the degrees to 

which the probabilities increased were small compared to the increases for White and Asian 

students (Figure 15). In line with this, the probabilities did not change for BHNO students 

identified as high-achieving as they took more advanced courses in math and science, a contract 

to the result for White students identified as high-achieving (Figure 25). These results contrast 

the findings of prior studies that argued that mathematics self-efficacy was associated with 

persistence in STEM for Black and Hispanic students just as much as for other ethnicities 

(Wang, 2011). It is not certain when and why BHNO students who took advanced courses 

determined not to enter STEM paths. A possible reason for the lower effectiveness of the 

moderators for BHNO students might be the lack of same-race role models, as Cooper (2011) 

identified. However, more research is needed to identify further reasons why BHNO students are 

less affected by MSE and to find other moderators to promote STEM entrance among BHNO 

students. Furthermore, it is needed to investigate how BHNO students experienced and 

performed in high school advanced courses in math and science and in which ways many of 

those talented students decided not to enter into postsecondary STEM. 



 
 

     
  

            

              

              

               

              

             

              

                

                

             

                  

              

             

    

    

             

            

            

              

                

            

                 

             

187 

Unlike race, as the levels of MSE increased among high-achievers, the entrance 

probability gaps narrowed between students from schools with higher and lower rates of SCMS 

(Figure 24). The probability of STEM entrance increased with the number of advanced courses 

taken in math and science for students identified as high-achieving from higher SES families, but 

it decreased for students identified as high-achieving from lower SES family (Figure 26). Just 

like the observation that students identified as high-achieving from lower SES families were 

more likely to enter into STEM than students identified as high-achieving from higher SES 

families, this result is not self-explanatory. Since only a few prior studies have dealt with the 

effects of SES on persistence and achievement in STEM, I have found no study addressing the 

effects of SES on the STEM pathways of students identified as high-achieving, specifically. 

More explanatory research is required, both to replicate the study of this topic and to find out the 

reasons behind these unique results; why and how are students identified as high-achieving of 

lower SES selecting STEM paths in postsecondary education compared to students identified as 

high-achieving of higher SES? 

Persistence in postsecondary STEM 

The second research question dealt with the hazard and survival probabilities of students 

identified as high-achieving persistence in STEM in postsecondary education. In the baseline 

estimation, I found no significant difference between students identified as high-achieving and 

non-identified students in the hazard probabilities of completing a bachelor’s degree in a STEM 

field. This result was not consistent to the results of the other two research questions, which 

identified that students identified as high-achieving were more likely than non-identified students 

to enter and further persist on STEM pathways. In addition, the result is also inconsistent to prior 

studies revealing that high school achievement and rigorous math and science curriculum were 
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consistently associated with STEM persistence (Chang et al., 2014; Chen & Soldner, 2013; 

French et al., 2005; Mendez et al., 2008). However, it is important to note that the estimation of 

the hazard model was based on a restricted sample of students—those who entered STEM fields 

as of 2006—resulting in a total of 1,010 individuals. Therefore, the results for these baseline 

estimates only applied to those students who had entered into STEM fields within two years of 

high school graduation; whereas, the results for the other prior studies and the two research 

questions applied to the nationally-representative cohort. Considering that the variations in the 

national cohort are much greater than in the restricted sample, it is understandable that the hazard 

probabilities of persistence did not differ by identification. Additionally, this gives another 

insight that students who achieved the 95 percentiles in college entrance exams might not 

necessarily make distinct talent development in STEM once they enter in a bigger pond. This 

could be understandable by the big-fish-little-pond effect (Marsh & Parker, 1984), which implies 

that high-achieving students in high school (a small pond) might have difficulties in persistence 

once they get in a bigger pond. Further studies are needed to investigate the underlying reasons 

for the relatively low persistence rate in spite of students’ high achievement in math and science. 

The main analyses of research question 2 concentrated on the hazard probabilities of 

students identified as high-achieving graduating from college with a STEM major. By the time 

of the second and third years of the study (four and five years after high-school graduation), 

when most of the students who had entered STEM fields as of 2006 graduated, many fewer 

BHNO students had graduated from college with a STEM major compared to White and Asian 

students (OR = 0.61 when comparing to White students). Considering that this analysis was 

performed only with a restricted sample of students, those who were identified as high-achievers 

and who had entered into STEM fields as of 2006, this result implies a serious disparity in STEM 
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education by race and demands further investigation to identify the reasons. Higher levels of 

MSE and ADC significantly predicted the hazard probabilities, but the moderating effects of 

MSE and ADC were not significant for BHNO students (γ = 0.03, SE = 0.22, p = 0.90). 

Further persistence 

For research question 3, I examined whether further persistence in STEM fields differed 

by identification, the covariates, and the moderators. I found that the odds of students identified 

as high-achieving were five times the odds of non-identified students further persisting in STEM 

through graduate studies or in workplaces in STEM fields. This result supports the findings of 

the Study of Mathematically Precocious Youth (SMPY) that showed that high-ability students 

identified by college entrance exams before the age of 13 were more likely than non-identified 

students to pursue doctoral degrees and to achieve scientific, technical, or occupational 

accomplishments by their early 20s (Benbow & Arjmand, 1990; Lubinski et al., 2001). In terms 

of the significant interaction effect of identification and BHNO race, the gap in the probabilities 

of further persistence between White and BHNO students decreased for students identified as 

high-achieving (high-achieving OR = 1.20, non-identified OR = 1.60). Interestingly, however, 

the school-level covariates increased the gap among groups of students identified as high-

achieving. Students identified as high-achieving who attended schools with lower levels of 

academic pressure and higher rates of SCMS were more likely to persist in STEM fields after 

college graduation (Figure 35 and Figure 36). 

Two moderators, number of STEM credits and high impact activities taken in college, 

were positively associated with further persistence in STEM. However, the moderators did not 

work effectively for BHNO students compared to White and Asian students; in particular, the 

probability of further persistence for BHNO students identified as high-achieving was even 
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lower than the probability for non-identified White students as they took more STEM credits at 

college. Taking more STEM credits in college also increased the probability of further 

persistence for students identified as high-achieving from families of the fourth-quartile SES. 

Limitations and Suggestions for Further Research 

One limitation of this study was its sample size by sub-groups. Although the ELS:2002 

contained data collected from a large, nationally representative cohort, the sample sizes of some 

sub-groups were too small to estimate probabilities or to compare them with other groups. For 

example, the number of Native American students was approximately 110, when rounded to the 

nearest ten, among a total of 13,250 students; when the data were restricted to students identified 

as high-achieving, only one student Native American met the criteria as high-achieving. The 

numbers of students of Black, Hispanic, and multiple race students identified as high-achieving 

were also too small (unweighted n = less than 10, 30, and 20 when rounded to the nearest ten) to 

estimate probabilities by race for the effects of covariates and moderators. Further, since only a 

small sample was analyzed, and it was combined, caution must be taken in generalizing the 

findings for BHNO students to each race. It would be worth studying the effects of covariates 

and moderators on a larger sample of BHNO students to facilitate comparisons among the races 

and thus provide more specific results. 

As stated, the identification method was another limitation of this study. Because the 

study used a quantitative investigation to estimate and compare probabilities in talent-

development paths of STEM, the use of such a large data set and the use of college entrance 

exam scores in the data set could be rationalized, particularly based on the relevant literature 

review. However, there obviously existed an equity issue in the use of college entrance exam 

scores, which might have resulted from unequal access to the exams or implicitly or explicitly 
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disadvantaged environments hindering the achievements of traditionally underserved students in 

STEM. Whatever the reasons were, the use of the exam scores limited the number of talented 

students included from underrepresented groups, which resulted in a limitation to reliability in 

interpreting the results for students in those groups. Furthermore, as stated previously, this 

approach targeted college-bound students and could not reveal the effects of covariates on 

untraditional talent development paths in STEM, such as the route of skipping postsecondary 

education and still successfully working in STEM. In response to this limitation, further studies 

using different approaches are recommended. For example, qualitative studies with a sample of 

talented individuals who took untraditional talent development paths might provide insights for 

educating and developing talented students in traditionally minority groups in the fields. 

In terms of research question 2, using the variable of “a success in the STEM persistence” 

could not diagnose problems and barriers behind the failure in the STEM persistence. Using 

discrete-time hazard models, this study revealed when and with what circumstances students 

were more likely to graduate from college with a STEM major. However, since I used secondary 

data, I could not use the variables of drop out from STEM paths and had limitations to explain 

when and why students were more likely to drop out from college in STEM pathways. The latter 

approach using the variable of “a failure in the STEM paths” is more desirable to investigate 

when college students in STEM have difficulties and when they need assistance to persist and 

achieve in STEM paths, and which might give more implications to educational policy and 

practices. 

The preliminary study for evidence of validity could also be further expanded with future 

studies. In this study, I performed confirmatory factor analysis and discriminant function analysis 

on the constructs to provide evidence of validity based on internal structure and relations to other 



 
 

     
  

              

                 

                  

               

             

                 

            

             

      

           

              

              

               

            

              

            

 

               

         

                

             

             

                

192 

variables, respectively. However, there are a lot more ways to thoroughly examine the evidence 

of validity of a construct. For example, further research could analyze the content of the items of 

the two constructs to provide evidence based on test content, which is essential for the use of the 

test scores (AERA et al., 2014). Another analytical approach would be to simply improve the 

thoroughness of the analysis; for example, a structural equation model with latent variables, 

based on the results of CFA in this study, might result in more accurate estimations than those 

from discriminant function analysis. Further validation studies would have merit as the 

ELS:2002 data are publicly available and the psychological variables are worth studying with 

such a large high-school student sample. 

Finally, the data concerning further persistence in STEM relied on self-reported 

information, which could be another limitation. Given that these data came from the follow-up 

survey administered eight years after high-school graduation, it is possible that the students could 

have made responses with insincere attitudes that could distort the results. A large number of 

skipped or missed responses on the question concerning further persistence in STEM 

occupations also increased the possibility of yielding biased results. It is recommended that this 

study be replicated, particularly the third research question, with other data sets. 

Conclusion 

Despite the limitations of this study, it has many merits. First, this study used a 

quantitative approach to investigate high-school students’ talent-development pathways in 

STEM over 12 years of adolescence and early adulthood. In other words, in this study, I 

estimated the probabilities of attaining desirable outcomes on STEM pathways based on talent 

and career-development theories. Unlike prior studies in STEM education, I controlled for the 

effects of high achievement in college entrance exams, so the results revealed that the effects of 
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some covariates were unique for students identified as high-achieving or non-identified students. 

This corresponds to the “All STEM for Some” approach (Atkinson & Mayo, 2010), which 

addressed the necessity of focusing on talented students by providing the best educational 

pipeline. The unique patterns and needs of students identified as high-achieving are expected to 

be helpful for the improvement of policies and educational practices concerning those students. 

Further, based on the baseline estimates of probabilities provided by this study, I expect more 

research to be conducted dealing with the reasons for the significant effects promoting or 

preventing desirable outcomes on STEM pathways. For example, this study revealed that 

students identified as high-achieving from low-SES families were more likely to enter 

postsecondary STEM paths than students identified as high-achieving from higher-families, 

which contrasted the result that low levels of SES are usually associated with low performance in 

STEM (Carneiro & Heckman, 2002; Heckman, 2002; Hill & Gordon, 2008; Hill & Winston, 

2006). More thoroughly designed research concerning the effects of student- and school-level 

poverty is needed as future research to reveal the underlying causes for these effects among high-

achievers. 
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