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ABSTRACT 

Ursitti, Andrew Ph.D., Purdue University, August 2018. Sublaplacians on Real Flag 
Manifolds. Major Professor: Fabrice Baudoin. 

Hypoelliptic differential operators and associated geometries with origins in Lie 

theory are studied. We prove upper bounds on the dimension of Killing fields of an-

alytic pseudosubriemannian manifolds under certain technical hypotheses. Existence 

and uniqueness results for adapted complex structures in open subsets of cotangent 

bundles of analytic subriemannian manifolds are proved. A generalized Lichnerow-

icz theorem expressing the difference between a connection laplacian and a Dirac 

laplacian for arbitrary linear connections and quadratic forms is proved, along with a 

preliminary result in local index theory for subriemannian metrics. We prove general 

results on the ubiquity of hypoelliptic sublaplacians arising in reductive Lie theory 

from the natural filtered structure of the tangent bundle of flag manifolds. A frame-

work for studying the heat kernels of such operators from the standpoint of abstract 

harmonic analysis is developed involving branching the regular representation with 

respect to the inclusion of a closed subgroup which is transverse to the horizontal 

distribution of a given sublaplacian. In the compact case explicit formulæ are given. 
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1. INTRODUCTION 

The goal of this dissertation is to describe and study differential operators on real 

flag manifolds, i.e. the coset spaces G/P where G is a reductive Lie group and 

P ⊂ G is a parabolic subgroup. The author’s point of view is that flag manifolds 

are natural places to discover and study subelliptic operators in particular, if only 

because many examples with completely explicit algebraic structure can be found 

and because a systematic method for comparing general parabolic geometries to the 

flat model spaces (i.e. G/P ) via rather sophisticated types of curvature has been 

developed [1]. 

Although some work appeared earlier, the study of hypoelliptic differential oper-

ators began in earnest in the 1960s, with the work of J.J. Kohn and his coauthors 

on the ∂b-laplacian on the boundary of a strongly pseudoconvex domain in Cn . This 

boundary laplacian, denoted �b, is similar to the standard laplacian Δ on Rn in the 

sense that it can be locally expressed as a “sum of squares” of real vector fields, but 

it is also dissimilar because in the case of �b these vector fields only span a real 

hyperplane in the tangent space at each point. 

Yet, �b manages to retain the essential qualitative property of Δ: it is hypoelliptic, 

meaning that for any distribution u, the smoothness of �bu implies that of u itself. 

This is significant, because the hypoellipticity of Δ on Rn depends crucially on the 

fact that the operator differentiates in each coordinate direction, for even the slightly 

modified operator ∂2 + · · · + ∂2 is not hypoelliptic on Rn as elementary examples x1 xn−1 

demonstrate. It was Hörmander who in 1967 explained the necessary and sufficient 

condition for hypoellipticity which is satisfied by �b and not by ∂2 + · · · + ∂2 ,x1 xn−1 

Theorem 1.0.1 (Hörmander, [2]) If X0, . . . , Xr are real vector fields and c is a P rsmooth function in an open subset Ω ⊂ Rn , then the operator P = i=1 Xi 
2 + X0 + c 
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is hypoelliptic if and only if the Lie algebra generated over R by X0, . . . , Xr spans the 

tangent space to Ω in every point. 

Hörmander’s theorem immediately gives us a way to construct examples of sub-

laplacians. A real Lie algebra n will be called stratified if 

1. n admits a grading of the form n = n1 ⊕ · · · ⊕ nk, and is thus nilpotent since all 

lie monomials of homogeneous degree greater than k are zero, 

2. n1 generates n as a Lie algebra.1 

For a stratified algebra n = n1 ⊕· · ·⊕nk we can choose a basis X1, . . . , Xr of n1, so that P 
the operator r X2 on the associated nilpotent Lie group (i.e. the vector space ni=1 i 

with the polynomial group law given by the baker-campbell-hausdorff formula) is hy-

poelliptic by Hörmander’s theorem. Among the standard examples are the free nilpo-

tent algebras and the Heisenberg algebras. The latter will be especially important, so 

we will explain their structure. Heisenberg algebras are the simplest nonabelian Lie 

algebras, for their construction only three ingredients are needed: two vector spaces 

V, W over R, and a surjective skew-symmetric R bilinear form h·, ·i : V × V → W . 

The associated Heisenberg algebra is then n = n1 ⊕ n2 with n1 = V , n2 = W and 

[v1 ⊕ w1, v2 ⊕ w2] = 0 ⊕ hv1, v2i. Note that n2 is central so all iterated brackets of 

three or more arguments are zero and the Jacobi identity is trivially satisfied. The 

associated Heisenberg group is the vector space n with group law given by the baker-

campbell-hausdorff formula: (v1 ⊕ w1)(v2 ⊕ w2) = (v1 + v2) ⊕ (w1 + w2 + 
2
1 hv1, v2i). 

In particular for any unital R-algebra A, associative or not, with an anti-automorphic 

involution x 7→ x ∗ , the involution extends in the usual way to the direct sum L 
Am×n of all finite dimensional matrices with coefficients in A, with any ma-m,n≥1 

trix T ∈ Am×n mapping to its conjugate transpose T ∗ ∈ An×m . As usual we have 

the R-bilinear product Am×n × Am×n → Am×m given by (T, U) 7→ TU∗ . More gen-

erally if B ⊂ A is a ∗-closed unital subalgebra which is associative and such that 

1The term stratified is also sometimes used to indicate such algebras in which the equality [n1, nl] = 
nl+1 holds for each l = 1, . . . , k − 1, here we require only that n1 generates n. 
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the product in A is unique (i.e. associative) on B ⊗ A ⊗ B then for any α ∈ Bm×m 

and β ∈ Bn×n , both units with β hermitian and α = β if m = n, the involution 

U 7→ U∗ on Am×n ⊕ An×m (if m 6= n) or Am×m (if m = n) can be twisted by (α, β), 

i.e. U 7→ U∗ α,β = (α∗Uβ−1)∗ = β−1U∗α, thus producing a new R-bilinear product 

(T, U) 7→ TU∗ α,β = Tβ−1U∗α. 

The square matrix algebra Am×m admits a decomposition into real and imaginary 

parts by way of the ±1 eigenspace decomposition under the involution ∗ α,α (this is 

independent of α). The resulting Heisenberg algebra is n = Am×n ⊕ Im Am×m with 

the Lie bracket arising from the skew symmetric form 

(T, U) 7→ Im(TU ∗ ) = 
1
(TU ∗ α,β − (TU ∗ α,β ) ∗α,α ) = 

1
(TU ∗ α,β − UT ∗ α,β ),

2 2 

provided that it is surjective (or more generally if one reduces consideration to the 

subalgebra therein which is generated by Am×n). In particular with m = 1, n = p + q, 

α = 1, and β ∈ Rn×n equal to a strategically chosen diagonal ±1 matrix we obtain 

the split-signature affine Heisenberg groups Ap+q ⊕ Im A. By explicitly describing 

the nilradicals of maximal parabolic subgroups in various classical groups, Wolf has 

identified a large family of real flag varieties locally equivalent to these generalized 

Heisenberg groups in many cases [3,4]. In particular we can consider this construction 

using the R-algebras listed in Table 1.1 related to the Freudenthal magic square [5].2 

As above, for each of these Heisenberg algebras we could choose a basis of n1 and 

study the associated sublaplacian on the group. However, we are more interested in 

geometries which are locally equivalent to these Heisenberg groups, but not globally 

so. For R, C and H, these generalized Heisenberg algebras are associated to Hopf 

fibrations, the total space of which will be locally equivalent to one of the previously 

described Heisenberg groups. For C and H these Hopf fibrations come in an infinite 

series 

S1 ,→ S2n+1 → Pn(C) S3 ,→ S4n+3 → Pn(H),and 

respectively. For the octonions there is a unique fibration S7 ,→ S15 → S8 of S15 . 

2The rather unfortunate names appearing in the table are taken from [5]. 



4 

Table 1.1. 
Normed algebras over R. 

symbol R-algebra 

C the complex numbers 

H the quaternions 

O the octonions 

C ⊗ O the bi-octonions 

H ⊗ O the quater-octonions 

O ⊗ O the octo-octonions 

Each of these Hopf fibrations has a rather satisfactory explanation in terms of Lie 

theory. In each case the total space of the fibration arises as the boundary of the 

associated n + 1-dimensional hyperbolic space (with n > 1 for C and H only), and 

it is the realization of this hyperbolic space as an open domain in projective space3 

which explains the fibration. Indeed, in each case the split signature quadratic form 

−|z0|2 + |z1|2 + · · · + |zn+1|2 is defined on n + 1-dimensional projective space as a 

section of a real line bundle and the relevant hyperbolic space is identical to the open 

domain which corresponds to the lines in n + 2-dimensional affine space which are 

positive for this form. The boundary is thus the projective locus of the null cone for 

the given quadratic form, and in each case the isometry group for hyperbolic space 

acts on the boundary as well. 

Some examples of this type of construction are listed in Table 1.2. In the C and 

H cases, the subgroups Pn 
C 
+2, Pn 

H 
+2, etc. are the isotropy subgroups of a null line for 

the associated quadratic form in n + 2-dimensional affine space, in the other cases the 

groups P O, P C⊗O, P H⊗O, P O⊗O are strategically chosen parabolic subgroups in the 

respective noncompact semisimple groups. Now the crucial observation is that, for 

3The projective space for the exceptional algebras is defined directly as an appropriate quotient of 
Lie groups. 
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Table 1.2. 
Symmetric spaces associated to composition algebras over R. 

R-algebra hyperbolic space boundary 

C SU(1, n + 1)/ U(n + 1) SU(1, n + 1)/P C 
n+2 

H Sp1(1, n + 1)/ Sp(n + 1) Sp1(1, n + 1)/P H 
n+2 

O F4 / Spin(9) F4 /P O 

C ⊗ O E6 /K6 E6 /P C⊗O 

H ⊗ O E7 /K7 E7 /P H⊗O 

O ⊗ O E8 /K8 E8 /P O⊗O 

instance in the complex case, a null line cannot be contained entirely in any positive 

defininte or negative definite subspace of Cn+2 , so it must have a full rank projection 

onto either summand of any positive/negative definite splitting of Cn+2 , and viewing 

this projected line as a point in the projective space Pn(C) one obtains the map 

SU(1, n + 1)/Pn 
C 
+2 → Pn(C), this is the Hopf fibration. Similar observations apply 

to the other cases, the boundary of the associated hyperbolic space is a projectivized 

null cone, but a line in the null cone projects to a line in the positive definite factor for 

the split quadratic form and this line is evidently a point in the associated projective 

space. This map is the desired fibration. 

The main qualitative feature of these generalized fibrations is that they all have a 

total space equal to a generalized flag manifold, i.e. the total space is a quotient of a 

reductive group by a parabolic subgroup. If G is a symplectic group or a split signature 

unitary group with defining action on a vector space V then the parabolic subgroups 

P ⊂ G are the isotropy groups of totally isotropic flags V1 ⊂ . . . ⊂ Vk (i.e. the 

bilinear form under consideration must vanish when restricted to each Vi). Given any 

orthogonal decomposition V = Q⊕R with Q and R nondegerate for the bilinear form 

under consideration, a totally isotropic flag V1 ⊂ . . . ⊂ Vk can be projected into either 

summand, say Q, and the resulting map (V1 ⊂ . . . ⊂ Vk) 7→ (PQV1 ⊂ . . . ⊂ PQVk) 
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is generally not injective. The subgroup of G which acts invariantly on either Q or 

R must also act invariantly on both Q and R, and as such it is the direct product 

GQ × GR of its projected actions. If P is the isotropy group of the totally isotropic 

flag V1 ⊂ . . . ⊂ Vk, the action of this direct product partitions the flag variety G/P 

in a natural way. If, for instance, V = Cn+2 with metric −|z0|2 + |z1|2 + . . . + |zn+1|2 , 

C ⊕ Cn+1G = U(1, n + 1), Q ⊕ R = with C negative and Cn+1 positive, then 

GQ × GR = U(1) × U(n + 1) and this direct product acts transitively on the flag 

variety of all null lines and projecting a null line on R is the surjection which defines 

the Hopf fibration with base Pn(C) and fiber U(1). In group theoretic terms, the 

isotropy group of a projected line in Cn+1 is U(1) × U(1) × U(n) and the isotropy 

group of a null line above it is Δ U(1) × U(n) ⊂ U(1) × U(1) × U(n) where Δ U(1) 

indicates the diagonal injection of U(1) into U(1)2 . So, the Hopf fibration is the usual 

three term fibration associated to the three term inclusion 

Δ U(1) × U(n) ⊂ U(1) × U(1) × U(n) ⊂ U(1) × U(n + 1). 

On the other hand if the metric is changed to +|z0|2 − |z1|2 + |z2|2 + . . . + |zn+1|2 

C ⊕ Cn+1and Q ⊕ R = with Q positive and R of split signature, then GQ × GR = 

U(1) × U(1, n) acting with two orbits on the variety of null lines: 

1. the null lines contained in R, 

2. the null lines with positive projection in Q and negative projection in R. 

Isolating the second orbit, for instance, the projection of a null line into R is a 

fibration of an open domain in the associated flag variety onto an open domain in 

the projective space Pn(C), again with fiber U(1). As above the isotropy group of a 

negative line in R is U(1) × U(1) × U(n), and the isotropy group of a null line above 

it is ΔU(1) × U(n) ⊂ U(1) × U(1) × U(n) so as before this open domain is the total 

space of the usual three term fibration associated to the three term inclusion 

Δ U(1) × U(n) ⊂ U(1) × U(1) × U(n) ⊂ U(1) × U(1, n). 
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This discussion raises a basic question regarding the geometries described above: 

how does the algebraic structure of the parabolic homogeneous space G/P interact 

with and elucidate the nature of the various hypoelliptic sublaplacians defined via Lie 

theory? In this dissertation, we will begin to answer this question. On the one hand 

L. Bérard-Bergery has proved in [6] (see also [7]) that for any three term inclusion 

K ⊂ H ⊂ G with K and H compact the standard fibration H/K ,→ G/K → G/H is 

a riemannian submersion with totally geodesic fibers for any metric on G/K defined 

by splitting g = h ⊕ h0 as an h-module and further splitting h = k ⊕ k0 as a k-

module and choosing metrics on h0 and k0 which are respectively h and k invariant. 

As such, the Laplace operator on the total space commutes with the vertical Laplace 

operator and a suitable linear combination of the two is a degenerate horizontal 

laplacian for the tangent distribution metrically orthogonal to the fibers, i.e. it is 

equal to f 7→ div(Ldf) where L is the linear map L : T ∗(G/K) → T (G/K) defined 

by projecting the cotangent fiber at every point into the orthogonal to the vertical 

tangent space. However, without viewing the total space of the fibration as an open 

domain in a flag variety there is no reason to suspect that the horizontal distribution 

is bracket-generating so that the above described operator is hypoelliptic. 

On the other hand if, as in the examples described above, the total space is iden-

tifiable with an open domain in a flag variety of the form G/P with G reductive and 

P ⊂ G parabolic, then there is a strong reason to suspect that the horizontal distri-

bution is bracket-generating. The relevant initial observation concerns the structure 

of the Lie algebra of G in relation to that of P . Indeed, the Lie algebra p of the 

parabolic subgroup P is a semidirect product g0 n (g1 ⊕ · · · ⊕ gk) where g1 ⊕ · · · ⊕ gk 

is a stratified nilpotent algebra (as defined above) and g0 is a reductive Lie algebra 

of derivations of the stratified factor. In practice, in the semisimple case one obtains 

this type of structure as follows: 

1. start with a semisimple real Lie algebra g, 

2. identify a Cartan decomposition g = k ⊕ s, 
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3. identify a θ-stable Cartan subalgebra t ⊕ a, 

4. identify the a-restricted roots λ ∈ a ∗ , 

5. choose a system Δ+0 of simple positive restricted roots associated to a, 

6. choose a subset Σ ⊂ Δ+0 of simple positive restricted roots (equivalently, a subset 

of noncompact simple positive roots invariant under the involution induced by 

the Satake involution) to define the parabolic, 

7. for i 6= 0 define gi to be the direct sum of all restricted root spaces of height i 

with respect to Σ,4 

8. define g0 to be the common normalizer in g of each of the spaces gi, i ≥ 1. 

In the reductive case the same procedure is applied to the derived algebra [g, g]. The 

subalgebras 

≥0 ≤0 p+ = g = g0 ⊕ g1 ⊕ · · · ⊕ gk and p− = g = g−k ⊕ · · · ⊕ g−1 ⊕ g0 

are both parabolic with nilradicals (here we assume that k is the largest integer such 

that gk is nontrivial) 

≥1 ≤−1 n+ = g = g1 ⊕ · · · ⊕ gk and n− = g = g−k ⊕ · · · ⊕ g−1, 

respectively, each with g0 as a reductive Levi factor. If G is a group with algebra g 

then a subgroup P ⊂ G is said to be a parabolic subgroup if it is an open subgroup of 

the normalizer NG(p+). 

Another crucial observation is that the direct sum decomposition of g given by 

g = g−k ⊕ · · · ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ · · · ⊕ gk is compatible with the Lie bracket in g, so 

in fact this decomposition makes g into a graded Lie algebra. This is essentially the 

only way to give g the structure of a graded Lie algebra - for any such structure on a 

reductive algebra will come from the procedure outlined above (for a proof, see [1]). 

4A rootspace gλ is said to have height i with respect to Σ if λ is a sum of simple positive roots with 
either all positive or all negative coefficients, with sum i, of roots in the complement Δ+ \ Σ.0 
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For a reductive group G, a gradation on the Lie algebra g, and a parabolic sub-

group P ⊂ G with respect to the given gradation, we can construct natural fiber 

bundles on G/P using the usual associated bundle construction: G is the total space 

of a principle bundle over G/P with fiber P , and there is an associated bundle for 

any P module. In particular, for every linear representation of P there is a canonical 

vector bundle on G/P and the most obvious representation is g/p+, for which the 

associated bundle is the tangent bundle to G/P . However, P also normalizes g≥i for 

each i ≤ 0, so if i < 0 then g≥i/p+ is a subrepresentation of g/p+ and the associated 

vector bundle on G/P is therefore a subbundle of the tangent bundle. In this way, 

the tangent bundle T (G/P ) admits a natural increasing filtration 

T −1(G/P ) ⊂ T −2(G/P ) ⊂ · · · ⊂ T −k(G/P ) = T (G/P ) 

which is associated to the increasing sequence of P -subrepresentations 

≥−1/p+ ⊂ g ≥−2/p+ ⊂ · ≥−k/p+g · · ⊂ g = g/p+ 

arising from the root height gradation of the algebra g described above. Moreover, 

this filtration of T (G/P ) is compatible with the Lie bracket of vector fields, and 

so the fact that g−1 generates the nilradical of p− means that we can refer back to 

Hörmander’s theorem to construct a natural sublaplacian on G/P . To do this, we 

observe that a maximal compact subgroup K ⊂ G acts transitively on G/P , so in 

fact G/P = K/KP where KP = K ∩ P . In particular G/P is a compact manifold (in 

fact, it is a smooth projective variety). Thus, there exists a K-invariant metric on 

T (G/P ) and one can construct the sublaplacian Δ−1 which is in every point a sum 

of squares of an orthonormal frame of the tangent fiber of the subbundle T −1(G/P ), 

within a perturbation of differential order one. In fact, there is a sublaplacian for 

≥−1/p+every isotropy orbit in g containing g−1/p+. 

Before addressing this topic we will prove some new results pertaining to general 

pseudosubriemannian geometry. In chapter 2 we begin by proving in Theorem 2.1.3 

that the bound n+n2 on the dimension of complete Killing fields for a subriemannian 
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metric on a connected manifold also holds for analytic pseudosubriemannian metrics 

provided that the cotangent bundle contains at least one vertically regular point for 

the hamitonian flow post-composed with the base projection. We are able to prove 

the existence of such points given additional hypotheses. Specifically, in Theorem 

2.2.4 and the preparatory results leading to it, it is proved that vertically regular 

points exist in the cotangent fiber above any point which admits a so-called preferred 

frame, which is a tangent frame satisfying certain bracket conditions which ensure 

that there exists a partially transverse subriemannian manifold in a bruhat-whitney 

complexification on which the standard metric argument due to Agrachev for the 

existence of vertically regular points can be used. 

Moving on to the second main topic of chapter 2, we prove the existence and 

uniqueness of adapted complex structures in conic open subsets of the cotangent 

bundle for analytic subriemannian metrics. A complex structure in such an open 

set is adapted if it stabilizes the two-dimensional subspace of vector fields generated 

by the radial dilation field and the metric hamiltonian vector field. This notion is 

due to Lempert and Szőke [8–10] and Guillemin and Stenzel [11, 12]. After several 

preparatory results we prove uniqueness of such structures in Theorem 2.3.4 and 

existence in Theorem 2.3.8. 

The final topic of chapter 2 concerns connections on subriemannian manifolds and 

possible adaptations of existing techniques of local index theory to the subriemannian 

case. First it is proved in Lemma 2.4.1 that the horizontal distribution in TT ∗M of 

any partial connection which is lagrangian and annihilates the metric must contain 

the hamiltonian vector field. In Proposition 2.4.2 it is proved that if such a connection 

is also linear, then geodesics are determined by their initial tangent vector so no such 

connection can be linear in the interior of the set in which the metric is degenerate 

for it is well known that geodesics are not determined by their tangent vectors in this 

set. Because of this, it is not possible to develop a theory of Dirac operators built 

from canonically chosen connections as in the riemannian case (see, e.g. [13]). Thus, 

we begin the study of Dirac operators built from completely general connections and 
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to this end we prove in Theorem 2.4.3 a completely generalized Lichnerowicz formula 

in which nontrivial terms involving the torsion and covariant derivative of the metric 

appear. By the preceding remarks these terms cannot be completely gotten rid of 

through a judicious choice of connection as in the nondegenerate riemannian case. 

The final result of chapter 2 begins the process of adapting E. Getzler’s rescal-

ing method to calculate the supertrace of the diagonal heat kernel of the square of a 

Dirac operator on a graded vector bundle. In the nondegenerate riemannian case, Get-

zler was able to calculate the supertrace by decomposing the endomorphism bundle 

End(E) of a graded Clifford module into the tensor product End(E) = Cl(T ∗M)⊗W 

by expressing E as the tensor product of the spinor bundle with a twisting bundle and 

likewise decomposing a Clifford compatible superconnection into the tensor product 

of the riemannian connection with an arbitrary superconnection on the twisting bun-

dle. The aforementioned rescaling of the heat kernel on E results from parallelizing 
√ 

the kernel along geodesic radii, contracting the spatial variable by u and the tem-

poral variable by u, and simultaneously dilating the Cl(T ∗M) factor by the functorial 
√ V 

action of 1/ u on Cl(T ∗M) after identifying it with T ∗M by the natural symbol 

n/2map. Once this is done, the entire kernel is multiplied by u . For k < n this kills Vkoff the contribution from T ∗M in the u → 0 limit and the top degree contribution V 
from n T ∗M is constant in u - but this does not affect the supertrace because any VkClifford element in T ∗M for k < n is a sum of supercommutators and as such it 

must be in the kernel of any supertrace. These rescaled heat kernels are themselves 

heat kernels to corresponding rescaled operators and by showing that the rescaled 

operators have a u → 0 limit, Getzler was able to identify the supertrace of the heat 

kernel at any given point with the heat kernel of a polynomial coefficient operator on 

a euclidean vector space which is explicitly calclulable. 

In the degenerate case the Clifford algebra decomposes as Cl(T ∗M) = Cl(P )⊗ N 

where N is the kernel of the degenerate form and P is any complementary nonde-V 
generate subspace. Elements of N with no scalar component must be nilpotent 

in any representation and as such they must have zero supertrace. Likewise, ele-

V 
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ments of Cl(P ) of exterior degree less than dim P are supercommutators and therefore Vdim Pmust have zero supertrace. Only elements of the subspace P ⊂ Cl(T ∗M) can 

have nonzero supertrace. Thus, in order to successfully generalize Getzler’s rescaling Vdim Pmethod we must modify the dilations so that P is unaffected and such that 

the corresponding rescaled operators have a limit as u → 0. The first part of this 

strategy is achieved in Theorem 2.4.4. However, there is alot of apparent freedom in V 
how the dilations are chosen to affect the N factor, and it remains to be seen if 

such an intricate apparatus (i.e. connections on E and T ∗M , local spatial dilations, 

and Clifford algebra dilations) can be chosen so that the resulting rescaled operators 

have a u → 0 limit. In any case where this limit exists it will be realized as a polyno-

mial coefficient operator on a nilpotent Lie group with dilations, so in principle the 

supertrace can be computed by computing the heat kernel of this operator. 

In chapter 3 we prove the main structural theorems for sublaplacians on flag man-

ifolds. After various preparatory results we prove Proposition 3.2.1 and Proposition 

3.2.2 regarding bracket generating subbundles of T (G/P ) corresponding to direct 

sums of root spaces. Finally in chapter 4 we address the main strategy for developing 

explicit expressions for heat kernels of sublaplacians on homogeneous spaces. This in-

volves recasting the theory of heat flow in the language of abstract harmonic analysis, 

in which heat kernels form a semigroup of positive operators in a separable Hilbert 

space and their pointwise values are given by integration over the unitary dual with 

respect to the Plancherel measure. 

Many sublaplacians of interest on groups or homogeneous spaces can be expressed 

as linear combinations of Casimirs from nested subgroups. As a basic example of this 

we can return to the parabolic homogeneous space G/P discussed earlier. Taking the 

Cartan involution invariants in the decomposition g = g−k ⊕· · ·⊕g−1 ⊕g0 ⊕g1 ⊕· · ·⊕gk 

results in the decomposition k = kk ⊕· · ·⊕k1⊕k0 with kj = (1+θ)(g−j ⊕gj ). Apparently 

k+ = k0 ⊕ k2 ⊕ · · · ⊕ k2j ⊕ · · · is a Lie subalgebra and the difference Δk − Δk+ is 

the sublaplacian arising as a sum of squares of an orthonormal basis of the odd 

degree subspaces of k in a bi-invariant riemannian metric. The heat kernel for such 
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a sublaplacian can be expressed by finding its spectral projections and eigenvectors. 

Thus, each constituent reprepresention of K must be branched into representations of 

K+ and the eigenfunctions of the sublaplacian Δk − Δk+ on G/P = K/K0 are matrix 

coefficients arising from K0 invariants embedded in irreducible representations of K+ 

which are in turn embedded into irreducible representations of K. In this manner, one 

can obtain explicit expressions for heat kernels as infinite series of matrix coefficients 

which can be written out as classical special functions associated to root systems. The 

same method can be used for noncompact groups for which the Plancherel measure 

is explicitly known. With this in mind we develop this method from the standpoint 

of abstract harmonic analysis as desrcibed above. In particular we prove in Theorem 

4.2.2 a criterion for essential self-adjointness of spectrally defined operators such as 

the aforementioned sublaplacians and in Theorems 4.4.1 and 4.4.2 we formulate the 

main results for compact groups which follow from the development of ideas described 

above. 
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2. GEODESICS AND ADAPTED COMPLEX 

STRUCTURES 

By a pseudosubriemannian manifold we mean a smooth manifold M with a quadratic 

form H : T ∗M → R (i.e. a smooth function, homogeneous of degree two in the fibers, 

which in every fiber defines a symmetric bilinear form via polarization) such that the 

tangent distribution equal to the annihilator D of ker H is bracket-generating. Here 

and below, ker H will denote the form kernel of the hamiltonian, which can be prop-

erly smaller than the level set of zero if H takes both positive and negative values. 

By definition bracket-generating means that for any list ξ1, . . . , ξk of one forms which 

spans the cotangent fiber in every point, the vector fields X1, . . . , Xk obtained by re-

spectively tracing the ξi through the bilinear form defined by H generate a Lie algebra 

over R which spans the tangent fiber in every point. If H takes only nonpositive or 

nonnegative values then the given pseudoriemannian manifold is said to be subrie-

mannian, in accordance with the standard specialization from pseudoriemannian to 

riemannian geometry which is the special case of the scenario discussed here in which 

ker H is trivial. 

2.1 Geodesics 

In the subriemannian case we can without loss of generality assume that the 

hamiltonian H takes only nonnegative values, and in this case much of the standard 

metric theory from riemannian geometry can be generalized. We define H1([0, 1], D) 

to be the set of measurable maps from the interval [0, 1] into the manifold M such 

that every element γ ∈ H1([0, 1], D) is absolutely continuous and its derivative is a.e. R 
in the distribution D and has finite energy: E(γ) = 1 |γ̇ |2 < ∞, and therefore also R 2 

finite length l(γ) = |γ̇ | < ∞. The set H1([0, 1], D) of finite energy paths can be 
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given the natural structure of a Hilbert manifold (c.f. [14]) and with this structure the 

point evaluations γ 7→ γ(s) ∈ M and the energy γ 7→ E(γ) ∈ [0, ∞) are differentiable p 
maps. The cauchy-schwarz inequality shows that l(γ) ≤ 2E(γ) with equality if and 

only if |γ̇ | is constant. Thus, since l(γ) is parameter independent evidently a path 

minimizes energy among all paths joining two points if and only if it minimizes length 

and has constant speed. 

By Chow’s theorem (c.f. [14]), every pair of points in M (as usual, we shall assume 

by default that M is connected) can be joined by an element of H1([0, 1], D), and 

with this in mind the intrinsic metric distance on M is defined in the usual manner: 

d(x, y) := inf{l(γ) : γ ∈ H1([0, 1], D), γ(0) = x, γ(1) = y}. 

Symmetry, off-diagonal positivity, and the triangle inequality are immediately veri-

fied, so d is indeed a metric. The metric topology coincides with the manifold topol-

ogy, but the Hausdorff dimension of the resulting metric space (M, d) is typically 

larger than the manifold dimension. In particular, d : M ×M → [0, ∞) is continuous. 

As in riemannian geometry, a path γ ∈ H1([0, 1], D) is said to be a geodesic if it has 

constant speed and if every open segment therein contains a closed segment which 

realizes the distance between its endpoints. 

Standard computations (c.f. [14]) demonstrate that projections into M of hamil-

tonian integral curves are geodesics, however in subriemannian geometry the converse 

is not true. This deficiency arises because, unlike in riemannian geometry, the hori-

zontal endpoint map may have critical points. In other words, it is not always possible 

to perturb the endpoints of an element γ ∈ H1([0, 1], D) in all directions through in-

finitesimal variations. In any case, this type of pathology can only occur on a closed 

and nowhere dense set. In fact there is a result due to A. Agrachev which shows that 

the subriemannian distance is generically smooth. 

Definition 2.1.1 For a smooth manifold M and hamiltonian function H : T ∗M → 

R with hamiltonian vector field XH , a point ξ ∈ T ∗M will be called vertically regular 
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if it is in the domain of exp(XH ) and if it is a regular point of the map π ◦ exp(XH ) 

restricted to T ∗ M .π(ξ) 

Definition 2.1.2 For a given subriemannian manifold M , a pair (x, y) ∈ M × M is 

said to be smooth if x and y are joined by a unique length minimizing path which is 

the projection of a hamiltonian integral curve beginning in a vertically regular point 

of Tx 
∗M . 

Evidently the set of smooth pairs in M × M is a symmetric subset, since if ξx ∈ 

Tx 
∗M and ξy ∈ Ty 

∗M are connected by the hamiltonian flow then the forward image 

through the hamiltonian flow of the vertical tangent space at ξx is transverse to the 

vertical tangent space at ξy if and only if the forward image of the vertical tangent 

space at −ξy is transverse to the vertical tangent space at −ξx. Note that a diagonal 

pair (x, x) is smooth if and only if the metric is nondegenerate (i.e. riemannian) in 

Tx 
∗M , for otherwise x is not a regular value. 

With this definition in place, Agrachev has proved the following theorem. 

Theorem 2.1.1 (Agrachev) For a given metrically complete subriemannian man-

ifold M , the set of smooth pairs in M × M is symmetric, open, and dense. Every 

cross section of this set is open and dense in M . The distance function is smooth on 

the set of smooth pairs and it is analytic if the subriemannian metric is analytic. 

For a proof see [15] and also the Arxiv preprint of the same title which contains 

some additional material [16]. If M is not necessarily complete, then it is still true 

that there is a dense open set of regular exponential values locally speaking as can 

be seen by patching a small neighborhood of a given point into a complete (compact, 

e.g.) subriemannian manifold and observing that this modification does not affect 

the hamiltonian geodesics which are restricted to the patch. 

In particular this proves that, as in riemannian geometry, an isometry of any 

connected subriemannian manifold is determined by its differential action restricted 

to any single cotangent (or equivalently tangent) fiber. Indeed, if F1, F2 : M → M are 
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isometries mapping x to y with equal differential pullbacks from Ty 
∗M to Tx 

∗M then 

F −1 ∗ 
1 F2 maps x to x and fixes every element of Tx M , so it must fix every hamiltonian 

geodesic in M emanating from x. By Agrachev’s theorem such endpoints are locally 

dense so F1 
−1F2 must leave an entire open neighborhood of x elementwise fixed - and 

therefore every cotangent vector lying above this neighborhood is also fixed. From 

this one sees that the set of cotangent vectors which are fixed by F1 
−1F2 is, in addition 

to being nonempty and closed for elementary topological reasons, an open set. It is 

therefore an entire connected component of T ∗M . Therefore, if M is connected and 

if X is a complete vector field on M which exponentiates to an isometry then it is 

globally determined by its value in any single point along with the action of its Lie 

derivative on the cotangent fiber above that point - for if both of these are trivial 

then X must exponentiate to the identity by the preceding argument. 

A similar result for pseudoriemannian manifolds admits an equally simple proof, 

for the differential of the exponential map restricted to vertical tangent vectors on 

T ∗M is given by metric duality - since the metric in this case is required to be 

nondegenerate the inverse function theorem shows that hamiltonian geodesics cover 

a full open neighborhood of the point from which they emanate and the preceding 

argument goes through in exactly the same way as before. 

There appears to be no similarly easy proof in the pseudosubriemannian case even 

though the result itself should be expected to be true. Intuitively it is fairly easy to 

see how the hamiltonian exponential map works locally: if ker H ⊂ Tx 
∗M denotes 

the annihilator of the horizontal distribution D then an open neighborhood U of 

0 ∈ Tx 
∗M/(ker H ∩ Tx 

∗M) can be pulled back to an open neighborhood of ker H in 

Tx 
∗M , which will be denoted Ue . If U is sufficiently small then Ue is in the domain 

of the exponential map wether M is complete or not, and this map collapses the 

entire kernel ker H ∩ Tx 
∗M into the point x. Thus, in the degenerate case no point in 

ker H ∩ Tx 
∗M is a point of maximal differential rank for the exponential map. 

However, each such point is always of maximal transverse differential rank, the 

transverse differential being given by projection into Tx 
∗M/(ker H ∩ Tx 

∗M) followed 
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by metric duality. In particular if one fixes a foliation of the neighborhood Ue which 

is transverse to ker H ∩ Tx 
∗M (such as the foliation defined by any splitting of the 

quotient Tx 
∗M → Tx 

∗M/(ker H ∩ Tx 
∗M)), then the exponential map has maximal rank 

when restricted to any given leaf. In this manner one sees the general behavior of the 

subriemannian exponential map: if U is sufficiently small then each leaf of a given 

transverse foliation is mapped diffeomorphically onto an embedded submanifold which 

is tangent to the horizontal distribution at x, moreover the centerpoint of each leaf is 

mapped on x. So the forward image of any sufficiently small transverse foliation in 

Tx 
∗M looks like that same foliation with the centerpoints from each leaf crushed into 

the point x. 

In the pseudosubriemannian case the behavior should be more or less the same 

- because the transverse differential of the exponential map will again be given by 

metric duality which is assumed to be nondegenerate. Thus, one is led to suspect 

that the local density of the image of the exponential map in the positive definite 

case is a result of the bracket-generating property of the horizontal distribution and 

it should therefore persist for any nondegenerate metric of arbitrary signature. 

If we restrict attention to analytic pseudosubriemannian structures then it is sim-

ple to prove that any analytic isometry which fixes an open subset of vertically regular 

points in a single cotangent fiber must be trivial. 

Lemma 2.1.2 If M is a connected analytic pseudosubriemannian manifold then the 

only analytic isometry of M which leaves elementwise fixed any open set of vertically 

regular points in any cotangent fiber is the identity map. 

Proof Any such isometry must be the identity when restricted to the forward image 

in M of the described open set. This being an open set we conclude that the specified 

isometry can only be the identity, for by the usual argument involving convergence 

of Taylor series the interior of the set on which two analytic maps are equal must be 

a connected component, but we’ve assumed that M is connected. 
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Theorem 2.1.3 If M is a connected analytic pseudosubriemannian manifold of di-

mension n such that T ∗M contains at least one vertically regular point then the Lie 

algebra of complete analytic vector fields which annihilate the metric has dimension 

2at most n + n . 

Proof This result follows from the lemma in the usual fashion. Let ξ ∈ Tx 
∗M be a 

vertically regular point. By the lemma, the map which takes an analytic Killing field 

to its value in TxM ⊕ gl(Tx 
∗M) (by way of the Lie derivative in the second summand) 

is injective. This is easily seen because the difference of two Killing fields with equal 

values in TxM ⊕ gl(Tx 
∗M) must exponentiate to an isometry which fixes the entire 

cotangent fiber Tx 
∗M and in particular fixes an open neighborhood of ξ. By the lemma 

we conclude that the given isometry is the identity so the described vector field must 

be trivial. 

The existence of vertically regular points is not automatic. A simple appeal to 

Sard’s theorem does not work because we require differential regularity along the 

fiber and not globally. Globally speaking of course the exponential map is surjective 

since it fixes the zero section elementwise and as a result there must be many regular 

points for otherwise the image would have measure zero by Sard’s theorem and this 

is demonstrably false. However, one cannot conclude from Sard’s theorem that any 

such point is vertically regular. 

2.2 Vertically Regular Points for Analytic Metrics 

With further hypotheses it is possible to prove that such vertically regular points 

exist generically. A result of Bruhat and Whitney [17] states that a paracompact 

analytic manifold M of dimension n can always be analytically embedded into a 

complex manifold X of dimension n as a totally real submanifold which is the fixed 

point set of an antiholomorphic involution which negates JTxM ⊂ TxX for every 

x ∈ M . In addition to this, the resulting complexification is essentially unique, 

for given two such complexifications the identity map between the two analytically 
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emebedded copies of the original compact manifold extends to a biholomorphism 

of open neighborhoods. The existence of such complexifications will be used below 

to demonstrate the existence of vertically regular points provided certain additional 

hypotheses are met. 

It will be necessary to refer to the stefan-sussmann theory of generalized dis-

tributions and foliations, the following survey of that theory is taken primarily from 

[18–22]. A generalized distribution on a manifold M is quite simply a subset D ⊂ TM 

which is a linear subspace in every fiber. The dual notion is that of a generalized pfaf-

fian system which is, analogously, a subset E ⊂ T ∗M which is a linear subspace in 

every fiber. Evidently one can always pass from a given generalized distribution to 

its fiberwise annihlator, which is a generalized pfaffian system, and vice versa. Con-

cerning regularity, a generalized distribution or pfaffian system is said to be smooth 

or differentiable if each of its points is the value in its fiber of a smooth section (of 

the given distribution or pfaffian system). In the differentiable case the rank of a 

generalized distribution or generalized pfaffian system is lower semicontinuous and 

therefore the rank of the annihilator (whether it be a generalized distribution or pfaf-

fian system) is upper semicontinuous and as such cannot be differentiable unless it is 

constant on connected components. 

An integral of a generalized distribution D is an immersion ι : N → M such that 

the direct image of every vector in TN lies in D. An integral manifold of D is the 

image of an injective integral, i.e. an immersed submanifold every tangent vector 

of which lies in D. A smooth generalized distribution D is said to be completely 

integrable if every point of M is contained in an integral manifold of D which is 

“tangentially maximal” in the sense that each of its points has the entire fiber of 

D as its tangent space. Note that if D has varying rank along any given integral 

manifold then it cannot be tangentially maximal for obvious dimensional reasons. 

Thus, whereas it is possible for smooth generalized distributions of varying rank to 

be completely integrable, the rank must be constant on any of the above described 

tangentially maximal manifolds. 
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The main theorem on the existence of an associated foliation states that for a 

given generalized distribution which is smooth and completely integrable, every point 

is contained in a unique tangentially maximal integral manifold which is not properly 

contained in any other tangentially maximal integral manifold. Thus, these integral 

manifolds which are both spatially and tangentially maximal partition the ambient 

manifold into equivalence classes - i.e. the leaves of the generalized foliation associated 

with the given generalized distribution. A proof can be found in [21]. 

Now let {Xi}i∈I be an indexed collection of topological spaces and for each i let 

{Tij }j∈Ji be an indexed collection of maps Tij : Xi → Diff loc(M) where Diff loc(M) is 

the set of diffeomorphisms between open subsets of a given manifold M . For each 

i ∈ I, j ∈ Ji and m ∈ M there is a map taking x ∈ Xi to (Tij x)m ∈ M defined on the 

subset of Xi such that m lies in the domain of Tij . For clarity we shall assume that 

this is always an open subset of Xi although this is probably not absolutely necessary. 

The topology on M defined by the data {Xi, Tij } is the final topology defined by all 

maps of this type, i.e. the finest topology with the property that each such map is 

continuous. 

This topology is always finer than the manifold topology, but can be strictly finer. 

For instance it contains every subset of M which does not intersect the range of any 

elements of the collection {Tij x}i∈I,j∈Ji,x∈Xi of local diffeomorphisms. In the case 

that this collection contains the identity and is invariant under inversion and pseudo-

composition (i.e. composition combined with domain reduction so that the relevant 

expressions make sense), the relation m ∼ p if p = (Tij x)m for some i ∈ I, j ∈ Ji 

and x ∈ Xi is an equivalence relation on M and the equivalence classes are called 

the orbits of the collection {Tij x}i∈I,j∈Ji,x∈Xi of local diffeomorphisms. These orbits 

together with every point in the common complement of the images of the Tij x form 

the collection of connected components of the above described topology. 

At this level of generality this construction can be quite pathological, as there is 

no initial requirement on the continuity of the maps Tij . If all of the local diffeomor-

phisms in the range of Tij have the same domain then it’s possible to impose such 
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a requirement, but in general one would have to account for the “movement” of the 

domain. Here, however, we will only be concerned with local diffeomorphisms of the 

form 

exp(tkYk) exp(tk−1Yk−1) · · · exp(t1Y1) 

where each Ys is a vector field on an open subset of M . This is a special case 

of the framework described above by taking {Ys}s∈S to be any indexed collection 

of smooth vector fields each defined in an (s-dependent) open subset of M . With 

{Ys}s∈S determined, set 

1. I = N1 = {1, 2, . . .}, 

2. Xi = Ri , 

3. Ji = Si , and 

4. Tij (t1, . . . , ti) = exp(tiYji ) exp(ti−1Yji−1 ) · · · exp(t1Yj1 ). 

In the manner described above the expressions 

(t1, . . . , ti) 7→ Tij (t1, . . . , ti)m 

for m in the domain of Tij (t1, . . . , ti) define an indexed collection of maps from open 

subsets of the vector spaces {Ri}i≥1 into M . The final topology associated to this 

collection of maps into M has the “orbits” of the finite concatenation of flows of the 

fields {Ys}s∈S as its connected components. For clarity we shall assume that each 

orbit has dimension at least one, or equivalently there are no discretely embedded 

points in the described topology, or equivalently that every point in M is in the 

support of at least one element of {Ys}s∈S (note, the fields Ys are not required to be 

smoothly extendible to M). The set of all Tij (t1, . . . , ti) associated to the collection 

{Ys}s∈S of local vector fields is generally referred to as a pseudogroup, i.e. a collection 

of bijections between sets which is stable under inversion and which is closed under 

composition provided the domain and range are appropriately reduced. If all domains 

are subsets of the same set (as in the collection of open subsets of a single manifold 
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M which is our case of interest), then the notion of orbit is essentially the same as 

for a usual group action. 

So far we’ve introduced two ideas: 

1. smooth generalized distributions of (potentially) varying rank, 

2. indexed collections {Ys}s∈S of local vector fields and the associated pseudogroups 

of local diffeomorphisms which they generate. 

There is an obvious way to generate an indexed collection of local vector fields from a 

generalized distribution and two apparent ways to generate a generalized distribution 

from a collection of local vector fields: 

1. starting with a smooth generalized distribution, one takes for the collection 

{Ys}s∈S the set of all smooth local sections of the given distribution, 

2. starting with an indexed collection {Ys}s∈S of local vector fields which for clar-

ity we shall assume contains the zero vector field, one takes the generalized 

distribution arising as the linear span in every tangent fiber of the values of the 

given vector fields, or 

3. starting with an indexed collection {Ys}s∈S of local vector fields which for clarity 

we shall assume contains the zero vector field, one takes the generalized distri-

bution arising as the linear span in every tangent fiber of the direct images of the 

given vector fields through the associated pseudogroup of local diffeomorphisms. 

For a given collection {Ys}s∈S , the distribution defined by the former method will 

be called the näıve distribution generated by {Ys}s∈S and the latter distribution will 

be called the invariant distribution generated by {Ys}s∈S . The main result of Stefan 

[18, 19] and Sussmann [20] is the following. 

Theorem 2.2.1 (Stefan, Sussmann) If {Ys}s∈S is an everywhere defined collec-

tion of local vector fields then the invariant distribution it defines is completely in-

tegrable. The leaves of the associated foliation are the orbits of the associated pseu-

dogroup of local diffeomorphisms and the restriction of the associated final topology 



24 

to each leaf is identical to the topology it inherits from its source as the image of an 

injective immersion. 

So, for instance if {Ys}s∈S consists of a single vector field Y = a∂x + b∂y on the 

torus R2/Z2 and if, furthermore, a/b is irrational then the associated foliation will 

consist of uncountably many leaves of dimension one each of which is dense in the 

standard topology. However, the final topology separates these leaves into connected 

components each homeomorphic to R. 

In addition to this, Sussmann [20] proved the following. 

Theorem 2.2.2 (Sussmann) For any everywhere defined collection {Ys}s∈S of local 

vector fields, the following are equivalent: 

1. the näıve distribution generated by {Ys}s∈S is invariant under the pseudogroup 

of local diffeomorphisms generated by {Ys}s∈S , 

2. the näıve distribution generated by {Ys}s∈S is equal to the invariant distribution 

generated by {Ys}s∈S , 

3. the näıve distribution generated by {Ys}s∈S is completely integrable, 

4. for every point x ∈ M there exists a finite set Y1, . . . , Yk ∈ {Ys}s∈S which spans 

the fiber of the näıve distribution at x, such that for any other local section Z 

of the näıve distribution and any linear combination W = c1Y1 + . . . + ckYk, 

[Z, W ] is a linear combination of Y1, . . . , Yk along the flow line of Z emanating 

from x. 

In addition these four equivalent conditions imply 

5. smooth sections of the näıve distribution generated by {Ys}s∈S are closed under 

the commutator bracket, 

and conversely provided the elements of {Ys}s∈S are analytic. 
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Proceeding now to the main results of this section, for a given connected and 

analytic pseudosubriemannian manifold M embedded in a bruhat-whitney complexi-

fication X, a local horizontal (i.e. contained in the horizontal distribution D) analytic 

orthogonal frame Y1, . . . , Yl, Z1, . . . , Zm on M such that kYik2 = 1 for all i = 1, . . . , l 

and kZik2 = −1 for all i = 1, . . . ,m extends uniquely to a holomorphic complex frame 

in an open neighborhood in X of the frame domain by viewing TX as a holomor-
(1,0)

phic vector bundle by way of its natural identification with TC X via the projection 

(i + J)/2i (such a local frame will be called a local horizontal analytic orthonormal 

frame). Such a frame defines, for any x in the (extended) frame domain, a linear map 

from the complex free Lie algebra on l + m generators into TxX by evaluation of a 

Lie polynomial at x. The kernel of this map is a subalgebra (but not necessarily an 

ideal) of the free Lie algebra which we will call the subalgebra of relations at x. 

We now consider the possibility that either one of the modified frames 

JY1, . . . , JYl, Z1, . . . , Zm or Y1, . . . , Yl, JZ1, . . . , JZm generates a totally real (and there-

fore maximally real) subspace of TxX. First, since the listed vector fields are holo-

morphically extended to a neighborhood of their original domain, the Lie bracket 

is bilinear over C = R ⊕ JR. For this reason, with any choice of V1, . . . , Vr ∈ 

{Y1, . . . , Yl, Z1, . . . , Zm} and e1, . . . , er ∈ {0, 1, 2, 3}, 

[Jer Vr, . . . , J
e1 V1] = Jer+...+e1 [Vr, . . . , V1] 

where Vr ⊗ . . . ⊗ V1 7→ [Vr, . . . , V1] denotes the iterated Lie bracket derived from any 

choice of recursive binary interval partitioning of {1, . . . , r} (i.e. partition {1, . . . , r} 

into two intervals, then for each of these intervals consisting of two or more elements, 

choose a partition of that interval into two intervals and continue recursively). It is 

immediately clear that multiplying a Lie monomial by ±1 according to the parity of 

the number of Yi factors or (respectively) Zi factors it contains is an automorphism of 

the free Lie algebra which we will label as NY or NZ (respectively). By splitting a Lie 

polynomial into even and odd monomials, a generic element of the free Lie algebra 

generated by JY1, . . . , JYl, Z1, . . . , Zm in TxX can be written as W+ + JW− where 

W+ and W− are, respectively, NY even and NY odd Lie polynomials in the variables 
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Y1, . . . , Yl, Z1, . . . , Zm (i.e. every constituent monomial in W+ has an even number of 

Yi factors and every constituent monomial in W− has an odd number of Yi factors), 

and likewise an analogous statement holds for Y1, . . . , Yl, JZ1, . . . , JZm by a similar 

argument. 

Definition 2.2.1 If M is an analytic pseudosubriemannian manifold, a local hori-

zontal analytic orthonormal frame Y1, . . . , Yl, Z1, . . . , Zm is said to be a Y -preferred 

frame or respectively a Z-preferred frame at x ∈ M if the subalgebra of relations at x 

is invariant under the automorphism NY or respectively NZ . 

It is worth mentioning that if m = 0 (i.e. there are no Zi terms), then the frame 

Y1, . . . , Yl can only be Y -preferred at x if all of the commutators vanish at x, for 

apparently [Yi, Yj ] is in the linear span of Y1, . . . , Yl in a neighborhood of x and the 

algebraic expression of this is a relation of degree two in the free Lie algebra. If the 

frame is preferred at x then apparently [Yi, Yj ] is equal to its negative and is therefore 

zero. Such a frame is of course Z-preferred in any case, vacuously. For any finite list 

V1, . . . , Vr of vector fields on a smooth manifold, the Lie hull of the Vi in any tangent 

fiber is the linear span in that fiber of all Lie polynomials in the Vi. 

Lemma 2.2.3 If M is an analytic pseudosubriemannian manifold of dimension n, 

X is a bruhat-whitney complexification of M , and Y1, . . . , Yl, Z1, . . . , Zm is a local 

horizontal analytic orthonormal frame then for any x in the frame domain, the Lie 

hull of JY1, . . . , JYl, Z1, . . . , Zm in TxX is maximally real in TxX provided that the 

frame is Y -preferred at x and likewise the Lie hull of Y1, . . . , Yl, JZ1, . . . , JZm is 

maximally real in TxX provided the frame is Z-preferred at x. 

Proof As described above, by splitting a Lie polynomial into NY -even and NY -odd 

monomials a generic element of the Lie hull of JY1, . . . , JYl, Z1, . . . , Zm in TxX can 

be written as W+ + JW− where W+ and W− are, respectively, NY even and NY odd 

Lie polynomials in the vector fields Y1, . . . , Yl, Z1, . . . , Zm. We can write two generic 

elements as W+
1 + JW− 

1 and W+
2 + JW− 

2 . If the Lie hull of JY1, . . . , JYl, Z1, . . . , Zm in 
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TxX contains a complex line then W± 
1 and W± 

2 can be chosen such that W+
1 + JW− 

1 = 

J(W 2 + JW− 
2 ) = JW 2 − W 2 with W 1 + W 2 and W 1 − W 2 tangent to M at x+ + − + − − + 

so W 1 + W 2 = W− 
1 − W 2 = 0 in TxX. If, further, Y1, . . . , Yl, Z1, . . . , Zm is Y -+ − + 

preferred at x then the relation subalgebra in the free Lie algebra is invariant under 

the grading automorphism NY which negates W 1 and W 2 and leaves W 1 and W 2 
− − + + 

fixed, so in fact W 1 ± W 2 = ±W 1 − W 2 = 0 and therefore W 1 = W 2 = W 1 = + − − + + − − 

W 2 = 0. In particular W 1 + JW 1 = 0 ∈ TxX. We conclude that the Lie hull + + − 

of JY1, . . . , JYl, Z1, . . . , Zm in TxX cannot contain a complex line and is therefore 

totally real. Since Y1, . . . , Yl, Z1, . . . , Zm is assumed to be Y -preferred at x the grading 

automorphism NY is defined on TxM so the Lie hull of JY1, . . . , JYl, Z1, . . . , Zm, being 

obtained from TxM by multiplying the even and odd summands respectively by 1 

and J , must have dimension n. The analogous statements in the Z-preferred case are 

proved in the same way. 

For any local horizontal analytic orthonormal frame Y1, . . . , Yl, Z1, . . . , Zm, the real 

span in every tangent fiber of the holomorphic vector fields JY1, . . . , JYl, Z1, . . . , Zm 

or respectively Y1, . . . , Yl, JZ1, . . . , JZm defines a distribution in a full open neigh-

borhood of x ∈ X which will be denoted respectively by DY and DZ . It should be 

noted that DY and DZ evidently depend on the elements of the chosen frame and 

are not invariants of the distribution D ⊂ TM or even invariants of the individual 

real spans of Y1, . . . , Yl and Z1, . . . , Zm. Indeed, even two distinct analytic vector 

fields on M which are real analytic multiples of each other have different holomorphic 

extensions to X which do not differ by a real factor even though they define the same 

one dimensional distribution in TM . 

Nevertheless the l + m dimensional distributions DY and DZ are well defined in a 

neighborhood of x ∈ X. To make things more concrete, let Ux ⊂ X be a specific open 

neighborhood of x in which the holomorphic continuations of the listed vector fields 

remain independent. Let VY
x, VZ

x ⊂ Ux denote the accessible sets from x determined 

respectively by the distributions DY and DZ , i.e. the set of all endpoints of absolutely 

continuous curves in Ux emanating from x and with derivatives almost everywhere in 
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DY or respectively DZ , or alternatively the orbits of the pseudogroup associated to 

the collection {JY1, . . . , JYl, Z1, . . . , Zm} or respectively {Y1, . . . , Yl, JZ1, . . . , JZm} 

defined in the preceding overview of the stefan-sussmann theory. 

Sussmann’s theorem (Theorem 2.2.2) shows that the tangent space to VY
x or VZ

x 

at any point is generated as a real vector space by the direct images of DY or DZ 

through all concatenated flows through real multiples of the given vector fields, and 

that this tangent space contains the Lie hull of DY or DZ at every point (i.e. the real 

linear span of all iterated Lie brackets of local sections of DY or DZ ). Furthermore, 

since the given vector fields are analytic the tangent space is precisely equal to the 

Lie hull, this is not true generally speaking in the smooth case (see [14, 21,22]). 

Theorem 2.2.4 If M is an analytic pseudosubriemannian manifold and 

Y1, . . . , Yl, Z1, . . . , Zm is a local horizontal analytic orthonormal frame which is Y -

preferred at x then VY
x is a totally real subriemannian manifold of dimension n which 

is totally geodesic for the holomorphically extended hamiltonian flow and likewise if 

the given frame is Z-preferred at x then VZ
x is a totally real subriemannian manifold 

of dimension n which is totally geodesic for the holomorphically extended hamiltonian 

flow. 

By the holomorphically extended hamiltonian flow we mean the flow in the cotan-

gent bundle of the real part of the holomorphically continued hamiltonian, given by ! 
l m l mX X X X 

)2 − )2 P 2 − P 2 P 2 − P 22H = Re (PYi + iPJYi (PZi + iPJZi = + JZiYi JYi Zi 

i=1 i=1 i=1 i=1 

where for any vector field W , PW is the fiberwise linear momentum on the cotangent 

bundle which is defined by W . This will be discussed more extensively in the next 

section, but for now it is sufficient to observe that the holomorphic extension of the 

flow of an analytic vector field on a maximally real submanifold such as T ∗M ⊂ T ∗X 

is the flow of the real part of the holomorphic extension of the holomorphic part of 

the original vector field. Equivalently, it is the flow of the hamiltonian vector field 

on T ∗X associated to the real part of the holomorphically continued hamiltonian 

function. 
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Proof The assertions in the theorem follow directly from the preceding results 

along with Sussmann’s theorem, because Sussmann’s theorem implies that in the 

Y -preferred case the tangent space to VY
x at any point is the direct image of TxVY

x 

through a finite concatenation of holomorphic flows and as such it must be totally 

real in X with dimension equal to that of TxVY
x and likewise for the Z-preferred 

case. For any vector field V , the vertical component of the holomorphically extended 

hamiltonian flow defined by Hamilton’s equations is 

l mX X 
Ṗ  
V = P[V,JYi]PJYi − P[V,Yi]PYi + P[V,Zi]PZi − P[V,JZi]PJZi , 

i=1 i=1 

and from this expression it is clear that for any Lie polynomial W in JY1, . . . , JYl, 

Z1, . . . , Zm, 

l mX X 
PJW 
˙ = −P[W,Yi]PJYi − PJ [W,Yi]PYi + PJ [W,Zi]PZi + P[W,Zi]PJZi . 

i=1 i=1 

If we identify T ∗VY
x with the annihilator of JTVY

x then this expression vanishes on 

T ∗VY
x ∪ JT ∗VY

x . In other words the extended hamiltonian flow begun at any point in 

T ∗VY
x ∪ JT ∗VY

x is contained in a level set of the function PJW . However PJW vanishes 

on T ∗VY
x so apparently the holomorphically continued hamiltonian flow is tangent to 

T ∗VY
x so VY

x is a totally real and totally geodesic subriemannian manifold and likewise 

for VZ
x in the Z-preferred case with the same proof. 

The main conclusion here is that any x ∈ M which admits a preferred local 

horizontal analytic orthonormal frame in a neighborhood is contained in a totally 

real submanifold of maximal dimension for which the holomorphic continuation of the 

pseudosubriemannian hamiltonian on M is (tangentially) strictly positive or negative 

and so the usual metric theory for subriemannian manifolds can be applied locally to 

this submanifold. 

Theorem 2.2.5 If M is a connected analytic pseudosubriemannian manifold and 

Y1, . . . , Yl, Z1, . . . , Zm is a local horizontal analytic orthonormal frame which is Y -

preferred or Z-preferred at any point then the Lie algebra of complete analytic vector 

2fields which annihilate the metric has dimension at most n + n . 
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Proof As a consequence of Theorem 2.1.3, the proof is reduced to the existence of 

at least one vertically regular point. However, the existence of such a point follows 

from Theorem 2.2.4 which together with the given hypotheses ensures that there is a 

maximally real and totally geodesic subriemannian submanifold at x in the complex-

ification X, so Agrachev’s theorem applies to this submanifold, i.e. there must exist 

vertically regular points in every neighborhood of the kernel of the hamiltonian in 

T ∗V x or T ∗V x as the case may be. Without loss of generality assume that the given x Y x Z 

frame is Y -preferred at x ∈ M so T ∗V x ⊂ T ∗X is maximally real. As a result thex Y x 

vertically regular points in Tx 
∗VY

x for the submanifold VY
x are also vertically regular for 

the holomorphic hamiltonian exponential map. In particular the set of critical points 

is a nontrivial divisor in the complex fiber Tx 
∗X, but this means that the critical 

divisor has a nowhere dense intersection in every maximally real subspace of Tx 
∗X 

and Tx 
∗M is one of these. 

2.3 Holomorphic Hamiltonian Flow and Adapted Complex Structures 

The relationship between a hamiltonian function on a cotangent bundle and its 

hamiltonian vector field can be somewhat easier to grasp when explained by way of the 

associated Poisson manifold structure. The Poisson product is the bilinear product 

on C ∞(T ∗M) defined by {f, g} = df(Xg) = Xgf where Xg is the hamiltonian vector 

field for g, equivalently {f, g} = hdf, dgi where h·, ·i is (one of the two) symplectic 

forms on T ∗T ∗M which is dual to the natural symplectic form on TT ∗M . Moreover it 

is a Lie bracket on functions: it is antisymmetric, bilinear under scalar multiplication, 

and satisfies the Jacobi identity. Furthermore in adjoint form it is a derivation of the 

usual pointwise product commutative algebra structure on C ∞(T ∗M). 

The action of R× on T ∗M normalizes the Poisson bracket: mr{mr−1 f, mr−1 g} = + 

r{f, g}, where r ∈ R× and mr denotes the pullback on C ∞(T ∗M) by the fiberwise + 
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multiplicative action of r on T ∗M . Thus, if Q is a homogeneous hamiltonian of degree 

α ∈ R× in an open subset of T ∗M then 

−1 α−1{Q, g} = r mr{mr−1 Q, mr−1 g} = r mr{Q, mr−1 g} 

In other words mr adQ mr−1 = adr1−αQ = r1−α adQ, so the Poisson adjoint operator 

adQ is projectively normalized by the homothetic action of R× 
+. Dualizing this, one 

obtains the normalization [R, XQ] = (α − 1)XQ where XQ is the hamiltonian vector 

field symplectically dual to dQ and R is the Euler vector field (i.e. the direct image 

through the homothetic action of the unit tangent vector ∂/∂x ∈ T1(R
× 
+)). Therefore 

[f(Q)R, g(Q)XQ] = f(Q)(Rg(Q))XQ − g(Q)(XQf(Q))R + f(Q)g(Q)[R, XQ] 

= f(Q)g 0(Q)αQXQ + f(Q)g(Q)(α − 1)XQ 

= f(Q)(αg0(Q)Q + (α − 1)g(Q))XQ� � 
g0(Q) 

= f(Q) α Q + (α − 1) g(Q)XQ (2.1) 
g(Q) 

for smooth functions f and g on the range of Q. Consequently, for any smooth 

functions f, g on the range of Q the flow of f(Q)R normalizes that of g(Q)XQ as 

follows, 

exp(f(Q)R) exp(g(Q)XQ) exp(−f(Q)R)� � 
−f(Q)(αg0(Q)Q+(α−1)g(Q))/g(Q)= exp e g(Q)XQ (2.2) 

for all points at which both sides of the expression make sense. The change in sign 

in the exponent on the right side, which seems unnatural, is due to the fact that the 

natural geometric action of the diffeomorphism group on the manifold T ∗M corre-

sponds to a right action of the diffeomorphism group on functions. The most obvious 

preliminary conclusion from this fact is that R and XQ span an involutive distribu-

tion in their common domain of definition, having two-dimensional leaves in the open 

subset where they are independent over R. 

Here and below, we use the term truncated conic open subset to indicate an open 

subset of T ∗M which is invariant under contractions (i.e. all dilations in (0, 1]). 
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Definition 2.3.1 For any smooth Q, nonvanishing and homogeneous of degree one 

on a truncated conic open subset U ⊂ T ∗M \ M such that XQ is independent of R 

throughout U , and any 2 × 2 real matrix J such that J2 + 1 = 0, a complex structure 

on U will be called J-adapted if it acts by J on the two dimensional subspace of vector 

fields RXQ ⊕ RQ−1R after identifying it with R2 by way of the basis XQ, Q
−1R. 

The normalization (2.1) shows that for any Q which is homogeneous of degree one, 

[f(Q)R, XQ] = 0 for any smooth f , so f(Q)R and XQ generate a two dimensional 

abelian Lie algebra of vector fields in U , tangent to the (R, XQ) foliation. In this case 

these fields exponentiate to an abelian pseudogroup of diffeomorphisms, i.e. a set of 

diffeomorphisms having all the natural properties of a group except that the domains 

will in general be proper subsets of the entire set U . Here and below, Qβ will denote 

any smooth function ψ(Q) of Q with ψ homogeneous of degree β ∈ R on the range 

of Q. Thus, any such Qβ is homogeneous of degree β. Evidently [QβR, XQ] = 0 for 

any such choice of Qβ , but β = −1 (i.e. such that QQβ is constant) is the unique 

choice for which Qβ R has nonzero radial limits on the zero section. This fact will be 

used later on. 

Lemma 2.3.1 For any analytic nonvanishing Q, defined and positively homogeneous 

of degree one in a conic open subset U ⊂ T ∗M , 

1. for any J-adapted complex structure in U and any point ξ ∈ U the map 

τ + iσ 7→ exp(τXQ + σJXQ)ξ = exp((τ + σJ11)XQ + σJ21Q
−1R)ξ 

is a holomorpic immersion from a neighborhood of zero in C to a neighborhood 

of ξ in the leaf containing it, 

2. the (Q−1R, XQ)-pseudogroup orbit of any tangent vector at ξ is a holomorphic 

section of the pullback of TU through this immersion. 

Proof The fact that τ + iσ 7→ exp(τXQ + σJXQ)ξ is a holomorphic immersion from 

a neighborhood of zero in C to a neighborhood of ξ in its leaf for any J-adapted 
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complex structure in U is clear by inspection. To prove assertion 2, observe that if 

γ : (−�, +�) → U is a smooth segment with γ(0) = ξ then the pseudogroup orbit of 

the kinematic tangent vector γ̇ (0) is given by γ̇τ,σ(0) at exp(τXQ + σJXQ)ξ where 

γτ,σ = exp(τXQ + σJXQ)γ : (−�, +�) → U. 

Now, if F is a holomorphic function on a neighborhood of the range of γ then it 

is apparently defined and holomorphic on the range of γτ,σ for τ + iσ in some open 

neighborhood of zero Ω ⊂ C, the composite function τ +iσ 7→ F ◦γτ,σ(t) is apparently 

holomorphic in Ω with t fixed for every t in some interval containing zero and as such 

its derivative in t is also holomorphic in Ω, but this is nothing other than dF (γ̇τ,σ(t)). 

In other words for holomorphic F with domain contained in the leaves intersecting 

γ, dF (γ̇τ,σ(t)) is holomorphic when restricted to leaves so for any t in the domain of 

γ the orbit γ̇τ,σ(t) apparently defines a holomorphic section of the pullback to Ω of 

TU . This argument, adapted from Lempert and Szőke [8], completes the proof of 

assertion 2. 

The concept of geodesic limits will be used in the following lemma and below. A 

vector field X on a truncated conic open subset of T ∗M will be said to have geodesic 

limits along the zero section if it has limits along the zero section when restricted to 

any open subset of a geodesic leaf invariant under contractive dilations (i.e. those aris-

ing from scalars in (0, 1]) therein which does not intersect the corresponding reflected 

(i.e. negated) leaf. 

Lemma 2.3.2 For any analytic nonvanishing Q, defined and positively homogeneous 

of degree one in a conic open subset U ⊂ T ∗M \M and any ψ defined and homogeneous 

of degree β ∈ R× on the range of Q, 

1. with Qβ = ψ(Q), the (Qβ R, XQ)-pseudogroup orbit of any tangent vector which 

annihilates Q is equal to the (Q−1R, XQ)-pseudogroup orbit of that same tangent 

vector, 
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2. each pseudogroup orbit of a tangent vector which annihilates Q has geodesic 

limits along the zero section which are tangent to the zero section and equal to 

the fiber projection into TM of any element of the orbit. 

Proof The equality � �−λ adX1 − e 
exp(λX + tY ) = exp(λX) exp tY 

λ adX 

for exponentiated (i.e. the exponentiated action on functions) vector fields which 

generate a finite dimensional Lie algebra is a special case of the baker-campbell-

hausdorff formula and can be proved by manipulation of power series. In the case 

X = R and Y = Qβ R, apparently adX (Y ) = [R, Qβ R] = βQβR and therefore � � 
1 − e−βλ 

exp(λR + tQβR) = exp(λR) exp tQβR 
βλ 

on functions. As in the normalization (2.2), the geometric action of the diffeomor-

phism group has opposite variance to the corresponding action on functions, so the 

equality of diffeomorphisms � � 
1 − e−βλ 

exp(λR + tQβR) = exp tQβR exp(λR)
βλ 

holds in the intersection of domains of either side. Converting the above equality of 

maps into an equality of their differential actions, one finds that � −βλ � 
1 − e 

exp(λR + tQβR)∗X = exp tQβ R exp(λR)∗X 
βλ ∗ 

for any tangent vector X. If X happens to be tangent to the level set λ+tQβ = 0 then 

apparently the left side, and therefore the right side, leaves X fixed. We conclude 

that � �−βλ − 1e 
exp tQβ R X = exp(λR)∗X 

βλ ∗ 

for all tangent vectors which are tangent to the level set λ + tQβ = 0. Since the 

(QβR, XQ) and (Q−1R, XQ)-pseudogroup actions can be distinguished by their ac-

tions along radial lines, the first assertion is proved. 
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For the second assertion, we merely observe that as a consequence of the first 

assertion all such orbits are equal to the corresponding (R, XQ) orbits - but the action 

of R on tangent vectors to T ∗M is simple to describe. As always any tangent vector 

can be described kinematically by an arc γ in T ∗M with γ̇ (0) chosen appropriately. 

The direct image of γ̇ (0) through exp(λR) is the derivative of the arc exp(λR)γ at 

zero, but limλ↓−∞ exp(λR)γ is precisely the arc in the zero section arising as the fiber 

projection of the original arc γ. This proves the second assertion. 

Lemma 2.3.3 If W is a complex vector space of dimension n and V ⊂ W is any 

real subspace of real dimension n then there exists a maximally real subspace in W 

having trivial intersection with V . 

Proof Let z1, . . . , zn ∈ W be a complex basis and let x1, . . . , xn be such that their 

real span has dimension n and has trivial intersection with V . Let mij be the unique P 
n × n complex matrix defined by xi = n This matrix may or may notj=1 mijzj . 

be invertible, depending on wether or not x1, . . . , xn is or is not independent over 

C. However, the characteristic polynomial λ 7→ det(λ + m) is necessarily nonzero 

in a punctured neighborhood of 0 ∈ C, and for all values of λ in this punctured 

λ λ λneighborhood apparently x1 , . . . , xn defined by xi = (λ + m)zi = λzi + mzi is a 

complex basis and therefore generates a maximally real subspace over R. Furthermore 

for |λ| sufficiently small the real subspace generated by x1 
λ , . . . , xλ must be transverse n 

to V , since this is true by hypothesis for x1
0 , . . . , xn 

0 and it is an open condition. 

Theorem 2.3.4 For any analytic nonvanishing Q, defined and homogeneous of de-

gree one in a truncated conic open subset U ⊂ T ∗M \ M , and any 2 × 2 real matrix 

J such that J2 + 1 = 0, there is at most one J-adapted complex structure in U . 

Proof This proof is adapted from Lempert and Szőke [8]. Assume that there is a 

given J-adapted complex structure in U , written J . For any ξ ∈ U let L ⊂ TξU be 

a maximally real subspace which is transverse to the vertical subspace V TξU . The 

preceding lemma ensures that such a subspace exists. We claim that it is actually 
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possible to choose a (potentially distict) maximally real subspace Le, also transverse 
to V TξU , such that XQ ∈ Le ⊂ ker dQ. First, observe that the complex line generated 

by XQ, i.e. RQ−1R⊕ RXQ must intersect any maximally real subspace in a real line. 

In particular this is true for L so we can choose Xn to be the unique element of L 

congruent to XQ in TξU/V TξU . Let X1, . . . , Xn be an extension of Xn to a real basis 

of L and therefore a complex basis of TξU . Define ri ∈ R for 1 ≤ i ≤ n − 1 to be 

the unique coefficients such that Xi + riQ−1R ∈ ker dQ for 1 ≤ i ≤ n − 1. We claim 

that the list X1 + r1Q−1R, . . . , Xn−1rn−1Q
−1R, XQ is a complex basis generating a 

maximally real subspace transverse to V TξU . First, by reducing each element into 

the quotient TξU/V TξU it is immediately apparent that the real subspace generated 

by this new list must be transverse to V TξU - since the new list is congruent to a basis 

of the quotient. To show that the new list is a complex basis, we consider the complex 

exterior product (X1 + r1Q−1R) ∧ . . . ∧ (Xn−1 + rn−1Q−1R) ∧ XQ. By hypothesis, 

Q−1R, XQ, and Xn lie on the same complex line so that in fact there are complex 

numbers ζ1, . . . , ζn such that 

(X1 + r1Q
−1R) ∧ . . . ∧ (Xn−1 + rn−1Q

−1R) ∧ XQ 

= (X1 + ζ1Xn) ∧ . . . ∧ (Xn−1 + ζn−1Xn) ∧ ζnXn 

= ζn(X1 ∧ . . . ∧ Xn) 

with ζn 6= 0. Thus, the real span of X1 + r1Q−1R, . . . , Xn−1 + rn−1Q−1R, XQ is a 

maximally real subspace of TξU which is transverse to V TξU , contains XQ, and is 

contained in ker dQ. 

To simplify things, we can relabel everything so that the list X1, . . . , Xn ∈ TξU is 

such that 

1. the real subspace generated by X1, . . . , Xn is maximally real, is contained in 

ker dQ, and is transverse to V TξU , 

2. Xn = XQ. 

In addition we can choose Y1, . . . , Yn ∈ TξU such that 
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1. X1, . . . , Xn, Y1, . . . , Yn is a real basis of TξU , 

2. Y1, . . . , Yn−1 ∈ ker dQ, 

3. Yn = Q−1R, 

4. Y1, . . . , Yn−1 are R-linearly independent in the quotient TξU/V TξU . 

The Yi can be chosen by first choosing Ye i for 1 ≤ i ≤ n − 1 to be a basis of the real 

subspace ker dQ ∩ V TξU , and then defining Yi = Ye i + Xi. 

The same symbols X1, . . . , Xn−1, Y1, . . . , Yn−1 will be used to denote the corre-

sponding (Q−1R, XQ)-pseudogroup orbits of the chosen elements of TξU . By the V 
foregoing result Lemma 2.3.1, the section X1 ∧ . . . ∧ Xn of the complex line n 

C TU 

has a holomorphic restriction to the geodesic leaf containing ξ and as such it must 

vanish on a divisor, and this divisor must be nontrivial since the value of X1 ∧ . . .∧Xn V 
in C 

n TξU is nonzero. Let ψrs + iϕrs be the n × n holomorphic matrix defined on P nthe complement of the aforementioned divisor by Yr = s=1(ψrs + J ϕrs)Xs. By the 

foregoing result Lemma 2.3.2, all of the vectors X1, . . . , Xn, Y1, . . . , Yn have (analytic) 

geodesic limits on the zero section, all other than Yn = Q−1R are tangent to the zero 

section, and X1, . . . , Xn is a basis of Tπ(ξ)M . As a result, the matrix ψrs + iϕrs has an 

analytic limit on an open subset of the geodesic boundary of the leaf in the zero sec-

tion and, crucially, this analytic limit depends only on Q, X1, . . . , Xn−1, Y1, . . . , Yn−1 

and J , but not J . Therefore, ψrs + iϕrs is determined at all points in its domain by 

data which are independent of J . P 
Finally, since Yr = n

s=1(ψrs + J ϕrs)Xs and X1, . . . , Xn, Y1, . . . , Yn is a real basis 

of TξU , ϕ must have full rank at ξ, so 

n nX X 
ϕ−1 ϕ−1J Xp = pr Yr − pr ψrsXs. 

r=1 r,s=1 

In this manner, we find that the action of the J-adapted complex structure J is 

determined on the complex basis X1, . . . , Xn entirely by J and by the projections 

of X1, . . . , Xn, Y1, . . . Yn−1 into TM in any open interval of the boundary geodesic 

containing π(ξ). This proves the theorem. 
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Corollary 2.3.5 For any analytic and strictly positive H, defined and homogeneous 

of degree two in a truncated conic open subset U ⊂ T ∗M \ M , and any 2 × 2 real 

matrix J such that J2 + 1 = 0, there is at most one complex structure in U which 

acts by J on the two dimensional subspace RXH ⊕ RR with basis XH , R. 

Proof If m denotes the diagonal 2 × 2 matrix ( 10 
0
2 ), any complex structure acting 

by J on RXH ⊕ RR must act by mJm−1 on the basis ( √1 XH , √1 R) obtained by 
2 H H 

multiplying the basis (mXH ,mR) = (XH , 2R) by √1 . However, √1 XH is equal to 2 H 2 H √ 
X√ 

H , i.e. the vector field for the degree one homogeneous hamiltonian H. Thus, 

any complex structure in U acting by J on RXH ⊕ RR apparently acts by mJm−1 

√1 on RX√ 
H ⊕ R R, by Theorem 2.3.4 there can be at most one such structure. 

H 

Adapted complex structures were originally introduced by Lempert and Szőke 

[8–10] and separately from a different perspective by Guillemin and Stenzel [11, 12], 

see also [23]. The original definition was the one described in the preceding corollary, 

√1i.e. it used XH and R as a basis rather than X√ 
H and R. Here we’ve chosen 

H 

to change the perspective so as to use hamiltonian functions which are homogeneous 

of degree one, since this makes the associated pseudogroup abelian and clarifies the 

existence of limits of the various orbits on the geodesic boundary. 

The positivity hypothesis could be removed at the cost of more extensive notation 

and details. Having given a general uniqueness proof, we now proceed to various ex-

istence proofs for adapted complex structures for analytic subriemannian manifolds, 

first from the extrinsic perspective by way of bruhat-whitney complexifications and 

then from the intrinsic perspective through holomorphically continued lagrangian po-

larizations. This will involve a more detailed examination of the complexified hamil-

tonian flow. Hamiltonian functions will now be denoted by H as in the preceding 

corollary (generally speaking Q denotes a hamiltonian homogeneous of degree one 

whereas H denotes a hamiltonian homogeneous of unspecified degree). Let M de-

note an analytic pseudosubriemannian manifold and let X denote a bruhat-whitney 

complexification of M . There are four equivalent descriptions of the complexified 

hamiltonian flow on T ∗X. 
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1. The cotangent bundle T ∗M is a totally real submanifold of the real cotangent 

bundle T ∗X of the complexification, itself a complex manifold via identification 

with T (1,0)∗X, and in the usual fashion the real analytic diffeomorphism of T ∗M 

resulting from exponentiating the hamiltonian vector field corresponding to the 

analytic hamiltonian defining the subriemannian structure of M extends to a 

biholomorphism of an open neighborhood of T ∗M ⊂ T ∗X, this biholomorphism 

is the complexified hamiltonian flow. 

2. The hamiltonian vector field XH on T ∗M is analytic and therefore extends to 

a holomorphic (real) vector field on a neighborhood of T ∗M in T ∗X, exponen-

tiating this vector field defines the complexified hamiltonian flow. 

3. The hamiltonian function H on T ∗M extends to a holomorphic hamiltonian 

on T ∗X. The corresponding hamiltonian vector field symplectically dual to 

Re dH is equal to the (real) holomorphic continuation of the original hamiltonian 

vector field. As before exponentiating this vector field defines the complexified 

hamiltonian flow. 

4. Any local analytic frame X1, . . . , Xl on an open subset U ⊂ M with dual 

coframe ξ1, . . . , ξl can be holomorphically continued to an open neighborhood 

of U in X. If H is a quadratic form in the fibers then the same is true of the 

metric coefficients g(ξi, ξj ), with U reduced if necessary. The holomorphically 

continued hamiltonian is given by X 
2H = g(ξi, ξj )(PXi + iPJXi )(PXj + iPJXj ). 

ij 

As before the hamiltonian vector field is symplectically dual to the differential 

of the real part of this function. 

The last definition shows that, in the case of a quadratic form hamiltonian H, 

the hamiltonian vector field XH can always be holomorphically continued to an open 

neighborhood of T ∗M in T ∗X which contains the entirety of every cotangent fiber 
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it intersects and as such, we can write a chosen maximal domain of holomorphic 

continuation for XH as T ∗UX,H for some open neighborhood UX,H of M ⊂ X. If 

α, β ∈ R the exponential map ξ 7→ π ◦ exp((α + βJ )XH )ξ (where J is the complex 

structure on TT ∗X) is holomorphic, its restriction to any given fiber Tx 
∗X, where 

defined, is a holomorphic map between complex manifolds of equal dimension so the 

critical set of any such restriction is a divisor. 

To condense notation, write Fα,β (ξ) = π ◦ exp((α + βJ )XH )ξ for ξ in the flow do-

main for (α+βJ )XH inside of a maximal domain T ∗UX,H of holomorphic continuation 

of XH . Naturally the domain Ωα,β of this map is a proper open submanifold of T ∗UX,H 

and depends on α and β. The critical set Crit(Fα,β ) in Ωα,β is a closed and nowhere 

dense subset which is locally a finite intersection of of divisors (specifically the central 

binomial coefficient (2n)!/(n!)2 arising as the number of n × n minor determinants in 

a n × 2n matrix). Again to condense notation, we will write Ωe α,β = Ωα,β \ Crit(Fα,β ). 

Furthermore, we denote by CritV (Fα,β) the set of vertically critical points for Fα,β , 

i.e. those points at which ker DFα,β intersects the vertical tangent space. As noted 

above the intersection CritV (Fα,β) ∩ Tx 
∗X is a divisor in the n-dimensional complex 

manifold Ωα,β ∩ Tx 
∗X. 

Any immersed submanifold Y ⊂ Ωe α,β of real dimension 2n = dimR X which is 

tangentially transverse to ker DFα,β inherits an implied complex structure by using 

Fα,β to identify it locally with its image in the complex manifold X. These complex 

structures satisfy certain further properties which in more specific cases characterize 

them uniquely. 

Lemma 2.3.6 If H is analytic and homogeneous of degree k ∈ Z then the direct 

image of R through the biholomorphism exp((α + βJ )XH ) (wherever defined) is R + 

(k − 1)(α + βJ )XH . 
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Proof This follows from the holomorphically continued normalization 2.2: 

exp((α + βJ )XH ) exp(tR) 
(k−1)t(α + βJ )XH )= exp(tR) exp(e 

= exp(tR) exp((e(k−1)t − 1)(α + βJ )XH ) exp((α + βJ )XH ) 

= exp(t(R + (k − 1)(α + βJ )XH ) + o(t)) exp((α + βJ )XH ). 

Lemma 2.3.7 If H is analytic and homogeneous of degree k ∈ Z, then R − (k − 

1)(α+βJ )XH ∈ ker DFα,β in all fibers of T Ωe α,β. In particular, in the implied complex 

structure on the quotient bundle T Ωe α,β/ ker DFα,β, the complex number α + βi maps 

(k − 1)XH + ker DFα,β into R + ker DFα,β. 

Proof By Lemma 2.3.6, the direct images through exp((α + βJ )XH ) of R and 

(k − 1)(α + βJ )XH differ by a multiple of R, which is annihilated by the fiber 

projection π. 

Thus, at any point in T ∗M ∩ Ωe α,β at which TT ∗M is transverse to ker DFα,β, appar-

ently in the implied complex structure on TT ∗M obtained by identifying T ∗M locally 

with an open subset of X through Fα,β , the complex number (k − 1)(α + βi) maps 

XH into R. In other words the implied complex structure itself (i.e. the number i) 

maps (k − 1)βXH to R− (k − 1)αXH . If, furthermore, the homogeneity degree k is 

equal to two then βXH is mapped to R− αXH , this is the case of interest. 

According to Corollary 2.3.5, complex structures acting by a matrix J on RXH ⊕ 

RR are uniquely determined by J and H, if they exist. Furthermore, Lemma 2.3.7 

hints at a method to prove that they do indeed exist, i.e. they can be obtained by 

embedding M into a bruhat-whitney complexification X, exponentiating the vector 

field (α+βJ )XH with β 6= 0 in a an open neighborhood of ker H ⊂ T ∗X|M , projecting 

to X and then identifying the open set of regular points with X locally so that the 
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complex structure on X defines a complex structure on this set. For H homogeneous 

of degree two, according to the normalization 2.2, 

exp(−zα,βR) exp(XH ) exp(zα,βR) = exp((α + βJ )XH ) 

for any logarithm zα,β of α + βJ ∈ C = R ⊕ RJ . However, J acts on R by rotating 

R into the infinitesimal rotation field tangent to the action of U(1) ⊂ C× coming 

from the complex vector space structure of each fiber TxX, and so exp(zα,βR) = 

(α + βJ ) where J denotes the complex structure on T ∗X acting linearly in every 

fiber. Therefore, π ◦ exp((α + βJ )XH ) = π ◦ exp(XH ) ◦ (α + βJ ). With this 

preparation, we are able to prove the following theorem. 

Theorem 2.3.8 If M is an analytic subriemannian manifold and α + βi ∈ C with 

β 6= 0, then there exists a complex structure mapping βXH to R − αXH in the 

intersection of the open submanifold (α + βJ )−1(Ωe 1,0 \ CritV (F1,0)) ∩ T ∗M ⊂ T ∗M 

with a sufficiently small open neighborhood of ker H. 

Proof Most aspects of this result have been developed in the foregoing exposition. 

We’ve shown that such a complex structure can be defined by pulling back the complex 

structure of a bruhat-whitney complexification X through the map Fα,β in the open 

subset of T ∗M ∩ Ωe α,β where TT ∗M is transverse to ker DFα,β . Alternatively, the 

equality Fα,β = π ◦ exp(XH ) ◦ (α + βJ ) shows that this is the same as the preimage 

through the fiberwise linear map (α + βJ ) of the set of points in (α + βJ )T ∗M at 

which this “rotated” copy of the submanifold T ∗M ⊂ T ∗X is transverse to ker DF1,0. 

However, since points in (α + βJ ) ker H are stationary for the flow exp(XH ), there 

must exist an open neighborhood of (α + βJ ) ker H ⊂ (α + βJ )T ∗M such that for 

any ξ in said neighborhood, ker DF1,0 ⊂ Tξ((α + βJ )T ∗M) consists only of vertical 

tangent vectors. This is a consequence of the fact that β is assumed to be nonzero 

so the direct image of any vertical tangent vector in Tξ((α + βJ )T ∗M), if nonzero, 

must be “rotated” away from the direct image of any fixed subspace of horizontal 



43 

tangent vectors. Because of this, for any splitting Tξ((α + βJ )T ∗M) = Vξ ⊕ Lξ with 

Vξ equal to the vertical subspace, 

ker DF1,0|ξ = (ker DF1,0|ξ ∩ Vξ) ⊕ (ker DF1,0|ξ ∩ Hξ) 

for points ξ sufficiently close to (α + βJ ) ker H. However, since points in (α + 

βJ ) ker H are stationary for the hamiltonian flow, DF1,0 = Dπ at these points, 

where π is the fiber projection. As a result, for ξ in some (potentially smaller) 

open neighborhood of (α + βJ ) ker H, DF1,0 cannot annihilate nonvertical tangent 

vectors, so apparently ker DF1,0|ξ = (ker DF1,0|ξ ∩Vξ), i.e. a point in such a sufficiently 

small neighborhood of (α + βJ ) ker H can be critical for F1,0 only if it is vertically 

critical. However, the vertically critical points for F1,0 in any fiber TxX with x ∈ 

M form a divisor, which must be nontrivial by Agrachev’s theorem. As a result, 

the vertically critical divisor cannot intersect any maximally real subspace of TxX 

in an open set, and (α + βJ )Tx 
∗M ⊂ TxX is maximally real. We conclude that 

if ξ ∈ (α + βJ )T ∗M ⊂ T ∗X is in the complement of the F1,0 vertically critical 

divisor in its fiber and if, in addition, ξ is sufficiently close to (α + βJ ) ker H, 

then (α + βJ )T ∗M ⊂ T ∗X is tangentially transverse to ker DF1,0 at ξ so there 

is an implied complex structure on (α + βJ )T ∗M ⊂ T ∗X gotten by pulling back 

the structure on X through F1,0. Furthermore, multiplication by (α + βJ )−1 in the 

fibers of T ∗X transfers this complex structure on (α+βJ )T ∗M ⊂ T ∗X to a complex 

structure mapping βXH to R−αXH in the intersection of the open submanifold (α + 

βJ )−1(Ωe 1,0 \CritV (F1,0))∩T ∗M ⊂ T ∗M with a sufficiently small open neighborhood 

of ker H. 

We now proceed to give an existence proof from an intrinsic perspective, i.e. 

without embedding M into a bruhat-whitney complexification. Here we mainly follow 

Lempert and Szőke [9] and Hall and Kirwin [23]. Theorem 2.3.8 proves existence of 

a complex structure in an open submanifold of T ∗M mapping βXH to R− αXH by 

selecting a bruhat-whitney complexification X and proving that the open submanifold 

of regular points in T ∗M for the map π ◦ exp((α + βJ )XH ) is nonempty. Since this 
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map must be a local diffeomorphism at such points the complex structure in X can 

be pulled back to the regular set in T ∗M and Lemmas 2.3.6 and 2.3.7 show that this 

complex structure indeed maps βXH to R− αXH . However, Theorem 2.3.8 provides 

no information on the nature of the described open submanifold of regular points, 

which is still very obscure. The intrisic perspective provides much greater clarity in 

this respect. 

Asserting that a point in ξ ∈ T ∗M is regular for π ◦exp((α+βJ )XH ) is equivalent 

to asserting that the direct image of TξT ∗M at any such point is transverse to the 

vertical tangent space at the image ξα,β = exp((α + βJ )XH )ξ, i.e. \ 
exp((α + βJ )XH )∗TξT ∗ M V Tξα,β T ∗ X = {0} 

T ∗X ∗Furthermore, the vertical tangent space V Tξα,β = T X is complex andπ(ξα,β ) 

pulling back the complex structure from X at π(ξα,β ) in the manner described above 

is equivalent to identifying the transverse subspace exp((α + βJ )XH )∗TξT ∗M ⊂ 

Tξα,β T ∗X with the complex quotient Tξα,β T ∗X/V Tξα,β T ∗X. In other words, if we 

identify C ⊗ exp((α + βJ )XH )∗TξT ∗M with Tξα,β T ∗X by equating i and J , then 

V Tξα,β T ∗X is the antiholomorphic tangent space in the described complex structure. 

In other words, we could equivalently consider the direct image 

exp(−(α +βJ )XH )∗V TT ∗X of the vertical tangent subbundle, restrict it to the open 

submanifold of T ∗M where it is transverse to TT ∗M , and define a complex structure 

on T ∗M by declaring exp(−(α + βJ )XH )∗V TT ∗X to be the antiholomorphic sub-

space. However, after reinterpreting the situation in this manner it is immediately 

apparent that we don’t need the bruhat-whitney complexification at all, because 

exp(−(α + βJ )XH )∗V TT ∗X can be identified with the value at α + βi of the holo-

morphic continuation of the complex subbundle of T CT ∗M defined for sufficiently 

small t ∈ R by t 7→ exp(−tXH )∗(V T CT ∗M). 

With this in mind, for any analytic subriemannian manifold M , the map P : Ω → 

LagC(T CT ∗M) defined on the open flow domain Ω ⊂ T ∗M × R for the hamiltonian 
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vector field XH and taking values in the complex lagrangian grassmannian bundle 

LagC(T CT ∗M), defined by 

Pξ(t) = exp(−tXH )∗(V T C T ∗ M)exp(tXH )ξ 

is analytic on account of the fact that the hamiltonian H is analytic and as such 

must extend to an open neighborhood ΩC ⊂ T ∗M × C of Ω, holomorphically in the 

variable t for fixed ξ ∈ T ∗M . We shall assume that ΩC is maximal, in that P does 

not extend to any properly larger open set. 

Lemma 2.3.9 For all (ξ, z) ∈ ΩC, 

1. (ξ, z) ∈ ΩC and Pξ(z) = Pξ(z), 

2. for fixed z, the subbundle Pξ(z) is involutive and contains R− zXH , 

3. for t ∈ R such that ξ is in the domain of exp(tXH ), (exp(tXH )ξ, z − t) ∈ ΩC 

and exp(tXH )∗Pξ(z) = Pexp(tXH )ξ(z − t), 

4. for τ ∈ R, (eτ ξ, e−τ z) ∈ ΩC, exp(τR)∗Pξ(z) = Peτ ξ(e
−τ z). 

Proof Assertion 1 is trivial, since z 7→ Pξ(z) and z 7→ Pξ(z) are both holomorphic 

curves in LagC(Tξ 
CT ∗M) which are equal on an interval in R. For assertion 2, let 

η1, . . . , ηn be a local analytic frame for T ∗M defined in an open set U ⊂ M . This 

frame naturally defines an analytic frame for the vertical subbundle V TT ∗M in all 

fibers above U , we will use the same symbols η1, . . . , ηn for this vertical frame. After 

reducing the domain of the ηj to any connected open subset W of their original 

domain, define ηz = exp(zXH )∗ηi for z in a connected W -dependent domain in Cj 

such that the expression makes sense and intersects a connected interval in R. For 

z ∈ R, the ηj
z clearly span an involutive subbundle (the tangent bundle to the direct 

image through exp(zXH ) of the vertical foliation). As a result, for such real z there 
ij P n ijexist analytic functions c on exp(zXH )W such that [ηi

z, ηz = c ηz Thisk,z j ] k=1 k,z k. 

expression continues holomorphically to admissible z ∈/ R and as such it expresses 
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the commutators of a local frame for Pξ(z) for fixed z as elements of Pξ(z) for ξ ∈ 

exp((Re z)XH )W . Since W can be chosen arbitrarily, Pξ(z) is apparently involutive 

where it is defined, for all fixed z. 

The second statement in 2 is a direct consequence of Lemma 2.3.6, which shows 

that exp(zXH )∗R = R + zXH for z ∈ R. Since R is vertical in every fiber, z 7→ 

R− zXH ⊂ Tξ 
CT ∗M is holomorphic and is included in Pξ(z) for z in an open interval 

of R, therefore R− zXH ∈ Pξ(z) for all (ξ, z) ∈ ΩC. 

Assertion 3 holds by definition for real z, hence for all z at which both sides of 

the given expression make sense by analytic continuation. Assertion 4 follows from 

holomorphic continuation of the following chain of equalities for τ, z ∈ R, 

exp(τR)∗Pξ(z) = exp(τR)∗ exp(−zXH )∗Pexp(zXH )ξ(0) 

= exp(τR)∗ exp(−zXH )∗ exp(−τR)∗ exp(τR)∗Pexp(zXH )ξ(0) 

= exp(τR)∗ exp(−zXH )∗ exp(−τR)∗Pexp(τR) exp(zXH )ξ(0) 

= exp(−e −τ zXH )∗Pexp(τR) exp(zXH )ξ(0) 

−τ = Pexp(τR)ξ(e z) 

= Peτ ξ(e 
−τ z). 

Thus, evidently the affine group R+ n R acts invariantly on ΩC, at least if one 

gives proper attention to domain considerations. If M is a complete manifold, so that 

XH is a complete vector field, then this is a true group action. Define Ωe C ⊂ ΩC to 

be the open subset containing points (ξ, z) such that Pξ(z) ∩ Pξ(z) = {0}. 

Corollary 2.3.10 For all (ξ, z) ∈ Ωe C, 
1. for t ∈ R such that ξ is in the domain of exp(tXH ), (exp(tXH )ξ, z − t) ∈ Ωe C, 
2. for τ ∈ R, (eτ ξ, e−τ z) ∈ Ωe C, 
3. (rξ, z) ∈ Ωe C for all r > 0 such that (ξ, rz) ∈ Ωe C, in particular for any z ∈ C 

the z cross-section of Ωe C is a truncated conic open subset of T ∗M , 
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4. Pξ(z) is the antiholomorphic tangent space for a complex structure J on the z 

cross-section of Ωe C which maps (Im z)XH to R− (Re z)XH . 

Proof Assertions 1 and 2 follow from the analogous assertions in Lemma 2.3.9 and 

the fact that R and XH are real vector fields and as such they transform real tangent 

vectors to real tangent vectors. So in other words, not only does exp(tXH )∗ map 

Pξ(z) to Pexp(tXH )ξ(z − t) but also it must map real tangent vectors in the former 

space to real tangent vectors in the latter. Thus, it is not possible for precisely one 

of Pξ(z), Pexp(tXH )ξ(z − t) to contain a nonzero real tangent vector, and likewise for 

Pξ(z), Pe z(e
−τ z) with a similar proof. Assertion 3 follows immediately from 2.τ 

The fact that Pξ(z) is the antiholomorphic tangent space for a complex structure 

J on the z cross-section of Ωe C follows directly from the fact that this subbundle 

is involutive and has trivial intersection with its conjugate or, equivalently, trivial 

intersection with the real tangent space. The former fact has been proved in Lemma 

2.3.9 and the domain Ωe C has been defined so that the latter fact is true. It remains 

only to prove the stated action of J on RXH ⊕ RR. As proved in Lemma 2.3.9, 

R−zXH ∈ Pξ(z) so if J is the complex structure having Pξ(z) as the antiholomorphic 

tangent space, i(R − zXH ) = −J (R − zXH ). Equating imaginary parts shows 

R− (Re z)XH = J (Im z)XH , as desired. 

Theorem 2.3.11 For any analytic subriemannian manifold M , if (x, y) ∈ M × M 

is a smooth pair in the sense of Agrachev and 2ξ ∈ T ∗M is the midpoint of the 

hamiltonian lift of the unique geodesic segment connecting x and y, then (rξ, i) ∈ Ωe C 

for sufficiently small r > 0. 

Proof Let η1, . . . , ηn be an analytic cotangent frame in an open neighborhood of 

x and let ζ1, . . . , ζn be an analytic cotangent frame in an open neighborhood of y. 

Using the same symbols ηj and ζj we view η1, . . . , ηn and ζ1, . . . , ζn as analytic frames 

for the vertical tangent bundle V TT ∗M in the respective preimages through the 

fiber projection of their original domains. For 1 ≤ j ≤ n and some sufficiently 

small � > 0, define ηz = exp(−zXH )∗ηj ∈ TξT ∗M for z ∈ (−1 − �, −1 + �) andj 
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ζj
w = exp(−wXH )∗ζj ∈ TξT ∗M for w ∈ (1−�, 1+�). Strictly speaking exp(−zXH )∗ηj 

and exp(−wXH )∗ζj are vector fields defined in a full open neighborhood of ξ but by ηz 
j 

and ζj
w we indicate the isolated values of these fields in the fiber TξT ∗M . Apparently 

η1 
z , . . . , ηn

z and ζ1 
w , . . . , ζn

w are bases for Pξ(z) and Pξ(w) respectively, for appropriate 

values of z and w in each case. 

Now, on account of the fact that we’ve assumed (x, y) to be a smooth pair in 

the sense of Agrachev, the real span of η1 
−1 , . . . , ηn 

−1 is transverse to the real span of 

ζ1
1 , . . . , ζn 

1 , for if these two real subspaces were to contain a common nonzero vector u 

then v = exp(−XH )∗u would be a vertical tangent vector in the fiber Texp(−XH )ξT ∗M 

such that exp(2XH )w ∈ Texp(2XH )T ∗M is also vertical - but there can be no such 

vector on account of the fact that (x, y) is assumed to be a smooth pair. Having 

shown that η1 
−1 , . . . , ηn 

−1, ζ1
1 , . . . , ζn 

1 is a real basis of TξT ∗M we observe that it is also 

a complex basis of Tξ 
CT ∗M since TξT ∗M ⊂ Tξ 

CT ∗M is maximally real. Thus, for 

(z, w) ∈ (−1 − �, −1 + �) × (1 − �, 1 + �) ⊂ C2 , 

(z, w) 7→ ηz ∧ . . . ∧ ηz ∧ ζw ∧ . . . ∧ ζw 
1 n 1 n V2nis an analytic map taking values in the complex line Tξ 

CT ∗M which does not 

vanish at (z, w) = (−1, 1). The holomorphic continuation of this map vanishes at 

(0, 0) (since both the ηj 
0 and ζj 

0 form a basis of the vertical tangent space at ξ). 

However, since it does not vanish at (−1, 1) we conclude that its divisor must have 

a discrete intersection in the complex line defined by z + w = 0. In particular, 

there must exist ρ > 0 such that it is nonzero at all points of the form (ri, −ri) for 

0 < r < ρ. Let ρξ denote the supremum of all ρ with this property. Since −ri = ri, 

we find that Pξ(ri) ∩ Pξ(ri) = {0} for 0 < r < ρξ. In other words, (ξ, ri) ∈ Ωe C for 

0 < r < ρξ. Thus, by assertion 3 from Corollary 2.3.10, (rξ, i) ∈ Ωe C for 0 < r < ρξ. 

Theorem 2.3.11 proves that, for any fixed ρ > 0, a complex structure mapping 

ρXH to R exists on some sufficiently small truncated conic open subset Ωρ ⊂ T ∗M 

for any analytic subriemannian manifold M . Furthermore, by Corollary 2.3.10 a “t-
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sheared” complex structure mapping ρXH to R − tXH exists on the forward image 

through exp(−tXH ) of the intersection of Ωρ with the domain of exp(−tXH ). By 

Corollary 2.3.5, these complex structures are unique. We anticipate that most of 

the results from Lempert and Szőke [8–10] and Guillemin and Stenzel [11, 12] can be 

adapted in one way or another to the present situation of subriemannian manifolds. 

2.4 Connections 

The well known “fundamental theorem of riemannian geometry” states that a 

riemannian manifold admits a unique torsion free affine connection which annihilates 

the metric. The common elementary proof of this fact involves writing the expression 

X hY, Zi = hrX Y, Zi + hY, rX Zi with the vector fields cyclically permuted. From 

there using various strategic additions and subtractions of these equalities one can 

isolate expressions of the form rX Y − rY X which can be replaced with the Lie 

bracket [X, Y ] on account of the fact that the connection is assumed to be torsion 

free. Further manipulating the resulting expressions, one obtains the so-called Koszul 

formula: 

2 hrX Y, Zi = X hY, Zi + Y hZ, Xi− Z hX, Y i−hY, [X, Z]i−hZ, [Y, X]i + hX, [Z, Y ]i . 

Since the right side depends only on the metric, it is sufficient to uniquely define the 

described connection. The same argument of course works in the pseudoriemannian 

case. In the pseudosubriemannian case the same argument cannot work. First, the 

righthand expression written above which defines 2 hrX Y, Zi in the pseudorieman-

nian case does not even make sense in the pseudosubriemannian case since the inner 

product is not necessarily defined on the brackets, and secondly an expression of the 

form 2 hrX Y, Zi is sufficient to define rX Y in the pseudoriemannian case since the 

metric is everywhere defined and nondegenerate - but no such implicit expression will 

work in the pseudosubriemannian case. 

Indeed, there seems to be no natural choice of connection to use in pseudosub-

riemannian geometry. However, there is evidence that certain connections should 
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be preferred over others - but that such connections are not linear except in the 

nondegenerate pseudoriemannian case. To begin with, by a partial linear connec-

tion (on the cotangent bundle) we mean a linear differential operator of order one 

r : C ∞(M, T ∗M) −→ C ∞(M, D∗ ⊗ T ∗M) where D∗ is the dual of a smooth distribu-

tion in the tangent bundle, which satisfies the Leibniz rule: r(fη) = df |D ⊗η|D +frη 

for f ∈ C ∞(M) and η ∈ C ∞(M, T ∗M). We observe that since D is assumed to be a 

smooth distribution, every point in D is the value of a smooth local section and so a 

section of D∗ is smooth if its evaluation against any smooth section of D is a smooth 

function. In other words, the space of smooth sections C ∞(M, D∗ ⊗T ∗M) is perfectly 

well-defined. Alternatively, one can view a partial linear connection in the geometric 

sense, i.e. as a splitting of the sequence V TT ∗M −→ π∗(D) ⊂ TT ∗M −→ D defined 

by a transverse distribution π∗(D) ⊂ TT ∗M which is dilation invariant and additive 

(thus linear) and which is likewise smooth and has potentially varying rank. 

The torsion of such a partial connection is defined by the usual expression T (X, Y ) = 

r ∗ 
X Y −r∗ 

Y X − [X, Y ] for sections X, Y of D, where r ∗ is the dual partial connection. V 
Alternatively, the torsion can be defined as the section of TM ⊗(D∗ D∗) which when 

traced against the generic one-form η gives the skew-symmetric form ∧ ◦rη − dη on 

D obtained by subtracting dη from the skew symmetric part of rη ∈ D∗ ⊗ D∗ . This 

is the natural symplectic inner product in TT ∗M restricted to the r-horizontal lift 

of D at η. Thus, for a torsion free connection the horizontal space of r in TT ∗M is 

isotropic in that it is contained in its symplectic orthogonal. 

It seems natural to seek out partial connections for which the horizontal subbun-

dle H ⊂ TT ∗M is contained in a horizontal lagrangian subspace which annihilates 

the metric, since these conditions mimic the familiar characteristic properties of the 

canonical connection in the pseudoriemannian case. With this in mind we have the 

following result. 

Lemma 2.4.1 If M is a pseudosubriemannian manifold then any lagrangian sub-

bundle of TT ∗M which is transverse to the vertical and annihilates the hamiltonian 

function contains the hamiltonian vector field. 
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Proof For any hamiltonian H ∈ C ∞(T ∗M), the value of the hamiltonian vector field 

in TξT ∗M is the unique tangent vector such that when projected into any lagrangian 

splitting of TξT ∗M , it reproduces the restrictions of dH to each direct summand. In 

other words if TξT ∗M = L1 ⊕ L2 is a lagrangian splitting then one can split the one 

form dH = dH1 + dH2 uniquely with dH1 annihilating L2 and dH2 annihilating L1, 

but the symplectic structure identifies L1 with the dual of L2 and L2 with the dual 

of L1, so dH1 is equal to a unique element of L2 and dH2 is a unique element of L1. 

Adding these components reproduces the hamiltonian field for H. For any global 

lagrangian splitting of TT ∗M by horizontal and vertical subspaces, at any point the 

horizontal component of the hamiltonian field at ξ ∈ Tx 
∗M is defined by requiring its 

projection in TxM to reproduce the restriction of dH at ξ to directions tangent to 

the fiber Tx 
∗M . However, for a pseudosubriemannian manifold the hamiltonian is a 

quadratic form, and a simple computation verifies that the differential of such forms 

are at every point defined by the natural mapping into the dual given by the form 

itself (actually twice that, but this factor is accounted for by halving the diagonal 

restriction of the quadratic form to define the hamiltonian). Therefore, if a given 

horizontal subbundle H ⊂ TT ∗M is as hypothesized in the lemma, the hamiltonian 

is annihilated by H, so the hamiltonian vector field has no vertical component with 

respect to the H ⊕ V TT ∗M splitting. The hamiltonian field is therefore contained in 

H. 

A canonical splitting V TT ∗M −→ π∗(D) ⊂ TT ∗M −→ D defined by a metric-

annihilating lagrangian distribution as described in the lemma has been found by 

Zelenko and Li [24], see also Barilari and Rizzi [25]. However, this splitting is only 

defined in a dense open subset of T ∗M and is generally not the restriction of a linear 

connection there. In fact, as the next result shows a partial linear connection which 

permits differentiation in all metrically horizontal directions and has a horizontal 

distribution contained in a metric-annihilating lagrangian distribution cannot exist 

in the interior of the set where the metric is degenerate. 
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Proposition 2.4.2 If M is a pseudosubriemannian manifold then in the interior of 

the set where the metric is degenerate there does not exist any partial connection 

which permits differentiation in all metrically horizontal directions, and which has 

a horizontal distribution in TT ∗M contained in a horizontal lagrangian distribution 

which annihilates the hamiltonian. 

Proof Denote by L the metric trace, i.e. L ∈ Hom(T ∗M, T M). Furthermore, 

let r be a partial connection as described in the proposition, i.e. r permits dif-

ferentiation in all metrically horizontal directions and has a horizontal distribution 

in TT ∗M contained in a horizontal lagrangian distribution which annihilates the 

hamiltonian H. Since the horizontal distribution for r annihilates H, it also par-

allelizes L. Therefore for X such that rX makes sense, r ∗ 
X (Lη) = L(rX η). If 

γ : (−�, �) → T ∗M is a hamiltonian integral curve then rπγ̇ γ = 0 on account of 

the fact that the horizontal distribution of r contains the hamiltonian vector field. 

Furthermore, Lγ = πγ̇ according to the definition of the hamiltonian vector field. 

Therefore, 0 = L(r ˙ ∗ (Lγ) = r ∗ (πγ̇ ). The conclusion is that for any such πγ γ) = rπγ̇ πγ̇ 

γ, πγ is a geodesic in the usual sense for the dual partial connection r ∗ , i.e. it is 

an integral curve of the vector field in TM equal at every point to the r ∗-horizontal 

lift of that point. In particular πγ is completely determined by any single one of its 

tangent vectors, but this property is manifestly false for hamiltonian geodesics in the 

interior of the degenerate set for the pseudosubriemannian metric as can be seen by 

translating any point in any given hamiltonian integral curve by an element of the 

kernel of the hamiltonian - the integral curve passing through this new point will have 

the same derivative at the point in question but will in general have a projection into 

M which is distinct from the projection of the original curve. 

Nevertheless, alot can be accomplished even with an arbitrary linear connection 

which is a priori completely unrelated to the pseudosubriemannian structure. Here 

we adapt some results from [13] to the subriemannian case. The standing assumptions 

will be that 
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• g ∈ TM ⊗ TM denotes the symmetric section obtained by polarizing the sub-

riemannian hamiltonian into a symmetric bilinear form, 

• E denotes any vector bundle over the subriemannian manifold M , 

• rE is a linear connection on E, 

• rT ∗M is any linear connection on T ∗M (i.e. having no evident relation to or 

dependence on the subriemannian structure). 

T ∗M E∗ TM With connections rE and r fixed on E and T ∗M , the symbols r and r 

will always denote the respective dual connections. The unmodified symbol r will be 

E T ∗M E∗ TM used to represent any one of r , r , r , or r when it is clear from context 

which is meant and likewise Tr will be used to denote the natural pairing of a bundle 

with its dual or the pairing of a bundle with itself when a metric is present. With 

these connections fixed the associated Laplace operator is defined for any section s of 

EE by the negated trace of the (r , rT ∗M )-covariant hessian, i.e. 

Δs = Δr
E ,rT ∗ M E⊗T ∗M E s = − Tr(r r s). 

This is apparently defined for any quadratic form hamiltonian whatsoever, there is no 

restriction regarding nondegeneracy or positivity. However, hypoellipticity is another 

matter and in the subriemannian case it is ensured by the fact that in any local frame 

domain for TM and E, Δ is given by X � � 
g(X ∗ E E EΔ = − i , Xj 

∗ ) rXi 
rXj rTM −r XjXi 

ij 

which is, within a perturbation of differential order one, a Hörmander sum of squares 

type operator. It is easily proved that for two bundles E1 and E2 with connections 

E1 E2r and r , 

Δ(s1 ⊗ s2) = (Δs1) ⊗ s2 − 2 Tr(rs1 ⊗rs2) + s1 ⊗ (Δs2). 

A g-Dirac operator on E is a differential operator D of order one on E such that 

D2 is a g-sublaplacian, i.e. the principal symbol [[D2, f ], f ] = −2g(df, df) must be 
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given by the metric. Naturally the principal symbol [D, f ] ∈ End(E) of D itself 

defines an action of the complete tensor algebra T(T ∗M) on E, and as with any 

operator of differential order one, for any linear connection rE on E it differs from 

the contraction Tr([D, ·]rE ) by an operator of order zero (note that the symbol [D, ·] 

defines an action of T ∗M on E and as such it is a section of End(E) ⊗ TM and can 

be traced with rs ∈ T ∗M ⊗ E for s any section of E). Because we’ve assumed that 

D2 is a g-sublaplacian, this is necessarily a Clifford action, i.e. it factors through the 

Clifford algebra bundle Cl(T ∗M) of T ∗M defined by the metric g. This bundle is 

defined by quotienting the complete tensor algebra of T ∗M by the ideal generated by 

η⊗2 + g(η, η) for every one form η. 

For any linear connection we will denote by DrE = Tr(crE ) the rE Dirac opera-

tor described above, i.e. c is used to denote the Clifford symbol [D, ·] ∈ End(E)⊗TM 

and DrE = crE , where we’ve omitted the Tr(·) to condense notation. Expressions 
E⊗T ∗Mfor the difference D2 

rE + Tr(r rT ∗M ) are called Lichnerowicz formulas. Typi-

cally one assumes that more structure is present such as a metric preserving and/or 

torsion free connection on T ∗M . However, as we’ve already proved that these do not 

exist for degenerate subriemannian metrics, it seems optimal to give a completely 

E T ∗Mgeneral Lichnerowicz formula depending only on g, r and r . 

Theorem 2.4.3 For any symmetric bilinear form g on T ∗M , and any two connec-

E T ∗Mtions r and r on E and T ∗M respectively, � � 
1 1TM EE(cr E )2 = − Tr(r E⊗T ∗M r T ∗M ) + c(rc) − cT r r + cF r . 
2 2 

Rather than embellish the right side of the expression in Theorem 2.4.3 with clarifying 

yet excessive notation, we will discuss here how it should be interpreted. The Clifford 
T ∗ M V2symbol c is a section of End(E)⊗TM and the torsion T r is a section of T ∗M ⊗ 

TM . Thus, c(rc) denotes the section of End(E) ⊗ TM resulting from tracing the 

TM factor of c with the T ∗ factor of rc and likewise tracing the inner pair E∗ ⊗ E 

(i.e. composing endomorphisms) to give the section c(rc) of End(E) ⊗ TM . From 
T ∗ M 

this, the section cT r obtained by quantizing the two-form factor into a Clifford 
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endomorphism of E is subtracted and we’re left with a single section of End(E)⊗TM 

which can then be traced with the one-form factor prepended to any section of E by 
T ∗ M 

way of the action of r. Thus, (c(rc) − cT r /2)rE is a well-defined differential 

operator of order one. Likewise, the endomorphism cF r
E 
is obtained by simply 

Equantizing the two-form factor of the curvature operator F r
E 
of r into a Clifford 

endomorphism of E. 

Proof The desired equality follows by direct computation in a local frame: 

E )2(cr = c(rc)r E + crr E � � 
E E E E = c(rc)r + c(Xi 

∗ )c(Xj 
∗ ) rXi 

rXj 
−r rTM XjXi 

= c(rc)r E � � 
1 E E E E E E+ c(Xi 

∗ )c(Xj 
∗ ) r r + r −r TM −rr TM Xi Xj Xj Xi r Xj r Xi2 Xi Xj� � 

E E E E E E+
1 
c(Xi 

∗ )c(X ∗ r r −r −r TM + rr TM j ) Xi Xj Xj Xi r Xj r Xi2 Xi Xj 

= c(rc)r E � � 
g(Xi 

∗, Xj 
∗) 

E E E E E E− r r + r r −r −r TM TM Xi Xj Xj Xi r Xj r Xi2 Xi Xj� �1 
+
2 
c(Xi 

∗ )c(Xj 
∗ ) F r

E 
(Xi, Xj) + r[ EXi,Xj ] −r 

T

E 
rTM (Xi,Xj )+[Xi,Xj ] 

E⊗T ∗M T ∗M )= c(rc)r E − Tr(r r � � 
F r

E E+
1 
c(X ∗ )c(X ∗ ) (Xi, Xj) −r TM i j T r (Xi,Xj )2 

The subalgebra generated by the kernel ker H of the hamiltonian is apparently V 
the usual exterior algebra ker H in every fiber, and it is central in the entire Clif-

ford algebra bundle in the graded sense. Thus, if one has the local direct sum de-L 
composition T ∗U = R ker H over some open subset U ⊂ M then apparently NV 
Cl(T ∗U) = Cl(R) ker H as a graded algebra, meaning that the factors commute 

with one another provided the expression is multiplied by the proper power of −1 
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to account for the grading. For any metric, degenerate or not, it is always possible 

to find a basis of any fiber Tx 
∗M which is mutually orthogonal, i.e. scalar products 

of any two elements are zero. Any pair of elements in such a basis are necessarily 

anti-commuting, so as for the exterior algebra (which is a special case), products of 

basis elements which are monotone in any chosen ordering form a basis of Cl(Tx 
∗M). 

Thus, there are mutually inverse natural maps (i.e. η in T ∗M corresponds to η in 

Cl(T ∗M)) ^ ^ 
σ : Cl(T ∗ M) → T ∗ M and c : T ∗ M → Cl(T ∗ M) 

extending the identity on the common linear subspace T ∗M called respectively the 

symbol and quantization maps, which are linear isomorphisms but not algebra iso-

morphisms. 

Assume now that xo is a regular point for the subriemannian structure (i.e. it is a 

point of continuity for the vector of dimensions of the flag generated by lie brackets of 

horizontal vector fields of respectively ascending degrees) and that a set x1, . . . , xn of 

privleged coordinates has been chosen [26]. Any set of privleged coordinates identifies 

an open neighborhood of xo ∈ M with an open neighborhood of the identity in a 

nilpotent Lie group with dilations δu, and as such, these dilations can be viewed 

as acting on a neighborhood of xo ∈ M . Generally speaking only the contractive 

dilations for u ∈ (0, 1) will be defined on the entire domain, in any case these are 

all that’s necessary. If dbdenotes the subriemannian metric distance in the described 

nilpotent Lie group and d denotes the metric for the subriemannian manifold M then 

there exist C, r > 0 such that 

−C b 0) − b 0) ≤ C b 0)1/rd(p, q)d(q, q 0)1/r ≤ d(q, q d(q, q d(p, q)db(q, q 
for p, q, q0 sufficiently close to xo, this is proved in [26]. With p = q = xo, apparently 

d(xo, q
0) −db(xo, q0) and consequently d(xo, δuq0) = ud(xo, q0) for u ∈ (0, ∞) and q ∈ M 

such that both expressions make sense. Note that even though this identification 

preserves the radial distance to the basepoint xo, is not a metric isometry everywhere 

- for that there will be curvature obstructions. 
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A heat kernel kxo (t, x) for D
2 
rE with pole at xo, if it exists, is a time dependent 

section of Hom(Exo , Ex) annihilated by the operator ∂t + D2 
rE and having a limit 

equal to 1 ∈ End(Exo ) times a point mass at xo as t → 0. Any heat kernel can be 

converted to a function taking values in End(Exo ) by post-composing with the rE 

parallel translation from Ex to Exo along orbits for the dilations δu, which we denote 

with Ptxo . Thus, Ptxo (t, x) is a time dependent function in the domain of theδ δ kxo 

dilations taking values in End(Exo ), which is annihilated by the operator ∂t +D2 
rE by 

viewing DrE as an operator on Exo -valued functions by way of parallel translation. 

For the remainder of this section we make the following simplifying assumptions: 

1. Cl(T ∗M) admits a (naturally graded) spinor module S, i.e. a module such that 

the action map Cl(T ∗M) → End(S) is bijective, 

2. locally in an open neighborhood of any point of M , E = S ⊗ W is the graded 

tensor product of the spinor module S and a graded vector space W , 

E W S W3. r = rS ⊗r for some choice of r and r . 

For nondegenerate metrics the existence of the spinor module is well-established 

and it is associated to the orthonormal frame bundle so it inherits a natural connection 

from the riemannian connection on T ∗M . This simplifies matters in the nondegen-

erate case, but in the degenerate case it must be taken as a hypothesis. With these 

assumptions in place, Ptxδ 
o kxo (t, x) is a time dependent function in the domain of the 

dilations taking values in the subalgebra Cl(Tx 
∗ 
o 
M) ⊗ End(Wxo ) ⊂ End(Exo ), which V 

can be identified with Tx 
∗ 
o 
M ⊗ End(Wxo ) by way of the symbol map on the first 

factor. With this assumption in place we can view Ptxδ 
o kxo (t, x) as a time dependent V 

function in the domain of the dilations, valued in Tx 
∗ 
o 
M ⊗ End(Wxo ). Now we ex-

tend the spatial dilations to the heat kernel k by identifying any action β of (0, ∞) on 

T ∗ M which acts invariantly on ker H ⊂ T ∗ M and dilates the quotient in the usualxo xo 

way. Finally, define the dilations acting on Ptxδ 
o k by 

αu Ptδ
xo kxo (t, x) = (β√

− 
u

Q/d ⊗ 1) Ptxδ 
o kxo (ut, δ√ 

ux). 
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Here Q denotes the homogeneous dimension at xo and d is the dimension of the 

horizontal space at xo. The meaning of β√ 
u ⊗ 1 should be clear: since Ptxδ 

o kxo takes 

values in ^ 
Cl(Tx 

∗ 
o 
M) ⊗ End(Wxo ) = Tx 

∗ 
o 
M ⊗ End(Wxo ) 

via the symbol map, the functorial extension of the action β to Cl(Tx 
∗ 
o 
M) by way of its 

identification with the exterior algebra is perfectly well-defined. The End(Wxo ) factor 

is unaffected by β√− 
u

Q/d ⊗ 1 and the factor Cl(Tx 
∗ 
o 
M) is acted upon by this functorial 

extension. 

Theorem 2.4.4 If E = S ⊗W is a graded g-Clifford module as described above, then 

Q/2αu 
Q/2αuStr kxo (1, xo) = Str u Ptxo (1, xo) for all u. Furthermore, u Ptxo (t, x)δ kxo δ kxo 

is a heat kernel for uαuD r 
2 

E α
−1 acting on functions taking values in End(Exo ) and de-u 

fined in the domain of the chosen privleged coordinates. If, furthermore, limu→0 uαuD
2 
rE α

−1 
u 

exists and has heat kernel k0 then Str kxo (1, xo) = Str kx 
0 
o 
(1, xo). 

Proof If η1, . . . , ηd is an orthonormal set in T ∗ M which is a basis of T ∗ M/ ker Hxo xo 

then as with the exterior algebra the products of distinct elements of η1, . . . , ηd with 

strictly increasing indices forms a basis of Cl(Tx 
∗ 
o 
M/ ker H). Furthermore for any such 

product ηi1 · · · ηik , 

−ηi2 · · · ηik = ηi1 (ηi1 · · · ηik ) = (−1)k−1(ηi1 · · · ηik )ηi1 

so 

[ηi1 , ηi1 · · · ηik ] = ηi1 (ηi1 · · · ηik ) − (−1)k(ηi1 · · · ηik )ηi1 = −2ηi2 · · · ηik . 

In other words: every basis element of degree strictly less than d is a supercommutator. 

It follows that Cl(Tx 
∗ 
o 
M/ ker H) admits a projectively unique supertrace, since any 

supertrace must vanish on all basis elements except η1 . . . ηd. The same statement is V 
not true after incorporating the factor ker H in the decomposition ^ 

Cl(Tx 
∗ 
o 
M) = Cl(Tx 

∗ 
o 
M/ ker H) ⊗ ker H, 
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V 
since the only supercommutator in ker H is zero. However, in any representation V 
the elements of ker H of positive degree are nilpotent and therefore cannot have a V V 
nonzero supertrace. Likewise any product ab with a ∈/ ker H and b ∈ ker H must 

be nilpotent if b is has positive degree since any power (ab)n is equal to cbn for some c. 

Such elements cannot have a nonzero supertrace and we therefore conclude that the 

only elements Cl(Tx 
∗ 
o 
M) having nonzero supertrace are those having maximal degree 

d in the quotient Cl(T ∗ M/ ker H). Also, for any tensor η⊗ν ∈ Cl(T ∗ M)⊗End(Wxo ),xo xo 

Q/2αuStr(η ⊗ ν) = Str(η) Str(ν). Thus, for Str kxo (1, xo) = Str u Ptxo (1, xo) to be δ kxo 

−Q/d
true the only necessary condition is that the functorial extension of the dilations β√ 

uVd Q/2on Tx 
∗ 
o 
M/ ker H cancel the constant u necessary to maintain the approximate 

identity property, but the exponent Q/d has been chosen precisely so that this is so. 

The second and third assertions follow directly from the first. 
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3. GEOMETRY OF REAL FLAG MANIFOLDS 

In this chapter it will be a standing assumption that the various data used to specify 

flag manifolds described in the introduction have been chosen. Namely, it will be said 

that a list (G, θ, h, Δ+(g, h), PΣ) of data is admissible if 

1. G is a connected Lie group with reductive Lie algebra gR, a real form of g = 

gR ⊗ C, with Ad(G) ⊂ Aut(g) inner and such that the identity component of 

the derived group [G, G] has finite center, 

2. θ is a Cartan involution on the derived ideal [gR, gR], 

3. hR = h∩gR is a maximally noncompact θ-stable Cartan subalgebra of gR (much 

of the theory remains true even if hR is not necessarily maximally noncompact, 

but it is a customary hypothesis when discussing parabolic subalgebras of real 

reductive Lie algebras), 

4. Δ+(g, h) is a simple system of roots of h which is admissible for the real form 

gR (i.e. the associated set of positive noncompact roots is invariant under the 

Satake involution σ∗ arising from the complex conjugation for the real form gR) 

and, 

5. PΣ ⊂ G is a parabolic subgroup with Lie algebra pΣ 
R constructed from the subset 

Σ of the noncompact roots in Δ+(g, h) which is stable under the action of the 

Satake involution. 

In this chapter we will define and study differential operators on G/PΣ which arise 

naturally after a list (G, θ, h, Δ+(g, h), PΣ) of data satisfying the standard hypotheses 

has been chosen. Such a list will be called an admissible datum. 

The Cartan decomposition [gR, gR] = kR ⊕ sR arises in the standard way as the 

±1 eigenspace decomposition of the involution θ. Since the Cartan subalgebra hR is 
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θ-stable, evidently hR = (hR ∩ kR) ⊕ (hR ∩ sR) = tR ⊕ aR with aR maximal abelian 

in sR since hR is maximally noncompact by hypothesis. If n + 
R is the real part of the 

nilradical of the minimal parabolic associated to the simple root system Δ+(g, h) then 

the projection (1 − θ)/2 maps nR 
+ bijectively onto the orthogonal complement of aR 

in sR, so that gR admits the Iwasawa decomposition gR = kR ⊕ aR ⊕ n + withR ⊕ ZgR 

aR ⊕ nR 
+ ⊕ ZgR ⊂ pR 

Σ so if K ⊂ G is the (not necessarily compact) analytic subgroup 

with Lie algebra kR, then the orbit map from K to its orbit K/MΣ = K1PΣ ⊂ G/PΣ 

(MΣ = K ∩ PΣ) is a submersion onto its image. In particular the orbit must be open 

in G/PΣ. On the other hand if K is compact then the orbit must also be compact, 

hence closed, and it must therefore be a connected component of G/PΣ. However, 

we’ve assumed that G is connected so G/PΣ is connected as well so if K is compact 

then K/MΣ = G/PΣ. A standard result in Lie theory states that K is compact if and 

only if the analytic subgroup associated to the subalgebra [gR, gR] has finite center, 

but we’ve taken this criterion as a hypothesis by requiring the identity component of 

the derived group [G, G] to have finite center. 

3.1 Structure of Homogeneous Spaces 

Let L ⊂ G be Lie groups with G connected and L closed in G, and with Lie 

algebras lR ⊂ gR, each respectively a real form of the complexifications l = lR ⊗ C 

and g = gR ⊗ C. In this subsection we make no further assumptions on G and 

L (e.g. gR is not necessarily reductive, although the results proved here will be 

applied to the reductive case). We are interested in identifying involutive or bracket-

generating subbundles of the real tangent bundle T (G/L) which are invariant under 

the natural action of G on G/L. It is an easily provable fact that general left G-

invariant subbundles of the real tangent bundle are in bijective correspondence with 

subspaces of gR/lR which are AdL-invariant, or equivalently subspaces of gR which 

are AdL-invariant and contain lR, but in order to discuss Lie brackets of sections more 

details are needed. 
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Vector fields (and differential operators generally) on G which commute with 

right multiplication by L act invariantly on right L-invariant functions and therefore 

descend naturally to differential operators on G/L. However, such operators need not 

be invariant under the left action of G on G/L. Thus, the direct image of a subspace 

of right L-invariant vector fields will not do, but the consideration thereof indicates 

the correct idea: one should at least attempt to consider the direct image of left 

invariant vector fields on G since we want them to commute with the action of G on 

the quotient, within an error which lies in the subbundle in question. However, left 

invariant vector fields do not descend naturally to G/L unless they are also right L-

invariant, in general they only do so modulo the action of the adjoint representation of 

the isotropy group L. In other words, if X ∈ T1(G) then limt→0 t
−1[f(uetX L)−f(uL)] 

defines an element of TuL(G/L) for any u ∈ G but this definition is not independent 

of the specific element u used to represent the coset uL unless X is invariant under 

the action of AdL. Generally speaking, for any y ∈ L, uyL evidently defines the same 

coset and the resulting tangent vector is 

lim t−1[f(uye tX L) − f(uL)] = lim t−1[f(uye tX y −1L) − f(uL)] 
t→0 t→0 

= lim t−1[f(ue t Ady X L) − f(uL)]. 
t→0 

Thus, while the tangent vector limt→0 t
−1[f(uetX L) − f(uL)] is not independent 

of u ∈ G, its orbit in TuL(G/L) under AdL is perfectly well defined, and this argu-

ment essentially constitutes a proof of the fact stated earlier, that subbundles of the 

real tangent bundle T (G/L) invariant under G are naturally in bijection with AdL -

invariant subspaces of gR/lR, or equivalently AdL-invariant subspaces of gR which 

contain lR. 

In order to define a local section of such a subbundle, or for that matter to de-

fine vector fields locally on G/L, one must first choose a gauge, i.e. an embedded 

submanifold U ⊂ G which intersects every left coset of L at most once and is trans-

verse to each coset which it intersects. The intersection hypothesis means that U 

can be smoothly identified with an open subset of G/L (i.e. it defines a section of 
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the quotient G → G/L), and that (u, y) 7→ uy is a diffeomorphism from U × L onto 

the preimage in G of this open subset of G/L. After a gauge has been chosen, we 

can compute the direct image of a left invariant field by way of the infinitesimal 

action of gR on the right, which amounts to projecting a tangent vector to G at a 

point u ∈ U onto the tangent space of U via the transverse subspace tangent to the 

left action of L, and then computing the direct image. Equivalently, to any given 

X ∈ gR we associate the tangent vector limt→0 t
−1[f(uetX L) − f(uL)] ∈ TuL(G/L) 

for any u ∈ U . More generally if u 7→ Xu is a smooth map from U into gR, then 

limt→0 t
−1[f(uetXu L) − f(uL)] defines a section of the tangent bundle over the image 

of U in G/L which vanishes in the fiber TuL(G/L) if and only if Xu ∈ lR ⊂ gR. 

There is an established formalism to handle Lie bracket computations involving 

such sections using what is generally known as the maurer-cartan form, denoted ωG. 

This is the g-valued one form which maps an element X ∈ Tx(G)⊗C into the element 

lx−1∗X ∈ T1(G) ⊗ C = g, i.e. the direct image of X through left multiplication by 

x−1 or equivalently the value in T1(G) ⊗ C of the unique left invariant vector field on 

G which extrapolates X. The maurer-cartan form ωU on the image of the gauge U 

in G/L is the pullback of ωG through the gauge, which maps the real tangent vector 

limt→0 t
−1[f(uetXu L) − f(uL)] ∈ TuL(G/L) to the projection of Xu in lu−1∗Tu(U) via 

the direct sum decomposition gR = lu−1∗Tu(U) ⊕ lR. 

Lemma 3.1.1 If U is any gauge, then for any smooth map u 7→ Xu ∈ gR, there 

exists a unique vector field Z ∈ C ∞(T (G/L)) over U such that ωU (Z) − Xu ∈ lR at 

every point in U . 

The proof should be obvious: since lu−1∗Tu(U) ⊂ gR is a transverse complement 

to lR for all u ∈ U , the construction of Z amounts to the determination of the 

components of Xu in the direct sum decomposition gR = lu−1∗Tu(U) ⊕ lR for all 

u ∈ U . All of this evidently depends on the choice of gauge U . Elementary arguments 

demonstrate that if λ : U → L is a smooth map from U into L then the pointwise 

product Uλ is another gauge and all gauges arise in this fashion from a unique gauge 
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transformation λ. Furthermore, the two forms ωU and ωUλ are related by the equation 

ωUλ = Adλ−1 ωU + λ∗ωL, where the latter summand is the l-valued pullback through 

λ of the maurer-cartan form on L. Thus, we have the following result. 

Lemma 3.1.2 If TV (G/L) ⊂ T (G/L) is the G-invariant subbundle associated to any 

AdL-invariant subspace V ⊂ gR containing lR, then a tangent vector X ∈ TxL(G/L) 

is an element of TV (G/L) if and only if ωU (X) ∈ V for any gauge U ⊂ G which 

intersects the coset xL. 

In particular, the gauge transformation equation ωUλ = Adλ−1 ωU + λ∗ωL shows 

that this criterion is independent of the particular gauge used to test the inclusion. 

Standard computations demonstrate 

dωG(X, Y ) = XωG(Y ) − Y ωG(X) − ωG([X, Y ]). 

However, XωG(Y ) = Y ωG(X) = 0 whenever X and Y are left invariant, so in that 

case dωG(X, Y ) = −ωG([X, Y ]) = −[ωG(X), ωG(Y )]. On the other hand both sides 

of this latter equation are tensors, so evidently dωG(X, Y ) = −[ωG(X), ωG(Y )] and 

ωG([X, Y ]) = XωG(Y ) − Y ωG(X) + [ωG(X), ωG(Y )] 

for all vector fields X, Y . 

In particular we can use this formula to deduce information about Lie brackets of 

vector fields on G/L. Using a gauge U , vector fields on the image of U in G/L can be 

extended to the open subset UL = {ux : u ∈ U, x ∈ L} ⊂ G by requiring them to be 

tangent to every constant right L translate of U (i.e. so that they are right invariant 

under L). On such vector fields ωG = ωU so that 

ωU ([X, Y ]) = XωU (Y ) − Y ωU (X) + [ωU (X), ωU (Y )]. (3.1) 

Lemma 3.1.3 If V ⊂ gR contains lR and is AdL-invariant and U is any gauge, then 

for any two vector fields X, Y ∈ C ∞(TV (G/L)) over U there exists a unique vector 

field Z ∈ C ∞(TV (G/L)) over U such that ωU ([X, Y ]) − [ωU (X), ωU (Y )] = ωU (Z). 
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Proof The evaluations ωU (X) and ωU (Y ) of X and Y in the form ωU define smooth 

maps from U into V ⊂ gR by Lemma 3.1.2. Since the derivatives of such maps must 

also take values in V , evidently XωU (Y ) − Y ωU (X) also defines a smooth map from 

U into V . So, by Lemma 3.1.1 there exists a unique vector field Z ∈ C ∞(T (G/L)) 

over U such that ωU (Z) − XωU (Y ) + Y ωU (X) ∈ lR at every point in U . Thus, 

Z ∈ C ∞(TV (G/L)) over U and substituting this equality into (3.1) completes the 

proof. 

Corollary 3.1.4 If V ⊂ gR is an AdL-invariant subalgebra which contains lR, then 

TV (G/L) is an involutive subbundle. 

Proof For two vector fields X, Y ∈ C ∞(TV (G/L)) over a gauge U , ωU (X) and 

ωU (Y ) take values in V by Lemma 3.1.2, so by hypothesis [ωU (X), ωU (Y )] also takes 

values in V , so by Lemma 3.1.3 ωU ([X, Y ]) must also take values in V . 

Of course, the subbundle TV (G/L) must correspond to the analytic subgroups GV 

with algebra V , so the leaves of the foliation associated to TV (G/L) by the theorem 

of Frobenius are orbits of GV and its conjugates. If D ⊂ T (G/L) is an arbitrary 

subbundle of constant rank, a tangent vector X ∈ TxL(G/L) is said to be an element 

of the Lie hull of D if there exists a finite number of local sections X1, . . . , Xn of D 

in a neighborhood of X such that X is the value in TxL(G/L) of an element of the 

Lie algebra generated over R by X1, . . . , Xn. 

Proposition 3.1.1 If V ⊂ gR contains lR and is AdL-invariant, then in every fiber 

of T (G/L) the Lie hull of TV (G/L) is TV (G/L) where V ⊂ gR is the subalgebra 

generated by V . 

Proof Since TV (G/L) is involutive by Corollary 3.1.4, the hull of TV (G/L) in any 

tangent fiber can be no larger than the fiber of TV (G/L). On the other hand by 

Lemma 3.1.3, for any gauge U and any u ∈ U the subalgebra lR together with the 

values ωU (X) ∈ gR for X in the hull of TV (G/L) at u must form a Lie subalgebra of 

gR. Thus, the fiber of TV (G/L) at u must be contained in the hull of TV (G/L) at u. 
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Corollary 3.1.5 If V ⊂ gR is any AdL-invariant subspace which contains lR, then 

the subbundle TV (G/L) is bracket-generating if and only if V generates the Lie algebra 

gR. 

3.2 Applications to Flag Manifolds 

Let (G, θ, h, Δ+(g, h), PΣ) be an admissible datum as defined at the beginning 

of this chapter. The Σ-height defines a symmetric grading of the Lie algebra, g = 

Σ Σ Σ Σ Σ Σg−k ⊕ · · · ⊕ g0 ⊕ · · · ⊕ gk , with p = g0 ⊕ · · · ⊕ gk . Since Σ is invariant under the 

root involution σ∗ associated to the given real form, the Σ-height of root spaces is 

also invariant, so the grading is compatible with the real structure and thus defines 

Σ Σ Σ Σ Σa grading on the real part gR = g ⊕ · · · ⊕ g ⊕ · · · ⊕ g with g = gR ∩ gj .−kR 0R kR jR 

− Σ Σ −Proposition 3.2.1 The nilradical n = g ⊕ · · · ⊕ g and its real form n = −k −1 R 

Σ Σ Σ Σg−kR ⊕ · · · ⊕ g−1R are lie-generated by g−1 and g−1R respectively. 

By the subalgebra of n− (respectively n − 
R) which is lie-generated by gΣ 

−1 (respectively 

gΣ ) we mean the set of all finite sums of Lie monomials with entries in gΣ (re-−1R −1 

spectively g− 
Σ
1R). This is evidently a Lie algebra over C (respectively R) because 

Σ Σ Σg (respectively g ) is a vector space over C (respectively R). In fact, since g−1 −1R −1 

(respectively gΣ ) is a module for the adjoint action of gΣ (respectively gΣ ), so is−1R 0 0R 

the subalgebra which is lie-generated by it. 

− Σ −Proof First, the fact that n is lie-generated by g follows from the fact that nR −1R 

is lie-generated by g− 
Σ
1 because each entry in any given Lie monomial can be split 

into its real and imaginary parts. Thus, it is sufficient to prove that every negative 

root space is included in the subalgebra of n− lie-generated by gΣ 
−1. Suppose to the 

contrary that α is a negative root such that gα is not in this subalgebra. Let β be a 

sum of roots in −Σ (possibly with repetitions) and let γ be a root of Σ-height zero 

such that α = β + γ. The subalgebra in question is closed under the adjoint action of 

g0
Σ , so the assumption that it does not include gα implies that it does not include gβ . 
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In turn, this implies that it does not include gδ for any root δ such that δ and γ − δ 

are sums of elements of −Σ, but this would imply that even the −Σ root spaces in 

gΣ 
−1 are not in the subalgebra in question, an obvious contradiction. 

The following result is proved by directly applying the preceding result of this 

subsection. 

Proposition 3.2.2 The tangent bundle to the flag variety G/PΣ associated to an 

admissible datum (G, θ, h, Δ+(g, h), PΣ) admits a natural filtration 

T−1(G/PΣ) ⊂ . . . ⊂ T−k(G/PΣ) = T (G/PΣ) 

by bracket-generating subbundles. A tangent vector ξ ∈ TxPΣ (G/PΣ) is an element of 

T−j (G/PΣ) if and only if its value in the maurer-cartan form associated to any gauge 

intersecting the coset xPΣ is an element of gΣ ⊕ . . . ⊕ gΣ 
−jR kR. 
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4. DIAGONALIZATION OF BRANCHED 

INFINITESIMAL CHARACTERS 

If g is any complex finite dimensional Lie algebra then a well known lemma due 

to Dixmier shows that the center Zg of U(g) must act by scalars in any irreducible 

representation. 

Lemma 4.0.1 (Dixmier) If V is a vector space over a field k and Endk(V ) contains 

an element T such that every monic irreducible polynomial in T is invertible, then 

k(x) injects into V as a vector space over k. 

Proof (c.f. [27,28]) The hypotheses clearly imply that every nonzero polynomial in 

T is invertible and therefore every rational function in T is well defined and all other 

than zero are invertible. Thus, V is a vector space for the rational function field in 

one variable over k realized as k(T ). Since any nonzero element of k(T ) is invertible 

and therefore has trivial kernel, k(T )×v is a faithful orbit for every nonzero v ∈ V . 

Corollary 4.0.2 If V is a vector space over an uncountable field k and Endk(V ) 

contains an element T such that every monic irreducible polynomial in T is invertible, 

then V has uncountable dimension over k. 

Proof If k is uncountable the rational function field k(x), being the function field of 

the projective line, must have uncountable dimension over k. So, if V has countable 

dimension over k then k(x) cannot inject into V and therefore an element of Endk(V ) 

which satisfies the above hypotheses would violate the lemma. 

Theorem 4.0.3 (Dixmier) If g is a finite dimensional Lie algebra over an uncount-

able algebraically closed field k of characteristic zero and if V is an irreducible g 

module, then the commutant of U(g) in Endk(V ) is k. 
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Proof (c.f. [27,28]) If v ∈ V is any nonzero element then it must cyclically generate 

the entire module V under the action of U(g), for otherwise its orbit would constitute 

an invariant subspace. Thus, V must have countable dimension over k so by the 

lemma for any k endomorphism T there exists c ∈ k such that T − c is not invertible, 

but if T also commutes with U(g) then the kernel and image of T − c are invariant 

subspaces for U(g) so T − c = 0 is the only possibility. 

In particular if g is a complex finite dimensional Lie algebra we conclude that 

the center Zg of U(g) in any irreducible g module must act by scalar multiplies of 

the identity, each realized as a character Zg → C, called the infinitesimal character 

of the module. Now if g1 ⊂ · · · ⊂ gn ⊂ g is a nested list of subalgebras of g, 

then the subalgebra Z = Zg1,...,gn generated by the centers Zg1 , . . . , Zgn is evidently 

commutative. Indeed, for any inclusion gi ⊂ gj , Zgj commutes with every element 

of gi so in particular it must commute with Zgi which is itself commutative so the 

pair Zgi , Zgj must generate a commutative subalgebra of U(g). A straightforward 

generalization of this argument shows that Z as defined above must be commutative. 

Having defined the commutative algebra Z ⊂ U(g), we consider the task of di-

agonalizing a given g module into character spaces for Z. The appropriate strategy 

should be obvious: isolate an irreducible gn submodule or more generally a maximal 

direct sum of isomorphic gn submodules (i.e. a maximal isotype) so that Zgn has 

an infinitesimal character on that submodule according to Dixmier’s lemma. Such a 

submodule will in general not be irreducible for gn−1, so we isolate a maximal isotype 

for gn−1 within the specified gn isotype and on this subspace Zgn and Zgn−1 and there-

fore the entire subalgebra of U(g) generated thereby will act by scalars. Continuing 

in this manner by passing to progressively smaller subtypes, we obtain an isotype for 

g1 on which each center Zg1 , . . . , Zgn , and therefore the entire subalgebra Z ⊂ U(g) 

generated thereby, must act by scalars. 

In other words, the representation of g must be branched into isotypic subspaces 

for the specified subalgebras. Since we are only interested in Lie algebra representa-

tions arising infinitesimally from representations of groups, we begin by considering 
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branching properties of nested lists of closed subgroups in the general setting of ab-

stract C∗ algebras and locally compact Hausdorff groups. This is more generality 

than is needed but it does not amount to much added difficulty and in any case it is 

the customary setting for the functional analysis and spectral theory which will be 

utilized. 

4.1 General Representation Theory for C∗-Algebras 

A Banach ∗-algebra is a complex Banach algebra with a ∗-involution, i.e. a com-

plex anti-linear anti-homomorphism of the algebra. A C∗ algebra is a Banach ∗-

algebra which satisfies the C∗ identity: kx ∗ xk = kxk2 . The ramifications of the C∗ 

identity are quite deep, especially when one also considers its brevity and simplicity. 

The motivating idea for C∗ theory is the Gelfand transform for commutative Banach 

algebras. If A is such an algebra then the algebra homomorphisms from A into C are 

automatically continuous and form a locally compact Hausdorff space, denoted here 

by Ab, when equipped with the topology induced from the weak dual of A. Any ele-bment x ∈ A defines a continuous function on A in the obvious way: ϕ 7→ ϕ(x). This 

is the Gelfand transform for commutative Banach algebras. Moreover, Ab is compact 
if A has a unit (and conversely provided that the Gelfand transform is injective), and 

if no unit exists then the function defined by x vanishes at infinity in the one point 

compactification. 

Thus, the Gelfand transform x 7→ [ϕ 7→ ϕ(x)] is a contractive homomorphism from 

any commutative Banach algebra A into the commutative Banach algebra C0(Ab). 
However, in this general setting the transform has a few less than optimal qualities. 

First, it is not necessarily injective and even though it is a metric contraction, it is not 

necessarily an isometry. Furthermore, the target C0(Ab) is not simply a commutative 

Banach algebra, it is also a ∗-algebra (and even a C∗ algebra), and even when A 

is a commutative Banach ∗-algebra the Gelfand transform is not necessarily a ∗-

homomorphism. All of these deficiencies disappear when A is a C∗ algebra, as the 
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C∗ identity can be shown to be a sufficient criterion for the Gelfand transform to be 

an isometric isomorphism of Banach ∗-algebras (on the other hand, if for a particular 

Banach ∗-algebra the Gelfand transform is known to be an injective ∗-homomorphism 

then the C∗ identity is clearly necessary for it to be an isometry). 

Consequently, one can unambiguously define the positive cone of a commutative 

C∗ algebra to be the set of elements which have an everywhere nonnegative Gelfand 

transform. The algebra then inherits a partial ordering in the usual way: x ≤ y if 

y − x is in the positive cone. One of the principal implications of the C∗ identity in 

the general (i.e. not necessarily commutative) case is the fact that there is still a well-

defined notion of positivity, along with the resulting partial order relation. For such 

algebras, positivity of a generic element x is defined by requiring x to be hermitian 

with nonnegative spectrum. Such elements must have hermitian roots of all positive 

orders, so every positive element x is of the form x = y ∗ y for some y. Conversely, it 

can be shown (see, e.g. [29]) that every element of the form y ∗ y is positive, so the 

positive cone A+ of any given C∗ algebra A is precisely the set A+ = {y ∗ y : y ∈ A}. 

The notion of positivity greatly simplifies the representation theory of C∗ algebras, 

i.e. the study of ∗-homomorphisms from a generic C∗ algebra into the C∗ algebras 

L (H) where H is a Hilbert space. In the commutative case any element of Ab is such 

a representation and these are the only irreducible representations. So, the Gelfand 

transform realizes an isometric ∗-isomorphism from any commutative C∗ algebra into 

the algebra of continuous functions on the set of its irreducible ∗-representations, 

with the appropriate topology, the value of the function x ∈ A at any point being the 

operator associated to x in the given representation which in the commutative case 

is simply a complex number. 

Accordingly, one would hope to have a similarly appealing result in the noncom-

mutative case. In other words, there should be a more or less natural topology on 

the set of inequivalent irreducible Hilbert space representations of any not necessarily 

commutative C∗ algebra A, and mapping each such representation to the value of 

an element x should define a continuous “function”. The main issue is clearly that 
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in the noncommutative case the various target spaces for the representations can-

not be identified with one another, so the desired “function” cannot take values in 

a single codomain, instead it must be viewed as a section of a bundle of algebras. 

Nevertheless, a very satisfactory and intricate theory has grown out of these ideas. 

4.1.1 Positive Functionals 

The representation theory of C∗ algebras begins with the observation that if v 

is any nonzero vector in a representation π : A → L (H) of a C∗ algebra A on a 

Hilbert space H then x 7→ hπ(x)v, vi is a positive linear functional (i.e. it maps the 

positive cone A+ into the nonnegative real numbers) and the kernel Iv of the resulting 

seminorm kxk2 
v = kπ(x)vk2 is the left ideal of elements of A which annihilate v. This 

gives A/Iv the structure of a pre-hilbert space equipped with a natural representation 

of A via multiplication on the left. The resulting metrically complete Hilbert space 

is isometric as an A module to the closed cyclic subspace of H generated by v under 

the action of A. 

In this manner, one realizes the closed cyclic subspace generated by any v ∈ H as 

the Hilbert space completion of a quotient of A itself in a pre-hilbert norm obtained 

from a positive linear functional. However, a representation can be manufactured 

in precisely the same way from any positive functional, and the representation con-

structed in this manner from a given functional ρ is called the Gelfand-Naimark-Segal 

or GNS representation associated to ρ. 

Naturally, an irreducible representation is cyclic and is generated by any nonzero 

vector. Thus, the irreducible representations are among those obtained from positive 

functionals and there is an explicit criterion for determining when this occurs. The set 

of rays (R+ orbits) in the cone of positive functionals on A is partially ordered, with 

R+ρ ≤ R+ω if ω −λρ is positive for at least one λ ∈ R+, in which case R+ρ is said to 

be subordinate to R+ω. Both of the rays R+ρ and R+ω are subordinate to R+(ρ+ω), 

for example. A ray is said to be pure if no ray other than itself is subordinate to it, 
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and the pure rays are precisely those which produce irreducible representations via 

the GNS construction. Proofs of this fact can be found throughout the literature, 

but from an intuitive perspective it should be obvious: if R+ρ is subordinate to R+ω 

then the left ideal Iρ contains the left ideal Iω, so A/Iρ is a submodule of A/Iω. So, 

algebraically speaking the submodules of the GNS representation arising from a given 

positive functional correspond with those functionals which are subordinate to it, and 

standard arguments show that this still true when one passes to the Hilbert space 

completion. 

In this manner, one can construct a natural topology on the set of irreducible 

representations in the following way. Since GNS representations arising from two 

elements of the same ray R+ρ of positive functionals are equivalent, it amounts to 

no loss of generality to consider only those functionals of norm not greater than one. 

Such functionals form a convex subset of A∗ which is compact in the weak topology, 

and the set of extreme points of this set is precisely E(A) ∪ {0} where E(A) denotes 

the pure states (i.e. pure positive functionals of norm one). 

One of the foundational results of the entire theory is the equivalence between 

abstract C∗ algebras and C∗ algebras which are presented as uniformly closed ∗-

subalgebras of L (H). In other words: every abstract C∗ algebra admits a faithful 

representation. To prove this one first proves that a positive linear functional on a 

closed subalgebra B ⊂ A can be extended to a positive functional on A. Having 

proved this, for any nonzero x ∈ A one defines the subalgebra Bx to be the C∗ 

subalgebra of A generated by x ∗ x. This is commutative, so x ∗ x defines a nonzero 

function on its spectrum Bc x, and any point mass in the support of x ∗ x defines a 

positive linear functional in which x ∗ x does not vanish. Now, such a functional can 

then be extended to a positive functional on the entire algebra A, and evidently x ∗ x 

cannot be in the kernel of the resulting GNS representation, but this means that x 

itself cannot be in the kernel. 

Having proved that for any x ∈ A there is at least one GNS representation in which 

x does not vanish. One can form the direct sum of all GNS representations (the so-
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called universal representation), which evidently must be faithful. This fundamental 

theorem is generally attributed to Gelfand and Naimark. 

4.1.2 The Structure Space Ab 
Let R denote a set of representations of the C∗ algebra A. In general no other 

conditions are necessary for the following construction to work, in particular R may 

contain two or more distinct representations which are unitarily equivalent. If one 

is unconcerned with set-theoretic issues then R could be simply the collection of 

all possible representations of A, as in all possible ∗-homomorphisms A → L (H) 

where H is a Hilbert space. However, in light of the preceding comments on GNS 

representations it is worthwhile to point out that it is possible to include a complete 

set of inequivalent irreducible representations by setting R equal to the set of GNS 

representations corresponding to positive functionals of norm one, or even just the 

extreme points E(A) of this set. Either of these are well defined subsets of a Banach 

space and as such they are fairly concrete. 

Given a set R of representations of A, let (π, p, �, S) be a datum consisting of 

1. a representation [π : A → L (Hπ)] ∈ R, 

2. an orthogonal projection p ∈ L (Hπ), 

3. a positive number �, 

4. a nonempty subset S ⊂ A. 

For such a datum define the set U (π, p, �, S) ⊂ R to be the set of π0 ∈ R such that 

there exists a continuous map T : Hπ → Hπ0 satisfying 

kp(1 − T ∗ T )pkL (Hπ ) < � and kp(π(x) − T ∗ π0(x)T )pkL (Hπ ) < � 

for every x ∈ S. Descriptively speaking this means that the action of A on the 

range of p, i.e. the action of the localized representation pπ(A)p must be nearly 
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unitarily equivalent to a localized representation in π0 , in particular the requirement 

that kp(1 − T ∗T )pkL (Hπ ) < � indicates that the restriction of T to the range of p 

differs from an isometry within an error strictly less than �. 

The regional or Fell topology on R is defined by using the sets U (π, p, �, S), where 

1. p is a finite rank projection, 

2. � > 0 is arbitrary, 

3. S ⊂ A is finite, 

as a basis of neighborhoods of π. Clearly, this topology does not distinguish uni-btarily equivalent representations, so the structure space or dual of A, denoted A, is 

unambiguously defined as the set of unitary equivalence classes of irreducible repre-

sentations of A equipped with the regional topology. 

4.1.3 The Primitive Ideal Space Pr(A) 

A natural point of view to take when seeking a topology on the set of unitary 

equivalence classes of irreducible representations of a C∗ algebra A is to examine 

their factorization properties. In other words, quotient algebras of A arise from closed 

ideals J ⊂ A and an irreducible unitary representation of A/J evidently defines an 

irreducible unitary representation of A by factoring through the quotient. For a given 

ideal J , such representations of A are precisely those which vanish on J . The natural 

topology on the set of representation classes should interpret those representations 

which factor through a fixed quotient A/J as a closed set. 

With this in mind, one isolates the closed ideals ker π for irreducible π, which 

are said to be primitive. The set of all primitive ideals will be denoted Pr(A) and bthe dual A evidently surjects onto Pr(A) by mapping a given equivalence class of 

representations to its kernel. In general, this map is not injective as inequivalent 

representations can have the same kernel. Defining a topology on Pr(A) in the manner 

described above amounts to first isolating the collection of subsets of Pr(A) indexed 
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by the closed ideals of A with each ideal J mapping to the subset of primitive ideals 

which contain it or equivalently the set of irreducible representations which annihilate 

it, and then considering the coarsest topology on Pr(A) in which each of these sets is 

closed. 

In fact, the above described collection of sets is already the collection of closed 

sets for a topology - no extra closed sets are needed. To prove this, recall that by the 

Gelfand-Naimark theorem there is always a faithful representation, so one sees that 

there is no nonzero element which is annihilated in every irreducible representation 

and as a result the intersection of all primitive ideals is trivial. Furthermore, by 

considering the quotient by a given closed ideal J , J is evidently the intersection 

of the primitive ideals which contain it. Therefore, the abstract closure operation 

defined by ( )\ 
X = I : I is primitive and J ⊂ I 

J∈X 

realizes the above described closed sets (i.e. sets of primitive ideals which contain 

a given closed ideal) as the formally closed sets under this operation (i.e. those for 

which X = X). Furthermore, this operation satisfies Kuratowski’s closure axioms, 

meaning that the sets X such that X = X form the collection of closed sets for a 

topology. The resulting topology on Pr(A) is called the hull − kernel or Jacobson 

topology. The hull-kernel topology is equal to the regional topology when pulled bback to A (however, it can also be defined for more general Banach ∗-algebras and 

generally speaking the regional topology may be strictly finer). 

4.2 Unbounded Operators 

The theory of unbounded operators (or more precisely, not necessarily bounded 

operators) is based on the fact that for any operator T : D(T ) ⊂ H → R from a 

complex linear subspace (not necessarily closed, not necessarily dense) of a Hilbert 

space H into a Hilbert space R, the adjoint domain D∗(T ) is unambiguously defined 

as the set of v ∈ R such that hT (·), viR is a continuous linear functional on D(T ), 
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i.e. those vectors whose corresponding rank one projections make T continuous after 

post-composition. The notation D∗(T ) as opposed to D(T ∗) is chosen specifically 

because the actual adjoint operator for T is not unique (unless D(T ) is dense), but 

the domain of the adjoint is well-defined in spite of this ambiguity (in fact, even if H 

and R are general topological vector spaces, the adjoint of a closed subspace of H⊕R 

can always be defined as a closed subspace of R∗ ⊕H∗ , by taking the annihilator of 

the given subspace in H∗ ⊕R∗ , negating the first summand and switching the order, 

the above described ambiguity is then manifest by the possibility that the adjoint is 

not single-valued). 

Now T can be decomposed as T = P T +PD∗(T )⊥ T and most of the complexity D∗(T ) 

inherent in the theory of unbounded operators is more or less summarized by this 

decomposition: 

1. P T , while still unbounded, is well-behaved in many respects: its graphD∗(T ) 

closure is single valued (i.e. it is a closable operator) and no matter how T ∗ 

is defined (i.e. within the above described ambiguity) it satisfies the expected 

equality D∗(T ) R(P T ) = ker(T ∗), and moreover D∗(T ) has dense inter-D∗(T ) 

section in R(P T ) and any admissible version of T ∗ will be injective there.D∗(T ) 

2. PD∗(T )⊥ T is pathological, it is not closable and it has trivial adjoint domain. 

The existence of the second type of map is somewhat confusing and has no analog 

in finite dimensional linear algebra, wherein every nontrivial map has a nontrivial 

adjoint. Generally speaking they are those maps which are discontinuous and re-

main discontinuous after composition with any rank one orthogonal projection in the 

codomain. This way of imposing continuity by composing with projections is the 

heart of the theory of unbounded operators. For instance, one can take the operator 

i
dx
d on L2(R) - it is discontinuous in general but not if it is post-composed with a 

projection onto a subspace of elements having first derivative in L2(R) and on which 

the operator f 7→ i
dx
d f is bounded in the topology inherited from L2(R). In particu-



78 

lar any finite rank projection with range consisting only of f ∈ L2(R) such that also 

i
dx
d f ∈ L2(R) will work. 

This description of the situation, while satisfactory for most purposes, is somewhat 

asymmetrical insofar as it confers a certain logical precedence upon T which it should 

not really have. In particular T may not be closed even when projected into D∗(T ), 

but any admissible version of the adjoint T ∗ is closed on D∗(T ) after projection into 

D(T ). Thus, one might envision the ideal situation as that in which two operators 

are given: T : D(T ) ⊂ H → R and S : D(S) ⊂ R → H such that 

1. D(T ) ⊂ D∗(S), 

2. D(S) ⊂ D∗(T ), and 

3. the sesquilinear forms hT (·), ·iR and h·, S(·)iH are equal on D(T ) × D(S). 

With these data given, 

1. PD∗(S)⊥ S and PD∗(T )⊥ T are pathological in the sense described above (i.e. the 

have trivial adjoint domain or equivalently they remain discontinuous after com-

position with every rank one orthogonal projection in the codomain). 

2. the closures of P T and P S define an adjoint pair of closed operators D∗(T ) D∗(ST ) 

on D(T ) × D(S). 

Naturally one is interested in extending T and S to closed operators on D∗(S) and 

D∗(T ) respectively and in such a way that the extensions remain an adjoint pair. 

However, most examples which arise in practice have D(T ) dense in the closure of 

D∗(S) and D(S) dense in the closure of D∗(T ). By throwing away the pathological 

parts of the operators, we can assume that T is densely defined with a densely defined 

adjoint and S is densely defined with a densely defined adjoint, or in other words both 

T and S are densely defined and closable so T ∗ is the closure of S and S∗ is the closure 

of T . 

Thus, one can unambiguously say that a pair T : D(T ) ⊂ H → R and S : D(S) ⊂ 

R → H of densely defined closed operators is an adjoint pair if T ∗ = S and S∗ = T . 
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If T : D(T ) ⊂ H → R, P : D(P ) ⊂ H → R are any operators whatsoever, the 

notation T ⊂ P indicates that D(T ) ⊂ D(P ) and that T = P on D(T ), if D(T ) 

is dense then the inclusion P ∗ ⊂ T ∗ is easily proved. The basic extension problem 

for a pair T, P of densely defined closed operators such that T ⊂ P is to describe 

all intermediate closed operators, i.e. one wants a description of the set of all closed 

operators A such that T ⊂ A ⊂ P . This problem has a very satisfactory answer if 

there exists at least one intermediate closed operator A1 which is injective with dense 

range and bounded inverse. 

Theorem 4.2.1 If T,A1 and P are closed densely defined operators on H taking 

values in R such that T ⊂ A1 ⊂ P and if A1 is injective with dense range and a 

bounded inverse then there exists a natural adjoint-compatible bijective correspondence 

from the set of all closed operators A such that T ⊂ A ⊂ P to the set of closed 

operators from ker(P ) into ker(T ∗). 

For a proof, see [30]. Note that closed operators from ker(P ) to ker(T ∗) in this 

parameterization are not necessarily densely defined, the only requirement is that 

they are closed. Also, the operator A1 must be surjective, since it has a bounded 

inverse the inverse A− 
1
1 must be everywhere defined with dense range since A1 is 

densely defined (but by the closed graph theorem the range of A− 
1
1 will be surjective 

if and only if A1 is bounded, and in that case T = A1 = P ). 

A densely defined closed operator T : D(T ) ⊂ H → H is symmetric if T ⊂ T ∗ 

and self-adjoint if T = T ∗ . Evidently self-adjoint operators are symmetric but the 

converse is false: there exist closed operators which are nontrivially extended by 

their adjoints. The main example of this is a differential operator T on a smooth 

manifold X equipped with a smooth measure µ (a measure which is a smooth positive 

deformation of lebesgue measure in every coordinate system or equivalently a smooth 

positive section of the line bundle of one-densities). In this situation one can set 

D(T ) = C0 
∞(X) ⊂ L2(X), which is dense, and then D∗(T ) ⊃ C0 

∞(X) so D∗(T ) is 

dense thus T is closable and T ∗ is densely defined. Now the inclusion D(T ) ⊂ D∗(T ) 
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is strict, since D∗(T ) will contain any function which is smooth enough and decays 

rapidly enough at ∞ so that its image in the operator T is still in L2(X). If the 

differential adjoint of T as computed in any coordinate chart is equal to T then 

T = T ∗ as differential operators, but in general not as operators in L2(X), for even 

after one passes to the domain of the operator closure of T , the extension T ⊂ T ∗ 

may still be strict. An example is the positive Laplace operator on a bounded domain 

in Rn or more generally a riemannian manifold which is not metrically complete, for 

then there will be harmonic functions in L2(X) which are not in the domain of the 

graph closure of the restriction to smooth functions of compact support. 

In general, if T ⊂ T ∗ is a strict inclusion then the basic extension theorem dis-

cussed above can be considered with P = T ∗ , so if there is a closed intermediate 

operator T ⊂ A1 ⊂ T ∗ which has zero as a resolvent value then the set of all in-

termediate operators is in natural adjoint-compatible bijective correspondence with 

the set of closed operators on ker(T ∗). However, this correspondence is too general 

to be of use in most specific situations and in any case we’ve not given a proof or a 

description of it. For specific classes of symmetric operators more precise tools are 

available, which we now proceed to describe. 

The set of self-adjoint extensions of a closed symmetric operator T is of great 

interest, any such extension must lie between T and T ∗ , since adjunction is inclusion 

reversing. Thus, by the main extension theorem if T admits a single intermediate 

extension T ⊂ A1 ⊂ T ∗ having zero as a resolvent value then A1 must be self-adjoint 

(since its inverse is bounded and symmetric therefore self-adjoint, so A1 is self-adjoint) 

and in this case the set of all self-adjoint extensions of T is in bijection with self-adjoint 

operators, bounded or not, on closed subspaces of ker(T ∗), so if T has dense range 

then there is at most one self-adjoint extension with a bounded inverse. 

This is indicative of the general situation which is most frequently of interest in 

analysis and geometry, there one typically has a symmetric hypoelliptic differential 

operator T which is bounded below by −α ∈ R in its natural quadratic form, T = 

Δ+ L where Δ is the nonnegative Laplace operator on any riemannian manifold and 
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L is a first order operator which is formally symmetric and bounded below in its 

quadratic form by −α, is an example. With this hypothesis in place one can be sure 

that the closure of T + α + 1 is bounded below by 1 and therefore it is injective and, 

crucially, its inverse (which is a priori defined only on the range) is bounded. This 

means that T + α + 1 has closed range and (T + α + 1)−1 : R(T + α + 1) → H is a 

contraction. However, it is fairly simple to prove (via a lax-milgram type argument) 

that the completion of D(T ) in the quadratic form h(T + α + 1)·, ·i (i.e. the range 

of the inverse square root (T + α + 1)−1/2) is the domain of a self-adjoint extension 

T = (T +α+1)−α−1 with the same lower bound as T , this is the so-called Friedrichs 

extension of T . 

All self-adjoint extensions of T can be obtained in more or less the same fashion. 

The kernel of any such extension must be a closed subspace K such that ker(T ) ⊂ K ⊂ 

ker(T ∗), so the domain of such an extension in K⊥ contains the projection of D(T ), 

and we shall call the restriction of T to this projected domain the compression of T 

(into K⊥). The self-adjoint extensions of T with kernel containing K are evidently in 

bijective correspondence with the self-adjoint extensions of the compression into K⊥ 

and in particular, K is the kernel of a self-adjoint extension of T if and only if the 

compression of T into K⊥ admits a self-adjoint extension with dense range. 

A symmetric operator which is not necessarily closed is said to be essentially 

self-adjoint if its closure is self-adjoint, in which case the closure is the unique self-

adjoint extension and is equal to the adjoint of the originally given (not necessarily 

closed) operator. The rest of this section will be devoted to the proof of the following 

theorem. 

Theorem 4.2.2 If B is a C∗ algebra and A ⊂ B∗∗ is a commutative C∗ subalgebra 

of the enveloping algebra, and if furthermore ω is a normalized positive functional on 

B with separable GNS representation Hω then for any strictly positive Borel measur-bable function L on A, the positive powers Ls/2 each define an essentially self-adjoint 

positive operator on Hω. Furthermore, for any x ∈ B∗∗ the vector ξ ∈ Hω is in the 
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−zLLs/2ξdomain of xLs/2 if and only if the holomorphic function of z defined by xe 

in the right half-plane has a continuous limit on Re z = 0. 

Proof To prove the first statement, we will use the well known criterion of E. Nelson 

on analytic vectors. A vector in the domain of all powers Lns/2 is said to be an analytic P kLns/2 

vector if 
n! 

vk tn is finite for at least one t > 0. Evidently this must be true since L 
if Hω = k≥1 Aξk is a direct sum decomposition into cyclic representations then for bany w ∈ Hω there are Borel measurable functions wk : A → C which are respectively 

in L2 with respect to the vector state ξk, such that w = ⊕wk. In this case define an 

−zLs/2 
operator Tz on H for Re z > 0 by Tzw = ⊕

k 
1 e wk and clearly each such vector is 

−zLs/2 
Lns/2in the domain of Lns/2 with Lns/2Tzw = ⊕

k 
1 e wk. Thus, X kLns/2TzwkHω 

XX kLns/2 −zLs/2 
1 e wkkHωtn tn≤ 

n! k n! 
n n k X 1 (t−z)Ls/2 ≤ ke wikHωk 

k X !1/2 X !1/2 
1 (t−z)Ls/2 ≤ 
k2 

ke wik2 
Hω 

k k 

π (t−z)Ls/2 ≤ √ ke wkHω . 
6 

Provided Re(t − z) < 0 the final figure is finite, so we conclude that the range of Tz 

consists of analytic vectors provided Re z < 0. However, Tz 
∗ = Tz which is injective, so 

Tz has dense range and Hω thus contains a dense set of analytic vectors. By Nelson’s 

criterion [31], Ls/2 is essentially self-adjoint. 

The second statement follows from a typical trick: the domain of xLs/2 is the 

adjoint domain to Ls/2x ∗ , and ξ is an element if and only if ξ, Ls/2x ∗(·) is continuous. 

However, if this is so then e−zLξ, Ls/2x ∗(·) has a limit on Re z = 0 but for Re z < 0 

−zLLs/2ξ, it is equal to xe · . Note that a limit at any point on Re z = 0 implies a 

limit at all such points, since the semigroup is unitary on this line. This proves the 

theorem. 

The setting we have in mind is that which was discussed at the beginning of the 

chapter, i.e. that in which a nested sequence G ⊃ G1 ⊃ . . . ⊃ Gr of connected re-
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ductive groups is given, each closed in its predecessor. The algebra C[Δ, Δ1, . . . , Δr] 

generated by the respective Casimirs is commutative, but it consists of unbounded 

operators. However, since these operators are formally self-adoint any closed ex-

tensions for them must have real spectrum, so they will generate unitary groups 

itΔ itΔ1 itΔre , e , . . . , e and for B = C ∗(G) the C∗-subalgebra in B∗∗ generated by these 

groups is the guiding example of the subalgebra A in the theorem. 

Here we require L to be strictly positive everywhere so as to be sure that Ls/2e−zL is 

a bounded operator on Hω. It would be enough to identify a countable list ξ0, ξ1, . . . 

of unit vectors which are cyclic generators of a direct sum decomposition into A 

modules. 

4.3 Locally Compact Groups 

Let G be a locally compact group Hausdorff group. In this dissertation we are 

interested only in Lie groups, furthermore locally compact groups which are not Haus-

dorff are too pathological to be of general interest. In any case a topological group 

which satisfies the T1 separation axiom (for every point pair there is a neighborhood 

of one point not containing the other) is automatically Hausdorff, and quotients of 

topological groups by closed subgroups are Hausdorff so in non-hausdorff groups {1} 

is a closed normal subgroup and one can pass to the Hausdorff quotient G/{1} [32]. 

The standard approach to the representation theory of G is to instead consider the 

group C∗ algebra of G, which we will denote C ∗(G), and more generally the C∗ 

completion of the bounded measure algebra C0(G)0 . These algebras are defined as 

follows. 

The abelian C∗ algebra C0(G) admits a coassociative coproduct f 7→ Δf ∈ Cb(G× 

G) with Δf(x, y) = f(xy), so the Banach dual C0(G)0 inherits a dual associative 

product given by evaluation of the direct product of functionals on the coproduct of 

a function, i.e. convolution. In addition to the involution which defines the ∗-algebra 

structure on C0(G) (i.e. pointwise conjugation), the group structure of G induces 
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another involution via an additional precomposition with the inversion map ι, i.e. 

f̃(g) = f ∗ ◦ ι(g) = f(g−1), and the dual of this involution gives C0(G)0 the structure D E 
of a Banach ∗-algebra: hµ ∗, fi = µ, f̃  . In concrete terms, elements of the Banach 

algebra C0(G)0 are bounded complex Borel measures on G and for a given Borel set 

E, µ ∗(E) = µ(E−1). 

If λ is a left-invariant Haar measure then the convolution algebra L1(λ) embeds 

into C0(G)0 as the closed ∗-ideal of elements which are absolutely continuous with 

respect to λ [29]. All convolution products with both factors in L2(λ) are continuous 

and tend to zero at infinity, i.e. they are elements of C0(G), in fact they form a dense 

subalgebra of C0(G) called the Fourier algebra A(G) = L2(λ) ∗ L2(λ), introduced 

originally by Eymard [33] (see also [34]). Furthermore, the measure algebra C0(G)0 

acts on any unitary representation of G by integration and in particular it acts on 

L2(λ) wherein it satisfies the equality 

hµ · ψ, ϕi = µ, ψ ∗ (ϕ ◦ ι) .L2(λ) C0(G)0×C0(G) 

Since A(G) ⊂ C0(G) is dense, for any given nontrivial element µ ∈ C0(G)0 there 

exist ψ, ϕ ∈ L2(λ) such that the right side of this equality is nonzero, hence the 

integrated form of µ in L (L2(λ)) cannot be zero. This being true for every nonzero 

element, we conclude that the ∗-algebra C0(G)0 and its subalgebra L1(λ) (or any other 

subalgebra, for that matter) are reduced, i.e. zero is the only element which vanishes 

in every ∗-representation. As with any reduced Banach ∗-algebra we can form the 

C∗ completions of C0(G)0 and L1(λ), denoted respectively by M ∗(G) (the measure 

algebra) and C ∗(G), which is in each case the metric completion in the unique norm 

satisfying the C∗ identity, i.e. is the norm equal to the supremum of the norms over 

all ∗-representations [29] (or equivalently, via the GNS construction, all Hilbert space 

∗-representations). With these respective C∗ algebra structures, C ∗(G) becomes an 

isometrically embedded ∗-ideal in M ∗(G). 

There is another important interpretation of the realization of C ∗(G) as a ∗-ideal 

in M ∗(G). If A is any associative algebra over a field k, then a pair (L, R) of k 

endomorphisms of the vector space A is called a multiplier of A if L and R behave, 
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respectively, like left and right multiplication by an element of an algebra which 

contains A as an ideal: for x, y ∈ A 

L(xy) = (Lx)y x(Ly) = (Rx)y R(xy) = x(Ry). 

By construction, such pairs can be composed in the obvious way so as to form an 

algebra which contains A as an ideal. For C∗ algebras we require R and L to be 

bounded endomorphisms and the maximum of their operator norms together with the 

adjunction L∗(x) = (R(x ∗))∗ (and likewise for R∗) gives a C∗ algebra structure to the 

bounded multiplier algebra, denoted M(A) [35]. Every element of the enveloping von 

Neumann algebra Aewhich maps A into itself under both left and right multiplication 

is evidently a multiplier, in fact every multiplier arises in this fashion. To see this, 

form a faithful Hilbert space representation H of M(A). If y ∈ M(A) ⊂ L (H) 

and z ∈ A0 ⊂ L (H) then a short computation shows that the commutator yz − zy 

annihilates A on both sides, but this implies that zy − zy = 0 since the strong closure 

of the unit ball of A contains the identity by the Kaplansky density theorem. Thus, 

M(A) ⊂ A00 ⊂ L (H). In fact, M(A) is the largest C∗ algebra into which A embeds 

as an essential (or sometimes called thick [36]) ∗-ideal - i.e. one which intersects all 

∗-ideals nontrivially. Regarding the isometric inclusion C ∗(G) ⊂ M ∗(G), Wendel has 

proved that M ∗(G) = M(C ∗(G)) [37]. 

Now we come to the main point, which is that unitary representations of G, ∗-

representations of M ∗(G) and ∗-representations of C ∗(G) are essentially equivalent 

objects. Indeed, as described above a unitary representation of G gives rise to a 

representation of C0(G)0 (respectively L1(λ)) by integration, this is evidently con-

tinuous in the C∗ norm on C0(G)0 (respectively L1(λ)) so it is uniquely defined on 

the completion M ∗(G) (respectively C ∗(G)). Conversely, the elements of G realized 

as point masses in M ∗(G) form a unitary representation of G, so the restriction of 

any ∗-representation of the former is a unitary representation of the latter. Further-

more, since C ∗(G) embeds isometrically into M ∗(G), a ∗-representation of the latter 

automatically gives a ∗-representation of the former by precomposition with the em-

bedding. The last assertion to be justified is the extension of a ∗-representation of 
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C ∗(G) to M ∗(G). This follows from the aforementioned fact that the embedding 

C ∗(G) ,→ M ∗(G) is a closed ∗-ideal, and nondegenerate (defined below) represen-

tations of ∗-ideals always extend uniquely to the entire algebra in which they are 

contained [29]. To summarize: 

1. From a unitary representation of G one obtains ∗-representations of C0(G)0 and 

L1(λ) via integration. Both are continuous in their respective C∗ norms so they 

are defined on the completions M ∗(G) and C ∗(G). 

2. From a ∗-representation of M ∗(G) one obtains a unitary representation of G by 

restriction to point masses and a ∗-representation of C ∗(G) by precomposition 

with its continuous embedding into M ∗(G). 

3. From a nondegenerate ∗-representation of C ∗(G), one obtains a unique exten-

sion to M ∗(G) since C ∗(G) ⊂ M ∗(G) is a ∗-ideal and thereby also a unitary 

representation of G via restriction. 

If H is a Hilbert space ∗-representation of a ∗-algebra A, then the subspaces 

• N(A) = {ξ : Tξ = 0 for all T ∈ A}, 

• R(A) = {Tξ : ξ ∈ H, T ∈ A} (linear closure) 

are orthogonal and the representation is said to be nondegenerate if N(A) is trivial. 

In particular any nontrivial irreducible Hilbert space representation must be nonde-

generate, since N(A) and R(A) are closed invariant subspaces for A, and in any case 

a degenerate ∗-representation of a ∗-ideal I ⊂ A can be uniquely extended to A on 

the closed subspace R(I). 

Thus, the representation theory of G can be viewed as being essentially equivalent 

to that of C ∗(G) and to each irreducible representation of C ∗(G) we can associate 

the kernel, which is a ∗-ideal. Such ideals (i.e. the kernels of irreducible representa-

tions) are said to be primitive. The correspondence from irreducible representations 

to primitive ideals is not injective, but in favorable circumstances it is injective on 
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unitary equivalence classes - i.e. when C ∗(G) is of type I, a condition which we now 

describe. For any C∗ algebra A, 

ˇ• denote by A the set of unitary equivalence classes of irreducible Hilbert space 

representations of A, 

ˆ• denote by A the set of primitive ideals of A, i.e. kernels of irreducible Hilbert 

space representations of A. 

The natural topologies on both spaces have been discussed previously, the natural 

ˇtopology on A is called the regional or Fell topology and the natural topology on 

Â is called the hull-kernel or Jacobson topology. As mentioned above there is an 

ˇ ˆobvious surjection A → A which maps an equivalence class of representations to its 

ˇcommon kernel, so there is also a hull-kernel topology naturally defined on A via the 

quotient map. Since we’ve assumed that A is a C∗ algebra, these two topologies on 

Ǎ coincide [29], but for more general Banach algebras the regional topology can be 

strictly finer than the hull-kernel topology. 

Ultimately, we would like to associate a given primitive ideal with a unique equiv-

ˇ ˆalence class of representations, i.e. we would like the surjection A → A to be a 

bijection, and this is where the type I condition comes in. The type I condition is 

really an amalgam of various more or less equivalent conditions which are described 

differently in different sources, the equivalence thereof being due to Glimm [38] in the 

separable case and later to Sakai [39–41]. It seems that Blackadar [42] has compiled 

the most detailed summary, so we will quote the result recorded there. 

Theorem 4.3.1 (Glimm-Sakai) For any C∗ algebra A, the following are equiva-

lent: 

1. (internal type I) every quotient B of A contains an element x such that the 

hereditary subalgebra x ∗Bx is commutative, 

2. (bidual type I) the second dual A∗∗ (note A is arens-regular) is a von Neumann 

algebra of type I, equivalently the bicommutant A00 in any representation is a 

von Neumann algebra of type I, 
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3. (postliminal) A admits a composition series {Ai} such that every irreducible 

representation of every simple subquotient takes values in the compact operators 

(i.e. the simple subquotients are CCR), 

4. (GCR) every irreducible representation of A has nontrivial intersection with the 

compact operators, or equivalently contains the compact operators. 

ˇ ˆIf these equivalent conditions are met then the map A → A is a bijection. Conversely 

ˇ ˆif A → A is a bijection and in addition A is separable, then the listed conditions hold. 

Regarding the second condition, recall that a von Neumann algebra is said to be 

of type I if every nonzero central projection majorizes a nonzero abelian projection 

(i.e. such that the associated hereditary subalgebra is commutative). 

A locally compact Hausdorff group is said to be of type I or have type I repre-

sentation theory if its group C∗ algebra has this property. There are many familiar 

classes of groups which are of type I - and also some which are not. In particular, 

connected reductive Lie groups are of type I, in fact they are CCR groups, which is 

a stronger condition. A group G is CCR (i.e. “completely continuous representa-

tion theory”) or liminal if C ∗(G) is a CCR C∗ algebra, which means that all of its 

irreducible ∗-representations are contained in the compact operators. 

The proof of this fact is outlined in [28, 43] and is more or less a consequence of 

the standard admissibility theorem of Harish-Chandra. If G is a connected reduc-

tive group with maximal compact subgroup K, then for any pair π1, π2 of unitary 

representations of K define Z 
Eπ1,π2 f(x) = χπ1 (k1)f(k1 

−1xk2)χπ2 (k2)dk1dk2 
K×K 

for suitably nice functions f on G. Clearly, Eπ1,π2 f is a left and right K-finite vector 

in any vector space of functions containing f , since all irreducible representations 

of compact groups are finite dimensional. Now if for instance f is in the Schwartz 

space of Harish-Chandra (c.f. [28]) then a suitable linear combination of the Eπ1,π2 f 

will converge back to f , in other words the Schwartz space, and therefore the L1 
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convolution algebra of G, contains a dense subspace of left and right K-finite vectors. 

Such K-finite vectors must take values in the finite rank operators in any admissi-

ble representation of G (i.e. one for which the space of equivariant injections from 

any finite dimensional K representation is itself finite dimensional). Since Harish-

Chandra proved that all irreducible unitary representations of G are admissible, a 

dense subspace of C ∗(G) must take values in the finite rank operators in any such 

representation. This means that the image of C ∗(G) must be contained in the opera-

tor norm closure of the finite rank operators, which is the ideal of compact operators. 

Thus, connected reductive Lie groups are CCR. In addition to this we mention 

without proof that connected nilpotent groups are CCR, connected real algebraic 

groups are type I, exponential solvable Lie groups are type I and more generally there 

is a detailed criterion which describes necessary and sufficient conditions concerning 

the topology of the coadjoint orbit space for a simply connected solvable Lie group 

to be of type I [32]. 

4.4 Main Results For Compact Groups 

The representation theory of compact groups is especially simple. The main result 

is the famous peter-weyl theorem. 

Theorem 4.4.1 (Peter,Weyl) The unitary dual of a compact group is discrete, ev-

ery irreducible unitary representation is finite dimensional, and the Plancherel mea-

sure is given by the multiplicity function dim π. 

In other words, for any irreducible unitary representation π of a compact group L 
V ⊕ dim VπK, dim HomK (Vπ, L

2(K)) = dim Vπ. Thus, L2(K) = π π as K modules. 

However, there is more structure. The Fourier transform for f ∈ L2(K) is given by Z 
f̂(π) = f(k)π(k)dk ∈ End(Vπ) 

K 

(normalized Haar measure) for any irreducible unitary representation V and there-L 
fore L2(K) = π End(Vπ), the Fourier transform being an isometry with respect to 
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normalized Haar measure on the left and Plancherel measure (i.e. dim π on every 

summand) on the right, which is much more natural and incorporates the action of 

K on the left and right. 

Theorem 4.4.2 Let K be a connected compact Lie group and let K ⊃ K1 ⊃ . . . ⊃ Kr 

be a descending sequence of connected subgroups, each closed in its predecessor, with 

Δ, Δ1, . . . , Δr the respective positive casimirs (relative to the normalized Haar measure 

from K). 

1. In any finite dimensional irreducible representation of K, Δt0,...,tr = t0Δ + P 
t1Δ1 + . . . + trΔr is given by π,π1,...,πr 

tπ,...,πr Pπ,π1,...,πr where Pπ,π1,...,πr is the 

projection into the πr subtype of Kr contained in the πr−1 subtype of Kr−1, 

etcetera, the constants ci are the respective Casimir eigenvalues and tπ,...,πr = 

t0c0 + t1c1 + . . . + trcr, 

2. The Fourier transform of the point mass δ1 is given by δb 1 = 
L 

π idπ, thus if 

t0Δ+ t1Δ1 + . . . + trΔr is hypoelliptic then its integral kernel with initial point 

x ∈ K evaluated at y ∈ K is given by X 
−Δt0,...,tr xδ1, yδ1 

−tπ,...,πr (dim π) Trπ(ye = e −1xPπ,π1,...,πr ). 
π,π1,...,πr 

Proof The equality δb 1 = 
L 

π idπ is a restatement of the Plancherel formula for P R 
compact groups, i.e. f(1) = π(dim π) 

K fχπ where χπ(k) = Trπ(k) is the character, L 
all other statements follow from the peter-weyl isometry L2(K) = π End(Vπ). 

With this and the preparatory results from chapter 3 in mind, we have the fol-

lowing result. 

Theorem 4.4.3 If (G, θ, h, Δ+(g, h), PΣ) is an admissible datum, then for any two 

connected compact Θ-stable subgroups L, K ⊂ G such that 

1. K acts transitively on G/PΣ, 

2. K ∩ PΣ ⊂ L ⊂ K, 
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3. l ∩ [g, g] is orthogonal to gΣ 
−1 in the Killing form, 

the horizontal distribution for the associated fibration L/(K ∩ PΣ) ,→ K/(K ∩ PΣ) → 

K/L is bracket-generating and the heat kernel for the operator ΔK −ΔL on left K ∩PΣ 

invariant functions in L2(K) is given by X 
e −t(ΔK −ΔL)xδK∩PΣ , yδK∩PΣ = e −t(cπK −cπL )(dim πK ) TrπK (y −1xPπL,K∩PΣ ) 

πK ,πL 

where the sum runs over all pairs πK , πL of irreducible representations of K and L 

respectively, and 

1. cπK , cπL are the respective Casimir eigenvalues, 

2. PπL,K∩PΣ is the projection into the K ∩PΣ invariants embedded in the πL subtype 

of πK . 

Proof Since g− 
Σ
1 ⊕ pΣ is bracket-generating in [g, g], the orthogonality hypothesis 

l ∩ [g, g], g− 
Σ
1 = 0 ensures that ΔK − ΔL is hypoelliptic on the total space K/(K ∩ 

PΣ) = G/P , or equivalently on left K ∩PΣ invariant functions on K, since g− 
Σ
1 defines 

a bracket-generating subbundle of T (G/P ). Thus, the given expression for the heat 

kernel follows from Theorem 4.4.2. 

There are many results available to study branching multiplicities for compact 

groups so it is in principal possible to give an entirely explicit expression for the heat 

kernel using the formula in Theorem 4.4.3. It will involve classical special functions. 

Continuing the discussion from the introduction, we find that for G = U(1, n + 1) 

and P ⊂ G equal to the parabolic isotropy group of the null line in Cn+2 defined 

by z0 − z1 = z2 = . . . = zn+1 = 0, the compact isotropy group U(1) × U(n + 1) of 

the orthogonal positive/negative splitting C ⊕ Cn+1 acts transitively on G/P . Thus, 

Theorem 4.4.3 applies to the standard Hopf fibration 

(U(1) × U(1) × U(n))/(Δ U(1) × U(n)) 

,→ (U(1) × U(n + 1))/(Δ U(1) × U(n)) 

→ (U(1) × U(n + 1))/(U(1) × U(1) × U(n)) 
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arising from the sequence Δ U(1) × U(n) ⊂ U(1) × U(1) × U(n) ⊂ U(1) × U(n + 1). 

This is because the isotropy group is Δ U(1) × U(n) and U(1) × U(1) × U(n) acts 

transversely to the bracket-generating subbundle of T (G/P ) (its orbits are the sets 

of null lines projecting to the same line in Cn+1 = {z0 = 0}). 

Likewise, if we replace C with the quaternion algebra H, then an exactly analogous 

argument goes through for the quaternion Hopf fibration 

(Sp(1) × Sp(1) × Sp(n))/(Δ Sp(1) × Sp(n)) 

,→ (Sp(1) × Sp(n + 1))/(Δ Sp(1) × Sp(n)) 

→ (Sp(1) × Sp(n + 1))/(Sp(1) × Sp(1) × Sp(n)) 

arising from the sequence Δ Sp(1)×Sp(n) ⊂ Sp(1)×Sp(1)×Sp(n) ⊂ Sp(1)×Sp(n+1). 

So, Theorem 4.4.3 applies to this fibration as well. 

For the normed algebras O, Oe (the split octonions) and C⊗O, the Hopf fibrations 

are not as straightforward. As sketched out in [44], one defines n� � o 
r1 x y

Herm3(C ⊗ O) = x r2 z : r1, r2, r3 ∈ R, x, y, z ∈ C ⊗ O 
y z r3 

along with its real forms n� � o 
r1 x y

Herm3(O) = x r2 z : r1, r2, r3 ∈ R, x, y, z ∈ O , 
y z r3n� � o 
r1 x y

Herm3(Oe ) = x r2 z : r1, r2, r3 ∈ R, x, y, z ∈ Oe , 
y z r3n� � o r1 −ix −iy 

Herm0 3(O) = ix r2 z : r1, r2, r3 ∈ R, x, y, z ∈ O . 
iy z r3 

In each of these respective cases, the automorphisms of the respective Jordan 

algebra structures are the simply connected groups FC 
4 (the complex form), Fc 

4 (the 
(4) (−20)

compact form), F4 (the split form), F4 (the unique noncompact and nonsplit 

real form). Each of these groups acts transitively on the idempotents of trace one, 

with isotropy conjugate to an injected copy of Spin(9) in the real cases. The total 

,→ S15space of the octonion Hopf fibration S7 → S8 arises as the boundary of 
(−20)

the exceptional symmetric space F4 / Spin(9). The isotropy group of a boundary 
(−20)

point is a parabolic P ⊂ F4 and it can be shown that P ∩ Spin(9) is isomorphic to 
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Spin(7), embedded by way of the sequence Spin(7) → Spin(8) → Spin(9) where the 

second embedding is the usual one but the first embedding is the usual one followed 

by a triality automorphism of Spin(8) [5, 44]. Thus, Theorem 4.4.3 applies to this 

fibration as well. 

Table 4.1. 
Compact fibrations L/M ,→ K/M → K/L with hidden symmetry. 

M L K 

U(n) U(n) × U(1) U(n + 1) 

U(n) SO(2n) SO(2n + 1) 

Sp(n) × U(1) Sp(n) × Sp(1) Sp(n + 1) 

Sp(n) × U(1) U(2n) × U(1) U(2n + 1) 

Sp(n) × Δ Sp(1) Sp(n) × Sp(1)2 Sp(n + 1) × Sp(1) 

Spin(7) Spin(8) Spin(9) 

SU(2) × Δ SU(2) SO(4) × SO(3) SO(5) × SO(3) 

SU(2) × Δ SO(2) SO(4) × SO(2) SO(5) × SO(2) 

SU(3) × Δ SO(2) U(3) × SO(2) SO(6) × SO(2) 

SU(3) × Δ SO(2) Spin(6) SO(6) × Spin(7) 

We anticipate that many of the fibrations identified by T. Kobayashi [45] as having 

“hidden symmetry” will have total spaces identifiable with real flag varieties and as 

such, will have hypoelliptic horizontal sublaplacians with heat kernels described as 

in Theorem 4.4.3. These are listed in Table 4.1, which contains the above described 

Hopf fibrations. 
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Cham, 2017. 


	Sublaplacians on Real Flag Manifolds
	Recommended Citation


