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ABSTRACT

Author: Stochelski, Mateusz, A. PhD

Institution: Purdue University

Degree Received: August 2018

Title: Regulation of the Endogenous Antioxidant Defense System in Diabetic Peripheral
Neuropathy.

Major Professor: John R. Burgess

Oxidative stress is implicated as a major contributor to the development of diabetes induced
peripheral neuropathy. This debilitating condition significantly impacts the quality of life of
patients, yet available treatment options are not optimal. They include tricyclic antidepressants,
anticonvulsants, serotonin-norepinephrine reuptake inhibitors, selective serotonin reuptake
inhibitors, and opiates. Unfortunately, these treatment options only reduce pain by 30-50%, and
many patients discontinue use due to side effects. Furthermore, the current treatment options are
focused on pain reduction, but not the protection of the peripheral nerves. Since oxidative stress
driven by high glucose concentrations has been implicated as the key factor causing peripheral
neuropathy, these studies focused on reducing or increasing protection against oxidative stress
using dietary compounds with antioxidant properties to ameliorate diabetic peripheral neuropathy.
Two dietary compounds with very different mechanisms of antioxidant protection were explored
in detail, N-acetylcysteine (NAC) and 3H-1,2-dithiole-3-thione (D3T). To model diabetic
peripheral neuropathy, differentiated SH-SY5Y cells were used and stressed with advanced
glycation end products (AGE), which form as a result of high glucose concentrations in vivo and
cause oxidative stress. In our initial studies, we showed that NAC conferred complete protection
against AGE-induced neurite degeneration via a glutathione-mediated mechanism. These studies
showed that maintenance of glutathione is critical for neurite structure, as inhibition of glutathione

synthesis under non-stressed conditions resulted in significant neurite degeneration. Our next focus



Xviii
was on D3T, a potent nuclear factor (erythroid-derived 2)-like 2 (Nrf2) inducer. D3T generates its
antioxidant effect though upregulation of endogenous cellular antioxidant defenses. Previous
studies from our lab have shown that D3T treatment paradoxically exacerbates AGE-induced
damage, and these prior results were confirmed in the present studies. The mechanism by which
D3T potentiates damage was extensively studied. The results of the experiments indicated that
D3T potentiates AGE-induced oxidative stress via two critical pathways in the cell-based system
used. First, D3T upregulated the Nrf2 responsive gene glucose-6-phosphate dehydrogenase
(G6PD), leading to increased GO6PD protein expression. Increased expression of G6PD resulted in
generation of reducing equivalents that are used by NADPH oxidases to generate superoxide. The
oxidative stress damage caused by superoxide generation was then amplified by D3T-mediated
reduction of glutathione reductase activity, which resulted in low cellular reduced glutathione
concentrations and high oxidized glutathione concentrations. In this manner, D3T inhibited the
effectiveness of the endogenous antioxidant defense system and led to disruption of the thiol redox
state. In the final set of studies, we found that AGE-induced oxidative stress resulted in a
significant increase of protein glutathionylation. Because D3T further disrupts the thiol redox state,
it conferred no protection against AGE-induced protein glutathionylation. However, NAC, which
was completely protective against AGE-induced neurite degeneration, was also able to fully
protect against protein glutathionylation under challenged conditions. Based on the combined
results, we conclude that maintenance of the thiol redox state is critical for maintaining neurite
morphology, and antioxidants such as NAC that protect the thiol redox state will confer neurite

protection in pro-oxidative conditions.



CHAPTER 1. LITERATURE REVIEW

1.1 Introduction

The incidence of diabetes mellitus has been on the rise, increasing by approximately 1
million new cases every year [1]. Diabetes mellitus is a disease of poor glycemic control and as a
result many patients develop serious and sometimes debilitating complications such as
cardiovascular complications, retinopathy, nephropathy, and the major focus of this dissertation,
peripheral neuropathy (PN) [2—4]. PN is one of the most common and debilitating complications
of diabetes affecting at least 50% of patients [5,6]. Unfortunately, the medications available for
these patients come with severe side effects causing many people to discontinue their use [7].
The most effective treatment for PN is a return to normoglycemia, however this is not attainable
for the majority of patients [8,9]. Oxidative stress as a result of hyperglycemia has been linked to
the pathogenesis of peripheral neuropathy [8]. In the hyperglycemic state there is an increased
generation of reactive oxygen species (ROS) [2,10,11]. Prolonged exposure can exhaust the
endogenous antioxidant defense mechanisms and lead to cellular dysfunction and/or death. The
molecular targets of oxidative stress, lipids, DNA, and proteins are briefly reviewed in this
literature review. The major pathways of ROS generation, polyol pathway, protein kinase C
pathway, mitochondrial pathway, and advanced glycation end product pathway, are also
reviewed in great detail in regard to their contributions to the development of diabetic PN.
Because there are so few treatment options and because oxidative stress has been implicated in
development and progression of PN, antioxidants have been investigated as potential therapeutic
treatments for this disease. Here we review four antioxidants that show particular promise, with a
focus on cruciferous vegetable constituent 3H-1,2-dithiole-3-thione, and the commonly used

supplement N-acetylcysteine.



1.2 Overview of the Prevalence of Diabetes and Complications

Diabetes mellitus, a disease hallmarked by hyperglycemia, is one of the most common
chronic diseases worldwide and new diagnoses are on an upward trajectory [1]. Data from the
Centers for Disease Control and Prevention (CDC) is startling. In the span of just two years the
incidence of diabetes in the US population increased by one percent, amounting to 2.2 million
new cases. World prevalence in 2010 was estimated to be 6.4% and is projected to increase to
7.7% in 2030 [1]. Type 2 diabetes accounts for nearly 95% of all diagnosed cases, and lifestyle
choices such as inactivity have been linked to the risk of development of this disease [12]. With
more people beginning to lead a sedentary lifestyle and with approximately 37% of U.S. adults
having prediabetes, the upward trajectory of new cases is likely to continue increasing. This
poses a major problem for the healthcare field, as the direct medical costs for treating diabetics in
2012 was a staggering $ 176 billion [13]. With diabetes on the rise, it is important to investigate

the possible consequences of poor glycemic control.

1.3 Complications Due to Poor Glycemic Control
1.3.1 Cardiovascular Complications

Cardiovascular complications are the leading cause of diabetes related deaths, and
hyperglycemia induced oxidative stress plays a key role in promoting a proatherogenic
environment. In diabetic patients, atherosclerosis occurs earlier and is more aggressive
compared to nondiabetics [2]. The major sources of ROS generation in the hyperglycemic state
include: polyol pathway upregulation, protein kinase ¢ (PKC) activation, the mitochondria, and
the formation of advanced glycation end products (AGEs) [14,15]. Studies have shown that the
hyperglycemic state can lead to increased endothelial NADPH oxidase activity and a resultant

increase in superoxide production [2,10,11]. Increased superoxide concentrations can lead to



depletion of nitric oxide (NO) via oxidation to peroxynitrite, which can induce cardiac
remodeling by activation of matrix metalloproteinases and promote necrotic and apoptotic cell
death [2,16]. A decrease in NO also leads to inhibition of vasodilation and blood flow
abnormalities. This effect is magnified by the upregulation of endothelin-1, a potent
vasoconstrictor, which is induced by upregulation of PKC in the diabetic state [15,16].
Peroxynitrite and other ROS may also oxidize insulin receptors on peripheral tissue, further
contributing to the insulin resistance observed in diabetes [16]. Furthermore, buildup of
peroxynitrite can lead to oxidation of tetrahydrobiopterin, which promotes endothelial nitric
oxide synthase (eNOS) uncoupling [2]. Uncoupled eNOS can then transfer electrons to and
oxidize molecular oxygen, further increasing superoxide concentrations [2]. High levels of ROS
in the vasculature have been suggested to be responsible for increased oxidation of low-density
lipoprotein (LDL) [2]. The hyperglycemic condition has been shown to promote lipoprotein
lipase synthesis in macrophages, which further promotes lipoprotein accumulation in the
vasculature [17]. Macrophages then take up and store oxidized LDL and become foam cells,
which leads to an inflammatory state and progression of plaque buildup that is characteristic of
atherosclerosis [2,17,18]. Increased oxidative stress can also result in microvascular
complications which can contribute to the development of retinopathy, nephropathy, and

neuropathy.

1.3.2 Diabetic Retinopathy

Diabetic retinopathy is the leading cause of blindness in adults and is caused by damaged
microvasculature in the retina [3]. Prevalence of retinopathy in diabetics increases with the
duration of the disease and reaches 90% after 25 years [19]. A prolonged hyperglycemic assault

on the retinal microvasculature causes endothelial cell damage and leaky tight junctions that lead



to retinal swelling [19]. Damaged endothelial cells cause further damage to the retina by
blocking blood flow in capillaries leading to ischemia [3]. To overcome decreased blood flow,
new capillaries begin to form [3]. However, without support, this ultimately leads to the
detachment of the retina [3]. The retina is especially susceptible to oxidative injury because it has
the highest glucose oxidation and oxygen consumption relative to other tissue [20]. Cell culture
models have shown an increase in mitochondrial superoxide accumulation in retinal cells [21]
and DNA and lipid peroxidation are observed in the retina under hyperglycemic conditions [3].
Sources of ROS generation in the retina are the same major sources linked to the general
hyperglycemic state. Endogenous antioxidant defenses can be compromised in the diabetic state.
For example, defects in gamma-glutamyl transpeptidase [22] result in a decrease of the
antioxidant glutathione (GSH) [23] in the retina under hyperglycemic conditions leaving it more

susceptible to oxidative injury.

1.3.3 Diabetic Nephropathy

Another leading microvascular complication commonly seen in diabetics, nephropathy,
has a 25% incidence in patients with type 2 diabetes for 10 years [4]. Diabetic nephropathy is
also the leading cause of end stage renal disease and is associated with increased cardiovascular
mortality [4,24]. In the hyperglycemic state, glomerular mesangial cells have been shown to
poorly regulate their intracellular glucose concentrations [25]. These cells are vital for
glomerular capillary structure and for glomerular filtration via smooth muscle activity. In
diabetic nephropathy these cells are damaged, and oxidative stress is a major factor [24]. The
major pathways of ROS generation are upregulated in the glomerular microvasculature [24].
Markers for oxidative stress are increased in diabetic patients with glomerular hyperfiltration, the

first phase of diabetic nephropathy [26]. Glomerular basement membrane thickening, a later



phase of diabetic nephropathy, has been linked to accumulation of AGEs and the corresponding
decrease in NO availability [24,27]. Oxidative stress has been clearly implicated in the
pathogenesis of diabetic nephropathy [24], and treatment with antioxidants in animal models has

shown protection against ROS generation in the glomeruli [28].

1.3.4 Diabetic Neuropathy

PN affects at least 50% of diabetic patients, making it one of the most common
complications of diabetes [5,6]. Furthermore, patients with prediabetes or metabolic syndrome
are at elevated risk for development of PN [5]. Common symptoms of PN include decreased
sensitivity in the extremities and burning and shooting pain [29]. Approximately one third of
patients with PN experience pain, which begins in the lower limbs and can later spread to upper
limbs[29]. It is important to note that symptoms are not a good indicator of the severity of PN
and nerve conduction tests should be performed [29,30]. Approximately 15% of diabetics
experience foot ulcers and foot ulcers precede lower leg amputations 84% of the time [31].
Patients that do not develop painful PN and experience numbness in the extremities can be
particularly susceptible to developing ulcers. Oxidative stress as a direct result of hyperglycemia
has been linked to the pathogenesis of PN and the mechanisms will be described in detail in
subsequent sections. A thorough understanding of this debilitating condition is essential for
developing treatments for patients and improving their quality of life. The most effective
treatment for PN is a return to normoglycemia, however this is not an easy nor relatively feasible
task for many patients [8,9]. Current treatments for PN include tricyclic antidepressants,
anticonvulsants, serotonin-norepinephrine reuptake inhibitors, selective serotonin reuptake
inhibitors, and opiates [7]. Unfortunately, these treatments only reduce pain by at most 30-50%,

have a bevy of adverse side effects, and in some cases up to 20% of patients simply discontinue



therapy due to negative side effects [7,32]. Therefore, reducing or increasing protection against
oxidative stress should be a key focus for ameliorating diabetic complications, and both animal

and human studies have shown protective effects with antioxidant therapy.

1.4 Overview of Oxidative Stress and its Molecular Targets
1.4.1 Oxidative Stress

Oxidative stress has been defined as the generation of toxic ROS that disrupts the balance
between antioxidants and oxidants in favor of oxidants [33]. Multiple pathways are responsible
for the increased generation of ROS in the hyperglycemic state that eventually leads to oxidative
stress. ROS such as superoxide, hydroxyl radical, and singlet oxygen are highly reactive due to
unpaired electrons in their outer electron shell [34]. These ROS can then react with molecular
targets such as proteins, lipids, and DNA [34]. Prolonged exposure can exhaust the endogenous
antioxidant defenses, leaving cellular macromolecules susceptible to oxidation and lead to

dysfunction and/or cell death.

1.4.2 Lipid Peroxidation

Damage to lipids caused by an imbalance of ROS can lead to cell dysfunction by
impairing the selective permeability of the phospholipid bilayer. Lipid peroxidation leads to the
formation of peroxyl fatty acid radicals which themselves are unstable and react with other fatty
acids in the phospholipid bilayer which promotes a chain of autocatalytic lipid peroxidation [35].
Vitamin E, the major lipophilic antioxidant, is known as a chain breaking antioxidant that can
stop this autocatalytic reaction and protect the integrity of the lipid bilayer. Glutathione also
plays a major role in protecting the lipid bilayer, as it is a substrate for the enzyme phospholipid

hydroperoxide glutathione peroxidase that reduces oxidized lipids [35]. Therefore, depletion of



endogenous antioxidants under oxidative stress conditions can leave the cell susceptible to lipid

peroxidation.

1.4.3 DNA Oxidation

Another target for oxidation in a high ROS environment is DNA. The hydroxyl radical
and singlet oxygen can react with DNA nucleobases and lead to the formation of 8-hydroxy-2’-
deoxyguanosine (8-OH-dG) [36]. Other nucleobases can react with ROS, but 8-OH-dG is the
most common and has also been shown to be promutagenic [36]. For these reasons 8-OH-dG is
commonly used as a marker for DNA oxidation. Though there is conflicting data in the literature,
it has been shown that when base excision repair mechanisms are defective, ROS can directly
induce lethality in cell culture models [35]. In studies from our lab, the antioxidants alpha-
tocopherol and N-acetylcysteine conferred protection against DNA oxidation in a cell culture

model of peripheral neuropathy using SH-SYS5Y cells [37].

1.4.4 Protein Oxidation

Proteins are also susceptible to ROS mediated oxidation. The amino acids most subject to
oxidation contain either a sulfhydryl group or an aromatic side chain [34]. Methionine, a thiol
ether, can be readily oxidized to methionine sulfoxide under oxidative stress [38]. Most
organisms express methionine sulfoxide reductase, as methionine oxidation can impact protein
function [35,38]. Oxidative stress can also lead to disulfide bond formation, and both thioredoxin
and glutaredoxin systems in eukaryotic cells work to reduce protein disulfides [39]. Other amino
acids can form carbonyls when oxidized, but unlike thiol oxidation, this is not reversible.
Carbonylated proteins can form into toxic aggregates and accumulate overtime [35]. To counter
this, carbonylated proteins are ubiquitinated and then degraded by the proteasome [35].

However, the proteasome itself can be inactivated via oxidation, allowing for the buildup of toxic



aggregates in a pro-oxidative environment [35]. The oxidation and inactivation of other
antioxidant enzymes such as superoxide dismutase can further disrupt the cellular endogenous

antioxidant defense mechanisms and promote a pro-oxidative condition [35].

1.5 Peripheral Neurons and Hyperglycemia

Peripheral nerves are highly susceptible to damage in the hyperglycemic state due to their
high expression of the glucose transporter GLUT1[40]. Both neuronal cells and Schwann cells
are unable to decrease glucose transport in response to increased blood glucose concentrations
[25]. GLUTTI has a very high affinity for glucose and operates at Vmax under normal blood
glucose concentrations (4.4 — 6.1 mM) and hyperglycemic conditions [41]. In mesangial cells,
saturation of this transporter has been reported at glucose concentrations of 30-35 mM [41].
Peripheral nerves have also been shown to have low GSH, glutathione peroxidase, and
glutathione reductase levels, making them especially susceptible to oxidative stress [42].
Therefore, peripheral nerves, due to their high expression of GLUT1 and low GSH status, would
be especially susceptible to hyperglycemia induced damage.

To better understand glucose uptake in the peripheral nervous system (PNS), a solid
understanding of glucose uptake physiology is required. According to an extensive review of
glucose transport in peripheral nerves by Magnani and colleagues, peripheral nerves have a very
high demand for glucose, as it is their major source of energy. In the neuron, the highest energy
demands are in nodes of Ranvier, where large amounts of ATP are required for the Na"/K"
ATPase. For glucose to enter the neuron, it must first pass both the perineurial diffusion barrier
and the blood-nerve barrier in the endoneurium. GLUTT1 is highly expressed in these areas. After
passing through the endoneurium, glucose still needs to traverse through the Schwann cell and

the axolemma itself. Due to the anatomical structures of the Schwann cell and axolemma at the



paranodal region, which makes up the paranodal diffusion barrier, it is believed to be the major
site of axonal glucose transport. Glucose is transported across the Schwann cell via GLUTI,
however it is not conclusive as to which glucose transporter is responsible for glucose transport
across the axolemma. In other lesser energy requiring sections of the axon such as the internode,
glucose enters the axon at the Schmidt-Lanterman incisure via GLUT1 mediated transport [40].
In summary, GLUT1 is the major glucose transporter in the peripheral nerve and is highly
expressed in the perineurium, endoneurium, and Schwann cells. It is also responsible for axonal
glucose uptake at the Schmidt-Lanterman incisures, but a novel glucose uptake pathway may
exist at the paranodal region of the axon.

Many studies and reviews that discuss oxidative stress in peripheral neuropathy
generalize the condition to the entire peripheral nerve. It is important to note that the peripheral
nerve consists of the epineurium, perineurium, endoneurium, Schwann cells, and the neuron
(Fig. 1.1). Hyperglycemia induced injury in the PNS can occur in any of these locations in vivo,
and where the cascade that initiates the development of diabetic PN originates is still a subject of
much debate [14]. In a review of the pathogenesis of diabetic PN, Cameron and colleagues stated
that even though hyperglycemia has been shown to directly affect the neuron, these effects could
be caused by compromised blood delivery [43]. The endoneurium has been shown to be hypo-
perfused and hypoxic in the diabetic state, a condition that is secondary to a reduction in nerve
blood flow (NBF) and increased endoneurial vascular resistance [44]. Vasodilators such as NO
are decreased in the diabetic state, and a strong positive correlation has been shown between
correction of endoneurial perfusion deficits and nerve conduction improvements [43]. The

pathogenesis of diabetic PN is multi-factorial, and the following sections will cover the major
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pathways of hyperglycemia induced oxidative stress and their role in the development of this

debilitating diabetic complication.

unmyelinated

nerve fiber

Figure 1.1 Structure of the peripheral nerve.

Reprinted with permission from Taylor & Francis [45].

1.6  Four Major Sources of ROS Generation in Diabetic Peripheral Neuropathy

1.6.1 Polyol Pathway
The role of the polyol pathway in diabetic PN has been extensively studied and reviewed.

This pathway consists of two enzymes, aldose reductase (AR) and sorbitol dehydrogenase (SDH)
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(Fig. 1.2). AR has a low affinity for glucose, but in the hyperglycemic state glucose flux through
this pathway increases [15]. Via an NADPH dependent process, AR then reduces glucose to
sorbitol [15]. A large number of studies have been conducted that have identified why increased
polyol pathway flux leads to development and progression of diabetic PN, and the Obrosova

review provides an excellent summary [46].

Inactive alcohols

Increased
glucose

NAD* NADH

Glutathione
reductase

Figure 1.2 Polyol pathway.
Reprinted with permission from Springer Nature and Copyright Clearance Center, Inc. [15].

Increased glucose flux through the polyol pathway leads to increased generation of
fructose. Fructose is a ten times more powerful glycating agent compared to glucose which can
have the effect of increased formation of AGEs (discussed in detail in subsequent section),

activation of the receptor for advanced glycation end products (RAGE), and the downstream
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increased production of ROS [46]. Oxidation of sorbitol to fructose by SDH is mediated by
reduction of NAD" to NADH. An increase in the NADH:NAD" ratio can lead to decreased
activity of glyceraldehyde-3-phospahte dehydrogenase (GAPDH) [15]. GAPDH catalyzes the
formation of 1,3- Diphosphoglycerate from triose phosphate via an NAD" dependent mechanism
in glycolysis. Inhibition of this enzyme leads to build up of triose phosphate which itself can
increase formation of methylglyoxal, a precursor of AGE formation, and diacylglycerol (DAG),
a PKC activator [15,47]. SDH inhibitors or mutations however, have not been shown to be
protective against development of PN suggesting that AR is the responsible enzyme [43,48,49].

AR reduces glucose to sorbitol via an NADPH dependent mechanism, and as such
increased flux through the polyol pathway can deplete cellular NADPH stores [15]. Depletion of
NADPH stores would limit the activity of glutathione reductase and increase the ratio of
oxidized glutathione (GSSG) to GSH. Depletion of glutathione, the bodies’ major biological
antioxidant, has been linked to increased intracellular oxidative stress and diabetic complications
[43,50]. Animal studies have shown promising effects in both the use of AR inhibitors and AR
knockout.

Studies done on diabetic rats have shown that diabetes leads to a decrease in total nerve
GSH, an increase in buildup of nerve malondialdehyde (MDA), a decrease in nerve conduction
velocity (NCV), and a decrease in NBF [49]. Treatment with AR inhibitor restores GSH loss,
counters superoxide production in the vasa nervorum, corrects NBF deficits, and prevents
elevation of nerve MDA [46,49]. The AR inhibitor Fidarestat was also able to correct motor and
sensory never conduction velocity in a dose dependent fashion in a diabetic rat model [46,51].
Furthermore, Chung and colleagues developed an AR gene knockout mouse model. Under

diabetic conditions, wild-type mice had significantly depleted nerve GSH levels and decreased
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NCV. Under these same conditions, AR null mice were able to maintain normal GSH levels, and
there was no change in NCV [48]. These results clearly implicate AR as a major contributor of
oxidative stress and nerve function impairment that is seen in diabetic peripheral neuropathy.
Human studies however, have had mixed results.

It is reported that patients with diabetes on average experience an approximate 0.5m/s
drop in NCV [52]. In a 60-week study of the AR inhibitor Ranirestat, a 20mg/day dose decreased
sorbitol levels by 83.5% and had a significant effect on increasing NCV in peroneal motor, right
sural, and proximal median sensory nerves. Peroneal motor and right sural NCV improved by
~Im/s whereas the proximal median sensory nerve saw an improvement of 3.4 m/s [53].
However, this study was not placebo controlled, and a follow up placebo-controlled study was
performed by the same group. In the follow up study, 20 mg/day Ranirestat showed similar
improvement to peroneal motor NCV. Sensory nerve function was not improved compared to
placebo, but this was largely due to an overall increase in NCV in the placebo group [54]. The
authors attributed this to lifestyle modifications of the patients in the study. Another study using
a different AR inhibitor, Zenarestat, at dosages decreasing sorbitol levels by more than 80%
increased small-diameter sural nerve myelinated fiber density [53,55]. AR inhibitors have shown
promise for patients with diabetic PN, but further follow up studies should be conducted to better

ascertain the clinical efficacy of AR inhibitors.

1.6.2 PKC Pathway

PKC overactivation has also been linked with the development of diabetic PN, so a brief
overview of activation and the downstream targets is warranted [56]. There are at least 11
isoforms of PKC, with 9 activated by DAG [15]. Hyperglycemic conditions promote de novo

synthesis of DAG in vascular tissue due to increases in glycolytic pathway intermediates. De
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novo synthesis of DAG requires glycolytic intermediate triose phosphate and stepwise acylation
catalyzed by glycerol-3-phosphate acyltransferase and monoacylglycerol-3-phosphate
acyltransferase [57]. The hyperglycemic state has been shown to increase activity of the polyol
pathway, with as much as 30% of glucose shunted through this pathway [48]. Increased activity
of SDH can lead to a depletion of cellular NAD ™" and suppressed activity of GAPDH[15].
Suppressed activity of GAPDH in the glycolytic pathway will lead to build up of triose
phosphate, and as such can contribute to the increase in DAG seen in the hyperglycemic state.

The interaction between the polyol and PKC pathways is shown in Figure 1.3.

Polyol and PKC Pathway Interaction
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Figure 1.3 Polyol and PKC pathway interaction.
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Of all the isoforms of PKC, PKC-f has gathered the most attention with regards to the
development of diabetic PN. Overactivation of PKC-f3 has been associated with diabetic PN
mainly through dysregulation of the microvasculature [56]. Upregulation of PKC-f has been
linked with inhibition of eNOS and upregulation of endothelin 1 (ET-1), vascular endothelial
growth factor (VEGF), and NADPH oxidase [58]. Phosphorylation of eNOS leads to a decrease
in NO production, leading to blood flow abnormalities due to inhibited vasodilation [15,59]. This
effect is multiplied by increased expression of ET-1, a powerful vasoconstrictor [58]. Increased
VEGF expression can promote vascular permeability [15], and PKC activation in diabetes has
been linked with increased permeability of endothelial cells to macromolecules [58].
Upregulation of NADPH oxidase leads to an increase in generation of superoxide which can
promote formation of peroxynitrite, leading to uncoupling of eNOS and decreased NO
availability. PKC activation of NADPH oxidase is linked to the AGE-RAGE pathway that will
be discussed in a later section. Taken together, these effects lead to a decrease in nerve perfusion
and oxygenation which can lead to nerve damage and neuropathy.

The role for PKC-f in the development of diabetic PN, however, has been disputed. Early
studies showed that PKC activity was decreased in the diabetic peripheral nerve and
corresponding DAG was also shown to be decreased [60,61]. In a more recent study specifically
looking at the neovasculature of diabetic rats, the authors found that the PKC-f3 inhibitor
LY333531 (Ruboxistaurin) was able to correct nerve dysfunction. In diabetic animals,
endoneurial blood flow was reduced by approximately 50%, and motor and sensory NCV was
reduced by 19.7% and 13.9%, respectively. A high dose of LY333531 (10 mg kg™ day') was
able to completely reverse both the endoneurial blood flow and decrease in NCV [59]. This data

supports other studies that have been done on PKC inhibitors that show improvement in NBF
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and NCV in diabetic rats [49]. Further evidence supporting that PKC- promotes diabetic PN via
a neurovascular method comes from a study using a nitric oxide synthase inhibitor. This inhibitor
attenuated the protective effects of PKC inhibition on diabetic rat peripheral nerves [62]. PKC-3
has been shown to be tyrosine phosphorylated by H>O; treatment in a cell culture model of
monkey kidney cells [63]. Other studies have implicated oxidative stress and oxidized LDL in
PKC stimulation [49,64]. These other methods of activation are of importance because some
studies have shown that DAG concentrations are decreased in diabetic peripheral nerves [65].
Though PKC-f inhibition has shown improvements in neurovascular blood flow and
sensory and motor nerve conduction, human studies have at best shown a trend towards
significance. A recent systematic review was conducted on randomized control trials (RCTs) for
Ruboxistaurin. Of the six reviewed RCTs, four studies reported significant improvements in the
neurological total symptoms score. Vibration detection threshold was only measured in one
study and showed minor improvements in a subgroup of patients with clinically significant
symptoms. Importantly, out of four studies that measured C-fiber mediated skin microvascular
blood flow, three studies showed a significant increase from baseline after Ruboxistaurin
treatment. The authors concluded that even though treatment did show some benefits, there was
not enough data available to make any conclusions [66]. In future studies, it may be of interest to
co-treat patients with both Ruboxistaurin and antioxidants such as vitamin E and alpha-lipoic
acid (LPA). Co-treatment with a low dose of Ruboxistaurin and vitamin E or LPA in diabetic
rats completely corrected both endoneurial blood flow and NCV. Without co-treatment with
antioxidants, only ~20% improvement was observed [59].