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Figure

1.1

2.1

2.2

Cross-layer research effort across the stack of materials, devices, circuits
and algorithms to provide system-level solutions for enabling cognitive in-
telligence. A “top-down” perspective to provide algorithm-level matching
to the underlying device physics of spintronic devices is complemented
by a “bottom-up” approach where recent experiments in spintronics are
leveraged to propose device structures that can directly mimic neural and
synaptic functionalities. . . . . . . ... ... L

(a) Vertical Spin Valve: A Magnetic Tunnel Junction consists of two fer-
romagnets, namely the “free” layer (FL) and the “pinned” layer (PL) sep-
arated by a tunneling oxide barrier. The magnetization dynamics evolves
under the influence of the damping torque, precession torque and spin-
torque due to an input spin current, Ig, (b) Néel and Bloch domain walls
(DWs) observed in narrow and wider nanostrips with Perpendicular Mag-
netic Anisotropy (PMA) respectively, (c) Spin-orbit torque is generated
on a nanomagnet due to charge current flow (Ig) through an underly-
ing Heavy Metal (HM) layer due to spin-Hall effect, (d) Lateral Spin
Valve based structure where an injector and detector ferromagnet are lo-
cated on top of a non-magnetic channel. The detector ferromagnet can
be switched due to non-local spin-torque effect exerted by charge current
flowing through the injector magnet to the ground contact lying beneath
the magnet. The magnitude of the injected spin current, Ig, reduces ex-
ponentially with the distance between the injector and detector FMs.

(a) & (b) Néel and Bloch DW observed in PMA nanomagnets. The domain
wall is termed as a Néel wall when the magnetization direction at the wall
location rotates in a plane perpendicular to the plane of the wall and Bloch
wall when the wall magnetization rotates in the plane of the wall, (c) &
(d) SOT driven Néel and Bloch DW motion in transverse and longitudinal
DWs respectively. . . . . . . ..
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Figure

3.1

3.2

3.3

(a) A pre-neuron transmits signals to a post-neuron through a synap-
tic junction, (b) Computation in a particular layer of a fully connected
network can be mapped to a parallel dot-product operation between the
inputs and the synaptic weights followed by neural processing for each
neuron in the layer, (¢) Such a computing kernel can be implemented in
a crossbar array structure where programmable resistive devices encoding
the synaptic weight are present at each cross-point. Input voltages applied
along the rows get weighted by the synaptic conductance and provide
the resultant input current (dot-product of applied voltages and synap-
tic conductances) to the neuron for processing, (d) In contrast, a CMOS
architecture would consist of an SRAM module for synaptic weight stor-
age. Memory access and memory leakage due to data transfer between
the SRAM module and the computation core (Neural Processing Unit)
constitute a significant portion of the total energy consumption. . . . . .

(a) Spike-Timing Dependent Plasticity (STDP) measurements obtained
from rat hippocampal glutamatergic synapses [96]. STDP learning rule
can be formulated by considering that the synaptic weight potentiates (de-
presses) if the pre-neuron spikes before (after) the post-neuron. The varia-
tion is exponential with spike-timing difference, (b) The synaptic strength
increases momentarily on the receipt of a pre-synaptic spike but starts
decaying back to the initial value in the absence of spikes. This is referred
to as Short-Term Plasticity (STP). On frequent stimulation, the synapse
strengthens to a long-term stable state. This is referred to as Long-Term
Potentiation (LTP), (¢) STP-LTP is often correlated to the concept of
Short-Term Memory (STM) and Long-Term Memory (LTM). While infor-
mation is initially stored in the STM, it gets transferred to the LTM on
frequent rehearsal of the input stimulus. . . . . . . ... ... ... ...

(a) A Deep Convolutional Neural Network (CNN) consists of alternate
cascaded layers of convolution and subsampling terminated by a fully
connected output layer. The figure depicts a typical CNN network used
for digit recognition (28x28-12¢5-2s-64c5-2s-100). (b) A network typically
used for studying STDP is shown. Such connections have been observed
in cortical microcircuits of pyramidal neurons in the brain. It consists of
an excitatory layer of neurons that receives spike trains from the input in
an all-to-all fashion. Lateral inhibition and homeostasis promotes STDP
learning in such single layer networks. . . . . . . .. ..o o0

xii

Page

. 16



Figure

4.1

4.2

4.3

4.4

4.5

4.6

Spin-torque neuristors with different degrees of bio-fidelity are shown. Per-
ceptron or “step” neurons can be implemented in SHE based neuron struc-
tures where a current flowing through an underlying HM layer orients a
PMA magnet lying on top along the unstable “hard-axis”. Subsequently
the direction of current flowing through the PL orients the magnet to
either of the stable “easy-axis” directions. A complementary device struc-
ture can be envisioned using the LSV concept by injecting spins oriented
along the “hard-axis” in a non-magnetic channel using a “Preset” mag-
net. “Non-step” neuron functionalities can be implemented in DW motion
based device structures by interfacing the Neuron MTJ with a Reference
MTJ. A similar device structure with the MTJ located at the edge of the
FL can be used to implement an IF “spiking” neuron. Stochastic “spiking”
neuron functionalities can be implemented in mono-domain neural device
structures by exploiting the underlying probabilistic MTJ magnetization
dynamics. . . . ..o

(a) The three terminal thresholding device for spin-neuron consists of an
MTJ structure on top of a HM layer, (b) The two-step switching scheme
consists of a clocking current [, flowing through HM from terminals B
to C followed by the synaptic current [,,,.;. flowing between terminals A
and C, (¢) The clocking current I .. orients the ferromagnet along “hard-

axis” while the current I, causes deterministic “easy-axis switching”. . .

Normalized energy landscape of a nanomagnet with a uniaxial anisotropy
in out-of-plane direction. The two energy minima points in the P and AP
configuration are separated by an anisotropy barrier. . . . . . .. .. ..

Switching phase diagram showing probability of switching for a range of
clock and write currents. The figure depicts that for sufficient magnitude
of clocking current, the probability of deterministic switching by write
currents is ~ 1 for current magnitudes of the order of a few pA. . . . . .

The figure depicts the variation of the write error rate (1 - switching prob-
ability) of the FL with the synaptic current, corresponding to a clocking
current of 85uA for different values of delay (7)) between the clocking
and synaptic currents. . . . . .. .. ..

The figure depicts the variation of the write error rate of the FL with no
applied clocking current. . . . . . . ... . Lo L

xiil
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Figure

4.7

4.8

4.9

4.10

4.11

(a) Three terminal device structure acting as the basic building block for
the All-Spin ANN. Spin-orbit torque (SOT) generated by current, Iy rrre,
through the heavy metal programs the domain wall position in the M'TJ
“free layer”. The domain wall position encodes the device conductance
between terminals READ and GND, (b) Operation of the spintronic device
as a neuron. Initially the neuron is “reset” such that the domain wall
position is initialized to the left edge of the “free layer”. Then the resultant
synaptic input current programs the domain wall position. Subsequently,
during the “read” phase, the “Reference MTJ” and PMOS transistor serve
as the axon to propagate the neuron output to its fan-out neurons. The
transfer function of the neuron is characterized by the relationship between
IOUT and [IN' ................................

(a) Domain wall displacement as a function of time for a CoFe strip of
cross-section 160nmx0.6nm due to the application of a charge current
density, J = 0.1 x 1024/m?, (b) Domain wall velocity as a function of
current density. The domain wall displacement increases linearly with
the magnitude of the charge current density and ultimately saturates to
a maximum value. The simulation parameters (given in Table 4.2) were
obtained experimentally from magnetometric measurements of Ta (3nm)
/ Pt (3nm) / CoFe (0.6nm) / MgO (1.8nm) / Ta (2nm) nanostrips [43,48].
The graphs are in good agreement with [48], (¢) Domain wall displacement
is directly proportional to the programming current for a fixed duration
of the programming pulse. . . . . . . .. .. ..o

Domain wall motion in the device due to programming current of 25uA
flowing through the HM underlayer for a duration of 1ns. The FM was
taken to be 120nm in length surrounded by pinned layers of length 20nm
on either side. The domain wall is displaced entirely from one edge of the
FM to the other edge. . . . . . . . . . . .. ... . .

The NEGF based transport simulation framework was calibrated to exper-
imental results illustrated in [16,123]. (a) Device resistance increases with
increase in oxide thickness, (b) The AP MTJ resistance decreases with
increase in the applied voltage across the MTJ. However, for sufficiently
low values of applied voltage (< 100mV’), the AP resistance variation is
extremely small. . . . . ... oo

(a) Gate voltage of axon transistor decreases with increase in magnitude
of neuron input current, (b) Output current provided by axon transistor
reduces with increase in the gate voltage, (c) Output current provided
by the axon transistor increases almost linearly with the input current to
the neuron. Hence, the neuron transfer function was taken to be linearly

increasing with the input, ultimately saturating at a maximum value. . . .
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Figure

4.12

4.13

4.14

4.15

(a) The membrane potential of a biological neuron integrates input spikes
and leaks when there is no input. It spikes when the membrane potential
crosses the threshold, (b) MTJ neuron dynamics due to the application
of three input pulses. The in-plane magnetization starts integrating due
to the pulses and then starts leaking once the pulse is removed. The
MTJ structure was an elliptic disk of volume 7 x 100 x 40 X 1.5nm?
with saturation magnetization of M, = 1000K A/m and damping factor,

a=0.0122. . . ...

Switching probability of an elliptic IMA magnet of dimensions § x 100 x
40nm? for CoFe (1.2nm) - W (2nm) MTJ in response to an input synaptic
current at 7' = 300K (assuming ~ 50% polarization of spin current gen-
erated by the MTJ PL). Such a switching behavior is a direct mapping to
the stochastic spiking nature of cortical neurons. (a) The switching proba-
bility characteristics shifts to the right with increase in the barrier height.
The data have been plotted for Eg = (10,20, 30)kgT corresponding to FL
thickness values, tp; = (0.8,1.2,1.5)nm, for pulse width, T, = 1ns (du-
ration of the “write” cycle), (b) The probability characteristics undergo
more dispersion with decrease in the pulse width. The data have been
plotted for T,, = (0.2,0.5, 1)ns corresponding to Ep = 20kgT. The device
parameters are mentioned in Table 4.1. . . . . . . . . . . ... ... ...

(a) Hall-bar structure consisting of Ta (10nm) / CoFeB (1.3nm) / MgO
(1.5nm) / Ta (bnm) (from bottom to top) material stack [134]. Input
current flows between terminals /4 and I— while the magnetization state
is detected by change in the anomalous Hall-effect resistance measured
between terminals V+ and V—, (b) Experimental measurements of the
switching probability of the Hall-bar with variation in amplitude of the
current pulse flowing through the heavy metal underlayer for a fixed pulse
width of 10ms [134]. . . . . . . . ...

Simulation study of the random telegraphic switching of a superparamag-
net of barrier height 1,57 under (a) no bias and (b) under a bias current
of LhuA [143]. . . o o
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Figure

4.16

4.17

4.18

4.19

4.20

Spike-Timing Dependent Plasticity: Magnitude of current flowing through
the underlying HM, J, causes a proportionate displacement, Az, in the
DW position, which causes a change, AG, in the device conductance be-
tween terminals 77 and T5. The device characteristics illustrate that the
programming current magnitude is directly proportional to the amount
of conductance change, provided the DW velocity is below the satura-
tion value. STDP characteristics is implemented by biasing the transistor
Mgs7rpp in subthreshold saturation regime in order to achieve the exponen-
tial current dynamics through the HM layer. The spike transmission and
programming current modes are depicted in the right hand panel where
the PRE and Vsprgp signals are activated at pre-neuron firing event at
time t;. POST signal, activated at post-neuron firing event at time t,,
samples the appropriate amount of programming current corresponding
to the spike timing difference. . . . . . .. ... 0oL

(a) Linear variation of device conductance with domain wall position, (b)
Programming circuit simulation to generate the STDP characteristics in
the proposed spintronic synapse. . . . . . . . . .. ... ... ... ...

Probabilistic STDP learning: This can be achieved in a similar fashion
in mono-domain MTJ synapses by exploiting sigmoidal stochastic device
switching characteristics. In the low switching probability regime (for
ensuring non-greedy learning), the “write” current reduces linearly with
spike timing to emulate exponential probabilistic STDP characteristics.
This is ensured by biasing Mgrpp in the saturation regime. . . . . . . .

Frequency dependent volatile synaptic learning: A mono-domain MTJ
is characterized by two stable states separated by an energy barrier Epg.
If the frequency of the input stimuli is not enough, the M'TJ is unable to
cross the metastable position at 90° relative angle between FL and PL and
stabilizes back to the initial magnetization state, exhibiting STP. As the
stimuli frequency increases, the MTJ exhibits a much higher probability
of switching to the other stable state, thereby exhibiting LTP [151]. . . .

(a) Stochastic LLG simulations with thermal noise performed to illustrate
the dependence of stimulation interval on the probability of LTP transition
for the MTJ. The MTJ was subjected to 10 stimulations, each stimulation
being a current pulse of magnitude 1004 A and 1ns in duration. However,
the time interval between the stimulations was varied from 2ns to 8ns.
While the probability of LTP is 1 for a time interval of 2ns, it is very low
for a time interval of 8ns, at the end of the 10 stimulations, (b) Average
MTJ conductance plotted at the end of each stimulation. As expected,
the average conductance increases faster with decrease in the stimulation
interval. The results have been averaged over 100 LL.G simulations.
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Figure Page

4.21 PPF (average MTJ conductance after 2nd stimulus) and PTP (average
MTJ conductance after 10th stimulus) measurements in an MTJ synapse
with variation in the stimulation interval. The results are in qualitative
agreement to PPF and PTP measurements performed in frog neuromus-
cular junctions [152,153]. . . . . . . . L

4.22 STM and LTM transition exhibited in a 34 x 43 MTJ memory array. The
input stimulus was a binary image of the Purdue University logo where a
set of 5 pulses (each of magnitude 100 A and 1ns in duration) was applied
for each ON pixel. While the array transitioned to LTM progressively for
frequent stimulations at an interval of T" = 2.5ns, it “forgot” the input
pattern for stimulation for a time interval of T'=7.5ns. . . . . . . . . . ..

5.1 All-Spin Neural Networks: A particular layer of a neural network with
m inputs and n outputs can be mapped to a crossbar array of dimension
m X n. At a particular time-step, the rows corresponding to those inputs
which have spiked are asserted a HIGH voltage level while zero voltage
is applied along the rows for the “non-spiking” inputs. Since the input
“write” resistance of the magneto-metallic spin-neurons is low, the resul-
tant current provided by each column of the crossbar array as input to the
corresponding spin-neuron equals approximately the dot-product of the
neuron inputs and the corresponding synaptic weights. . . . . . . . . . ..

5.2 (a) Recognition accuracy over the testing set of the MNIST dataset as a
function of the time-steps of simulation, (b) Degradation in recognition

accuracy with variation in the MTJ resistances (expressed as % o variation).75

5.3 Energy consumption (averaged per output neuron per output map per
time-step) for different layers of the spintronic network. . . . . . . . . . ..

5.4 Detailed hybrid spintronic-CMOS crossbar array is depicted for the imple-
mentation of STDP learning. Each spintronic synapse is interfaced with
programming and access transistors. The 2 x 2 array connects pre-neurons
A and B to post-neurons Cand D. . . . . . ... ... ... ... ... ..

5.5 Sub-threshold CMOS circuit utilized for generating the programming cur-
rent involved in STDP learning (circuit for positive time window shown)
for pre-neuron A connecting to post-neurons Cand D. . . . . .. ... ..
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5.6

5.7

5.8

9.9

5.10

5.11

Detailed timing diagrams demonstrating the implementation of (a) po-
tentiation (positive timing window) and (b) depression (negative timing
window) in the spintronic synapse. POST is the control signal that is ac-
tivated during programming while PRE is the gate voltage of the Mgsrpp
transistor that implements synaptic plasticity. Duration of the program-
ming current is determined by the duration of the POST signal while the
magnitude is determined by the value of the PRE signal when the POST
signal is high. . . . . . . .. oo o

(a) SNN topology used for digit recognition arranged in a crossbar array
fashion, (b) Initial random synapse weights plotted in a 28 x 28 array for
100 neurons in the excitatory layer, (c¢) Representative digit patterns start
getting stored in the synapse weights for each neuron after 1000 learning

(a) The ANN is converted to SNN computing model by interpreting the
neuron transfer function as the neuron spiking probability in the SNN
mode, (b) and (¢) ANN and SNN outputs are plotted over the entire
input range for weight magnitudes, w = 1 and w = 3 (maximum weight)
respectively, (c¢) Error contour plot between the ANN output and the
converted SNN output with variation in both neuron input and synaptic
weight magnitudes. The error increases with increasing weight but remains
bounded within reasonably low values. . . . . . ... ... ... .....

(a) Switching probability characteristics of an MTJ of volume § x 100 x
40 x 1.2nm? at T = 300K re-plotted for T,, = 0.5ns as a function of the
input synaptic current, Iy, normalized by factor I, = 10uA. The data
closely resembles a sigmoid probability density function. . . . . . .. ..

(a) Recognition accuracy as a function of time-steps with variation in the
“write” cycle duration (T, = 0.2,0.5 and 1ns) and crossbar supply voltage
(V, = 0.8,0.9 and 1V), (b) Zoomed-in depiction of plot (a) from 50-500
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ABSTRACT

Sengupta, Abhronil Ph.D., Purdue University, August 2018. Efficient Neuromorphic
Computing Enabled by Spin-Transfer Torque: Devices, Circuits and Systems. Major
Professor: Kaushik Roy.

Present day computers expend orders of magnitude more computational resources
to perform various cognitive and perception related tasks that humans routinely per-
form everyday. This has recently resulted in a seismic shift in the field of compu-
tation where research efforts are being directed to develop a neurocomputer that
attempts to mimic the human brain by nanoelectronic components and thereby har-
ness its efficiency in recognition problems. Bridging the gap between neuroscience
and nanoelectronics, this thesis demonstrates the encoding of biological neural and
synaptic functionalities in the underlying physics of electron spin. Description of
various spin-transfer torque mechanisms that can be potentially utilized for realiz-
ing neuro-mimetic device structures is provided. A cross-layer perspective extending
from the device to the circuit and system level is presented to envision the design
of an All-Spin neuromorphic processor enabled with on-chip learning functionalities.
Device-circuit-algorithm co-simulation framework calibrated to experimental results
suggest that such All-Spin neuromorphic systems can potentially achieve almost two
orders of magnitude energy improvement in comparison to state-of-the-art CMOS

implementations.



1. INTRODUCTION

Although the brain is not yet fully understood, neuromorphic computing that at-
tempts to emulate some facets of its functionalities and inter-connectivity, are be-
coming increasingly popular on machine learning tasks, and are surpassing humans
at multiple cognitive tasks more than ever before. For instance, recently Google
DeepMind beat a professional human champion at a 19 x 19 Go board game [1].
The key inspiration behind the development of algorithms and computing paradigms
with high degree of bio-fidelity is driven by the expectation that by emulating some
attributes of the human brain, we would be able to approach the brain’s highly effi-
cient and low-power cognitive abilities. For instance, implementation of bio-realistic
“spiking” neural computing paradigms have recently enabled low-power event-driven
neuromorphic hardware equipped with on-chip local spike-timing dependent synaptic
learning functionalities.

While these neuro-inspired computing models are still implemented in von-Neumann
architectures consisting of Boolean logic and memory circuits, the brain’s “computing
fabric” is highly parallel, interconnected and enabled with in-situ synaptic memory
storage. Further CMOS transistors, that form the underpinnings of current com-
puting systems, are on-off switches that are naturally suited for Boolean computing
but may not inherently map to the “computational primitives” of neuro-mimetic
algorithms. Limited by this mismatch between the computational units and the
underlying hardware, CMOS based neuromorphic architectures consume resources
and power that are orders of magnitude higher than that involved in the biological
brain [2]. Bridging this gap necessitates the exploration of devices, circuits and ar-
chitectures that provide a better match to biological processing and which require a

significant rethinking of traditional von-Neumann based computing.
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Fig. 1.1. Cross-layer research effort across the stack of materials,
devices, circuits and algorithms to provide system-level solutions for
enabling cognitive intelligence. A “top-down” perspective to provide
algorithm-level matching to the underlying device physics of spin-
tronic devices is complemented by a “bottom-up” approach where re-
cent experiments in spintronics are leveraged to propose device struc-
tures that can directly mimic neural and synaptic functionalities.

While usage of spintronic devices in memory applications have achieved matu-
rity and is close to the market [3], recent experiments in domain wall motion based
devices [4,5] and probabilistic switching characteristics of scaled nanomagnets [6,7]
are revealing immense possibilities of implementing a plethora of neural and synaptic

functionalities by single spintronic device structures that can be operated at very low



terminal voltages. Simple engineering of the device dimensions or biasing region of the
operating transistors can enable the emulation of functionalities that can range from
neuron spiking behavior to synaptic learning abilities in the same magnetic stack.
While other emerging devices such as resistive memories have also been explored
for neuromorphic computing, they are limited by the variety of neural or synaptic
functionalities that they can emulate along with high energy requirements for pro-
gramming [8,9] (which is an essential component of learning and neural inference).
The prospect of large improvements in integration density and energy consumption
and concurrently providing in-memory computing possibilities (due to their inher-
ent non-volatility) can potentially make spintronic devices a promising path towards
realizing “brain-like” nanoelectronic computing. This thesis attempts to provide a
multi-disciplinary perspective across the entire stack of materials, devices, circuits,
systems and algorithms where understanding of the underlying device physics of spin-
tronic devices (“bottom-up approach”) is complemented by efforts to adapt neuromor-
phic computing models to the unique characteristics of spintronic devices (“top-down
approach”) to construct cognitive networks of interconnected spintronic neural and

synaptic components (Fig. 1.1) [10,11].



2. SPINTRONIC DEVICES: UNDERLYING PHYSICAL
PHENOMENA

Several spintronic device structures have been proposed in literature to mimic different
neuronal or synaptic functionalities. However, in order to understand the mapping
of biological functions to the operation of such spin devices, an understanding of the
underlying physical phenomena is necessary. This section provides a brief overview
of major spin-torque effects in nanomagnets that can be engineered to realize such
neuromimetic computations.

The two main physical phenomena that are exploited to construct neuromimetic
spin devices are the spin-torque effect (“write” mechanism) and the Tunneling Magneto-
Resistance or the TMR effect (“read” mechanism). The manipulation of magnetiza-
tion state without the assistance of any external magnetic field through spin-transfer
torque effect was first predicted by Slonczewski [12] and Berger [13] in 1996. Several
experiments demonstrating spin-transfer torque induced magnetization reversal have
been demonstrated henceforth [14-16]. On the other hand, sensing the magnetization
state through the TMR effect was first experimentally observed by Julliére in 1975 in
Fe/Ge-O/Co stacks [17].

2.1 Device Fundamentals

A nanomagnet is characterized by two collinear but oppositely directed stable
magnetization directions, termed as the “easy” axis, such that in the absence of any
external perturbation (magnetic field or input spin current) the magnetization would

relax to either of the stable magnetization states. The stability of the magnet in



the presence of thermal noise is maintained by virtue of a barrier height, Eg, that is

determined by the uniaxial anisotropy, K s, of the magnet as [18],
Ep =KoV (2.1)

where V' is the volume of the magnet. The lifetime of the magnet in absence of
thermal agitation is related exponentially to the magnitude of the barrier height. For
instance, a barrier height of 40kgT (kp is Boltzmann constant) ensures a magnet
lifetime of ~ 7.4 years [18].

The uniaxial anisotropy of the magnet, and hence the direction of magnet “easy-
axis”, can be in-plane (IMA) when shape anisotropy dominates the resultant anisotropy
of the magnet [3,19,20]. In this case, the magnet cross-sectional area would be an
ellipse with the “easy-axis” being in the direction of the longer dimension. In con-
trast, in perpendicular magnetic anisotropy (PMA) materials, the magnetocrystalline
anisotropy dominates over the shape anisotropy in order to make the out-of-plane di-
rection as the “easy-axis” direction [3,21,22]. Hence, PMA magnets are usually of
circular cross-sectional area.

In order to read the magnetization state of the nanomagnet, a Vertical Spin Valve
(VSV) structure is utilized as shown in Fig. 2.1(a). It is referred to as the Magnetic
Tunnel Junction (MTJ) [16,17,23] where a thin oxide acts as the tunneling barrier
between two nanomagnets. The resistance of the MTJ depends on the relative orien-
tation of the magnetization directions of the two nanomagnets. In order to provide a
reference, the magnetization of one of the magnets is pinned to a particular direction
(usually achieved by coupling to an antiferromagnetic layer), mp, while the magne-
tization of the other layer, m, can be determined by the resistance of the MTJ stack.
The two layers are referred to as the “pinned” layer (PL) and “free” layer (FL) respec-
tively. The difference in resistance of the MTJ with relative magnetic orientations of
the FL and PL can be explained from the concept of “spin-filtering” [3,24]. When
mp and m are parallel to each other (Parallel configuration: P), electrons with that

correspondi{ng spin orientation can easily tunnel through the oxide since the filled



"SINA 1039999p
pu® 10399[UT 97} UM} 90URISIP o) YIm A[[erjusuodxo soonpal ‘ST ‘yuarimo urds pajoslur oy} Jo apnjrudew
9 [, "Jougeu o) [)eaua( SUIA] }0RIU0D PUNOIS 9} 0} }PUSRU 10905[Ul ) YSNOIY) SUIMO} JUSLIND SFIRYD Aq
PolIaxXo 1090 anbioj-urds [ROO[-UOU 0} dNP PAYDIIIMS 9 URD J9USRUWIOLIS} 1039919D ], "[oUURYD DI}OUFRUI-UOU
© Jo do) U0 peIedO] oIv JOUFRUWOLID) 1010019 PUR I10909(Ul UR SIOYM SINJONIS poaseq oA[eA Uldg [ereyer (p)
“p0op0 [reg-uids 03 onp Ioke] (NH) [RIPIN Aareq Surd[ropun uwe ySnoiyy (Of) mop juermd a8Ietyd o} onp
JouSeWOoURU ® U0 PojeIouss st anbi1ol jrqro-uidg (0) ‘Apargoadser (YINJ) Adorjostuy onouge]y remorpuodiog
[31m sdIISOURU I9PIM PUR MOLIRU UL POAISSUO (SA\(]) S[[eM Urewop Yoo pue [paN (q) 57 ‘puermd urds jndur
ue 0} anp snbioj-urds pue snbioy uorssesard ‘enbiroj Surdurep o) Jo sdULNPUI ) IOPUN SIA[OAD SOIUWRUAD
UOIIRZIJOUSRW o], "ISLLIR( oPIXO Sulpuuny © Aq pejeredss (TJ) IoAe]  pouuld, oyj pue (T.) IoAe[ ,ooIj,
o) A[PWRU ‘S)OUSRUOLID] 0M) JO SISISUOD UOIOUN[ [oUUN], J1JoUde]y Y :0A[RA uldg [edinrep (v) ‘T'g "Siq

aAeA ulds jelare (p) s}oubewoueU YINd Ul SMA yd0|g pue [93N ()
aNo

W4 J01918Q BRI RS
S
|
anbJo] 11qi0-uids () AA[eA uldS [ediiaN (e)
S Pra— | 19Ke 9ai4 14
A0
-.....Hé«m_ WH— anbuo) uids apIxQ Buisuuny

1ake pauuld :1d

IIIII

anblo] Buldweq

anbiol uoIssadald « 1 " 6

pIal4 onaube aAinoay3



states in the band structure of one contact corresponding to that particular spin ori-
entation is well matched to empty states for the same spin in the other contact. On
the contrary, when mp and m are oppositely directed (Anti-Parallel configuration:
AP), the band structures of either spin configuration are not well-matched for the
two contacts, thereby resulting in higher resistance. The metric utilized to measure
the difference between the P (Rp) and AP (Rap) MTJ resistances is referred to as
the Tunneling Magnetoresistance Ratio (TMR) defined as,

iR = Bar —Be 000 (2.2)
Rp

It is worth noting here that the MTJ P and AP resistances are a function of the
oxide thickness and applied voltage across the MTJ which can be formulated using
the Non-Equilibrium Green’s Function based transport simulation framework [25].
Considering that the FM has a uniform magnetization direction, the MTJ resistance
(R) is a function of the spacer (MgO) thickness (fy40), relative angle between the
magnetizations of the FM and the pinned layer (), and the voltage across the MTJ
(V). The variation can be described by the following equations [25],

—d

R o e%tmgotbo Z (((1)m—1VA§%J€amtAfgo+bm> (2.3>
m=1

2 2\ ~

- OB EQ) e

Here, Rp and Rp represent the parallel (§ = 0) and anti-parallel resistances (6 = )
of the MTJ respectively. The fitting parameters a,,, b,,,c and d can be determined
by calibrating the simulation framework with experimental data. For an extensive
description of the NEGF based simulation framework, readers are referred to Ref. [25].
The discussion so far has been limited to sensing the magnetization state of a
nanomagnet. Let us now discuss the mechanism of manipulating the magnetization
direction of a magnet. One of the most common mechanisms is by passing a charge
current through the MTJ stack due to spin-transfer torque effect [12-16]. When

charge current flows from the FL to the PL, electrons are injected into the FL from



the PL that are spin-polarized in the direction of mp. The magnitude of injected spin
current is determined by the polarization of the magnet. Hence the injected spins
attempt to orient the FL in the direction of mp. For a sufficient magnitude of the
current flowing from the FL to the PL, the MTJ is switched to the P configuration.
On the other hand, when current flows from the PL to the FL, the FL attempts to
inject spins into the PL. However, due to “spin-filtering”, only electrons with spin
parallel to mp can tunnel easily to the PL from the FL. Hence the remaining spins
anti-parallel to mp remain in the FL and exert a torque to orient the MTJ in the AP
state.

The temporal evolution of magnetization dynamics can be described by Landau-
Lifshitz-Gilbert equation [26] with additional terms to account for the effect of spin-

transfer torque [27] as follows,

i, dm, 1

%(‘— —’Y(I/fl X Heff) —+ a(r?l X E —+ m(fﬁ X IS X ffl) (25)
where m js the unit vector\of FL magnetizition, ¥ = 2’”'#“0 i3 the gyromagnetic ratio

for electron, « is Gilbert’s damping ratio, Hcss is the effective magnetic field, N, =

MV

is the number of spins in free layer of volume V' (Mj is saturation magnetization
and pp is Bohr magneton), and I, is the input spin current generated by the HM
underlayer. Thermal noise is included by an additional thermal field [28], Hyperma =
\/ foQ%GOJ, where Gy, is a Gaussian distribution with zero mean and unit
stahdard deviation, kg is Boltzmann constant, Ty is the temperature and d; is the
simulation time-step.

In the absence of any input current stimulus, the magnet is subjected to a field-
torque (that causes it to precess in the direction of the effective magnetic field) and a
damping torque (that attempts to stabilize the magnet along the initial equilibrium
state). The effective magnetic field includes any external applied field, magnetic
uniaxial anisotropy field along with a thermal fluctuation field [28,29] that lends a
stochastic behavior to the switching process. The impact of input current on the

magnetization dynamics is usually described by a Slonczewski-like torque [27] that

acts in the plane of the damping torque and stabilizes the magnet along either of



the two stable magnetization directions depending on the direction of the input spin
current. Although some experiments have reported contributions from a field-like
torque to the resultant spin-torque due to the input current [30], its magnitude is

usually much less in comparison to the Slonczewski-like torque in tunneling junctions.

2.2 Domain Wall Motion

Mono-domain magnets where the entire FL. magnetization is uniformly polarized
can represent only two binary states. More than two states can be represented by
multi-domain magnets that are fabricated with elongated shape to stabilize a transi-
tion region (termed as domain wall, DW) between two regions of opposite magnetic
polarizations. The device state can be then represented by the position of the DW
or the relative proportion of the two oppositely polarized magnetic domains. The
manner of magnetization transition at the DW location depends on the anisotropy
and shape of the magnet. While IMA nanowires are characterized by transverse (thin
and narrow nanostrips) or vortex DWs (wider and thicker nanostrips) [31], PMA ma-
terials exhibit Néel (narrow nanostrips) or Bloch DWs (wider nanostrips) [32]. Due
to lower switching current requirements, we will consider PMA nanomagnets in this
text. Fig. 2.1(c) depicts the magnetic orientations of Néel and Bloch DWs observed
in PMA magnetic strips. The domain wall is termed as a Néel wall when the magne-
tization direction at the wall location rotates in a plane perpendicular to the plane of
the wall and is typically observed for nanowires with width less than 100nm (owning
to shape anisotropy) [33]. For wider nanowires, the wall magnetization rotates in
the plane of the wall and is termed as the Bloch wall [33]. Charge current flowing
through the magnetic strip can displace the domain wall in the direction of electron
flow due to STT effect. Current induced DW motion in the direction of electron flow
was predicted [34] and also observed in multiple experiments [35,36]. DW motion due
to charge current flow through the magnet can be attributed to spin-torque generated

due to local magnetization tracking of electrons flowing through the magnet.
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2.3 Spin-Orbit Torque

Spin current generated by STT effect is always limited by the polarization strength
of the injector magnet. Recent experiments on Insulator-Ferromagnet-Heavy Metal
(ILFM-HM) multilayer structures have opened up the possibility of much greater spin
injection efficiencies due to strong spin-orbit interaction (SOI) [37] observed in such
multilayer structures. When a charge current flows through the underlying HM, spin-
orbit torque (SOT) is generated at the FM-HM interface. Although the cause of SOT
can be attributed to two possible origins, namely the Rashba field due to structural
inversion asymmetry [38] and the spin-Hall effect (SHE) [39], we will consider SHE
to be the dominant underlying physical phenomena for this text. As shown in Fig.
2.1(c), due to the flow of charge current through the HM, electrons with opposite
spins scatter on the top and bottom surfaces of the HM. The spin-polarization is
orthogonal to both the directions of charge current and injected spin current. These
electrons experience spin-scattering repeatedly while traveling through the HM and
thereby transfer multiple units of spin angular momentum to the FM lying on top.
The magnitude of injected spin current density (J5) is proportional to the magnitude
of input charge current density (.J;), with the proportionality factor being defined as
the spin-Hall angle [39] (fsy < 1). Hence, the input charge to spin current conversion

is governed by the following relation,

I, = gy (Vtﬁf) <q (2.6)

where I; and I, are the input spin current and charge current magnitudes respectively,

W is the width of the FM lying on top of the HM, and ¢z, is the HM thickness. By
ensuring Wgps >> tg, high spin injection efficiencies greater than 100% (Is > 1)
can be achieved. Typical HMs with high spin-orbit coupling under exploration are
Pt, 5-W and p-Ta. An important point to note is that the injected spins at the
FM-HM interface have in-plane spin polarization due to SHE. Hence, SOT induced
magnetization reversal is only possible for IMA magnets while an external magnetic

field is required to switch PMA magnets in presence of SOT [40-42].
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Energy efficient SOT induced DW motion has been also observed in FM-HM
bilayers [43-45]. Consider the multilayer structures shown in Fig. 2.2(c-d). Input
charge current flowing along the y-direction will cause injection of x-axis directed
spins at the FM-HM interface. A general principle to determine the DW movement
direction is to calculate the cross-product between the injected spin direction at the
FM-HM interface and the magnetization direction at the wall location. The cross
product direction signifies the final magnetization state of the magnet, and hence,
the DW motion direction. Regarding the orientation of the DW, there can be two
alternatives, namely a longitudinal wall (parallel to the length of the magnet) or
a transverse wall (perpendicular to the length of the magnet). However, in both
cases the wall magnetization needs to be along the y-axis in order to achieve any
DW movement. This implies that a Bloch wall configuration is required for the
longitudinal wall and a Néel wall orientation is required for the transverse wall. Let
us first discuss the case for the longitudinal wall. Shape anisotropy of the magnet
(assuming sufficient magnet width, typically above 100nm) will cause the stabilization
of Bloch wall in the FM [46]. However, an in-plane magnetic field is required to retain
the stability of the wall in the presence of injected spins due to current flow in the
underlying HM [46]. On the other hand, the Néel wall can be stabilized by an effect
termed as the Dzyaloshinskii-Moriya exchange interaction (DMI), which is normally
associated with such FM-HM bilayers due to spin-orbit coupling and broken inversion
symmetry of such magnetic heterostructures [47-49]. As a matter of fact, the DMI
strength in certain multilayers like CoFe-Pt or CoFe-Ta [48,49] has been observed
to be strong enough to impose Néel wall configuration even for wider nanomagnets
where conventional magnetostatics would have yielded a Bloch configuration. Note
that Bloch wall stabilization in the former case (longitudinal DW) discussed before is
possible in samples with negligible DMI [46]. The strength of the effective DMI field
at the wall location is enough to stabilize the Néel wall magnetization even in the
presence of in-plane injected spins due to current flow through the underlying HM.

Hence no external magnetic field is required for DW propagation in such magnetic
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multilayers with inherent DMI effect and consequently more attractive from scalability
point of view. As a result we will focus on device structures based on the latter case
for the remainder of this text.

The DMI effect can be modeled by including an additional field (Hpy;) in the
calculation of the effective field H.;¢ and is given by,

2D (?‘mz,\ om, omg,  Omy\
— 2.
po M, [\(%gH ay ’ (333 " 8y)z} 27)

HDMI - -

where D represents the effective DMI constant and determines the strength of DMI
field in such multilayer structures. A positive sign of D implies right-handed chirality
and vice versa. In the presence of DMI, the boundary conditions at the edges of the

sample is given by, R
88_1{:< %ﬁl <>< (fi x 2) (2.8)

where A is the exchange correlation\constan{ and n represents the unit vector normal

to the surface of the FM.

2.4 Lateral Spin Valves

Spin current injection can also occur in Lateral Spin Valve (LSV) structures, as
depicted in Fig. 2.1(d), where an injector and a detector ferromagnet are situated
on top of a non-magnetic channel. When electrons flow through the injector magnet
to the ground contact of the channel lying below the magnet, a large number of
spins oriented in the same direction as the magnetization of the injector magnet are
accumulated in the channel region underneath the magnet. The gradient of this spin
potential difference between the two spin orientations causes one type of spin to flow
along the channel, thereby exerting non-local spin-torque on the detector magnet. The
magnitude of injected spin current decays exponentially with distance between the two
ferromagnets due to spin-flip processes. Apart from choosing appropriate materials
with longer spin-flip lengths [50, 51], a tunneling barrier can be inserted between

the magnet and channel to achieve better spin injection [51]. Recent experiments
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have demonstrated non-local spin-torque induced magnetization reversal in Py/Au

nanopillars located on top of a Cu wire [52].

2.5 Towards More Efficient Devices

Improving the efficiency of operation of spin devices, and notably the “write”
and “read” mechanisms is key to achieving scalable, compact and low-power neu-
romimetic devices. Using PMA materials is one possible alternative to reduce the
critical switching current density for magnetization reversal [40-42] or DW displace-
ment [43, 45,49, 53]. Other physical mechanisms like voltage-controlled magnetic
anisotropy [54], magnetoelectric effect [55,56] or topological insulator induced spin
current generation [57,58] are also under exploration that can potentially serve as
replacements for HM induced magnetization switching. Innovations in the material
stack, for instance using Heusler alloys [59] or anti-ferromagnetic materials [60, 61]
may lead to further energy benefits. Multi-level information encoded by DW position
in magnets can be also potentially replaced by current induced skyrmion displace-
ment [62,63]. While the discussion in this article will be mainly based on single-
domain or DW motion based multi-domain devices with HM underlayers, the con-
cepts can be easily extended to incorporate innovations in the material stack or the
underlying physical mechanism utilized for switching [64-67].

Additionally, improving the TMR effect is crucial to achieving more efficient
synapses that can offer higher distinguishability for the scaling operation of the neu-
ron inputs. While the theoretical limit of the AP and P resistance ratios is near
300 [68], experiments have achieved a maximum variation of 600% till date [69]. A
roadmap issued by the IEEE Magnetics Society has predicted a variation of 1000%

in a time period of ten years [70].
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3. NEUROMORPHIC COMPUTATION: PRELIMINARIES

In this section, we will first describe the functionality of the major units of such neural
computing models. We will also discuss different variants of neuron models (with
varying degrees of bio-fidelity) and synaptic learning mechanisms. Relationship of
such models to neuroscience mechanisms observed in the brain will be also established.

The main functional units of such neuromimetic computations are the neuron
and the synapse. Synapses are adaptive or plastic junctions between neurons that
modulate the strength of the signal being transmitted from the pre-neuron to the
receiving or post-neuron. Computational tasks like pattern recognition are therefore
performed by virtue of plasticity of the synapses in response to signals being trans-
mitted between the neurons since they encode the importance level of different inputs
being received by a particular neuron. Fig.3.1(a) depicts a particular synaptic con-
nection between a pre- and a post-neuron. Neuromorphic computation relies on the
abstraction of the plasticity of the synaptic junction (governed by neuro-transmitter
release at the synapse due to the incoming action potential from the pre-neuron) and
the neuroscience mechanisms occurring in the post-neuron (to generate an outgoing

signal to the next layer of neurons).

3.1 Neural Computation

Each neural computing unit receives a set of inputs from other pre-neurons through
synaptic junctions. The weighted contribution from all the neurons is then summed
up and processed by the neurons. The bio-fidelity level at which the “artificial” neu-
ron is modeled has gradually evolved over the last few years from simple perceptrons
to more biologically realistic spiking neurons [71]. Irrespective of the details of the

neural model, it is worth noting the nature of neuromorphic computation being real-
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ized in such networks. Considering a set of neurons in a particular layer receiving a
set of inputs through synaptic weights, the computation can be mapped to a parallel
dot-product operation between the inputs and synaptic weights followed by neural
processing for each neuron in the layer (Fig. 3.1(b)). Such a computing kernel is
inherently suited for “in-memory” computing platforms based on crossbar arrays of
memristive devices as shown in Fig. 3.1(c) [72,73]. A memristor is a nanoscale non-
volatile programmable resistor. Input voltages drive the rows of the crossbar array
where a resistive device encoding the synaptic weight is present at each cross-point
joining a particular input to the corresponding neuron. The current flowing through
a particular memristive synapse is scaled by the device conductance (synaptic scal-
ing operation) and all such currents gets summed up along the column of the array,
according to Kirchhoff’s law, and passes as the resultant input to the neuron. Addi-
tionally, due to non-volatility of the crossbar memristive elements, such architectures
do not suffer from leakage concerns. In contrast, digital CMOS implementations like
the IBM TrueNorth involves an architecture depicted in Fig. 3.1(d), where synaptic
weights would be fetched from a Static-Random-Access-Memory (SRAM) bank to
the neuron computing core [74,75]. The inefficiency of such architectures results from
the memory access and leakage energies (which usually constitutes ~ 60 —80% of the
total energy consumption in typical pattern recognition workloads for fully connected
networks) and the overall system performance is memory bandwidth limited.

Let us now describe the details of neural processing across different generations.
Perceptron networks consist of neurons having “step” transfer function (relationship
between the output and input signals), i.e. they generate a high output signal if the
weighted summation of neuron input crosses a particular threshold [71]. However,
since their success was limited to only a very small set of simple problems, they were
replaced by the “second” generation of “artificial” neurons where the transfer func-
tion of the neuron was “non-step”, i.e. the neuron produced an analog output in
response to the input stimulus [71]. Such neurons offer high recognition accuracies

in a vast category of large-scale recognition tasks and are routinely utilized today
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as a basic building block of deep neural networks. The scalability of such neurons
to more “difficult” problems can be attributed to the fact that a greater degree of
information can be encoded in the analog neuron output in contrast to the encoded
binary information in perceptron networks. A second and equally important con-
tributing factor is the gradient of the neuron transfer function. Backpropagation [76],
which is the underlying algorithm for training networks of such neural units, relies
on the computation of the partial derivative of the error function (difference between
the network output and the desired output) with respect to the synaptic weights,
which in turn, is dependent on the gradient of the neuron transfer function. Hence,
while a “non-step” neuron transfer function offers gradient information during error
backpropagation, perceptrons offer gradient information only at the threshold point.
A few popular “non-step” neuron transfer functions are the Sigmoid and Rectified
Linear Unit (ReLU) functions.

A more recent paradigm shift in neural computing has been the “spiking” neuron
model, encoding a much higher degree of bio-fidelity [77]. A principal biological
information that was completely ignored in the first two neuron generations was the
mode of neural communication. Biological neurons communicate with each other
through binary signals or spikes [77,78]. Hence, in order to account for neuron
communication by means of spikes and simultaneously overcome the bottlenecks of
perceptrons (neuron providing ‘0’ - no spike and ‘1’ signal - spike), such “spiking”
neurons consider the input as a time-series event instead of a single value as in previous
generations. The input is usually encoded in a series of time-steps and provided to
the neuron. A common form of input encoding is that of a Poisson spike train, where
the probability of spike generation at a particular time-step is proportional to the
value of the input. This is usually referred to as “rate” encoding [79] in literature,
since the number of spikes transmitted over a given timing window is proportional to

the value of the input.
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The most common “spiking” neuron model is that of the Leaky-Integrate-Fire

(LIF) neuron [78], whose temporal dynamics is given by,

dvmem o Vmem
Cmem di = _Rmem —+ Z w,é(t — tfﬂ) (31)

i
where V.., is the membrane potential, R,,.,, is the membrane resistance, C,,p, is
the membrane capacitance, w; is the synaptic weight for the i-th input, and §(¢ —ty,)
is the spiking event occurring at time-instant t;;. When the neuron’s membrane
potential V,,.,, crosses the threshold V;;,, the membrane potential gets reset to Vi .cser
and does not vary for a time duration termed as the refractory period [78]. Note that
more bio-plausible neural models account for the modeling of a post-synaptic current
that increases every time a spike is received and then decays exponentially [78]. This
post-synaptic current is then integrated by the LIF neuron instead of the spikes as
mentioned in Eq.3.1.

It is worth noting here that “spiking” neuron models are not only limited to being
more biologically plausible, but offers a host of advantages from hardware imple-
mentation perspective. One of the most important breakthrough has been in the
arena of unsupervised adaptive local learning enabled by Spike-Timing Dependent
Plasticity (STDP) which has made it possible for learning functionalities to be en-
abled “on-chip”. We will discuss synaptic learning in details in the next sub-section.
Additionally, since such networks are ‘spike’ or ‘event driven’ and can perform pat-
tern recognition by sparse distribution of spikes, they can potentially lead to sparse,
event-driven hardware that exploits power-gating functionalities [74,75]. For instance,
synaptic weights can be now fetched from the SRAM bank only upon the receipt of an
input event or ‘spike’ (unlike non-spiking nets where all the synaptic weights are re-
quired to be fetched to the computing core for each input). Asynchronous event-driven
communication techniques at the architecture level like Address Event Representation
(AER) are also under exploration [80,81]. At the circuit level, an additional benefit
is achieved due to the replacement of a multiplier by a multiplexer for each synaptic

scaling operation. Since the inputs are binary, they do not need to be multiplied by
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the synaptic weights but can be transmitted to the neural computing core in case
a ‘spike’ is received [82]. Note that the loss of information due to binary inputs is
compensated by temporal encoding over the time-steps of the spike train. However,
the advantages due to reduced power consumption of spiking networks (event-driven
hardware) far outweigh the cost of increased delay for inference (temporal encod-
ing) [82,83]. Further, the sparsity of neural spiking activations increases drastically
with network depth [84]. Hence, the power and energy benefits improve further with
larger sized networks imperative for complex machine learning tasks [84].

Due to such inherent advantages of Spiking Neural Networks (SNNs) at the hard-
ware level, there has been significant interest in recent years to convert non-spiking
nets to SNNs by replacing the original neurons by “spiking” neurons after train-
ing [84,85]. The main motivation behind the conversion stems from the fact that
while non-spiking nets can be trained with very high classification accuracies at large-
scale recognition tasks using backpropagation, achieving similar accuracies in STDP
trained spiking networks is still an active research area. The “spiking” neuron model
typically used for such conversion schemes has been the Integrate-Fire (IF) model
which is equivalent to the LIF neuron without any leak term in the membrane po-
tential. Such an IF neuron without any refractory period has been shown to be a
firing-rate approximation of the ReLU unit mentioned previously [86]. This is appar-
ent from the fact that higher the value of the input for the ReLLU, higher is the value
of the neuron output. Similarly, for the IF neuron, higher is the rate of input spikes,
higher is the number of transmitted output spikes. Recently, deep layered SNNs with
VGG and Residual network architectures (trained using such ReLU-IF spiking neu-
ron conversion mechanism) have demonstrated competitive accuracies over complex
datasets like CIFAR [87] and ImageNet [88] (see Appendix A).

However, note the fact that the above “spiking” neuron computing models are
completely deterministic and do not account for the noisy probabilistic neural com-
putation that actually occurs in the human brain. Recent proposals have investigated

stochastic neural models that abstract the neural computation by a probability dis-
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tribution function that varies as a function of the input being received by the neuron
at each time-step of computation [89-92]. The variation is usually characterized by a
non-linear functionality. Such probabilistic neural computation has been observed in
‘pyramidal’ spiking neurons in the cortex and recent research proposals have investi-
gated the possibility of performing Bayesian computation in cortical microcircuits of
stochastic neurons [91,92]. Additionally, such stochastic neural computational units
have been also used in Restricted Boltzmann Machines and Deep Belief Networks [93]
trained by Contrastive Divergence [94]. Such probabilistic “spiking” neural models
are particularly interesting for spintronic device applications since such devices are
inherently characterized by a time-varying thermal noise leading to stochastic behav-
10T.

We would like to conclude this section on neural computation by a brief discussion
on an additional neuroscience mechanism termed as homeostasis [95] that is also
routinely utilized in SNN based pattern recognition systems. It is a spike frequency
adaption mechanism wherein the neuron threshold increases by a specific amount
every-time the neuron spikes. This ensures that as a neuron starts to dominate the
spiking pattern in a particular pool of neurons, it also becomes progressively difficult
for that particular neuron to spike in the future. We will discuss the manner in which

such homeostasis effects assist in performing pattern recognition.

3.2 Spike-Timing Dependent Plasticity

As mentioned in the previous section, prior to the advent of SNNs, synaptic learn-
ing was achieved primarily by backpropagation algorithm [76]. This is a supervised
training algorithm where the neural network is trained with a particular set of inputs
that are associated with specific class labels or categories. The algorithm aims at find-
ing the optimal set of synaptic weights by minimizing the error function (difference
between class labels and actual network outputs) using gradient descent algorithm.

Readers are referred to Ref. [76] for details on the backpropagation algorithm. A
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few key points worth noting is the supervised nature of the training algorithm and
the synaptic weight update scheme which is not only dependent on the outputs of
neurons in other layers of the network but also require a backward pass of the gradi-
ent computation through the entire network. This has broadly limited the scope of
specialized hardware to implement backpropagation on-chip due to expensive power
and area requirements of the underlying hardware.

The number of applications requiring some form of intelligence in present day
Internet of Things (IoT) technologies like mobiles and wearables are huge and often
require embedded on-chip intelligence since it is often not possible to transmit data in
real-time to cloud for computing. Further, it is also not practical to have supervised
learning algorithms to implement pattern recognition systems since real-time data will
be mostly unlabeled (without any specific categories). Hence, unsupervised hardware-
inexpensive synaptic learning mechanisms is a key requirement for the implementation
of on-chip learning.

A more bio-realistic and hardware-friendly approach to synaptic learning in com-
parison to backpropagation is the STDP learning rule in SNNs, which is based on mea-
surements obtained from rat hippocampal glutamatergic synapses [96] (Fig. 3.2(a)).
According to this theory, the synaptic weight is modulated depending on the spiking
patterns of the pre-neuron and post-neuron. The synaptic weight increases (decreases)
if the pre-neuron spikes before (after) the post-neuron. Intuitively, this signifies that
the synapse strength should increase if the pre-neuron spikes before the post-neuron
as the pre-neuron and post-neuron appear to be temporally correlated. The rela-
tive change in synaptic strength decreases exponentially with the timing difference
between the pre-neuron and post-neuron spikes. The STDP characteristics can be
formulated in a mathematical framework as follows,

—At

T+

Aw:AJreXp( ) At >0

(3.2)

T—

=—A_exp (g) At <0
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Here, Ay, A_, 7, and 7_ are constants and At = t,,5t —tpre, Where ¢y, and t,,s are the
time-instants of pre- and post-synaptic firings respectively. We will refer to the case of
At > 0 (At < 0) as the positive (negative) time window for learning for the rest of this
text. Note that this learning mechanism is unsupervised since no prior information
about input class or label is necessary. Further, synaptic weight update is completely
local since it is modulated depending on the activities of only the neurons it connects.
This has enabled learning functionalities to be implemented on-chip at much lower
hardware costs. Although pattern recognition systems with high accuracies based on
STDP learning are still in preliminary stage, competitive accuracies in typical digit
recognition and sparse encoding workloads have been already achieved [95]. Note that
the above STDP learning rule is referred to as anti-symmetric STDP and has been
the most popular learning mechanism for training SNNs. However, other variants
of STDP have been also observed in neuroscience studies and have been utilized in
different genres of recognition tasks [97].

We will discuss STDP implementation in spintronic synapses in later sections.
However, a primary concern for such spintronic synapses, and in general any memris-
tive synapse technology, is the bit resolution at aggressively scaled device dimensions.
Driven by this fact, researchers have proposed variants of STDP learning based on
single-bit synapses [7,98,99] where the multi-bit requirement is replaced by proba-
bilistic synaptic weight update. It has been already mentioned that spintronic devices
exhibit an inherent stochasticity during the switching process which has been mainly
attributed to the time-varying thermal noise [28]. Hence, the STDP framework de-
scribed in Eq. 3.2 can be modified in this scenario as the probability of binary synap-
tic state change (instead of analog weight change) to offer a direct correspondence to
stochastic switching behavior of single-bit nanoelectronic synapses. Stochastic single-
bit synaptic learning achieving competitive accuracies in digit recognition applications

has been recently demonstrated in SNNs [7].
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3.3 Volatile Synaptic Learning

The exact mechanisms that underlie learning or plasticity of synapses is highly
debated and still unknown. While STDP has been a popular viewpoint of explain-
ing synaptic plasticity, there has been some research studies that attempt to explain
synaptic plasticity from an alternative volatile learning plasticity viewpoint. This is
referred to in literature as Short-Term Plasticity (STP) and Long-Term Potentiation
(LTP) [100,101]. The theory postulates that synapses undergo inherent volatile state
changes upon receipt of incoming action potentials (due to release of neurotransmit-
ters). In case the action potentials are received infrequently, the neurotransmitter
concentration decays to the background value after the action potential is removed
and hence the synaptic plasticity remains unchanged (STP). However, as more fre-
quent action potentials are received, the ionic neurotransmitter concentration starts
increasing and ultimately the synapse switches to a stable long-term state (LTP).
Hence, while STDP is a form of non-volatile synaptic learning, STP-LTP models
synaptic plasticity as a form of frequency-dependent volatile synaptic learning. While
adoption of STP and LTP concepts in SNNs for usage in pattern recognition is still an
area of active research, it offers the promise of adaptive learning where the network
might be able to unlearn itself in response to changing environments, which might
not be possible to achieve by non-volatile STDP learning rule.

Such a learning mechanism is in accordance to the volatile forgetting nature of
human memory and has been often correlated to Short-Term Memory (STM) and
Long-Term Memory (LTM) psychological models proposed by Atkinson and Shiffrin
(102, 103]. The model is equivalent to STP and LTP where the synaptic element
can be viewed to be analogous to human memory. Input information is received
and stored in the STM and only gets transferred to LTM if the input is received
with sufficient frequency. The characteristic difference between STM and LTM is
that while information is stored for a limited period in STM (analogous to volatile

meta-stable synaptic state change in response to input stimulus), LTM retains the
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information for a much longer period of time (analogous to long-term stable synaptic
state). Fig. 3.2(b) and (c) illustrates the concepts of STP-LTP and STM-LTM
respectively. It is worth noting here that psychological STM-LTM concepts have
been also harnessed to model the computational units of Recurrent Neural Network

(RNN) architectures [104].

3.4 Network Connectivity

The discussion so far has been limited broadly to the functionalities exhibited
by the fundamental units in neuromorphic systems. However, in order to construct
pattern recognition systems based on these units, specific network connections and
topologies are necessary. Initial studies in neural networks mainly focused on fully-
connected nets (FCNs), where neurons are arranged in different layers and connected
in an all-to-all fashion, as shown in Fig. 3.1(b). However, such simple network
connectivity failed to be invariant to translation or scaling of input patterns. Further,
FCNs with larger number of neurons/layers implies storage of a huge set of synaptic
weights along with higher degree of neuron connectivity between layers which limits
its scalability to large-scale cognitive tasks.

Deep networks based on convolution operations have been able to overcome most
of these challenges. The inspiration behind such a connectivity is based on the seminal
work of Hubel and Wiesel which revealed that the animal cortex consists of cells which
are sensitive to specific areas of the entire visual field (implying a local connectivity for
each neuron) and that they function as filters for that particular receptive field [105].
Further, a certain category of cells were found to be sensitive to edge-like features
in the visual field while another category of cells were found to be invariant to the
location of the pattern in the receptive field [105]. Such mechanisms served as the
main motivation behind the structure of Convolutional Neural Networks (CNNs).

Fig. 3.3(a) shows the CNN structure. Drawing inspiration from the hierarchical

arrangement of layers in the visual cortex, CNNs consist of a number of cascaded
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stages where each stage consists of a convolution layer (C) followed by a sub-sampling
layer (S). Each C layer is characterized by a set of trained weight kernels that is
used to convolve with the input maps for that particular layer. For instance, in
an image recognition system the input map for the first layer of a network would
be the entire image being classified. Each kernel is then convolved with the entire
image to produce an equivalent number of output maps. Each neuron in the output
map therefore has limited connectivity (equal to the size of the convolution kernel).
Additionally, the network offers resiliency to image translation and scaling due to the
convolution operation. The C stage is usually followed by an S layer which performs
an averaging operation over non-overlapping subsampling windows of each output
map to reduce their dimensionality. As the depth of the layer increases, the number
of maps increases with decreasing dimensionality. Ultimately the final two layers
are usually fully connected and the number of neurons in the output layer equals the
number of classes in the recognition problem. Due to the limited fan-in of each neuron,
sparse neural connectivity is achieved. Additionally number of synaptic weights to be
learnt during training is also reduced, due to the shared weight kernel being convolved
across the entire map, thereby resulting in significantly reduced training time.

An alternative network architecture that has been popular in the domain of STDP
learning enabled SNNs has been shown in Fig. 3.3(b) [95]. Such connections are again
inspired from cortical microcircuits of pyramidal neurons observed in the brain. The
network consists of a layer of neurons that receive input spike trains through excita-
tory (positive) synaptic weights in an all-to-all fashion. The network is also associated
with a lateral inhibitory signal that triggers a negative spike signal whenever one of
the neurons in the layer spikes. In order to prevent single neurons from dominat-
ing the spiking pattern due to lateral inhibition, the “spiking” neurons are enabled
with homeostasis functionality. STDP in the excitatory synaptic connections in such
networks can assist each neuron to respond selectively to specific classes of input pat-
terns. Note that training deeper networks enabled by STDP is still an area of active

research.
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While the discussion in this section mainly focused on feedforward networks with-
out any directed loops, RNN architectures are also becoming increasingly popular
for sequence learning tasks like language modeling [106], handwriting prediction and
generation [107], speech recognition [108], among others. The only difference between
RNNs and standard feedforward networks is the fact that the computational units or
neurons receive its own output from the previous time-step as its input in the current
time-step (in addition to external inputs). Such a memory effect in RNNs enables it
to perform context learning in sequential inputs. However, note that the main func-
tionalities of the computational units — the neurons and synapses remains unaltered,
thereby allowing the same synaptic/neural spin-devices to be used in these different

algorithmic architectures. This will be discussed in details in the next section.
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4. SPINTRONIC DEVICE PROPOSALS AND
CORRESPONDENCE TO NEURAL AND SYNAPTIC
FUNCTIONALITIES

Nanoscale programmable resistive devices mimicking neural and synaptic function-
alities is imperative towards the realization of energy-efficient neuromorphic archi-
tectures. The field of neuromorphic computing, wherein research effort is directed
to mimic neural and synaptic mechanisms by the underlying device physics, was pi-
oneered by Carver Mead in the 1980s [109]. He proposed that CMOS transistors
operating in subthreshold region can be utilized to implement neuromimetic com-
putations since the main mechanism of carrier transport in that operating regime
is diffusion, thereby emulating the mechanism of ion flow in biological neuron chan-
nels [109]. Although such sub-threshold CMOS neuron and synapse designs are still
being investigated by various research groups [110], they require multiple transis-
tors and feedback mechanisms to mimic the functionality of neurons/synapses. The
first work on spintronic neuromorphic computing can be traced back to the work
of Krysteczko et al. where they explored the possibility of implementing memristive

functionalities in MTJ structures through voltage induced switching phenomena [111].

4.1 Spin-Torque Neuristors

In this section, we will review different spintronic device structure proposals that
can potentially offer a direct correspondence to neuronal computations with varying
degrees of bio-fidelity. Fig. 4.1 depicts various spintronic devices mimicking neurons
of different computing generations from “step” to “spiking” neurons. We will begin

our discussion on the neuronal devices by considering it receives a resultant weighted
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Fig. 4.1. Spin-torque neuristors with different degrees of bio-fidelity
are shown. Perceptron or “step” neurons can be implemented in SHE
based neuron structures where a current flowing through an underly-
ing HM layer orients a PMA magnet lying on top along the unstable
“hard-axis”. Subsequently the direction of current flowing through
the PL orients the magnet to either of the stable “easy-axis” direc-
tions. A complementary device structure can be envisioned using the
LSV concept by injecting spins oriented along the “hard-axis” in a
non-magnetic channel using a “Preset” magnet. “Non-step” neuron
functionalities can be implemented in DW motion based device struc-
tures by interfacing the Neuron MTJ with a Reference MTJ. A similar
device structure with the MTJ located at the edge of the FL can be
used to implement an IF “spiking” neuron. Stochastic “spiking” neu-
ron functionalities can be implemented in mono-domain neural device
structures by exploiting the underlying probabilistic MTJ magnetiza-
tion dynamics.
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synaptic current input. Synaptic device structures and interfacing of synaptic arrays
with neuronal devices for generating the input synaptic current will be discussed in

the next sections.

4.1.1 Perceptron

Let us begin this section by noting the functional similarity between a “step” neu-
ron transfer function and a mono-domain MTJ switching event. The MTJ switches
between the two stable P and AP states provided the switching current magnitude
is greater than a particular threshold. Consequently, in order to emulate the “step”
neuron functionality with neuron threshold at the origin, the input current to an MTJ
neuron has to be greater than the switching current requirement, which in turn, in-
creases the operating voltage of the MTJ. Ref. [112] investigated the design of an MTJ
based neuron for the implementation of a “step”-transfer function neural network. In
order to reduce the input synaptic current magnitude, the MTJ was initialized to
the AP state and provided with a bias current that was equal to the critical current
requirement for MTJ switching to the P state. Hence, a small magnitude of synaptic
current (positive or negative) would ensure MTJ switching to either the P state or
remaining in the original AP state. However, due to the high bias and reset current
requirements, energy improvements for such MTJ “step”-neuronal devices was highly
limited [112]. Note that in this work, the focus point has been the mapping of simply
the MTJ switching event to a neuron functionality while the internal time-domain
magnetization dynamics has not been considered. As we will show later, utilization of
the stochastic MTJ switching dynamics due to time-varying thermal noise to model
neural computations can lead to “spiking” neuron implementations with higher bio-
fidelity and enhanced recognition performances for computing platforms.

Continuing our discussion on simply the MTJ switching event to mimic a “step”
neuron, the energy consumption can be drastically reduced in case the M'TJ is initial-

ized to an unstable magnetization state prior to the switching process. This would
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Fig. 4.2. (a) The three terminal thresholding device for spin-neuron
consists of an MTJ structure on top of a HM layer, (b) The two-step
switching scheme consists of a clocking current I, flowing through
HM from terminals B to C followed by the synaptic current I, flow-
ing between terminals A and C, (¢) The clocking current I, orients
the ferromagnet along “hard-axis” while the current I, causes de-
terministic “easy-axis switching”.
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Fig. 4.4. Switching phase diagram showing probability of switching
for a range of clock and write currents. The figure depicts that for
sufficient magnitude of clocking current, the probability of determin-
istic switching by write currents is ~ 1 for current magnitudes of the
order of a few pA.



35

assist in reducing the critical current requirement for the switching process, since a
very small magnitude of input synaptic current can now enable the switching process
to either of the two stable states (depending on the input spin current direction) by
overcoming thermal fluctuations. This concept can be utilized in a spintronic device
structure (shown in Fig. 4.2(a) [113]) where a PMA magnet lies on top of a HM
and is operated in two subsequent stages of “Preset” and “Evaluation”. Note that in
Section 2.3, we mentioned that PMA magnets cannot be switched solely in presence
of SOT since in-plane spins are injected by current flowing through the underlying
HM into the PMA nanomagnet lying on top (see Fig. 4.3 which depicts the energy
landscape of FM with uniaxial anisotropy, which could originate from shape, inter-
face, or bulk magneto-crystalline anisotropy). Two-step switching schemes have been
utilized previously in magnetic quantum-dot cellular automata (MQCA) [114], All-
Spin Logic (ASL) [115], SHE-assisted-memory bit-cell [116] and Spin Amplifier [117].
The operation of the device is discussed in details next.

As illustrated in Fig. 4.2(b), for the first step, a charge current (I ,cx) is supplied
through the HM (between terminals B and C) which generates a torque to align the
FL magnetization in £y direction. In other words, /... aligns the FL. magnetization
along the hard-axis of the magnet i.e. the unstable point in the energy landscape
(labeled as MS in Fig. 4.3). Let us define this switching stage as “hard-axis switch-
ing”. Subsequently in the second step, the electronic synapses drive a charge current
(Iyrite) between terminals A and C, as illustrated in Fig. 4.2(b). The net synaptic
current (i) flowing through the MTJ exerts a torque on the magnetization which
will align the magnet to either one of the easy axis direction along (£z). This step
is referred to as “easy-axis switching”. The direction of torque generated by I
depends on the polarity of the net synaptic current. If the synaptic current is a
positive value, the sign of torque is such that the FL’s magnetization becomes AP
to that of the PL. On the other hand, a negative synaptic current places the FL’s
magnetization P to that of PL. The P and AP states of the MTJ correspond to the

low and high (binary) outputs of the neuron. The proposed thresholding device is
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functionally similar to a biological neuron ‘firing’ a pulse when the synaptic signal
exceeds a certain threshold.

To determine the appropriate magnitude of clock and write currents for the pro-
posed device, the switching phase diagram for a range of clock and write currents is
constructed as shown in Fig. 4.4. The device structure is an elliptic PMA magnet
of dimensions § x 40 x 40nm? for CoFe(1.5nm)-W(2nm) bilayer stack. The device
parameters are mentioned in Table 4.1. For each set of clock and write currents,
~ 100,000 stochastic LLG simulations were carried out to obtain the statistics of
switching. For simplicity, the rise and fall times of the pulses were set to zero and
the pulse width for clock and write currents are set to 2ns and 1ns, respectively. As
it can be observed from the figure, when clock current is large enough, the amount of
write current needed to achieve successful switching is on the order of few pA, just
enough to overcome thermal fluctuations and tilt the magnet in the desired direction.
Although some amount of the synaptic current flows through the HM, the spin-orbit
torque generated due to this minimal current is expected to have negligible impact
on the magnetization of the FL. Thus the proposed device facilitates fast and energy-
efficient threshold operation by utilizing spin-Hall effect for “hard-axis switching” and
minimal synaptic current for deterministic “easy-axis switching”.

For the first stage of the switching process, a charge current of ~ 85uA (from
Fig. 4.4)) was used to orient the nano-magnet in the hard-axis position within a
duration of 2ns, resulting in a power consumption of ~ 7.22uW per neuron. The
fast and energy efficient “hard-axis switching” is mainly attributed to a spin injection
efficiency of 4.71 resulting from SOT. In the next step, the net synaptic charge current
drives the magnet to one of its stable magnetization states. The operating supply
voltages of the synaptic devices were limited by the minimum current required to
deterministically switch the spin neuron in the appropriate direction (Fig. 4.4).

Additionally, the functionality of the proposed device due to the presence of a
finite delay between the [ o and [, signals was assessed by determining the

variation of the write error rate of the FL with the synaptic current, corresponding
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Table 4.1.
Typical Device Parameters for CoFeB-W Samples [118§]

Parameters Value

Saturation Magnetization 1000 K A/m
Spin-Hall Angle 0.3
Spin-Hall Metal Resistivity 200 pf2.cm

Gilbert Damping Factor, « 0.0122

to a clocking current of 85uA (Fig. 4.5) by performing ~ 100,000 stochastic LLG

simulations. Once the magnetization is put in its “hard-axis”, its relaxation to “easy-

. . . . . . 2
axis” can be described by a characteristic relaxation time constant, 7p = ;;}3‘}( , Where

Hp is effective anisotropy field. Using simulation parameters used in this work, the
relaxation time constant 7p is calculated as 3.5ns. As a result, if the delay time
between I e, and [, is less than 7p, then the functionality of the proposed neuron
would not be significantly affected. A worst case simulation of the feed-forward ANN
with an average delay of 1ns between the clocking and synaptic currents for each
neuron in the network showed insignificant degradation in classification accuracy.
The inherent error resiliency of such neural computing algorithms helps in nullifying
the effect of delay between clocking and synaptic currents to a large extent. In order
to quantify the advantage of using spin-Hall effect to clock the neuron, the switching
probability curve for the neuron with no prior clocking current is shown in Fig. 4.6.
The synaptic current required to achieve the same write error rate is almost one order

of magnitude lower for the proposed clocking scheme of the spin-orbit torque neuron.
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4.1.2 “Non-Step” Neurons

Let us now proceed to the implementation of “non-step” neuron functionalities
in spintronic devices. Note that since an MTJ with a mono-domain FL consists of
two stable states, only two distinct neuron outputs can be represented by such a
device structure. However, for a multi-domain FL, where the magnet consists of
two oppositely polarized magnetization regions separated by the DW, the device can
exhibit multi-resistive states.

As shown in Fig. 4.7, our proposed device structure consists of an MTJ structure
where the FL is a DW magnet (magnet having a transitory DW region) lying on top
of a HM layer (for energy efficiency) [119,120]. The underlying device physics for
transverse Néel DW motion in such PMA magnetic multilayers due to charge current
flow through the HM has been discussed in Section 2. Note that a complementary
device structure utilizing spin-orbit torque induced Bloch DW motion was also in-
vestigated in Ref. [121]. Although the discussion henceforth will be based on Néel
wall motion, the concepts are equally valid for device structures utilizing Bloch DW
motion. The FL is surrounded by two PLs on either side to ensure that the DW
stabilizes at the opposite edges of the FL for large magnitudes of the current flow-
ing through the underlying HM. A multi-level DW motion based resistive device was
recently shown to exhibit 15-20 intermediate resistive states [122].

The operation of such a multi-terminal device occurs in two subsequent “write”
and “read” stages. During the “write” stage, the magnitude of current flowing
through the HM (“write” current) programs the position of the DW in the FL of
the MTJ structure. The DW displacement increases linearly with the magnitude of
the input synaptic current flowing through the underlayer (I;,,) between terminals T5
and T3. After the “write” phase, terminal T} is activated instead of T, which enables
the “read” current path in the device between terminals 7} and 73. Such decoupled
“read” and “write” current paths not only assist in optimizing the “write” and “read”

peripheral circuits independently but also enable a low value of resistance in the path
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of the “write” current (mainly the resistance of the underlying HM layer). As we will
discuss in a later section, a crucial functionality that is required for nanoelectronic
neurons is low input “write” resistance for proper operation of neuromorphic crossbar
arrays. It is the decoupled nature of the “write” and “read” current paths of such
multi-terminal devices that have made it possible for spintronic devices to be utilized
not only as a synapse, but also as a neuron.

The DW position of the FL is sensed by a simple resistive divider, as shown in
Fig. 4.7, where the neuronal device is interfaced with a Reference MTJ which is
always fixed to the AP state. The “read” current can be maintained to sufficiently
low magnitudes by ensuring proper oxide thickness of the neuronal and Reference
MTJs which assists in achieving “disturb-free read” of the neuron MTJ. This resis-
tive divider drives a transistor operating in saturation regime (in order to ensure that
the supplied current to the fan-out resistive synapses is independent of the magni-
tude of the interfaced synaptic resistances). As the magnitude of the input current
I;,, increases, the resistance of the neuronal device reduces due to decrease in the
proportion of the AP domain in the MTJ device. This, in turn, causes the current
provided by the output transistor (I,,) to increase. It can be shown that the transfer
function (relationship between I,,; and I;;,) of such a device is approximately linear
by performing a device-circuit co-design discussed next. Note that a biological neu-
ron’s output is transmitted via the axon to fan-out neurons. Similarly, the spintronic
neuron receives a resultant synaptic current which is the weighted summation of its
inputs. This resultant current input flowing through the heavy metal of the spintronic
neuron generates an output which is transmitted via the CMOS transistor, acting as
the axon, to the next stage. After every “read” cycle, the neuron is “reset” for the
next operation by passing a current through the HM in the opposite direction to
initialize the DW at the opposite edge of the MTJ.

Fig. 4.8(a) shows the domain wall displacement in a CoFe sample with cross-
section of 160nm x 0.6nm for a charge current density of J = 0.1 x 1024/m?.

The grid size was taken to be 4 x 4 x 0.6nm®. Fig. 4.8(b) depicts the variation of
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Table 4.2.
Typical Device Parameters for CoFe-Pt Nanostrips (DW Motion) [49]

Parameters Value
Ferromagnet Thickness 0.6nm
Heavy Metal Thickness 3nm

Domain Wall Width 7.6nm
Saturation Magnetization, M, 700 KA/m
Spin-Hall Angle, sy 0.07
Gilbert’s Damping Factor, « 0.3
Exchange Correlation Constant, A 1 x 107" J/m

Perpendicular Magnetic Anisotropy, K, 4.8 x 10°J/m?

Effective DMI Constant, D —1.2 x 1073.J/m?

the domain wall velocity with input charge current density. The velocity increases
linearly with the current density and ultimately reaches a saturation velocity. The
graphs are in good agreement with results illustrated in [48] for the same multilayer
structure described in this section. Fig. 4.8(c) illustrates the fact that the domain wall
displacement is directly proportional to the magnitude of the programming current
(for domain wall velocities below the saturation regime).

It is worth noting here that for a given duration of the current through the heavy
metal, the domain wall displacement is directly proportional to the magnitude of the
current (considering input current range to be less than the saturation regime). The
simulations were performed in MuMax3, a GPU accelerated micromagnetic simula-

tion framework [124]. Fig. 4.9 shows the temporal motion of the DMI stabilized
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Fig. 4.9. Domain wall motion in the device due to programming
current of 25 A flowing through the HM underlayer for a duration of
1ns. The FM was taken to be 120nm in length surrounded by pinned
layers of length 20nm on either side. The domain wall is displaced
entirely from one edge of the FM to the other edge.
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Fig. 4.10. The NEGF based transport simulation framework was cali-
brated to experimental results illustrated in [16,123]. (a) Device resis-
tance increases with increase in oxide thickness, (b) The AP MTJ re-
sistance decreases with increase in the applied voltage across the MTJ.
However, for sufficiently low values of applied voltage (< 100mV’), the
AP resistance variation is extremely small.
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domain wall in the device due to a programming current flowing through the HM for
a duration of 1ns.

The tunneling junction simulation framework was calibrated to experimental re-
sults illustrated in [16,123]. For determining the MTJ resistance for a FM with
a domain wall separating two oppositely polarized magnetized domains, the NEGF
based simulator [25] was modified by considering the parallel connection of three
MTJs. The magnetization direction of the FL of the three MTJs were considered
parallel, anti-parallel and perpendicular (domain wall) to the pinned layer magneti-
zation. The length of the first two MTJs was varied according to the position of the
domain wall while the width of the third MTJ was taken to be equal to the domain
wall width. Additionally, as shown in Fig. 4.10, the resistance range of the device can
be varied by varying the oxide thickness.

Fig. 4.11 illustrates the variation of the output current provided by the axon
transistor with input current provided to the neuron. As the magnitude of input
current flowing through the heavy metal underlayer of the neuron increases, the gate
voltage, Vg, of the axon transistor decreases as the pull-down resistance of the resistive
divider network decreases. The supply voltage of the PMOS axon transistor was
taken to be 650mV. The supply voltage of the resistive divider network (0.9V") was
optimized such that the corresponding swing in the gate voltage resulted in maximum
swing of the output current. As shown in Fig. 4.11(c), the output current provided
by the axon transistor increases almost linearly with the input current to the neuron.

Micromagnetic simulations based on typical device parameters obtained experi-
mentally from magnetometric measurements of CoFe-Pt nanostrips [49] demonstrate
that the DW can be completely displaced from one edge of a FL. (dimension: 80nm x
20nm) to the other by 10.6uA charge current in a duration of 2ns, thereby resulting
in a total “write” and “reset” energy consumption of 0.1fJ. Such energy-efficient
SHE induced DW motion in magnetic multilayer devices can potentially lead to neu-
ronal device structures that would be able to achieve multi-level neuronal states and

thereby provide improved cognitive functionalities. It is worth noting here that such
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Fig. 4.11. (a) Gate voltage of axon transistor decreases with increase
in magnitude of neuron input current, (b) Output current provided by
axon transistor reduces with increase in the gate voltage, (c) Output
current provided by the axon transistor increases almost linearly with
the input current to the neuron. Hence, the neuron transfer func-
tion was taken to be linearly increasing with the input, ultimately
saturating at a maximum value.
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device structures can be also used as multi-level memory units for on-chip cache

applications [125] and as receivers for long-distance charge based interconnects [126].

4.1.3 Integrate-Fire “Spiking” Neuron

Let us begin the discussion on “spiking” neurons by noting the similarity between
the current integrating property of DW motion and the functionality of an IF “spik-
ing” neuron. Considering input spikes (current pulses) flowing through the HM layer
of an FM-HM bilayer structure at different time-steps, the DW would be displaced by
an amount proportional to the magnitude of the input current pulse at each time-step
whenever a spike is received. The IF functionality can be easily implemented in a
slightly modified device structure, shown in Fig. 4.1, where the MTJ is located at the
extreme edge of the FL and triggers an output spike (high voltage level at the output
inverter) corresponding to the time-step when the DW reaches the other edge of the
FL (analogous to neuron membrane potential crossing a particular threshold) [120].
The leak functionality can be implemented by passing a current through the HM in

the opposite direction at every time-step.

4.1.4 Stochastic “Spiking” Neuron

As mentioned previously, multi-level neuron states provided by DW motion based
spintronic devices can be replaced by binary neuron states obtained from single-
domain MTJ structures in case the time-domain magnetization variation of the mag-
net is considered. The magnetization dynamics of a nano-magnet described by Eq.

2.5 can be reformulated by simple algebraic manipulations as,

1 2 dm . PN
ta m( —(m X Heff) — a(m X m X Heff>

vt . (4.1)
+ N(a(rﬁxls)—( xm x I,))

S
Considering the device magnetization to rep(esent the nQurO\(membrane potential,

the above equation bears resemblance to LIF characteristics of a “spiking” neuron
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Fig. 4.12. (a) The membrane potential of a biological neuron inte-
grates input spikes and leaks when there is no input. It spikes when
the membrane potential crosses the threshold, (b) MTJ neuron dy-
namics due to the application of three input pulses. The in-plane
magnetization starts integrating due to the pulses and then starts
leaking once the pulse is removed. The MTJ structure was an elliptic
disk of volume 7 x 100 x 40 x 1.5nm? with saturation magnetization
of My = 1000K A/m and damping factor, a = 0.0122.

described in Eq. 3.1. The first two terms on the RHS of Eq. 4.1 represent the
leak term in the magnetization state while the last term denotes the integrating term
for an input spin current stimuli. Hence, in the presence of an input spike (current
pulse), the magnetization starts integrating (switching) towards the opposite stable
magnetization state. However, in case the pulse is removed before the entire switching
event can take place, the magnetization starts leaking back toward the original mag-
netization state. In order to reduce the critical switching current requirement and to
reduce the input “write” resistance of the neuron, we will consider SHE-induced MTJ
switching due to charge current flow through an underlying HM layer (Fig. 4.1). Fig.
4.12 illustrates the leak and integration components of the neuron dynamics for an
MTJ elliptic disk due to the application of three successive pulses.

Once the magnet switches to the opposite magnetization state, the neuron has to
be “reset” due to the occurrence of the “firing” event. Hence, in order to sense the
neuron state, the device is required to be operated in successive “read” and “write”
cycles. Each “write” cycle can correspond to a particular time-step of operation of

the spiking network. The neuron receives weighted summation of the spike currents
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Fig. 4.13. Switching probability of an elliptic IMA magnet of dimen-
sions  x 100 x 40nm? for CoFe (1.2nm) - W (2nm) MTJ in response
to an input synaptic current at 7' = 300K (assuming ~ 50% polar-
ization of spin current generated by the MTJ PL). Such a switching
behavior is a direct mapping to the stochastic spiking nature of cor-
tical neurons. (a) The switching probability characteristics shifts to
the right with increase in the barrier height. The data have been plot-
ted for Ep = (10,20,30)kgT corresponding to FL thickness values,
trr, = (0.8,1.2,1.5)nm, for pulse width, T, = 1ns (duration of the
“write” cycle), (b) The probability characteristics undergo more dis-
persion with decrease in the pulse width. The data have been plotted
for T,, = (0.2,0.5,1)ns corresponding to Ep = 20kgT. The device
parameters are mentioned in Table 4.1.

as its input. Since the magnetization dynamics of the MTJ is characterized by ther-
mal noise at non-zero temperatures (in addition to the LIF characteristics discussed
previously), the MTJ neuron functionality can be abstracted as a stochastic “spiking”
neuron observed in the cortex [89-92], where the neuron “spikes” (switches its state)
probabilistically depending on its resultant synaptic input. The variation of spiking
probability with input synaptic current is usually described by a non-linear depen-
dence [89-92], similar to the MTJ switching characteristics shown in Fig. 4.13. The
switching characteristics of the MTJ neuron in response to the input synaptic current
can be varied by changing the energy barrier (or equivalently the FL thickness) and
the duration of the synaptic current as illustrated in Fig. 4.13. Unsupervised [6]/
supervised [127] networks enabled by such probabilistic neurons will be discussed in

¢

later sections. The “write” cycle is followed by a “read” stage to determine the MTJ
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resistance (using the resistive divider driving an inverter described previously). The
MTJ is “reset” in case a spike is generated.

Note that most of the current “neuro-mimetic” algorithms are based on determin-
istic computational units - driven by the fact that the underlying CMOS hardware
used to implement such algorithms are deterministic in nature. Past research on hard-
ware implementation of spiking neurons have mainly focused on deterministic neural
models, like the Hodgkin-Huxley [78] and Leaky-Integrate-Fire [78] models. Emu-
lation of such neural characteristics require area-expensive CMOS implementations
involving more than 20 transistors [128,129] and a direct mapping of spiking neuronal
characteristics to a single nanoelectronic device is still missing. However, stochastic-
ity observed in the switching of spintronic technologies can open up new possibilities
of envisioning probabilistic neural hardware enabled by stochastic devices. Interest-
ingly, it is believed that the brain is also characterized by noisy stochastic neurons
and synapses that perform probabilistic computation [130]. Hence, exploration of
such stochastic neuromorphic platforms might open up new avenues at mimicking
the biological brain. Note that CMOS based stochastic neural models might be pos-
sible [131] but involve significant silicon area and power consumption since they do
not offer a direct mapping to the underlying neuroscience mechanisms.

The potential advantages of such a computing framework from hardware imple-
mentation perspective is manifold. They allow neural/synaptic state compression (in
turn, leading to scaled device implementations) due to the additional time-domain
encoding of information probabilistically. In other words, traditionally used multi-bit
deterministic neural/synaptic units can be now replaced by single-bit units (enabled
by stochastic magnetic devices) where the single-bit device state is updated proba-
bilistically over time. This is also advantageous from scaling perspective since it is
expected that the multi-domain spin devices might lose their multi-bit state represen-
tation property and therefore may only exhibit binary states. Note that computation
using single bit neural activation can be achieved because the loss in information due

to bit compression can be encoded in the probabilistic transitions of the single-bit unit
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observed over a period of time. Simultaneously, they allow for sub-threshold opera-
tion of devices (in order to exploit the stochastic switching regime these devices have
to be operated below the critical current requirement for deterministic switching),
thereby leading to energy consumption reductions.

This work was the first proposal on using a magnet as a “stochastic bit” (ex-
ploiting the entire range of analog probabilistic switching regime of a nanomagnet)
— behaving as a conditional random number generator producing a probabilistic out-
put pulse stream with the probability being conditioned on the magnitude of the
input stimulus and can be found in Ref. [6] for neural inference applications. There-
after, this was followed by a plethora of work exploring several neuromorphic as well
as other unconventional computing paradigms enabled by such magnetic “stochastic
bits” [7,127,132-137]. The inherent stochasticity of spin devices can also potentially
find use as on-chip temperature sensors [138] (discussed in Appendix B) and in logic
implementation [139,140]. However, note that the delay incurred in probabilistic logic
implementation using such stochastic magnets would be significantly higher than a
corresponding deterministic CMOS logic implementation since the average output of
the logic has to be observed over a large enough time window to infer the output with
maximum probability.

Let us consider the energy consumption of such a stochastic neuron. The average
neuronal energy consumption determined for the input current (~ 71pA) necessary
to switch an elliptic IMA magnet of dimensions § x 100 x 40nm? for CoFe (1.2nm) -
W (2nm) MTJ with a probability of 0.5 is evaluated to be ~ 1f.J for a “write” cycle
duration of 0.5ns [6]. In contrast, state-of-the-art designs of CMOS neurons result in
energy consumption in the range of p.J per spike (267pJ reported in Ref. [141] and
41.3pJ reported in Ref. [142]).

Proof-of-concept experiments demonstrating stochastic magnetization switching
in ferromagnet-heavy metal bilayer structures have been also demonstrated [134].
Fig. 4.14(a) depicts a 1.2um wide Hall-bar structure consisting of Ta (10nm) /
CoFeB (1.3nm) / MgO (1.5nm) / Ta (5nm) (from bottom to top) material stack
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Fig. 4.14. (a) Hall-bar structure consisting of Ta (10nm) / CoFeB
(1.3nm) / MgO (1.5nm) / Ta (5nm) (from bottom to top) mate-
rial stack [134]. Input current flows between terminals /+ and [—
while the magnetization state is detected by change in the anomalous
Hall-effect resistance measured between terminals V+ and V—, (b)
Experimental measurements of the switching probability of the Hall-
bar with variation in amplitude of the current pulse flowing through
the heavy metal underlayer for a fixed pulse width of 10ms [134].
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Fig. 4.15. Simulation study of the random telegraphic switching of
a superparamagnet of barrier height 1kgT under (a) no bias and (b)
under a bias current of 1.5uA [143].
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with perpendicular magnetic anisotropy. Input charge current flows between 7+ and
I— terminals while the final stable magnetization state is determined by the anoma-
lous Hall effect resistance between terminals V+ and V—. Note that the switching
is performed in the presence of an external in-plane magnetic field since the per-
pendicular anisotropy magnet cannot be solely switched by in-plane spins generated
by current flowing through the heavy metal underlayer. Fig. 4.14(b) represents the
experimental measurements for the switching probability of the magnetic stack with
variation in the magnitude of the current pulse being used for switching (with pulse
width being fixed at 10ms). Note that the non-linear variation of the switching prob-
ability of the magnet with the magnitude of the current pulse flowing through the
heavy metal underlayer resembles theoretical simulations depicted in Fig. 4.13. Such
proof-of-concept experiments can be easily extended to device structures where a
Tunnel Junction is used as the read-out mechanism (exhibiting 2-3 times larger resis-
tance variation in comparison to Hall-bar structures) for compatibility with peripheral
CMOS circuitry.

The barrier height of the magnet (defined as the product of the magnetic anisotropy
and the magnet volume) determines the current range that can be used for stochastic
magnet switching. As the magnet volume is scaled down, the magnitude of the current
range useful for stochastic switching reduces, thereby increasing the energy efficiency
of the device. However, in highly scaled devices having barrier height ~ 1kgT', the
magnet undergoes random telegraphic switching in the nano-second time scale. Fig.
4.15(a) depicts the magnetization dynamics of a 1kgT magnet under no bias current
flowing through the HM. The average magnetization over a long enough time window
is approximately 0. On the other hand, the dwell time in either one of the stable
states can be modulated in the presence of an external bias current (Fig. 4.15(b)).
Note that such superparamagnetic MTJs operating in the telegraphic regime has been
referred to as “p-bits” by authors in Refs. [139,140]. Experiments have demonstrated
telegraphic switching in MTJ stacks [136, 144, 145], with barrier height as low as
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~ 11kgT [146]. Scaling magnets to even lower barrier heights (< 5kgT’) might be
difficult from fabrication perspective.

The potential advantage of utilizing random telegraphic switching as the stochastic
computing element lies in its energy efficient operation. While ~ 71uA current is
required for 0.5ns to switch a 20kgT barrier height magnet with 50% probability [127],
thereby leading to an I? Rt energy consumption of ~ 1f.J, zero bias current is required
to achieve 50% switching probability in a ~ 1kgT device. Note that, in practical
device implementation, 50% switching probability may not be achieved exactly at
zero bias current due to presence of device imperfections, stray fields and magnetic
coupling between elements. Also, the device being highly sensitive to noise and
variations, require appropriate peripheral circuits for proper functionality. These
design tradeoffs will be explained in details in the succeeding sections.

We would like to conclude this section by noting the two main device structures
that will be used for the rest of this discussion - the DW motion based bilayer struc-
ture used as a “non-step” /IF “spiking” neuron and the single-domain MTJ based
device used as a stochastic “spiking” neuron. These devices will be used to imple-
ment deterministic/probabilistic STDP in multi-/single-bit synapses respectively in

the next section.

4.2 Spin-Torque Synapses
4.2.1 Spike-Timing Dependent Plasticity

The mechanism that lends cognitive capabilities to networks of interconnected
neurons is the plasticity of the synaptic junctions. For a vast majority of these
plasticity mechanisms, the synaptic conductance is modulated depending on the time-
difference between the spikes of the neurons it connects. Let us first consider the
implementation of STDP in the DW motion based device structure introduced in the
previous section. The device conductance between terminals 77 and 73 is dominated

by the MTJ conductance which varies linearly with the domain wall position. Let us
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denote the conductance of the device when the FM magnetization is P(AP) to the
PL as Gp(Gap), i.e. the domain wall is at the extreme right (left) of the FM. Thus,
for an intermediate position of the domain wall at a location x from the left-edge of

the MTJ, the device conductance between terminals 7} and 73 is given by,

Gy = GP.% + Gap. (1 - %) Gow (4.2)

where L denotes the length of the MTJ excluding the' domain wall width and Gpw
represents the conductance of the wall region. For a given time duration, it can
be shown from micromagnetic simulations that the programming current magnitude,
J, is directly proportional to the DW displacement, Az [4,119,120]. Since, AG
Ax « J, the programming current should vary in a similar manner as the variation
of the synaptic plasticity (AG variation) with spike timing difference of connecting
neurons. Such an intuitive variation of programming current variation for synaptic
plasticity implementation is again a functionality offered by the decoupled “write”
and “read” current paths of the proposed device structure. The programming current
flows through the constant HM resistance and is not impacted by the present synaptic
MTJ conductance magnitude. This results in simple peripheral circuit design as
well for implementing the desired plasticity rule. In contrast, conductance change
in traditional two terminal memristors depend on the history of the programming
pulses.

The operating mode of the synapse, i.e. the spike transmission (“read”) or the pro-
gramming (“write”) mode is determined by the control signal POST. The access tran-
sistors causes the isolation of the appropriate device terminals during “write” / “read”
operations. When the POST signal is deactivated, terminals 7 and T3 of the de-
vice are activated and spike voltage signals can be transmitted from the pre-neuron
(Vspixe) signal through the MTJ conductance to provide an equivalent amount of
synaptic current to the post-neuron circuit (connected to terminal T3). When the
POST signal is activated the “write” current path through terminals T, — T3 gets ac-
tivated and the device state is updated depending on the amount of synaptic current

being supplied by the interfaced Msrpp transistor. Note that the terminal T3 is con-
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nected to GND during “write” mode of operation of the device and is disconnected
from the post-neuron.

Let us now consider the learning mechanism in the spintronic device in more
details. The most common learning rule dictates an exponential reduction in conduc-
tance change with increase in the value of spike timing difference. The exponential
variation of current through the HM can be obtained by biasing the interfaced tran-
sistor Mgrpp in the sub-threshold regime (V,, < V; and Vs > 4Up, V;: threshold
voltage and Ur: thermal voltage) since the current flowing through the transistor
will vary exponentially with the gate to source voltage. Thus, for a linear increase
of the gate voltage (PRE signal) every time a pre-neuron spikes, the peripheral pro-
gramming transistor will be driven from cut-off to the sub-threshold saturation region
when the POST signal is activated and an appropriate programming current (mag-
nitude varying exponentially with timing difference of pre- and post-neuron spikes)
should flow through the HM. The duration of the programming current is determined
by the duration of the POST signal and the magnitude is determined by the cur-
rent supplied by the bias-point (PRE signal) of the Mgrpp transistor. It is worth
noting here that the relationship AG o Az o J is valid when the magnitude of the
programming current J remains constant during the programming duration. This
is achieved by ensuring that the rise time of the gate voltage PRE of the Mgrpp
transistor, or equivalently the STDP time constants, are much longer than the pro-
gramming time durations (duration of POST signal) such that the current flowing
through the HM of the spintronic synapse remains approximately constant. We con-
sider STDP timing constants in the range of ~ us whereas the duration of the POST
signal was 1ns. For a linearly rising gate voltage from 0.2 to 0.6V of the Msrpp
transistor (drain voltage being at 0.61), exponential current dynamics was observed
due to transistor operation in the sub-threshold saturation regime. The linearly rising
gate voltage can be easily implemented by charging a capacitor with a constant input
current source everytime a pre-neuron spikes [5]. Fig. 4.17 shows the response of

the programming circuit for the case when the programming current path is active



57

"QOURIOPIP Surmry
oyids o) 03 Surpuodserrod jusrno Surtrurersord jo junoure ojerrdordde o) sojdures €7 owirg je JUAS SULIY
uoInou-3s0d je pojearjoe ‘eusSIs [ SOJ ' OWI} B JUOAD SULIY UOINOU-91d Je PojeAI}dR oIv s[eudls dMI1dS
pue gy oy} oroym [pued puey JySLI oy} Ul pojortdop oIe SopouW JUDLIND SurtureIsord pue UOISSTUISURIY
oxids oy ], -10Ae] NH oY) YSNOIY} SOIWRUADP JUSLIND [RIJUOUOAXS 9} OAQIYDR 0O} IOPIO Ul SWISOI UOIjRINyes
proyseayjqns ut dALSpyr 109SISURIY 97} SUISRI(Q A pojuawoduul ST SO1SLIRORIRYD J([[,S ON[RA UOIJRINeS S}
MO[9( ST AJDOPA A\ (T O3 Popraoid ‘D3uryd ooueidpnpuod jo junoure o) 0} reuorprodord A73oo11p st opnjrusewr
JIOLIND Surwrurerdord o) 1ey) 0JeIISN][T SOIISLIOIORIRYD 9OIAJP O], £ PUR [ S[RUIULIO) U0OM)I( 9DURIOINPUOD
9OIABD O} Ul ‘HYy ‘eueyod ' sesned yorym ‘uonsod M o) ut ‘oyy ‘yuswede[dsip ojyeuoryrodoid & sesned ‘
‘INH Suld[repun oy} [3Snoiy) SUIMOp JUalind Jo apnjuge|y :Ajmoijse[d juepuade( Surwr]-oqidg 91§ "Siq

apoN Burwweibold

sonsuseIeyd 4dls

\ / (@) 1sod W HY
@ |_|
ano
y oV

sonsualoeIeyD 82IA8d
XV | C !

ov 4%

9poN uoissiwsuel] axids

-—
() s1ake pauuld

A._Uv wx_um>



o8

9 4.5 | < 600 é
g _ 4 3 20 €
s 2 :
5 g 3.5 > 3
S~ S 400 >
oe 3 > 10 S
) [ €
ox
=25 & g
o 2 200 09

-150 -75 0 75 150 5 10 o

Domain Wall Position (nm) Time (us)
(a) b

Fig. 4.17. (a) Linear variation of device conductance with domain wall
position, (b) Programming circuit simulation to generate the STDP
characteristics in the proposed spintronic synapse.

throughout the simulation time. The duration of the time window can be varied by
changing the capacitance value. From device simulations, it was determined that a
maximum current of ~ 80uA is required to displace the domain wall from one edge
of the FM to the other edge (for a synapse of dimensions 320nm x 20nm. Hence
the maximum amount of energy consumption involved in synapse programming is
~ 48 fJ(600mV x 80uA x 1ns) per synaptic event.

The discussion so far has been limited only to the implementation of the positive
timing window of the STDP curve. In order to implement both the timing windows,
an additional NMOS transistor is utilized in parallel to the PMOS transistor Msrpp.
Two separate learning circuitries are utilized for each of the timing windows which
consists of a capacitor being charged by a current source. Every-time the pre-neuron
spikes, the circuit for the negative timing window is reset first such that the gate
voltage of the NMOS transistor starts increasing with time. Since the drain of the
NMOS transistor is negative (in order to pass current through the HM in the oppo-
site direction for the negative timing window), the current supplied by the NMOS
transistor increases as the delay of activation of the POST signal increases. In or-
der to account for both the timing windows, the POST signal is activated after a

delay of the negative timing window in order to sample the programming current
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contributions from the learning circuits for the positive and negative timing windows.
Hence if the post-neuron spikes before the pre-neuron (negative window), the pro-
gramming path will be activated during the time duration the gate voltage of the
NMOS transistor is rising to pass a negative current through the device and thereby
reduce the device conductance. After the duration of the negative timing window,
the learning circuit for the positive timing window is reset and the POST signal is
activated during this window only for a potentiation event, i.e. post-neuron “spik-
ing” after pre-neuron. Note that the learning circuitry which consists of the capacitor
and the current source transistors can be shared across all the synapses being driven
by the same pre-neuron. Discussions of crossbar arrays of such spintronic synapses
for SNN implementations with on-chip learning capabilities will be discussed in the
next section along with more detailed timing diagrams to explain the implementa-
tion of the positive and negative timing windows. Detailed operations explaining the
implementation of synaptic plasticity is explained in Fig. 4.16.

As discussed previously, the “read” operation of the spintronic device or the synap-
tic scaling operation is a direct consequence of Kirchoff’s law. For a constant mag-
nitude of the spike signal, Vsprxp, the current flowing through the synapse gets
multiplied by the synaptic conductance. However, it is worth noting here that the
conductance of the device is a function of the applied voltage as well. The resistance
in the AP state is a much stronger function of the applied voltage than the P state
and reduces by a significant amount as the applied voltage increases. Hence, higher
the magnitude of the spike signal lower is the ratio of the maximum to the minimum
synaptic conductance achievable. Note that higher synaptic weight ratios are desir-
able for achieving higher accuracy in pattern recognition workloads. Hence in order
to maximize the discrimination between the two synaptic states, it is important to
operate the synapses at low operating voltages less than 100mV. This can be eas-
ily achieved by interfacing such synapses with magneto-metallic spin neurons (which
inherently require low currents for switching) [6] or CMOS neurons operating in the

subthreshold saturation regime [129]. Operating the synapses at lower voltages is
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more important for “non-spiking” networks since the neuron inputs need to be ana-
log in nature. Hence the voltages applied across the synapse would be different for
different inputs, thereby causing the synaptic weight to be a function of the applied
input. Thus it is imperative to operate the synapses at low voltages from a functional
perspective. Lower operating voltage assists in reducing the maximum “read” current
flowing through the device which, in turn, determines the device width. Assuming
that the main spin torque exerted on the FL due to the “read” current being from
SOT generated by the HM, the device width can be scaled up to ensure that no
DW depinning occurs for the maximum allowable magnitude of the “read” current.
The length of the synapse would be determined by the maximum number of states
required from algorithm perspective.

Table 4.3 provides a comparative analysis of our spintronic synapse (calibrated to
experiments performed in Ref. [49]) with other proposed synaptic devices. Synaptic
device structures based on emerging post-CMOS technologies [8,9,147,148] are usu-
ally two-terminal devices and do not offer de-coupled programming and read current
paths. Three terminal synaptic devices based on FeFET [149] and floating gate tran-
sistors [150] have been also proposed. However, the programming in such devices is
usually accomplished through the gate terminal and a high gate voltage is usually
applied across a very thin oxide [149,150] leading to reliability issues, in addition to
associated high power consumption. Programming is also relatively slow in such three
terminal synaptic devices [149,150]. SRAM based synapses have been also proposed
for digital CMOS based SNN design [128]. However, for implementing 1 bit of the
synapse, an 8T SRAM cell has to be used, thereby leading to significant area over-
head for implementation of a single synapse [128]. In addition, learning circuits will
involve multiple digital counters and will be more area/power consuming than our
proposed design. As shown in Table 4.3, such SOT induced plastic CoFe-Pt synapses
demonstrate programming energies per synaptic event which is an order of magnitude
lower than programming energies reported for a 4-bit SRAM synapse at 10nm tech-

nology node [128]. Interestingly, analysis performed by Rajendran et al. revealed that
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although analog neuromorphic systems based on typical emerging memristive tech-
nologies will provide area benefits at scaled technologies, power consumption would
be twice as high in comparison to its digital counterpart [128]. This is because resis-
tive technologies like GeSbTe [8,9]/Ag-Si [148] devices are usually characterized by
high threshold voltages ~ V' and involve much higher programming energies in the
range of ~ pJ and programming time durations in the range of ~ ps. Low-power on-
chip learning enabled by such spintronic synapses can potentially bridge this energy

in-efficiency gap.

4.2.2 Probabilistic Synaptic Learning

The complementary version of single-bit probabilistic STDP can be similarly im-
plemented using the single-domain MTJ-HM bilayer structures discussed previously.
While Vincent et al. explored a simplified version of probabilistic STDP where the
probability of synaptic state change was constant for positive and negative timing
windows [99], we proposed crossbar architectures of such MTJ-enabled stochastic
learning where the update probability varied exponentially with spike timing in ac-
cordance to original STDP formulations [7]. As explained in Fig. 4.18, this can be
achieved by a similar framework described for the DW motion based devices where
an additional interfaced transistor Mgsrpp, biased in the saturation regime, is driven
by a linearly increasing gate voltage every time the pre-neuron spikes [7]. Another
potential advantage of probabilistic learning is below-threshold operation of devices.
Since the update probability is maintained typically below 0.1 to maintain “non-
greedy” learning [7], operating current and voltage requirements of such devices are

significantly reduced.

4.2.3 Volatile Synaptic Learning

In order to implement frequency dependent volatile synaptic learning, a nanoelec-

tronic device is required that exhibits only two stable resistive states and undergoes
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similar fashion in mono-domain MTJ synapses by exploiting sigmoidal
stochastic device switching characteristics. In the low switching prob-
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Fig. 4.19. Frequency dependent volatile synaptic learning: A mono-
domain MTJ is characterized by two stable states separated by an en-
ergy barrier Eg. If the frequency of the input stimuli is not enough,
the MTJ is unable to cross the metastable position at 90° relative
angle between FL and PL and stabilizes back to the initial magneti-
zation state, exhibiting STP. As the stimuli frequency increases, the
MTJ exhibits a much higher probability of switching to the other
stable state, thereby exhibiting LTP [151].
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meta-stable state transitions whenever an input stimulus is received. The apparent
spintronic device that can be directly mapped to such a functionality is the mono-
domain MTJ where the spin-polarization of incoming electrons can be thought to be
analogous to the release of neurotransmitters in a biological synapse.

The STP and LTP mechanisms exhibited in the MTJ due to the spin-polarization
of the incoming electrons can be explained by the energy profile of the FL of the
MTJ. Let the angle between the FL magnetization, m, and the PL magnetization,
mp, be denoted by 6. The FL energy as a function of # has been shown in Fig.
4.19(a) where the two energy minima points (f = 0° and § = 180°) are separated by
the energy barrier, Ez. During the transition from the AP state to the P state, the
FL has to transition from 6 = 180° to § = 0°. Upon the receipt of an input stimulus,
the FL magnetization proceeds “uphill” along the energy profile (from initial point
1 to point 2 in Fig. 4.19(a)). However, since point 2 is a meta-stable state, it starts
going “downhill” to point 1, once the stimulus is removed. If the input stimulus is
not frequent enough, the FL will try to stabilize back to the AP state after each
stimulus. However, if the stimulus is frequent, the FL will not get sufficient time
to reach point 1 and ultimately will be able to overcome the energy barrier (point
3 in Fig. 4.19(a)). It is worth noting here, that on crossing the energy barrier at
6 = 90°, it becomes progressively difficult for the MTJ to exhibit STP and switch
back to the initial AP state. This is in agreement with the psychological model of
human memory where it becomes progressively difficult for the memory to “forget”
information during transition from STM to LTM. Hence, once it has crossed the en-
ergy barrier, it starts transitioning from the STP to the LTP state (point 4 in Fig.
4.19(a)). The stability of the MTJ in the LTP state is dictated by the magnitude
of the energy barrier. The lifetime of the LTP state is exponentially related to the
energy barrier [18]. For instance, for an energy barrier of 31.44k5T used in this work,
the LTP lifetime is ~ 12.4 hours while the lifetime can be extended to around ~ 7
years by engineering a barrier height of 40kgT. The lifetime can be varied by varying

the energy barrier, or equivalently, volume of the MTJ. The phenomena can be also
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explained by the leaky-integrate time-varying LLG dynamics of the magnetic FL. In
the presence of an input spike (current pulse), the magnetization starts integrating
(switching) towards the opposite stable magnetization state. However, in case the
pulse is removed before the entire switching event can take place, the magnetization
starts leaking back towards the original magnetization state. It is worth noting here
that, like traditional semiconductor memories, magnitude and duration of the input
stimulus will definitely have an impact on the STP-LTP transition of the synapse.
However, frequency of the input is a critical factor in this scenario. Even though the
total flux through the device is same, the synapse will conditionally change its state
if the frequency of the input is high. We verified that this functionality is exhibited in
MTJs by performing LLG simulations (including thermal noise at 300K) for a magnet
of dimensions 7 x 40 x 40 x 1.5nm? and parameters mentioned in Table 4.1. While
we are not considering spin-orbit torque induced switching in these simulations, the
results can be easily extended to FM-HM multilayers. 50% spin polarization strength
was considered by the PL of the MTJ. The P and AP conductance states of the MTJ
was considered to be 0.5m.S and 1mS. As shown in Fig. 4.19(b), the MTJ conduc-
tance undergoes meta-stable transitions (STP) and is not able to undergo LTP when
the time interval of the input pulses is large (6ns). However, on frequent stimula-
tions with time interval as 3ns, the device undergoes LTP transition incrementally.
Fig. 4.19(b) and (c) illustrates the competition between memory reinforcement and
memory decay in an MTJ structure that is crucial to implement STP and LTP in the
synapse.

We demonstrate simulation results to verify the STP and LTP mechanisms in an
MTJ synapse depending on the time interval between stimulations. The MTJ was
subjected to 10 stimulations, each stimulation being a current pulse of magnitude
1004 A and 1ns in duration. As shown in Fig. 4.20, the probability of LTP transi-
tion and average device conductance at the end of each stimulation increases with
decrease in the time interval between the stimulations. The dependence on stimu-

lation time interval can be further characterized by measurements corresponding to
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Fig. 4.20. (a) Stochastic LLG simulations with thermal noise per-
formed to illustrate the dependence of stimulation interval on the
probability of LTP transition for the MTJ. The MTJ was subjected
to 10 stimulations, each stimulation being a current pulse of magni-
tude 100 A and 1ns in duration. However, the time interval between
the stimulations was varied from 2ns to 8ns. While the probability
of LTP is 1 for a time interval of 2ns, it is very low for a time in-
terval of 8ns, at the end of the 10 stimulations, (b) Average MTJ
conductance plotted at the end of each stimulation. As expected, the
average conductance increases faster with decrease in the stimulation
interval. The results have been averaged over 100 LLG simulations.
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Fig. 4.21. PPF (average MTJ conductance after 2nd stimulus) and
PTP (average MTJ conductance after 10th stimulus) measurements
in an MTJ synapse with variation in the stimulation interval. The
results are in qualitative agreement to PPF and PTP measurements
performed in frog neuromuscular junctions [152,153].
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paired-pulse facilitation (PPF: synaptic plasticity increase when a second stimulus
follows a previous similar stimulus) and post-tetanic potentiation (PTP: progressive
synaptic plasticity increment when a large number of such stimuli are received suc-
cessively) [152,153]. Fig. 4.21 depicts such PPF (after 2nd stimulus) and PTP (after
10th stimulus) measurements for the MTJ synapse with variation in the stimulation
interval. The measurements closely resemble measurements performed in frog neuro-
muscular junctions [152] where PPF measurements revealed that there was a small
synaptic conductivity increase when the stimulation rate was frequent enough while
PTP measurements indicated LTP transition on frequent stimulations with a fast de-
cay in synaptic conductivity on decrement in the stimulation rate. Hence, stimulation
rate indeed plays a critical role in the MTJ synapse to determine the probability of
LTP transition.

The psychological model of STM and LTM utilizing such MTJ synapses was fur-
ther explored in a 34 x 43 memory array. The array was stimulated by a binary image
of the Purdue University logo where a set of 5 pulses (each of magnitude 100uA and
Ins in duration) was applied for each ON pixel. The snapshots of the conductance
values of the memory array after each stimulus have been shown for two different
stimulation intervals of 2.5ns and 7.5ns respectively. While the memory array at-
tempts to remember the displayed image right after stimulation, it fails to transition
to LTM for the case T' = 7.5ns and the information is eventually lost 5ns after stimu-
lation. However, information gets transferred to LTM progressively for T = 2.5ns. It
is worth noting here, that the same amount of flux is transmitted through the MTJ
in both cases. The simulation not only provides a visual depiction of the temporal
evolution of a large array of MTJ conductances as a function of stimulus but also
provides inspiration for the realization of adaptive neuromorphic systems exploiting
the concepts of STM and LTM.

There have been recent proposals of other emerging devices that can exhibit such
STP-LTP mechanisms like AgoS synapses [154] and WOy memristors [153, 155].

However, it is worth noting here, that input stimulus magnitudes are usually in the
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range of volts (1.3V in [153] and 80mV in [154]) and stimulus durations are of the
order of a few msecs (1ms in [153] and 0.5s in [154]). In contrast, similar mechanisms
can be exhibited in MTJ synapses at much lower energy consumption (by stimulus
magnitudes of a few hundred pA and duration of a few ns). We believe that this work
will stimulate proof-of-concept experiments to realize such MTJ synapses that can
potentially pave the way for future ultra-low power intelligent neuromorphic systems

capable of adaptive learning.
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5. SPIN BASED NEUROMORPHIC CIRCUITS AND
SYSTEMS

5.1 All-Spin Neural Networks for Deterministic Inference

Irrespective of the network connectivity (FCN/CNN) the main computing kernel
involved in such computing schemes can be mapped to a parallel dot-product imple-
mentation followed by neural processing. Let us begin the discussion in this section
by considering spintronic synapses to be the multi-bit DW motion based device struc-
tures driving similar IF “spiking” neurons discussed in the previous section. For this
subsection, we will assume offline learning of such networks where the synaptic weights
are pre-determined by backpropagation [84,85] and on-chip learning functionality is
not involved. Enabling on-chip intelligence in SNNs will be illustrated in the next
subsection.

The main underlying principle for implementation of the parallel-dot product com-
puting kernel is based on the very simple and intuitive application of Kirchoft’s laws.
Considering a dot-product operation between m inputs and n outputs, the compu-
tation can be represented by a crossbar array of dimension m x n (Fig. 5.1). At
each cross-point of the array, a spintronic synaptic device is present whose conduc-
tance encodes the value of the corresponding synaptic weight. Whenever a “spike”
is received at a particular input, a high voltage signal is applied along the row while
a no “spike” is represented by a low voltage signal. Assuming all the vertical lines
of the array to be at ground potential, the current flowing through each crosspoint
will be weighted by the synaptic conductance and get summed up along the column
to provide a resultant input current (representing the dot product) to the neuron for
further processing. Note that this is a major advantage of such “in-memory” comput-

ing architectures since the synaptic weights can be stored locally in the non-volatile
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Spintyonic Synapse Crossbar Array

_________________________________________

Input Voltages

Neuro\n( Outputs

Fig. 5.1. All-Spin Neural Networks: A particular layer of a neural net-
work with m inputs and n outputs can be mapped to a crossbar array
of dimension m xn. At a particular time-step, the rows corresponding
to those inputs which have spiked are asserted a HIGH voltage level
while zero voltage is applied along the rows for the “non-spiking”
inputs. Since the input “write” resistance of the magneto-metallic
spin-neurons is low, the resultant current provided by each column of
the crossbar array as input to the corresponding spin-neuron equals
approximately the dot-product of the neuron inputs and the corre-
sponding synaptic weights.

resistive states of the spintronic devices arranged in a crossbar fashion. In contrast,
CMOS based neuromorphic architectures involve significant energy consumption due
to memory leakage and memory access in order to fetch the synaptic weight values
to the neural computing core for each input spike.

In order to maintain the vertical columns at ground potential, prior work has
mostly considered interfacing the crossbar arrays with analog CMOS neurons that
can maintain the vertical columns at virtual ground [73]. Note that the basic func-
tionality that we are exploiting in the design of spintronic neuronal device structures
is also that of a programmable resistor. However, the main reason such device struc-
tures are suitable for neural as well as synaptic operations is due to the decoupled

nature of the “write” and “read” current paths. The input resistance of the device
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during the “write” operation is mainly the low HM resistance and hence the synaptic
input current from the crossbar array is not required to flow through the MTJ ox-
ide. Further such magneto-metallic spin-neurons are characterized inherently by low
switching current requirement thereby minimizing the terminal voltage drop across
such devices. This is the main reason attributed to the usage of other two termi-
nal resistive memories [8,9, 148| primarily as synaptic devices. Interfacing such two
terminal memristive crossbar arrays with two terminal memristive neurons would be
potentially difficult resulting in erroneous dot product computation since the vertical
columns of the array would be no longer maintained at ground potential (due to the
high threshold voltages and resistances of such memory technologies). In addition to
providing the flexibility of implementing neuronal and synaptic devices by the same
technology, spintronic neurons enable low power operation of the spintronic crossbar
array due to low switching current requirements of such magneto-metallic devices. In
contrast, analog CMOS neuron implementations typically require the crossbar arrays
to be run at a much higher voltage.

Let us now consider the operation of the crossbar array in more details. Each
time-step of SNN operation consists of a neuron “write” cycle followed by the “read”
and “reset” cycles. In order to implement bipolar weights, two rows (V;, and V;_) are
used for each input V;. When the input V; assumes a logic value of ‘0’(no “spike”),
then ‘0’ voltage level is applied to both the inputs. However, when V; assumes a
logic value of ‘1’(“spike”), then voltage V, (less than 100mV’) is applied to the row
corresponding to V;, and —V/, is applied to the row corresponding to V;_. If the weight
w; ; for the j-th neuron and input V; is positive, then the conductance corresponding
to Vi is programmed to G;;+ = w;;.G, (G, is the mapped conductance for unity
synaptic weight), while the conductance, G; j_ corresponding to V;_ is programmed
to high OFF resistive state and vice versa. Let us consider the input conductance of
the spintronic neuron during the “write” operation (mainly the HM conductance of
the neuron) to be G4 and the voltage drop across the neuron to be V;. Equating the

current supplied by the resistive synapses to the current flowing through the neuron,
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we get Z iit-(Vig = Vi) + Gij—.(Vie = Vi) = G4.V; which indicates that the net
synapticlc rrent supplied to the spintronic neuron is given by,
I, = G,.V;
Gs. ;?Gi,j-i-"/i—%- +Gij-.Vio)
Gy % 2 i+ Gijo) (5.1)
Zi:({ci,jJr-ViJr +Gij-Vi-)
U 14y

As mentioned previously, it is imperative to run spintronic crossbar arrays at low

operating voltages from functionality viewpoint. However, lower the operating volt-
age, higher is the range of synaptic conductances (which can be appropriately tuned
by choosing a proper value of MTJ oxide thickness) required to ensure sufficient cur-
rent requirement for DW displacement from one edge to another in the FM of the
spintronic neurons. Hence lower crossbar operating voltage results in the increment
of the ratio, v = Y (G, j+ +Gij—)/Gs, which in turn, results in non-ideal operation of
the neuron. In orcie to ensure that v << 1 for a given crossbar operating voltage, the
duration of the “write” cycle can be adjusted accordingly since the current required
to achieve a specific DW displacement scales linearly with the duration of the “write”
current. The output signals of the inverters from a particular array can be stored in
a latch and used to communicate input signals to the fan-out neurons being imple-
mented in the crossbar array for the succeeding stage. Note that the latched neuron
outputs can be also used to drive input rows of the same crossbar array (inputs for
the next time-step) to implement recurrent neuron connections in RNN architectures.

Ref. [120] evaluated the circuit-level performance of such an All-Spin SNN based
design against a baseline CMOS implementation at 45nm technology node for a
benchmark digit recognition problem. A hybrid device-circuit-algorithm co-simulation
framework was utilized for this work. Micro-magnetic simulations to model the do-
main wall dynamics in presence of charge current input through the HM were per-
formed in MuMax3 [124]. Subsequently, a behavioral model of the device was em-

ployed to develop a SPICE model for the neurocomputing fabric. The performance
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Fig. 5.2. (a) Recognition accuracy over the testing set of the MNIST
dataset as a function of the time-steps of simulation, (b) Degrada-
tion in recognition accuracy with variation in the MTJ resistances
(expressed as % o variation).

of this design was evaluated for a standard digit recognition problem on the MNIST
dataset [156]. The Deep Spiking Neural Network architecture (28x28-12c¢5-2s-64c5-
2s-100) used for this work, consists of two convolution layers and two subsampling
layers arranged alternatively. The training is based on the work performed by authors
in Ref. [85]. Our design falls into the category of offline learning where the synaptic
weights are learnt off-chip and are programmed to corresponding resistive states of
the spintronic synapses once the training is accomplished.

It is imperative to determine the optimum bit discretization necessary in the neu-
rons and synapses of the network in order to minimize the costs for a corresponding
hardware implementation. Insignificant degradation in classification accuracy was
observed for 4-bit (16 levels) discretization in the synapses and 2-bit (4 levels) dis-
cretization in the neurons. Considering that the DW location can be displaced and
sensed over a minimum distance of 20nm, the length of the synapse was taken to be
320nm, while the length of the neuron was 80nm. The neuron width was fixed at
20nm.

As mentioned previously, the optimum “write” cycle duration for the spintronic

neurons need to be adjusted in order to minimize the ratio 7. It was observed that
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Fig. 5.3. Energy consumption (averaged per output neuron per output
map per time-step) for different layers of the spintronic network.

for a “write” cycle duration of 2ns, there was insignificant impact on the network
performance. Fig. 5.2(a) shows the classification accuracy as a function of the time-
steps for simulation of the network. An accuracy of 98.5% (measured over the entire
testing set) was achieved at the end of 20 time-steps including the effect of such
non-idealities.

Variation of DW pinning can be also overcome by suitably having notches along
the length of the magnet [157]. However, impact of variation in the MTJ resistances
on the performance of the network is an important point of consideration. Fig. 5.2(b)
demonstrates that the network performs robustly in terms of classification accuracy,
even with 25% o variation in the MTJ resistances. This is mainly attributed to the
error-resilient and self-adaptive nature of such neural algorithms.

An intuitive understanding of the power benefits that could be potentially offered
by such spintronic neural network designs can be obtained from device-level simu-
lations. As mentioned previously, micromagnetic simulations reveal that ~ 10.6uA

current is required to displace the DW from one edge of the neuron to another (di-
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mension 80nm X 20nm) in a duration of 2ns. The current flows through the FM-HM
bilayer resistance resulting in an energy consumption of 0.05fJ (I?Rt energy con-
sumption). In addition, the spintronic synapses providing input currents to each
neuron are operated at ultra-low terminal voltages of 100mV. Fig. 5.3 depicts the
energy consumption (averaged per output neuron per output map per time-step) for
different layers of the spintronic network. The “Synapse” and “Neuron” components
involve the average energy consumption in the spintronic crossbar array and the
interfaced spintronic neurons respectively during the “write” duration of 2ns. Subse-
quently, the “read” circuit for the neuron is activated. An oxide thickness of 2nm was
considered for the neuron MTJ and the “Reference” MTJ to minimize the magnitude
of the average “read” current to 31.7nA. The output of the resistive divider drives
an inverter, whose output is stored in a latch, resulting in a pipelined design. In case
a spike is generated, the neuron is reset by passing a current through the HM in the
opposite direction for a duration of 1ns. The “Read & Reset” component includes the
energy consumption involved in the neuron resistive divider, inverter and the latch
design. As expected, the “Synapse” energy consumption increases significantly as the
number of fan-in-synapses per neuron start increasing progressively along the layers
of the network (C1 — C2 — F1— F2). The “Neuron” energy component is relatively
lower due to ultra-low current switching of magneto-metallic spintronic neurons which
in-turn enables the ultra-low voltage operation of the spintronic crossbar array. The
“Synapse” and “Neuron” energy components are lower for the sub-sampling layer due
to the less-power intensive averaging operation over a 2 x 2 subsampling window.

A corresponding implementation of the network architecture was synthesized in
commercial 45nm CMOS technology for comparative purposes. The design consisted
of input multiplexers to transmit synaptic weights to the output only if spikes are
received. Subsequently the multiplexer outputs were added up to generate the re-
sultant contribution to the neuron membrane potential per time-step. A comparator
was utilized to compare the membrane potential value to a specific threshold and de-

termine the corresponding spiking activity. A pipelined design with power-gating (to
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exploit the advantage of event-driven operation of the network) was considered with
the same bit-discretization mentioned previously. Simulation studies indicate that
the proposed spintronic design can potentially achieve 250X improvement in energy
consumption and 56x improvement in EDP over the baseline CMOS implementa-
tion. Note that this is a circuit level comparison work. Memory access overhead for
CMOS based architectures would further increase the energy benefits offered by such
All-Spin SNN designs.

5.2 Deterministic STDP Learning

For clarity, the learning circuitry for SNN was omitted in the above discussion. To
better understand device, circuit and system level efficiencies with spin-synapses in
the context of learning, let us consider the STDP-enabled single layer SNNs discussed
in Section 3.4. The network functionality can be mapped to a crossbar array as shown
in Fig. 5.4 where spike signals transmitted along the rows from the pre-neurons get
summed up along the columns to the post-neurons. The spintronic synapses are
programmed only when the post-neuron spikes (with a delay of the negative timing
window) and are switched off from the post-neuron circuit during the programming
phase using the POST control signal. Each cross-point consists of a spin-synapse
interfaced with access transistors and Msrpp transistor. An additional programming
transistor is also present at each cross-point for the negative timing window but is
not shown in Fig. 5.4 for illustrative purposes. Let us consider the circuit primitives
and its operation for STDP learning with more details next.

The circuit involved in generating the PRE signal is discussed in this section.
Fig. 5.5 shows the sub-threshold CMOS circuit used to generate the PRE signal for
pre-neuron A connecting to post-neurons C and D. We discuss the mechanism for
generating the signal for the positive time window. A similar design can be used to
generate the programming current for the negative time window. The circuit was

originally proposed in [158] as a reset and discharge synapse. However it failed to
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Fig. 5.5. Sub-threshold CMOS circuit utilized for generating the pro-
gramming current involved in STDP learning (circuit for positive time
window shown) for pre-neuron A connecting to post-neurons C and

D.

emulate the post-synaptic dynamics of biological synapses as the circuit response
depends only on the previous input spike [159]. In this work, we employ this circuit
to implement STDP learning in our proposed device.

The transistor M, acts as a switch. When the positive time window starts, the
transistor M, receives a low-active pulse and gets turned ON. As a result, the node
PRE, A is set to the bias voltage V,,. After the transistor M, is switched OFF,
the transistor M;, operating in sub-threshold saturation regime, provides a constant
current to linearly charge the capacitor C, at a rate é—tp Hence, if the transistor Msrpp
is operated in sub-threshold saturation, exponential dynamics will be observed in the
output current Isrpp. The current flowing through transistor Msrpp for an input
pulse at time ¢t = t,, is given by,

—UpCp(t—tn)

Isrpp = Ioe ™ (5.2)
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where, k is the sub-threshold slope factor and Ur is the thermal voltage. Hence,
whenever the pre-neuron spikes, the circuits for generating the STDP characteristics
for the negative and positive time windows are activated sequentially. When learning
starts for the positive timing window, a short pulse is applied to the gate of the
transistor M, so that the circuit is reset and the node PRE, A is charged to V,,.
When the post-neuron does not spike, the transistor Mgrpp is in cut-off since the
POST signal is deactivated and the access transistors for programming are turned
OFF. Once the post-neuron spikes, the programming current path gets activated and
the transistor Msrpp switches to the sub-threshold saturation regime and transmits
the necessary amount of programming current through the device. Unsupervised
multi-bit STDP learning with MTJ “spiking” neurons has been demonstrated in
Ref. [6].

The operation is discussed in details in Fig. 5.6. Let us first describe the case
for the positive timing window, i.e. post-neuron spiking after the pre-neuron (Fig.
5.6(a)). (—A)/(+A) represents the duration during which the learning circuits for
the negative/positive timing windows are activated sequentially for the correspond-
ing pre-neuronal firing event. The control signal POST is activated after a duration
(A) the post-neuron spikes. As described in the figure, magnitude of the program-
ming pulse is determined by the current being passed by the programming transistor
Msrpp (value of the PRE voltage when the POST signal is active) and the duration
is determined by the duration of the POST signal. Since the PRE signal varies in
~ s time scale and does not almost change during the programming time dura-
tion (~ ms time scale), it ensures that the programming current magnitude is almost
constant and is equal to the sampled value from the exponential STDP dynamics cor-
responding to the appropriate spike timing difference. As mentioned previously, since
the programming current magnitude is directly proportional to the amount of change
in the MTJ conductance, exponential STDP characteristics is implemented in the
spintronic device. Similar discussions are valid for the negative timing window (Fig.

5.6(b)) where the post-neuron spikes before the pre-neuron. In this case, the POST
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signal is activated during the negative window (—A) and the NMOS transistor passes
an appropriate amount of programming current in the opposite direction through the
device. Circuit-level simulations confirming the proposal have been demonstrated in
Fig. 4.17(b).

In order to simulate the SNN implementation based on the proposed spintronic
synapse, a hierarchical simulation framework was utilized. Device-level simulations of
the spin-orbit torque induced domain wall motion was performed in MuMax. A be-
havioral model of the device was developed for subsequent simulation of such synapses
interfaced with CMOS neurons and learning circuits. The circuit level simulations
were performed in HSPICE using a standard cell library in commercial 45nm CMOS
technology. The device and circuit simulations were utilized to generate models of
the plastic synapses and spiking neurons to perform system level simulations of a
network of spiking neurons using Brian simulator [160].

The input images (28 x 28 pixels) used for training was taken from the MNIST
dataset [156]. The images were rate encoded and an array of 100 excitatory neurons
was used to simulate the self-learning functionality of synapses in SNNs. Synapses
present at the crosspoints joining the inputs to the excitatory neurons can be pro-
grammed depending on the temporal spiking patterns of the pre- and post-neuron.
The inhibitory functionality in such networks can be implemented by an additional
row in the crossbar array that is driven by a negative voltage. The row should be
activated whenever any of the neurons generate an output spike to prevent multiple
neurons from learning the same pattern.

Fig. 5.7 (a)-(b) depicts synapse weights plotted in 28 x 28 array (same as input
images) for each of the 100 neurons used for the recognition purpose. Initially all
the weights are random. However, as learning progresses the synapses of each neuron
start learning generic representations of the various digits. Thus a particular neuron
becomes more sensitive to the digit whose generic representation is being stored in its
synapse weights since it will fire more if input spike trains are received at the pixel

locations corresponding to high synaptic weights. The various system level simulation
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parameters have been outlined in Table 5.1. The parameters were tuned to achieve
learning ability in the synapses. The units of the time constants are with respect
to the duration of each timestep in the simulation. For this work, the circuits were
designed to operate in ~ us time scale as mentioned before. It is worth noting here
that the manner in which the time constants and other parameters can be tuned in
the circuit level simulations have been discussed in the previous section. The numbers

in braces represent the value corresponding to the inhibitory neuron.

Table 5.1.
Spiking Neural Network Parameters for STDP Learning

Parameters Value

No. of excitatory/inhibitory neurons 100

Probability of input spike per timestep 0 — 0.06375

Number of timesteps per image 350
STDP time constants 100(1)
Neuron time constants 10(10)

Post-synaptic current time constants 1(2)

Additionally, we would like to mention here, that such neuromorphic systems are
significantly robust to imprecision due to device mismatch, variability and noise effects
due to the adaptive nature of such computations involving plasticity, homeostasis and
feedback mechanisms [110]. Further, authors in Ref. [161] demonstrate the immunity
of such single layer SNNs based on crossbar arrays of resistive synapses with lateral
inhibition and homeostasis effects to variations and non-idealities in typical resistive
synaptic devices and CMOS neuron circuits. In particular, we performed an analysis
of the impact of variations in the oxide thickness/MTJ synaptic conductances on the

classification accuracy of the system. Almost no degradation in classification accuracy
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Fig. 5.7. (a) SNN topology used for digit recognition arranged in a
crossbar array fashion, (b) Initial random synapse weights plotted in a
28x 28 array for 100 neurons in the excitatory layer, (c) Representative
digit patterns start getting stored in the synapse weights for each
neuron after 1000 learning epochs.

was observed for the 100-neuron network even with 25% variation in the resistances
of the spintronic synapses.

Interested readers are referred to Ref. [162] for a discussion on the practical im-
plementation of arrays of such spintronic devices interfaced with CMOS transistors.
The size limitation of crossbar arrays of such spintronic devices is determined by the
driving capabilities of rows of the array by input voltages in the presence of para-
sitics. In addition, sneak paths also become a potential issue for large crossbar arrays
in order to implement on-chip learning. These are concerns that are equally valid
for spin-devices and other memristive technologies, in general. However, it is worth
noting here that computation occurring in a large crossbar can be distributed easily
among smaller crossbar arrays by simply replacing the large unit by an equivalent

number of smaller crossbar units using peripheral control circuitry [163].
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5.3 All-Spin Neural Networks for Stochastic Inference

While the above discussion in Section 5.1 considered offline trained Deep ANNs
driven by deterministic DW motion based IF “spiking” neurons, similar SNN net-
works can be trained for stochastic “spiking” neurons enabled by single-domain MTJs.
Ref. [127] explored an approach of training deep ANNs with sigmoid transfer function
neurons using backpropagation and subsequently utilizing the offline trained weights
to implement an SNN where the neurons generate output spikes at each time-step us-
ing sigmoid probability distribution functions. The advantages of such an approach
is driven solely by the fact that complex neural operations (like sigmoid transfer
functions) required to achieve high recognition accuracies can be now implemented
by simple device structures consisting of mono-domain magnets by leveraging the
underlying device stochasticity. The details of the algorithm and device-circuit prim-
itives for designing such networks enabled by stochastic neurons are provided next.

Let us consider an ANN neural unit that receives an input I through a synapse of
weight w. The neuron generates an output y by passing the weighted input through

a non-linearity f(.). We will consider the function f(.) to be the sigmoid function

( f(x) =5 +i71) ﬁn this work, due to its popularity in traditional ANN networks for

achieving high dccuracy in complex recognition problems [164] along with the possi-
bility of enabling this functionality by M'TJ devices, as will be explained next. Hence,
for the ANN neuron, the corresponding output y will be given by,

1

= 5.3
1 +ewl (5:3)

Y

It is worth noting here that the input I € [0, 1], since it represents the inputs coming
from normalized values of external stimuli (image pixels for image recognition sys-
tems) or from other neuron outputs in previous layers (which lie in the range [0, 1]
due to the limited range of sigmoid function).

Next, let us describe the proposed conversion process from ANN to SNN (Fig.
5.8(a)). In the spiking mode of communication, the input I can be rate encoded as

a Poisson spike train I(¢). The train consists of a sufficiently large number of time-
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steps, T, where the probability of generating a spike at each time-step equals the
input /. It can be proved that the resulting process is a homogeneous (probability of
spike generation constant over time-steps) Poisson process where the average firing
rate, i.e. average number of spikes generated over the entire train duration, is given
by [165], N

< I(t) >= 2f1t) _ I (5.4)

N

The spiking neuron processes the infjut spikes and generates a set of output spikes /().
The response of the neuron is determined by its average firing activity over the Ty
time-steps, < y(t) >. Note that such input encoding and neuron output measurement
schemes are standard norms for SNNs and is not an additional requirement /overhead
for our proposal. Our proposal concerns the manner in which the neuron will process
and generate the output spike train y(¢). In order to achieve near lossless (with
respect to accuracy) conversion from ANN to SNN, < y(¢) > should approximate y
reasonably well.

Our conversion mechanism follows from the very intuitive observation that the
analog activation output of the ANN neuron in the range [0, 1] can be mapped to the
probability of spike generation, p(t), of the spiking neuron at each time-step. Hence,
at each time-step ¢, the neuron receives the input spike train, I (), and generates an
output spike with probability p(t) = f(I(t)).

Now, let us provide a mathematical analysis to justify that such a mapping is
able to approximate the original ANN neural unit to a reasonable degree of precision.
It follows from Eq. 5.4, that the spike train consists of .7 number of spiking
events and (1 — I).Ty number of non-spiking events, on the average, over the entire
duration of time-steps, T. The output spike train is generated according to an
inhomogeneous Poisson process [165] (spike generation probability varies over time),

where the probability of spike generation is equal to p(¢|I(t) = 1) = whenever

1
1+e~w
there is an input spike and p(¢|1(¢) = 0) = ﬁ

= % in the case of no spike. Hence, the
inhomogeneous Poisson process can be decomposed into two homogeneous Poisson

processes corresponding to spiking (of duration I.Ty time-steps) and non-spiking
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events (of duration (1 — I).Ty time-steps). Hence, the average firing activity of the
neuron will be given by the sum of the firing activities of the individual Poisson
processes averaged over the total number of time-steps, Ty. Following Eq. 5.4, we

can state that the average firing rate of the output spike train, y(t), is given by,

< 3(t) > = pltlT(t) = 1)1 + p(t| (1) = 0).(1 — )
I 1-1

T lqew N 14 e (5.5)

1
_1+1 1—e W
2 2\ 14ew

Closer inspection of the above equation reveals that < y(¢) > is a linear approximation

of the sigmoid function in the range I € [0,1]. Fig. 5.8(b) and (c) represents a plot
of the outputs, y (ANN) and < y(t) > (SNN) with variation in the input I and for
synaptic weight magnitudes w = 1 and w = 3 respectively (3 being the maximum
weight for the synapses in our network). Note that the negative range for I represents
the case for negative synaptic weight. As can be concluded from the figure, the error
between the functions is almost negligible for w = 1 and increases slightly as the
magnitude of the weight increases. However, even for the maximum weight w = 3,
the error remains bounded below reasonably low values over the entire approximation
range. This fact is reinstated by Fig. 5.8(d) which represents a contour plot of the
error magnitude between the two expressions y and < y(¢) > with variation in both
I and w. Note that since we are trying to encode information in the analog sigmoid
output of the neural units, weights obtained as a result of backpropagation training
typically remain bounded below values that ensure that the neuron outputs do not
fall in the saturation regime of the sigmoid function. As can be observed from Fig.
5.8(c), for a weight magnitude of 3, almost the entire range of the sigmoid function
is being used and hence it is expected that synaptic weights should converge to such
limited ranges after the training process. Additionally neural nets, being inspired
from computational mechanisms observed in the biological brain, are characterized

by an inherent tolerance to variations in the neural and synaptic units and hence such
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Fig. 5.9. (a) Switching probability characteristics of an MTJ of vol-

ume T x 100 x 40 x 1.2nm* at T = 300K re-plotted for T,, = 0.5ns

as a function of the input synaptic current, I,,, normalized by factor
I, = 10 A. The data closely resembles a sigmoid probability density
function.

minor variation between y (ANN) and < y(¢) > (SNN) is not expected to impact the
network performance.

The device simulation parameters have been outlined in Table. 4.1 and are based
on experimental measurements performed in Ref. [118]. A barrier height of 20kgT was
chosen since the MTJ is being used as a computing element in this application. Fig.
4.13 depicts the switching probability of the MTJ with variation in the magnitude of
input current. The probability switching characteristics undergoes more dispersion
with decrease in the duration of the input “write” current, T,,. While more disper-
sion in the characteristics results in increased robustness of the system in presence
of variations, power consumption of the network increases. These tradeoffs will be
discussed in details later. In order to map such switching probability characteristics
of the MTJ to the sigmoid probability function for spike generation discussed in the
previous section, the MTJ is considered to be driven by two input currents, namely
Itias and Igy,. The current Iy, provides the necessary current to the MTJ to bias
it at a probability of 0.5. The current I, is the resultant input synaptic current

to the neuron. Hence, in absence of I, the MTJ has 50% probability of switching
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similar to the sigmoid characteristics. Fig. 5.9 illustrates the switching probability
characteristics of the MTJ with variation in input synaptic current, [y, (normalized
by a factor, I,, which encodes the degree of dispersion of the MTJ switching proba-
bility characteristics). The switching characteristics match the sigmoid variation to
a reasonable degree of approximation. Also, note that such neuromorphic algorithms
are highly error-resilient and such small approximations in the neuron output will not
cause significant changes in the network performance. We will validate our claims by
presenting results for a convolutional neural network in the next section. The map-
ping of the normalization factor in the input synaptic current, I,, to the hardware
implementation of a synaptic crossbar array will be discussed later.

In order to implement a neural network, neurons need to be interfaced with
synapses. The basic computing core in any neural network architecture, even for
deep networks, consists of a dot product implementation where each of the neural
inputs are initially multiplied by synaptic weights, and are subsequently processed
by the neuron. Such a functionality can be directly mapped to a crossbar architec-
ture, as discussed in an earlier section. The operation of the crossbar array is exactly
similar as described in the previous section (along with the associated terminologies)
except for the fact that the MTJ receives bias current [j,s along with the current
from the crossbar array. Equating the current supplied by the resistive synapses along
with the input bias current, Iy, to the current flowing through the neuron, we get
Y (Gijr-(Vie = Vi) + Gijo.(Vie = Vi) + Lpias = Gs.Vy which indicates that the net

i

synaptic current supplied to the spintronic neuron is given by,
Gs. (Z?Gi,jJr-V;Jr + G- Vio) + [bias>
li = & + ; ij+r T Gij))
;?Gi,ﬂ-vw + G j— Vi) + Dyias

\ L+7
Note that the resultant weighted synaptic input is scaled by a factor G,.V, (in the

(5.6)

current domain). Hence, in order to map the functionality to the sigmoid probability

characteristics, the scaling factor in the MTJ switching characteristics discussed pre-
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viously, I, has to be equal to G,.V,. In other words, the resultant synaptic current
being supplied by the crossbar array needs to be adjusted according to the disper-
sion of the switching probability characteristics of the MTJ in order to maintain
consistency with the computational model described previously.

As mentioned in the previous subsection, the input resistance of the neuronal
device has to be sufficiently low in order to ensure that most of the input voltage drops
across the resistive synapses and the voltage drop across the neurons are negligible,
i.e. to minimize the effect of . Hence, a sufficient value of the spike voltage, V,, (which
dictates the value of G,), has to be maintained to ensure that v << 1. Duration of
the input “write” current also has an impact on the choice of V, and G,. With more
duration of input current and hence, less dispersion in the switching characteristics,
I, decreases resulting in decrease of GG, and hence 7. However, robustness of the
system to variations in the bias current and synaptic conductances suffer. These
design space explorations will be considered in details next. Operation of each time-
step of the SNN takes place through three cycles. In the first phase or the “write”
cycle, the MTJ neuron receives the bias current and the input synaptic current from
the crossbar array and switches probabilistically. Note that the bias current can be
provided by an additional row of the crossbar array consisting of PMOS transistors
biased in saturation. After the “write” cycle, the “read” terminals of the neuron
are activated. As mentioned before, the “read” circuit consists of a resistive divider
network with a “Reference” MTJ (whose state is fixed to the AP state). Hence a
spike (logic value ‘1) is generated at the output inverter in case the MTJ switches to
the P state. In case a spike is generated, the MTJ is switched back to the AP state
by passing a sufficiently high magnitude of current through the HM in the opposite
direction during a subsequent “reset” phase to ensure normal MTJ operation during
the next time-step.

The performance of the network was assessed for a deep learning network architec-
ture [164] (28x28-6¢5-2s-12¢5-2s-100) on a standard digit recognition problem based
on the MNIST dataset [156].The network is trained using 60,000 training samples
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based on the methodology outlined in Ref. [164]. Once the training is accomplished,
the learnt weights are mapped to the synaptic conductances using the scheme men-
tioned in the previous section. All recognition accuracies mentioned in this text are
with respect to the 10,000 test samples in the dataset. The baseline ANN network was
trained with an accuracy of 98.56% over the testing set. During the operation of the
converted SNN, the image pixels are converted to Poisson spike trains where the av-
erage number of spikes generated over a given time window encode the corresponding
pixel intensity.

Note that a convolutional architecture is being used in this work since it has
achieved high recognition accuracies in a large number of complex datasets. Further
the architecture only dictates the manner in which the neurons and synapses are
connected to form the network. However, our proposal holds true for any neural net-
work topology since the basic computational elements and their mapping to crossbar
architectures remain equally valid. We would also like to point out that improved
training algorithms/network architectures to enhance the performance of the network
in terms of recognition accuracy can be performed. However, the goal of this work is
to demonstrate the applicability of the MTJ as a probabilistic spiking neuron that can
potentially enable near-lossless (with respect to classification accuracy), low-power,
low latency SNNs converted from trained ANNs.

Let us first describe the impact of “write” cycle duration on the performance of the
network. With increase in the duration of the “write” cycle, the switching probability
characteristics become sharper. Hence the synaptic current requirement from the
crossbar array reduces. Further, the bias current magnitude also reduces since spin-
orbit torque is exerted on the magnet for a longer duration of time. Hence, power
consumption of the network is expected to reduce with increase in the magnitude of
the “write” cycle duration. However, this occurs at the expense of delay since the
network has to be operated over a number of time-steps and each time-step duration

is directly related to the duration of the “write” cycle.



--Tw=0.2ns,
--Tw=0.2ns, Vo=1.0V 1
-Tw=0.5ns, Vo=0.8V
--Tw=0.5ns, Vo=0.9V J
-Tw=0.5ns, Vo=1.0V
--Tw=1.0ns, Vo=0.8V
--Tw=1.0ns, Vo=0.9V
--Tw=1.0ns, Vo=1.0V

—_—
-
-

Recognition Accuracy (%

% 100 200 300 400 500
Time-Steps
N (a)
X 98
c>)~
o 96f
—
-]
8 of -
< 77/
c ,:' —Tw=0.5ns, Vo=0.8V
L2 92t --Tw=0.5ns, V0=0.9V |
c - Tw=0.5ns, Vo=1.0V
4 90l --Tw=1.0ns, Vo=0.8V |
8 --Tw=1.0ns, Vo=0.9V
@ .. - Tw=1.0ns, Vo=1.0V
88 100 200 300 400 500
Time-Steps
(b)

Fig. 5.10. (a) Recognition accuracy as a function of time-steps with
variation in the “write” cycle duration (73, = 0.2,0.5 and 1ns) and
crossbar supply voltage (V, = 0.8,0.9 and 1V'), (b) Zoomed-in depic-
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voltage.
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However, decrease in the “write” cycle duration, i.e. increase in the dispersion
of the probability switching characteristics of the MTJ will result in increase of the
factor v, as discussed previously, thereby leading to non-ideal network operation. Fig.
5.10 depicts the classification accuracy as a function of the time-steps of simulation
of the SNN with varying “write” cycle durations (7)), namely 0.2, 0.5 and 1ns. As
expected, for a fixed supply voltage, classification accuracy improves with increase
in the “write” cycle duration. While the network accuracy reaches 97.6% and 96.4%
for T, = 1ns and 0.5ns respectively, it saturates at 83% for T,, = 0.2ns at the end
of 500 time-steps. An interesting point to note is the low latency in the performance
of the network. The accuracy reaches 96.3% and 93.8% at the end of just 20 time-
steps for T, = 1ns and 0.5ns respectively. This is a crucial advantage offered by our
ANN-SNN conversion scheme since although SNN implementations are ideal for low-
power neural network implementations, they incur penalty in terms of the delay since
the network outputs need to be observed over a number of time-steps to generate
sufficient confidence in the inference process. With our proposed conversion scheme,
network accuracies close to the original trained ANN baseline can be achieved only
within a few tens of time-steps of the spiking network operation.

Scaling the supply voltage, in turn, results in increment of the factor v, thereby
leading to more errors in the network performance. However, it is worth noting here
that the drop in recognition accuracy is minimal for sufficiently large durations of the
“write” cycle. For instance, the accuracy drop is insignificant (97.1% and 94.6% for
T, = 1ns and 0.5ns respectively) even with the crossbar supply voltage being scaled
down to 0.8V. The key point we would like to stress from this section is that by main-
taining a sufficient duration of the “write” cycle, it is possible to achieve near-lossless
SNN operation with minimal delay coupled with the possibilities of voltage scaling
for reduction in power consumption. It is also worth noting here that the analysis
performed in this section includes non-idealities arising from hardware mapping of

the SNN to a synaptic resistive crossbar array interfaced with MTJ neurons (includ-
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Fig. 5.11. Average recognition accuracy (measured over 50 indepen-
dent Monte Carlo simulations for each of the 10,000 test images in
the dataset) with variations (expressed as % o variation) in (a) resis-
tances in the synaptic crossbar array and, (b) input bias current to
the MTJ. The results have been measured at the end of 50 time-steps
of SNN operation for crossbar supply voltage, V, = 1V.

ing non-ideality factor v and deviations of M'TJ switching probability characteristics
from ideal sigmoid function).

Although increase in the “write” cycle duration helps to reduce the non-ideality in
the network (by reduction of factor ), it is associated with increased performance loss
in presence of random variations due to sharper probability switching characteristics
of the MTJ. In this section we will investigate the impact of random variations in
the synaptic resistances of the crossbar array along with variations in the input bias
current of the MTJ (Fig. 5.11). The average classification accuracy was determined
by performing 50 independent Monte Carlo simulations of the network for each of the
10,000 test images in the dataset.

Fig. 5.11(a) depicts the average classification accuracy of the network with vari-
ations in the synaptic resistances of the crossbar array. Since the range of synaptic
resistances are adjusted according to the dispersion of the MTJ switching probability
characteristics (through the relation I, = V.G, discussed previously), the impact of
synaptic resistance variation is expected to be similar for different “write” cycle dura-
tions. An additional point to note is that, even with o = 20% variation in the synaptic

resistances, only 3% (T, = 1ns) and 3.3% (T, = 0.5ns) degradation in classification
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accuracy was observed with respect to the original network (without variations) at
the end of 50 time-steps. Such robustness to variations in the input synaptic current
can be attributed to the error-resiliency of such neuromorphic computing systems.

However, the input bias current of the MTJ is a more critical parameter (with
respect to variations) that ensures proper functionality of the network. Variations
in the input bias current can skew the probabilistic MTJ operation in one direction,
thereby causing degradation in recognition accuracy. Hence, sharper M'TJ probability
switching characteristics would result in more errors during the recognition process
with variations in the input bias current. Fig. 5.11(b) illustrates that while 12.8%
reduction in accuracy was observed for o = 20% over the ideal network at the end
of 50 time-steps for T,, = 1ns, only 7.6% degradation was observed for T,, = 0.5ns.
These results signify the fact that it is crucial to choose an optimal value of “write”
cycle duration that simultaneously achieves near-lossless SNN conversion along with
robustness to random variations in the input bias and synaptic currents. Note that
a precise value of input bias current can be maintained by utilizing CMOS reference
current generators that would exhibit ¢ variations much less than 20%. However,
impact on network performance with such high degree of variations was performed to
establish that the network is highly error-resilient along with the fact that a judicious
choice of the “write” cycle duration can enable robustness of the network even to
large variations in the more sensitive M'TJ input bias current.

Additionally, we considered the impact of variation in the chip operating temper-
ature by running a worst-case simulation where all the MTJs in the network were
assumed to operate at 400K instead of the design temperature, 300K . A recognition
accuracy of 96.73% was achieved at the end of 50 time-steps of network operation,
thereby confirming that the proposed probabilistic neural computing framework is
resilient to temperature variations as well.

In order to evaluate the energy consumption of the network, SPICE simulations
were performed to determine the energy consumption involved in “write”, “read”

and “reset” operations. In addition to providing a compact implementation of a
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spiking neuron, the MTJ enables low-power operation of the synaptic crossbar array.
This is due to the fact that only input current magnitudes of a few tens of pA
need to be supplied by the crossbar array on either side of the bias current. Note
that the dominant power consumption of the network is involved in the synaptic
crossbar array (since the number of synapses typically outnumber the number of
neurons in such deep neural networks by two to three orders of magnitude), and such
magneto-metallic spintronic neurons enable the low-power operation of the crossbar
architectures. For the energy analysis, we considered the optimal “write” and “reset”
cycle duration to be 0.5ns due to the possibilities of achieving near-lossless SNN
conversion along with robustness to input bias current variations. As mentioned
previously, an intuitive insight to the power efficiency of the network can be obtained
by considering the fact that only 71uA of input current is required to bias the MTJ
at 50% switching probability (7, = 0.5ns). This current flowing through a HM
resistance of 400€), results in an />Rt energy consumption of ~ 1f.J in the neuron.
Considering the resultant energy consumption in the “write”, “read” and “reset”
cycles of the network over a duration of 50 time-steps (since competitive classification
accuracy can be obtained at the end of a few tens of time-steps), the total energy
consumption of the proposed MTJ based SNN network was evaluated to be 19.5n.J
per image classification.

An interesting point to note is that there is an additional delay overhead involved
in the SNN operation. On the other hand, ANN operation (for instance, resistive
crossbhar array driven by analog CMOS neurons) would require a single time-step for
recognition. However, the delay overhead (few tens of time-steps) is much smaller
than the corresponding reduction in power consumption due to event (spike)-driven
hardware operation. For example, the average energy consumption of an analog
CMOS neuron is estimated to be ~ 700fJ [166] which would still be an order of
magnitude greater than the average energy consumption of an MTJ neuron (~ 1f.J)

operated over a duration of 50 time-steps.
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In order to compare with a baseline digital CMOS implementation, a deep spik-
ing network consisting of Integrate-Fire (IF) neurons converted from a corresponding
trained ANN was used based on the methodology proposed in Ref. [85] for the same
network architecture (28x28-6¢5-2s-12¢5-2s-100) being considered in this work. The
network was synthesized using a standard cell library in 45nm commercial CMOS
technology. The design consisted of digital adders to sum up the synaptic weights
in case of a spiking event (enabled by multiplexers). A comparator was utilized to
compare the accumulated synaptic contributions to a specific threshold (IF function-
ality) and determine the corresponding spiking activity. A pipelined design with
power-gating (to exploit the advantage of event-driven operation of the network)
was considered with the same bit-discretization in the synaptic weights as mentioned
previously. The average energy consumption involved in the network per image classi-
fication was evaluated to be 391n.J (20x more energy consumption than the proposed
MTJ based spiking architecture).

Analysis on the scaling effects of stochastic spin devices for neuromorphic com-
puting have been performed in Ref. [143]. As mentioned previously, scaling magnetic
device dimensions results in reduced energy consumption for stochastic operation.
However, as the scaling tends to the “super-paramagnetic” regime, the magnet un-
dergoes volatile telegraphic switching. Such a volatile device operation entails “asyn-
chronous” mode of network operation since parallel “read” and “write” operations
are now required for the MTJ (unlike the synchronous clocked “write” and “read”
cycles used to operate the MTJ for non-superparamagnetic MTJs). The “read” and
“write” ports of the neuron MTJ are activated simultaneously due to the low data
retention time of the magnet. The system is not driven in a synchronous fashion by
any clock signal and spikes generated by the neuron output inverters drive the next
set of fan-out neurons in an asynchronous fashion. Note that asynchronous parallel
“read” and “write” operations are also not suited for high barrier height magnets
in the non-telegraphic regime (10 — 20kgT') from delay perspective since telegraphic

switching would occur in the ~ pus — ms timescale in this scenario. As the barrier
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height is scaled, the retention failure probability of the magnet during a specified
“read” cycle will increase. Analysis performed in Ref. [143], reveal that the barrier
height of the magnet should be greater than 4.6kgT to ensure that the retention fail-
ure probability is less than 1% during a “read” time cycle of 1ns (required time for
worst-case corner simulations of the “read” circuit in 45nm technology node). Hence
magnets with barrier heights less than 5kg7T" is more suited for the asynchronous
scheme of operation mentioned above.

The lower power consumption in superparamagnets as neural inference elements is
achieved at the expense of reduced error resiliency. Since the “write” and “read” op-
erations occur in parallel for magnets switching in the telegraphic regime, the “read”
current can significantly bias the probabilistic switching of the device. Magnetic fields
generated by nearby electric currents may also serve to bias the device stochasticity.
The situation is worsened by the fact that the “write” and “read” currents are in
the same range due to significantly lower “write” current requirement for stochas-
tic switching in such scaled devices. Hence the “read” circuit for the neuron MTJ
needs to be highly optimized such that the read current is maintained at the minimal
value. Note that this is not a design issue in higher barrier height magnets since
“read” and “write” cycles are de-coupled in time. Further, the gradient or the rate
of change of switching characteristics of such magnets in response to input current
magnitude is extremely high. For instance, the stochastic switching characteristics
undergo a full swing from 0 to 1 approximately in the range of £1uA for a 1kgT
magnet [143]. In other words, the stochastic switching characteristics are highly sen-
sitive to variations in the magnitude of the external bias input current which, in turn,
results in reduced classification accuracy or similar performance metric of any pat-
tern recognition system with variations in the supply voltage, synaptic conductances
or CMOS peripherals [143]. For instance, variation analysis performed in Ref. [143]
for a standard digit recognition problem on a two-layer convolutional neural network
architecture enabled by asynchronous operation of 1kgT barrier height magnets re-

veal ~ 5% accuracy degradation for 20% variation in the synaptic resistive elements,
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~ 6% accuracy degradation for 25mV variation in crossbar supply voltage and 3%
accuracy decrement for worst-case corner simulation with 2¢ variations in the CMOS
read circuit. In contrast, the synchronous implementation with higher barrier height
magnets are resilient to variations in the crossbar supply voltage and read circuit
while a small degradation of ~ 3% classification accuracy is observed for variations in
the synaptic elements of the resistive crossbar array. Note that such sensitive opera-
tion in response to noise and other non-idealities is not specific to a 1kgT magnet but
is valid for superparamagnets operating in the telegraphic switching regime (barrier

height in the range 1 — 5kgT).

5.4 Probabilistic STDP Learning

The multi-bit STDP formulation can be modified in the stochastic single-bit sce-
nario to represent the probability of synaptic state change in response to spike timing
difference [7]. The synaptic state change probability can be modulated by appropriate
peripheral circuitry (similar to the one described for the domain wall motion based
devices) that ensures proper variation of the programming current magnitude with
spike timing difference. The operation of the crossbar array of stochastic synapses
driving stochastic neurons is similar to the array described for domain wall motion
based devices (depicted in Fig. 5.1) except that the core neuron and synaptic de-
vices have single bit resolution in contrast to the domain wall motion based devices.
The biasing region of the Mgrpp transistor is determined to ensure that the current
flowing through the heavy metal varies in such a manner that the switching proba-
bility of the MTJ varies exponentially with the spike timing difference. Probabilistic
STDP based on spintronic synapses in such single layer networks have been demon-
strated in Ref. [7] and have been able to achieve ~ 80% recognition accuracy over the
MNIST [156] training set for a set of 225 excitatory neurons. Such networks have been
shown to achieve competitive recognition accuracies by increasing the neuron count

beyond 1000. Interested readers are referred to Ref. [167] for an overview of All-Spin
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Stochastic SNNs where stochastic synaptic learning is accomplished by probabilistic
neural inference, both enabled by single-domain MTJ devices. It is worth mentioning
here that such stochastic computing paradigms are equally valid for magnets scaled
to the super-paramagnetic regime. However, appropriate circuit considerations need
to be accounted for due to the telegraphic switching behavior of such low barrier
magnets [143]. Note that such networks, in principle, are “Binary Networks” being

characterized by binary neuron and binary synaptic units.

5.5 System Level Benchmarking

We also performed a rigorous system-level benchmarking of a reconfigurable neu-
romorphic architecture based on such All-Spin SNNs [168]. In this section, we discuss
our spintronic “in-memory” computing architecture (referred to as “Spintronic Archi-
tecture” in Fig. 5.15) that is used to analyze the system-level benefits of spintronic
devices for SNN acceleration. As discussed earlier, a Spintronic Crossbar Array (SCA)
stores the trained weight (connectivity) matrix and computes the inner-product be-
tween the input and the weight matrix. This obviates the frequent data transfer
requirements between memory and computation core. Furthermore, the SCA is in-
terfaced with spintronic neurons that allow low-power inner-product and neuron com-
putations.

The size of an SCA is typically limited by the driving capability of the voltage
drivers and the fan-in limitation of a spin-neuron. However, the neuron fan-in in a
typical neural network is of the order of several hundreds. Hence mapping such a
connectivity (weight) matrix requires partitioning the matrix across multiple SCAs
to provide input to the same output neuron. The output neuron computation is
done by time-multiplexing the SCA current integrations on the neuron as shown in
Fig. 5.12. Fig. 5.12(a) shows a feed-forward neural network with neuron fan-in of 4.
Fig. 5.12(b) shows the mapping of the network on SCAs of size 2x2. Each column

of the SCA corresponds to an output neuron. Two weights for each output neuron
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are mapped on each SCA. As shown in Fig. 5.12(b), the final neuron output (for
instance ‘N1’) is computed by time-multiplexed integration of crossbar currents (‘O1’
and ‘O3’) on N1.

Fig. 5.12(c) shows the logical organization of our spintronic architecture. The
SNN realization is achieved by multiple computation blocks connected back to back.
Further, each computation block is composed of multiple computation cores (CORE
in Fig. 5.12(c)). As shown in Fig. 5.12(c), the computation core is a pool of SCAs,
associated neurons, input and output buffers coupled together with a control unit.
Such a computation core efficiently realizes the partitioned connectivity matrices
by mapping them across multiple SCAs locally within a computation core. The
control unit realizes the time-multiplexed integrations depending on a neuron’s fan-in.
Thus the core is the computation primitive in our spintronic architecture. Eventually
multiple such computation cores are employed to map a layer of SNN depending on
the number of neurons and synapses contained in the layer. Different layers of the
SNN are mapped across multiple computation blocks to map all the neurons and
synapses in an SNN. One sequential dataflow throughout these computational blocks
(that spatially map the layers) realizes one-time step of the SNN implementation.

Here, we describe our CMOS baseline architecture for SNNs. SNeuE is a many-
core architecture which utilizes the data sharing patterns in SNN processing to enable
their energy-efficient acceleration. SNeuE consists of two parts, namely: (1) SRAM
to store the trained weights and inputs, and (2) computation core to perform the
inner-product between the inputs and weights fetched from SRAM along with neuron
computations.

Here, we explain the logical dataflow between different components in SNeuk
(shown in Fig. 5.13). Weights stored in the SRAM are fetched and stored into the
weight FIFOs present in the computation core. Each Neuron Unit (NU) receives its
weights from a dedicated weight FIFO. The input FIFO streams input data across
the NU array that allows data sharing and reduces the memory (SRAM) fetches asso-

ciated with inputs, thereby resulting in energy efficiency. This is a direct consequence
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Fig. 5.13. Organization of CMOS architecture for SNNs (SNeuE). The
SRAM weights are fetched and stored into the weight FIFOs present

in the computation core. Each Neuron Unit (NU) receives its weights
from a dedicated weight FIFO.

Application Dataset Layers |Neurons |Synapses
House Number Recognition SVHN 6 9226 16787456
Object Classification CIFAR-10 5 6666 12063744
Digit Recognition MNIST 3 1546 1187328
Face Recognition Yale FR 3 1039 794112
Census Data Analysis Adult 2 1026 8192
Flower Species Recognition | Iris Flower 3 195 8384

Fig. 5.14. Multi-layer perceptron based Spiking Neural Network
benchmarks used to compare the All-Spin neuromorphic architecture
against the CMOS implementation.
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of the dataflow pattern in any typical SNN as neurons in a layer share the inputs.
The control unit stores the SNN topology and coordinates dataflow between different
components in SNeuE.

Neurons in an SNN are time-multiplexed onto SNeuE to implement the SNN.
Within a layer, neurons are scheduled temporally on the NU array. Subsequently, the
corresponding weights and inputs are fetched and stored into weight and input FIFO
respectively. Once all the computations for the neurons currently scheduled on the
NU-array is finished, the next set of neurons from the same layer are scheduled on
the NU-array. Eventually successive layers of the SNN are temporally scheduled on
the SNeuE computation core to realize one time-step of SNN computation.

A hybrid device-circuit-architecture co-simulation framework was utilized for this
work. Device simulations were performed in MuMax [124]. The device characteristics
were subsequently used to construct circuit models of such All-Spin SNNs in SPICE
for further system level evaluations. The peripheral circuit for the SCA consisting of
buffers and control logic was implemented at the Register Transfer Level and mapped
to IBM 45nm technology using Synopsys Design Compiler. The energy consumption
was estimated using Synopsys Power Compiler. The same process was utilized to
synthesize and evaluate the energy consumption of the CMOS baseline implementa-
tion. CACTI [172] was used to model the SRAM modules. The SCA crossbar size
was taken to be 32 rows x 32 columns and the throughput was optimized for each
benchmark application to minimize the impact of 4. The NU array used in our evalu-
ations comprises of 16 units. Consequently, there are 16 weight FIFOs in the CMOS
implementation (with a FIFO depth of 32). The CMOS baseline implementation was
also aggressively optimized by constraining the neuron/synaptic bit discretization to
the minimum necessary precision required for negligible accuracy degradation in each
specific application. The details of the benchmark suite have been outlined in Fig.
5.14 and consists of the following applications: (i) Flower Species Recognition (IRIS
dataset [169]), (ii) Census data analysis (ADULT dataset [169]), (iii) Face recogni-
tion (YALE dataset [170]), (iv) Digit recognition (MNIST dataset [156]), (v) Object
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classification (CIFAR-10 dataset [87]) and (vi) House Number Recognition (SVHN
dataset [171]). Note that the analysis performed in this article falls in the domain
of offline learning and consequently does not consider the programming energy con-
sumption involved in the learning process of synaptic weights.

Fig. 5.15(a) outlines the proportion of energy consumption involved in memory
access and memory leakage in comparison to the core computation. As the problem
complexity and hence the network size increases, the amount of energy consumed in
memory accesses increases. Additionally, the access latency increases with increasing
memory size, thereby causing a proportionate increase in the memory leakage energy.
On the other hand, for spintronic crossbar arrays, better crossbar utilization occurs
as the network size increases. Fig. 5.15(b) illustrates that the All-Spin SNN architec-
ture can potentially achieve 204 — 2759x improvement in energy consumption while
achieving 3 — 665 x performance speedup in comparison to the CMOS baseline imple-
mentation (Fig. 5.15(c)). Note that the energy consumption (performance speedup)
is normalized to the IRIS dataset on the spintronic (CMOS) implementation.
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6. CONCLUSIONS AND OUTLOOK

Spin-based neuromorphic computing is currently a technologically evolving field.
While preliminary experiments are being performed that provide proof-of-concepts
for the various proposals mentioned in this thesis, a long and interesting path lies
ahead for the realization of such All-Spin neuromorphic computing platforms. FEx-
perimental demonstration of full network-level synaptic learning and neural inference
based on spintronic devices remains to be explored. Innovations are still required not
only at the device level (for instance, achieving deterministic DW motion or fabri-
cating scaled nanomagnets) but also at the algorithm level to exploit the underlying
device physics of spin-devices. Nevertheless, such devices offer immense possibilities
towards the realization of energy-efficient cognitive processors. As device dimensions
start scaling, probabilistic neuromorphic computing platforms (that are inherently
more “brain-like”) leveraging the resultant device stochasticity will also start playing
an important role. In conclusion, this thesis serves to propose various neural and
synaptic functionalities that can be potentially implemented in spintronic devices.
We believe that this thesis will stimulate efforts for the realization of All-Spin neuro-
morphic computing paradigms enabled with on-chip unsupervised cognitive learning

capabilities.
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A. SCALING SPIKING NEURAL NETWORKS TO DEEP
ARCHITECTURES FOR COMPLEX MACHINE
LEARNING TASKS

Over the past few years, Spiking Neural Networks (SNNs) have become popular as a
possible pathway to enable low-power event-driven neuromorphic hardware. However,
their application in machine learning have largely been limited to very shallow neural
network architectures for simple problems. In this appendix, we propose a novel algo-
rithmic technique for generating an SNN with a deep architecture, and demonstrate
its effectiveness on complex visual recognition problems such as CIFAR-10 and Ima-
geNet. Our technique applies to both VGG and Residual network architectures, with
significantly better accuracy than the state-of-the-art. Finally, we present analysis
of the sparse event-driven computations to demonstrate reduced hardware overhead

when operating in the spiking domain.

A.1 Introduction

Spiking Neural Networks (SNNs) are a significant shift from the standard way of
operation of Artificial Neural Networks [173]. Most of the success of deep learning
models of neural networks in complex pattern recognition tasks are based on neural
units that receive, process and transmit analog information. Such Analog Neural
Networks (ANNs) [85], however, disregard the fact that the biological neurons in the
brain (the computing framework after which it is inspired) processes binary spike-
based information. Driven by this observation, the past few years have witnessed
significant progress in the modeling and formulation of training schemes for SNNs
as a new computing paradigm that can potentially replace ANNs as the next gen-

eration of Neural Networks. In addition to the fact that SNNs are inherently more
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biologically plausible, they offer the prospect of event-driven hardware operation.
Spiking Neurons process input information only on the receipt of incoming binary
spike signals. Given a sparsely-distributed input spike train, the hardware overhead
(power consumption) for such a spike or event-based hardware would be significantly
reduced since large sections of the network that are not driven by incoming spikes
can be power-gated [174]. However, the vast majority of research on SNNs have been
limited to very simple and shallow network architectures on relatively simple digit
recognition datasets like MNIST [156] while only few works report their performance
on more complex standard vision datasets like CIFAR-10 [87] and ImageNet [88].
The main reason behind their limited performance stems from the fact that SNNs
are a significant shift from the operation of ANNs due to their temporal information
processing capability. This has necessitated a rethinking of training mechanisms for
SNNs.

Broadly, there are two main categories for training SNNs - supervised and unsu-
pervised. Although unsupervised learning mechanisms like Spike-Timing Dependent
Plasticity (STDP) are attractive for the implementation of low-power on-chip local
learning, their performance is still outperformed by supervised networks on even sim-
ple digit recognition platforms like the MNIST dataset [95]. Driven by this fact, a
particular category of supervised SNN learning algorithms attempts to train ANNs
using standard training schemes like backpropagation (to leverage the superior per-
formance of standard training techniques for ANNs) and subsequently convert to
event-driven SNNs for network operation [85,86,175,176]. This can be particularly
appealing for NN implementations in low-power neuromorphic hardware specialized
for SNNs [74,75] or interfacing with silicon cochleas or event-driven sensors [177,178].
Our work falls in this category and is based on the ANN-SNN conversion scheme pro-
posed by authors in Ref. [85]. However, while prior work considers the ANN operation
only during the conversion process, we show that considering the actual SNN opera-
tion during the conversion step is crucial for achieving minimal loss in classification

accuracy. To that effect, we propose a novel weight-normalization technique that en-
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sures that the actual SNN operation is in the loop during the conversion phase. Note
that this work tries to exploit neural activation sparsity by converting networks to the
spiking domain for power-efficient hardware implementation and are complementary
to efforts aimed at exploring sparsity in synaptic connections [179].

The specific contributions of our work [84] are as follows:

(i) As will be explained in later sections, there are various architectural constraints
involved for training ANNs that can be converted to SNNs in a near-lossless manner.
Hence, it is unclear whether the proposed techniques would scale to larger and deeper
architectures for more complicated tasks. We provide proof of concept experiments
that deep SNNs (extending from 16 to 34 layers) can provide competitive accuracies
over complex datasets like CIFAR-10 and ImageNet.

(ii) We propose a new ANN-SNN conversion technique that statistically outper-
forms state-of-the-art techniques. We report a classification error of 8.45% on the
CIFAR-10 dataset which is the best-performing result reported for any SNN network,
till date. For the first time we report an SNN performance on the entire ImageNet
2012 validation set. We achieve a 30.04% top-1 error rate and 10.99% top-5 error
rate for VGG-16 architectures.

(iii) We explore Residual Network (ResNet) architectures as a potential pathway to
enable deeper SNNs. We present insights and design constraints that are required to
ensure ANN-SNN conversion for ResNets. We report a classification error of 12.54%
on the CIFAR-10 dataset and a 34.53% top-1 error rate and 13.67% top-5 error
rate on the ImageNet validation set. This is the first work that attempts to explore
SNNs with residual network architectures.

(iv) We demonstrate that SNN network sparsity significantly increases as the net-
work depth increases. This further motivates the exploration of converting ANNs to

SNNs for event-driven operation to reduce compute overhead.
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Fig. A.1. The extreme left panel depicts a particular input image
from the CIFAR-10 dataset with per pixel mean subtracted that is
provided as input to the original ANN. The middle panel represents a
particular instance of the Poisson spike train generated from the ana-
log input image. The accumulated events provided to the SNN over
1000 timesteps is depicted in the extreme right panel. This justifies
the fact that the input image is being rate encoded over time for SNN
operation.

A.2 Preliminaries

The main difference between ANN and SNN operation is the notion of time. While
ANN inputs are static, SNNs operate based on dynamic binary spiking inputs as a
function of time. The neural nodes also receive and transmit binary spike input
signals in SNNs, unlike in ANNs, where the inputs and outputs of the neural nodes
are analog values. In this work, we consider a rate-encoded network operation where
the average number of spikes transmitted as input to the network over a large enough
time window is approximately proportional to the magnitude of the original ANN
inputs (pixel intensity in this case). The duration of the time window is dictated by
the desired network performance (for instance, classification accuracy) at the output
layer of the network. A Poisson event-generation process is used to produce the input
spike train to the network. Every time-step of SNN operation is associated with the
generation of a random number whose value is compared against the magnitude of
the corresponding input. A spike event is triggered if the generated random number is
less than the value of the corresponding pixel intensity. This process ensures that the

average number of input spikes in the SNN is proportional to the magnitude of the
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corresponding ANN inputs and is typically used to simulate an SNN for recognition
tasks based on datasets for static images [85]. Fig. A.l depicts a particular timed-
snapshot of the input spikes transmitted to the SNN for a particular image from the
CIFAR-10 dataset. SNN operation of such networks are pseudo-simultaneous, i.e. a
particular layer operates immediately on the incoming spikes from the previous layer
and does not have to wait for multiple time-steps for information from the previous
layer neurons to get accumulated. Given a Poisson-generated spike train being fed to
the network, spikes will be produced at the network outputs. Inference is based on
the cumulative spike count of neurons at the output layer of the network over a given
time-window.

ANN to SNN conversion schemes usually consider Rectified Linear Unit (ReLU)
as the ANN neuron activation function. For a neuron receiving inputs x; through

synaptic weights w;, the ReLLU neuron output y is given by,

y=mazr 0, Z (/zxz) (A.1)

Although ReLU neurons are typically used in a large number of machine learning tasks
at present, the main reason behind their usage for ANN-SNN conversion schemes is
that they bear functional equivalence to an Integrate-Fire (IF) Spiking Neuron with-
out any leak and refractory period [85,86]. Note that this is a particular type of
Spiking Neuron model [180]. Let us consider the ANN inputs z; encoded in time as
a spike train X;(t), where E[X;(¢)] < z; (for the rate encoding network being consid-
ered in this work). The IF Spiking Neuron keeps track of its membrane potential,
Umem, Which integrates incoming spikes and generates an output spike whenever the
membrane potential cross a particular threshold v;,. The membrane potential is reset
to zero at the generation of an output spike. All neurons are reset whenever a spike
train corresponding to a new image/pattern in presented. The IF Spiking Neuron

dynamics as a function of time-step, t, can be described by the following equation,

Ve (t + 1) = Ve (t) + Y (zi.Xi(t) (A.2)
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Let us first consider the simple case of a neuron being driven by a single input X(¢)
and a positive synaptic weight w. Due to the absence of any leak term in the neural
dynamics, it is intuitive to show that the corresponding output spiking rate of the
neuron is given by E[Y(¢)] o< E[X(¢)], with the proportionality factor being dependent
on the ratio of w and vy,. In the case when the synaptic weight is negative, the output
spiking activity of the IF neuron is zero since the neuron is never able to cross the
firing potential vy, mirroring the functionality of a ReLLU. The higher the ratio of the
threshold with respect to the weight, the more time is required for the neuron to spike,
thereby reducing the neuron spiking rate, E[Y(¢)], or equivalently increasing the time-
delay for the neuron to generate a spike. A relatively high firing threshold can cause a
huge delay for neurons to generate output spikes. For deep architectures, such a delay
can quickly accumulate and cause the network to not produce any spiking outputs for
relatively long periods of time. On the other hand, a relatively low threshold causes
the SNN to lose any ability to distinguish between different magnitudes of the spike
inputs being accumulated to the membrane potential (the term ) fv; X;(¢) in Eq.
A.2) of the Spiking Neuron, causing it to lose evidence during the menprane potential
integration process. This, in turn, results in accuracy degradation of the converted
network. Hence, an appropriate choice of the ratio of the neuron threshold to the
synaptic weights is essential to ensure minimal loss in classification accuracy during
the ANN-SNN conversion process [85]. Consequently, most of the research work in
this field has been concentrated on outlining appropriate algorithms for threshold-
balancing, or equivalently, weight normalizing different layers of a network to achieve
near-lossless ANN-SNN conversion.

Typically neural units used for ANN-SNN conversion schemes are trained without
any bias term [85]. This is due to the fact that optimization of the bias term in
addition to the spiking neuron threshold expands the parameter space exploration,
thereby causing the ANN-SNN conversion process to be more difficult. Requirement
of bias less neural units also entails that Batch Normalization technique [181] cannot

be used as a regularizer during the training process since it biases the inputs to
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each layer of the network to ensure each layer is provided with inputs having zero
mean. Instead, we use dropout [182] as the regularization technique. This technique
simply masks portions of the input to each layer by utilizing samples from a Bernoulli
distribution where each input to the layer has a specified probability of being dropped.

Deep convolutional neural network architectures typically consist of intermediate
pooling layers to reduce the size of the convolution output maps. While various
choices exist for performing the pooling mechanism, the two popular choices are either
max-pooling (maximum neuron output over the pooling window) or spatial-averaging
(two-dimensional average pooling operation over the pooling window). Since the
neuron activations are binary in SNNs instead of analog values, performing max-
pooling would result in significant information loss for the next layer. Consequently,

we consider spatial-averaging as the pooling mechanism in this work [85].

A.3 Deep Convolutional SNN Architectures: VGG

As mentioned previously, our work is based on the proposal outlined by authors
in Ref. [85]. In order to ensure that a spiking neuron threshold is sufficiently high
to distinguish different magnitude of the spike inputs, a worst case solution would
be to set the threshold of a particular layer to the maximum of the summation of
all the positive synaptic weights of neurons in that layer. However, such a “Model-
Based Normalization” technique is highly pessimistic since all the fan-in neurons
are not supposed to fire at every time-step [85]. In order to circumvent this issue,
authors in Ref. [85] proposed a “Data-Based Normalization” Technique wherein the
neuron threshold of a particular layer is set equal to the maximum activation of
all ReLUs in the corresponding layer (by passing the entire training set through
the trained ANN once after training is completed). Such a “Data-Based” technique
performed significantly better than the “Model-Based” algorithm in terms of the
final classification accuracy and latency of the converted SNN (three-layered fully

connected and convolutional architectures) for a digit recognition problem on the
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MNIST dataset [85]. Note that, this process is referred to as “weight-normalization”
and “threshold-balancing” interchangeably in this text. As mentioned before, the goal
of this work is to optimize the ratio of the synaptic weights with respect to the neuron
firing threshold, v;,. Hence, either all the synaptic weights preceding a neural layer
are scaled by a normalization factor w,.., equal to the maximum neural activation
and the threshold is set equal to 1 (“weight-normalization”), or the threshold vy, is
set equal to the maximum neuron activation for the corresponding layer with the
synaptic weights remaining unchanged (“threshold-balancing”). Both operations are
exactly equivalent mathematically.

However, the above algorithm leads us to the question: Are ANN activations rep-
resentative of SNN activations? Let us consider a particular example for the case of
maximum activation for a single ReLLU. The neuron receives two inputs, namely 0.5
and 1. Let us consider unity synaptic weights in this scenario. Since the maximum
ReLU activation is 1.5, the neuron threshold would be set equal to 1.5. However,
when this network is converted to the SNN mode, both the inputs would be prop-
agating binary spike signals. The ANN input, equal to 1, would be converted to
spikes transmitting at every time-step while the other input would transmit spikes
approximately 50% of the duration of a large enough time-window. Hence, the actual
summation of spike inputs received by the neuron per time-step would be 2 for a large
number of samples, which is higher than the spiking threshold (1.5). Clearly, some
information loss would take place due to the lack of this evidence integration.

Driven by this observation, we propose a weight-normalization technique that
adaptively balances the threshold of each layer by considering the actual operation
of the SNN in the loop during the ANN-SNN conversion process. The algorithm
normalizes the weights of the network sequentially for each layer. Given a particular
trained ANN, the first step is to generate the input Poisson spike train for the network
over the training set for a large enough time-window. The Poisson spike train allows
us to record the maximum summation of weighted spike-input (the term » /v, X;(t)

in Eq. A.2 and hereafter referred to maximum SNN activation in this text) thit would
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be received by the first neural layer of the network. In order to minimize the temporal
delay of the neuron and simultaneously ensure that the neuron firing threshold is not
too low, we weight-normalize the first layer depending on the maximum spike-based
input received by the first layer. After the threshold of the first layer is set, we
are provided with a representative spike train at the output of the first layer which
enables us to generate the input spike-stream for the next layer. The process is
continued sequentially for all the layers of the network. The main difference between
our proposal and prior work [85] is the fact that the proposed weight-normalization
scheme accounts for the actual SNN operation during the conversion process. As
we will show in the Results section, this scheme is crucial to ensure near-lossless
ANN-SNN conversion for significantly deep architectures and for complex recognition

problems. The pseudo-code of the algorithm is given in the next page.

A.4 Extension to Residual Architectures

Residual network architectures were proposed as an attempt to scale convolu-
tional neural networks to very deep layered stacks [183]. Although different variants
of the basic functional unit have been explored, we will only consider identity shortcut
connections in this text (shortcut type-A according to the paper [183]). Each unit
consists of two parallel paths. The non-identity path consists of two spatial convolu-
tion layers with an intermediate ReLLU layer. While the original ResNet formulation
considers ReLUs at the junction of the parallel non-identity and identity paths [183],
recent formulations do not consider junction ReLUs in the network architecture [184].
Absence of ReLLUs at the junction point of the non-identity and identity paths was
observed to produce a slight improvement in classification accuracy on the CIFAR-
10 dataset [185]. Due to the presence of the shortcut connections, important design
considerations need to be accounted for to ensure near-lossless ANN-SNN conversion.
We start with the basic unit, as shown in Fig. A.2(a), and point-wise impose vari-

ous architectural constraints with justifications. Note the discussion in this section
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input : Input Poisson Spike Train spikes, Number of Time-Steps #timesteps

output: Weight-normalization / Threshold-balancing factors v, yorm|i] for
each neural layer (net.layer|i]) of the network net

initialization vy norm[i] = 0V i = 1, ..., #net.layer;

// Set input of 1st layer equal to spike train

net.layer|1].input = spikes;

for ¢ < 1 to #net.layer do

for t < 1 to #timesteps do
// Forward pass spike-train for neuron layer-i
characterized by membrane potential net.laye’r’[i].vmem and
threshold net.layer|i].vy,
net.layerli] : forward(net.layer[i].input) ;

// Determine Threshold-balancing factor according to
maximum SNN activation, net.layer(i].vyem-input
Vth.norm|t] = MaxX(Veh norm[i],max(net.layer[i].Vmem.-input));

end

// Threshold-balance layer-i

net.layer(il. v, = Vthnorm|i];

// Record input spike-train for next layer

net.layer[i + 1].input = net.layer[i] : forward(net.layer[i].input);
end

Algorithm 1: SPIKE-NORM
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Fig. A.2. (a) The basic ResNet functional unit, (b) Design constraints
introduced in the functional unit to ensure near-lossless ANN-SNN
conversion, (c¢) Typical maximum SNN activations for a ResNet hav-
ing junction ReLLU layers but the non-identity and identity input paths
not having the same spiking threshold. While this is not representa-
tive of the case with equal thresholds in the two paths, it does justify
the claim that after a few initial layers, the maximum SNN activations
decay to values close to unity due to the identity mapping.

is based on threshold-balancing (with synaptic weights remaining unscaled), i.e. the
threshold of the neurons are adjusted to minimize ANN-SNN conversion loss.

As we will show in the Results section, application of our proposed SPIKE-NORM
algorithm on such a residual architecture resulted in a converted SNN that exhibited
accuracy degradation in comparison to the original trained ANN. We hypothesize that

this degradation is attributed mainly to the absence of any ReLUs at the junction
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points. Each ReLU when converted to an IF Spiking Neuron imposes a particular
amount of characteristic temporal delay (time interval between an incoming spike and
the outgoing spike due to evidence integration). Due to the shortcut connections,
spike information from the initial layers gets instantaneously propagated to later
layers. The unbalanced temporal delay in the two parallel paths of the network can
result in distortion of the spike information being propagated through the network.
Consequently, as shown in Fig. A.2(b), we include ReLUs at each junction point
to provide a temporal balancing effect to the parallel paths (when converted to IF
Spiking Neurons). An ideal solution would be to include a ReLLU in the parallel path,
but that would destroy the advantage of the identity mapping.

As shown in the next section, direct application of our proposed threshold-balancing
scheme still resulted in some amount of accuracy loss in comparison to the baseline
ANN accuracy. However, note that the junction neuron layer receives inputs from
the previous junction neuron layer as well as the non-identity neuron path. Since
the output spiking activity of a particular neuron is also dependent on the threshold-
balancing factor, all the fan-in neuron layers should be threshold-balanced by the
same amount to ensure that input spike information to the next layer is rate-encoded
appropriately. However, the spiking threshold of the neuron layer in the non-identity
path is dependent on the activity of the neuron layer at the previous junction. An ob-
servation of the typical threshold-balancing factors for the network without using this
constraint (shown in Fig. A.2(c)) reveal that the threshold-balancing factors mostly
lie around unity after a few initial layers. This occurs mainly due to the identity
mapping. The maximum summation of spike inputs received by the neurons in the
junction layers are dominated by the identity mapping (close to unity). From this
observation, we heuristically choose both the thresholds of the non-identity ReL.LU
layer and the identity-ReLLU layer equal to 1. However, the accuracy is still unable to
approach the baseline ANN accuracy, which leads us to the third design constraint.

An observation of Fig. A.2(c) reveals that the threshold-balancing factors of the

initial junction neuron layers are significantly higher than unity. This can be a primary
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reason for the degradation in classification accuracy of the converted SNN. We note
that the residual architectures used by authors in Ref. [183] use an initial convolution
layer with a very wide receptive field (7 x 7 with a stride of 2) on the ImageNet
dataset. The main motive behind such an architecture was to show the impact of
increasing depth in their residual architectures on the classification accuracy. Inspired
by the VGG-architecture, we replace the first 7 x 7 convolutional layer by a series
of three 3 x 3 convolutions where the first two layers do not exhibit any shortcut
connections. Addition of such initial non-residual pre-processing layers allows us to
apply our proposed threshold-balancing scheme in the initial layers while using a
unity threshold-balancing factor for the later residual layers. As shown in the Results
section, this scheme significantly assists in achieving classification accuracies close
to the baseline ANN accuracy since after the initial layers, the maximum neuron

activations decay to values close to unity because of the identity mapping.

A.5 Experiments

We evaluate our proposals on standard visual object recognition benchmarks,
namely the CIFAR-10 and ImageNet datasets. Experiments performed on networks
for the CIFAR-10 dataset are trained on the training set images with per-pixel mean
subtracted and evaluated on the testing set. We also present results on the much
more complex ImageNet 2012 dataset that contains 1.28 million training images and
report evaluation (top-1 and top-5 error rates) on the 50, 000 validation set. 224 x 224
crops from the input images are used for this experiment.

We use VGG-16 architecture [186] for both the datasets. ResNet-20 configuration
outlined in Ref. [183] is used for the CIFAR-10 dataset while ResNet-34 is used for
experiments on the ImageNet dataset. As mentioned previously, we do not utilize any
batch-normalization layers. For VGG networks, a dropout layer is used after every

ReLU layer except for those layers which are followed by a pooling layer. For Residual
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networks, we use dropout only for the ReLLUs at the non-identity parallel paths but
not at the junction layers. We found this crucial for achieving training convergence.

Our implementation is derived from the Facebook ResNet implementation code
for CIFAR and ImageNet datasets available publicly [187]. We use similar image pre-
processing steps and scale and aspect-ratio augmentation techniques as used in [188].
We report single-crop testing results while the error rates can be further reduced with
10-crop testing [189]. Networks used for the CIFAR-10 dataset are trained on 2 GPUs
with a batchsize of 256 for 200 epochs, while ImageNet training is performed on 8
GPUs for 100 epochs with a similar batchsize. The initial learning rate is 0.05. The
learning rate is divided by 10 twice, at 81 and 122 epochs for CIFAR-10 dataset and
at 30 and 60 epochs for ImageNet dataset. A weight decay of 0.0001 and a momentum
of 0.9 is used for all the experiments. Proper weight initialization is crucial to achieve
convergence in such deep networks without batch-normalization. For a non-residual
convolutional layer (for both VGG and ResNet architectures) having kernel size k x k
with n output channels, the weights are initialized from a normal distribution and

standard deviation % . However, for residual convolutional layers, the standard

deviation used for the normal distribution was % We observed this to be important
for achieving training convergence and a similar observation was also outlined in
Ref. [190] although their networks were trained without both dropout and batch-

normalization.

A.5.1 Experiments for VGG Architectures

Our VGG-16 model architecture follows the implementation outlined in [191] ex-
cept that we do not utilize the batch-normalization layers. We used a randomly chosen
mini-batch of size 256 from the training set for the weight-normalization process on
the CIFAR-10 dataset. While the entire training set can be used for the weight-
normalization process, using a representative subset did not impact the results. We

confirmed this by running multiple independent runs for both the CIFAR and Ima-
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geNet datasets. The standard deviation of the final classification error rate after 2500
time-steps was ~ 0.01. All results reported in this section represent the average of 5
independent runs of the spiking network (since the input to the network is a random
process). No notable difference in the classification error rate was observed at the end
of 2500 time-steps and the network outputs converged to deterministic values despite
being driven by stochastic inputs. For the SNN model based weight-normalization
scheme (SPIKE-NORM algorithm) we used 2500 time-steps for each layer sequentially
to normalize the weights.

Table A.1 summarizes our results for the CIFAR-10 dataset. The baseline ANN
error rate on the testing set was 8.3%. Since the main contribution of this work is to
minimize the loss in accuracy during conversion from ANN to SNN for deep-layered
networks and not in pushing state-of-the-art results in ANN training, we did not
perform any hyper-parameter optimization. However, note that despite several archi-
tectural constraints being present in our ANN architecture, we are able to train deep
networks that provide competitive classification accuracies using the training mech-
anisms described in the previous subsection. Further reduction in the baseline ANN
error rate is possible by appropriately tuning the learning parameters. For the VGG-
16 architecture, our implementation of the ANN-model based weight-normalization
technique, proposed by Ref. [85], yielded an average SNN error rate of 8.54% lead-
ing to an error increment of 0.24%. The error increment was minimized to 0.15%
on applying our proposed SPIKE-NORM algorithm. Note that we consider a strict
model-based weight-normalization scheme to isolate the impact of considering the
effect of an ANN versus our SNN model for threshold-balancing. Further optimiza-
tions of considering the maximum synaptic weight during the weight-normalization
process [85] is still possible.

Previous works have mainly focused on much shallower convolutional neural net-
work architectures. Although Ref. [192] reports results with an accuracy loss of
0.18%, their baseline ANN suffers from some amount of accuracy degradation since

their networks are trained with noise (in addition to architectural constraints men-
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tioned before) to account for neuronal response variability due to incoming spike
trains [192]. It is also unclear whether the training mechanism with noise would scale
up to deeper layered networks. Qur work reports the best performance of a Spiking
Neural Network on the CIFAR-10 dataset till date.

The impact of our proposed algorithm is much more apparent on the more complex
ImageNet dataset. The rates for the top-1 (top-5) error on the ImageNet validation set
are summarized in Table A.2. Note that these are single-crop results. The accuracy
loss during the ANN-SNN conversion process is minimized by a margin of 0.57% by
considering SNN-model based weight-normalization scheme. It is therefore expected
that our proposed SPIKE-NORM algorithm would significantly perform better than
an ANN-model based conversion scheme as the pattern recognition problem becomes
more complex since it accounts for the actual SNN operation during the conversion
process. Note that Ref. [192] reports a performance of 48.2%(23.8%) on the first
3072-image test batch of the ImageNet 2012 dataset.

At the time we developed this work, we were unaware of a parallel effort to scale
up the performance of SNNs to deeper networks and large-scale machine learning
tasks. The work was recently published in Ref. [193]. However, their work differs
from our approach in the following aspects:

(i) Their work improves on prior approach outlined in Ref. [85] by proposing con-
version methods for removing the constraints involved in ANN training (discussed in
Section A.2). We are improving on prior art by scaling up the methodology outlined
in Ref. [85] for ANN-SNN conversion by including the constraints.

(ii) We are demonstrating that considering SNN operation in the conversion pro-
cess helps to minimize the conversion loss. Ref. [193] uses ANN based normalization
scheme used in Ref. [85].

While removing the constraints in ANN training allows authors in Ref. [193] to train
ANNs with better accuracy, they suffer significant accuracy loss in the conversion
process. This occurs due to a non-optimal ratio of biases/batch-normalization fac-

tors and weights [193]. This is the primary reason for our exploration of ANN-SNN
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conversion without bias and batch-normalization. For instance, their best performing
network on CIFAR-10 dataset incurs a conversion loss of 1.06% in contrast to 0.15%
reported by our proposal for a much deeper network. The accuracy loss is much larger
for their VGG-16 network on the ImageNet dataset - 14.28% in contrast to 0.56%
for our proposal. Although Ref. [193] reports a top-1 SNN error rate 25.40% for a
Inception-V3 network, their ANN is trained with an error rate of 23.88%. The result-
ing conversion loss is 1.52% and much higher than our proposals. The Inception-V3
network conversion was also optimized by a voltage clamping method, that was found
to be specific for the Inception network and did not apply to the VGG network [193].
Note that the results reported on ImageNet in Ref. [193] are on a subset of image sam-
ples. Hence, the performance on the entire dataset is unclear. Our contribution lies
in the fact that we are demonstrating ANNs can be trained with the above-mentioned
constraints with competitive accuracies on large-scale tasks and converted to SNNs
in a near-lossless manner.

This s the first work that reports competitive performance of a Spiking Neural

Network on the entire 50,000 ImageNet 2012 validation set.

A.5.2 Experiments for Residual Architectures

Our residual networks for CIFAR-10 and ImageNet datasets follow the implemen-
tation in Ref. [183]. We first attempt to explain our design choices for ResNets by
sequentially imposing each constraint on the network and showing their correspond-
ing impact on network performance in Fig. A.3. The “Basic Architecture” involves
a residual network without any junction ReLUs. “Constraint 1”7 involves junction
ReLUs without having equal spiking thresholds for all fan-in neural layers. “Con-
straint 2”7 imposes an equal threshold of unity for all the layers while “Constraint
3” performs best with two pre-processing plain convolutional layers (3 x 3) at the
beginning of the network. The baseline ANN ResNet-20 was trained with an error of
10.9% on the CIFAR-10 dataset. Note that although we are using terminology con-
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Table A.1.
Results for CIFAR-10 Dataset

Network Architecture ANN SNN Error Increment
Error Error
4-layered networks [86] 20.88% 22.57% 1.69%

(Input cropped to 24 x 24)

3-layered networks [194] — 10.68% -

8-layered networks [192] 16.28% 16.46% 0.18%
(Input cropped to 24 x 24)

6-layered networks [193] 8.09% 9.15% 1.06%

VGG-16 8.3% 8.54% 0.24%
(ANN model based

conversion )

VGG-16 8.3% 8.45% 0.15%
(SPIKE-NORM)

sistent with Ref. [183] for the network architectures, our ResNets contain two extra
plain pre-processing layers. The converted SNN according to our proposal yielded a
classification error rate of 12.54%. Weight-normalizing the initial two layers using the
ANN-model based weight-normalization scheme produced an average error of 12.87%,

further validating the efficiency of our weight-normalization technique.
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Table A.2.
Results for ImageNet Dataset

Network Architecture ANN SNN Error Increment
Error Error

8-layered networks [192] — 48.20% -

(Tested on subset of 3072 (23.80%)

images)

VGG-16 [193] 36.11% 50.39% 14.28%

(Tested on subset of 2570 (15.14%) (18.37%) (3.23%)

images)

VGG-16 29.48% 30.61% 1.13%

(ANN model based (10.61%) (11.21%) (0.6%)

conversion )

VGG-16 29.48% 30.04% 0.56%

(SPIKE-NORM) (10.61%)  (10.99%)  (0.38%)

On the ImageNet dataset, we use the deeper ResNet-34 model outlined in Ref.
[183]. The initial 7 x 7 convolutional layer is replaced by three 3 x 3 convolutional
layers where the initial two layers are non-residual plain units. The baseline ANN is
trained with an error of 29.31% while the converted SNN error is 34.53% at the end
of 2500 timesteps. The results are summarized in Table. A.3 and convergence plots

for all our networks are provided in Fig. A.4.
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Fig. A.3. Impact of the architectural constraints for Residual Net-
works. “Basic Architecture” does not involve any junction ReLU lay-
ers. “Constraint 1”7 involves junction ReLLUs while “Constraint 2”
imposes equal unity threshold for all residual units. Network accu-
racy is significantly improved with the inclusion of “Constraint 3” that
involves pre-processing weight-normalized plain convolutional layers
at the network input stage.

It is worth noting here that the main motivation of exploring Residual Networks
is to go deeper in Spiking Neural Networks. We explore relatively simple ResNet
architectures, as the ones used in Ref. [183], which have an order of magnitude lower
parameters than standard VGG-architectures. Further hyper-parameter optimiza-
tions or more complex architectures are still possible. While the accuracy loss in the
ANN-SNN conversion process is more for ResNets than plain convolutional architec-
tures, yet further optimizations like including more pre-processing initial layers or
better threshold-balancing schemes for the residual units can still be explored. This
work serves as the first work to explore ANN-SNN conversion schemes for Residual
Networks and attempts to highlight important design constraints required for minimal

loss in the conversion process.
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Fig. A.4. Convergence plots for the VGG and ResNet SNN architec-
tures for CIFAR-10 and ImageNet datasets are shown above. The
classification error reduces as more evidence is integrated in the Spik-
ing Neurons with increasing time-steps. Note that although the net-
work depths are similar for CIFAR-10 dataset, the ResNet-20 con-
verges much faster than the VGG architecture. The delay for infer-
encing is higher for ResNet-34 on the ImageNet dataset due to twice
the number of layers as the VGG network.

A.5.3 Computation Reduction Due to Sparse Neural Events

ANN operation for prediction of the output class of a particular input requires a
single feed-forward pass per image. For SNN operation, the network has to be eval-
uated over a number of time-steps. However, specialized hardware that accounts for
the event-driven neural operation and “computes only when required” can potentially
exploit such alternative mechanisms of network operation. For instance, Fig. A.5 rep-
resents the average total number of output spikes produced by neurons in VGG and
ResNet architectures as a function of the layer for ImageNet dataset. A randomly
chosen minibatch was used for the averaging process. We used 500 timesteps for ac-
cumulating the spike-counts for VGG networks while 2000 time-steps were used for
ResNet architectures. This is in accordance to the convergence plots shown in Fig.
A.4. An important insight obtained from Fig. A.5 is the fact that neuron spiking
activity becomes sparser as the network depth increases. Hence, benefits from event-

driven hardware is expected to increase as the network depth increases. While an
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Fig. A.5. Average cumulative spike count generated by neurons in
VGG and ResNet architectures on the ImageNet dataset as a func-
tion of the layer number. 500 timesteps were used for accumulating
the spike-counts for VGG networks while 2000 time-steps were used
for ResNet architectures. The neural spiking sparsity increases signif-
icantly as network depth increases.

estimate of the actual energy consumption reduction for SNN mode of operation is
outside the scope of this current work, we provide an intuitive insight by providing the
number of computations per synaptic operation being performed in the ANN versus
the SNN.

The number of synaptic operations per layer of the network can be easily esti-
mated for an ANN from the architecture for the convolutional and linear layers. For
the ANN, a multiply-accumulate (MAC) computation takes place per synaptic oper-

ation. On the other hand, a specialized SNN hardware would perform an accumulate
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Table A.3.
Results for Residual Networks

Dataset Network ANN SNN
Architecture Error Error
CIFAR-10 ResNet-20 10.9% 12.54%
ImageNet ResNet-34 29.31% 34.53%
(10.31%) (13.67%)

computation (AC) per synaptic operation only upon the receipt of an incoming spike.
Hence, the total number of AC operations occurring in the SNN would be represented
by the layerwise product and summation of the average cumulative neural spike count
for a particular layer and the corresponding number of synaptic operations. Calcula-
tion of this metric reveal that for the VGG network, the ratio of SNN AC operations
to ANN MAC operations is 1.975 while the ratio is 2.4 for the ResNet (the metric
includes only ReLLU/IF spiking neuron activations in the network). However, note the
fact that a MAC operation involves an order of magnitude more energy consumption
than an AC operation. For instance, Ref. [195] reports that the energy consumption
in a 32-bit floating point MAC operation is 3.2pJ while the energy consumption is
only 0.1pJ for an AC operation in 45nm technology. Hence, the energy consumption
reduction for our SNN implementation is expected to be 16.2x for the VGG network

and 13.3x for the ResNet in comparison to the original ANN implementation.

A.6 Conclusions and Future Work

This work serves to provide inspiration to the fact that SNNs exhibit similar com-
puting power as their ANN counterparts. This can potentially pave the way for the
usage of SNNs in large scale visual recognition tasks, which can be enabled by low-

power neuromorphic hardware. However, there are still open areas of exploration
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for improving SNN performance. A significant contribution to the present success of
deep NNs is attributed to Batch-Normalization [181]. While using bias less neural
units constrain us to train networks without Batch-Normalization, algorithmic tech-
niques to implement Spiking Neurons with a bias term should be explored. Further,
it is desirable to train ANNs and convert to SNNs without any accuracy loss. Al-
though the proposed conversion technique attempts to minimize the conversion loss
to a large extent, yet other variants of neural functionalities apart from ReLU-IF
Spiking Neurons could be potentially explored to further reduce this gap. Addition-
ally, further optimizations to minimize the accuracy loss in ANN-SNN conversion for
ResNet architectures should be explored to scale SNN performance to even deeper

architectures.
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B. STOCHASTICITY OF SPINTRONIC DEVICES AS A
FUNCTION OF TEMPERATURE: ON-CHIP
TEMPERATURE SENSOR IMPLEMENTATION

This thesis has explored various neuromorphic computing paradigms that can be en-
abled by the stochastic switching of nanomagnets at non-zero temperatures. All these
computing platforms are based on the stochastic switching response of the magnet as a
function of the input current magnitude at a constant operating temperature. In this
appendix, we explore an alternative approach for abstracting the stochastic switching
response of the magnet as a function of temperature at fixed external current input

and demonstrate its possible usage for on-chip temperature sensor applications.

B.1 Introduction

Due to continued device scaling and consequent addition of more components on-
chip, which in-turn results in enhanced heat generation, chip temperature monitoring
has become a critical issue for ensuring reliable operation. With advanced technol-
ogy nodes, increased throughput is achieved at the expense of more heat generation.
Hence, designing on-chip low-power, low-cost temperature sensors is becoming a cru-
cial requirement [196-199]. The typical performance metrics for on-chip temperature
sensors are the conversion rate and energy consumption per inference. The conver-
sion rate is defined as the number of inference samples that can be produced by the
sensor per unit sec which is the inverse of the time required by the sensor to make
an inference. The energy consumption per inference is defined as the product of the
power consumption of the sensor and the inverse of the conversion rate.

While most of the recent work in the domain of on-chip temperature sensors

have been primarily based on CMOS sensors [196-199], it is interesting to note that
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post-CMOS technologies like spintronic devices demonstrate temperature-dependent
probabilistic switching due to thermal noise. Although, traditionally the stochastic
switching behavior of spin-based devices have been primarily viewed as a disadvan-
tage for on-chip memory applications, recently unconventional computing paradigms
like neuromorphic computing [6,7,127], Ising computing [133,135] and Bayesian in-
ference networks [134] based on stochastic nanomagnets have been proposed that
leverage the underlying stochastic device physics. The probabilistic switching of the
spintronic device is a function of the input programming current and the operating
temperature (assuming a fixed duration of the programming current). However, all
these applications abstract the probabilistic switching characteristics of the spintronic
device as a function of input current as the external stimulus, at a fixed tempera-
ture. This appendix section attempts to explore the stochastic magnet dynamics as a
function of temperature and provides an estimation of its performance metrics as an
on-chip temperature sensor in comparison to state-of-the-art CMOS based sensors.
The potential advantages of such nanomagnetic temperature sensors are compactness,

higher conversion rate and lower energy consumption per inference.

B.2 MTJ as Temperature-Biased Random Number Generator

The operation of the MTJ as a temperature-biased random number generator has
been explained in Fig. B.1. A particular temperature inference takes place over a

bREN13

number of “write”-“read”-“reset” cycles. The timing waveform for a particular cycle

¢

has been shown in the figure. During the “write” cycle, the MTJ is driven by a cur-
rent source which passes an input charge current through the heavy metal underlayer.
Depending on the operating temperature, the MTJ switches with a given probabil-
ity. Consecutively, during the “read” phase, the M'TJ state is determined using the
resistive divider circuit shown in Fig. B.1. The reference resistor, Rrpr, is an MTJ

whose state is fixed in the AP state. The read current is maintained to sufficiently

low values such that the MTJ states are not disturbed. Note that the “write” and
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Fig. B.1. The Sensor MTJ is interfaced with a Reference MTJ (Rrgr)
to form a voltage divider circuit (driven by supply voltage Vpp) that
drives an inverter at the output to determine the switching probabil-
ity (Psw) at an operating temperature 7. W R and RD are control
signals that activate the “write” and “read” current paths of the M'TJ
respectively. During the “write” phase (W R activated), a bias current
(Ipras) probabilistically switches the magnet depending on the tem-
perature. After a subsequent “relaxation” phase, Trerax, the “read”
phase (RD activated) is used to determine the final state of the MT\J
due to the corresponding “write” phase.

“read” phases are separated by a “relaxation” period, Trgrax, in order to stabilize
the magnetization directions to either of the two stable states after the “write” phase.
The magnet is “reset” to the initial AP state for the next cycle in case a switching
event takes place by passing a large enough magnitude of current through the heavy

metal in the opposite direction to ensure approximately deterministic switching. The
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switching probability is determined from multiple such measurement cycles and the
operating temperature is determined from the measured switching probability.

The device parameters have been mentioned in Table. 4.1. The parameters are
based on experimental measurements reported in Ref. [118]. The “Write”, “Relax-
ation” and “Read” phase durations are 0.5ns, 2ns and 1ns respectively. The design

temperature is varied in the range 200 — 400K.

B.3 Sensor Performance Metrics

Fig. B.2(a) represents the switching probability characteristics of the MTJ (as a
function of “write” current through the HM) with varying temperature. The disper-
sion in switching probability characteristics between 200K and 400K is maximized at
the central region of the switching probability characteristics (Fig. B.2(b)). Specifi-
cally, we note that for our design pulse width duration of 0.5ns, the optimal design
current is ~ 70uA and the probability dispersion (absolute difference in the MTJ
switching probabilities at 200K and 400K) is ~ 24%.

Fig. B.3 denotes the MTJ switching probability at the optimal bias current of
7T0uA as a function of temperature. Although the switching characteristic becomes
non-linear and tends to saturate at very high temperatures, the characteristic is ap-
proximately linear in the range of 200/ —400K . The resolution of the sensor linearity
is ~ 0.37%/1°C.

A single switching event of the MTJ can be considered to be a Poisson process
with the probability of switching being determined by the temperature. Consequently,
the precision of temperature sensing is expected to increase as the number of switch-
ing events (“write”-“read”-“reset” cycles) for the temperature inference process is
increased. Fig. B.4 shows that the average sensing error in the range 200K — 400K
is reduced to ~ 1°C'" as the number of samples is increased to 100,000. Considering
each cycle to be of duration 4ns (0.5ns for “write” phase, 2ns for “relaxation” phase,

Ins for “read” phase and 0.5ns for “reset” phase), the resultant time required for
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one inference is 4 x 107*s (with an error tolerance of ~ 1°C'). The corresponding
conversion rate is 2500 samples/s.

The energy consumption of the MTJ based sensor can be estimated by considering
the energy consumed during the “write”, “read” and “reset” phases of operation in
one cycle. Considering the bias current of 70 A is provided by a 1V supply, the total
“write” energy consumption is estimated to be 35f.J (VITy g energy consumption,
where V' =1V, I = 7T0pA and Ty g = 0.5ns). Assuming a design temperature sensing
range of 200K — 400K, the device exhibits a switching probability of Prgser = 46%
at the mean temperature of 300K . Since, the MTJ needs to be reset for every switch-
ing event by passing a 140uA charge current in the opposite direction through the
HM layer (to ensure deterministic switching: see Fig. B.2(a)), the “reset” energy con-
sumption is estimated to be ~ 32fJ (PreserV ITreser energy consumption where,
V =1V, I = 140uA and Twg = 0.5ns). The “read” energy consumption was esti-
mated by SPICE simulations of the MTJ based voltage divider driving an inverter
stage (as shown in Fig. B.1). Non-Equilibrium Green’s Function (NEGF) based
transport simulation framework was used to model the MTJ resistance [25]. The
total “read” energy consumption was estimated to be ~ 21f.J (including the energy
consumption of the latch being driven by the inverter stage). Considering the total
number of cycles per inference to be 100,000, the total energy consumption of the
MTJ based temperature sensor per conversion is given by the product of the resultant
energy consumption per cycle and the number of cycles required per inference, and
is equivalent to ~ 8.8nJ. Comparison of the MTJ based temperature sensor in terms
of conversion rate and energy/conversion with other recent proposals of CMOS based

temperature sensors are summarized in Table B.1.

B.4 Scaling to the Super-Paramagnetic Regime

The discussion so far has been based on magnet dimensions exhibiting a barrier

height of ~ 20kgT (at the nominal temperature 7' = 300K). However, as the magnet



154

CEIVNEIUND

- 88 MSG¢ 1+ LCT — €L— [IIN
w80 0091 01 1'0F 0§ — 08 661 SOIND
W8T 0 G99 M1 I a8 — 07— [861] SOND
wriQT () €186 MIT $2a0 ~ 148°0— 00T —0 [L6T] SOND
wrlge 01 01 I+— 80— 00T — 0 [961] SOIND

(ru) (s/serdures)
UOISIOAUO)) / orey (Do) (0.) oSuey
ASorouyoaf, AS1oury UOISJIOAUO)) Adeanoodeuy aanjerodwa], odA T, 10susag

s10suag aanjeradua], pasodold 10710 YHUA\ [N Jo uostreduro))
T°d PI98L



> 1 - =

= Design . w2

9 current

Qo R4

o U

a 05

= SN | T=200K
= Ry _

£ 5 - = T=300K
= YAV T=400K
; O Y

@ 40 60 80 100 120

Current (pPA)

@)

Dispersion in
Switching Probability

o
w

o
(N

o
=

o

Design
\"——current =
70pA

200

o

) 100
Bias current (HA)

(b)

Fig. B.2. (a) MTJ switching probability characteristics with varying
temperature in the range 200 — 400K, (b) The dispersion in switching
probability between 200K and 400K is maximized for a design bias
current 70uA (central region of the switching probability characteris-

tics).
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Fig. B.3. The switching probability of the MTJ subjected to a bias
current of magnitude 70uA and duration 0.5ns as a function of tem-
perature. Although the characteristics increase non-linearly, it is ap-
proximately linear in the design temperature range of 200 — 400K
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dimensions are aggressively scaled down to the super-paramagnetic regime (1kgT

barrier height), the magnet exhibits random telegraphic switching between the two

extreme states. As discussed before, the average dwell time in each state is ~ 50%, and

the average in-plane magnetization over a duration of 500ns is approximately zero.

The dwell time in either of the two extreme states can be biased by the magnitude of
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Fig. B.4. Inaccuracy of the MTJ based temperature sensor as a func-
tion of the number of switching events (“write”- “read”- “reset” cycles)
used for inferring the switching probability and operating tempera-
ture. The average error reduces to ~ 1°C' as the number of samples
is increased to 100, 000.
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Fig. B.5. (a) Variation of the average in-plane magnetization with
magnitude of the “write” current for ' = 200K — 400K, (b) For a
design bias current of 1uA, the average magnetization varies approx-
imately linearly with the operating temperature. The time-window
used for the averaging operation is 100, 000ns.

the input current stimulus (flowing through the underlying HM layer) as well as the

operating temperature. Fig. B.5(a) represents the average in-plane magnetization
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as a function of the “write” current flowing through the HM layer at the nominal
temperature T' = 300K . For a design bias current of 1A, the MTJ exhibits linear
variation of average magnetization profile with sensing temperature (Fig. B.5(b)).
Due to the low barrier height, the magnet essentially operates as a volatile device.
Consequently, the circuit peripherals have to be operated in an asynchronous fashion

9

(in contrast to the synchronous “write”-“read”-“reset” mode of operation discussed
for high barrier height magnets). As mentioned before, the “write” and “read” current
paths have to be activated simultaneously and the “read” circuit has to be optimized
to ensure that the “read” current has minimal impact on the switching of the mag-
net. Circuit-level simulations indicate that the “read” current can be maintained to
values below 100nA, thereby having negligible influence on the switching probability
characteristics of the magnet.

The potential benefits of such super-paramagnetic sensors lies in the conversion
rate and energy consumption per inference. Since telegraphic switching occurs in the
~ ps time scale, the time window per inference can be greatly reduced. Further,
the “write” bias current magnitude is reduced by almost an order of magnitude,
thereby reducing the “write” power consumption. Additionally, no “reset” operation

is required (due to telegraphic magnet switching), leading to reduction in both the

power consumption and the delay involved in the “reset” operation.

B.5 Conclusions

In conclusion, we proposed a compact nanoelectronic temperature sensor that is
able to provide a higher throughput and lower energy consumption in comparison
to state-of-the-art CMOS temperature sensors. A key point that enables the usage
of stochastic switching behavior of MTJs for temperature sensing applications (in
comparison to stochastic switching behavior of other resistive memory technologies)
is that the causal element for the device stochasticity is thermal noise. Instead of

considering the underlying device stochasticity to be disadvantageous, this work can
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potentially pave the way for M'TJ-enabled on-chip temperature sensors that exploit

the probabilistic switching characteristics of nanomagnets at non-zero temperatures.



VITA



159

VITA

Abhronil Sengupta has been pursuing the PhD degree in the Department of Elec-
trical and Computer Engineering at Purdue University, under the supervision of Prof.
Kaushik Roy since Fall 2013. He received the B.E. degree from Jadavpur University,
India in 2013. He worked as a DAAD (German Academic Exchange Service) Fellow
at the University of Hamburg, Germany in 2012, and as a graduate research intern at
Circuit Research Labs, Intel Labs in 2016 and Facebook Reality Labs in 2017. The
ultimate goal of Abhronil’s research is to bridge the gap between Nanoelectronics and
Machine Learning. He is interested in pursuing an inter-disciplinary research agenda
at the intersection of hardware and software across the stack of sensors, devices,
circuits, systems and algorithms for enabling low-power event-driven cognitive intel-
ligence. Abhronil has published over 45 articles in referred journals and conferences
and holds 4 granted/pending US patents. He has been awarded the Bilsland Disser-
tation Fellowship (2017), CSPIN Student Presenter Award (2015), Birck Fellowship
(2013), the DAAD WISE Fellowship (2012), and his publications have featured as
APL Editor’s Picks (2015) and top 5 popular articles in IEEE TCAS-I (2017). His
work on spin-device based neuromorphic computing has been highlighted in media by
MIT Technology Review, US Department of Defense, American Institute of Physics

among others.



	Efficient Neuromorphic Computing Enabled by Spin-Transfer Torque: Devices, Circuits and Systems
	Recommended Citation


