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ABSTRACT 

Sengupta, Abhronil Ph.D., Purdue University, August 2018. Efficient Neuromorphic 
Computing Enabled by Spin-Transfer Torque: Devices, Circuits and Systems. Major 
Professor: Kaushik Roy. 

Present day computers expend orders of magnitude more computational resources 

to perform various cognitive and perception related tasks that humans routinely per-

form everyday. This has recently resulted in a seismic shift in the field of compu-

tation where research efforts are being directed to develop a neurocomputer that 

attempts to mimic the human brain by nanoelectronic components and thereby har-

ness its efficiency in recognition problems. Bridging the gap between neuroscience 

and nanoelectronics, this thesis demonstrates the encoding of biological neural and 

synaptic functionalities in the underlying physics of electron spin. Description of 

various spin-transfer torque mechanisms that can be potentially utilized for realiz-

ing neuro-mimetic device structures is provided. A cross-layer perspective extending 

from the device to the circuit and system level is presented to envision the design 

of an All-Spin neuromorphic processor enabled with on-chip learning functionalities. 

Device-circuit-algorithm co-simulation framework calibrated to experimental results 

suggest that such All-Spin neuromorphic systems can potentially achieve almost two 

orders of magnitude energy improvement in comparison to state-of-the-art CMOS 

implementations. 
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1. INTRODUCTION 

Although the brain is not yet fully understood, neuromorphic computing that at-

tempts to emulate some facets of its functionalities and inter-connectivity, are be-

coming increasingly popular on machine learning tasks, and are surpassing humans 

at multiple cognitive tasks more than ever before. For instance, recently Google 

DeepMind beat a professional human champion at a 19 × 19 Go board game [1]. 

The key inspiration behind the development of algorithms and computing paradigms 

with high degree of bio-fidelity is driven by the expectation that by emulating some 

attributes of the human brain, we would be able to approach the brain’s highly effi-

cient and low-power cognitive abilities. For instance, implementation of bio-realistic 

“spiking” neural computing paradigms have recently enabled low-power event-driven 

neuromorphic hardware equipped with on-chip local spike-timing dependent synaptic 

learning functionalities. 

While these neuro-inspired computing models are still implemented in von-Neumann 

architectures consisting of Boolean logic and memory circuits, the brain’s “computing 

fabric” is highly parallel, interconnected and enabled with in-situ synaptic memory 

storage. Further CMOS transistors, that form the underpinnings of current com-

puting systems, are on-off switches that are naturally suited for Boolean computing 

but may not inherently map to the “computational primitives” of neuro-mimetic 

algorithms. Limited by this mismatch between the computational units and the 

underlying hardware, CMOS based neuromorphic architectures consume resources 

and power that are orders of magnitude higher than that involved in the biological 

brain [2]. Bridging this gap necessitates the exploration of devices, circuits and ar-

chitectures that provide a better match to biological processing and which require a 

significant rethinking of traditional von-Neumann based computing. 
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Fig. 1.1. Cross-layer research effort across the stack of materials, 
devices, circuits and algorithms to provide system-level solutions for 
enabling cognitive intelligence. A “top-down” perspective to provide 
algorithm-level matching to the underlying device physics of spin-
tronic devices is complemented by a “bottom-up” approach where re-
cent experiments in spintronics are leveraged to propose device struc-
tures that can directly mimic neural and synaptic functionalities. 

While usage of spintronic devices in memory applications have achieved matu-

rity and is close to the market [3], recent experiments in domain wall motion based 

devices [4, 5] and probabilistic switching characteristics of scaled nanomagnets [6, 7] 

are revealing immense possibilities of implementing a plethora of neural and synaptic 

functionalities by single spintronic device structures that can be operated at very low 
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terminal voltages. Simple engineering of the device dimensions or biasing region of the 

operating transistors can enable the emulation of functionalities that can range from 

neuron spiking behavior to synaptic learning abilities in the same magnetic stack. 

While other emerging devices such as resistive memories have also been explored 

for neuromorphic computing, they are limited by the variety of neural or synaptic 

functionalities that they can emulate along with high energy requirements for pro-

gramming [8, 9] (which is an essential component of learning and neural inference). 

The prospect of large improvements in integration density and energy consumption 

and concurrently providing in-memory computing possibilities (due to their inher-

ent non-volatility) can potentially make spintronic devices a promising path towards 

realizing “brain-like” nanoelectronic computing. This thesis attempts to provide a 

multi-disciplinary perspective across the entire stack of materials, devices, circuits, 

systems and algorithms where understanding of the underlying device physics of spin-

tronic devices (“bottom-up approach”) is complemented by efforts to adapt neuromor-

phic computing models to the unique characteristics of spintronic devices (“top-down 

approach”) to construct cognitive networks of interconnected spintronic neural and 

synaptic components (Fig. 1.1) [10, 11]. 
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2. SPINTRONIC DEVICES: UNDERLYING PHYSICAL 

PHENOMENA 

Several spintronic device structures have been proposed in literature to mimic different 

neuronal or synaptic functionalities. However, in order to understand the mapping 

of biological functions to the operation of such spin devices, an understanding of the 

underlying physical phenomena is necessary. This section provides a brief overview 

of major spin-torque effects in nanomagnets that can be engineered to realize such 

neuromimetic computations. 

The two main physical phenomena that are exploited to construct neuromimetic 

spin devices are the spin-torque effect (“write” mechanism) and the Tunneling Magneto-

Resistance or the TMR effect (“read” mechanism). The manipulation of magnetiza-

tion state without the assistance of any external magnetic field through spin-transfer 

torque effect was first predicted by Slonczewski [12] and Berger [13] in 1996. Several 

experiments demonstrating spin-transfer torque induced magnetization reversal have 

been demonstrated henceforth [14–16]. On the other hand, sensing the magnetization 

state through the TMR effect was first experimentally observed by Julliére in 1975 in 

Fe/Ge-O/Co stacks [17]. 

2.1 Device Fundamentals 

A nanomagnet is characterized by two collinear but oppositely directed stable 

magnetization directions, termed as the “easy” axis, such that in the absence of any 

external perturbation (magnetic field or input spin current) the magnetization would 

relax to either of the stable magnetization states. The stability of the magnet in 
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the presence of thermal noise is maintained by virtue of a barrier height, EB, that is 

determined by the uniaxial anisotropy, Ku2, of the magnet as [18], 

EB = Ku2V (2.1) 

where V is the volume of the magnet. The lifetime of the magnet in absence of 

thermal agitation is related exponentially to the magnitude of the barrier height. For 

instance, a barrier height of 40kB T (kB is Boltzmann constant) ensures a magnet 

lifetime of ∼ 7.4 years [18]. 

The uniaxial anisotropy of the magnet, and hence the direction of magnet “easy-

axis”, can be in-plane (IMA) when shape anisotropy dominates the resultant anisotropy 

of the magnet [3, 19, 20]. In this case, the magnet cross-sectional area would be an 

ellipse with the “easy-axis” being in the direction of the longer dimension. In con-

trast, in perpendicular magnetic anisotropy (PMA) materials, the magnetocrystalline 

anisotropy dominates over the shape anisotropy in order to make the out-of-plane di-

rection as the “easy-axis” direction [3, 21, 22]. Hence, PMA magnets are usually of 

circular cross-sectional area. 

In order to read the magnetization state of the nanomagnet, a Vertical Spin Valve 

(VSV) structure is utilized as shown in Fig. 2.1(a). It is referred to as the Magnetic 

Tunnel Junction (MTJ) [16, 17, 23] where a thin oxide acts as the tunneling barrier 

between two nanomagnets. The resistance of the MTJ depends on the relative orien-

tation of the magnetization directions of the two nanomagnets. In order to provide a 

reference, the magnetization of one of the magnets is pinned to a particular direction 

(usually achieved by coupling to an antiferromagnetic layer), mb P , while the magne-

tization of the other layer, mb , can be determined by the resistance of the MTJ stack. 

The two layers are referred to as the “pinned” layer (PL) and “free” layer (FL) respec-

tively. The difference in resistance of the MTJ with relative magnetic orientations of 

the FL and PL can be explained from the concept of “spin-filtering” [3, 24]. When 

mb P and mb are parallel to each other (Parallel configuration: P), electrons with that 

corresponding spin orientation can easily tunnel through the oxide since the filled 
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states in the band structure of one contact corresponding to that particular spin ori-

entation is well matched to empty states for the same spin in the other contact. On 

the contrary, when mb P and mb are oppositely directed (Anti-Parallel configuration: 

AP), the band structures of either spin configuration are not well-matched for the 

two contacts, thereby resulting in higher resistance. The metric utilized to measure 

the difference between the P (RP ) and AP (RAP ) MTJ resistances is referred to as 

the Tunneling Magnetoresistance Ratio (TMR) defined as, 

RAP − RP
TMR = × 100% (2.2)

RP 

It is worth noting here that the MTJ P and AP resistances are a function of the 

oxide thickness and applied voltage across the MTJ which can be formulated using 

the Non-Equilibrium Green’s Function based transport simulation framework [25]. 

Considering that the FM has a uniform magnetization direction, the MTJ resistance 

(R) is a function of the spacer (MgO) thickness (tMgO), relative angle between the 

magnetizations of the FM and the pinned layer (θ), and the voltage across the MTJ 

(VMTJ ). The variation can be described by the following equations [25], 

c 
!−dX� � 

a0tM gO +b0 amtMgO +bmR ∝ e + (−1)m−1V 2m (2.3)MTJ e 
m=1 

� � ��2 � � ��2 
!−1 

1 θ 1 θ 
R(θ) = cos + sin (2.4)

RP 2 RAP 2 

Here, RP and RAP represent the parallel (θ = 0) and anti-parallel resistances (θ = π) 

of the MTJ respectively. The fitting parameters am, bm, c and d can be determined 

by calibrating the simulation framework with experimental data. For an extensive 

description of the NEGF based simulation framework, readers are referred to Ref. [25]. 

The discussion so far has been limited to sensing the magnetization state of a 

nanomagnet. Let us now discuss the mechanism of manipulating the magnetization 

direction of a magnet. One of the most common mechanisms is by passing a charge 

current through the MTJ stack due to spin-transfer torque effect [12–16]. When 

charge current flows from the FL to the PL, electrons are injected into the FL from 
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the PL that are spin-polarized in the direction of mb P . The magnitude of injected spin 

current is determined by the polarization of the magnet. Hence the injected spins 

attempt to orient the FL in the direction of mb P . For a sufficient magnitude of the 

current flowing from the FL to the PL, the MTJ is switched to the P configuration. 

On the other hand, when current flows from the PL to the FL, the FL attempts to 

inject spins into the PL. However, due to “spin-filtering”, only electrons with spin 

parallel to mb P can tunnel easily to the PL from the FL. Hence the remaining spins 

anti-parallel to mb P remain in the FL and exert a torque to orient the MTJ in the AP 

state. 

The temporal evolution of magnetization dynamics can be described by Landau-

Lifshitz-Gilbert equation [26] with additional terms to account for the effect of spin-

transfer torque [27] as follows, 

dmb dmb 1 
= −γ(mb × Heff ) + α(mb × ) + (mb × Is × mb ) (2.5)

dt dt qNs 

2µB µ0where mb is the unit vector of FL magnetization, γ = is the gyromagnetic ratio ~ 

for electron, α is Gilbert’s damping ratio, Heff is the effective magnetic field, Ns = 

M
µ 
s

B 

V is the number of spins in free layer of volume V (Ms is saturation magnetization 

and µB is Bohr magneton), and Is is the input spin current generated by the HM 

underlayer. Thermal noise is included by an additional thermal field [28], Hthermal = q 
α 2kB TK G0,1, where G0,1 is a Gaussian distribution with zero mean and unit

1+α2 γµ0MsV δt 

standard deviation, kB is Boltzmann constant, TK is the temperature and δt is the 

simulation time-step. 

In the absence of any input current stimulus, the magnet is subjected to a field-

torque (that causes it to precess in the direction of the effective magnetic field) and a 

damping torque (that attempts to stabilize the magnet along the initial equilibrium 

state). The effective magnetic field includes any external applied field, magnetic 

uniaxial anisotropy field along with a thermal fluctuation field [28, 29] that lends a 

stochastic behavior to the switching process. The impact of input current on the 

magnetization dynamics is usually described by a Slonczewski-like torque [27] that 

acts in the plane of the damping torque and stabilizes the magnet along either of 
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the two stable magnetization directions depending on the direction of the input spin 

current. Although some experiments have reported contributions from a field-like 

torque to the resultant spin-torque due to the input current [30], its magnitude is 

usually much less in comparison to the Slonczewski-like torque in tunneling junctions. 

2.2 Domain Wall Motion 

Mono-domain magnets where the entire FL magnetization is uniformly polarized 

can represent only two binary states. More than two states can be represented by 

multi-domain magnets that are fabricated with elongated shape to stabilize a transi-

tion region (termed as domain wall, DW) between two regions of opposite magnetic 

polarizations. The device state can be then represented by the position of the DW 

or the relative proportion of the two oppositely polarized magnetic domains. The 

manner of magnetization transition at the DW location depends on the anisotropy 

and shape of the magnet. While IMA nanowires are characterized by transverse (thin 

and narrow nanostrips) or vortex DWs (wider and thicker nanostrips) [31], PMA ma-

terials exhibit Néel (narrow nanostrips) or Bloch DWs (wider nanostrips) [32]. Due 

to lower switching current requirements, we will consider PMA nanomagnets in this 

text. Fig. 2.1(c) depicts the magnetic orientations of Néel and Bloch DWs observed 

in PMA magnetic strips. The domain wall is termed as a Néel wall when the magne-

tization direction at the wall location rotates in a plane perpendicular to the plane of 

the wall and is typically observed for nanowires with width less than 100nm (owning 

to shape anisotropy) [33]. For wider nanowires, the wall magnetization rotates in 

the plane of the wall and is termed as the Bloch wall [33]. Charge current flowing 

through the magnetic strip can displace the domain wall in the direction of electron 

flow due to STT effect. Current induced DW motion in the direction of electron flow 

was predicted [34] and also observed in multiple experiments [35,36]. DW motion due 

to charge current flow through the magnet can be attributed to spin-torque generated 

due to local magnetization tracking of electrons flowing through the magnet. 
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2.3 Spin-Orbit Torque 

Spin current generated by STT effect is always limited by the polarization strength 

of the injector magnet. Recent experiments on Insulator-Ferromagnet-Heavy Metal 

(I-FM-HM) multilayer structures have opened up the possibility of much greater spin 

injection efficiencies due to strong spin-orbit interaction (SOI) [37] observed in such 

multilayer structures. When a charge current flows through the underlying HM, spin-

orbit torque (SOT) is generated at the FM-HM interface. Although the cause of SOT 

can be attributed to two possible origins, namely the Rashba field due to structural 

inversion asymmetry [38] and the spin-Hall effect (SHE) [39], we will consider SHE 

to be the dominant underlying physical phenomena for this text. As shown in Fig. 

2.1(c), due to the flow of charge current through the HM, electrons with opposite 

spins scatter on the top and bottom surfaces of the HM. The spin-polarization is 

orthogonal to both the directions of charge current and injected spin current. These 

electrons experience spin-scattering repeatedly while traveling through the HM and 

thereby transfer multiple units of spin angular momentum to the FM lying on top. 

The magnitude of injected spin current density (Js) is proportional to the magnitude 

of input charge current density (Jq), with the proportionality factor being defined as 

the spin-Hall angle [39] (θSH < 1). Hence, the input charge to spin current conversion 

is governed by the following relation, � � 
WFM 

Is = θSH . Iq (2.6)
tHM 

where Is and Iq are the input spin current and charge current magnitudes respectively, 

WFM is the width of the FM lying on top of the HM, and tHM is the HM thickness. By 

ensuring WFM >> tHM , high spin injection efficiencies greater than 100% (Is > Iq) 

can be achieved. Typical HMs with high spin-orbit coupling under exploration are 

Pt, β-W and β-Ta. An important point to note is that the injected spins at the 

FM-HM interface have in-plane spin polarization due to SHE. Hence, SOT induced 

magnetization reversal is only possible for IMA magnets while an external magnetic 

field is required to switch PMA magnets in presence of SOT [40–42]. 
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Energy efficient SOT induced DW motion has been also observed in FM-HM 

bilayers [43–45]. Consider the multilayer structures shown in Fig. 2.2(c-d). Input 

charge current flowing along the y-direction will cause injection of x-axis directed 

spins at the FM-HM interface. A general principle to determine the DW movement 

direction is to calculate the cross-product between the injected spin direction at the 

FM-HM interface and the magnetization direction at the wall location. The cross 

product direction signifies the final magnetization state of the magnet, and hence, 

the DW motion direction. Regarding the orientation of the DW, there can be two 

alternatives, namely a longitudinal wall (parallel to the length of the magnet) or 

a transverse wall (perpendicular to the length of the magnet). However, in both 

cases the wall magnetization needs to be along the y-axis in order to achieve any 

DW movement. This implies that a Bloch wall configuration is required for the 

longitudinal wall and a Néel wall orientation is required for the transverse wall. Let 

us first discuss the case for the longitudinal wall. Shape anisotropy of the magnet 

(assuming sufficient magnet width, typically above 100nm) will cause the stabilization 

of Bloch wall in the FM [46]. However, an in-plane magnetic field is required to retain 

the stability of the wall in the presence of injected spins due to current flow in the 

underlying HM [46]. On the other hand, the Néel wall can be stabilized by an effect 

termed as the Dzyaloshinskii-Moriya exchange interaction (DMI), which is normally 

associated with such FM-HM bilayers due to spin-orbit coupling and broken inversion 

symmetry of such magnetic heterostructures [47–49]. As a matter of fact, the DMI 

strength in certain multilayers like CoFe-Pt or CoFe-Ta [48, 49] has been observed 

to be strong enough to impose Néel wall configuration even for wider nanomagnets 

where conventional magnetostatics would have yielded a Bloch configuration. Note 

that Bloch wall stabilization in the former case (longitudinal DW) discussed before is 

possible in samples with negligible DMI [46]. The strength of the effective DMI field 

at the wall location is enough to stabilize the Néel wall magnetization even in the 

presence of in-plane injected spins due to current flow through the underlying HM. 

Hence no external magnetic field is required for DW propagation in such magnetic 
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multilayers with inherent DMI effect and consequently more attractive from scalability 

point of view. As a result we will focus on device structures based on the latter case 

for the remainder of this text. 

The DMI effect can be modeled by including an additional field (HDMI ) in the 

calculation of the effective field Heff and is given by, � � � � 
2D ∂mz ∂mz ∂mx ∂my

HDMI = − xb+ yb− + zb (2.7) 
µ0Ms ∂x ∂y ∂x ∂y 

where D represents the effective DMI constant and determines the strength of DMI 

field in such multilayer structures. A positive sign of D implies right-handed chirality 

and vice versa. In the presence of DMI, the boundary conditions at the edges of the 

sample is given by, 
∂mb D 

= mb × (nb × zb) (2.8)
∂n 2A 

where A is the exchange correlation constant and nb represents the unit vector normal 
to the surface of the FM. 

2.4 Lateral Spin Valves 

Spin current injection can also occur in Lateral Spin Valve (LSV) structures, as 

depicted in Fig. 2.1(d), where an injector and a detector ferromagnet are situated 

on top of a non-magnetic channel. When electrons flow through the injector magnet 

to the ground contact of the channel lying below the magnet, a large number of 

spins oriented in the same direction as the magnetization of the injector magnet are 

accumulated in the channel region underneath the magnet. The gradient of this spin 

potential difference between the two spin orientations causes one type of spin to flow 

along the channel, thereby exerting non-local spin-torque on the detector magnet. The 

magnitude of injected spin current decays exponentially with distance between the two 

ferromagnets due to spin-flip processes. Apart from choosing appropriate materials 

with longer spin-flip lengths [50, 51], a tunneling barrier can be inserted between 

the magnet and channel to achieve better spin injection [51]. Recent experiments 
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have demonstrated non-local spin-torque induced magnetization reversal in Py/Au 

nanopillars located on top of a Cu wire [52]. 

2.5 Towards More Efficient Devices 

Improving the efficiency of operation of spin devices, and notably the “write” 

and “read” mechanisms is key to achieving scalable, compact and low-power neu-

romimetic devices. Using PMA materials is one possible alternative to reduce the 

critical switching current density for magnetization reversal [40–42] or DW displace-

ment [43, 45, 49, 53]. Other physical mechanisms like voltage-controlled magnetic 

anisotropy [54], magnetoelectric effect [55, 56] or topological insulator induced spin 

current generation [57, 58] are also under exploration that can potentially serve as 

replacements for HM induced magnetization switching. Innovations in the material 

stack, for instance using Heusler alloys [59] or anti-ferromagnetic materials [60, 61] 

may lead to further energy benefits. Multi-level information encoded by DW position 

in magnets can be also potentially replaced by current induced skyrmion displace-

ment [62, 63]. While the discussion in this article will be mainly based on single-

domain or DW motion based multi-domain devices with HM underlayers, the con-

cepts can be easily extended to incorporate innovations in the material stack or the 

underlying physical mechanism utilized for switching [64–67]. 

Additionally, improving the TMR effect is crucial to achieving more efficient 

synapses that can offer higher distinguishability for the scaling operation of the neu-

ron inputs. While the theoretical limit of the AP and P resistance ratios is near 

300 [68], experiments have achieved a maximum variation of 600% till date [69]. A 

roadmap issued by the IEEE Magnetics Society has predicted a variation of 1000% 

in a time period of ten years [70]. 
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3. NEUROMORPHIC COMPUTATION: PRELIMINARIES 

In this section, we will first describe the functionality of the major units of such neural 

computing models. We will also discuss different variants of neuron models (with 

varying degrees of bio-fidelity) and synaptic learning mechanisms. Relationship of 

such models to neuroscience mechanisms observed in the brain will be also established. 

The main functional units of such neuromimetic computations are the neuron 

and the synapse. Synapses are adaptive or plastic junctions between neurons that 

modulate the strength of the signal being transmitted from the pre-neuron to the 

receiving or post-neuron. Computational tasks like pattern recognition are therefore 

performed by virtue of plasticity of the synapses in response to signals being trans-

mitted between the neurons since they encode the importance level of different inputs 

being received by a particular neuron. Fig.3.1(a) depicts a particular synaptic con-

nection between a pre- and a post-neuron. Neuromorphic computation relies on the 

abstraction of the plasticity of the synaptic junction (governed by neuro-transmitter 

release at the synapse due to the incoming action potential from the pre-neuron) and 

the neuroscience mechanisms occurring in the post-neuron (to generate an outgoing 

signal to the next layer of neurons). 

3.1 Neural Computation 

Each neural computing unit receives a set of inputs from other pre-neurons through 

synaptic junctions. The weighted contribution from all the neurons is then summed 

up and processed by the neurons. The bio-fidelity level at which the “artificial” neu-

ron is modeled has gradually evolved over the last few years from simple perceptrons 

to more biologically realistic spiking neurons [71]. Irrespective of the details of the 

neural model, it is worth noting the nature of neuromorphic computation being real-
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ized in such networks. Considering a set of neurons in a particular layer receiving a 

set of inputs through synaptic weights, the computation can be mapped to a parallel 

dot-product operation between the inputs and synaptic weights followed by neural 

processing for each neuron in the layer (Fig. 3.1(b)). Such a computing kernel is 

inherently suited for “in-memory” computing platforms based on crossbar arrays of 

memristive devices as shown in Fig. 3.1(c) [72, 73]. A memristor is a nanoscale non-

volatile programmable resistor. Input voltages drive the rows of the crossbar array 

where a resistive device encoding the synaptic weight is present at each cross-point 

joining a particular input to the corresponding neuron. The current flowing through 

a particular memristive synapse is scaled by the device conductance (synaptic scal-

ing operation) and all such currents gets summed up along the column of the array, 

according to Kirchhoff’s law, and passes as the resultant input to the neuron. Addi-

tionally, due to non-volatility of the crossbar memristive elements, such architectures 

do not suffer from leakage concerns. In contrast, digital CMOS implementations like 

the IBM TrueNorth involves an architecture depicted in Fig. 3.1(d), where synaptic 

weights would be fetched from a Static-Random-Access-Memory (SRAM) bank to 

the neuron computing core [74,75]. The inefficiency of such architectures results from 

the memory access and leakage energies (which usually constitutes ∼ 60 − 80% of the 

total energy consumption in typical pattern recognition workloads for fully connected 

networks) and the overall system performance is memory bandwidth limited. 

Let us now describe the details of neural processing across different generations. 

Perceptron networks consist of neurons having “step” transfer function (relationship 

between the output and input signals), i.e. they generate a high output signal if the 

weighted summation of neuron input crosses a particular threshold [71]. However, 

since their success was limited to only a very small set of simple problems, they were 

replaced by the “second” generation of “artificial” neurons where the transfer func-

tion of the neuron was “non-step”, i.e. the neuron produced an analog output in 

response to the input stimulus [71]. Such neurons offer high recognition accuracies 

in a vast category of large-scale recognition tasks and are routinely utilized today 
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as a basic building block of deep neural networks. The scalability of such neurons 

to more “difficult” problems can be attributed to the fact that a greater degree of 

information can be encoded in the analog neuron output in contrast to the encoded 

binary information in perceptron networks. A second and equally important con-

tributing factor is the gradient of the neuron transfer function. Backpropagation [76], 

which is the underlying algorithm for training networks of such neural units, relies 

on the computation of the partial derivative of the error function (difference between 

the network output and the desired output) with respect to the synaptic weights, 

which in turn, is dependent on the gradient of the neuron transfer function. Hence, 

while a “non-step” neuron transfer function offers gradient information during error 

backpropagation, perceptrons offer gradient information only at the threshold point. 

A few popular “non-step” neuron transfer functions are the Sigmoid and Rectified 

Linear Unit (ReLU) functions. 

A more recent paradigm shift in neural computing has been the “spiking” neuron 

model, encoding a much higher degree of bio-fidelity [77]. A principal biological 

information that was completely ignored in the first two neuron generations was the 

mode of neural communication. Biological neurons communicate with each other 

through binary signals or spikes [77, 78]. Hence, in order to account for neuron 

communication by means of spikes and simultaneously overcome the bottlenecks of 

perceptrons (neuron providing ‘0’ - no spike and ‘1’ signal - spike), such “spiking” 

neurons consider the input as a time-series event instead of a single value as in previous 

generations. The input is usually encoded in a series of time-steps and provided to 

the neuron. A common form of input encoding is that of a Poisson spike train, where 

the probability of spike generation at a particular time-step is proportional to the 

value of the input. This is usually referred to as “rate” encoding [79] in literature, 

since the number of spikes transmitted over a given timing window is proportional to 

the value of the input. 
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The most common “spiking” neuron model is that of the Leaky-Integrate-Fire 

(LIF) neuron [78], whose temporal dynamics is given by, XdVmem Vmem
Cmem = − + wi.δ(t − tf,i) (3.1) 

dt Rmem i 

where Vmem is the membrane potential, Rmem is the membrane resistance, Cmem is 

the membrane capacitance, wi is the synaptic weight for the i-th input, and δ(t − tf,i) 

is the spiking event occurring at time-instant tf,i. When the neuron’s membrane 

potential Vmem crosses the threshold Vth, the membrane potential gets reset to Vreset 

and does not vary for a time duration termed as the refractory period [78]. Note that 

more bio-plausible neural models account for the modeling of a post-synaptic current 

that increases every time a spike is received and then decays exponentially [78]. This 

post-synaptic current is then integrated by the LIF neuron instead of the spikes as 

mentioned in Eq.3.1. 

It is worth noting here that “spiking” neuron models are not only limited to being 

more biologically plausible, but offers a host of advantages from hardware imple-

mentation perspective. One of the most important breakthrough has been in the 

arena of unsupervised adaptive local learning enabled by Spike-Timing Dependent 

Plasticity (STDP) which has made it possible for learning functionalities to be en-

abled “on-chip”. We will discuss synaptic learning in details in the next sub-section. 

Additionally, since such networks are ‘spike’ or ‘event driven’ and can perform pat-

tern recognition by sparse distribution of spikes, they can potentially lead to sparse, 

event-driven hardware that exploits power-gating functionalities [74,75]. For instance, 

synaptic weights can be now fetched from the SRAM bank only upon the receipt of an 

input event or ‘spike’ (unlike non-spiking nets where all the synaptic weights are re-

quired to be fetched to the computing core for each input). Asynchronous event-driven 

communication techniques at the architecture level like Address Event Representation 

(AER) are also under exploration [80, 81]. At the circuit level, an additional benefit 

is achieved due to the replacement of a multiplier by a multiplexer for each synaptic 

scaling operation. Since the inputs are binary, they do not need to be multiplied by 
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the synaptic weights but can be transmitted to the neural computing core in case 

a ‘spike’ is received [82]. Note that the loss of information due to binary inputs is 

compensated by temporal encoding over the time-steps of the spike train. However, 

the advantages due to reduced power consumption of spiking networks (event-driven 

hardware) far outweigh the cost of increased delay for inference (temporal encod-

ing) [82, 83]. Further, the sparsity of neural spiking activations increases drastically 

with network depth [84]. Hence, the power and energy benefits improve further with 

larger sized networks imperative for complex machine learning tasks [84]. 

Due to such inherent advantages of Spiking Neural Networks (SNNs) at the hard-

ware level, there has been significant interest in recent years to convert non-spiking 

nets to SNNs by replacing the original neurons by “spiking” neurons after train-

ing [84, 85]. The main motivation behind the conversion stems from the fact that 

while non-spiking nets can be trained with very high classification accuracies at large-

scale recognition tasks using backpropagation, achieving similar accuracies in STDP 

trained spiking networks is still an active research area. The “spiking” neuron model 

typically used for such conversion schemes has been the Integrate-Fire (IF) model 

which is equivalent to the LIF neuron without any leak term in the membrane po-

tential. Such an IF neuron without any refractory period has been shown to be a 

firing-rate approximation of the ReLU unit mentioned previously [86]. This is appar-

ent from the fact that higher the value of the input for the ReLU, higher is the value 

of the neuron output. Similarly, for the IF neuron, higher is the rate of input spikes, 

higher is the number of transmitted output spikes. Recently, deep layered SNNs with 

VGG and Residual network architectures (trained using such ReLU-IF spiking neu-

ron conversion mechanism) have demonstrated competitive accuracies over complex 

datasets like CIFAR [87] and ImageNet [88] (see Appendix A). 

However, note the fact that the above “spiking” neuron computing models are 

completely deterministic and do not account for the noisy probabilistic neural com-

putation that actually occurs in the human brain. Recent proposals have investigated 

stochastic neural models that abstract the neural computation by a probability dis-
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tribution function that varies as a function of the input being received by the neuron 

at each time-step of computation [89–92]. The variation is usually characterized by a 

non-linear functionality. Such probabilistic neural computation has been observed in 

‘pyramidal’ spiking neurons in the cortex and recent research proposals have investi-

gated the possibility of performing Bayesian computation in cortical microcircuits of 

stochastic neurons [91, 92]. Additionally, such stochastic neural computational units 

have been also used in Restricted Boltzmann Machines and Deep Belief Networks [93] 

trained by Contrastive Divergence [94]. Such probabilistic “spiking” neural models 

are particularly interesting for spintronic device applications since such devices are 

inherently characterized by a time-varying thermal noise leading to stochastic behav-

ior. 

We would like to conclude this section on neural computation by a brief discussion 

on an additional neuroscience mechanism termed as homeostasis [95] that is also 

routinely utilized in SNN based pattern recognition systems. It is a spike frequency 

adaption mechanism wherein the neuron threshold increases by a specific amount 

every-time the neuron spikes. This ensures that as a neuron starts to dominate the 

spiking pattern in a particular pool of neurons, it also becomes progressively difficult 

for that particular neuron to spike in the future. We will discuss the manner in which 

such homeostasis effects assist in performing pattern recognition. 

3.2 Spike-Timing Dependent Plasticity 

As mentioned in the previous section, prior to the advent of SNNs, synaptic learn-

ing was achieved primarily by backpropagation algorithm [76]. This is a supervised 

training algorithm where the neural network is trained with a particular set of inputs 

that are associated with specific class labels or categories. The algorithm aims at find-

ing the optimal set of synaptic weights by minimizing the error function (difference 

between class labels and actual network outputs) using gradient descent algorithm. 

Readers are referred to Ref. [76] for details on the backpropagation algorithm. A 
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few key points worth noting is the supervised nature of the training algorithm and 

the synaptic weight update scheme which is not only dependent on the outputs of 

neurons in other layers of the network but also require a backward pass of the gradi-

ent computation through the entire network. This has broadly limited the scope of 

specialized hardware to implement backpropagation on-chip due to expensive power 

and area requirements of the underlying hardware. 

The number of applications requiring some form of intelligence in present day 

Internet of Things (IoT) technologies like mobiles and wearables are huge and often 

require embedded on-chip intelligence since it is often not possible to transmit data in 

real-time to cloud for computing. Further, it is also not practical to have supervised 

learning algorithms to implement pattern recognition systems since real-time data will 

be mostly unlabeled (without any specific categories). Hence, unsupervised hardware-

inexpensive synaptic learning mechanisms is a key requirement for the implementation 

of on-chip learning. 

A more bio-realistic and hardware-friendly approach to synaptic learning in com-

parison to backpropagation is the STDP learning rule in SNNs, which is based on mea-

surements obtained from rat hippocampal glutamatergic synapses [96] (Fig. 3.2(a)). 

According to this theory, the synaptic weight is modulated depending on the spiking 

patterns of the pre-neuron and post-neuron. The synaptic weight increases (decreases) 

if the pre-neuron spikes before (after) the post-neuron. Intuitively, this signifies that 

the synapse strength should increase if the pre-neuron spikes before the post-neuron 

as the pre-neuron and post-neuron appear to be temporally correlated. The rela-

tive change in synaptic strength decreases exponentially with the timing difference 

between the pre-neuron and post-neuron spikes. The STDP characteristics can be 

formulated in a mathematical framework as follows, � � 
−Δt 

Δw = A+ exp , Δt > 0 
τ+� � (3.2)
Δt 

= −A− exp , Δt < 0 
τ− 
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Here, A+, A−, τ+ and τ− are constants and Δt = tpost −tpre, where tpre and tpost are the 

time-instants of pre- and post-synaptic firings respectively. We will refer to the case of 

Δt > 0 (Δt < 0) as the positive (negative) time window for learning for the rest of this 

text. Note that this learning mechanism is unsupervised since no prior information 

about input class or label is necessary. Further, synaptic weight update is completely 

local since it is modulated depending on the activities of only the neurons it connects. 

This has enabled learning functionalities to be implemented on-chip at much lower 

hardware costs. Although pattern recognition systems with high accuracies based on 

STDP learning are still in preliminary stage, competitive accuracies in typical digit 

recognition and sparse encoding workloads have been already achieved [95]. Note that 

the above STDP learning rule is referred to as anti-symmetric STDP and has been 

the most popular learning mechanism for training SNNs. However, other variants 

of STDP have been also observed in neuroscience studies and have been utilized in 

different genres of recognition tasks [97]. 

We will discuss STDP implementation in spintronic synapses in later sections. 

However, a primary concern for such spintronic synapses, and in general any memris-

tive synapse technology, is the bit resolution at aggressively scaled device dimensions. 

Driven by this fact, researchers have proposed variants of STDP learning based on 

single-bit synapses [7, 98, 99] where the multi-bit requirement is replaced by proba-

bilistic synaptic weight update. It has been already mentioned that spintronic devices 

exhibit an inherent stochasticity during the switching process which has been mainly 

attributed to the time-varying thermal noise [28]. Hence, the STDP framework de-

scribed in Eq. 3.2 can be modified in this scenario as the probability of binary synap-

tic state change (instead of analog weight change) to offer a direct correspondence to 

stochastic switching behavior of single-bit nanoelectronic synapses. Stochastic single-

bit synaptic learning achieving competitive accuracies in digit recognition applications 

has been recently demonstrated in SNNs [7]. 
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3.3 Volatile Synaptic Learning 

The exact mechanisms that underlie learning or plasticity of synapses is highly 

debated and still unknown. While STDP has been a popular viewpoint of explain-

ing synaptic plasticity, there has been some research studies that attempt to explain 

synaptic plasticity from an alternative volatile learning plasticity viewpoint. This is 

referred to in literature as Short-Term Plasticity (STP) and Long-Term Potentiation 

(LTP) [100,101]. The theory postulates that synapses undergo inherent volatile state 

changes upon receipt of incoming action potentials (due to release of neurotransmit-

ters). In case the action potentials are received infrequently, the neurotransmitter 

concentration decays to the background value after the action potential is removed 

and hence the synaptic plasticity remains unchanged (STP). However, as more fre-

quent action potentials are received, the ionic neurotransmitter concentration starts 

increasing and ultimately the synapse switches to a stable long-term state (LTP). 

Hence, while STDP is a form of non-volatile synaptic learning, STP-LTP models 

synaptic plasticity as a form of frequency-dependent volatile synaptic learning. While 

adoption of STP and LTP concepts in SNNs for usage in pattern recognition is still an 

area of active research, it offers the promise of adaptive learning where the network 

might be able to unlearn itself in response to changing environments, which might 

not be possible to achieve by non-volatile STDP learning rule. 

Such a learning mechanism is in accordance to the volatile forgetting nature of 

human memory and has been often correlated to Short-Term Memory (STM) and 

Long-Term Memory (LTM) psychological models proposed by Atkinson and Shiffrin 

[102, 103]. The model is equivalent to STP and LTP where the synaptic element 

can be viewed to be analogous to human memory. Input information is received 

and stored in the STM and only gets transferred to LTM if the input is received 

with sufficient frequency. The characteristic difference between STM and LTM is 

that while information is stored for a limited period in STM (analogous to volatile 

meta-stable synaptic state change in response to input stimulus), LTM retains the 
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information for a much longer period of time (analogous to long-term stable synaptic 

state). Fig. 3.2(b) and (c) illustrates the concepts of STP-LTP and STM-LTM 

respectively. It is worth noting here that psychological STM-LTM concepts have 

been also harnessed to model the computational units of Recurrent Neural Network 

(RNN) architectures [104]. 

3.4 Network Connectivity 

The discussion so far has been limited broadly to the functionalities exhibited 

by the fundamental units in neuromorphic systems. However, in order to construct 

pattern recognition systems based on these units, specific network connections and 

topologies are necessary. Initial studies in neural networks mainly focused on fully-

connected nets (FCNs), where neurons are arranged in different layers and connected 

in an all-to-all fashion, as shown in Fig. 3.1(b). However, such simple network 

connectivity failed to be invariant to translation or scaling of input patterns. Further, 

FCNs with larger number of neurons/layers implies storage of a huge set of synaptic 

weights along with higher degree of neuron connectivity between layers which limits 

its scalability to large-scale cognitive tasks. 

Deep networks based on convolution operations have been able to overcome most 

of these challenges. The inspiration behind such a connectivity is based on the seminal 

work of Hubel and Wiesel which revealed that the animal cortex consists of cells which 

are sensitive to specific areas of the entire visual field (implying a local connectivity for 

each neuron) and that they function as filters for that particular receptive field [105]. 

Further, a certain category of cells were found to be sensitive to edge-like features 

in the visual field while another category of cells were found to be invariant to the 

location of the pattern in the receptive field [105]. Such mechanisms served as the 

main motivation behind the structure of Convolutional Neural Networks (CNNs). 

Fig. 3.3(a) shows the CNN structure. Drawing inspiration from the hierarchical 

arrangement of layers in the visual cortex, CNNs consist of a number of cascaded 
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stages where each stage consists of a convolution layer (C) followed by a sub-sampling 

layer (S). Each C layer is characterized by a set of trained weight kernels that is 

used to convolve with the input maps for that particular layer. For instance, in 

an image recognition system the input map for the first layer of a network would 

be the entire image being classified. Each kernel is then convolved with the entire 

image to produce an equivalent number of output maps. Each neuron in the output 

map therefore has limited connectivity (equal to the size of the convolution kernel). 

Additionally, the network offers resiliency to image translation and scaling due to the 

convolution operation. The C stage is usually followed by an S layer which performs 

an averaging operation over non-overlapping subsampling windows of each output 

map to reduce their dimensionality. As the depth of the layer increases, the number 

of maps increases with decreasing dimensionality. Ultimately the final two layers 

are usually fully connected and the number of neurons in the output layer equals the 

number of classes in the recognition problem. Due to the limited fan-in of each neuron, 

sparse neural connectivity is achieved. Additionally number of synaptic weights to be 

learnt during training is also reduced, due to the shared weight kernel being convolved 

across the entire map, thereby resulting in significantly reduced training time. 

An alternative network architecture that has been popular in the domain of STDP 

learning enabled SNNs has been shown in Fig. 3.3(b) [95]. Such connections are again 

inspired from cortical microcircuits of pyramidal neurons observed in the brain. The 

network consists of a layer of neurons that receive input spike trains through excita-

tory (positive) synaptic weights in an all-to-all fashion. The network is also associated 

with a lateral inhibitory signal that triggers a negative spike signal whenever one of 

the neurons in the layer spikes. In order to prevent single neurons from dominat-

ing the spiking pattern due to lateral inhibition, the “spiking” neurons are enabled 

with homeostasis functionality. STDP in the excitatory synaptic connections in such 

networks can assist each neuron to respond selectively to specific classes of input pat-

terns. Note that training deeper networks enabled by STDP is still an area of active 

research. 
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While the discussion in this section mainly focused on feedforward networks with-

out any directed loops, RNN architectures are also becoming increasingly popular 

for sequence learning tasks like language modeling [106], handwriting prediction and 

generation [107], speech recognition [108], among others. The only difference between 

RNNs and standard feedforward networks is the fact that the computational units or 

neurons receive its own output from the previous time-step as its input in the current 

time-step (in addition to external inputs). Such a memory effect in RNNs enables it 

to perform context learning in sequential inputs. However, note that the main func-

tionalities of the computational units – the neurons and synapses remains unaltered, 

thereby allowing the same synaptic/neural spin-devices to be used in these different 

algorithmic architectures. This will be discussed in details in the next section. 
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4. SPINTRONIC DEVICE PROPOSALS AND 

CORRESPONDENCE TO NEURAL AND SYNAPTIC 

FUNCTIONALITIES 

Nanoscale programmable resistive devices mimicking neural and synaptic function-

alities is imperative towards the realization of energy-efficient neuromorphic archi-

tectures. The field of neuromorphic computing, wherein research effort is directed 

to mimic neural and synaptic mechanisms by the underlying device physics, was pi-

oneered by Carver Mead in the 1980s [109]. He proposed that CMOS transistors 

operating in subthreshold region can be utilized to implement neuromimetic com-

putations since the main mechanism of carrier transport in that operating regime 

is diffusion, thereby emulating the mechanism of ion flow in biological neuron chan-

nels [109]. Although such sub-threshold CMOS neuron and synapse designs are still 

being investigated by various research groups [110], they require multiple transis-

tors and feedback mechanisms to mimic the functionality of neurons/synapses. The 

first work on spintronic neuromorphic computing can be traced back to the work 

of Krysteczko et al. where they explored the possibility of implementing memristive 

functionalities in MTJ structures through voltage induced switching phenomena [111]. 

4.1 Spin-Torque Neuristors 

In this section, we will review different spintronic device structure proposals that 

can potentially offer a direct correspondence to neuronal computations with varying 

degrees of bio-fidelity. Fig. 4.1 depicts various spintronic devices mimicking neurons 

of different computing generations from “step” to “spiking” neurons. We will begin 

our discussion on the neuronal devices by considering it receives a resultant weighted 
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Fig. 4.1. Spin-torque neuristors with different degrees of bio-fidelity 
are shown. Perceptron or “step” neurons can be implemented in SHE 
based neuron structures where a current flowing through an underly-
ing HM layer orients a PMA magnet lying on top along the unstable 
“hard-axis”. Subsequently the direction of current flowing through 
the PL orients the magnet to either of the stable “easy-axis” direc-
tions. A complementary device structure can be envisioned using the 
LSV concept by injecting spins oriented along the “hard-axis” in a 
non-magnetic channel using a “Preset” magnet. “Non-step” neuron 
functionalities can be implemented in DW motion based device struc-
tures by interfacing the Neuron MTJ with a Reference MTJ. A similar 
device structure with the MTJ located at the edge of the FL can be 
used to implement an IF “spiking” neuron. Stochastic “spiking” neu-
ron functionalities can be implemented in mono-domain neural device 
structures by exploiting the underlying probabilistic MTJ magnetiza-
tion dynamics. 
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synaptic current input. Synaptic device structures and interfacing of synaptic arrays 

with neuronal devices for generating the input synaptic current will be discussed in 

the next sections. 

4.1.1 Perceptron 

Let us begin this section by noting the functional similarity between a “step” neu-

ron transfer function and a mono-domain MTJ switching event. The MTJ switches 

between the two stable P and AP states provided the switching current magnitude 

is greater than a particular threshold. Consequently, in order to emulate the “step” 

neuron functionality with neuron threshold at the origin, the input current to an MTJ 

neuron has to be greater than the switching current requirement, which in turn, in-

creases the operating voltage of the MTJ. Ref. [112] investigated the design of an MTJ 

based neuron for the implementation of a “step”-transfer function neural network. In 

order to reduce the input synaptic current magnitude, the MTJ was initialized to 

the AP state and provided with a bias current that was equal to the critical current 

requirement for MTJ switching to the P state. Hence, a small magnitude of synaptic 

current (positive or negative) would ensure MTJ switching to either the P state or 

remaining in the original AP state. However, due to the high bias and reset current 

requirements, energy improvements for such MTJ “step”-neuronal devices was highly 

limited [112]. Note that in this work, the focus point has been the mapping of simply 

the MTJ switching event to a neuron functionality while the internal time-domain 

magnetization dynamics has not been considered. As we will show later, utilization of 

the stochastic MTJ switching dynamics due to time-varying thermal noise to model 

neural computations can lead to “spiking” neuron implementations with higher bio-

fidelity and enhanced recognition performances for computing platforms. 

Continuing our discussion on simply the MTJ switching event to mimic a “step” 

neuron, the energy consumption can be drastically reduced in case the MTJ is initial-

ized to an unstable magnetization state prior to the switching process. This would 
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Fig. 4.2. (a) The three terminal thresholding device for spin-neuron 
consists of an MTJ structure on top of a HM layer, (b) The two-step 
switching scheme consists of a clocking current Iclock flowing through 
HM from terminals B to C followed by the synaptic current Iwrite flow-
ing between terminals A and C, (c) The clocking current Iclock orients 
the ferromagnet along “hard-axis” while the current Iwrite causes de-
terministic “easy-axis switching”. 
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Fig. 4.3. Normalized energy landscape of a nanomagnet with a uni-
axial anisotropy in out-of-plane direction. The two energy minima 
points in the P and AP configuration are separated by an anisotropy 
barrier. 

Fig. 4.4. Switching phase diagram showing probability of switching 
for a range of clock and write currents. The figure depicts that for 
sufficient magnitude of clocking current, the probability of determin-
istic switching by write currents is ∼ 1 for current magnitudes of the 
order of a few µA. 
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assist in reducing the critical current requirement for the switching process, since a 

very small magnitude of input synaptic current can now enable the switching process 

to either of the two stable states (depending on the input spin current direction) by 

overcoming thermal fluctuations. This concept can be utilized in a spintronic device 

structure (shown in Fig. 4.2(a) [113]) where a PMA magnet lies on top of a HM 

and is operated in two subsequent stages of “Preset” and “Evaluation”. Note that in 

Section 2.3, we mentioned that PMA magnets cannot be switched solely in presence 

of SOT since in-plane spins are injected by current flowing through the underlying 

HM into the PMA nanomagnet lying on top (see Fig. 4.3 which depicts the energy 

landscape of FM with uniaxial anisotropy, which could originate from shape, inter-

face, or bulk magneto-crystalline anisotropy). Two-step switching schemes have been 

utilized previously in magnetic quantum-dot cellular automata (MQCA) [114], All-

Spin Logic (ASL) [115], SHE-assisted-memory bit-cell [116] and Spin Amplifier [117]. 

The operation of the device is discussed in details next. 

As illustrated in Fig. 4.2(b), for the first step, a charge current (Iclock) is supplied 

through the HM (between terminals B and C) which generates a torque to align the 

FL magnetization in ±y direction. In other words, Iclock aligns the FL magnetization 

along the hard-axis of the magnet i.e. the unstable point in the energy landscape 

(labeled as MS in Fig. 4.3). Let us define this switching stage as “hard-axis switch-

ing”. Subsequently in the second step, the electronic synapses drive a charge current 

(Iwrite) between terminals A and C, as illustrated in Fig. 4.2(b). The net synaptic 

current (Iwrite) flowing through the MTJ exerts a torque on the magnetization which 

will align the magnet to either one of the easy axis direction along (±z). This step 

is referred to as “easy-axis switching”. The direction of torque generated by Iwrite 

depends on the polarity of the net synaptic current. If the synaptic current is a 

positive value, the sign of torque is such that the FL’s magnetization becomes AP 

to that of the PL. On the other hand, a negative synaptic current places the FL’s 

magnetization P to that of PL. The P and AP states of the MTJ correspond to the 

low and high (binary) outputs of the neuron. The proposed thresholding device is 
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functionally similar to a biological neuron ‘firing’ a pulse when the synaptic signal 

exceeds a certain threshold. 

To determine the appropriate magnitude of clock and write currents for the pro-

posed device, the switching phase diagram for a range of clock and write currents is 

constructed as shown in Fig. 4.4. The device structure is an elliptic PMA magnet 

of dimensions π 
4 × 40 × 40nm2 for CoFe(1.5nm)-W(2nm) bilayer stack. The device 

parameters are mentioned in Table 4.1. For each set of clock and write currents, 

∼ 100, 000 stochastic LLG simulations were carried out to obtain the statistics of 

switching. For simplicity, the rise and fall times of the pulses were set to zero and 

the pulse width for clock and write currents are set to 2ns and 1ns, respectively. As 

it can be observed from the figure, when clock current is large enough, the amount of 

write current needed to achieve successful switching is on the order of few µA, just 

enough to overcome thermal fluctuations and tilt the magnet in the desired direction. 

Although some amount of the synaptic current flows through the HM, the spin-orbit 

torque generated due to this minimal current is expected to have negligible impact 

on the magnetization of the FL. Thus the proposed device facilitates fast and energy-

efficient threshold operation by utilizing spin-Hall effect for “hard-axis switching” and 

minimal synaptic current for deterministic “easy-axis switching”. 

For the first stage of the switching process, a charge current of ∼ 85µA (from 

Fig. 4.4)) was used to orient the nano-magnet in the hard-axis position within a 

duration of 2ns, resulting in a power consumption of ∼ 7.22µW per neuron. The 

fast and energy efficient “hard-axis switching” is mainly attributed to a spin injection 

efficiency of 4.71 resulting from SOT. In the next step, the net synaptic charge current 

drives the magnet to one of its stable magnetization states. The operating supply 

voltages of the synaptic devices were limited by the minimum current required to 

deterministically switch the spin neuron in the appropriate direction (Fig. 4.4). 

Additionally, the functionality of the proposed device due to the presence of a 

finite delay between the Iclock and Iwrite signals was assessed by determining the 

variation of the write error rate of the FL with the synaptic current, corresponding 
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Fig. 4.5. The figure depicts the variation of the write error rate (1 
- switching probability) of the FL with the synaptic current, corre-
sponding to a clocking current of 85µA for different values of delay 
(TD) between the clocking and synaptic currents. 

Fig. 4.6. The figure depicts the variation of the write error rate of the 
FL with no applied clocking current. 
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Table 4.1. 
Typical Device Parameters for CoFeB-W Samples [118] 

Parameters Value 

Saturation Magnetization 1000 KA/m 

Spin-Hall Angle 0.3 

Spin-Hall Metal Resistivity 200 µΩ.cm 

Gilbert Damping Factor, α 0.0122 

to a clocking current of 85µA (Fig. 4.5) by performing ∼ 100, 000 stochastic LLG 

simulations. Once the magnetization is put in its “hard-axis”, its relaxation to “easy-

1+α2 
axis” can be described by a characteristic relaxation time constant, τD = 

αγHK 
, where 

HK is effective anisotropy field. Using simulation parameters used in this work, the 

relaxation time constant τD is calculated as 3.5ns. As a result, if the delay time 

between Iclock and Iwrite is less than τD, then the functionality of the proposed neuron 

would not be significantly affected. A worst case simulation of the feed-forward ANN 

with an average delay of 1ns between the clocking and synaptic currents for each 

neuron in the network showed insignificant degradation in classification accuracy. 

The inherent error resiliency of such neural computing algorithms helps in nullifying 

the effect of delay between clocking and synaptic currents to a large extent. In order 

to quantify the advantage of using spin-Hall effect to clock the neuron, the switching 

probability curve for the neuron with no prior clocking current is shown in Fig. 4.6. 

The synaptic current required to achieve the same write error rate is almost one order 

of magnitude lower for the proposed clocking scheme of the spin-orbit torque neuron. 
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4.1.2 “Non-Step” Neurons 

Let us now proceed to the implementation of “non-step” neuron functionalities 

in spintronic devices. Note that since an MTJ with a mono-domain FL consists of 

two stable states, only two distinct neuron outputs can be represented by such a 

device structure. However, for a multi-domain FL, where the magnet consists of 

two oppositely polarized magnetization regions separated by the DW, the device can 

exhibit multi-resistive states. 

As shown in Fig. 4.7, our proposed device structure consists of an MTJ structure 

where the FL is a DW magnet (magnet having a transitory DW region) lying on top 

of a HM layer (for energy efficiency) [119, 120]. The underlying device physics for 

transverse Néel DW motion in such PMA magnetic multilayers due to charge current 

flow through the HM has been discussed in Section 2. Note that a complementary 

device structure utilizing spin-orbit torque induced Bloch DW motion was also in-

vestigated in Ref. [121]. Although the discussion henceforth will be based on Néel 

wall motion, the concepts are equally valid for device structures utilizing Bloch DW 

motion. The FL is surrounded by two PLs on either side to ensure that the DW 

stabilizes at the opposite edges of the FL for large magnitudes of the current flow-

ing through the underlying HM. A multi-level DW motion based resistive device was 

recently shown to exhibit 15-20 intermediate resistive states [122]. 

The operation of such a multi-terminal device occurs in two subsequent “write” 

and “read” stages. During the “write” stage, the magnitude of current flowing 

through the HM (“write” current) programs the position of the DW in the FL of 

the MTJ structure. The DW displacement increases linearly with the magnitude of 

the input synaptic current flowing through the underlayer (Iin) between terminals T2 

and T3. After the “write” phase, terminal T1 is activated instead of T2 which enables 

the “read” current path in the device between terminals T1 and T3. Such decoupled 

“read” and “write” current paths not only assist in optimizing the “write” and “read” 

peripheral circuits independently but also enable a low value of resistance in the path 
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of the “write” current (mainly the resistance of the underlying HM layer). As we will 

discuss in a later section, a crucial functionality that is required for nanoelectronic 

neurons is low input “write” resistance for proper operation of neuromorphic crossbar 

arrays. It is the decoupled nature of the “write” and “read” current paths of such 

multi-terminal devices that have made it possible for spintronic devices to be utilized 

not only as a synapse, but also as a neuron. 

The DW position of the FL is sensed by a simple resistive divider, as shown in 

Fig. 4.7, where the neuronal device is interfaced with a Reference MTJ which is 

always fixed to the AP state. The “read” current can be maintained to sufficiently 

low magnitudes by ensuring proper oxide thickness of the neuronal and Reference 

MTJs which assists in achieving “disturb-free read” of the neuron MTJ. This resis-

tive divider drives a transistor operating in saturation regime (in order to ensure that 

the supplied current to the fan-out resistive synapses is independent of the magni-

tude of the interfaced synaptic resistances). As the magnitude of the input current 

Iin increases, the resistance of the neuronal device reduces due to decrease in the 

proportion of the AP domain in the MTJ device. This, in turn, causes the current 

provided by the output transistor (Iout) to increase. It can be shown that the transfer 

function (relationship between Iout and Iin) of such a device is approximately linear 

by performing a device-circuit co-design discussed next. Note that a biological neu-

ron’s output is transmitted via the axon to fan-out neurons. Similarly, the spintronic 

neuron receives a resultant synaptic current which is the weighted summation of its 

inputs. This resultant current input flowing through the heavy metal of the spintronic 

neuron generates an output which is transmitted via the CMOS transistor, acting as 

the axon, to the next stage. After every “read” cycle, the neuron is “reset” for the 

next operation by passing a current through the HM in the opposite direction to 

initialize the DW at the opposite edge of the MTJ. 

Fig. 4.8(a) shows the domain wall displacement in a CoFe sample with cross-

section of 160nm × 0.6nm for a charge current density of J = 0.1 × 1012A/m2 . 

The grid size was taken to be 4 × 4 × 0.6nm3 . Fig. 4.8(b) depicts the variation of 
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Table 4.2. 
Typical Device Parameters for CoFe-Pt Nanostrips (DW Motion) [49] 

Parameters Value 

Ferromagnet Thickness 0.6nm 

Heavy Metal Thickness 3nm 

Domain Wall Width 7.6nm 

Saturation Magnetization, Ms 700 KA/m 

Spin-Hall Angle, θSH 0.07 

Gilbert’s Damping Factor, α 0.3 

Exchange Correlation Constant, A 1 × 10−11J/m 

Perpendicular Magnetic Anisotropy, Ku2 4.8 × 105J/m3 

Effective DMI Constant, D −1.2 × 10−3J/m2 

the domain wall velocity with input charge current density. The velocity increases 

linearly with the current density and ultimately reaches a saturation velocity. The 

graphs are in good agreement with results illustrated in [48] for the same multilayer 

structure described in this section. Fig. 4.8(c) illustrates the fact that the domain wall 

displacement is directly proportional to the magnitude of the programming current 

(for domain wall velocities below the saturation regime). 

It is worth noting here that for a given duration of the current through the heavy 

metal, the domain wall displacement is directly proportional to the magnitude of the 

current (considering input current range to be less than the saturation regime). The 

simulations were performed in MuMax3, a GPU accelerated micromagnetic simula-

tion framework [124]. Fig. 4.9 shows the temporal motion of the DMI stabilized 
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Fig. 4.9. Domain wall motion in the device due to programming 
current of 25µA flowing through the HM underlayer for a duration of 
1ns. The FM was taken to be 120nm in length surrounded by pinned 
layers of length 20nm on either side. The domain wall is displaced 
entirely from one edge of the FM to the other edge. 

Fig. 4.10. The NEGF based transport simulation framework was cali-
brated to experimental results illustrated in [16,123]. (a) Device resis-
tance increases with increase in oxide thickness, (b) The AP MTJ re-
sistance decreases with increase in the applied voltage across the MTJ. 
However, for sufficiently low values of applied voltage (< 100mV ), the 
AP resistance variation is extremely small. 
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domain wall in the device due to a programming current flowing through the HM for 

a duration of 1ns. 

The tunneling junction simulation framework was calibrated to experimental re-

sults illustrated in [16, 123]. For determining the MTJ resistance for a FM with 

a domain wall separating two oppositely polarized magnetized domains, the NEGF 

based simulator [25] was modified by considering the parallel connection of three 

MTJs. The magnetization direction of the FL of the three MTJs were considered 

parallel, anti-parallel and perpendicular (domain wall) to the pinned layer magneti-

zation. The length of the first two MTJs was varied according to the position of the 

domain wall while the width of the third MTJ was taken to be equal to the domain 

wall width. Additionally, as shown in Fig. 4.10, the resistance range of the device can 

be varied by varying the oxide thickness. 

Fig. 4.11 illustrates the variation of the output current provided by the axon 

transistor with input current provided to the neuron. As the magnitude of input 

current flowing through the heavy metal underlayer of the neuron increases, the gate 

voltage, VG, of the axon transistor decreases as the pull-down resistance of the resistive 

divider network decreases. The supply voltage of the PMOS axon transistor was 

taken to be 650mV . The supply voltage of the resistive divider network (0.9V ) was 

optimized such that the corresponding swing in the gate voltage resulted in maximum 

swing of the output current. As shown in Fig. 4.11(c), the output current provided 

by the axon transistor increases almost linearly with the input current to the neuron. 

Micromagnetic simulations based on typical device parameters obtained experi-

mentally from magnetometric measurements of CoFe-Pt nanostrips [49] demonstrate 

that the DW can be completely displaced from one edge of a FL (dimension: 80nm × 

20nm) to the other by 10.6µA charge current in a duration of 2ns, thereby resulting 

in a total “write” and “reset” energy consumption of 0.1fJ . Such energy-efficient 

SHE induced DW motion in magnetic multilayer devices can potentially lead to neu-

ronal device structures that would be able to achieve multi-level neuronal states and 

thereby provide improved cognitive functionalities. It is worth noting here that such 
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device structures can be also used as multi-level memory units for on-chip cache 

applications [125] and as receivers for long-distance charge based interconnects [126]. 

4.1.3 Integrate-Fire “Spiking” Neuron 

Let us begin the discussion on “spiking” neurons by noting the similarity between 

the current integrating property of DW motion and the functionality of an IF “spik-

ing” neuron. Considering input spikes (current pulses) flowing through the HM layer 

of an FM-HM bilayer structure at different time-steps, the DW would be displaced by 

an amount proportional to the magnitude of the input current pulse at each time-step 

whenever a spike is received. The IF functionality can be easily implemented in a 

slightly modified device structure, shown in Fig. 4.1, where the MTJ is located at the 

extreme edge of the FL and triggers an output spike (high voltage level at the output 

inverter) corresponding to the time-step when the DW reaches the other edge of the 

FL (analogous to neuron membrane potential crossing a particular threshold) [120]. 

The leak functionality can be implemented by passing a current through the HM in 

the opposite direction at every time-step. 

4.1.4 Stochastic “Spiking” Neuron 

As mentioned previously, multi-level neuron states provided by DW motion based 

spintronic devices can be replaced by binary neuron states obtained from single-

domain MTJ structures in case the time-domain magnetization variation of the mag-

net is considered. The magnetization dynamics of a nano-magnet described by Eq. 

2.5 can be reformulated by simple algebraic manipulations as, 

1 + α2 dmb 
= −(mb × Heff ) − α(mb × mb × Heff )

γ dt 
(4.1) 

+ 
1
(α(mb × Is) − (mb × mb × Is))

qγNs 

Considering the device magnetization to represent the neuron membrane potential, 

the above equation bears resemblance to LIF characteristics of a “spiking” neuron 
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Fig. 4.12. (a) The membrane potential of a biological neuron inte-
grates input spikes and leaks when there is no input. It spikes when 
the membrane potential crosses the threshold, (b) MTJ neuron dy-
namics due to the application of three input pulses. The in-plane 
magnetization starts integrating due to the pulses and then starts 
leaking once the pulse is removed. The MTJ structure was an elliptic 
disk of volume π 

4 × 100 × 40 × 1.5nm3 with saturation magnetization 
of Ms = 1000KA/m and damping factor, α = 0.0122. 

described in Eq. 3.1. The first two terms on the RHS of Eq. 4.1 represent the 

leak term in the magnetization state while the last term denotes the integrating term 

for an input spin current stimuli. Hence, in the presence of an input spike (current 

pulse), the magnetization starts integrating (switching) towards the opposite stable 

magnetization state. However, in case the pulse is removed before the entire switching 

event can take place, the magnetization starts leaking back toward the original mag-

netization state. In order to reduce the critical switching current requirement and to 

reduce the input “write” resistance of the neuron, we will consider SHE-induced MTJ 

switching due to charge current flow through an underlying HM layer (Fig. 4.1). Fig. 

4.12 illustrates the leak and integration components of the neuron dynamics for an 

MTJ elliptic disk due to the application of three successive pulses. 

Once the magnet switches to the opposite magnetization state, the neuron has to 

be “reset” due to the occurrence of the “firing” event. Hence, in order to sense the 

neuron state, the device is required to be operated in successive “read” and “write” 

cycles. Each “write” cycle can correspond to a particular time-step of operation of 

the spiking network. The neuron receives weighted summation of the spike currents 
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Fig. 4.13. Switching probability of an elliptic IMA magnet of dimen-
sions π 

4 × 100 × 40nm2 for CoFe (1.2nm) - W (2nm) MTJ in response 
to an input synaptic current at T = 300K (assuming ∼ 50% polar-
ization of spin current generated by the MTJ PL). Such a switching 
behavior is a direct mapping to the stochastic spiking nature of cor-
tical neurons. (a) The switching probability characteristics shifts to 
the right with increase in the barrier height. The data have been plot-
ted for EB = (10, 20, 30)kBT corresponding to FL thickness values, 
tFL = (0.8, 1.2, 1.5)nm, for pulse width, Tw = 1ns (duration of the 
“write” cycle), (b) The probability characteristics undergo more dis-
persion with decrease in the pulse width. The data have been plotted 
for Tw = (0.2, 0.5, 1)ns corresponding to EB = 20kB T . The device 
parameters are mentioned in Table 4.1. 

as its input. Since the magnetization dynamics of the MTJ is characterized by ther-

mal noise at non-zero temperatures (in addition to the LIF characteristics discussed 

previously), the MTJ neuron functionality can be abstracted as a stochastic “spiking” 

neuron observed in the cortex [89–92], where the neuron “spikes” (switches its state) 

probabilistically depending on its resultant synaptic input. The variation of spiking 

probability with input synaptic current is usually described by a non-linear depen-

dence [89–92], similar to the MTJ switching characteristics shown in Fig. 4.13. The 

switching characteristics of the MTJ neuron in response to the input synaptic current 

can be varied by changing the energy barrier (or equivalently the FL thickness) and 

the duration of the synaptic current as illustrated in Fig. 4.13. Unsupervised [6]/ 

supervised [127] networks enabled by such probabilistic neurons will be discussed in 

later sections. The “write” cycle is followed by a “read” stage to determine the MTJ 
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resistance (using the resistive divider driving an inverter described previously). The 

MTJ is “reset” in case a spike is generated. 

Note that most of the current “neuro-mimetic” algorithms are based on determin-

istic computational units - driven by the fact that the underlying CMOS hardware 

used to implement such algorithms are deterministic in nature. Past research on hard-

ware implementation of spiking neurons have mainly focused on deterministic neural 

models, like the Hodgkin-Huxley [78] and Leaky-Integrate-Fire [78] models. Emu-

lation of such neural characteristics require area-expensive CMOS implementations 

involving more than 20 transistors [128,129] and a direct mapping of spiking neuronal 

characteristics to a single nanoelectronic device is still missing. However, stochastic-

ity observed in the switching of spintronic technologies can open up new possibilities 

of envisioning probabilistic neural hardware enabled by stochastic devices. Interest-

ingly, it is believed that the brain is also characterized by noisy stochastic neurons 

and synapses that perform probabilistic computation [130]. Hence, exploration of 

such stochastic neuromorphic platforms might open up new avenues at mimicking 

the biological brain. Note that CMOS based stochastic neural models might be pos-

sible [131] but involve significant silicon area and power consumption since they do 

not offer a direct mapping to the underlying neuroscience mechanisms. 

The potential advantages of such a computing framework from hardware imple-

mentation perspective is manifold. They allow neural/synaptic state compression (in 

turn, leading to scaled device implementations) due to the additional time-domain 

encoding of information probabilistically. In other words, traditionally used multi-bit 

deterministic neural/synaptic units can be now replaced by single-bit units (enabled 

by stochastic magnetic devices) where the single-bit device state is updated proba-

bilistically over time. This is also advantageous from scaling perspective since it is 

expected that the multi-domain spin devices might lose their multi-bit state represen-

tation property and therefore may only exhibit binary states. Note that computation 

using single bit neural activation can be achieved because the loss in information due 

to bit compression can be encoded in the probabilistic transitions of the single-bit unit 
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observed over a period of time. Simultaneously, they allow for sub-threshold opera-

tion of devices (in order to exploit the stochastic switching regime these devices have 

to be operated below the critical current requirement for deterministic switching), 

thereby leading to energy consumption reductions. 

This work was the first proposal on using a magnet as a “stochastic bit” (ex-

ploiting the entire range of analog probabilistic switching regime of a nanomagnet) 

– behaving as a conditional random number generator producing a probabilistic out-

put pulse stream with the probability being conditioned on the magnitude of the 

input stimulus and can be found in Ref. [6] for neural inference applications. There-

after, this was followed by a plethora of work exploring several neuromorphic as well 

as other unconventional computing paradigms enabled by such magnetic “stochastic 

bits” [7,127,132–137]. The inherent stochasticity of spin devices can also potentially 

find use as on-chip temperature sensors [138] (discussed in Appendix B) and in logic 

implementation [139,140]. However, note that the delay incurred in probabilistic logic 

implementation using such stochastic magnets would be significantly higher than a 

corresponding deterministic CMOS logic implementation since the average output of 

the logic has to be observed over a large enough time window to infer the output with 

maximum probability. 

Let us consider the energy consumption of such a stochastic neuron. The average 

neuronal energy consumption determined for the input current (∼ 71µA) necessary 

to switch an elliptic IMA magnet of dimensions π 
4 × 100 × 40nm2 for CoFe (1.2nm) -

W (2nm) MTJ with a probability of 0.5 is evaluated to be ∼ 1fJ for a “write” cycle 

duration of 0.5ns [6]. In contrast, state-of-the-art designs of CMOS neurons result in 

energy consumption in the range of pJ per spike (267pJ reported in Ref. [141] and 

41.3pJ reported in Ref. [142]). 

Proof-of-concept experiments demonstrating stochastic magnetization switching 

in ferromagnet-heavy metal bilayer structures have been also demonstrated [134]. 

Fig. 4.14(a) depicts a 1.2µm wide Hall-bar structure consisting of Ta (10nm) / 

CoFeB (1.3nm) / MgO (1.5nm) / Ta (5nm) (from bottom to top) material stack 
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with perpendicular magnetic anisotropy. Input charge current flows between I+ and 

I− terminals while the final stable magnetization state is determined by the anoma-

lous Hall effect resistance between terminals V + and V −. Note that the switching 

is performed in the presence of an external in-plane magnetic field since the per-

pendicular anisotropy magnet cannot be solely switched by in-plane spins generated 

by current flowing through the heavy metal underlayer. Fig. 4.14(b) represents the 

experimental measurements for the switching probability of the magnetic stack with 

variation in the magnitude of the current pulse being used for switching (with pulse 

width being fixed at 10ms). Note that the non-linear variation of the switching prob-

ability of the magnet with the magnitude of the current pulse flowing through the 

heavy metal underlayer resembles theoretical simulations depicted in Fig. 4.13. Such 

proof-of-concept experiments can be easily extended to device structures where a 

Tunnel Junction is used as the read-out mechanism (exhibiting 2-3 times larger resis-

tance variation in comparison to Hall-bar structures) for compatibility with peripheral 

CMOS circuitry. 

The barrier height of the magnet (defined as the product of the magnetic anisotropy 

and the magnet volume) determines the current range that can be used for stochastic 

magnet switching. As the magnet volume is scaled down, the magnitude of the current 

range useful for stochastic switching reduces, thereby increasing the energy efficiency 

of the device. However, in highly scaled devices having barrier height ∼ 1kBT , the 

magnet undergoes random telegraphic switching in the nano-second time scale. Fig. 

4.15(a) depicts the magnetization dynamics of a 1kB T magnet under no bias current 

flowing through the HM. The average magnetization over a long enough time window 

is approximately 0. On the other hand, the dwell time in either one of the stable 

states can be modulated in the presence of an external bias current (Fig. 4.15(b)). 

Note that such superparamagnetic MTJs operating in the telegraphic regime has been 

referred to as “p-bits” by authors in Refs. [139,140]. Experiments have demonstrated 

telegraphic switching in MTJ stacks [136, 144, 145], with barrier height as low as 
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∼ 11kBT [146]. Scaling magnets to even lower barrier heights (< 5kBT ) might be 

difficult from fabrication perspective. 

The potential advantage of utilizing random telegraphic switching as the stochastic 

computing element lies in its energy efficient operation. While ∼ 71µA current is 

required for 0.5ns to switch a 20kBT barrier height magnet with 50% probability [127], 

thereby leading to an I2Rt energy consumption of ∼ 1fJ , zero bias current is required 

to achieve 50% switching probability in a ∼ 1kBT device. Note that, in practical 

device implementation, 50% switching probability may not be achieved exactly at 

zero bias current due to presence of device imperfections, stray fields and magnetic 

coupling between elements. Also, the device being highly sensitive to noise and 

variations, require appropriate peripheral circuits for proper functionality. These 

design tradeoffs will be explained in details in the succeeding sections. 

We would like to conclude this section by noting the two main device structures 

that will be used for the rest of this discussion - the DW motion based bilayer struc-

ture used as a “non-step”/IF “spiking” neuron and the single-domain MTJ based 

device used as a stochastic “spiking” neuron. These devices will be used to imple-

ment deterministic/probabilistic STDP in multi-/single-bit synapses respectively in 

the next section. 

4.2 Spin-Torque Synapses 

4.2.1 Spike-Timing Dependent Plasticity 

The mechanism that lends cognitive capabilities to networks of interconnected 

neurons is the plasticity of the synaptic junctions. For a vast majority of these 

plasticity mechanisms, the synaptic conductance is modulated depending on the time-

difference between the spikes of the neurons it connects. Let us first consider the 

implementation of STDP in the DW motion based device structure introduced in the 

previous section. The device conductance between terminals T1 and T3 is dominated 

by the MTJ conductance which varies linearly with the domain wall position. Let us 
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denote the conductance of the device when the FM magnetization is P(AP) to the 

PL as GP (GAP ), i.e. the domain wall is at the extreme right (left) of the FM. Thus, 

for an intermediate position of the domain wall at a location x from the left-edge of 

the MTJ, the device conductance between terminals T1 and T3 is given by, � � x x 
Geq = GP . + GAP . 1 − + GDW (4.2)

L L 

where L denotes the length of the MTJ excluding the domain wall width and GDW 

represents the conductance of the wall region. For a given time duration, it can 

be shown from micromagnetic simulations that the programming current magnitude, 

J , is directly proportional to the DW displacement, Δx [4, 119, 120]. Since, ΔG ∝ 

Δx ∝ J , the programming current should vary in a similar manner as the variation 

of the synaptic plasticity (ΔG variation) with spike timing difference of connecting 

neurons. Such an intuitive variation of programming current variation for synaptic 

plasticity implementation is again a functionality offered by the decoupled “write” 

and “read” current paths of the proposed device structure. The programming current 

flows through the constant HM resistance and is not impacted by the present synaptic 

MTJ conductance magnitude. This results in simple peripheral circuit design as 

well for implementing the desired plasticity rule. In contrast, conductance change 

in traditional two terminal memristors depend on the history of the programming 

pulses. 

The operating mode of the synapse, i.e. the spike transmission (“read”) or the pro-

gramming (“write”) mode is determined by the control signal POST. The access tran-

sistors causes the isolation of the appropriate device terminals during “write”/“read” 

operations. When the POST signal is deactivated, terminals T1 and T3 of the de-

vice are activated and spike voltage signals can be transmitted from the pre-neuron 

(VSP IKE ) signal through the MTJ conductance to provide an equivalent amount of 

synaptic current to the post-neuron circuit (connected to terminal T3). When the 

POST signal is activated the “write” current path through terminals T2 − T3 gets ac-

tivated and the device state is updated depending on the amount of synaptic current 

being supplied by the interfaced MST DP transistor. Note that the terminal T3 is con-
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nected to GND during “write” mode of operation of the device and is disconnected 

from the post-neuron. 

Let us now consider the learning mechanism in the spintronic device in more 

details. The most common learning rule dictates an exponential reduction in conduc-

tance change with increase in the value of spike timing difference. The exponential 

variation of current through the HM can be obtained by biasing the interfaced tran-

sistor MST DP in the sub-threshold regime (Vgs < Vt and Vds > 4UT , Vt: threshold 

voltage and UT : thermal voltage) since the current flowing through the transistor 

will vary exponentially with the gate to source voltage. Thus, for a linear increase 

of the gate voltage (PRE signal) every time a pre-neuron spikes, the peripheral pro-

gramming transistor will be driven from cut-off to the sub-threshold saturation region 

when the POST signal is activated and an appropriate programming current (mag-

nitude varying exponentially with timing difference of pre- and post-neuron spikes) 

should flow through the HM. The duration of the programming current is determined 

by the duration of the POST signal and the magnitude is determined by the cur-

rent supplied by the bias-point (PRE signal) of the MST DP transistor. It is worth 

noting here that the relationship ΔG ∝ Δx ∝ J is valid when the magnitude of the 

programming current J remains constant during the programming duration. This 

is achieved by ensuring that the rise time of the gate voltage PRE of the MST DP 

transistor, or equivalently the STDP time constants, are much longer than the pro-

gramming time durations (duration of POST signal) such that the current flowing 

through the HM of the spintronic synapse remains approximately constant. We con-

sider STDP timing constants in the range of ∼ µs whereas the duration of the POST 

signal was 1ns. For a linearly rising gate voltage from 0.2 to 0.6V of the MST DP 

transistor (drain voltage being at 0.6V ), exponential current dynamics was observed 

due to transistor operation in the sub-threshold saturation regime. The linearly rising 

gate voltage can be easily implemented by charging a capacitor with a constant input 

current source everytime a pre-neuron spikes [5]. Fig. 4.17 shows the response of 

the programming circuit for the case when the programming current path is active 
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Fig. 4.17. (a) Linear variation of device conductance with domain wall
position, (b) Programming circuit simulation to generate the STDP
characteristics in the proposed spintronic synapse.

throughout the simulation time. The duration of the time window can be varied by

changing the capacitance value. From device simulations, it was determined that a

maximum current of ∼ 80µA is required to displace the domain wall from one edge

of the FM to the other edge (for a synapse of dimensions 320nm × 20nm. Hence

the maximum amount of energy consumption involved in synapse programming is

∼ 48fJ(600mV × 80µA× 1ns) per synaptic event.

The discussion so far has been limited only to the implementation of the positive

timing window of the STDP curve. In order to implement both the timing windows,

an additional NMOS transistor is utilized in parallel to the PMOS transistor MSTDP .

Two separate learning circuitries are utilized for each of the timing windows which

consists of a capacitor being charged by a current source. Every-time the pre-neuron

spikes, the circuit for the negative timing window is reset first such that the gate

voltage of the NMOS transistor starts increasing with time. Since the drain of the

NMOS transistor is negative (in order to pass current through the HM in the oppo-

site direction for the negative timing window), the current supplied by the NMOS

transistor increases as the delay of activation of the POST signal increases. In or-

der to account for both the timing windows, the POST signal is activated after a

delay of the negative timing window in order to sample the programming current
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contributions from the learning circuits for the positive and negative timing windows. 

Hence if the post-neuron spikes before the pre-neuron (negative window), the pro-

gramming path will be activated during the time duration the gate voltage of the 

NMOS transistor is rising to pass a negative current through the device and thereby 

reduce the device conductance. After the duration of the negative timing window, 

the learning circuit for the positive timing window is reset and the POST signal is 

activated during this window only for a potentiation event, i.e. post-neuron “spik-

ing” after pre-neuron. Note that the learning circuitry which consists of the capacitor 

and the current source transistors can be shared across all the synapses being driven 

by the same pre-neuron. Discussions of crossbar arrays of such spintronic synapses 

for SNN implementations with on-chip learning capabilities will be discussed in the 

next section along with more detailed timing diagrams to explain the implementa-

tion of the positive and negative timing windows. Detailed operations explaining the 

implementation of synaptic plasticity is explained in Fig. 4.16. 

As discussed previously, the “read” operation of the spintronic device or the synap-

tic scaling operation is a direct consequence of Kirchoff’s law. For a constant mag-

nitude of the spike signal, VSP IKE, the current flowing through the synapse gets 

multiplied by the synaptic conductance. However, it is worth noting here that the 

conductance of the device is a function of the applied voltage as well. The resistance 

in the AP state is a much stronger function of the applied voltage than the P state 

and reduces by a significant amount as the applied voltage increases. Hence, higher 

the magnitude of the spike signal lower is the ratio of the maximum to the minimum 

synaptic conductance achievable. Note that higher synaptic weight ratios are desir-

able for achieving higher accuracy in pattern recognition workloads. Hence in order 

to maximize the discrimination between the two synaptic states, it is important to 

operate the synapses at low operating voltages less than 100mV . This can be eas-

ily achieved by interfacing such synapses with magneto-metallic spin neurons (which 

inherently require low currents for switching) [6] or CMOS neurons operating in the 

subthreshold saturation regime [129]. Operating the synapses at lower voltages is 
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more important for “non-spiking” networks since the neuron inputs need to be ana-

log in nature. Hence the voltages applied across the synapse would be different for 

different inputs, thereby causing the synaptic weight to be a function of the applied 

input. Thus it is imperative to operate the synapses at low voltages from a functional 

perspective. Lower operating voltage assists in reducing the maximum “read” current 

flowing through the device which, in turn, determines the device width. Assuming 

that the main spin torque exerted on the FL due to the “read” current being from 

SOT generated by the HM, the device width can be scaled up to ensure that no 

DW depinning occurs for the maximum allowable magnitude of the “read” current. 

The length of the synapse would be determined by the maximum number of states 

required from algorithm perspective. 

Table 4.3 provides a comparative analysis of our spintronic synapse (calibrated to 

experiments performed in Ref. [49]) with other proposed synaptic devices. Synaptic 

device structures based on emerging post-CMOS technologies [8, 9, 147,148] are usu-

ally two-terminal devices and do not offer de-coupled programming and read current 

paths. Three terminal synaptic devices based on FeFET [149] and floating gate tran-

sistors [150] have been also proposed. However, the programming in such devices is 

usually accomplished through the gate terminal and a high gate voltage is usually 

applied across a very thin oxide [149, 150] leading to reliability issues, in addition to 

associated high power consumption. Programming is also relatively slow in such three 

terminal synaptic devices [149, 150]. SRAM based synapses have been also proposed 

for digital CMOS based SNN design [128]. However, for implementing 1 bit of the 

synapse, an 8-T SRAM cell has to be used, thereby leading to significant area over-

head for implementation of a single synapse [128]. In addition, learning circuits will 

involve multiple digital counters and will be more area/power consuming than our 

proposed design. As shown in Table 4.3, such SOT induced plastic CoFe-Pt synapses 

demonstrate programming energies per synaptic event which is an order of magnitude 

lower than programming energies reported for a 4-bit SRAM synapse at 10nm tech-

nology node [128]. Interestingly, analysis performed by Rajendran et al. revealed that 
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although analog neuromorphic systems based on typical emerging memristive tech-

nologies will provide area benefits at scaled technologies, power consumption would 

be twice as high in comparison to its digital counterpart [128]. This is because resis-

tive technologies like GeSbTe [8, 9]/Ag-Si [148] devices are usually characterized by 

high threshold voltages ∼ V and involve much higher programming energies in the 

range of ∼ pJ and programming time durations in the range of ∼ µs. Low-power on-

chip learning enabled by such spintronic synapses can potentially bridge this energy 

in-efficiency gap. 

4.2.2 Probabilistic Synaptic Learning 

The complementary version of single-bit probabilistic STDP can be similarly im-

plemented using the single-domain MTJ-HM bilayer structures discussed previously. 

While Vincent et al. explored a simplified version of probabilistic STDP where the 

probability of synaptic state change was constant for positive and negative timing 

windows [99], we proposed crossbar architectures of such MTJ-enabled stochastic 

learning where the update probability varied exponentially with spike timing in ac-

cordance to original STDP formulations [7]. As explained in Fig. 4.18, this can be 

achieved by a similar framework described for the DW motion based devices where 

an additional interfaced transistor MST DP , biased in the saturation regime, is driven 

by a linearly increasing gate voltage every time the pre-neuron spikes [7]. Another 

potential advantage of probabilistic learning is below-threshold operation of devices. 

Since the update probability is maintained typically below 0.1 to maintain “non-

greedy” learning [7], operating current and voltage requirements of such devices are 

significantly reduced. 

4.2.3 Volatile Synaptic Learning 

In order to implement frequency dependent volatile synaptic learning, a nanoelec-

tronic device is required that exhibits only two stable resistive states and undergoes 
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Fig. 4.18. Probabilistic STDP learning: This can be achieved in a 
similar fashion in mono-domain MTJ synapses by exploiting sigmoidal 
stochastic device switching characteristics. In the low switching prob-
ability regime (for ensuring non-greedy learning), the “write” current 
reduces linearly with spike timing to emulate exponential probabilis-
tic STDP characteristics. This is ensured by biasing MST DP in the 
saturation regime. 
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Fig. 4.19. Frequency dependent volatile synaptic learning: A mono-
domain MTJ is characterized by two stable states separated by an en-
ergy barrier EB . If the frequency of the input stimuli is not enough, 
the MTJ is unable to cross the metastable position at 90o relative 
angle between FL and PL and stabilizes back to the initial magneti-
zation state, exhibiting STP. As the stimuli frequency increases, the 
MTJ exhibits a much higher probability of switching to the other 
stable state, thereby exhibiting LTP [151]. 
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meta-stable state transitions whenever an input stimulus is received. The apparent 

spintronic device that can be directly mapped to such a functionality is the mono-

domain MTJ where the spin-polarization of incoming electrons can be thought to be 

analogous to the release of neurotransmitters in a biological synapse. 

The STP and LTP mechanisms exhibited in the MTJ due to the spin-polarization 

of the incoming electrons can be explained by the energy profile of the FL of the 

MTJ. Let the angle between the FL magnetization, mb , and the PL magnetization, 

mb P , be denoted by θ. The FL energy as a function of θ has been shown in Fig. 

4.19(a) where the two energy minima points (θ = 00 and θ = 1800) are separated by 

the energy barrier, EB. During the transition from the AP state to the P state, the 

FL has to transition from θ = 1800 to θ = 00 . Upon the receipt of an input stimulus, 

the FL magnetization proceeds “uphill” along the energy profile (from initial point 

1 to point 2 in Fig. 4.19(a)). However, since point 2 is a meta-stable state, it starts 

going “downhill” to point 1, once the stimulus is removed. If the input stimulus is 

not frequent enough, the FL will try to stabilize back to the AP state after each 

stimulus. However, if the stimulus is frequent, the FL will not get sufficient time 

to reach point 1 and ultimately will be able to overcome the energy barrier (point 

3 in Fig. 4.19(a)). It is worth noting here, that on crossing the energy barrier at 

θ = 900 , it becomes progressively difficult for the MTJ to exhibit STP and switch 

back to the initial AP state. This is in agreement with the psychological model of 

human memory where it becomes progressively difficult for the memory to “forget” 

information during transition from STM to LTM. Hence, once it has crossed the en-

ergy barrier, it starts transitioning from the STP to the LTP state (point 4 in Fig. 

4.19(a)). The stability of the MTJ in the LTP state is dictated by the magnitude 

of the energy barrier. The lifetime of the LTP state is exponentially related to the 

energy barrier [18]. For instance, for an energy barrier of 31.44kB T used in this work, 

the LTP lifetime is ∼ 12.4 hours while the lifetime can be extended to around ∼ 7 

years by engineering a barrier height of 40kB T . The lifetime can be varied by varying 

the energy barrier, or equivalently, volume of the MTJ. The phenomena can be also 
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explained by the leaky-integrate time-varying LLG dynamics of the magnetic FL. In 

the presence of an input spike (current pulse), the magnetization starts integrating 

(switching) towards the opposite stable magnetization state. However, in case the 

pulse is removed before the entire switching event can take place, the magnetization 

starts leaking back towards the original magnetization state. It is worth noting here 

that, like traditional semiconductor memories, magnitude and duration of the input 

stimulus will definitely have an impact on the STP-LTP transition of the synapse. 

However, frequency of the input is a critical factor in this scenario. Even though the 

total flux through the device is same, the synapse will conditionally change its state 

if the frequency of the input is high. We verified that this functionality is exhibited in 

MTJs by performing LLG simulations (including thermal noise at 300K) for a magnet 

of dimensions π 
4 × 40 × 40 × 1.5nm3 and parameters mentioned in Table 4.1. While 

we are not considering spin-orbit torque induced switching in these simulations, the 

results can be easily extended to FM-HM multilayers. 50% spin polarization strength 

was considered by the PL of the MTJ. The P and AP conductance states of the MTJ 

was considered to be 0.5mS and 1mS. As shown in Fig. 4.19(b), the MTJ conduc-

tance undergoes meta-stable transitions (STP) and is not able to undergo LTP when 

the time interval of the input pulses is large (6ns). However, on frequent stimula-

tions with time interval as 3ns, the device undergoes LTP transition incrementally. 

Fig. 4.19(b) and (c) illustrates the competition between memory reinforcement and 

memory decay in an MTJ structure that is crucial to implement STP and LTP in the 

synapse. 

We demonstrate simulation results to verify the STP and LTP mechanisms in an 

MTJ synapse depending on the time interval between stimulations. The MTJ was 

subjected to 10 stimulations, each stimulation being a current pulse of magnitude 

100µA and 1ns in duration. As shown in Fig. 4.20, the probability of LTP transi-

tion and average device conductance at the end of each stimulation increases with 

decrease in the time interval between the stimulations. The dependence on stimu-

lation time interval can be further characterized by measurements corresponding to 
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formed to illustrate the dependence of stimulation interval on the 
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to 10 stimulations, each stimulation being a current pulse of magni-
tude 100µA and 1ns in duration. However, the time interval between 
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performed in frog neuromuscular junctions [152, 153]. 
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paired-pulse facilitation (PPF: synaptic plasticity increase when a second stimulus 

follows a previous similar stimulus) and post-tetanic potentiation (PTP: progressive 

synaptic plasticity increment when a large number of such stimuli are received suc-

cessively) [152,153]. Fig. 4.21 depicts such PPF (after 2nd stimulus) and PTP (after 

10th stimulus) measurements for the MTJ synapse with variation in the stimulation 

interval. The measurements closely resemble measurements performed in frog neuro-

muscular junctions [152] where PPF measurements revealed that there was a small 

synaptic conductivity increase when the stimulation rate was frequent enough while 

PTP measurements indicated LTP transition on frequent stimulations with a fast de-

cay in synaptic conductivity on decrement in the stimulation rate. Hence, stimulation 

rate indeed plays a critical role in the MTJ synapse to determine the probability of 

LTP transition. 

The psychological model of STM and LTM utilizing such MTJ synapses was fur-

ther explored in a 34×43 memory array. The array was stimulated by a binary image 

of the Purdue University logo where a set of 5 pulses (each of magnitude 100µA and 

1ns in duration) was applied for each ON pixel. The snapshots of the conductance 

values of the memory array after each stimulus have been shown for two different 

stimulation intervals of 2.5ns and 7.5ns respectively. While the memory array at-

tempts to remember the displayed image right after stimulation, it fails to transition 

to LTM for the case T = 7.5ns and the information is eventually lost 5ns after stimu-

lation. However, information gets transferred to LTM progressively for T = 2.5ns. It 

is worth noting here, that the same amount of flux is transmitted through the MTJ 

in both cases. The simulation not only provides a visual depiction of the temporal 

evolution of a large array of MTJ conductances as a function of stimulus but also 

provides inspiration for the realization of adaptive neuromorphic systems exploiting 

the concepts of STM and LTM. 

There have been recent proposals of other emerging devices that can exhibit such 

STP-LTP mechanisms like Ag2S synapses [154] and WOX memristors [153, 155]. 

However, it is worth noting here, that input stimulus magnitudes are usually in the 
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range of volts (1.3V in [153] and 80mV in [154]) and stimulus durations are of the 

order of a few msecs (1ms in [153] and 0.5s in [154]). In contrast, similar mechanisms 

can be exhibited in MTJ synapses at much lower energy consumption (by stimulus 

magnitudes of a few hundred µA and duration of a few ns). We believe that this work 

will stimulate proof-of-concept experiments to realize such MTJ synapses that can 

potentially pave the way for future ultra-low power intelligent neuromorphic systems 

capable of adaptive learning. 
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5. SPIN BASED NEUROMORPHIC CIRCUITS AND 

SYSTEMS 

5.1 All-Spin Neural Networks for Deterministic Inference 

Irrespective of the network connectivity (FCN/CNN) the main computing kernel 

involved in such computing schemes can be mapped to a parallel dot-product imple-

mentation followed by neural processing. Let us begin the discussion in this section 

by considering spintronic synapses to be the multi-bit DW motion based device struc-

tures driving similar IF “spiking” neurons discussed in the previous section. For this 

subsection, we will assume offline learning of such networks where the synaptic weights 

are pre-determined by backpropagation [84, 85] and on-chip learning functionality is 

not involved. Enabling on-chip intelligence in SNNs will be illustrated in the next 

subsection. 

The main underlying principle for implementation of the parallel-dot product com-

puting kernel is based on the very simple and intuitive application of Kirchoff’s laws. 

Considering a dot-product operation between m inputs and n outputs, the compu-

tation can be represented by a crossbar array of dimension m × n (Fig. 5.1). At 

each cross-point of the array, a spintronic synaptic device is present whose conduc-

tance encodes the value of the corresponding synaptic weight. Whenever a “spike” 

is received at a particular input, a high voltage signal is applied along the row while 

a no “spike” is represented by a low voltage signal. Assuming all the vertical lines 

of the array to be at ground potential, the current flowing through each crosspoint 

will be weighted by the synaptic conductance and get summed up along the column 

to provide a resultant input current (representing the dot product) to the neuron for 

further processing. Note that this is a major advantage of such “in-memory” comput-

ing architectures since the synaptic weights can be stored locally in the non-volatile 
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Fig. 5.1. All-Spin Neural Networks: A particular layer of a neural net-
work with m inputs and n outputs can be mapped to a crossbar array 
of dimension m×n. At a particular time-step, the rows corresponding 
to those inputs which have spiked are asserted a HIGH voltage level 
while zero voltage is applied along the rows for the “non-spiking” 
inputs. Since the input “write” resistance of the magneto-metallic 
spin-neurons is low, the resultant current provided by each column of 
the crossbar array as input to the corresponding spin-neuron equals 
approximately the dot-product of the neuron inputs and the corre-
sponding synaptic weights. 

resistive states of the spintronic devices arranged in a crossbar fashion. In contrast, 

CMOS based neuromorphic architectures involve significant energy consumption due 

to memory leakage and memory access in order to fetch the synaptic weight values 

to the neural computing core for each input spike. 

In order to maintain the vertical columns at ground potential, prior work has 

mostly considered interfacing the crossbar arrays with analog CMOS neurons that 

can maintain the vertical columns at virtual ground [73]. Note that the basic func-

tionality that we are exploiting in the design of spintronic neuronal device structures 

is also that of a programmable resistor. However, the main reason such device struc-

tures are suitable for neural as well as synaptic operations is due to the decoupled 

nature of the “write” and “read” current paths. The input resistance of the device 
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during the “write” operation is mainly the low HM resistance and hence the synaptic 

input current from the crossbar array is not required to flow through the MTJ ox-

ide. Further such magneto-metallic spin-neurons are characterized inherently by low 

switching current requirement thereby minimizing the terminal voltage drop across 

such devices. This is the main reason attributed to the usage of other two termi-

nal resistive memories [8, 9, 148] primarily as synaptic devices. Interfacing such two 

terminal memristive crossbar arrays with two terminal memristive neurons would be 

potentially difficult resulting in erroneous dot product computation since the vertical 

columns of the array would be no longer maintained at ground potential (due to the 

high threshold voltages and resistances of such memory technologies). In addition to 

providing the flexibility of implementing neuronal and synaptic devices by the same 

technology, spintronic neurons enable low power operation of the spintronic crossbar 

array due to low switching current requirements of such magneto-metallic devices. In 

contrast, analog CMOS neuron implementations typically require the crossbar arrays 

to be run at a much higher voltage. 

Let us now consider the operation of the crossbar array in more details. Each 

time-step of SNN operation consists of a neuron “write” cycle followed by the “read” 

and “reset” cycles. In order to implement bipolar weights, two rows (Vi+ and Vi−) are 

used for each input Vi. When the input Vi assumes a logic value of ‘0’(no “spike”), 

then ‘0’ voltage level is applied to both the inputs. However, when Vi assumes a 

logic value of ‘1’(“spike”), then voltage Vo (less than 100mV ) is applied to the row 

corresponding to Vi+ and −Vo is applied to the row corresponding to Vi−. If the weight 

wi,j for the j-th neuron and input Vi is positive, then the conductance corresponding 

to Vi+ is programmed to Gi,j+ = wi,j .Go (Go is the mapped conductance for unity 

synaptic weight), while the conductance, Gi,j− corresponding to Vi− is programmed 

to high OFF resistive state and vice versa. Let us consider the input conductance of 

the spintronic neuron during the “write” operation (mainly the HM conductance of 

the neuron) to be Gs and the voltage drop across the neuron to be Vs. Equating the 

current supplied by the resistive synapses to the current flowing through the neuron, 
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P 
we get (Gi,j+.(Vi+ − Vs) + Gi,j−.(Vi− − Vs)) = Gs.Vs which indicates that the net 

i 

synaptic current supplied to the spintronic neuron is given by, 

Ij = Gs.VsP 
Gs. (Gi,j+.Vi+ + Gi,j−.Vi−) 

= i P 
Gs + (5.1)(Gi,j+ + Gi,j−) P i 

(Gi,j+.Vi+ + Gi,j−.Vi−) 
= i 

1 + γ 

As mentioned previously, it is imperative to run spintronic crossbar arrays at low 

operating voltages from functionality viewpoint. However, lower the operating volt-

age, higher is the range of synaptic conductances (which can be appropriately tuned 

by choosing a proper value of MTJ oxide thickness) required to ensure sufficient cur-

rent requirement for DW displacement from one edge to another in the FM of the 

spintronic neurons. Hence lower crossbar operating voltage results in the increment P 
of the ratio, γ = (Gi,j+ + Gi,j−)/Gs, which in turn, results in non-ideal operation of 

i 

the neuron. In order to ensure that γ << 1 for a given crossbar operating voltage, the 

duration of the “write” cycle can be adjusted accordingly since the current required 

to achieve a specific DW displacement scales linearly with the duration of the “write” 

current. The output signals of the inverters from a particular array can be stored in 

a latch and used to communicate input signals to the fan-out neurons being imple-

mented in the crossbar array for the succeeding stage. Note that the latched neuron 

outputs can be also used to drive input rows of the same crossbar array (inputs for 

the next time-step) to implement recurrent neuron connections in RNN architectures. 

Ref. [120] evaluated the circuit-level performance of such an All-Spin SNN based 

design against a baseline CMOS implementation at 45nm technology node for a 

benchmark digit recognition problem. A hybrid device-circuit-algorithm co-simulation 

framework was utilized for this work. Micro-magnetic simulations to model the do-

main wall dynamics in presence of charge current input through the HM were per-

formed in MuMax3 [124]. Subsequently, a behavioral model of the device was em-

ployed to develop a SPICE model for the neurocomputing fabric. The performance 

https://Gi,j+.Vi
https://Gi,j+.Vi
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tion in recognition accuracy with variation in the MTJ resistances 
(expressed as % σ variation). 

of this design was evaluated for a standard digit recognition problem on the MNIST 

dataset [156]. The Deep Spiking Neural Network architecture (28x28-12c5-2s-64c5-

2s-10o) used for this work, consists of two convolution layers and two subsampling 

layers arranged alternatively. The training is based on the work performed by authors 

in Ref. [85]. Our design falls into the category of offline learning where the synaptic 

weights are learnt off-chip and are programmed to corresponding resistive states of 

the spintronic synapses once the training is accomplished. 

It is imperative to determine the optimum bit discretization necessary in the neu-

rons and synapses of the network in order to minimize the costs for a corresponding 

hardware implementation. Insignificant degradation in classification accuracy was 

observed for 4-bit (16 levels) discretization in the synapses and 2-bit (4 levels) dis-

cretization in the neurons. Considering that the DW location can be displaced and 

sensed over a minimum distance of 20nm, the length of the synapse was taken to be 

320nm, while the length of the neuron was 80nm. The neuron width was fixed at 

20nm. 

As mentioned previously, the optimum “write” cycle duration for the spintronic 

neurons need to be adjusted in order to minimize the ratio γ. It was observed that 
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for a “write” cycle duration of 2ns, there was insignificant impact on the network 

performance. Fig. 5.2(a) shows the classification accuracy as a function of the time-

steps for simulation of the network. An accuracy of 98.5% (measured over the entire 

testing set) was achieved at the end of 20 time-steps including the effect of such 

non-idealities. 

Variation of DW pinning can be also overcome by suitably having notches along 

the length of the magnet [157]. However, impact of variation in the MTJ resistances 

on the performance of the network is an important point of consideration. Fig. 5.2(b) 

demonstrates that the network performs robustly in terms of classification accuracy, 

even with 25% σ variation in the MTJ resistances. This is mainly attributed to the 

error-resilient and self-adaptive nature of such neural algorithms. 

An intuitive understanding of the power benefits that could be potentially offered 

by such spintronic neural network designs can be obtained from device-level simu-

lations. As mentioned previously, micromagnetic simulations reveal that ∼ 10.6µA 

current is required to displace the DW from one edge of the neuron to another (di-



77 

mension 80nm × 20nm) in a duration of 2ns. The current flows through the FM-HM 

bilayer resistance resulting in an energy consumption of 0.05fJ (I2Rt energy con-

sumption). In addition, the spintronic synapses providing input currents to each 

neuron are operated at ultra-low terminal voltages of 100mV . Fig. 5.3 depicts the 

energy consumption (averaged per output neuron per output map per time-step) for 

different layers of the spintronic network. The “Synapse” and “Neuron” components 

involve the average energy consumption in the spintronic crossbar array and the 

interfaced spintronic neurons respectively during the “write” duration of 2ns. Subse-

quently, the “read” circuit for the neuron is activated. An oxide thickness of 2nm was 

considered for the neuron MTJ and the “Reference” MTJ to minimize the magnitude 

of the average “read” current to 31.7nA. The output of the resistive divider drives 

an inverter, whose output is stored in a latch, resulting in a pipelined design. In case 

a spike is generated, the neuron is reset by passing a current through the HM in the 

opposite direction for a duration of 1ns. The “Read & Reset” component includes the 

energy consumption involved in the neuron resistive divider, inverter and the latch 

design. As expected, the “Synapse” energy consumption increases significantly as the 

number of fan-in-synapses per neuron start increasing progressively along the layers 

of the network (C1 → C2 → F 1−F 2). The “Neuron” energy component is relatively 

lower due to ultra-low current switching of magneto-metallic spintronic neurons which 

in-turn enables the ultra-low voltage operation of the spintronic crossbar array. The 

“Synapse” and “Neuron” energy components are lower for the sub-sampling layer due 

to the less-power intensive averaging operation over a 2 × 2 subsampling window. 

A corresponding implementation of the network architecture was synthesized in 

commercial 45nm CMOS technology for comparative purposes. The design consisted 

of input multiplexers to transmit synaptic weights to the output only if spikes are 

received. Subsequently the multiplexer outputs were added up to generate the re-

sultant contribution to the neuron membrane potential per time-step. A comparator 

was utilized to compare the membrane potential value to a specific threshold and de-

termine the corresponding spiking activity. A pipelined design with power-gating (to 
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exploit the advantage of event-driven operation of the network) was considered with 

the same bit-discretization mentioned previously. Simulation studies indicate that 

the proposed spintronic design can potentially achieve 250× improvement in energy 

consumption and 56× improvement in EDP over the baseline CMOS implementa-

tion. Note that this is a circuit level comparison work. Memory access overhead for 

CMOS based architectures would further increase the energy benefits offered by such 

All-Spin SNN designs. 

5.2 Deterministic STDP Learning 

For clarity, the learning circuitry for SNN was omitted in the above discussion. To 

better understand device, circuit and system level efficiencies with spin-synapses in 

the context of learning, let us consider the STDP-enabled single layer SNNs discussed 

in Section 3.4. The network functionality can be mapped to a crossbar array as shown 

in Fig. 5.4 where spike signals transmitted along the rows from the pre-neurons get 

summed up along the columns to the post-neurons. The spintronic synapses are 

programmed only when the post-neuron spikes (with a delay of the negative timing 

window) and are switched off from the post-neuron circuit during the programming 

phase using the POST control signal. Each cross-point consists of a spin-synapse 

interfaced with access transistors and MST DP transistor. An additional programming 

transistor is also present at each cross-point for the negative timing window but is 

not shown in Fig. 5.4 for illustrative purposes. Let us consider the circuit primitives 

and its operation for STDP learning with more details next. 

The circuit involved in generating the PRE signal is discussed in this section. 

Fig. 5.5 shows the sub-threshold CMOS circuit used to generate the PRE signal for 

pre-neuron A connecting to post-neurons C and D. We discuss the mechanism for 

generating the signal for the positive time window. A similar design can be used to 

generate the programming current for the negative time window. The circuit was 

originally proposed in [158] as a reset and discharge synapse. However it failed to 
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emulate the post-synaptic dynamics of biological synapses as the circuit response 

depends only on the previous input spike [159]. In this work, we employ this circuit 

to implement STDP learning in our proposed device. 

The transistor Mp acts as a switch. When the positive time window starts, the 

transistor Mp receives a low-active pulse and gets turned ON. As a result, the node 

PRE, A is set to the bias voltage Vw. After the transistor Mp is switched OFF, 

the transistor Mt, operating in sub-threshold saturation regime, provides a constant 

current to linearly charge the capacitor Cp at a rate C
It
p 
. Hence, if the transistor MST DP 

is operated in sub-threshold saturation, exponential dynamics will be observed in the 

output current IST DP . The current flowing through transistor MST DP for an input 

pulse at time t = tn is given by, 

−UT Cp(t−tn) 

IST DP = I0e kIt (5.2) 
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where, k is the sub-threshold slope factor and UT is the thermal voltage. Hence, 

whenever the pre-neuron spikes, the circuits for generating the STDP characteristics 

for the negative and positive time windows are activated sequentially. When learning 

starts for the positive timing window, a short pulse is applied to the gate of the 

transistor Mp so that the circuit is reset and the node PRE, A is charged to Vw. 

When the post-neuron does not spike, the transistor MST DP is in cut-off since the 

POST signal is deactivated and the access transistors for programming are turned 

OFF. Once the post-neuron spikes, the programming current path gets activated and 

the transistor MST DP switches to the sub-threshold saturation regime and transmits 

the necessary amount of programming current through the device. Unsupervised 

multi-bit STDP learning with MTJ “spiking” neurons has been demonstrated in 

Ref. [6]. 

The operation is discussed in details in Fig. 5.6. Let us first describe the case 

for the positive timing window, i.e. post-neuron spiking after the pre-neuron (Fig. 

5.6(a)). (−Δ)/(+Δ) represents the duration during which the learning circuits for 

the negative/positive timing windows are activated sequentially for the correspond-

ing pre-neuronal firing event. The control signal POST is activated after a duration 

(Δ) the post-neuron spikes. As described in the figure, magnitude of the program-

ming pulse is determined by the current being passed by the programming transistor 

MST DP (value of the PRE voltage when the POST signal is active) and the duration 

is determined by the duration of the POST signal. Since the PRE signal varies in 

∼ µs time scale and does not almost change during the programming time dura-

tion (∼ ns time scale), it ensures that the programming current magnitude is almost 

constant and is equal to the sampled value from the exponential STDP dynamics cor-

responding to the appropriate spike timing difference. As mentioned previously, since 

the programming current magnitude is directly proportional to the amount of change 

in the MTJ conductance, exponential STDP characteristics is implemented in the 

spintronic device. Similar discussions are valid for the negative timing window (Fig. 

5.6(b)) where the post-neuron spikes before the pre-neuron. In this case, the POST 



83 

signal is activated during the negative window (−Δ) and the NMOS transistor passes 

an appropriate amount of programming current in the opposite direction through the 

device. Circuit-level simulations confirming the proposal have been demonstrated in 

Fig. 4.17(b). 

In order to simulate the SNN implementation based on the proposed spintronic 

synapse, a hierarchical simulation framework was utilized. Device-level simulations of 

the spin-orbit torque induced domain wall motion was performed in MuMax. A be-

havioral model of the device was developed for subsequent simulation of such synapses 

interfaced with CMOS neurons and learning circuits. The circuit level simulations 

were performed in HSPICE using a standard cell library in commercial 45nm CMOS 

technology. The device and circuit simulations were utilized to generate models of 

the plastic synapses and spiking neurons to perform system level simulations of a 

network of spiking neurons using Brian simulator [160]. 

The input images (28 × 28 pixels) used for training was taken from the MNIST 

dataset [156]. The images were rate encoded and an array of 100 excitatory neurons 

was used to simulate the self-learning functionality of synapses in SNNs. Synapses 

present at the crosspoints joining the inputs to the excitatory neurons can be pro-

grammed depending on the temporal spiking patterns of the pre- and post-neuron. 

The inhibitory functionality in such networks can be implemented by an additional 

row in the crossbar array that is driven by a negative voltage. The row should be 

activated whenever any of the neurons generate an output spike to prevent multiple 

neurons from learning the same pattern. 

Fig. 5.7 (a)-(b) depicts synapse weights plotted in 28 × 28 array (same as input 

images) for each of the 100 neurons used for the recognition purpose. Initially all 

the weights are random. However, as learning progresses the synapses of each neuron 

start learning generic representations of the various digits. Thus a particular neuron 

becomes more sensitive to the digit whose generic representation is being stored in its 

synapse weights since it will fire more if input spike trains are received at the pixel 

locations corresponding to high synaptic weights. The various system level simulation 
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parameters have been outlined in Table 5.1. The parameters were tuned to achieve 

learning ability in the synapses. The units of the time constants are with respect 

to the duration of each timestep in the simulation. For this work, the circuits were 

designed to operate in ∼ µs time scale as mentioned before. It is worth noting here 

that the manner in which the time constants and other parameters can be tuned in 

the circuit level simulations have been discussed in the previous section. The numbers 

in braces represent the value corresponding to the inhibitory neuron. 

Table 5.1. 
Spiking Neural Network Parameters for STDP Learning 

Parameters Value 

No. of excitatory/inhibitory neurons 100 

Probability of input spike per timestep 0 − 0.06375 

Number of timesteps per image 350 

STDP time constants 100(1) 

Neuron time constants 10(10) 

Post-synaptic current time constants 1 (2) 

Additionally, we would like to mention here, that such neuromorphic systems are 

significantly robust to imprecision due to device mismatch, variability and noise effects 

due to the adaptive nature of such computations involving plasticity, homeostasis and 

feedback mechanisms [110]. Further, authors in Ref. [161] demonstrate the immunity 

of such single layer SNNs based on crossbar arrays of resistive synapses with lateral 

inhibition and homeostasis effects to variations and non-idealities in typical resistive 

synaptic devices and CMOS neuron circuits. In particular, we performed an analysis 

of the impact of variations in the oxide thickness/MTJ synaptic conductances on the 

classification accuracy of the system. Almost no degradation in classification accuracy 
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Fig. 5.7. (a) SNN topology used for digit recognition arranged in a
crossbar array fashion, (b) Initial random synapse weights plotted in a
28×28 array for 100 neurons in the excitatory layer, (c) Representative
digit patterns start getting stored in the synapse weights for each
neuron after 1000 learning epochs.

was observed for the 100-neuron network even with 25% variation in the resistances

of the spintronic synapses.

Interested readers are referred to Ref. [162] for a discussion on the practical im-

plementation of arrays of such spintronic devices interfaced with CMOS transistors.

The size limitation of crossbar arrays of such spintronic devices is determined by the

driving capabilities of rows of the array by input voltages in the presence of para-

sitics. In addition, sneak paths also become a potential issue for large crossbar arrays

in order to implement on-chip learning. These are concerns that are equally valid

for spin-devices and other memristive technologies, in general. However, it is worth

noting here that computation occurring in a large crossbar can be distributed easily

among smaller crossbar arrays by simply replacing the large unit by an equivalent

number of smaller crossbar units using peripheral control circuitry [163].
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5.3 All-Spin Neural Networks for Stochastic Inference 

While the above discussion in Section 5.1 considered offline trained Deep ANNs 

driven by deterministic DW motion based IF “spiking” neurons, similar SNN net-

works can be trained for stochastic “spiking” neurons enabled by single-domain MTJs. 

Ref. [127] explored an approach of training deep ANNs with sigmoid transfer function 

neurons using backpropagation and subsequently utilizing the offline trained weights 

to implement an SNN where the neurons generate output spikes at each time-step us-

ing sigmoid probability distribution functions. The advantages of such an approach 

is driven solely by the fact that complex neural operations (like sigmoid transfer 

functions) required to achieve high recognition accuracies can be now implemented 

by simple device structures consisting of mono-domain magnets by leveraging the 

underlying device stochasticity. The details of the algorithm and device-circuit prim-

itives for designing such networks enabled by stochastic neurons are provided next. 

Let us consider an ANN neural unit that receives an input I through a synapse of 

weight w. The neuron generates an output y by passing the weighted input through 

a non-linearity f(.). We will consider the function f(.) to be the sigmoid function � � 
f(x) = 

1+
1 
e in this work, due to its popularity in traditional ANN networks for−x 

achieving high accuracy in complex recognition problems [164] along with the possi-

bility of enabling this functionality by MTJ devices, as will be explained next. Hence, 

for the ANN neuron, the corresponding output y will be given by, 

1 
y = (5.3)

1 + e−w.I 

It is worth noting here that the input I ∈ [0, 1], since it represents the inputs coming 

from normalized values of external stimuli (image pixels for image recognition sys-

tems) or from other neuron outputs in previous layers (which lie in the range [0, 1] 

due to the limited range of sigmoid function). 

Next, let us describe the proposed conversion process from ANN to SNN (Fig. 

5.8(a)). In the spiking mode of communication, the input I can be rate encoded as 

a Poisson spike train Ie(t). The train consists of a sufficiently large number of time-
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steps, TN , where the probability of generating a spike at each time-step equals the 

input I. It can be proved that the resulting process is a homogeneous (probability of 

spike generation constant over time-steps) Poisson process where the average firing 

rate, i.e. average number of spikes generated over the entire train duration, is given 

by [165], P 
Ie(t)

< e tI(t) >= = I (5.4)
TN 

The spiking neuron processes the input spikes and generates a set of output spikes ye(t). 
The response of the neuron is determined by its average firing activity over the TN 

time-steps, < ye(t) >. Note that such input encoding and neuron output measurement 

schemes are standard norms for SNNs and is not an additional requirement/overhead 

for our proposal. Our proposal concerns the manner in which the neuron will process 

and generate the output spike train ye(t). In order to achieve near lossless (with 

respect to accuracy) conversion from ANN to SNN, < ye(t) > should approximate y 

reasonably well. 

Our conversion mechanism follows from the very intuitive observation that the 

analog activation output of the ANN neuron in the range [0, 1] can be mapped to the 

probability of spike generation, p(t), of the spiking neuron at each time-step. Hence, 

at each time-step t, the neuron receives the input spike train, Ie(t), and generates an 

output spike with probability p(t) = f(Ie(t)). 
Now, let us provide a mathematical analysis to justify that such a mapping is 

able to approximate the original ANN neural unit to a reasonable degree of precision. 

It follows from Eq. 5.4, that the spike train consists of I.TN number of spiking 

events and (1 − I).TN number of non-spiking events, on the average, over the entire 

duration of time-steps, TN . The output spike train is generated according to an 

inhomogeneous Poisson process [165] (spike generation probability varies over time), 

where the probability of spike generation is equal to p(t|Ie(t) = 1) = 
1+e 

1 
−w whenever 

there is an input spike and p(t|Ie(t) = 0) = 1 = 1 in the case of no spike. Hence, the 01+e 2 

inhomogeneous Poisson process can be decomposed into two homogeneous Poisson 

processes corresponding to spiking (of duration I.TN time-steps) and non-spiking 



89 

events (of duration (1 − I).TN time-steps). Hence, the average firing activity of the 

neuron will be given by the sum of the firing activities of the individual Poisson 

processes averaged over the total number of time-steps, TN . Following Eq. 5.4, we 

can state that the average firing rate of the output spike train, ye(t), is given by, 

< ye(t) > = p(t|Ie(t) = 1).I + p(t|Ie(t) = 0).(1 − I) 

I 1 − I 
= −�w 

+ 

−w 

0� (5.5)1 + e 1 + e 
1 I 1 − e 

= + −w2 2 1 + e 

Closer inspection of the above equation reveals that < ye(t) > is a linear approximation 

of the sigmoid function in the range I ∈ [0, 1]. Fig. 5.8(b) and (c) represents a plot 

of the outputs, y (ANN) and < ye(t) > (SNN) with variation in the input I and for 

synaptic weight magnitudes w = 1 and w = 3 respectively (3 being the maximum 

weight for the synapses in our network). Note that the negative range for I represents 

the case for negative synaptic weight. As can be concluded from the figure, the error 

between the functions is almost negligible for w = 1 and increases slightly as the 

magnitude of the weight increases. However, even for the maximum weight w = 3, 

the error remains bounded below reasonably low values over the entire approximation 

range. This fact is reinstated by Fig. 5.8(d) which represents a contour plot of the 

error magnitude between the two expressions y and < ye(t) > with variation in both 

I and w. Note that since we are trying to encode information in the analog sigmoid 

output of the neural units, weights obtained as a result of backpropagation training 

typically remain bounded below values that ensure that the neuron outputs do not 

fall in the saturation regime of the sigmoid function. As can be observed from Fig. 

5.8(c), for a weight magnitude of 3, almost the entire range of the sigmoid function 

is being used and hence it is expected that synaptic weights should converge to such 

limited ranges after the training process. Additionally neural nets, being inspired 

from computational mechanisms observed in the biological brain, are characterized 

by an inherent tolerance to variations in the neural and synaptic units and hence such 
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Fig. 5.9. (a) Switching probability characteristics of an MTJ of vol-
ume π 

4 × 100 × 40 × 1.2nm3 at T = 300K re-plotted for Tw = 0.5ns 
as a function of the input synaptic current, Isyn, normalized by factor 
Io = 10µA. The data closely resembles a sigmoid probability density 
function. 

minor variation between y (ANN) and < ye(t) > (SNN) is not expected to impact the 

network performance. 

The device simulation parameters have been outlined in Table. 4.1 and are based 

on experimental measurements performed in Ref. [118]. A barrier height of 20kBT was 

chosen since the MTJ is being used as a computing element in this application. Fig. 

4.13 depicts the switching probability of the MTJ with variation in the magnitude of 

input current. The probability switching characteristics undergoes more dispersion 

with decrease in the duration of the input “write” current, Tw. While more disper-

sion in the characteristics results in increased robustness of the system in presence 

of variations, power consumption of the network increases. These tradeoffs will be 

discussed in details later. In order to map such switching probability characteristics 

of the MTJ to the sigmoid probability function for spike generation discussed in the 

previous section, the MTJ is considered to be driven by two input currents, namely 

Ibias and Isyn. The current Ibias provides the necessary current to the MTJ to bias 

it at a probability of 0.5. The current Isyn is the resultant input synaptic current 

to the neuron. Hence, in absence of Isyn, the MTJ has 50% probability of switching 
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similar to the sigmoid characteristics. Fig. 5.9 illustrates the switching probability 

characteristics of the MTJ with variation in input synaptic current, Isyn (normalized 

by a factor, Io, which encodes the degree of dispersion of the MTJ switching proba-

bility characteristics). The switching characteristics match the sigmoid variation to 

a reasonable degree of approximation. Also, note that such neuromorphic algorithms 

are highly error-resilient and such small approximations in the neuron output will not 

cause significant changes in the network performance. We will validate our claims by 

presenting results for a convolutional neural network in the next section. The map-

ping of the normalization factor in the input synaptic current, Io, to the hardware 

implementation of a synaptic crossbar array will be discussed later. 

In order to implement a neural network, neurons need to be interfaced with 

synapses. The basic computing core in any neural network architecture, even for 

deep networks, consists of a dot product implementation where each of the neural 

inputs are initially multiplied by synaptic weights, and are subsequently processed 

by the neuron. Such a functionality can be directly mapped to a crossbar architec-

ture, as discussed in an earlier section. The operation of the crossbar array is exactly 

similar as described in the previous section (along with the associated terminologies) 

except for the fact that the MTJ receives bias current Ibias along with the current 

from the crossbar array. Equating the current supplied by the resistive synapses along 

with the input bias current, Ibias, to the current flowing through the neuron, we get P 
(Gi,j+.(Vi+ − Vs) + Gi,j−.(Vi− − Vs)) + Ibias = Gs.Vs which indicates that the net 

i 

synaptic current supplied to the spintronic neuron is given by, � �P 
Gs. (Gi,j+.Vi+ + Gi,j−.Vi−) + Ibias 

Ij = i P 
Gs + (Gi,j+ + Gi,j−)) 

i (5.6)P 
(Gi,j+.Vi+ + Gi,j−.Vi−) + Ibias 

= i 

1 + γ 

Note that the resultant weighted synaptic input is scaled by a factor Go.Vo (in the 

current domain). Hence, in order to map the functionality to the sigmoid probability 

characteristics, the scaling factor in the MTJ switching characteristics discussed pre-

https://Gi,j+.Vi
https://Gi,j+.Vi
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viously, Io has to be equal to Go.Vo. In other words, the resultant synaptic current 

being supplied by the crossbar array needs to be adjusted according to the disper-

sion of the switching probability characteristics of the MTJ in order to maintain 

consistency with the computational model described previously. 

As mentioned in the previous subsection, the input resistance of the neuronal 

device has to be sufficiently low in order to ensure that most of the input voltage drops 

across the resistive synapses and the voltage drop across the neurons are negligible, 

i.e. to minimize the effect of γ. Hence, a sufficient value of the spike voltage, Vo (which 

dictates the value of Go), has to be maintained to ensure that γ << 1. Duration of 

the input “write” current also has an impact on the choice of Vo and Go. With more 

duration of input current and hence, less dispersion in the switching characteristics, 

Io decreases resulting in decrease of Go and hence γ. However, robustness of the 

system to variations in the bias current and synaptic conductances suffer. These 

design space explorations will be considered in details next. Operation of each time-

step of the SNN takes place through three cycles. In the first phase or the “write” 

cycle, the MTJ neuron receives the bias current and the input synaptic current from 

the crossbar array and switches probabilistically. Note that the bias current can be 

provided by an additional row of the crossbar array consisting of PMOS transistors 

biased in saturation. After the “write” cycle, the “read” terminals of the neuron 

are activated. As mentioned before, the “read” circuit consists of a resistive divider 

network with a “Reference” MTJ (whose state is fixed to the AP state). Hence a 

spike (logic value ‘1’) is generated at the output inverter in case the MTJ switches to 

the P state. In case a spike is generated, the MTJ is switched back to the AP state 

by passing a sufficiently high magnitude of current through the HM in the opposite 

direction during a subsequent “reset” phase to ensure normal MTJ operation during 

the next time-step. 

The performance of the network was assessed for a deep learning network architec-

ture [164] (28x28-6c5-2s-12c5-2s-10o) on a standard digit recognition problem based 

on the MNIST dataset [156].The network is trained using 60,000 training samples 
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based on the methodology outlined in Ref. [164]. Once the training is accomplished, 

the learnt weights are mapped to the synaptic conductances using the scheme men-

tioned in the previous section. All recognition accuracies mentioned in this text are 

with respect to the 10,000 test samples in the dataset. The baseline ANN network was 

trained with an accuracy of 98.56% over the testing set. During the operation of the 

converted SNN, the image pixels are converted to Poisson spike trains where the av-

erage number of spikes generated over a given time window encode the corresponding 

pixel intensity. 

Note that a convolutional architecture is being used in this work since it has 

achieved high recognition accuracies in a large number of complex datasets. Further 

the architecture only dictates the manner in which the neurons and synapses are 

connected to form the network. However, our proposal holds true for any neural net-

work topology since the basic computational elements and their mapping to crossbar 

architectures remain equally valid. We would also like to point out that improved 

training algorithms/network architectures to enhance the performance of the network 

in terms of recognition accuracy can be performed. However, the goal of this work is 

to demonstrate the applicability of the MTJ as a probabilistic spiking neuron that can 

potentially enable near-lossless (with respect to classification accuracy), low-power, 

low latency SNNs converted from trained ANNs. 

Let us first describe the impact of “write” cycle duration on the performance of the 

network. With increase in the duration of the “write” cycle, the switching probability 

characteristics become sharper. Hence the synaptic current requirement from the 

crossbar array reduces. Further, the bias current magnitude also reduces since spin-

orbit torque is exerted on the magnet for a longer duration of time. Hence, power 

consumption of the network is expected to reduce with increase in the magnitude of 

the “write” cycle duration. However, this occurs at the expense of delay since the 

network has to be operated over a number of time-steps and each time-step duration 

is directly related to the duration of the “write” cycle. 
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Fig. 5.10. (a) Recognition accuracy as a function of time-steps with 
variation in the “write” cycle duration (Tw = 0.2, 0.5 and 1ns) and 
crossbar supply voltage (Vo = 0.8, 0.9 and 1V ), (b) Zoomed-in depic-
tion of plot (a) from 50-500 time-steps for Tw = 0.5 and 1ns. Near-
lossless SNN conversion can be achieved by maintaining a sufficient 
duration of the “write” cycle, even with scaling of crossbar supply 
voltage. 
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However, decrease in the “write” cycle duration, i.e. increase in the dispersion 

of the probability switching characteristics of the MTJ will result in increase of the 

factor γ, as discussed previously, thereby leading to non-ideal network operation. Fig. 

5.10 depicts the classification accuracy as a function of the time-steps of simulation 

of the SNN with varying “write” cycle durations (Tw), namely 0.2, 0.5 and 1ns. As 

expected, for a fixed supply voltage, classification accuracy improves with increase 

in the “write” cycle duration. While the network accuracy reaches 97.6% and 96.4% 

for Tw = 1ns and 0.5ns respectively, it saturates at 83% for Tw = 0.2ns at the end 

of 500 time-steps. An interesting point to note is the low latency in the performance 

of the network. The accuracy reaches 96.3% and 93.8% at the end of just 20 time-

steps for Tw = 1ns and 0.5ns respectively. This is a crucial advantage offered by our 

ANN-SNN conversion scheme since although SNN implementations are ideal for low-

power neural network implementations, they incur penalty in terms of the delay since 

the network outputs need to be observed over a number of time-steps to generate 

sufficient confidence in the inference process. With our proposed conversion scheme, 

network accuracies close to the original trained ANN baseline can be achieved only 

within a few tens of time-steps of the spiking network operation. 

Scaling the supply voltage, in turn, results in increment of the factor γ, thereby 

leading to more errors in the network performance. However, it is worth noting here 

that the drop in recognition accuracy is minimal for sufficiently large durations of the 

“write” cycle. For instance, the accuracy drop is insignificant (97.1% and 94.6% for 

Tw = 1ns and 0.5ns respectively) even with the crossbar supply voltage being scaled 

down to 0.8V . The key point we would like to stress from this section is that by main-

taining a sufficient duration of the “write” cycle, it is possible to achieve near-lossless 

SNN operation with minimal delay coupled with the possibilities of voltage scaling 

for reduction in power consumption. It is also worth noting here that the analysis 

performed in this section includes non-idealities arising from hardware mapping of 

the SNN to a synaptic resistive crossbar array interfaced with MTJ neurons (includ-
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Fig. 5.11. Average recognition accuracy (measured over 50 indepen-
dent Monte Carlo simulations for each of the 10,000 test images in 
the dataset) with variations (expressed as % σ variation) in (a) resis-
tances in the synaptic crossbar array and, (b) input bias current to 
the MTJ. The results have been measured at the end of 50 time-steps 
of SNN operation for crossbar supply voltage, Vo = 1V . 

ing non-ideality factor γ and deviations of MTJ switching probability characteristics 

from ideal sigmoid function). 

Although increase in the “write” cycle duration helps to reduce the non-ideality in 

the network (by reduction of factor γ), it is associated with increased performance loss 

in presence of random variations due to sharper probability switching characteristics 

of the MTJ. In this section we will investigate the impact of random variations in 

the synaptic resistances of the crossbar array along with variations in the input bias 

current of the MTJ (Fig. 5.11). The average classification accuracy was determined 

by performing 50 independent Monte Carlo simulations of the network for each of the 

10,000 test images in the dataset. 

Fig. 5.11(a) depicts the average classification accuracy of the network with vari-

ations in the synaptic resistances of the crossbar array. Since the range of synaptic 

resistances are adjusted according to the dispersion of the MTJ switching probability 

characteristics (through the relation Io = Vo.Go discussed previously), the impact of 

synaptic resistance variation is expected to be similar for different “write” cycle dura-

tions. An additional point to note is that, even with σ = 20% variation in the synaptic 

resistances, only 3% (Tw = 1ns) and 3.3% (Tw = 0.5ns) degradation in classification 
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accuracy was observed with respect to the original network (without variations) at 

the end of 50 time-steps. Such robustness to variations in the input synaptic current 

can be attributed to the error-resiliency of such neuromorphic computing systems. 

However, the input bias current of the MTJ is a more critical parameter (with 

respect to variations) that ensures proper functionality of the network. Variations 

in the input bias current can skew the probabilistic MTJ operation in one direction, 

thereby causing degradation in recognition accuracy. Hence, sharper MTJ probability 

switching characteristics would result in more errors during the recognition process 

with variations in the input bias current. Fig. 5.11(b) illustrates that while 12.8% 

reduction in accuracy was observed for σ = 20% over the ideal network at the end 

of 50 time-steps for Tw = 1ns, only 7.6% degradation was observed for Tw = 0.5ns. 

These results signify the fact that it is crucial to choose an optimal value of “write” 

cycle duration that simultaneously achieves near-lossless SNN conversion along with 

robustness to random variations in the input bias and synaptic currents. Note that 

a precise value of input bias current can be maintained by utilizing CMOS reference 

current generators that would exhibit σ variations much less than 20%. However, 

impact on network performance with such high degree of variations was performed to 

establish that the network is highly error-resilient along with the fact that a judicious 

choice of the “write” cycle duration can enable robustness of the network even to 

large variations in the more sensitive MTJ input bias current. 

Additionally, we considered the impact of variation in the chip operating temper-

ature by running a worst-case simulation where all the MTJs in the network were 

assumed to operate at 400K instead of the design temperature, 300K. A recognition 

accuracy of 96.73% was achieved at the end of 50 time-steps of network operation, 

thereby confirming that the proposed probabilistic neural computing framework is 

resilient to temperature variations as well. 

In order to evaluate the energy consumption of the network, SPICE simulations 

were performed to determine the energy consumption involved in “write”, “read” 

and “reset” operations. In addition to providing a compact implementation of a 
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spiking neuron, the MTJ enables low-power operation of the synaptic crossbar array. 

This is due to the fact that only input current magnitudes of a few tens of µA 

need to be supplied by the crossbar array on either side of the bias current. Note 

that the dominant power consumption of the network is involved in the synaptic 

crossbar array (since the number of synapses typically outnumber the number of 

neurons in such deep neural networks by two to three orders of magnitude), and such 

magneto-metallic spintronic neurons enable the low-power operation of the crossbar 

architectures. For the energy analysis, we considered the optimal “write” and “reset” 

cycle duration to be 0.5ns due to the possibilities of achieving near-lossless SNN 

conversion along with robustness to input bias current variations. As mentioned 

previously, an intuitive insight to the power efficiency of the network can be obtained 

by considering the fact that only 71µA of input current is required to bias the MTJ 

at 50% switching probability (Tw = 0.5ns). This current flowing through a HM 

resistance of 400Ω, results in an I2Rt energy consumption of ∼ 1fJ in the neuron. 

Considering the resultant energy consumption in the “write”, “read” and “reset” 

cycles of the network over a duration of 50 time-steps (since competitive classification 

accuracy can be obtained at the end of a few tens of time-steps), the total energy 

consumption of the proposed MTJ based SNN network was evaluated to be 19.5nJ 

per image classification. 

An interesting point to note is that there is an additional delay overhead involved 

in the SNN operation. On the other hand, ANN operation (for instance, resistive 

crossbar array driven by analog CMOS neurons) would require a single time-step for 

recognition. However, the delay overhead (few tens of time-steps) is much smaller 

than the corresponding reduction in power consumption due to event (spike)-driven 

hardware operation. For example, the average energy consumption of an analog 

CMOS neuron is estimated to be ∼ 700fJ [166] which would still be an order of 

magnitude greater than the average energy consumption of an MTJ neuron (∼ 1fJ) 

operated over a duration of 50 time-steps. 
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In order to compare with a baseline digital CMOS implementation, a deep spik-

ing network consisting of Integrate-Fire (IF) neurons converted from a corresponding 

trained ANN was used based on the methodology proposed in Ref. [85] for the same 

network architecture (28x28-6c5-2s-12c5-2s-10o) being considered in this work. The 

network was synthesized using a standard cell library in 45nm commercial CMOS 

technology. The design consisted of digital adders to sum up the synaptic weights 

in case of a spiking event (enabled by multiplexers). A comparator was utilized to 

compare the accumulated synaptic contributions to a specific threshold (IF function-

ality) and determine the corresponding spiking activity. A pipelined design with 

power-gating (to exploit the advantage of event-driven operation of the network) 

was considered with the same bit-discretization in the synaptic weights as mentioned 

previously. The average energy consumption involved in the network per image classi-

fication was evaluated to be 391nJ (20× more energy consumption than the proposed 

MTJ based spiking architecture). 

Analysis on the scaling effects of stochastic spin devices for neuromorphic com-

puting have been performed in Ref. [143]. As mentioned previously, scaling magnetic 

device dimensions results in reduced energy consumption for stochastic operation. 

However, as the scaling tends to the “super-paramagnetic” regime, the magnet un-

dergoes volatile telegraphic switching. Such a volatile device operation entails “asyn-

chronous” mode of network operation since parallel “read” and “write” operations 

are now required for the MTJ (unlike the synchronous clocked “write” and “read” 

cycles used to operate the MTJ for non-superparamagnetic MTJs). The “read” and 

“write” ports of the neuron MTJ are activated simultaneously due to the low data 

retention time of the magnet. The system is not driven in a synchronous fashion by 

any clock signal and spikes generated by the neuron output inverters drive the next 

set of fan-out neurons in an asynchronous fashion. Note that asynchronous parallel 

“read” and “write” operations are also not suited for high barrier height magnets 

in the non-telegraphic regime (10 − 20kB T ) from delay perspective since telegraphic 

switching would occur in the ∼ µs − ms timescale in this scenario. As the barrier 
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height is scaled, the retention failure probability of the magnet during a specified 

“read” cycle will increase. Analysis performed in Ref. [143], reveal that the barrier 

height of the magnet should be greater than 4.6kB T to ensure that the retention fail-

ure probability is less than 1% during a “read” time cycle of 1ns (required time for 

worst-case corner simulations of the “read” circuit in 45nm technology node). Hence 

magnets with barrier heights less than 5kBT is more suited for the asynchronous 

scheme of operation mentioned above. 

The lower power consumption in superparamagnets as neural inference elements is 

achieved at the expense of reduced error resiliency. Since the “write” and “read” op-

erations occur in parallel for magnets switching in the telegraphic regime, the “read” 

current can significantly bias the probabilistic switching of the device. Magnetic fields 

generated by nearby electric currents may also serve to bias the device stochasticity. 

The situation is worsened by the fact that the “write” and “read” currents are in 

the same range due to significantly lower “write” current requirement for stochas-

tic switching in such scaled devices. Hence the “read” circuit for the neuron MTJ 

needs to be highly optimized such that the read current is maintained at the minimal 

value. Note that this is not a design issue in higher barrier height magnets since 

“read” and “write” cycles are de-coupled in time. Further, the gradient or the rate 

of change of switching characteristics of such magnets in response to input current 

magnitude is extremely high. For instance, the stochastic switching characteristics 

undergo a full swing from 0 to 1 approximately in the range of ±1µA for a 1kBT 

magnet [143]. In other words, the stochastic switching characteristics are highly sen-

sitive to variations in the magnitude of the external bias input current which, in turn, 

results in reduced classification accuracy or similar performance metric of any pat-

tern recognition system with variations in the supply voltage, synaptic conductances 

or CMOS peripherals [143]. For instance, variation analysis performed in Ref. [143] 

for a standard digit recognition problem on a two-layer convolutional neural network 

architecture enabled by asynchronous operation of 1kB T barrier height magnets re-

veal ∼ 5% accuracy degradation for 20% variation in the synaptic resistive elements, 
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∼ 6% accuracy degradation for 25mV variation in crossbar supply voltage and 3% 

accuracy decrement for worst-case corner simulation with 2σ variations in the CMOS 

read circuit. In contrast, the synchronous implementation with higher barrier height 

magnets are resilient to variations in the crossbar supply voltage and read circuit 

while a small degradation of ∼ 3% classification accuracy is observed for variations in 

the synaptic elements of the resistive crossbar array. Note that such sensitive opera-

tion in response to noise and other non-idealities is not specific to a 1kBT magnet but 

is valid for superparamagnets operating in the telegraphic switching regime (barrier 

height in the range 1 − 5kBT ). 

5.4 Probabilistic STDP Learning 

The multi-bit STDP formulation can be modified in the stochastic single-bit sce-

nario to represent the probability of synaptic state change in response to spike timing 

difference [7]. The synaptic state change probability can be modulated by appropriate 

peripheral circuitry (similar to the one described for the domain wall motion based 

devices) that ensures proper variation of the programming current magnitude with 

spike timing difference. The operation of the crossbar array of stochastic synapses 

driving stochastic neurons is similar to the array described for domain wall motion 

based devices (depicted in Fig. 5.1) except that the core neuron and synaptic de-

vices have single bit resolution in contrast to the domain wall motion based devices. 

The biasing region of the MST DP transistor is determined to ensure that the current 

flowing through the heavy metal varies in such a manner that the switching proba-

bility of the MTJ varies exponentially with the spike timing difference. Probabilistic 

STDP based on spintronic synapses in such single layer networks have been demon-

strated in Ref. [7] and have been able to achieve ∼ 80% recognition accuracy over the 

MNIST [156] training set for a set of 225 excitatory neurons. Such networks have been 

shown to achieve competitive recognition accuracies by increasing the neuron count 

beyond 1000. Interested readers are referred to Ref. [167] for an overview of All-Spin 
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Stochastic SNNs where stochastic synaptic learning is accomplished by probabilistic 

neural inference, both enabled by single-domain MTJ devices. It is worth mentioning 

here that such stochastic computing paradigms are equally valid for magnets scaled 

to the super-paramagnetic regime. However, appropriate circuit considerations need 

to be accounted for due to the telegraphic switching behavior of such low barrier 

magnets [143]. Note that such networks, in principle, are “Binary Networks” being 

characterized by binary neuron and binary synaptic units. 

5.5 System Level Benchmarking 

We also performed a rigorous system-level benchmarking of a reconfigurable neu-

romorphic architecture based on such All-Spin SNNs [168]. In this section, we discuss 

our spintronic “in-memory” computing architecture (referred to as “Spintronic Archi-

tecture” in Fig. 5.15) that is used to analyze the system-level benefits of spintronic 

devices for SNN acceleration. As discussed earlier, a Spintronic Crossbar Array (SCA) 

stores the trained weight (connectivity) matrix and computes the inner-product be-

tween the input and the weight matrix. This obviates the frequent data transfer 

requirements between memory and computation core. Furthermore, the SCA is in-

terfaced with spintronic neurons that allow low-power inner-product and neuron com-

putations. 

The size of an SCA is typically limited by the driving capability of the voltage 

drivers and the fan-in limitation of a spin-neuron. However, the neuron fan-in in a 

typical neural network is of the order of several hundreds. Hence mapping such a 

connectivity (weight) matrix requires partitioning the matrix across multiple SCAs 

to provide input to the same output neuron. The output neuron computation is 

done by time-multiplexing the SCA current integrations on the neuron as shown in 

Fig. 5.12. Fig. 5.12(a) shows a feed-forward neural network with neuron fan-in of 4. 

Fig. 5.12(b) shows the mapping of the network on SCAs of size 2×2. Each column 

of the SCA corresponds to an output neuron. Two weights for each output neuron 
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are mapped on each SCA. As shown in Fig. 5.12(b), the final neuron output (for 

instance ‘N1’) is computed by time-multiplexed integration of crossbar currents (‘O1’ 

and ‘O3’) on N1. 

Fig. 5.12(c) shows the logical organization of our spintronic architecture. The 

SNN realization is achieved by multiple computation blocks connected back to back. 

Further, each computation block is composed of multiple computation cores (CORE 

in Fig. 5.12(c)). As shown in Fig. 5.12(c), the computation core is a pool of SCAs, 

associated neurons, input and output buffers coupled together with a control unit. 

Such a computation core efficiently realizes the partitioned connectivity matrices 

by mapping them across multiple SCAs locally within a computation core. The 

control unit realizes the time-multiplexed integrations depending on a neuron’s fan-in. 

Thus the core is the computation primitive in our spintronic architecture. Eventually 

multiple such computation cores are employed to map a layer of SNN depending on 

the number of neurons and synapses contained in the layer. Different layers of the 

SNN are mapped across multiple computation blocks to map all the neurons and 

synapses in an SNN. One sequential dataflow throughout these computational blocks 

(that spatially map the layers) realizes one-time step of the SNN implementation. 

Here, we describe our CMOS baseline architecture for SNNs. SNeuE is a many-

core architecture which utilizes the data sharing patterns in SNN processing to enable 

their energy-efficient acceleration. SNeuE consists of two parts, namely: (1) SRAM 

to store the trained weights and inputs, and (2) computation core to perform the 

inner-product between the inputs and weights fetched from SRAM along with neuron 

computations. 

Here, we explain the logical dataflow between different components in SNeuE 

(shown in Fig. 5.13). Weights stored in the SRAM are fetched and stored into the 

weight FIFOs present in the computation core. Each Neuron Unit (NU) receives its 

weights from a dedicated weight FIFO. The input FIFO streams input data across 

the NU array that allows data sharing and reduces the memory (SRAM) fetches asso-

ciated with inputs, thereby resulting in energy efficiency. This is a direct consequence 
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Fig. 5.13. Organization of CMOS architecture for SNNs (SNeuE). The 
SRAM weights are fetched and stored into the weight FIFOs present 
in the computation core. Each Neuron Unit (NU) receives its weights 
from a dedicated weight FIFO. 

Application Dataset Layers Neurons Synapses
House Number Recognition SVHN 6 9226 16787456

Object Classification CIFAR-10 5 6666 12063744
Digit Recognition MNIST 3 1546 1187328
Face Recognition Yale FR 3 1039 794112

Census Data Analysis Adult 2 1026 8192
Flower Species Recognition Iris Flower 3 195 8384

Fig. 5.14. Multi-layer perceptron based Spiking Neural Network 
benchmarks used to compare the All-Spin neuromorphic architecture 
against the CMOS implementation. 
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of the dataflow pattern in any typical SNN as neurons in a layer share the inputs. 

The control unit stores the SNN topology and coordinates dataflow between different 

components in SNeuE. 

Neurons in an SNN are time-multiplexed onto SNeuE to implement the SNN. 

Within a layer, neurons are scheduled temporally on the NU array. Subsequently, the 

corresponding weights and inputs are fetched and stored into weight and input FIFO 

respectively. Once all the computations for the neurons currently scheduled on the 

NU-array is finished, the next set of neurons from the same layer are scheduled on 

the NU-array. Eventually successive layers of the SNN are temporally scheduled on 

the SNeuE computation core to realize one time-step of SNN computation. 

A hybrid device-circuit-architecture co-simulation framework was utilized for this 

work. Device simulations were performed in MuMax [124]. The device characteristics 

were subsequently used to construct circuit models of such All-Spin SNNs in SPICE 

for further system level evaluations. The peripheral circuit for the SCA consisting of 

buffers and control logic was implemented at the Register Transfer Level and mapped 

to IBM 45nm technology using Synopsys Design Compiler. The energy consumption 

was estimated using Synopsys Power Compiler. The same process was utilized to 

synthesize and evaluate the energy consumption of the CMOS baseline implementa-

tion. CACTI [172] was used to model the SRAM modules. The SCA crossbar size 

was taken to be 32 rows x 32 columns and the throughput was optimized for each 

benchmark application to minimize the impact of γ. The NU array used in our evalu-

ations comprises of 16 units. Consequently, there are 16 weight FIFOs in the CMOS 

implementation (with a FIFO depth of 32). The CMOS baseline implementation was 

also aggressively optimized by constraining the neuron/synaptic bit discretization to 

the minimum necessary precision required for negligible accuracy degradation in each 

specific application. The details of the benchmark suite have been outlined in Fig. 

5.14 and consists of the following applications: (i) Flower Species Recognition (IRIS 

dataset [169]), (ii) Census data analysis (ADULT dataset [169]), (iii) Face recogni-

tion (YALE dataset [170]), (iv) Digit recognition (MNIST dataset [156]), (v) Object 
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Fig. 5.15. (a) Energy distribution profile for the CMOS architecture, 
(b) Energy consumption comparison between Spintronic and CMOS 
architectures, (c) Performance speedup comparison between Spin-
tronic and CMOS architectures [168]. The benchmark suite consists 
of the following applications: (i) Flower Species Recognition (IRIS 
dataset [169]), (ii) Census data analysis (ADULT dataset [169]), (iii) 
Face recognition (YALE dataset [170]), (iv) Digit recognition (MNIST 
dataset [156]), (v) Object classification (CIFAR-10 dataset [87]) and 
(vi) House Number Recognition (SVHN dataset [171]). 
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classification (CIFAR-10 dataset [87]) and (vi) House Number Recognition (SVHN 

dataset [171]). Note that the analysis performed in this article falls in the domain 

of offline learning and consequently does not consider the programming energy con-

sumption involved in the learning process of synaptic weights. 

Fig. 5.15(a) outlines the proportion of energy consumption involved in memory 

access and memory leakage in comparison to the core computation. As the problem 

complexity and hence the network size increases, the amount of energy consumed in 

memory accesses increases. Additionally, the access latency increases with increasing 

memory size, thereby causing a proportionate increase in the memory leakage energy. 

On the other hand, for spintronic crossbar arrays, better crossbar utilization occurs 

as the network size increases. Fig. 5.15(b) illustrates that the All-Spin SNN architec-

ture can potentially achieve 204 − 2759× improvement in energy consumption while 

achieving 3 − 665× performance speedup in comparison to the CMOS baseline imple-

mentation (Fig. 5.15(c)). Note that the energy consumption (performance speedup) 

is normalized to the IRIS dataset on the spintronic (CMOS) implementation. 
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6. CONCLUSIONS AND OUTLOOK 

Spin-based neuromorphic computing is currently a technologically evolving field. 

While preliminary experiments are being performed that provide proof-of-concepts 

for the various proposals mentioned in this thesis, a long and interesting path lies 

ahead for the realization of such All-Spin neuromorphic computing platforms. Ex-

perimental demonstration of full network-level synaptic learning and neural inference 

based on spintronic devices remains to be explored. Innovations are still required not 

only at the device level (for instance, achieving deterministic DW motion or fabri-

cating scaled nanomagnets) but also at the algorithm level to exploit the underlying 

device physics of spin-devices. Nevertheless, such devices offer immense possibilities 

towards the realization of energy-efficient cognitive processors. As device dimensions 

start scaling, probabilistic neuromorphic computing platforms (that are inherently 

more “brain-like”) leveraging the resultant device stochasticity will also start playing 

an important role. In conclusion, this thesis serves to propose various neural and 

synaptic functionalities that can be potentially implemented in spintronic devices. 

We believe that this thesis will stimulate efforts for the realization of All-Spin neuro-

morphic computing paradigms enabled with on-chip unsupervised cognitive learning 

capabilities. 



REFERENCES 



110 

REFERENCES 

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, 
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mas-
tering the game of Go with deep neural networks and tree search,” Nature, vol. 
529, no. 7587, pp. 484–489, 2016. 

[2] S. Adee, “IBM unveils a new brain simulator,” IEEE Spectrum, 2009. 

[3] X. Fong, Y. Kim, R. Venkatesan, S. H. Choday, A. Raghunathan, and K. Roy, 
“Spin-transfer torque memories: Devices, circuits, and systems,” Proceedings of 
the IEEE, vol. 104, no. 7, pp. 1449 – 1488, 2016. 

[4] A. Sengupta and K. Roy, “A vision for all-spin neural networks: A device to 
system perspective,” IEEE Transactions on Circuits and Systems I: Regular 
Papers, vol. 63, no. 12, pp. 2267–2277, 2016. 

[5] A. Sengupta, A. Banerjee, and K. Roy, “Hybrid spintronic-CMOS spiking neural 
network with on-chip learning: Devices, circuits and systems,” Physical Review 
Applied, vol. 6, no. 6, p. 064003, 2016. 

[6] A. Sengupta, P. Panda, P. Wijesinghe, Y. Kim, and K. Roy, “Magnetic tunnel 
junction mimics stochastic cortical spiking neurons,” Scientific reports, vol. 6, 
2016. 

[7] G. Srinivasan, A. Sengupta, and K. Roy, “Magnetic tunnel junction based long-
term short-term stochastic synapse for a spiking neural network with on-chip 
STDP learning,” Scientific Reports, vol. 6, p. 29545, 2016. 

[8] B. L. Jackson, B. Rajendran, G. S. Corrado, M. Breitwisch, G. W. Burr, 
R. Cheek, K. Gopalakrishnan, S. Raoux, C. T. Rettner, A. Padilla et al., 
“Nanoscale electronic synapses using phase change devices,” ACM Journal on 
Emerging Technologies in Computing Systems (JETC), vol. 9, no. 2, p. 12, 2013. 

[9] D. Kuzum, R. G. Jeyasingh, B. Lee, and H.-S. P. Wong, “Nanoelectronic pro-
grammable synapses based on phase change materials for brain-inspired com-
puting,” Nano letters, vol. 12, no. 5, pp. 2179–2186, 2011. 

[10] A. Sengupta and K. Roy, “Encoding neural and synaptic functionalities in elec-
tron spin: A pathway to efficient neuromorphic computing,” Applied Physics 
Reviews, vol. 4, no. 4, p. 041105, 2017. 

[11] ——, “Neuromorphic computing enabled by physics of electron spins: Prospects 
and perspectives,” Applied Physics Express, vol. 11, no. 3, p. 030101, 2018. 

[12] J. C. Slonczewski, “Current-driven excitation of magnetic multilayers,” Journal 
of Magnetism and Magnetic Materials, vol. 159, no. 1, pp. L1–L7, 1996. 



111 

[13] L. Berger, “Emission of spin waves by a magnetic multilayer traversed by a 
current,” Physical Review B, vol. 54, no. 13, p. 9353, 1996. 

[14] E. Myers, D. Ralph, J. Katine, R. Louie, and R. Buhrman, “Current-induced 
switching of domains in magnetic multilayer devices,” Science, vol. 285, no. 
5429, pp. 867–870, 1999. 

[15] J. Grollier, V. Cros, A. Hamzic, J.-M. George, H. Jaffrès, A. Fert, G. Faini, J. B. 
Youssef, and H. Legall, “Spin-polarized current induced switching in Co/Cu/Co 
pillars,” Applied Physics Letters, vol. 78, no. 23, pp. 3663–3665, 2001. 

[16] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, “Giant room-
temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel 
junctions,” Nature materials, vol. 3, no. 12, pp. 868–871, 2004. 

[17] M. Julliere, “Tunneling between ferromagnetic films,” Physics letters A, vol. 54, 
no. 3, pp. 225–226, 1975. 

[18] L. Sun, Y. Hao, C.-L. Chien, and P. C. Searson, “Tuning the properties of 
magnetic nanowires,” IBM Journal of Research and Development, vol. 49, no. 1, 
pp. 79–102, 2005. 

[19] A. Driskill-Smith, D. Apalkov, V. Nikitin, X. Tang, S. Watts, D. Lottis, 
K. Moon, A. Khvalkovskiy, R. Kawakami, X. Luo et al., “Latest advances 
and roadmap for in-plane and perpendicular STT-RAM,” in 2011 3rd IEEE 
International Memory Workshop (IMW), 2011. 

[20] G. Jeong, W. Cho, S. Ahn, H. Jeong, G. Koh, Y. Hwang, and K. Kim, “A 
0.24-µm 2.0-V 1T1MTJ 16-kb nonvolatile magnetoresistance RAM with self-
reference sensing scheme,” IEEE Journal of solid-state circuits, vol. 38, no. 11, 
pp. 1906–1910, 2003. 

[21] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. Gan, M. Endo, S. Kanai, 
J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB– 
MgO magnetic tunnel junction,” Nature materials, vol. 9, no. 9, pp. 721–724, 
2010. 

[22] M. Gajek, J. Nowak, J. Sun, P. Trouilloud, E. Osullivan, D. Abraham, 
M. Gaidis, G. Hu, S. Brown, Y. Zhu et al., “Spin torque switching of 20 nm mag-
netic tunnel junctions with perpendicular anisotropy,” Applied Physics Letters, 
vol. 100, no. 13, p. 132408, 2012. 

[23] S. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-
H. Yang, “Giant tunnelling magnetoresistance at room temperature with MgO 
(100) tunnel barriers,” Nature materials, vol. 3, no. 12, pp. 862–867, 2004. 

[24] J. Inoue and T. Shinjo, “GMR, TMR and BMR,” Nanomagnetism and spin-
tronics. Elsevier, Oxford, pp. 15–92, 2009. 

[25] X. Fong, S. K. Gupta, N. N. Mojumder, S. H. Choday, C. Augustine, and 
K. Roy, “KNACK: A hybrid spin-charge mixed-mode simulator for evaluating 
different genres of spin-transfer torque MRAM bit-cells,” in Simulation of Semi-
conductor Processes and Devices (SISPAD), 2011 International Conference on. 
IEEE, 2011, pp. 51–54. 



112 

[26] J. Z. Sun, “Spin-current interaction with a monodomain magnetic body: A 
model study,” Physical Review B, vol. 62, no. 1, p. 570, 2000. 

[27] J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets 
separated by a tunneling barrier,” Physical Review B, vol. 39, no. 10, p. 6995, 
1989. 

[28] W. Scholz, T. Schrefl, and J. Fidler, “Micromagnetic simulation of thermally 
activated switching in fine particles,” Journal of Magnetism and Magnetic Ma-
terials, vol. 233, no. 3, pp. 296–304, 2001. 

[29] W. F. Brown Jr, “Thermal fluctuations of a single-domain particle,” Journal of 
Applied Physics, vol. 34, no. 4, pp. 1319–1320, 1963. 

[30] R. Matsumoto, A. Chanthbouala, J. Grollier, V. Cros, A. Fert, K. Nishimura, 
Y. Nagamine, H. Maehara, K. Tsunekawa, A. Fukushima et al., “Spin-torque 
diode measurements of MgO-based magnetic tunnel junctions with asymmetric 
electrodes,” Applied physics express, vol. 4, no. 6, p. 063001, 2011. 

[31] R. D. McMichael and M. J. Donahue, “Head to head domain wall structures 
in thin magnetic strips,” IEEE Transactions on Magnetics, vol. 33, no. 5, pp. 
4167–4169, 1997. 

[32] E. Torok, A. Olson, and H. Oredson, “Transition between Bloch and Néel walls,” 
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A. SCALING SPIKING NEURAL NETWORKS TO DEEP 

ARCHITECTURES FOR COMPLEX MACHINE 

LEARNING TASKS 

Over the past few years, Spiking Neural Networks (SNNs) have become popular as a 

possible pathway to enable low-power event-driven neuromorphic hardware. However, 

their application in machine learning have largely been limited to very shallow neural 

network architectures for simple problems. In this appendix, we propose a novel algo-

rithmic technique for generating an SNN with a deep architecture, and demonstrate 

its effectiveness on complex visual recognition problems such as CIFAR-10 and Ima-

geNet. Our technique applies to both VGG and Residual network architectures, with 

significantly better accuracy than the state-of-the-art. Finally, we present analysis 

of the sparse event-driven computations to demonstrate reduced hardware overhead 

when operating in the spiking domain. 

A.1 Introduction 

Spiking Neural Networks (SNNs) are a significant shift from the standard way of 

operation of Artificial Neural Networks [173]. Most of the success of deep learning 

models of neural networks in complex pattern recognition tasks are based on neural 

units that receive, process and transmit analog information. Such Analog Neural 

Networks (ANNs) [85], however, disregard the fact that the biological neurons in the 

brain (the computing framework after which it is inspired) processes binary spike-

based information. Driven by this observation, the past few years have witnessed 

significant progress in the modeling and formulation of training schemes for SNNs 

as a new computing paradigm that can potentially replace ANNs as the next gen-

eration of Neural Networks. In addition to the fact that SNNs are inherently more 
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biologically plausible, they offer the prospect of event-driven hardware operation. 

Spiking Neurons process input information only on the receipt of incoming binary 

spike signals. Given a sparsely-distributed input spike train, the hardware overhead 

(power consumption) for such a spike or event-based hardware would be significantly 

reduced since large sections of the network that are not driven by incoming spikes 

can be power-gated [174]. However, the vast majority of research on SNNs have been 

limited to very simple and shallow network architectures on relatively simple digit 

recognition datasets like MNIST [156] while only few works report their performance 

on more complex standard vision datasets like CIFAR-10 [87] and ImageNet [88]. 

The main reason behind their limited performance stems from the fact that SNNs 

are a significant shift from the operation of ANNs due to their temporal information 

processing capability. This has necessitated a rethinking of training mechanisms for 

SNNs. 

Broadly, there are two main categories for training SNNs - supervised and unsu-

pervised. Although unsupervised learning mechanisms like Spike-Timing Dependent 

Plasticity (STDP) are attractive for the implementation of low-power on-chip local 

learning, their performance is still outperformed by supervised networks on even sim-

ple digit recognition platforms like the MNIST dataset [95]. Driven by this fact, a 

particular category of supervised SNN learning algorithms attempts to train ANNs 

using standard training schemes like backpropagation (to leverage the superior per-

formance of standard training techniques for ANNs) and subsequently convert to 

event-driven SNNs for network operation [85, 86, 175, 176]. This can be particularly 

appealing for NN implementations in low-power neuromorphic hardware specialized 

for SNNs [74,75] or interfacing with silicon cochleas or event-driven sensors [177,178]. 

Our work falls in this category and is based on the ANN-SNN conversion scheme pro-

posed by authors in Ref. [85]. However, while prior work considers the ANN operation 

only during the conversion process, we show that considering the actual SNN opera-

tion during the conversion step is crucial for achieving minimal loss in classification 

accuracy. To that effect, we propose a novel weight-normalization technique that en-
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sures that the actual SNN operation is in the loop during the conversion phase. Note 

that this work tries to exploit neural activation sparsity by converting networks to the 

spiking domain for power-efficient hardware implementation and are complementary 

to efforts aimed at exploring sparsity in synaptic connections [179]. 

The specific contributions of our work [84] are as follows: 

(i) As will be explained in later sections, there are various architectural constraints 

involved for training ANNs that can be converted to SNNs in a near-lossless manner. 

Hence, it is unclear whether the proposed techniques would scale to larger and deeper 

architectures for more complicated tasks. We provide proof of concept experiments 

that deep SNNs (extending from 16 to 34 layers) can provide competitive accuracies 

over complex datasets like CIFAR-10 and ImageNet. 

(ii) We propose a new ANN-SNN conversion technique that statistically outper-

forms state-of-the-art techniques. We report a classification error of 8.45% on the 

CIFAR-10 dataset which is the best-performing result reported for any SNN network, 

till date. For the first time we report an SNN performance on the entire ImageNet 

2012 validation set. We achieve a 30.04% top-1 error rate and 10.99% top-5 error 

rate for VGG-16 architectures. 

(iii) We explore Residual Network (ResNet) architectures as a potential pathway to 

enable deeper SNNs. We present insights and design constraints that are required to 

ensure ANN-SNN conversion for ResNets. We report a classification error of 12.54% 

on the CIFAR-10 dataset and a 34.53% top-1 error rate and 13.67% top-5 error 

rate on the ImageNet validation set. This is the first work that attempts to explore 

SNNs with residual network architectures. 

(iv) We demonstrate that SNN network sparsity significantly increases as the net-

work depth increases. This further motivates the exploration of converting ANNs to 

SNNs for event-driven operation to reduce compute overhead. 
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ANN Inputs SNN Inputs Accumulated SNN Inputs

Fig. A.1. The extreme left panel depicts a particular input image 
from the CIFAR-10 dataset with per pixel mean subtracted that is 
provided as input to the original ANN. The middle panel represents a 
particular instance of the Poisson spike train generated from the ana-
log input image. The accumulated events provided to the SNN over 
1000 timesteps is depicted in the extreme right panel. This justifies 
the fact that the input image is being rate encoded over time for SNN 
operation. 

A.2 Preliminaries 

The main difference between ANN and SNN operation is the notion of time. While 

ANN inputs are static, SNNs operate based on dynamic binary spiking inputs as a 

function of time. The neural nodes also receive and transmit binary spike input 

signals in SNNs, unlike in ANNs, where the inputs and outputs of the neural nodes 

are analog values. In this work, we consider a rate-encoded network operation where 

the average number of spikes transmitted as input to the network over a large enough 

time window is approximately proportional to the magnitude of the original ANN 

inputs (pixel intensity in this case). The duration of the time window is dictated by 

the desired network performance (for instance, classification accuracy) at the output 

layer of the network. A Poisson event-generation process is used to produce the input 

spike train to the network. Every time-step of SNN operation is associated with the 

generation of a random number whose value is compared against the magnitude of 

the corresponding input. A spike event is triggered if the generated random number is 

less than the value of the corresponding pixel intensity. This process ensures that the 

average number of input spikes in the SNN is proportional to the magnitude of the 
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corresponding ANN inputs and is typically used to simulate an SNN for recognition 

tasks based on datasets for static images [85]. Fig. A.1 depicts a particular timed-

snapshot of the input spikes transmitted to the SNN for a particular image from the 

CIFAR-10 dataset. SNN operation of such networks are pseudo-simultaneous, i.e. a 

particular layer operates immediately on the incoming spikes from the previous layer 

and does not have to wait for multiple time-steps for information from the previous 

layer neurons to get accumulated. Given a Poisson-generated spike train being fed to 

the network, spikes will be produced at the network outputs. Inference is based on 

the cumulative spike count of neurons at the output layer of the network over a given 

time-window. 

ANN to SNN conversion schemes usually consider Rectified Linear Unit (ReLU) 

as the ANN neuron activation function. For a neuron receiving inputs xi through 

synaptic weights wi, the ReLU neuron output y is given by, !X 
y = max 0, wi.xi (A.1) 

i 

Although ReLU neurons are typically used in a large number of machine learning tasks 

at present, the main reason behind their usage for ANN-SNN conversion schemes is 

that they bear functional equivalence to an Integrate-Fire (IF) Spiking Neuron with-

out any leak and refractory period [85, 86]. Note that this is a particular type of 

Spiking Neuron model [180]. Let us consider the ANN inputs xi encoded in time as 

a spike train Xi(t), where E[Xi(t)] ∝ xi (for the rate encoding network being consid-

ered in this work). The IF Spiking Neuron keeps track of its membrane potential, 

vmem, which integrates incoming spikes and generates an output spike whenever the 

membrane potential cross a particular threshold vth. The membrane potential is reset 

to zero at the generation of an output spike. All neurons are reset whenever a spike 

train corresponding to a new image/pattern in presented. The IF Spiking Neuron 

dynamics as a function of time-step, t, can be described by the following equation, X 
vmem(t + 1) = vmem(t) + wi.Xi(t) (A.2) 

i 
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Let us first consider the simple case of a neuron being driven by a single input X(t) 

and a positive synaptic weight w. Due to the absence of any leak term in the neural 

dynamics, it is intuitive to show that the corresponding output spiking rate of the 

neuron is given by E[Y(t)] ∝ E[X(t)], with the proportionality factor being dependent 

on the ratio of w and vth. In the case when the synaptic weight is negative, the output 

spiking activity of the IF neuron is zero since the neuron is never able to cross the 

firing potential vth, mirroring the functionality of a ReLU. The higher the ratio of the 

threshold with respect to the weight, the more time is required for the neuron to spike, 

thereby reducing the neuron spiking rate, E[Y(t)], or equivalently increasing the time-

delay for the neuron to generate a spike. A relatively high firing threshold can cause a 

huge delay for neurons to generate output spikes. For deep architectures, such a delay 

can quickly accumulate and cause the network to not produce any spiking outputs for 

relatively long periods of time. On the other hand, a relatively low threshold causes 

the SNN to lose any ability to distinguish between different magnitudes of the spike P 
inputs being accumulated to the membrane potential (the term i wi.Xi(t) in Eq. 

A.2) of the Spiking Neuron, causing it to lose evidence during the membrane potential 

integration process. This, in turn, results in accuracy degradation of the converted 

network. Hence, an appropriate choice of the ratio of the neuron threshold to the 

synaptic weights is essential to ensure minimal loss in classification accuracy during 

the ANN-SNN conversion process [85]. Consequently, most of the research work in 

this field has been concentrated on outlining appropriate algorithms for threshold-

balancing, or equivalently, weight normalizing different layers of a network to achieve 

near-lossless ANN-SNN conversion. 

Typically neural units used for ANN-SNN conversion schemes are trained without 

any bias term [85]. This is due to the fact that optimization of the bias term in 

addition to the spiking neuron threshold expands the parameter space exploration, 

thereby causing the ANN-SNN conversion process to be more difficult. Requirement 

of bias less neural units also entails that Batch Normalization technique [181] cannot 

be used as a regularizer during the training process since it biases the inputs to 
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each layer of the network to ensure each layer is provided with inputs having zero 

mean. Instead, we use dropout [182] as the regularization technique. This technique 

simply masks portions of the input to each layer by utilizing samples from a Bernoulli 

distribution where each input to the layer has a specified probability of being dropped. 

Deep convolutional neural network architectures typically consist of intermediate 

pooling layers to reduce the size of the convolution output maps. While various 

choices exist for performing the pooling mechanism, the two popular choices are either 

max-pooling (maximum neuron output over the pooling window) or spatial-averaging 

(two-dimensional average pooling operation over the pooling window). Since the 

neuron activations are binary in SNNs instead of analog values, performing max-

pooling would result in significant information loss for the next layer. Consequently, 

we consider spatial-averaging as the pooling mechanism in this work [85]. 

A.3 Deep Convolutional SNN Architectures: VGG 

As mentioned previously, our work is based on the proposal outlined by authors 

in Ref. [85]. In order to ensure that a spiking neuron threshold is sufficiently high 

to distinguish different magnitude of the spike inputs, a worst case solution would 

be to set the threshold of a particular layer to the maximum of the summation of 

all the positive synaptic weights of neurons in that layer. However, such a “Model-

Based Normalization” technique is highly pessimistic since all the fan-in neurons 

are not supposed to fire at every time-step [85]. In order to circumvent this issue, 

authors in Ref. [85] proposed a “Data-Based Normalization” Technique wherein the 

neuron threshold of a particular layer is set equal to the maximum activation of 

all ReLUs in the corresponding layer (by passing the entire training set through 

the trained ANN once after training is completed). Such a “Data-Based” technique 

performed significantly better than the “Model-Based” algorithm in terms of the 

final classification accuracy and latency of the converted SNN (three-layered fully 

connected and convolutional architectures) for a digit recognition problem on the 
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MNIST dataset [85]. Note that, this process is referred to as “weight-normalization” 

and “threshold-balancing” interchangeably in this text. As mentioned before, the goal 

of this work is to optimize the ratio of the synaptic weights with respect to the neuron 

firing threshold, vth. Hence, either all the synaptic weights preceding a neural layer 

are scaled by a normalization factor wnorm equal to the maximum neural activation 

and the threshold is set equal to 1 (“weight-normalization”), or the threshold vth is 

set equal to the maximum neuron activation for the corresponding layer with the 

synaptic weights remaining unchanged (“threshold-balancing”). Both operations are 

exactly equivalent mathematically. 

However, the above algorithm leads us to the question: Are ANN activations rep-

resentative of SNN activations? Let us consider a particular example for the case of 

maximum activation for a single ReLU. The neuron receives two inputs, namely 0.5 

and 1. Let us consider unity synaptic weights in this scenario. Since the maximum 

ReLU activation is 1.5, the neuron threshold would be set equal to 1.5. However, 

when this network is converted to the SNN mode, both the inputs would be prop-

agating binary spike signals. The ANN input, equal to 1, would be converted to 

spikes transmitting at every time-step while the other input would transmit spikes 

approximately 50% of the duration of a large enough time-window. Hence, the actual 

summation of spike inputs received by the neuron per time-step would be 2 for a large 

number of samples, which is higher than the spiking threshold (1.5). Clearly, some 

information loss would take place due to the lack of this evidence integration. 

Driven by this observation, we propose a weight-normalization technique that 

adaptively balances the threshold of each layer by considering the actual operation 

of the SNN in the loop during the ANN-SNN conversion process. The algorithm 

normalizes the weights of the network sequentially for each layer. Given a particular 

trained ANN, the first step is to generate the input Poisson spike train for the network 

over the training set for a large enough time-window. The Poisson spike train allows P 
us to record the maximum summation of weighted spike-input (the term i wi.Xi(t) 

in Eq. A.2 and hereafter referred to maximum SNN activation in this text) that would 
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be received by the first neural layer of the network. In order to minimize the temporal 

delay of the neuron and simultaneously ensure that the neuron firing threshold is not 

too low, we weight-normalize the first layer depending on the maximum spike-based 

input received by the first layer. After the threshold of the first layer is set, we 

are provided with a representative spike train at the output of the first layer which 

enables us to generate the input spike-stream for the next layer. The process is 

continued sequentially for all the layers of the network. The main difference between 

our proposal and prior work [85] is the fact that the proposed weight-normalization 

scheme accounts for the actual SNN operation during the conversion process. As 

we will show in the Results section, this scheme is crucial to ensure near-lossless 

ANN-SNN conversion for significantly deep architectures and for complex recognition 

problems. The pseudo-code of the algorithm is given in the next page. 

A.4 Extension to Residual Architectures 

Residual network architectures were proposed as an attempt to scale convolu-

tional neural networks to very deep layered stacks [183]. Although different variants 

of the basic functional unit have been explored, we will only consider identity shortcut 

connections in this text (shortcut type-A according to the paper [183]). Each unit 

consists of two parallel paths. The non-identity path consists of two spatial convolu-

tion layers with an intermediate ReLU layer. While the original ResNet formulation 

considers ReLUs at the junction of the parallel non-identity and identity paths [183], 

recent formulations do not consider junction ReLUs in the network architecture [184]. 

Absence of ReLUs at the junction point of the non-identity and identity paths was 

observed to produce a slight improvement in classification accuracy on the CIFAR-

10 dataset [185]. Due to the presence of the shortcut connections, important design 

considerations need to be accounted for to ensure near-lossless ANN-SNN conversion. 

We start with the basic unit, as shown in Fig. A.2(a), and point-wise impose vari-

ous architectural constraints with justifications. Note the discussion in this section 
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input : Input Poisson Spike Train spikes, Number of Time-Steps #timesteps 

output: Weight-normalization / Threshold-balancing factors vth,norm[i] for 

each neural layer (net.layer[i]) of the network net 

initialization vth,norm[i] = 0 ∀ i = 1, ..., #net.layer; 

// Set input of 1st layer equal to spike train 

net.layer[1].input = spikes; 

for i ← 1 to #net.layer do 

for t ← 1 to #timesteps do 

// Forward pass spike-train for neuron layer-i 

characterized by membrane potential net.layer[i].vmem and 

threshold net.layer[i].vth 

net.layer[i] : forward(net.layer[i].input) ; 

// Determine Threshold-balancing factor according to 

maximum SNN activation, net.layer[i].vmem.input 

vth,norm[i] = max(vth,norm[i],max(net.layer[i].vmem.input)); 

end 

// Threshold-balance layer-i 

net.layer[i].vth = vth,norm[i]; 

// Record input spike-train for next layer 

net.layer[i + 1].input = net.layer[i] : forward(net.layer[i].input); 

end 
Algorithm 1: Spike-Norm 
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Fig. A.2. (a) The basic ResNet functional unit, (b) Design constraints 
introduced in the functional unit to ensure near-lossless ANN-SNN 
conversion, (c) Typical maximum SNN activations for a ResNet hav-
ing junction ReLU layers but the non-identity and identity input paths 
not having the same spiking threshold. While this is not representa-
tive of the case with equal thresholds in the two paths, it does justify 
the claim that after a few initial layers, the maximum SNN activations 
decay to values close to unity due to the identity mapping. 

is based on threshold-balancing (with synaptic weights remaining unscaled), i.e. the 

threshold of the neurons are adjusted to minimize ANN-SNN conversion loss. 

As we will show in the Results section, application of our proposed Spike-Norm 

algorithm on such a residual architecture resulted in a converted SNN that exhibited 

accuracy degradation in comparison to the original trained ANN. We hypothesize that 

this degradation is attributed mainly to the absence of any ReLUs at the junction 
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points. Each ReLU when converted to an IF Spiking Neuron imposes a particular 

amount of characteristic temporal delay (time interval between an incoming spike and 

the outgoing spike due to evidence integration). Due to the shortcut connections, 

spike information from the initial layers gets instantaneously propagated to later 

layers. The unbalanced temporal delay in the two parallel paths of the network can 

result in distortion of the spike information being propagated through the network. 

Consequently, as shown in Fig. A.2(b), we include ReLUs at each junction point 

to provide a temporal balancing effect to the parallel paths (when converted to IF 

Spiking Neurons). An ideal solution would be to include a ReLU in the parallel path, 

but that would destroy the advantage of the identity mapping. 

As shown in the next section, direct application of our proposed threshold-balancing 

scheme still resulted in some amount of accuracy loss in comparison to the baseline 

ANN accuracy. However, note that the junction neuron layer receives inputs from 

the previous junction neuron layer as well as the non-identity neuron path. Since 

the output spiking activity of a particular neuron is also dependent on the threshold-

balancing factor, all the fan-in neuron layers should be threshold-balanced by the 

same amount to ensure that input spike information to the next layer is rate-encoded 

appropriately. However, the spiking threshold of the neuron layer in the non-identity 

path is dependent on the activity of the neuron layer at the previous junction. An ob-

servation of the typical threshold-balancing factors for the network without using this 

constraint (shown in Fig. A.2(c)) reveal that the threshold-balancing factors mostly 

lie around unity after a few initial layers. This occurs mainly due to the identity 

mapping. The maximum summation of spike inputs received by the neurons in the 

junction layers are dominated by the identity mapping (close to unity). From this 

observation, we heuristically choose both the thresholds of the non-identity ReLU 

layer and the identity-ReLU layer equal to 1. However, the accuracy is still unable to 

approach the baseline ANN accuracy, which leads us to the third design constraint. 

An observation of Fig. A.2(c) reveals that the threshold-balancing factors of the 

initial junction neuron layers are significantly higher than unity. This can be a primary 
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reason for the degradation in classification accuracy of the converted SNN. We note 

that the residual architectures used by authors in Ref. [183] use an initial convolution 

layer with a very wide receptive field (7 × 7 with a stride of 2) on the ImageNet 

dataset. The main motive behind such an architecture was to show the impact of 

increasing depth in their residual architectures on the classification accuracy. Inspired 

by the VGG-architecture, we replace the first 7 × 7 convolutional layer by a series 

of three 3 × 3 convolutions where the first two layers do not exhibit any shortcut 

connections. Addition of such initial non-residual pre-processing layers allows us to 

apply our proposed threshold-balancing scheme in the initial layers while using a 

unity threshold-balancing factor for the later residual layers. As shown in the Results 

section, this scheme significantly assists in achieving classification accuracies close 

to the baseline ANN accuracy since after the initial layers, the maximum neuron 

activations decay to values close to unity because of the identity mapping. 

A.5 Experiments 

We evaluate our proposals on standard visual object recognition benchmarks, 

namely the CIFAR-10 and ImageNet datasets. Experiments performed on networks 

for the CIFAR-10 dataset are trained on the training set images with per-pixel mean 

subtracted and evaluated on the testing set. We also present results on the much 

more complex ImageNet 2012 dataset that contains 1.28 million training images and 

report evaluation (top-1 and top-5 error rates) on the 50, 000 validation set. 224×224 

crops from the input images are used for this experiment. 

We use VGG-16 architecture [186] for both the datasets. ResNet-20 configuration 

outlined in Ref. [183] is used for the CIFAR-10 dataset while ResNet-34 is used for 

experiments on the ImageNet dataset. As mentioned previously, we do not utilize any 

batch-normalization layers. For VGG networks, a dropout layer is used after every 

ReLU layer except for those layers which are followed by a pooling layer. For Residual 
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networks, we use dropout only for the ReLUs at the non-identity parallel paths but 

not at the junction layers. We found this crucial for achieving training convergence. 

Our implementation is derived from the Facebook ResNet implementation code 

for CIFAR and ImageNet datasets available publicly [187]. We use similar image pre-

processing steps and scale and aspect-ratio augmentation techniques as used in [188]. 

We report single-crop testing results while the error rates can be further reduced with 

10-crop testing [189]. Networks used for the CIFAR-10 dataset are trained on 2 GPUs 

with a batchsize of 256 for 200 epochs, while ImageNet training is performed on 8 

GPUs for 100 epochs with a similar batchsize. The initial learning rate is 0.05. The 

learning rate is divided by 10 twice, at 81 and 122 epochs for CIFAR-10 dataset and 

at 30 and 60 epochs for ImageNet dataset. A weight decay of 0.0001 and a momentum 

of 0.9 is used for all the experiments. Proper weight initialization is crucial to achieve 

convergence in such deep networks without batch-normalization. For a non-residual 

convolutional layer (for both VGG and ResNet architectures) having kernel size k × k 

with n output channels, the weights are initialized from a normal distribution and q 
standard deviation 

k2 
2 
n . However, for residual convolutional layers, the standard 

deviation used for the normal distribution was 
k 

√ 

2 
2 
n . We observed this to be important 

for achieving training convergence and a similar observation was also outlined in 

Ref. [190] although their networks were trained without both dropout and batch-

normalization. 

A.5.1 Experiments for VGG Architectures 

Our VGG-16 model architecture follows the implementation outlined in [191] ex-

cept that we do not utilize the batch-normalization layers. We used a randomly chosen 

mini-batch of size 256 from the training set for the weight-normalization process on 

the CIFAR-10 dataset. While the entire training set can be used for the weight-

normalization process, using a representative subset did not impact the results. We 

confirmed this by running multiple independent runs for both the CIFAR and Ima-
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geNet datasets. The standard deviation of the final classification error rate after 2500 

time-steps was ∼ 0.01. All results reported in this section represent the average of 5 

independent runs of the spiking network (since the input to the network is a random 

process). No notable difference in the classification error rate was observed at the end 

of 2500 time-steps and the network outputs converged to deterministic values despite 

being driven by stochastic inputs. For the SNN model based weight-normalization 

scheme (Spike-Norm algorithm) we used 2500 time-steps for each layer sequentially 

to normalize the weights. 

Table A.1 summarizes our results for the CIFAR-10 dataset. The baseline ANN 

error rate on the testing set was 8.3%. Since the main contribution of this work is to 

minimize the loss in accuracy during conversion from ANN to SNN for deep-layered 

networks and not in pushing state-of-the-art results in ANN training, we did not 

perform any hyper-parameter optimization. However, note that despite several archi-

tectural constraints being present in our ANN architecture, we are able to train deep 

networks that provide competitive classification accuracies using the training mech-

anisms described in the previous subsection. Further reduction in the baseline ANN 

error rate is possible by appropriately tuning the learning parameters. For the VGG-

16 architecture, our implementation of the ANN-model based weight-normalization 

technique, proposed by Ref. [85], yielded an average SNN error rate of 8.54% lead-

ing to an error increment of 0.24%. The error increment was minimized to 0.15% 

on applying our proposed Spike-Norm algorithm. Note that we consider a strict 

model-based weight-normalization scheme to isolate the impact of considering the 

effect of an ANN versus our SNN model for threshold-balancing. Further optimiza-

tions of considering the maximum synaptic weight during the weight-normalization 

process [85] is still possible. 

Previous works have mainly focused on much shallower convolutional neural net-

work architectures. Although Ref. [192] reports results with an accuracy loss of 

0.18%, their baseline ANN suffers from some amount of accuracy degradation since 

their networks are trained with noise (in addition to architectural constraints men-



140 

tioned before) to account for neuronal response variability due to incoming spike 

trains [192]. It is also unclear whether the training mechanism with noise would scale 

up to deeper layered networks. Our work reports the best performance of a Spiking 

Neural Network on the CIFAR-10 dataset till date. 

The impact of our proposed algorithm is much more apparent on the more complex 

ImageNet dataset. The rates for the top-1 (top-5) error on the ImageNet validation set 

are summarized in Table A.2. Note that these are single-crop results. The accuracy 

loss during the ANN-SNN conversion process is minimized by a margin of 0.57% by 

considering SNN-model based weight-normalization scheme. It is therefore expected 

that our proposed Spike-Norm algorithm would significantly perform better than 

an ANN-model based conversion scheme as the pattern recognition problem becomes 

more complex since it accounts for the actual SNN operation during the conversion 

process. Note that Ref. [192] reports a performance of 48.2%(23.8%) on the first 

3072-image test batch of the ImageNet 2012 dataset. 

At the time we developed this work, we were unaware of a parallel effort to scale 

up the performance of SNNs to deeper networks and large-scale machine learning 

tasks. The work was recently published in Ref. [193]. However, their work differs 

from our approach in the following aspects: 

(i) Their work improves on prior approach outlined in Ref. [85] by proposing con-

version methods for removing the constraints involved in ANN training (discussed in 

Section A.2). We are improving on prior art by scaling up the methodology outlined 

in Ref. [85] for ANN-SNN conversion by including the constraints. 

(ii) We are demonstrating that considering SNN operation in the conversion pro-

cess helps to minimize the conversion loss. Ref. [193] uses ANN based normalization 

scheme used in Ref. [85]. 

While removing the constraints in ANN training allows authors in Ref. [193] to train 

ANNs with better accuracy, they suffer significant accuracy loss in the conversion 

process. This occurs due to a non-optimal ratio of biases/batch-normalization fac-

tors and weights [193]. This is the primary reason for our exploration of ANN-SNN 
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conversion without bias and batch-normalization. For instance, their best performing 

network on CIFAR-10 dataset incurs a conversion loss of 1.06% in contrast to 0.15% 

reported by our proposal for a much deeper network. The accuracy loss is much larger 

for their VGG-16 network on the ImageNet dataset - 14.28% in contrast to 0.56% 

for our proposal. Although Ref. [193] reports a top-1 SNN error rate 25.40% for a 

Inception-V3 network, their ANN is trained with an error rate of 23.88%. The result-

ing conversion loss is 1.52% and much higher than our proposals. The Inception-V3 

network conversion was also optimized by a voltage clamping method, that was found 

to be specific for the Inception network and did not apply to the VGG network [193]. 

Note that the results reported on ImageNet in Ref. [193] are on a subset of image sam-

ples. Hence, the performance on the entire dataset is unclear. Our contribution lies 

in the fact that we are demonstrating ANNs can be trained with the above-mentioned 

constraints with competitive accuracies on large-scale tasks and converted to SNNs 

in a near-lossless manner. 

This is the first work that reports competitive performance of a Spiking Neural 

Network on the entire 50, 000 ImageNet 2012 validation set. 

A.5.2 Experiments for Residual Architectures 

Our residual networks for CIFAR-10 and ImageNet datasets follow the implemen-

tation in Ref. [183]. We first attempt to explain our design choices for ResNets by 

sequentially imposing each constraint on the network and showing their correspond-

ing impact on network performance in Fig. A.3. The “Basic Architecture” involves 

a residual network without any junction ReLUs. “Constraint 1” involves junction 

ReLUs without having equal spiking thresholds for all fan-in neural layers. “Con-

straint 2” imposes an equal threshold of unity for all the layers while “Constraint 

3” performs best with two pre-processing plain convolutional layers (3 × 3) at the 

beginning of the network. The baseline ANN ResNet-20 was trained with an error of 

10.9% on the CIFAR-10 dataset. Note that although we are using terminology con-
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Table A.1. 
Results for CIFAR-10 Dataset 

Network Architecture 

4-layered networks [86] 

(Input cropped to 24 x 24) 

ANN 

Error 

20.88% 

SNN 

Error 

22.57% 

Error Increment 

1.69% 

3-layered networks [194] − 10.68% − 

8-layered networks [192] 

(Input cropped to 24 x 24) 

16.28% 16.46% 0.18% 

6-layered networks [193] 8.09% 9.15% 1.06% 

VGG-16 

(ANN model based 

conversion) 

8.3% 8.54% 0.24% 

VGG-16 

(SPIKE-NORM) 

8.3% 8.45% 0.15% 

sistent with Ref. [183] for the network architectures, our ResNets contain two extra 

plain pre-processing layers. The converted SNN according to our proposal yielded a 

classification error rate of 12.54%. Weight-normalizing the initial two layers using the 

ANN-model based weight-normalization scheme produced an average error of 12.87%, 

further validating the efficiency of our weight-normalization technique. 
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Table A.2. 
Results for ImageNet Dataset 

Network Architecture ANN SNN Error Increment 

Error Error 

8-layered networks [192] − 48.20% − 

(Tested on subset of 3072 (23.80%) 

images) 

VGG-16 [193] 36.11% 50.39% 14.28% 

(Tested on subset of 2570 (15.14%) (18.37%) (3.23%) 

images) 

VGG-16 29.48% 30.61% 1.13% 

(ANN model based (10.61%) (11.21%) (0.6%) 

conversion) 

VGG-16 29.48% 30.04% 0.56% 

(SPIKE-NORM) (10.61%) (10.99%) (0.38%) 

On the ImageNet dataset, we use the deeper ResNet-34 model outlined in Ref. 

[183]. The initial 7 × 7 convolutional layer is replaced by three 3 × 3 convolutional 

layers where the initial two layers are non-residual plain units. The baseline ANN is 

trained with an error of 29.31% while the converted SNN error is 34.53% at the end 

of 2500 timesteps. The results are summarized in Table. A.3 and convergence plots 

for all our networks are provided in Fig. A.4. 
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Fig. A.3. Impact of the architectural constraints for Residual Net-
works. “Basic Architecture” does not involve any junction ReLU lay-
ers. “Constraint 1” involves junction ReLUs while “Constraint 2” 
imposes equal unity threshold for all residual units. Network accu-
racy is significantly improved with the inclusion of “Constraint 3” that 
involves pre-processing weight-normalized plain convolutional layers 
at the network input stage. 

It is worth noting here that the main motivation of exploring Residual Networks 

is to go deeper in Spiking Neural Networks. We explore relatively simple ResNet 

architectures, as the ones used in Ref. [183], which have an order of magnitude lower 

parameters than standard VGG-architectures. Further hyper-parameter optimiza-

tions or more complex architectures are still possible. While the accuracy loss in the 

ANN-SNN conversion process is more for ResNets than plain convolutional architec-

tures, yet further optimizations like including more pre-processing initial layers or 

better threshold-balancing schemes for the residual units can still be explored. This 

work serves as the first work to explore ANN-SNN conversion schemes for Residual 

Networks and attempts to highlight important design constraints required for minimal 

loss in the conversion process. 
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Fig. A.4. Convergence plots for the VGG and ResNet SNN architec-
tures for CIFAR-10 and ImageNet datasets are shown above. The 
classification error reduces as more evidence is integrated in the Spik-
ing Neurons with increasing time-steps. Note that although the net-
work depths are similar for CIFAR-10 dataset, the ResNet-20 con-
verges much faster than the VGG architecture. The delay for infer-
encing is higher for ResNet-34 on the ImageNet dataset due to twice 
the number of layers as the VGG network. 

A.5.3 Computation Reduction Due to Sparse Neural Events 

ANN operation for prediction of the output class of a particular input requires a 

single feed-forward pass per image. For SNN operation, the network has to be eval-

uated over a number of time-steps. However, specialized hardware that accounts for 

the event-driven neural operation and “computes only when required” can potentially 

exploit such alternative mechanisms of network operation. For instance, Fig. A.5 rep-

resents the average total number of output spikes produced by neurons in VGG and 

ResNet architectures as a function of the layer for ImageNet dataset. A randomly 

chosen minibatch was used for the averaging process. We used 500 timesteps for ac-

cumulating the spike-counts for VGG networks while 2000 time-steps were used for 

ResNet architectures. This is in accordance to the convergence plots shown in Fig. 

A.4. An important insight obtained from Fig. A.5 is the fact that neuron spiking 

activity becomes sparser as the network depth increases. Hence, benefits from event-

driven hardware is expected to increase as the network depth increases. While an 
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Fig. A.5. Average cumulative spike count generated by neurons in 
VGG and ResNet architectures on the ImageNet dataset as a func-
tion of the layer number. 500 timesteps were used for accumulating 
the spike-counts for VGG networks while 2000 time-steps were used 
for ResNet architectures. The neural spiking sparsity increases signif-
icantly as network depth increases. 

estimate of the actual energy consumption reduction for SNN mode of operation is 

outside the scope of this current work, we provide an intuitive insight by providing the 

number of computations per synaptic operation being performed in the ANN versus 

the SNN. 

The number of synaptic operations per layer of the network can be easily esti-

mated for an ANN from the architecture for the convolutional and linear layers. For 

the ANN, a multiply-accumulate (MAC) computation takes place per synaptic oper-

ation. On the other hand, a specialized SNN hardware would perform an accumulate 
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Table A.3. 
Results for Residual Networks 

Dataset Network 

Architecture 

ANN 

Error 

SNN 

Error 

CIFAR-10 ResNet-20 10.9% 12.54% 

ImageNet ResNet-34 29.31% 

(10.31%) 

34.53% 

(13.67%) 

computation (AC) per synaptic operation only upon the receipt of an incoming spike. 

Hence, the total number of AC operations occurring in the SNN would be represented 

by the layerwise product and summation of the average cumulative neural spike count 

for a particular layer and the corresponding number of synaptic operations. Calcula-

tion of this metric reveal that for the VGG network, the ratio of SNN AC operations 

to ANN MAC operations is 1.975 while the ratio is 2.4 for the ResNet (the metric 

includes only ReLU/IF spiking neuron activations in the network). However, note the 

fact that a MAC operation involves an order of magnitude more energy consumption 

than an AC operation. For instance, Ref. [195] reports that the energy consumption 

in a 32-bit floating point MAC operation is 3.2pJ while the energy consumption is 

only 0.1pJ for an AC operation in 45nm technology. Hence, the energy consumption 

reduction for our SNN implementation is expected to be 16.2× for the VGG network 

and 13.3× for the ResNet in comparison to the original ANN implementation. 

A.6 Conclusions and Future Work 

This work serves to provide inspiration to the fact that SNNs exhibit similar com-

puting power as their ANN counterparts. This can potentially pave the way for the 

usage of SNNs in large scale visual recognition tasks, which can be enabled by low-

power neuromorphic hardware. However, there are still open areas of exploration 
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for improving SNN performance. A significant contribution to the present success of 

deep NNs is attributed to Batch-Normalization [181]. While using bias less neural 

units constrain us to train networks without Batch-Normalization, algorithmic tech-

niques to implement Spiking Neurons with a bias term should be explored. Further, 

it is desirable to train ANNs and convert to SNNs without any accuracy loss. Al-

though the proposed conversion technique attempts to minimize the conversion loss 

to a large extent, yet other variants of neural functionalities apart from ReLU-IF 

Spiking Neurons could be potentially explored to further reduce this gap. Addition-

ally, further optimizations to minimize the accuracy loss in ANN-SNN conversion for 

ResNet architectures should be explored to scale SNN performance to even deeper 

architectures. 
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B. STOCHASTICITY OF SPINTRONIC DEVICES AS A 

FUNCTION OF TEMPERATURE: ON-CHIP 

TEMPERATURE SENSOR IMPLEMENTATION 

This thesis has explored various neuromorphic computing paradigms that can be en-

abled by the stochastic switching of nanomagnets at non-zero temperatures. All these 

computing platforms are based on the stochastic switching response of the magnet as a 

function of the input current magnitude at a constant operating temperature. In this 

appendix, we explore an alternative approach for abstracting the stochastic switching 

response of the magnet as a function of temperature at fixed external current input 

and demonstrate its possible usage for on-chip temperature sensor applications. 

B.1 Introduction 

Due to continued device scaling and consequent addition of more components on-

chip, which in-turn results in enhanced heat generation, chip temperature monitoring 

has become a critical issue for ensuring reliable operation. With advanced technol-

ogy nodes, increased throughput is achieved at the expense of more heat generation. 

Hence, designing on-chip low-power, low-cost temperature sensors is becoming a cru-

cial requirement [196–199]. The typical performance metrics for on-chip temperature 

sensors are the conversion rate and energy consumption per inference. The conver-

sion rate is defined as the number of inference samples that can be produced by the 

sensor per unit sec which is the inverse of the time required by the sensor to make 

an inference. The energy consumption per inference is defined as the product of the 

power consumption of the sensor and the inverse of the conversion rate. 

While most of the recent work in the domain of on-chip temperature sensors 

have been primarily based on CMOS sensors [196–199], it is interesting to note that 
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post-CMOS technologies like spintronic devices demonstrate temperature-dependent 

probabilistic switching due to thermal noise. Although, traditionally the stochastic 

switching behavior of spin-based devices have been primarily viewed as a disadvan-

tage for on-chip memory applications, recently unconventional computing paradigms 

like neuromorphic computing [6, 7, 127], Ising computing [133, 135] and Bayesian in-

ference networks [134] based on stochastic nanomagnets have been proposed that 

leverage the underlying stochastic device physics. The probabilistic switching of the 

spintronic device is a function of the input programming current and the operating 

temperature (assuming a fixed duration of the programming current). However, all 

these applications abstract the probabilistic switching characteristics of the spintronic 

device as a function of input current as the external stimulus, at a fixed tempera-

ture. This appendix section attempts to explore the stochastic magnet dynamics as a 

function of temperature and provides an estimation of its performance metrics as an 

on-chip temperature sensor in comparison to state-of-the-art CMOS based sensors. 

The potential advantages of such nanomagnetic temperature sensors are compactness, 

higher conversion rate and lower energy consumption per inference. 

B.2 MTJ as Temperature-Biased Random Number Generator 

The operation of the MTJ as a temperature-biased random number generator has 

been explained in Fig. B.1. A particular temperature inference takes place over a 

number of “write”-“read”-“reset” cycles. The timing waveform for a particular cycle 

has been shown in the figure. During the “write” cycle, the MTJ is driven by a cur-

rent source which passes an input charge current through the heavy metal underlayer. 

Depending on the operating temperature, the MTJ switches with a given probabil-

ity. Consecutively, during the “read” phase, the MTJ state is determined using the 

resistive divider circuit shown in Fig. B.1. The reference resistor, RREF , is an MTJ 

whose state is fixed in the AP state. The read current is maintained to sufficiently 

low values such that the MTJ states are not disturbed. Note that the “write” and 
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Fig. B.1. The Sensor MTJ is interfaced with a Reference MTJ (RREF ) 
to form a voltage divider circuit (driven by supply voltage VDD) that 
drives an inverter at the output to determine the switching probabil-
ity (PSW ) at an operating temperature T . WR and RD are control 
signals that activate the “write” and “read” current paths of the MTJ 
respectively. During the “write” phase (WR activated), a bias current 
(IBIAS ) probabilistically switches the magnet depending on the tem-
perature. After a subsequent “relaxation” phase, TRELAX , the “read” 
phase (RD activated) is used to determine the final state of the MTJ 
due to the corresponding “write” phase. 

“read” phases are separated by a “relaxation” period, TRELAX , in order to stabilize 

the magnetization directions to either of the two stable states after the “write” phase. 

The magnet is “reset” to the initial AP state for the next cycle in case a switching 

event takes place by passing a large enough magnitude of current through the heavy 

metal in the opposite direction to ensure approximately deterministic switching. The 
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switching probability is determined from multiple such measurement cycles and the 

operating temperature is determined from the measured switching probability. 

The device parameters have been mentioned in Table. 4.1. The parameters are 

based on experimental measurements reported in Ref. [118]. The “Write”, “Relax-

ation” and “Read” phase durations are 0.5ns, 2ns and 1ns respectively. The design 

temperature is varied in the range 200 − 400K. 

B.3 Sensor Performance Metrics 

Fig. B.2(a) represents the switching probability characteristics of the MTJ (as a 

function of “write” current through the HM) with varying temperature. The disper-

sion in switching probability characteristics between 200K and 400K is maximized at 

the central region of the switching probability characteristics (Fig. B.2(b)). Specifi-

cally, we note that for our design pulse width duration of 0.5ns, the optimal design 

current is ∼ 70µA and the probability dispersion (absolute difference in the MTJ 

switching probabilities at 200K and 400K) is ∼ 24%. 

Fig. B.3 denotes the MTJ switching probability at the optimal bias current of 

70µA as a function of temperature. Although the switching characteristic becomes 

non-linear and tends to saturate at very high temperatures, the characteristic is ap-

proximately linear in the range of 200K −400K. The resolution of the sensor linearity 

is ∼ 0.37%/1◦C. 

A single switching event of the MTJ can be considered to be a Poisson process 

with the probability of switching being determined by the temperature. Consequently, 

the precision of temperature sensing is expected to increase as the number of switch-

ing events (“write”-“read”-“reset” cycles) for the temperature inference process is 

increased. Fig. B.4 shows that the average sensing error in the range 200K − 400K 

is reduced to ∼ 1◦C as the number of samples is increased to 100, 000. Considering 

each cycle to be of duration 4ns (0.5ns for “write” phase, 2ns for “relaxation” phase, 

1ns for “read” phase and 0.5ns for “reset” phase), the resultant time required for 
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one inference is 4 × 10−4s (with an error tolerance of ∼ 1◦C). The corresponding 

conversion rate is 2500 samples/s. 

The energy consumption of the MTJ based sensor can be estimated by considering 

the energy consumed during the “write”, “read” and “reset” phases of operation in 

one cycle. Considering the bias current of 70µA is provided by a 1V supply, the total 

“write” energy consumption is estimated to be 35fJ (V ITWR energy consumption, 

where V = 1V , I = 70µA and TWR = 0.5ns). Assuming a design temperature sensing 

range of 200K − 400K, the device exhibits a switching probability of PRESET = 46% 

at the mean temperature of 300K. Since, the MTJ needs to be reset for every switch-

ing event by passing a 140µA charge current in the opposite direction through the 

HM layer (to ensure deterministic switching: see Fig. B.2(a)), the “reset” energy con-

sumption is estimated to be ∼ 32fJ (PRESET V ITRESET energy consumption where, 

V = 1V , I = 140µA and TWR = 0.5ns). The “read” energy consumption was esti-

mated by SPICE simulations of the MTJ based voltage divider driving an inverter 

stage (as shown in Fig. B.1). Non-Equilibrium Green’s Function (NEGF) based 

transport simulation framework was used to model the MTJ resistance [25]. The 

total “read” energy consumption was estimated to be ∼ 21fJ (including the energy 

consumption of the latch being driven by the inverter stage). Considering the total 

number of cycles per inference to be 100, 000, the total energy consumption of the 

MTJ based temperature sensor per conversion is given by the product of the resultant 

energy consumption per cycle and the number of cycles required per inference, and 

is equivalent to ∼ 8.8nJ . Comparison of the MTJ based temperature sensor in terms 

of conversion rate and energy/conversion with other recent proposals of CMOS based 

temperature sensors are summarized in Table B.1. 

B.4 Scaling to the Super-Paramagnetic Regime 

The discussion so far has been based on magnet dimensions exhibiting a barrier 

height of ∼ 20kBT (at the nominal temperature T = 300K). However, as the magnet 
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Fig. B.2. (a) MTJ switching probability characteristics with varying 
temperature in the range 200− 400K, (b) The dispersion in switching 
probability between 200K and 400K is maximized for a design bias 
current 70µA (central region of the switching probability characteris-
tics). 
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Fig. B.3. The switching probability of the MTJ subjected to a bias 
current of magnitude 70µA and duration 0.5ns as a function of tem-
perature. Although the characteristics increase non-linearly, it is ap-
proximately linear in the design temperature range of 200 − 400K. 

dimensions are aggressively scaled down to the super-paramagnetic regime (1kBT 

barrier height), the magnet exhibits random telegraphic switching between the two 

extreme states. As discussed before, the average dwell time in each state is ∼ 50%, and 

the average in-plane magnetization over a duration of 500ns is approximately zero. 

The dwell time in either of the two extreme states can be biased by the magnitude of 
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magnitude of the “write” current for T = 200K − 400K, (b) For a 
design bias current of 1µA, the average magnetization varies approx-
imately linearly with the operating temperature. The time-window 
used for the averaging operation is 100, 000ns. 

the input current stimulus (flowing through the underlying HM layer) as well as the 

operating temperature. Fig. B.5(a) represents the average in-plane magnetization 
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as a function of the “write” current flowing through the HM layer at the nominal 

temperature T = 300K. For a design bias current of 1µA, the MTJ exhibits linear 

variation of average magnetization profile with sensing temperature (Fig. B.5(b)). 

Due to the low barrier height, the magnet essentially operates as a volatile device. 

Consequently, the circuit peripherals have to be operated in an asynchronous fashion 

(in contrast to the synchronous “write”-“read”-“reset” mode of operation discussed 

for high barrier height magnets). As mentioned before, the “write” and “read” current 

paths have to be activated simultaneously and the “read” circuit has to be optimized 

to ensure that the “read” current has minimal impact on the switching of the mag-

net. Circuit-level simulations indicate that the “read” current can be maintained to 

values below 100nA, thereby having negligible influence on the switching probability 

characteristics of the magnet. 

The potential benefits of such super-paramagnetic sensors lies in the conversion 

rate and energy consumption per inference. Since telegraphic switching occurs in the 

∼ ps time scale, the time window per inference can be greatly reduced. Further, 

the “write” bias current magnitude is reduced by almost an order of magnitude, 

thereby reducing the “write” power consumption. Additionally, no “reset” operation 

is required (due to telegraphic magnet switching), leading to reduction in both the 

power consumption and the delay involved in the “reset” operation. 

B.5 Conclusions 

In conclusion, we proposed a compact nanoelectronic temperature sensor that is 

able to provide a higher throughput and lower energy consumption in comparison 

to state-of-the-art CMOS temperature sensors. A key point that enables the usage 

of stochastic switching behavior of MTJs for temperature sensing applications (in 

comparison to stochastic switching behavior of other resistive memory technologies) 

is that the causal element for the device stochasticity is thermal noise. Instead of 

considering the underlying device stochasticity to be disadvantageous, this work can 
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potentially pave the way for MTJ-enabled on-chip temperature sensors that exploit 

the probabilistic switching characteristics of nanomagnets at non-zero temperatures. 
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