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1.5 An illustration of 2 qubits made from the spins of electrons trapped at the 
interface of silicon and silicon-dioxide materials under Aluminum gates 
with an applied positive voltage. The arrows represent electron spins. . . .  18 



� �

� � �

� �

xi 

Figure Page 
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2.5 Strong scaling plots of a self-consistent quantum dot Schrödinger-Poisson 
calculation. a) Total start to end simulation time. b) Set-up time, during 
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equation (Eq. 2.1) using the PC method described in Appendix D. . . . .  43 
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3.1 The details of heterostructure and gate layout used for benchmarking the 
simulation method. a) A cartoon showing the different layers and the 
shaded 2DEG location in the 91 nm deep single hetero-junction structure 
with modulation doping. A uniform doping profile with a concentration 
of 4.8 × 1018 cm-3 between 17 and 31 nm depths was used in experiments. 
b) The conduction band and electron density profiles of the quantum well 
solved self-consistently using a 1D Schrödinger-Poisson simulation. Va-
lence band maximum on the left edge is at 0 eV, and the dashed line 
is the Fermi level. c) The 1.5μm (cross-section) × 1.2μm (transport di-
rection) × 250nm (growth direction) sized finite element mesh used to 
discretize Poisson equation for the QPC. The mesh contains tetrahedral 
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charges. Pyramid and prism shaped elements (orange) are used to connect 
dielectric regions to charged regions. The cuboids in charged regions are 
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along the lateral direction in which potential changes slowly. The mesh 
contains ∼ 2.16 million points at which the electrostatic potential is solved. 47 
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3.3 Comparison between experimentally measured and computed resistance 
of a 300 nm wide QPC. The measurement was done at 300 mK in 0 T 
magnetic field and using a constant AC current source of 10 nA. The 
red (light) and blue (dark) dashed lines indicate the depletion voltages in 
simulation and experiment respectively. . . . . . . . . . . . . . . . . . . . .  60 



xiii 

Figure Page 

3.4 Sheet densities at different gate voltages for a 300 nm wide QPC, calcu-
lated using the Schrödinger-Poisson solver in a magnetic field of 2.2 T.  
Panels c) and d) show cuts along the X and Y axes, passing through the 

34×1011 −2middle of the QPC. Sheet density in the bulk is 1. cm , and in the 
incompressible strip for n = 1 LL has a density of 1.06 × 1011cm−2. The  
incompressible strip can be seen as a light green region near the depleted 
2DEG in a) and b), and as flat region in c) and d). . . . . . . . . . . . . .  61 

3.5 Sub-band energy (EF = 0) and sheet density profiles near the edge of the 
2DEG defined by depletion top gates at a magnetic field of 2.2 T (bulk 
filling factor νbulk = 2.52) and gate voltage of -0.446 V compared to zero 
magnetic field values plotted using a dashed line. Edge state wavefunctions 
at the Fermi level for ν = 1, 2 and 3 Landau levels obtained from quantum 
transport are also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 

3.6 Conductance vs applied gate voltage of a 300 nm wide QPC at magnetic 
fields of 0.9T, 1.36T and 2.71T, and bulk filling factors of νbulk = 6.00, 
νbulk = 3.97 and νbulk = 1.99 respectively. Each point represents an inde-
pendent electrostatic simulation. The edge mode of even νth Landau level 
starts conducting just above a bulk filling factor of νbulk = ν. This is why 
we have conductance corresponding to one less edge state than the filling 
factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

3.7 A plot of the 3 edge modes in the QPC structure in figure 3.1 for n = 1  
(a), n = 2 (b) and  n = 3 (c) Landau levels at Vg = −0.342V and B = 
0.9T. The arrows show the direction and relative magnitude of the current 
density. The conductance of QPC is 2 × 2e2/h, since the innermost mode 
is reflected by the QPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

3.8 Electric field expectation values of edge modes of n = 1, 2, 3 LLs for four 
different structures are plotted as a function of the spin-less bulk filling 
factor. The structures are described in more detail in section 3.4. Applied 
gate voltages (Vg) are -0.34V, -0.54V, -0.1V and +0.1V for plots a), b), c) 
and d) respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 

3.9 a) and b): Velocities of edge states with spin for the structure in fig 3.8a) 
and d) respectively plotted as a function of the bulk filling factor νbulk. . .  68 

3.10 Velocities of edge modes for outermost (n = 1)  n−Landau level in same 
four structures as figure 3.8 at different magnetic fields are plotted as 
a function of the gate voltage. The spin-less bulk filling factors for the 
plotted magnetic fields are: a) nbulk = 3.04, 1.51 and 1.14; b) nbulk = 2.96, 
2.12 and 1.27; c) nbulk = 3.75, 1.88 and 1.40; d) nbulk = 2.93, 2.14 and 
1.44; respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 



xiv 

Figure Page 

3.11 Edge state velocity for the n=1 Landau level averaged over different gate 
voltages as a function of the quantum well width for the structure in fig. 
3.8d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72 

4.1 An illustration of the various device parameters in Si/SiO2 double quan-
tum dot. tSiO2 and tAl2O3 are the SiO2 and Al2O3 thicknesses under the 
gate, p = 36 nm is the gate pitch, w is the gate width and d is the gate 
separation such that p = w + d . . . . . . . . . . . . . . . . . . . . . . . .  77 

4.2 Flowchart describing the calculation of two-electron wavefunctions and 
energy levels from computationally calculated tight binding one-electron 
wavefunctions. The electrostatic potential used for tight binding calcu-
lations is self-consistently calculated using the electrostatic simulation 
framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78 

4.3 Finite element mesh used to discretize Schrödinger and Poisson equations 
with top gates shown as shaded regions. The mesh has ∼ 550, 000 nodes 
and ∼ 3.5 million elements. . . . . . . . . . . . . . . . . . . . . . . . . . .  79 

4.4 An illustration of the gate voltages, dot charges and dot-gate capacitances. 
Top gates are green rectangles and charges are blurry red ellipses. . . . . .  81 

4.5 a) - c) Comparison of the lowest four energy levels obtained from effective-
msss Hamiltonian (black/dark) and tight-binding Hamiltonian (cyan/light) 
as a function of detuning for 8-, 10- and 12-nm dot separation respectively. 
The Fermi level used in effective-mass electrostatic simulations is at 0 eV. 
d) - i) Anti-bonding, and m) - u) bonding orbital wavefunctions obtained 
from tight binding model. d) m), g) p) and j) s) are for leftmost, e) n), 
h) q) and k) t) are for zero, and f) o) i) r) and l) u) are for rightmost 
detuning points for 8-, 10- and 12-nm dot separation respectively. All 
the calculations are done using a gate pitch p = 36 nm, Al2O3 thickness 
tAl2O3 = 1 nm and SiO2 thickness tSiO2 = 5.9 nm. . . . . . . . . . . . . . .  85 

4.6 a) - c) Tight binding energy spectrum for the double quantum dot as a 
function of detuning for 8-, 10- and 12-nm dot separations. The black 
lines with circles are the levels used in FCI calculations, whereas red lines 
with crosses are not used in FCI. The Fermi level used in effective-mass 
electrostatic simulations is at 0 eV. All the calculations are done using a 
gate pitch p = 36 nm, Al2O3 thickness tAl2O3 = 1 nm and SiO2 thickness 
t = 5.9 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86SiO2 

4.7 a) - c) Two-electron energy levels obtained from FCI simulations for 8-, 10-, 
and 12-nm separation. The Fermi level used in effective-mass electrostatic 
simulations is at 0 eV. All the calculations are done using a gate pitch 
p = 36 nm, Al2O3 thickness tAl2O3 = 1 nm and SiO2 thickness tSiO2 = 5.9 nm.87 



� � �

� �

xv 

Figure Page 
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ABSTRACT 

Sahasrabudhe, Harshad Ph.D., Purdue University, August 2018. Low Temperature 
Simulations Framework For Quantum Dots And Point Contacts. Major Professors: 
Gerhard Klimeck and Michael Manfra. 

Quantum computing is becoming increasingly important due to its potential in 

solving complex optimization problems such as protein folding, and the ability to 

model correlated electronic systems. Designing of semiconductor based quantum 

computers is challenging due to the vast number of parameters that need to be op-

timized from fabrication to their operation. Simulations of these devices could help 

with the design process. A computational modeling framework is presented that can 

model quantum point contacts and quantum dots, which are the building blocks of 

semiconductor based quantum computers. Care was taken to minimize the number 

of parameters, and use only those parameters that are connected directly to the de-

vices and materials. The devices for fractional quantum Hall effect based topological 

quantum computers and electron spin based quantum computers are considered. The 

simulation results matched experiments, based on which predictions for improved 

devices are made. 
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1. INTRODUCTION 

Mesoscopic electronic devices have progressed at a very fast pace since the invention of 

the transistor. Downscaling for efficiency and speed has happened over many genera-

tions of devices such as bipolar junction transistors (1948), metal-oxide-semiconductor 

field effect transistors [1] (1960), high electron mobility transistors [2] (1979) and the 

more recent fin field-effect transistors [3] (2001). Accompanying the improvement 

of devices were innovations in the processes used to fabricate them, which spurred 

materials research and led to advances in condensed matter physics, most notably 

the discovery of the integer [4] (1980) and fractional [5] (1982) quantum Hall effects 

(QHE). 

Over the years the devices, and the circuits made using them have become in-

creasingly complicated, requiring modeling tools to shorten the design time. The 

devices themselves are nearing the limit of downscaling due to the unwanted tun-

neling of electrons through them. Computationally solving some of the currently 

unsolved and important problems in quantum chemistry (such as protein folding), 

in machine learning (such as programming of human-brain-sized neural networks), 

in many-body interacting quantum systems, and in other fields remains intractable 

using transistor-based processors. 

Recent advances in condensed matter physics, and the prospect of tackling these 

problems using the principles of superposition and entanglement in quantum mechan-

ics has replenished the interest in quantum computation [6–8]. Quantum computers 

based on semiconductors, which are just one of the many different candidates [9], 

have recently attracted interest. Semiconductor based quantum computers are im-

portant because of the highly developed semiconductor processing technology that is 

already in place from the years of research and development in the field. They are 

also favorable due to the possibility of fitting a million quantum bits (qubits) on a 
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single chip [10, 11]. Recent developments on quantum computing devices based on 

silicon [12] and gallium arsenide [13] have put this field on fast track. These devices, 

just like the transistor based computers that came before them, are very difficult to 

design, requiring fine tuning of a vast number of parameters from fabrication to their 

operation. Modeling of these devices for better operation and scaling has become 

increasingly important. 

In this thesis a tool is presented, which can realistically model some building 

blocks of semiconductor based quantum computing devices, such as quantum point 

contacts (QPCs) and quantum dots (QDs). The development of the tool is guided by 

the following 3 constraints: 

1. Parameters : Parameters used should be directly tied to the experiments and 

their number should be as small as possible. 

2. Experimental agreement : The model should capture all the relevant physics and 

the results should agree with the experiment. 

3. Prediction: Predictions should be reliable as well as provide insights into how 

the experiments are to be modified. 

The biggest challenge presented by these constraints is keeping the computational 

cost manageable while considering interactions between electrons. This challenge is 

addressed in Chapter 2. 

Even though the behavior of QDs (zero-dimensional) and that of QPCs (one-

dimensional) are completely different, the tool tackles them both by solving the effect 

of gating, heterostructure interfaces, surface states, and doping on the micro-meter 

scale on electrons. The electrostatics parameters used in this tool are the gate and het-

erostructure geometry, gate voltages, doping density and profile, and surface charge. 

The material parameters used are band gap, effective mass and dielectric constant. 

The output from implementation of the tool includes quantities like the electrostatic 

potential profile and the electron densities. Further processing of the output is specific 
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to the device under investigation and produces quantities such as QPC conductance, 

edge-state velocities, QD charging energies, double QD exchange splitting and so on. 

In the following sections of the introduction, the requirements for physical real-

ization of quantum computing and the different approaches that are being currently 

researched are introduced. Topological quantum computation using anyonic (as op-

posed to Fermionic or Bosonic) particles in the fractional quantum Hall (FQH) effect 

is discussed. Topological quantum computation is less error prone than that based 

on spatial information, e.g. electron spins trapped in quantum dots, because most 

of the noise affecting the quantum system is spatial. The 5/2 FQH state could be 

formed from the anyonic particles that are required by topological quantum com-

puters [14]. The devices that were proposed for detection of these anyonic particles, 

namely the quantum Hall interferometers, are discussed in this context. Electrons in 

quantum dots can also be used as qubits for universal quantum computation. Single 

and double qubit operations based on electron spins trapped in quantum dots has 

been demonstrated [15,16], and ongoing efforts are focused on scaling this system to 

a large number of operations qubits. The simulation model, results and predictions 

for GaAs/AlGaAs useful in topological quantum computers are presented in Chapter 

3, and those for Si/SiO2 based quantum dots are presented in Chapter 4. 

1.1 Quantum Computation 

Superposition 

Classical computation uses the on or off states of wires as ”bits” for storing and 

processing information. For example, the number 8 can be stored as an on state of 

3 wires (111)2. Quantum computation uses quantum bits (”qubits”) which are two 

state quantum systems that can be in a superposition of the two states. A general 

state of a qubit can be written as the wavefunction |ψ =   |0 + β |1 , where  |0 and 

|1 are the two orthogonal states of the qubit,   and β are two complex numbers such 

that | |2 + |β|2 = 1, and the probabilities of the measuring |0 and |1 are | |2 and 
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|β|2 respectively. The complex numbers can be represented by angles θ and φ made 

with the z− and x− axes by a unit vector centered at the origin, so that   = cos(θ/2) 

and β = eiφ sin(θ/2). The general state |ψ of a qubit can then be visualized to be 

anywhere on the surface of a unit sphere, known as the Bloch sphere, with the states 

|1 and |0 along +z and −z axes. 

Measurement 

Measurement collapses the superposition of quantum state into one of the states 

|0 or |1 . Measuring the wavefunction of a qubit |ψ =   |0 + β |1 will result in the 

qubit collapsing into |0 or |1 with a probability of | |2 and |β|2 respectively. 

Entanglement 

An n-bit computer can store 2n different states, as each bit can be in a 0 or 1 state. 

Classical computers can only process 1 of the 2n states at a time as the classical bit can 

only be either 0 or 1. Quantum computers can process an arbitrary number of states 

spanned by the 2n states, based on the physical connections between the qubits. This 

is made possible by the principle of superposition (overlap of 0 and 1 states of a qubit) 

combined with the phenomenon of entanglement of multiple qubits. Entanglement 

forces the final state of a qubit to be dependent on the outcome of measurement of 

another qubit. Two qubits can be entangled using two-qubit reversible gates such as 

the controlled-not (cnot) gate. 

Decoherence 

The qubit can interact with its environment in various ways leading to decay 

in its state, a phenomenon known as decoherence, which poses one of the biggest 

challenges in building large quantum computers. Decoherence is characterized by 

three time scales: 
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• T2 related to the variability of repeated experiments on a single qubit, i.e. low 

frequency variations in the local energy landscape. 

• T2 related to the processes which disturb the qubit for a short time in which 

the qubit absorbs and emits energy from the environment regaining its initial 

energy state. 

• T1 related to the eventual loss of the energy stored in the qubit to the environ-

ment for example by lattice vibrations. 

The T2 and T1 processes lead to an irreversible loss of information. T2 time can 

be lengthened by rotating the qubit using echo techniques [15,17–19], by making the 

qubit undergo T2 evolution for an equal time on diametrically opposite ends of the 

Bloch sphere, which reverses the phase information loss to a certain extent. The 

error rates can be reduced by using two level states that rely on the topology of 

the system and are immune to changes in the local environment. An example of 

such a topological system would be the Majorana zero modes at the interface of a 

high spin orbit material (e.g. InAs) and a superconductor (e.g. Al) [14,20]. Proposed 

quasiparticles in the 5/2 fractional quantum Hall effect also have this quality, provided 

we are able to engineer systems that support the fragile state. 

Universal quantum computing 

Classical computers use transistors to build gates for manipulating bits of infor-

mation. For example, the nand gate acts on two bits and gives an on state only if 

both the bits are off. To achieve a universal classical computer, any type of classical 

gate can be built using nand gates. In quantum computers, the gates have to be 

reversible for the qubit state to remain coherent (| |2 + |β|2 = 1). As the phase (φ) 

between |0 and |1 can be any real number, an infinite number of quantum gates are 

possible; therefore, it is impossible to define a complete set of quantum gates for a 

universal quantum computer. However, any quantum gate can be approximated by 
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repeated application of gates from a small set [21], e.g. the Hadamard, controlled-

not and π/8 gates. All quantum algorithms are based on the recipe of initialization 

of qubits in a known state, coherent evolution using a combination of unitary gates, 

and finally measurement of individual qubits [22]. 

Requirements for quantum computers 

The requirements for quantum computers, as pointed out by Ladd et. al [9], can 

be described as follows: 

1. The qubit must be isolated from the environment to prevent leakage of infor-

mation (e.g. the qubit state parameters  , β and φ). 

2. The qubit design must be scalable: total energy and spatial cost of the quantum 

computer must not increase exponentially with the number of qubits. 

3. The quantum computer must support universal logic: any point on the Bloch 

sphere must be reachable up to a certain error using a finite number of qubit 

operations. 

4. The qubit should be correctable: it should be possible to remove entropy from 

the qubit to preserve its state. Error correction algorithms such as surface codes 

can be used [23]. 

1.2 Physical realizations of quantum computers 

The first requirement of isolation of a two level system from the environment 

to perform single and double qubit operations has been satisfied in many physical 

systems such as trapped ions, nitrogen vacancies in diamond, superconducting qubits, 

electrons trapped in quantum dots or single donors in silicon. Scalability quickly 

becomes an issue due to the fact that addressing one or two qubits out of many 

requires local features near each qubit. Also, placing many qubits in a small area 



7 

leads to the generation of heat, which will ultimately destroy the quantum state. 

The fourth requirement of correctability adds to these problems, as the correction 

algorithms need on the orders of 10-100 qubits for an available qubit computing unit, 

thus increasing the total number of physical qubits 10-100 fold. 

The issues with scalability have been pointed out in semiconductor based electron 

spin qubits, and some solutions to these problems have also been provided [10, 11]. 

The proposed topological qubits do not need an apparatus for error correction, thus 

naturally addressing some issues with scalability. These two technologies, along with 

the mature superconducting qubit technology have had large investments from com-

panies such as Intel, Microsoft and Google. Topological and electron spin qubits are 

discussed in Sections 1.2.1 and 1.2.2 respectively. 

1.2.1 FQHE based topological quantum computing 

Topological quantum bits based on anyonic quasiparticles in the FQHE were first 

proposed by Das Sarma et al [24]. In the following sub-sections, the IQH, FQH 

effects and interferometery experiments are introduced, after which the electrostatic 

QPC simulations are motivated. It should be noted that a complete description of 

IQHE and FQHE requires the consideration of disorder, whereas only a simple and 

concise physical picture without disorder is provided here. The QPC simulations are 

described in detail in Chapter 3. 

Integer Quantum Hall Effect (IQHE) 

Integer quantum Hall effect can be observed in a 2-dimensional electron gas 

(2DEG) at a clean interface of 2 materials, such as GaAs and AlxGa1-xAs (see Fig. 

1.1), when an external perpendicular magnetic field is applied. Due to the perpen-

dicular magnetic field, the electrons (which have a lateral intrinsic velocity as they 

are trapped in a 1D quantum well) undergo a circular motion (see Fig. 1.2a) known 

as a cyclotron orbit. The radius of the cyclotron orbit becomes quantized due to the 
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Figure 1.1. Two types of heterostructures of GaAs (blue), AlGaAs 
(cyan) and AlAs (green) materials (see Figs. 7 and 6 respectively in 
[25]). The 2-dimensional electron gas (2DEG) is in GaAs, in a quantum 
well sandwiched between two AlGaAs layers in the left figure, and at the 
interface of a AlGaAs layer in the right figure. The magnetic field is 
applied perpendicular to the 2DEG. 
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Figure 1.2. a) Cyclotron orbits of electrons in a 2-dimensional electron 
gas (2DEG) with a perpendicular magnetic field. The cyclotron orbits are 
cut-off at the edges due to an electric field, because of which the electrons 
propagate at the edges. Contacts are added as shown using gold (shaded) 
regions to make a Hall bar. b) Energy as a function of position at the 
edge. The confinement at the edges due to an external potential Vext raises 
the LLs (orange) such that they intersect with the Fermi energy level EF 

(gray dashed line) creating edge states (half-filled dots). 
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interference of the electron wavefunction as the electrons are confined to a plane. The 

quantized cyclotron orbits form Landau levels (LLs) in energy, which resemble the 

energy levels of a quantum harmonic oscillator: 

1 eB 
En = (n + )�ωc; ωc = ; n = 0, 1, 2, ... (1.1)

2 m ∗ 

Here m ∗ is the effective mass, e is the charge of electrons in the GaAs crystal, and B 

is the external magnetic field. Electrons start moving along the edges of the 2DEG 

due to the edge electric field (see Fig. 1.2b) known as E × B drift, which can also 

be thought of as electrons in cyclotron orbits bouncing off a wall (see Fig. 1.2a). 

Forward and backward propagating electrons are located on the opposite ends of the 

2DEG (Fig. 1.2a). 

A small AC current source (I nano-Amps) can be connected to the 2DEG, and 

the longitudinal (Vx) and transverse (Vy) potential differences across the 2DEG can 

be measured using a Hall bar geometry (see Fig. 1.2a). The electric field at the edges 

that leads to the electron drift is independent of the voltage of the AC current source. 

In the quantum Hall effect, the longitudinal resistivity (∝ Vx/I) and conductivity 

(∝ I/Vx) become zero when the Fermi level lies in between LLs away from the edges 

(see Fig. 1 of [26]). The longitudinal resistivity is zero as forward moving electrons 

cannot scatter to the backward moving edge, which is located at the other side of the 

Hall bar. The conductivity is zero as the amount of current I doesn’t depend on the 

applied voltage Vx (as the edge electric field is independent of Vx for small Vx). 

The transverse/Hall resistivity/resistance (Vy/I) shows more interesting proper-

ties. The Hall resistivity vs magnetic field has plateaus with the resistivity exactly 

�/ie2, where  i = 1, 2, 3, ... is the number of completely filled LLs (see Fig. 1 of [26]). 

The index i changes with the external magnetic field as the splitting between the 

LLs is dependent on the external magnetic field (eq. 1.1). The Hall resistivity forms 

plateaus, because exactly 1 electron per LL is transfered from the bottom edge to the 

top edge or vice-versa when current is flowing, as the cyclotron orbits are truncated 

at the edges. Therefore, plateaus in the Hall resistivity are characteristic of the LLs, 
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each of which transfers a quantized amount of charge in the cross-section of the Hall 

bar. 

Bulk Filling factor 

The bulk filling factor is defined as the number of occupied LLs away from the 

edges. Here the notation nbulk is used for LLs containing both electron spins and νbulk 

is used for LLs containing one of the spins. The filling factors can then be written as 

N σh N σh 
νbulk = = ; nbulk = = (1.2)

BA/φ0 eB BA/(φ0/2) 2eB 

where N is the total number of electrons in an area A with a perpendicular magnetic 

field B, BA is the total magnetic flux, φ0 = h/e is the flux quantum, and σ is the 

number of electrons per unit area (N/A) also called the sheet density. A flux quantum 

is the amount of flux that an electron wavefunction needs to enclose to acquire a 2π 

phase-shift. Thus, each cyclotron orbit encloses a φ0 amount of flux. Each spin-ful 

LL has 
φ
B 
0 
available states per unit area. 

Fractional Quantum Hall Effect (FQHE) 

The FQHE reveals the even more interesting physics of a system made up of thou-

sands of strongly interacting electrons. In FQHE, the Hall resistance has plateaus at 

3 2 1 1fractional filling factors for example νbulk = , , 
3 , , ... (see Fig. 1 of [27]). Plateaus 7 5 5 

at fractional filling indicate that a fractional charge is transferred in the Hall bar 

cross-section. This cannot be explained using LLs formed by electrons, as each of 

them can only transfer 1 electron in the Hall bar cross-section and not a fraction of 

an electron. 

Another interesting observation to be made is that the longitudinal resistivity is 

constant and finite, and Hall resistivity is linear as a function of the magnetic field 

at νbulk = 
2
1 (see Fig. 1 of [27]). This is very similar to the Hall effect at very low 

magnetic fields (see left edge of Fig. 1 of [27]). It was first pointed out by Laughlin 
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that the uniform sheet density many body ground state at νbulk = 
2p 
1
+1 , p  = 1, 2, ... 

(2p + 1 flux quanta per electron) consists of electrons bound to 2p flux quanta [28]. 

Therefore, at νbulk = 
2
1 filling, the electrons bound to 2 flux quanta would form a Fermi 

sea with 0 effective magnetic field. The many body ground state is highly degenerate 

with fractionally charged excitations having e charge. This would explain the
2p+1 

1 1 1 3 2plateaus at νbulk = , , , ..., but not other filling fractions such as νbulk = , , ....
3 5 7 7 5 

Plateaus at νbulk = 3
7 , 

2
5 , ... were explained by Jain in his composite Fermion (CF) 

picture [29]. In this picture, an electron bound to 2p flux quanta, called 2pCF (which 

is the Laughlin ground state) behaves as a quasiparticle. At νbulk = 1
3 , the  2CF would 

take up 2 flux quanta per electron, leaving an effective magnetic field B∗ with 1 flux 

quantum per 2CF. As a 2CF goes around one flux quantum, it would gain a phase of 

2π giving a constructive interference. Therefore in this situation, an electron would 

be effectively going around 2p + 1 = 3 flux quanta, with 1/(2p + 1)th = 1/3rd of its 

orbit truncated at the edges, leading to the transfer of 1/(2p+1)th = 1/3rd 2CF and a 

charge e = e across the Hall bar cross-section when current is flowing. Therefore, 
2p+1 3 

the plateau at νbulk = 
3
1 would be the first LL of 2CF, also known as a Λ level [30]. We 

have  the case of 2  2CFs per flux quantum for 5
2 = 2+  1

2 flux quanta per electron, and 

in general ±ν∗ 2pCFs per flux quantum for 2p± 
ν 
1 
∗ flux quanta per electron, where the 

− sign indicates a reversal of the effective magnetic field with respect to the external 

magnetic field. Then, a filling fraction νbulk = 1/ 2p ± 1 = ν∗ 
would have ν∗ 

ν∗ 2pν∗±1 

filled Λ levels which would transfer 1 th of 2pCFs per Λ level to give a total charge 
2pν∗±1 

transfer of eν∗ 
across the Hall bar due to truncated cyclotron orbits when current 

2pν∗+1 

is flowing. 

It is worthwhile to note the various energy scales in FQHE for GaAs (Chap. 5 of 

[31]). Splitting between the LLs is �ωc ≈ 1.723 meV/T, Coulomb interaction between 

eelectrons is 
2 ≈ 4.3 meV/T1/2 where is the dielectric constant and = 25  nm/T1/2 

is the magnetic length, and Zeeman splitting is 2.5 μeV/T. For very large magnetic 

fields, the LL and Zeeman splittings are much larger than the Coulomb interactions. 
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Coulomb interactions between electrons in a single LL lead to the formation of many 

body ground states. The splitting between Λ levels is 

 =  �ωc 
∗ = � (eB ∗ ) /mCF (1.3) 

where mCF is the CF effective mass (not equal to the electron effective mass), which 

can be deduced from the temperature dependence of Shubnikov-de Hass oscillations 

[32], and B∗ is the CF effective magnetic field that remains after 2p flux quanta per 

electron have been removed. The concept of mCF can be a bit misleading as it strongly 

depends on the interactions between the CFs [33]. 

Most of the FQHE plateaus occur at filling fractions νbulk = ν∗ 
. Yet,  there  

2pν∗±1 

are some more plateaus e.g. at νbulk = 5
2 , 

12
5 , ... that do not fall in this category. 

The ground states at these fractions are believed to be many-body states of CFs, i.e. 

= is theorized to have a CF sea at ν = filling factorFQHE of CFs [30]. The νbulk 2
5 

2
1 

in the n = 2 LL with a background of fully filled n = 1 LL leading to a paired p-wave 

state [34]. This state would have non-Abelian e/4 charge quasiparticles that would 

be required by a FQHE based quantum computer [20]. The lifetime of quasiparticles 

in the 5/2 state depends on the excitation gap  , which in turn is highly dependent 

on the electron density and quality of the sample [35]. 

Quantum Point Contacts (QPCs) 

Electrons or quasiparticles traveling along the lateral edges of the 2DEG in a Hall 

bar can be brought together using quantum point contacts (QPCs) [36]. QPCs are 

made up of two metallic top gates that act as Schottky contacts. A negative bias 

is applied to the QPC gates, which deplete the 2DEG underneath and creates edges 

under them. The confining potential at the edges under the QPC gates is highly 

dependent on the heterostructure and gate geometry. For example, gates placed 

closer to the 2DEG in etched trenches create a sharper edge than gates placed away 
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Figure 1.3. Schematics of the top gates and 2DEG edges of a) a QPC in 
the strong back-scattering regime, b) weak back-scattering regime and c) 
a Fabry-Pérot interferometer. The red dashed lines with arrows indicate 
propagating electrons/quasi-particles along the 2DEG edges. The green 
dotted lines indicate tunneling across the edges. 

from the 2DEG on top of the heterostructure. The edge potential created by different 

gate geometries is discussed in Chapter 3. 

The QPCs create a constriction in the 2DEG, which has quantized transverse 

modes through which electrons can propagate, leading to a step-like resistance or 

conductance as a function of the voltage on the QPC gates [37]. If a QPC has strong 

backscattering, the edge states cannot pass through the QPC, and the sheet density 

in the middle of the QPC is smaller than the rest of the 2DEG (Fig. 1.3a). In this 

case, the electrons tunnel through the QPC from one side of the QPC to the other, 

perpendicular to the gates as shown using a dotted green line in 1.3a). If a QPC 

has weak backscattering (large transmission, or less confinement), edge states can go 

through it and electrons can tunnel from one edge close to one QPC gate, to the other 

edge close to the other gate (Fig. 1.3b). Each LL has an edge state, and it is possible 
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that while the edge of the energetically highest filled LL doesn’t pass through the 

QPC, the lowest filled LL edges goes through. 

Quantum Hall Interferometery 

Interferometers are made using 2 QPCs with transmission probabilities t1 and t2 

to create a puddle of 2DEG in between. As the electrons travel along the edge of 

the 2DEG puddle, they enclose magnetic flux and acquire an Aharonov-Bohm (AB) 

phase. When the acquired phase is (2n+1)π (n = 0, 1, 2, ...), circulating electrons un-

dergo destructive interference, and when it’s 2nπ (n = 1, 2, 3, ...) there is constructive 

interference. The acquired phase can be varied by changing either the area enclosed 

by the paths, which can be controlled by a plunger top gate, or by changing the 

external magnetic field. The measured current at an ohmic contact collecting the 

electrons reflected or transmitted from the QPCs then shows an oscillatory behavior 

(Aharonov-Bohm effect) as a function of plunger gate voltage and magnetic field. 

Two types of interferometers are possible: Mach-Zehnder interferometer (MZI) 

and Fabry-Pérot interferometer (FPI). In MZI (see Fig. 1 of [38]), the first QPC 

splits the incoming edge states along a reflected path and a transmitted path. These 

2 paths interfere at the second QPC, for which the reflected and transmitted currents 

are complementary and can be separately measured. In FPI [39] (Fig.  1.3 c), the 

transmitted path through the first QPC enters a 2DEG puddle enclosed by the 2 

QPCs. This path circulates the enclosed 2DEG by continuously reflecting off of the 

2 QPCs. Interference oscillations are observed in the path transmitted through the 

second QPC. 

The main difference between FPI and MZI is the presence of Coulomb-dominated 

(CD) oscillations in FPI [40], which are absent in MZI. CD oscillations in the conduc-

tance vs the magnetic field and plunger gate voltage happen as the enclosed 2DEG 

area in the FPI oscillates a function of the enclosed magnetic flux. This is due to 

electron repulsions as the 2DEG tries to enclose an integer multiple of flux quantums 
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in the FPI. In the CD regime, the conductance plateaus show an opposite slope as 

the AB regime with magnetic field and plunger gate voltage. In MZI, the CD oscilla-

tions are not observed due to the presence of an Ohmic contact which can exchange 

electrons with the 2DEG puddle between the QPCs. 

In both types of interferometers the interfering particles have to travel long dis-

tances (∼ 1-10 microns) between the QPCs. To observe a strong interference pattern, 

the particles must maintain coherence while they go around the interferometer. This 

can be achieved by engineering devices that support high velocity particles at the 

2DEG edges, or by reducing the device size. 

Physics at the edge 

The velocity of the particles traveling along the edge depends on the local electric 

and magnetic fields. The classical drift velocity of charged particles in electric and 

magnetic fields is 

E × B 
v = (1.4)

B2 

The electric field at the edge depends on the charge environment in the device, re-

pulsion between electrons and the density of states (DOS). Application of magnetic 

field creates LLs which have a high DOS confined to a small energy range. Due to 

this DOS structure, the edge potential and density change in steps as compared to a 

smooth variation when the magnetic field is absent. 

Fig. 1.4 illustrates the effect of electron interaction on the density and potential, 

which leads to the creation of compressible (metallic) and incompressible (insulating) 

regions at the edge [41, 42]. Thus, the electric field at the edge varies non-intuitively 

and needs to be solved computationally to get an accurate electron velocity for a 

given structure. This is addressed in Chapter 3. 
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Figure 1.4. Comparison between density and potential at the edge with 
and without electron interactions. a) For a smooth edge potential, the 
density at the edge has sharp steps as each LL has high DOS, all of 
which escapes the Fermi level at a single spatial point. b) When electron 
interactions are turned on, the Fermi level gets pinned to a LL causing 
a more energetically favorable smooth density variation. The edge has 
compressible (metallic) regions where the density changes smoothly and 
the potential changes very slowly, and incompressible (insulating) regions 
where the density is constant and potential varies faster. 

FQHE based quantum computer 

One 5/2 FQHE quasiparticle-based qubit [24] is made up of two  Fabry-Pérot 

interferometers sharing a QPC, so a total of 3 QPCs (see Fig. 2 of [24]). An anti-dot 

(a potential hill [43] as opposed to a dot which is a potential depression) is placed in 

the center of each interferometer using depletion top gates connected by a bridge [39]. 

The qubit is initialized by putting a charge e/2 (2 quasiparticles) on the anti-dots, 
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which either have a neutral (Majorana) Fermion on them after initialization or do 

not (there is no superposition as quasiparticles are measured by the 2DEG). The 

transmission of the 2 interferometers is dependent on whether a neutral (Majorana) 

Fermion is present (state |0 ) or absent (state |1 ) on the anti-dots. A not gate is 

constructed by a series of QPC gate voltage variations which will finally transfer a 

quasiparticle from one anti-dot to the other. This system doesn’t support universal 

computing since an arbitrary superposition of |0 and |1 is not possible. 

1.2.2 Si/SiO2 based electron spin qubits 

Quantum information can also be stored and processed spatially using a small 

number of electrons, instead of topologically in the 2DEG state. Electron spin qubits 

encode quantum information using the electron spin in a magnetic field, which cre-

ates 2 states energetically separated by the Zeeman splitting. Single electrons can be 

trapped and manipulated at Si/SiGe [44,45], GaAs/AlGaAs [46–48] and Si/SiO2 [15] 

interfaces, dopant atoms e.g. phosphorus in silicon [49] etc. Si/SiO2 based spin qubits 

are particularly promising due to their highly developed processing technology, com-

paratively longer coherence times, and potential for scalability [10,11]. In this section, 

details of the quantum dot based electron spin qubit in Si/SiO2 heterostructure are 

discussed, after which the electrostatic simulations for these devices are motivated. 

Figure 1.5. An illustration of 2 qubits made from the spins of elec-
trons trapped at the interface of silicon and silicon-dioxide materials under 
Aluminum gates with an applied positive voltage. The arrows represent 
electron spins. 
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Device geometry 

One qubit is made by trapping a single Si conduction band electron in a quantum 

dot [15]. The quantum dot (∼ 30 nm diameter) is made electrostatically at the 

interface of silicon and silicon-dioxide materials by using a top accumulation gate e.g. 

“G1” or “G2” as shown in Fig. 1.5. The accumulation gate is made using Al deposited 

on top of SiO2 and Al2O3 with an applied positive gate voltage. The SiO2 and Al2O3 

oxide thicknesses under the gates are around 5.9 nm and 1 nm respectively. A bath 

of electrons (the source or “S” in Fig. 1.5) is made close to the quantum dots using a 

reservoir gate “Res” in Fig. 1.5). Electrons with up or down spins can be selectively 

loaded in the quantum dots by adjusting the energy levels in the dots using the top 

gates, with respect to the reservoir [50]. A single electron transistor gate (“SET” in 

Fig. 1.5) that creates the drain electron bath (“D” in Fig. 1.5) is used to measure 

the electron spins in the dots. Both the loading of electrons and measurement of the 

spin is based on the concept of Coulomb blockade [51]. 

Energy scales in a Si/SiO2 quantum dot 

The gap between Si conduction and valence bands, also called the band gap, is ∼ 

1.17 eV at mili-Kelvin temperatures (Chap. 8 of [52]). The lowest energy conduction 

band electrons in Si occupy a valley between Γ and X symmetry points, and close to 

the X symmetry point in the band structure. This valley is 6-fold degenerate with 

components along x+, x-, y+, y-, z+ and z- axes. The constant energy surface in this 

valley is an ellipsoid with the long-axis aligned with the symmetry direction of that 

valley. 

At the Si/SiO2 interface, the crystal inversion symmetry of Si is broken and an 

electric field is present due to the top gates and accumulation of charge. The inversion 

symmetry breaking lifts the 6-fold valley degeneracy and lowers the energy of z+/-

valleys with respect to x+/- and y+/- valleys if the interface is perpendicular to the 

z-axis (Fig. 7 of [50]). The electric field further splits z+/- valleys by a splitting 
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that was measured to be around 0.3-0.8 meV [53], while the numerically calculated 

values are in the range 1.6-2.1 meV [53] for interface electric fields in the range 26.5-30 

MV/m. 

For 2 electrons in neighboring quantum dots as shown in Fig. 1.5, the Coulomb 

repulsion between the electrons is ∼ 4.5 meV. More electrons are energetically forbid-

den from occupying the dots due to the Coulomb repulsion. The exchange interaction 

or Pauli repulsion between the electrons is ∼ 4 μeV. The exchange interaction is due 

to the indistinguishability of electrons and an anti-symmetry in the wavefunction of 2 

electrons under exchange. Both the Coulomb repulsion and exchange interaction be-

tween the electrons in the 2 dots is highly dependent on the separation in the energy 

levels of the 2 dots considered separately, also known as detuning. This property is 

used in the qubit architecture and is discussed in the following sections. 

The up and down electron spins are energetically separated by the Zeeman split-

ting (EZ = gμB B, where  g ∼ 1.998 is the electron g-factor in Si, μB is the Bohr 

magneton and B is the magnetic field). The Zeeman splitting is around 160 μeV 

for a magnetic field of 1.4 Tesla, which is much larger than the thermal energy at 

50 mili-Kelvin temperature (0.43 μeV). Therefore, the spin qubit maintains its state 

longer in mili-Kelvin temperatures than at higher temperatures as the higher energy 

spin decays to the lower energy spin by releasing a phonon (lattice vibration). 

Eigenstates of the double quantum dot 

The number of electrons in the 2 quantum dots can be controlled by adjusting the 

energy levels using top gates. Electrons entering or exiting the dots can be detected 

by a change in the current through the SET. A plot of the derivative of SET current 

vs the voltages on gates G1 and G2 (stability plot) shows diamond shaped regions 

with a constant number of electrons, known as Coulomb diamonds (Fig. 1c of [16]). 

The electron spin qubits are formed in the region of the stability plots having a total 
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of 2 electrons. Three configurations: (2,0), (1,1) and (0,2) are possible, where the 

notation (n1, n2) is for  n1 electrons in the left dot and n2 electrons in the right dot. 

Each quantum dot behaves like a hydrogen atom with s, p, d, ... orbitals. Two 

neighboring quantum dots having a wavefunction overlap act as H2 molecule with 

controllable on-site energies (detuning). The two s-orbitals in the two dots form 

bonding (|ψB ) and anti-bonding (|ψA ) orbitals due to the wavefunction overlap 

between the dots 

1 1 |ψB = √ (|ψL + |ψR ) ;  |ψA = √ (|ψL � − |ψR ) (1.5) 
2 2 

where |ψL and |ψR are the eigenstates of left and right dots respectively. The 

bonding orbital has a larger probability in the energetically lower dot, whereas the 

anti-bonding orbital has a larger probability in the higher energy dot. When the 

two dots are at the same energy (zero detuning), both the bonding and anti-bonding 

orbitals have equal probabilities in the two dots. Including the electron spins and the 

two orbitals, a total of 4 one-electron states participate in the low energy spectrum 

of the double dot: |ψB↓ , |ψB↑ , |ψA↓ and |ψA↑ . 
The two-electron states are constructed from Slater determinants of one-electron 

states. The Slater determinants satisfy the indistinguishability and exchange anti-

symmetry of the wavefunction. The combined spin of the two spin-1/2 electrons 

follows angular momentum addition rules to give the following 4 states 

|T+ = | � | � 2 ; s = 1, sz = 11 

| � |↓� + |↓� | �1 2 1 2|T0 = √ ; s = 1, sz = 0  
2 

(1.6) 
|T− = |↓� |↓� ; s = 1, sz = −11 2 

| � |↓� − |↓  | �1 2 1 2|S = √ ; s = 0, sz = 0  
2 

where the subscripts 1 and 2 differentiate between the electrons. The singlet spin 

state |S is anti-symmetric under exchange of spins, whereas the triplet spin states 

|T− , |T0 and |T+ are symmetric. The overall wavefunction of electrons contains 
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both the spatial (|ψB , |ψA ) and spin (| � , |↓� ) parts. As the overall two-electron 

wavefunction has to be anti-symmetric under the exchange of electrons, the spatial 

part of spin singlet is symmetric, whereas that of the spin triplets is anti-symmetric. 

The lowest 6 two-electron states that are important in the (2,0)-(1,1)-(0,2) regime 

[54] can be constructed from the Slater determinants (SD) of the bonding and anti-

bonding orbitals as shown here 

|ψB |ψA − |ψA |ψB1 2 1 2|T+(B, A) = √ ⊗ |  | �1 2
2 

|ψB↑ |ψA↑ − |ψA↑ |ψB↑1 2 1 2 (1.7)= √ 
2 

= SD (|ψB↑ , |ψA↑ ) = SD2,4 

|ψB |ψA − |ψA |ψB1 2 1 2|T−(B, A) = √ ⊗ |↓  |↓�1 2
2 

|ψB↓ 1 |ψA↓ 2 − |ψA↓ 1 |ψB↓ 2 (1.8)= √ 
2 

= SD (|ψB↓ , |ψA↓ ) = SD1,3 

|ψB |ψA − |ψA |ψB | � |↓� + |↓� | �1 2 1 2 1 2 1 2|T0(B,A) = √ ⊗ √ 
2 2 

1 |ψB↑ |ψA↓ − |ψA↓ |ψB↑ |ψB↓ |ψA↑ − |ψA↑ |ψB↓1 2 1 2 1 2 1 2 = √ √ + √ 
2 2 2 

SD (|ψB↑ , |ψA↓ ) + SD (|ψB↓ , |ψA↑ ) SD2,3 + SD1,4 
= √ = √ 

2 2 
(1.9) 

| � |↓� − |↓  | �1 2 1 2|S(B, B) = |ψB |ψB ⊗ √1 2 
2 

|ψB↑ 1 |ψB↓ 2 − |ψB↓ 1 |ψB↑ 2 (1.10)= √ 
2 

= SD (|ψB↑ , |ψB↓ ) = SD1,2 
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| � |↓� − |↓  | �1 2 1 2|S(A, A) = |ψA |ψA ⊗ √1 2 
2 

|ψA↑ 1 |ψA↓ 2 − |ψA↓ 1 |ψA↑ 2 (1.11)= √ 
2 

= SD (|ψA↑ , |ψA↓ ) = SD3,4 

|ψB |ψA + |ψA |ψB | � |↓� − |↓  | �1 2 1 2 1 2 1 2|S(B, A) = √ ⊗ √ 
2 2 

1 
= √ 

2 

|ψB↑ |ψA↓1 − |ψA↓2√ 
2 

|ψB↑1 |ψB↓2 − 
|ψA↑1 − |ψA↑2√ 

2 

|ψB↓1 2 

= 
SD (|ψB↑ , |ψA↓ ) − SD (|ψB↓√ 

2 

, |ψA↑ ) 
= 
SD2,3 − SD1,4√ 

2 
(1.12) 

Energy spectrum of the double quantum dot 

The Hamiltonian of a double quantum dot containing 2 electrons can be written 

in the effective mass approximation as follows 

22 21 e e e 
H = p1 + A + p2 + A + V + + HZ + HSO + Hnuc . 

2m ∗ c c 4π� |r1 − r2| 
(1.13) 

Here the first two terms are the kinetic energy terms of the two electrons containing 

the vector potential A due to the magnetic field, V is the electrostatic potential of the 

double dot, next term is the Coulomb interaction between electrons, HZ is the Zeeman 

splitting, HSO is the spin-orbit coupling due to the interface, and Hnuc is the hyperfine 

interaction due to Si29 nuclei that introduce an anisortopy in the magnetic field. This 

Hamiltonian can be solved using various methods such as Hartree-Fock [55], molecular 

orbital [55], Heitler-London [56,57], Hund-Mulliken [57,58], truncated basis [54], full 

configuration interaction [59] etc.  

All of these methods use a single electron basis as a starting point. Various 

approximations to the double-dot potential such as quadratic with quartic terms 

have been used for analytically calculating the single electron basis states. Here, a 
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Hubbard model is provided that gives an overall picture of the single electron energy 

spectrum. Each dot is treated as an atom tightly confining an electron. The tightly 

bound wavefunctions of an electron in a dot (|ψL , |ψR ) can be calculated by solving 

the one-electron one-dot Hamiltonians 

2 2p p
HL = + VL, HR = + VR (1.14)

2m ∗ ∗2m 

where VL and VR are the electrostatic potentials of the left and right dot such that 

V = VL + VR. Here the magnetic field is set to 0 and the spin-orbit coupling is 

neglected for simplicity. The double dot Hubbard Hamiltonian in the basis of |ψL 

and |ψR can then be written as  

⎛ ⎞⎛ ⎞ 
ε/2 t ψL p2 ⎝ ⎠⎝ ⎠HHub  |ψHub  = ; t = ψL/R |HLR| ψR/L ; HLR = + V 

2m ∗ t −ε/2 ψR 

(1.15) 

where ε is the detuning and t is the hopping term between the dots. The eigenvalues 

of this Hamiltonian are 

EA/B = ± ε2/4 +  t2 , (1.16) 

and the wavefunctions are the bonding and anti-bonding orbitals as shown in Eq. 

1.5. These energy levels, including spin splitting due to magnetic field are plotted in 

Fig. 1.6a. The splitting between the bonding and anti-bonding orbitals at ε = 0  is  

the orbital splitting, Eorb = 2t. The orbital splitting is ∼ 0.3 − 1.0 meV in Si/SiO2 

double quantum dots. 

Neglecting the vector potential, spin-orbit coupling and hyperfine interaction for 

simplicity, we can write down the two-electron Hamiltonian using Eq. 1.13. 

2 2 2p p e 
H =

2m 
1 
∗ + 2 

∗ + V + HZ + |r1 − r2| (1.17)
2m 4π� 

The two electron Hamiltonian can then be constructed in the basis 
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Figure 1.6. An illustration of the one and two electron energy spectrums 
in a double quantum dot vs detuning for a total of 2 electrons in the dots. 
a) One-electron energy spectrum shows the bonding and anti-bonding or-
bitals with spin energy levels separated by Zeeman splitting. The dashed 
lines show energy levels of |ψL and |ψR in left and right dots respec-
tively at zero magnetic field. b) Two-electron energy spectrum shows 
the singlet and triplet states in the bonding and anti-bonding orbitals. 
The |S(A,A) , |S(B, A) and |S(B,B) states interact at low detuning 
to give four anti-crossings symmetrically located around zero detuning. 
The dashed lines show the behavior of energy levels when the off-diagonal 
singlet terms are turned off by uncoupling the dots. EJ is the exchange 
coupling between the |T0(B, A) and |S(1, 1) states. 

⎛ ⎞ 
|S(A, A) ⎜ ⎟ ⎜ ⎟ ⎜ |S(B, B) ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ |S(B, A) ⎟ ⎜ ⎟Ψ =  (1.18) ⎜ ⎟ ⎜|T+(B, A) ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ |T0(B, A) ⎟ ⎝ ⎠ 
|T−(B, A) 

giving us 
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⎛ √ ⎞ 
UA + 2EA X 2TA ⎜ √ HSO ⎟ ⎜ ⎜ X UB + 2EB 2TB 

⎟ ⎟ ⎜ √ √ ⎟ ⎜ ⎜ 2TA 2TB V+ Hnuc 
⎟ ⎟ ⎜H = ⎛ ⎞ ⎟ . (1.19) ⎜ ⎜ V− + EZ 
⎟ ⎟ ⎜ ⎜ ⎟ ⎟ ⎜ ⎜ ⎟ ⎟ ⎜ HSO ⎜ ⎟Hnuc V− ⎟ ⎝ ⎝ ⎠ ⎠ 

V− − EZ 

Where 

2e 
= ψ† (r1)ψ

† (1.20)UA/B A/B A/B (r2) ψA/B(r1)ψA/B(r2) dr1 dr2
4π� |r1 − r2| 

are the Coulomb interaction terms when both electrons are in bonding/anti-bonding 

orbitals, 

2e 
X = ψ† (r1)ψ

† (r2) ψB (r1)ψB(r2) dr1 dr2 (1.21)A A 4π� |r1 − r2| 
is the two-electron hopping term between the |S(A, A) and |S(B, B) states, 

2e 
= ψ† (r1)ψ

† (r2) ψA(r1)ψB (r2) dr1 dr2 (1.22)TA/B A/B A/B 4π� |r1 − r2| 
are the tunnel coupling terms between |S(B, A) and |S(A, A) or |S(B, B) , and  V± = 

JAB ± KAB are the on-site energies of |S(B, A) and |T0(B, A) states respectively 

where 

2e 
JAB = ψA 

† (r1)ψB 
† (r2) ψA(r1)ψB(r2) dr1 dr2 ,

4π� |r1 − r2|
2 (1.23) 
e 

ψ†KAB = A(r1)ψB 
† (r2) ψB (r1)ψA(r2) dr1 dr2

4π� |r1 − r2| 
are the Coulomb and exchange terms. |S(B, A) is coupled to the triplet states by 

hyperfine interaction terms and |T0(B,A) is coupled to |S(A, A) and |S(B,B) 
by spin-orbit interaction [54]. This Hamiltonian gives us the two-electron energy 

spectrum plotted in Fig. 1.6b. 
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Spin qubit operation 

For a single qubit operation, the dots are electrostatically separated such that the 

hopping (t) and the tunnel coupling (TA/B) terms are close to zero. For two qubit 

operation, the dots are intentionally brought closer to form bonding/anti-bonding 

orbitals. This could be done with a top gate between the dots to turn on the exchange 

coupling [11]. 

A single spin qubit is operated using the phenomenon of Rabi oscillations [15]. 

Rabi oscillations are induced between spin up (|1 ) and down (|0 ) using an oscillating 

magnetic field. The oscillating magnetic field drives the qubit between |0 and |1 
states with a frequency called the Rabi frequency 

Ω =  (ω − ω0)
2 + ω1

2 (1.24) 

where ω is the magnetic field oscillation frequency, �ω0 = �γB0 is the Zeeman splitting 

with B0 the constant magnetic field, and ω1 = γB1 where B1 is the amplitude of the 

oscillating magnetic field. γ = gμB/� is the gyromagnetic ratio where g is the g-

factor of electrons at the Si interface, which depends on the direction of the constant 

magnetic field with respect to the crystal and the valley in which the electron resides 

[60, 61]. An oscillating magnetic field can be induced using an AC current in an 

electron spin resonance (ESR) line fabricated close to the dots [15], by placing a 

micro-magnet close to the dots and applying AC voltage to the top gates [62], or by 

creating a magnetic field gradient in the nuclear spins and applying AC voltage to 

the top gates [63]. 

The not gate is a πx/y gate (rotation about x or y axes on the Bloch sphere) 

in which the oscillating magnetic field is applied till the spin flips, which causes 

a θf − θi = π rotation on the Bloch sphere. For a πx/y/2 gate, the duration of 

oscillating magnetic field is half that of πx/y gate. A πz gate requires the qubit to 

be adiabatically evolved for half the time period of Larmor precession of the electron 

spin. 
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In the cnot gate demonstration [16], the electrons in the double dot are initialized 

in the ground singlet state |S(1, 1) at zero detuning. |S(1, 1) is a combination of 

|S(B,B) and |S(A,A) states. An AC voltage pulse on one of the qubits drives 

two types of oscillations: |S(1, 1) � ↔ |T+(B,A) and |S(1, 1) � ↔ |T−(B,A) . The  

resonance frequencies of these oscillations are separated by the exchange splitting EJ 

between the |S(1, 1) and |T0(B,A) (Fig. 1.6b and Fig. 2d of [16]) 

h ν(S→T+) − ν(S→T−) = EJ (1.25) 

Therefore, using a frequency ν(S→T+) microwave pulse on the left dot will drive a spin 

flip only when the electron in the right dot is spin up. This operates as a cnot gate. 

1.3 Importance of simulations 

It was shown in Sec. 1.2.1 that electron/quasi-particle coherence is important for 

the observation of interference oscillations and the operation of a FQHE based qubit. 

The coherence length of a particle can be increased either by increasing the coherence 

time or the velocity. It was discussed that the velocity is directly proportional to the 

electric field at the edge, and therefore it is important to have heterostructures and 

gates that support a high edge electric field. Meeting these design specifications purely 

using experimental tools is time consuming, and previous studies [41,42,64–66] don’t 

offer a clear path towards better designs. It is thus important to develop a modeling 

tool for GaAs/AlGaAs heterostructures which is geared towards device design. 

It was shown in Sec. 1.2.2 that the exchange splitting is an important parameter 

in the cnot gate operation. Although analytical and numerical studies [54–59] cal-

culate this using analytical electrostatic potentials for the dots, they don’t provide a 

quantitative picture which is essential for the design. Also, no attempt has yet been 

made to link the exchange splitting to the device parameters such as gate voltages, 

gate geometry, oxide thicknesses etc. The electrostatic simulations framework pre-
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sented here can fill in this gap. Details of the Si/SiO2 quantum dot simulations are 

presented in Chapter 4. 
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2. ELECTROSTATIC SIMULATION FRAMEWORK 

This chapter describes the low temperature simulations framework for QDs and 

QPCs. The goal of the framework is to model electrostatics in heterostructures for 

2-dimensional (2DEG), 1-dimensional (QPCs) and 0-dimensional (QD) systems at 

low temperatures. Free charges (e.g. conduction band electrons), fixed charges (e.g. 

charges on dopant atoms in a crystal) and electric field and voltage of the top gates 

etc. contribute to the electrostatics as shown in Fig. 2.1. The main challenges are 

to 1) calculate the minimum energy configuration of the interacting free charges, and 

2) tackle large devices containing trillions of atoms. The following sections describe 

how these two challenges are met. Quantum mechanics plays a major role in the 

electrostatics as it affects the fixed and free charge densities. 

Figure 2.1. An illustration showing the various factors that affect electro-
statics in heterostructures. 
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2.1 Free charges 

Free charges in a heterostructure reside in the conduction and valence bands of the 

materials. Conduction band is made from the outermost shells whereas valence band 

is made from the inner shells of an atom. A forbidden energy gap between these two 

bands is present for semiconductors due to the periodicity of potential wells on atoms 

in a crystal. The dispersion (energy vs momentum) of electrons at the conduction 

band minimum and valence band maximum is similar to that of a free electron, but 

with a different curvature that gives rise to an effective mass. 

The semiconductor heterostructures used for QDs and QPCs are made up of 

GaAs, AlGaAs, AlAs and Si materials. QD and QPC devices are several microns in 

size and can contain trillions of atoms that participate in the electrostatics. Using an 

atomistic tight binding or density functional theory Hamiltonian in these devices is 

unnecessary and computationally infeasible. Therefore, a continuum effective mass 

Schrödinger equation Hamiltonian is used at low temperature and low energy in these 

materials [67–69] 

−�
2 1 ∇. 

2m0 m ∗(r) 
· ∇ψ(r) + [EC + qV (r)] ψ(r) =  Eψ(r) (2.1) 

where 

⎛ ⎞ 
1/m∗ l (r) ⎜ ⎟1 ⎜ ⎟ 

= ⎜ 1/m∗ t (r) ⎟ (2.2) 
m ∗(r) ⎝ ⎠ 

1/m∗ t (r) 

the position-dependent effective mass tensor with ml 
∗(r) and  mt 

∗(r) the position de-

pendent longitudinal and transverse effective masses, which describes the curvature 

of the conduction or valence bands at a valley, EC is the energy at the conduction 

band minimum, q = −e is the charge of an electron, V is the electrostatic potential, 

ψ(r) is the wavefunction and E is the eigen energy. 

The free electron charge density n can then be obtained from the eigenfunctions 

ψi(r) and energy eigenvalues Ei as follows 
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n(r) =  Ni(r)|ψi(r)|2 , 
i ⎧ ⎪ ⎪ gv gs ⎪ , 0 − D ⎪1+exp((Ei−EF )/kT )⎪ (2.3) ⎨ 

m (r)kTt EF −EiNi(r) =  gv 
∗ 

ln 1 + exp  , 1 − D ⎪  �2 kT ⎪ ⎪ ⎪ ∗ ⎪ 2m (r)kT ⎩ t Ei−EFgv F− 2 − D1 
2 

,
 �2 kT 

where Ni(r) is the occupancy of the ith energy level which is expanded for no period-

icity (QD), periodicity in 1-dimension (QPC) and 2-dimensions (2DEG) [68], gv and 

gs are the valley and spin degeneracies, F− 1 
2 
is the Fermi integral of order -1/2, Ef 

is the Fermi level, k is the Boltzmann constant and T is the temperature. Eq. 2.1 

is solved in 3, 2 and 1 dimensions for 0-dimensional (QD), 1-dimensional (QPC) and 

2-dimensional periodicities respectively. 

Charge density can also be obtained semi-classically without solving the Schrödinger 

equation (Eqs. 2.1 and 2.3). This can be used as an approximate guess of the free 

charge density. The semi-classical charge density for electrons and holes is obtained by 

integrating the quantum density of states in a material with 3-dimensional periodicity 

and is given by 

3 
2EF − EC (r) m ∗ (r)kTe,dos 

nsemicl(r) =  NC F , NC (2.4)= gs1 
2 2π�2kT 

3 
2EV (r) − EF m ∗ (r)kTh,dos 

psemicl(r) =  NV F , NV (2.5)= gs1 
2 2π�2kT 

2 1∗ ∗ ∗ ∗3 
vwhere m (r) =  g (m ) and m (r) are the 3D density of states effective 3 

l mte,dos h,dos 

masses of electrons and holes respectively, and F 1 
2 
is the Fermi integral of order 1/2. 

Exchange and correlation energy corrections 

The free charges have Coulomb and Pauli repulsions between then which can be 

approximated using density functional theory with a density dependent correction for 
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the exchange and correlation energies. Exchange and correlation energy correction 

in local density approximation (LDA) [70], which is widely used for semiconductors 

[68, 71], is given by 

1−q2 

3π2 3 −1Vxc(r) =  n(r) 1 + 0.7334x ln 1 +  x ,
4π2 

−1 
31 4πn(r)b3 

x = , (2.6)
21 3 
4π� �2 

b = 
m ∗ q2 

This term adds to Eq. 2.1. The effect of the free charge on itself in the mean field 

is modeled using the Hartree approximation, which involves self-consistently solving 

Eq. 2.1 with the semiconductor Poisson equation discussed in Sec. 2.5. 

2.2 Fixed charges 

The sources of fixed charges can be ionized dopant atoms with more (acceptor) 

or less (donor) electrons than their neutral configuration, and electrons trapped in 

impurities, crystal defects and dangling bond on the surface. The concentration 

of ionized donors ND 
+ and acceptors NA 

− is described by the incomplete ionization 

model [72] given  by  

1 1 
N+(r) =  ND (2.7)D = ND 

EF −ED (r) EF −EC (r)+Ed1 +  gD exp 1 +  gD expkT kT 

NA 
−(r) =  NA 

1
= NA 

1 
(2.8)

EA(r)−EF EV (r)+Ea−EF1 +  gA exp 1 +  gA expkT kT 

where ND and NA are the actual donor and acceptor concentrations, gD is the donor 

level degeneracy (usually gD = 2 because of spin degeneracy) and gA is the acceptor 

level degeneracy (usually gA = 4 because of spin and heavy hole - light hole degenera-

cies), ED(r) and  EA(r) are the donor and acceptor energy levels, Ed = EC(r) − ED(r) 
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is the donor ionization energy, and Ea = EA(r) − EV (r) is the acceptor ionization 

energy. 

The trap and defect charges are randomly distributed in a crystal with a certain 

density, and they can be treated as fixed background charges in the continuum model. 

Surface charges due to dangling bonds act as a Schottky barrier and lead to a pinning 

of the Fermi in the middle of the band gap [73]. These can be modeled as an electric 

field at the surface [74], or using complicated models for the surface density of states 

[75, 76]. In the tool, an electric field is applied at the surface to model the surface 

states. 

2.3 Poisson equation 

Electrostatic potential V in Eq. 2.1 is dependent on the charges, gate voltages 

and electric field at the boundary. V can be calculated by solving the semiconductor 

Poisson equation given by 

−∇. [ 0 r(r)∇V (r)] = ρ(r) =  p(r) − n(r) +  ND 
+(r) −NA 

−(r) (2.9) 

where 0 and r(r) are the permittivity of vacuum and the position-dependent dielec-

tric constant respectively, n(r) and  p(r) are electron and hole charge densities defined 

in Eqs. 2.3, 2.4 and 2.5, ND 
+(r) and  NA 

−(r) are concentrations of ionized donors and 

acceptors defined in Eqs. 2.7 and 2.8 respectively. Self-consistently solving the semi-

conductor Poisson equation with the Schrödinger equation (Eq. 2.1) is discussed in 

Sec. 2.5. 

2.4 Discretization 

The continuum Schrödinger (Eq. 2.1) and Poisson (Eq. 2.9) equations can be 

solved numerically by discretizing them on a spatial mesh. Finite difference (FD), 

finite volume (FV) and finite element methods (FEM) are the most widely used 

discretization methods for semiconductor equations. The biggest differences between 
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these three methods are 1) the definition of a function over the discrete space, 2) 

the definition of derivatives of the function, and 3) the method of defining boundary 

conditions. 

QD and QPC devices have a complicated gate geometry that requires versatile 

meshing techniques such as Delaunay triangulation that can accommodate any shape. 

Also, the electron/hole density at the heterostructure interface lies in a very thin 

region (2-30 nm) compared to the heterostructure height (50-500 nm), requiring a 

very finely spaced mesh (< 1 nm spacing) in certain regions. A uniform mesh is 

unsuitable for such a device, and the implementation of finite difference and volume 

discretizations over non-uniform meshes can be tedious. FEM supports meshes with 

the required versatility, and therefore it is used for this tool. 

2.4.1 Finite element method 

In FEM, a continuous function f is discretized over a mesh using basis functions 

ϕ(x). This is the Galerkin’s method [77]. The discretized function is written as 

f(x) =  fiϕi(x) 
i 

where fi is the coefficient of the ith basis function ϕi(x). The basis functions are 

orthonormal functions associated with each point on the mesh. The order of FEM 

discretization is the largest power of a coordinate in a basis function. There are o 

basis functions associated with each point for an order o FEM discretization. In this 

tool, Langrange polynomials are used for constructing the basis functions. 

The simulation domain can be discretized into finite elements of different shapes 

and sizes. The LibMesh library [78] has been utilized for integrating the equations 

discretized using FEM. LibMesh allows for FEM meshes with 3D mixed elements like 

tetrahedra, prisms, pyramids and hexahedra. The mesh can be structured, unstruc-

tured or have both types of subdomains. This feature of LibMesh has been utilized 

in this work to reduce the number of vertices without losing accuracy. 
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Weak form of Schrödinger and Poisson equations 

The effective-mass Schrödinger (Eq. 2.1) and semiconductor Poisson (Eq. 2.9) 

equations are discretized using FEM. The discretization procedure is shown in Ap-

pendix A. The discretized equations are written in an integral form called the weak 

form (Eqs. A.2 and A.4), which can be converted into the matrix form (Eqs. A.3 and 

A.5) with each row or column of the matrix corresponding to a FEM basis function. 

Boundary conditions for Poisson equation 

The effect of top gates and surface charges is included in the Poisson equation using 

boundary conditions as shown in Appendix B. For Schottky contacts, the gate voltage 

is converted to the electrostatic potential using the difference in metal-semiconductor 

ionization energy, and applied as a Dirichlet boundary condition as described in Sec. 

B. Surface charge can be included as a Neumann boundary condition as shown in Sec. 

B. For Schottky contacts with a charge at the interface, mixed boundary condition is 

used as shown in Sec. B. 

2.4.2 Meshing 

The software Gmsh [79] has been used to create both structured, unstructured 

and mixed finite element method. The FEM mesh is generated to give nanometer 

resolution in the vertical direction for complicated GaAs/AlGaAs heterostructures, 

such as the Si doping well [80]. Simple tetrahedral elements, even when refinement 

is used give a large number of nodes in the mesh (as shown in Fig. 2.2b) which 

increases the computational resources required for the problem. The reason for this 

is that a tetrahedral element due to it’s shape cannot have fine resolution in vertical 

direction and coarse resolution in lateral directions at the same time. However, this is 

exactly what is required because confining potential varies slowly in lateral directions 

as compared to vertical. Tetrahedral elements are required on the top surface to 
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(a) 

(b) 

Figure 2.2. Comparison between a mesh created using only tetrahedra 
(b) and by mixing tetrahedra, pyramids, prisms and hexahedra (a). (a) 
contains 745 vertices and (b) contains 9726 vertices. Both have 20nm 
resolution on the left side and 5nm resolution on the right in vertical 
direction. (a) uses pyramids and prisms to connect the tetrahedra to 
cuboids. 

match gate geometry, and cuboid elements in the regions of doping and semi-classical 

or quantum charge density. Therefore, a mixed FEM mesh is used as shown in Fig. 

2.2a. 

2.5 Schrödinger-Poisson self-consistency 

To model electron-electron repulsion in the mean field using the Hartree approx-

imation, continuum Schrödinger (Eq. 2.1) and Poisson (Eq. 2.9) have to be solved  
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self-consistently. When the two equations are self-consistently solved, quantum den-

sity obtained by solving Schrödinger equation, gives the same electrostatic potential 

from solving Poisson equation that was used to calculate it. The Hartree approxima-

tion neglects exchange and correlation energies of electrons, which can be modeled 

using density functional theory by adding an extra term as shown in Sec. 2.1. 

The Poisson equation becomes non-linear in electrostatic potential when quantum 

density is included. Such a system can be solved iteratively using Newton’s method 

as described in Appendix C. The system becomes more non-linear in quantum dots 

at mili-Kelvin temperatures, for which the Newton’s method becomes inadequate. In 

this case, the Predictor-Corrector (PC) method is used, which is derived in Appendix 

D. The PC method works by isolating the non-linearity in an inner loop (predictor) 

that uses an inexact quantum density calculated from first order perturbation theory. 

The inner loop acts like a Jacobian by predicting the next step for the outer loop 

(corrector). 

2.6 Numerics 

Figure 2.3. Dependency graph of numerical libraries 

The tool primarily uses the LibMesh [78] library for handling the meshes, par-

allelization across multiple processes by domain decomposition, and calling the nu-
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merical solvers. The library dependency is shown in fig. 2.3. The most computa-

tionally intensive numerical tasks in the self-consistent quantum simulation are 1) 

computing eigenvalues of the Schrödinger equation in matrix form (Eq. A.3), and 

2) solving the linear system in Eq. C.1 to get potential V n+1 for n + 1th step. The 

library SLEPc [81,82] is used for computing the lowest eigenvalues using the general-

ized Davidson method. The geometric algebraic multi-grid (GAMG) preconditioner 

along with the generalized minimum residual method (GMRES) in the PETSc li-

brary [83, 84] is used to solve the Poisson linear system. These methods are highly 

scalable. 

2.7 Parallelization 

Figure 2.4. Partitioning of Schrödinger (blue) and Poisson (red) regions. 
The numbers show the processor onto which that part of the region goes. 
The shaded part is the spatial region which is on processor 0 of Schrödinger 
and processor 1 of Poisson mesh. Thus, quantum density is calculated on 
processor 0, and needs to be communicated to processor 1. 

LibMesh library is used to import the mesh and distribute it onto multiple proces-

sors. Partitioning of the elements onto different processors is done by LibMesh using 

the ParMETIS library, depending on the connectivity graph of the elements. The 

mesh used for solving Schrödinger equation is a subset of the Poisson mesh. Since 

both meshes are partitioned among the maximum number of available processes, a 
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spatial location might belong to different processors in the two meshes as shown in fig. 

2.4. During the set-up phase, points on one mesh are located on the other and points 

in the intersecting regions are communicated. When the density is solved later in 

each iteration, data at the relevant points is communicated using non-blocking sends 

(MPI ISend) and blocking receives (MPI Recv) available in standard MPI library 

implementations. 

2.8 Testing 

Table 2.1. 
Comparison of simulation and theory for harmonic oscillator eigenvalues 

Theory Simulation Degeneracy Theory Simulation 

5.05 5.08 1 3.109 3.108 

8.43 8.48 3 6.484 6.481 

11.85 11.90 5 9.863 9.853 

(a) 3D harmonic oscillator (b) 1D harmonic oscillator 

The implemented effective mass Schrödinger solver was tested using 3D and 1D 

harmonic oscillator potentials, since the eigenvalues and eigenvectors can be analyti-

cally calculated. The computed eigenvalues for 3D case match within 1% of theoretical 

values, as shown in Table 2.1. 

2.9 Scaling 

A test structure made up of a double quantum dot in Si/SiO2 heterostructure is 

simulated with semi-classical first followed by quantum density. The Poisson mesh 

size is 443,290 nodes and 2,585,055 elements whereas Schrödinger mesh size is 124,968 

nodes and 706,601 elements. The simulation was run on 32, 42, 48, 56 and 64 pro-
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cessors. Both the semi-classical and quantum solvers are seen to scale well up-to 64 

processors as shown in fig 2.5. The set-up time doesn’t scale very well if most of the 

nodes of the Schrödinger mesh fall in a small number of processor domains of the 

Poisson mesh. 
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(a) (b) 

(c) (d) 

Figure 2.5. Strong scaling plots of a self-consistent quantum dot 
Schrödinger-Poisson calculation. a) Total start to end simulation time. 
b) Set-up time, during which the intersection of Schrödinger and Pois-
son meshes is calculated and communicated. The scaling for set-up is 
bad when most elements of the Schrödinger mesh fall in a region of the 
Poisson mesh that resides on a small number of processors. c) Semi-
classical system solution time, during which the Poisson equation (Eq. 
2.9) is solved self-consistently with the semi-classical density (Eqs. 2.4, 
2.5) using the Newton’s method discussed in Appendix C. d) Quantum 
system solution time, during which the Poisson equation (Eq. 2.9) is  
solved self-consistently with the Schrörindger equation (Eq. 2.1) using 
the PC method described in Appendix D. 
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3. OPTIMIZATION OF EDGE STATE VELOCITY IN 

THE INTEGER QUANTUM HALL REGIME 

This chapter has been reproduced with permission from [85] (doi: 10.1103/Phys-

RevB.97.085302). The reuse license is displayed in Appendix E. 

3.1 Introduction 

Electronic interferometers have been used as tools to probe the behavior of edge 

states in the quantum Hall regime. A typical electronic interferometer consists of two 

Quantum Point Contacts (QPCs) which act as electron beam splitters, in analogy 

to optical interference experiments. Electrons traversing the interferometer’s path 

accumulate an Aharonov-Bohm phase equal to 2π times the number of magnetic flux 

quanta encircled. This phase can be controlled either by varying the area of the 

device or changing the magnetic field, yielding conductance oscillations. A major 

challenge for electronic interferometry is that the interfering particles must maintain 

phase coherence throughout their trajectory around the interference path. This is 

possible only if the quasiparticle edge state velocity is high enough that the time 

taken to traverse the interference path is smaller than the phase coherence time. 

Unsurprisingly, a strong correlation has been observed between the edge state velocity 

and the visibility of interference oscillations in the integer quantum Hall regime [86]. 

The fractional quantum Hall effect (FQHE) emerges from Coulomb interactions 

between electrons in a two-dimensional electron gas (2DEG) in a perpendicular mag-

netic field [29]. The FQHE states are predicted to host exotic quasiparticle excita-

tions which carry fractional charge and obey anyonic braiding statistics, and these 

properties may be probed in interferometers [13, 14, 38, 87]. While Aharonov-Bohm 

interferometery has been conducted in the integer quantum Hall regime [38,39,88], ex-
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tending to the fractional quantum Hall regime has proven to be difficult. The problem 

of maintaining coherence may be exacerbated in the FQH regime due to the pres-

ence of neutral edge modes, which have been predicted [33,89,90] and experimentally 

observed [91, 92] at many states. Crucially, the neutral edge mode becomes entan-

gled with the charge mode and must also maintain coherence along the trajectory of 

the interferometer [93], which may preclude observation of interference because the 

neutral modes are expected to propagate with a much lower velocity than the charge 

modes [94, 95]. Thus, optimizing device parameters to maximize the velocity of edge 

modes is critical to observing interference in the FQHE regime. 

The drift velocity of charge carriers in the classical Hall effect is equal to the ratio of 

electric field to magnetic field, E/B. On general grounds the edge state velocity in the 

quantum Hall regime is expected to be proportional to the velocity scale set by E/B, 

where in this case the electric field E is due to the confining potential at the edge. 

Experiments in the IQHE have confirmed that the edge velocity is approximately 

proportional to 1/B [88,96–98]; however, a framework for analyzing the confinement 

potential and predicting the velocities in different heterostructures and gating schemes 

is needed. While for concreteness we analyze edge velocities in the IQHE regime, the 

principle that edge state velocity increases for sharper confining potential is expected 

to generalize to the fractional regime as well [94,95]. Additionally, it has been found 

that precise tuning of the quantum point contacts is required to achieve interference 

[88], so we seek to understand the behavior of QPCs both in the quantum Hall regime 

and at zero magnetic field. We focus on the case of GaAs/AlGaAs heterostructures 

with 2DEG edges defined by metallic gates. 

Numerical simulations have proven to be valuable tools for designing heterostruc-

tures [99] and gated devices [64,100], as well as in explaining the results of experiments 

in the quantum Hall regime [101, 102]. The Poisson equation has been previously 

solved computationally in the IQHE regime for GaAs/AlGaAs heterostructures using 

a Thomas-Fermi approximation (TFA) to calculate the electron density and potential 

due to QPCs [64, 100, 103]. However in these works the doping ionization is not con-
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Figure 3.1. The details of heterostructure and gate layout used for bench-
marking the simulation method. a) A cartoon showing the different layers 
and the shaded 2DEG location in the 91 nm deep single hetero-junction 
structure with modulation doping. A uniform doping profile with a con-
centration of 4.8 × 1018 cm-3 between 17 and 31 nm depths was used in 
experiments. b) The conduction band and electron density profiles of the 
quantum well solved self-consistently using a 1D Schrödinger-Poisson sim-
ulation. Valence band maximum on the left edge is at 0 eV, and the dashed 
line is the Fermi level. c) The 1.5μm (cross-section) × 1.2μm (transport 
direction) × 250nm (growth direction) sized finite element mesh used to 
discretize Poisson equation for the QPC. The mesh contains tetrahedral 
elements (orange) to efficiently fill the dielectric regions which contain 
no free charge, and cuboid elements (blue) in the regions containing free 
charges. Pyramid and prism shaped elements (orange) are used to con-
nect dielectric regions to charged regions. The cuboids in charged regions 
are thin along the growth direction, in which potential changes fast and 
coarse along the lateral direction in which potential changes slowly. The 
mesh contains ∼ 2.16 million points at which the electrostatic potential 
is solved. 



48 

sidered self-consistently. Also, these works model doping and quantum well regions 

in 2-dimensions instead of 3-dimensions. Taking these parameters into account is 

essential for correctly modeling the electric field at the edges, and in turn, the edge 

state velocity. 

Here a method is presented for calculating electron edge state velocities and elec-

tron density in gated QPCs in the IQHE regime. The electrostatic simulations tool 

developed in the NEMO5 [104] package is used for self-consistently solving the three-

dimensional Schrödinger and Poisson equations in the IQHE regime. Following Stopa 

et al. [105] and Fiori et al. [74], the 3D Schrödinger equation is split into 1D and 2D 

parts. The electron interactions are calculated using the mean field Hartree approx-

imation in electrostatic simulations. A frequently used incomplete ionization model 

(discussed in Sec. 2.2) is employed for dopants in which Fermi-Dirac statistics and a 

donor energy level is used. The full 3D Poisson equation is solved by accounting for 

the thickness of doping layers and 2DEG. Electrostatic simulations solve the potential 

landscape and use a Gaussian broadened Landau level density of states in the IQHE 

regime. The potential obtained is used in quantum transport simulations [106] to  

solve the 2D Schrödinger equation with open boundaries for the QPCs and calculate 

the edge state wavefunctions. 

The calculated conductance for QPCs is compared with experimentally measured 

values to benchmark the simulations. The simulated 2DEG density is also compared 

with experiments to tune certain parameters such as donor ionization energy. The 

methodology is discussed in section 3.2. Figure 3.1 details the heterostructure and 

QPC gate layout used for benchmarking. On the experimental side, the heterostruc-

ture was grown by Molecular Beam Epitaxy (MBE) and Ti/Au metal gates were 

deposited on the surface. The devices used in the experiment have the same physical 

dimensions as in the simulation. The method is benchmarked with experiments in 

Sec. 3.3.1. Sheet density, sub-band energy and edge state wavefunction profiles are 

discussed in the rest of Sec. 3.3. In Sec. 3.4, the edge state velocity is studied as a 
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function of magnetic field and gate voltage for four different structures in a attempt 

to maximize the velocity. 

3.2 Methodology 

Typically, interference experiments operate with small source-drain biases on the 

order of μV to avoid heating the 2DEG [88, 107]. The subband energy of electrons 

due to confinement in the quantum well varies on the order of meV and is much larger 

than the applied bias. Source-drain bias is thus neglected in electrostatic simulations. 

The overall repulsive effect of electron density on itself is calculated by solving the 

Schrödinger equation self-consistently with the Poisson equation, which is a standard 

practice for modeling semiconductor heterostructures [67]. The two equations are 

discretized using a non-uniform mixed element finite element mesh (Figure 3.1c). 

Self-consistent iterations are done using the predictor-corrector method [108]. Figure 

3.2 shows the simulation flow. 

3.2.1 Poisson equation 

The effects due to the top surface, donors, gates and background disorder are 

included in the semiconductor Poisson equation (Eq. 2.9). 

Donor Statistics 

The charge density due to donors is included using Eq. 2.7. A single donor level 

is considered in the simulations and its ionization energy EC − ED is tuned such that 

the bulk 2DEG sheet density calculated from self-consistent 1D simulations matches 

the one obtained from experiments. The Si modulation doping layers screen the 

effect of top gates because of the presence of donor energy levels near the conduction 

band. Si atoms in AlxGa1-xAs appear to be in both shallow and deep donor levels at 

x > 0.2. However, at x = 0.36, majority of Si atoms become deep donor levels, the 
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Figure 3.2. The simulation flowchart. Quasi-1D Schrödinger and Pois-
son equations are solved self-consistently to get the electrostatic poten-
tial and 2DEG density near the QPC. Section 3.2.1 gives details of the 
Poisson equation, which takes into account top gates, surface states, in-
complete donor ionization and uses a mixed FEM mesh to solve complex 
heterostructures efficiently. The quasi-1D Schrödinger equation is solved 
for QPCs as described in Section 3.2.2. The potential profile obtained 
from electrostatics is used in quantum transport simulations (Sec. 3.2.5) 
for calculating the QPC transmission, local density of states (LDOS), 
current densities, wave-functions and their velocities. Electrostatic sim-
ulations are done using the NEMO5 [104] package, while the quantum 
transport simulations are done using the Kwant [106] package. 

so-called DX centers [109]. The physical origin of DX centers is under controversy and 

the most accepted model proposed by Chadi and Chang [110] suggests that the DX 

center is formed by the displacement of substitutional Si atom along [111] direction 

to lower the electronic energy. In this model, there is a potential barrier for trapping 

and de-trapping of electrons in DX centers which results in freezing out the electrons 

at low temperatures. Hence, the only participating donors when the sample is not 

illuminated, are those which remain ionized as the device is cooled down to mK 

temperatures. 
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The effective total density of participating Si donors ND in eq (2.7) also needs to 

be modified from the real doping density used in experiments to model the effect of 

donor freeze out. To model the freezing out of donors, self-consistent 1D simulations of 

the heterostructure are done first with all the donors present and then the unionized 

donors are removed in 3D simulations. The unionized donors, which are removed 

in 3D simulations, are kept while the ionization energy is tuned. After considering 

the effect of frozen electrons in deep centers, the simulated gate voltage required for 

depleting the 2DEG is comparable to the experimentally observed value. 

Fermi level pinning due to dangling bonds on exposed GaAs surface 

The Fermi level pinning on the exposed top GaAs/AlGaAs surfaces is included 

in the model for QPCs using Neumann boundary conditions in the Poisson equation 

(2.9). Charge density on the exposed surface due to occupied dangling bonds creates 

a Schottky barrier [73]. The Schottky barrier can be modeled by setting a constant 

voltage (usually -0.7 to -0.8 V) with respect to the Fermi level at the top surface using 

the Dirichlet boundary condition [111]. To model the Fermi level pinning, an electric 

field can also be specified at the top using the Neumann boundary condition [112]. 

The electric field is calculated from the slope of the conduction band when Dirichlet 

boundary condition is used in 1D simulations. Setting the electric field at the top 

is equivalent to having frozen charges at the top surface. Other more complicated 

models [75, 76, 102] can be used to specify a density of states at the surface, which 

lead to Fermi level pinning. Potential and density in the QPC channel are affected 

by the boundary condition of the exposed surface as shown for heterostructures with 

shallow 2DEG [74]. 

3.2.2 Schrödinger equation 

Free electrons in the quantum well at the GaAs/AlGaAs interface occupy the 

lowest sub-band in the GaAs conduction band gamma valley and can be approximated 
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by a parabolic dispersion relation [67]. Thus the effective-mass Schrödinger equation 

(Eq. 2.1) can be used. The position-dependent effective mass m ∗ (r) = 0.067me 

is equal for both GaAs and AlGaAs gamma valleys, where me is the free electron 

mass. Electrostatic potential V is obtained from solving the Poisson equation (2.9). 

The Electrostatic potential changes slower in the lateral direction than in the growth 

direction. Following the work of Fiori et al [74], the 3D wavefunction Φ can thus be 

expanded as Φ (x, y, z) =  ψ (x, y, z) χ (x, y). Here ψ is the 1-D wavefunction along Z 

(growth) axis evaluated at different points in the X-Y plane. χ is the 2D envelope 

along the lateral direction. The 3D Schrödinger equation can be separated into 1D 

and 2D parts by substituting the expression for Φ: 

�
2 ∂ 1 ∂ψ ˜− + Vtotψ = Eψ (3.1)
2 ∂z m ∗ ∂z 

�
2 

− ∇2 
⊥χ + Ẽ 

i = Eχ (3.2)
2m ∗ 

˜ ˜Ei ≡ Ei (x, y), called the sub-band energy, is the eigenvalue corresponding to ψi. 

We assume the sub-band energy to be flat as it is slowly varying and calculate the 

approximate electron density to be used in self-consistent simulations 

kT m∗   

n(x, y, z) =  |ψi (x, y, z)|2 

π�2 
i=1 

(3.3)
Ẽi (x, y) − EF × ln 1 + exp  − 

kT 

The log term comes from integrating the density of states of a parabolic dispersion 

for 2D periodic systems. 

For QPCs, equation (3.2) has open boundary conditions and needs to be solved us-

ing quantum transport algorithms (discussed in sec 3.2.5) to model the transmission, 

resistance, quantum current density and edge state velocity. Electrostatic simulations 

require the electron density for self-consistently obtaining the electrostatic potential. 

Using quantum transport algorithms to calculate the density in micron sized struc-

tures is computationally prohibitive. Ballistic transport simulations produce a delta 
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function DOS in the bulk for the Landau levels, for which the energy is difficult to 

pinpoint, requiring a fine energy grid for integrating the electron density. Adding in-

elastic scattering terms to the quantum transport equations [113] for broadening the 

Landau level DOS would further increase the computational requirements. Making 

the assumption of a slowly varying sub-band energy in equation (3.2) to analytically 

integrate the electron density for the electrostatic simulations is computationally ef-

ficient, but neglects the lateral spread of the edge state wavefunction. The sub-band 

energy profile obtained from electrostatic simulations is used to solve eq. (3.2) with  

open boundaries. This approach has been shown to match experimental QPC con-

ductance in zero magnetic field [74]. 

Integer Quantum Hall Regime 

The method described in the previous section is employed in the IQHE regime, 

where Gaussian broadened Landau level density of states is used. In the presence of 

a perpendicular magnetic field, equation (3.2) can be re-written as 

(i�∇⊥ + eA)2 

∗ χ + Ẽ 
i + gμB Bσz = Eχ (3.4)

2m 

A is the vector potential, g is the Landé g-factor (discussed later), μB is the Bohr 

˜magneton and B is the magnetic field. The assumption of a slowly varying Ei is 

employed again, which reduces equation (3.4) to that of non-interacting electrons 

trapped in 2D in presence of a perpendicular magnetic field. Then, solving (3.4) 

gives us the Landau level (LL) density of states (DOS) for the ith sub-band 

 
1 

Di = δ E − E+ + δ E − E− 
B i,n i,n2πlB 

2 
n=0 

(3.5)
E+ ˜ 
i,n = Ei + (n + 1/2) �ωc + gμBB/2 

E− ˜ 
i,n = Ei + (n + 1/2) �ωc − gμBB/2 
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where, lB = �/eB is the magnetic length and ωc = eB/m∗ is the cyclotron fre-

˜quency. The E term introduces a position dependence to the LL energy. This ex-

pression was used by Chklovskii et al. [41] for calculating electrostatics at the edges 

in the IQHE. 

Real devices have broadened LL DOS due to disorder, collision broadening and 

effects due to a finite wavefunction width, which has been studied in detail by others 

[114]. To account for these effects, a Gaussian spread DOS around the LL is used. 

  E − E+ 2 
1 1 

D̃ i i,n 
B = √ exp − 

2πlB 
2 2π E 2 E2 

n=0 
(3.6) 

E − E− 2 

+ exp  − i,n 

2 E2 

 E = γ�ωc is a parameter than defines the spread of the states around the LL 

energy. The electron density can thus be written as 

D̃ i   |ψi (x, y, z)|2 

nB (x, y, z) =  B dE (3.7)
Ei−EF −  1 + exp  

i=1 kT 

Güven and Gerhardts investigated the effect of changing γ and temperature on 

the potential profile [114, 115]. They calculated the potential profile for different 

values of γ and t = kT/�ωc. Here, the value γ = 0.05 is used, which amounts to a 

standard deviation of 5% of the LL spacing. t is a dimensionless parameter which 

represents the relative strengths of thermal and magnetic energy scales. Güven and 

Gerhardts showed that the incompressible region width decreases by roughly 50% 

when the temperature is increased from t = 1 to  t = 2  for  γ = 0.025. Typical 

electron temperatures for interferometry experiments range from 10 − 300mK and 

magnetic fields are in the range 0.5 − 10T [116]. For these parameters, t is in the 

range 5 × 10−5 to 3 × 10−2 . The Fermi function can thus be approximated as a step 

function without affecting the width of incompressible regions more than the mesh 

spacing. Evaluating eq. (3.7) with a step Fermi function gives 
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1 

nB (x, y, z) =  |ψi (x, y, z)|2 

4πlB 
2 

  

i=1 
(3.8) 

EF − E+ EF − E− 
i,n i,n× 2 ± erf √ ± erf √ 

2 E 2 E 
n=0 

The first term in the summation comes from integrating the half Gaussian curve un-

der the LL energy. The second term comes from integrating the density of states 

lying between the LL energy and the Fermi level. + or − sign is used when Fermi 

level is above or below Ei,n 
+ and E− 

i,n respectively. Using this expression for calculat-

ing the density helps with convergence, and gradually increasing magnetic field and 

temperature from 0 is not required. 

Landé g-factor 

The g-factor in bulk GaAs is 0.44; however, for two-dimensional electrons in the 

quantum Hall regime, spin splitting is enhanced due to exchange interactions, and 

experimental measurements of the spin gap in GaAs/AlGaAs heterostructures have 

yielded effective g-factors up to 11.65 [117]. The interactions between spin polarized 

electrons which lead to this enhanced spin splitting can be taken into account using the 

local spin density approximation (LSDA) [118]. To compare the potential landscape 

with and without spin splitting, calculations were performed using an effective g-

factor of 5.2, the same as the value used by Bilgeç et al.  [118], so that the results 

are comparable with the results using LSDA. No substantial effect was found on the 

incompressible strip widths due to the low magnetic field range and Landau level 

broadening. 

3.2.3 Discretization and numerics 

The quasi-1D Schrödinger and Poisson equations are discretized using finite ele-

ment method (FEM). For Poisson equation, a mixed element FEM mesh (Fig. 3.1c) 
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containing tetrahedral elements in the dielectric region and cuboid elements in the 

charged region is used. The electrostatic potential changes faster along the growth 

direction near the GaAs/AlGaAs interface than in the 2DEG plane. The cuboids are 

thus 1 nm thick along the growth direction and around 10 nm wide perpendicular to 

it. The mixed meshes are created using Gmsh software [119]. This mesh treatment 

allows modeling of large geometries without affecting the computational burden and 

accuracy. The FEM mesh for Schrödinger equation has only cuboid elements when 

it is solved for 3D confined case. For QPCs, a 2D rectangular grid is used in plane 

and a 1D uniform grid along growth direction. The quasi-1D Schrödinger equation is 

solved independently at each node of the 2D grid to get the 3D density. 

The Poisson equation is solved using non-linear solvers present in PETSc [84], 

along with some additional techniques discussed in the next section. Wavefunctions 

and eigenvalues in the quantum well are solved using the Krylov-Schur algorithm in 

the numerical library SLEPc [120]. The integration, parallelization and data handling 

related to the mesh was done using the software LibMesh [78]. A single simulation at 

a particular gate voltage and magnetic field runs on ∼ 100 processors and takes 1-2 

hours to complete. 

3.2.4 Self-consistency 

Convergence is difficult to achieve and it is system dependent at low temperatures 

and in presence of magnetic field. To get a monotonic convergence in all types of 

heterostructures and gate geometries, the predictor-corrector (PC) method (discussed 

in Appendix D) is used [108]. 

3.2.5 Quantum transport 

2D wavefunctions of the edge states can be obtained by solving equations (3.2) 

or (3.4) with open boundary conditions using the non-equilibrium quantum trans-

port methods based on non-equilibrium Green’s functions (NEGF) [121, 122] or the  
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quantum transmitting boundary method (QTBM) [123]. This work uses the software 

Kwant [106] which is based on a wave-function approach similar to QTBM for solving 

the open system. 

Zero magnetic field 

The 2D part of the Schrödinger equation without magnetic field is discretized 

using a square grid of side a = 3 nm. The effective mass Hamiltonian with 3nm 

grid has a parabolic dispersion within the relevant energy range of 6 meV above the 

conduction band minimum. The Hamiltonian can be written as 

⎛ ⎞ 
. . . T ⎜ ⎟ ⎜ ⎟H = ⎜T † H T ⎟ (3.9) ⎝ ⎠ 

† . .T . 

H is an infinite matrix including the 2 left and right semi-infinite regions. H 

represents the Hamiltonian of one slab of points perpendicular to the direction of 

transport, and T represents the coupling between the slabs. ⎛ ⎞ 
. .⎛ ⎞ . . . . t ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ t ⎟ ⎜

H = ⎜ t Ẽ − 4t t 
⎟ ⎟ , T ⎜= ⎟ (3.10) ⎜ ⎟ ⎝ ⎠ ⎜ t ⎟ 

t 
. . . ⎝ ⎠ 

. . . 

Here t = �2/2m ∗ a2, and  Ẽ is the sub-band energy evaluated at each grid point 

by cubic interpolation. The Hamiltonian in eq. (3.9) is infinite, and periodicity in 

semi-infinite regions is required to make it finite. The infinite matrix is reduced to a 

finite matrix by solving the translationally invariant Schrödinger equation in the semi-

infinite region [106] and using the solution of the semi-infinite region as a boundary 

condition for the QPC region. The Schrödinger equation with the open boundary 

conditions is then solved as a linear system at a certain energy. The wavefunctions 

and transmission are obtained from Kwant. 
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Non-zero magnetic field 

The 2D Hamiltonian in presence of a perpendicular magnetic field can be written 

in a finite difference form with open boundaries similar to eq. (3.9). The kinetic 

energy term contains vector potential A due to the magnetic field. Landau gauge 

is suitable in this case as the dependence of vector potential on the transport (x) 

direction can be eliminated to make the Hamiltonian periodic. The vector potential 

used in the work is A = −Byx̂, which gives a constant magnetic field B = Bẑ. As  

the minimum magnetic length (at 3 T) is approximately 15 nm and our grid size is 

3 nm, we can make the Peierls phase approximation to include the vector potential 

in the off-diagonal part of the Hamiltonian. The diagonal Hamiltonian block of eq. 

(3.10) remains unchanged, while the off-diagonal block becomes 

⎛ ⎞ 
. . . ⎜ ⎟ ⎜ ⎜ teiφ ⎟ ⎟ ⎜TB = ⎟ , ⎜ ⎜ ⎝ teiφ ⎟ ⎟ ⎠ (3.11) 

. . . 

(a(i+1),aj)e a2jeB 
φ = − A · dl = 

� �(ai,aj) 

Here, the path integration is done along a straight path connecting points (ai, aj) 

and (a(i + 1), aj), where i and j are the indices of the points on the square grid. The 

integral on paths connecting points in the same slab will be zero, since the vector 

potential points along x̂. 

Velocity, current density and resistance 

The wavefunction envelopes obtained by solving the quantum transport Hamilto-

nians are written as χiν , where  i denotes the ith transverse slab and ν is the wave-

function number. The velocity of the νth transverse mode is then calculated using a 

dot product of the νth wavefunctions χiν 
† in slab i and χiν 

+1 in slab i + 1.  
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2ae 
χi†χi+1 vν = Im ν ν (3.12)

� 

The local current density of a particular mode between two grid points (i, j) and  

(i , j  ) is calculated using the current operator 

χi,jIν ((i, j) → (i , j  )) = 2Im ν Hi,j,i∗,j∗ χ
i
ν 
∗,j∗ (3.13) 

Hi,j,i∗,j∗ is the matrix element between grid points (i, j) and  (i , j  ). The transmission 

of each mode at the Fermi level, Tν (EF ), is obtained directly from Kwant. The 

resistance is assumed to be in the linear regime, since the Fermi window is narrow 

at low temperature and source drain bias is on the order of μV. This assumption 

essentially means that the edge states are in equilibrium with the bulk, since the 

linear regime resistance is an equilibrium property. The linear response resistance of 

the QPC at low temperature can be written as [121] 

−1 
h 

R = 
2 

Tν (EF ) (3.14) 
e 

ν 

3.3 Results 

3.3.1 QPC resistance benchmark with experiment 

Figure 3.3 shows a comparison between measured and computed resistance for a 

300 nm wide QPC for the 91 nm deep 2DEG heterostructure. The resistance measure-

ment was done at 300 mK, with no magnetic field using a constant AC current source 

of 10 nA. The computed resistance shows a good match with the experimentally mea-

sured values. The discrepancies between calculated and measured resistance are near 

depletion (low negative voltage) and pinch-off (high negative voltage) regimes, and 

agreements are in between these regimes. The electron beam lithography system used 

to define the QPC has an effective resolution of approximately 20nm, so variations in 
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the true width of the QPC on the order of 20nm are expected, which could lead to 

additional discrepancy. 

The computed depletion voltage is about twice the measured value, because a 

simple one-level donor ionization model is used and physics of DX center formation 

is not captured. Also, below the depletion gate voltage the experimental resistance 

falls to zero, whereas in the simulations the boundary of the 2DEG is the simulation 

domain (which is much smaller than a Hall bar) leading to a minimum finite resistance. 

Due to this unphysical condition, simulated resistance isn’t shown for gate voltages 

above the depletion point. Near the pinch-off, the source-drain bias is the highest 

and thus the accuracy of eq. (3.14) is smaller than at lower voltages. The Thomas-

Fermi approximation used to compute density of states laterally gives an inaccurate 

electrostatic potential in the QPC near pinch-off. Despite these minor discrepancies, 

the overall agreement between the experiment and simulation is satisfactory between 

the depletion and pinch-off regimes. 

Figure 3.3. Comparison between experimentally measured and computed 
resistance of a 300 nm wide QPC. The measurement was done at 300 
mK in 0 T magnetic field and using a constant AC current source of 10 
nA. The red (light) and blue (dark) dashed lines indicate the depletion 
voltages in simulation and experiment respectively. 
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3.3.2 Sub-band energy and sheet density profiles 

Figure 3.4. Sheet densities at different gate voltages for a 300 nm 
wide QPC, calculated using the Schrödinger-Poisson solver in a mag-
netic field of 2.2 T. Panels  c) and d) show cuts along the X and Y axes, 
passing through the middle of the QPC. Sheet density in the bulk is 
1.34 × 1011 −2cm , and in the incompressible strip for n = 1 LL has a den-
sity of 1.06 × 1011cm−2 . The incompressible strip can be seen as a light 
green region near the depleted 2DEG in a) and b), and as flat region in 
c) and d). 

Figure 3.4 shows the sheet densities near the QPC for different gate voltages at a 

magnetic field of 2.2T. For a sheet density of 1.34 × 1011cm−2 , a single incompressible 

strip is expected in the presence of a magnetic field of 2.2T. The incompressible 

strip can be seen as a band of light green with a density of around 1 × 1011cm−2 

near the edges. Using electrostatic simulations, the electron density in the middle 

of the QPC can be obtained for different gate voltages and magnetic fields. This 

helps in designing QPCs with the required channel width so that the velocity can be 

maximized keeping a certain filling fraction in the middle. The correctness of density 

and potential profiles can be verified by comparing conductance of the constriction for 
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different gate voltages with experiments. The conductance can be calculated using 

quantum transport simulations. 

Figure 3.5. Sub-band energy (EF = 0) and sheet density profiles near 
the edge of the 2DEG defined by depletion top gates at a magnetic field 
of 2.2 T (bulk filling factor νbulk = 2.52) and gate voltage of -0.446 V 
compared to zero magnetic field values plotted using a dashed line. Edge 
state wavefunctions at the Fermi level for ν =  1,  2  and 3 Landau levels  
obtained from quantum transport are also shown. 

Figure 3.5 shows traces of the 1st sub-band energy and 2DEG sheet density ob-

tained perpendicular to the 2DEG edge defined by the top gate for a magnetic field 

of 2.2 T (bulk filling factor νbulk = 2.52) and a gate voltage of -0.446 V. The electron 

density in the presence of magnetic field forms the so called dipolar strips as pre-

dicted by Chklovskii et al. [41]. These dipolar strips form as a result of LLs crossing 

the Fermi level, and because of the dominating electrostatic forces due to the gates 

leading to a density profile that looks similar to the one without magnetic field. The 

region where electron density remains constant is the incompressible region, as the 

Fermi level lies between LLs where the density of states is zero. The incompressible 
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regions in the sub-band energy plot have a finite potential drop across them. The 

regions where the sub-band energy is flat are called compressible regions because they 

are located where the LLs intersect the Fermi level. The electrostatics in these regions 

is similar to that of metals due to a large available density of states. 

Figure 3.5 also shows the edge state wavefunctions for Landau levels ν = 1,  2  and  

3 obtained from quantum transport simulations. ν = 1 corresponds to spin down and 

ν = 2 corresponds to spin up in the n = 1 Landau level, therefore their wavefunctions 

have a single lobe. Here, n-Landau levels are spin-less and contain twice the density 

of states as the ν-Landau levels. The ν = 3 wavefunction lies in the n = 2 Landau 

level and has two lobes. These are the solutions for the Landau gauge. The plotted 

wavefunctions are normalized to carry a unit current (1 electron per second) such that 

their transmission equals 1. Therefore, the faster an edge state moves, the smaller 

its normalization. The wavefunctions clearly show that the edge states are present in 

the compressible regions. 

3.3.3 QPC conductance in the IQHE regime 

The conductance is calculated by summing up the transmissions due to all the 

modes at the Fermi level. Figure 3.6 plots conductance of the QPC at three different 

magnetic fields. The conductance shows exactly quantized plateaus in units of e2/h 

when the modes are either completely transmitted or reflected by the QPC. ν − 1 

conducting modes are obtained when the bulk filling factor is close to an even inte-

ger. This is because the modes in the ν Landau level at that filling fraction have a 

very small velocity as shown in Sec. 3.4.1. The electron density and filling factors 

are obtained from electrostatic simulations. The quantum transport simulations in-

dependently show that the extended states lie at the center of LL density of states, 

which means that the conducting edge states lie in the compressible regions. 
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Figure 3.6. Conductance vs applied gate voltage of a 300 nm wide QPC 
at magnetic fields of 0.9T, 1.36T and 2.71T, and bulk filling factors of 
νbulk = 6.00, νbulk = 3.97 and νbulk = 1.99 respectively. Each point 
represents an independent electrostatic simulation. The edge mode of 
even νth Landau level starts conducting just above a bulk filling factor 
of νbulk = ν. This is why we have conductance corresponding to one less 
edge state than the filling factor. 

Figure 3.7. A plot of the 3 edge modes in the QPC structure in figure 3.1 
for n = 1 (a), n = 2 (b) and  n = 3 (c) Landau levels at Vg = −0.342V 
and B = 0.9T. The arrows show the direction and relative magnitude 
of the current density. The conductance of QPC is 2 × 2e2/h, since the 
innermost mode is reflected by the QPC. 



� � � �

65 

3.3.4 Edge state wavefunctions in the QPC scattering region 

Figure 3.7 shows edge state wavefunctions at VG = −0.342V and 0.9T (bulk 

filling factor of νbulk = 6) for a QPC. Figures 3.7a) and b) have fully transmitted 

and 3.7c) has fully reflected edge states respectively. In this simulation, the spin is 

neglected and only the wavefunctions for the spin-less Landau levels n are shown. 

The wavefunctions for n = 1, 2 and 3 have 1, 2 and 3 lobes respectively, similar 

to the harmonic oscillator wavefunctions of the bulk 2D IQHE Hamiltonian in the 

Landau gauge. The wavefunctions for different spins in the same Landau level n 

have the same functional form. The current densities calculated using Eq. 3.13 are 

shown using black arrows. Interestingly, the local current density changes direction 

for n = 2, 3 (figures 3.7 b), c)) and goes opposite to the direction of the current flow. 

This may be understood semi-classically as the motion of the guiding center of the 

cyclotron orbit. Pile up of charge can be seen at the corners of the QPC defined 

2DEG where the wavefunctions bend. 

3.4 Optimization of edge state velocity 

In this section the velocities of edge states of different Landau levels are shown as a 

function of gate voltage and magnetic field for different structures. Eq 3.12 is used for 

calculating the velocity of the edge states. The velocity obtained from this equation 

is found to be equal to E /B, where  E is the expectation value of the electric field 

for the edge state wavefunctions. The goal of this section is to design heterostructures 

and gates to obtain a strong electric field at the 2DEG edges that yield high edge 

state velocities. The velocity saturates even though electric field near the gate gets 

stronger, due to the finite width of the edge state wavefunction. Therefore, the correct 

metric for defining the strength of the electric field is the velocity of the edge states, 

or the expectation value of the electric field for the edge state wavefunctions χ. In this 

section the velocities of propagating modes are evaluated in the semi-infinite region, 

thus they are the injection velocities of propagating modes. Velocities calculated 
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elsewhere in the device, but away from the middle region of the QPC, are found to 

be close to the injection velocities. 

Four different structures are considered, as shown in Fig. 3.8, in an attempt to 

maximize the velocity of edge states. The first structure (Fig. 3.8a) is the same as 

Fig. 3.1 with top gates. In the second structure (Fig. 3.8b), the doping is moved 

closer to the 2DEG from 17-31 nm depth to 40-54 nm depth to increase the 2DEG 

bulk DOS. A depletion top gate is added on the bulk interferometer region to get 

the same bulk density as the first structure. The gate which defines the edge of the 

2DEG is separated from the bulk depletion gate by 100 nm. The idea behind this 

design is the improve the electric field by making a higher 2DEG DOS available near 

the edge. The third structure (Fig. 3.8c) has the same heterostructure as the first 

structure, but uses trench gates with vertical trench walls which can be made using 

anisotropic etching techniques. Anisotropically etched trench gates that are etched 

past the doping region have a stronger effect on the 2DEG because the screening 

due to doping is removed. The fourth structure (Fig. 3.8d) has double-sided delta 

doping with trench gates etched past the top doping layer, but not past the quantum 

well and the bottom doping layer. There remains a 25 nm AlGaAs spacer between 

the trench metallic gate and the quantum well. The 10 nm wide quantum well is at 

a depth of 155 nm and separated from the doping layers by 45 nm on both sides. 

The bulk 2DEG density in this heterostructure is 2.11 × 1011 cm-2 as compared to 

1.34 × 1011 cm-2 in the other three structures. Keeping the second doping layer helps 

pull the electrons closer to the gate and thus increases the edge electric field. 

3.4.1 Magnetic field dependence of velocity 

The expectation values of the electric field for edge states of the n-Landau levels 

are plotted as a function of the spin-less bulk filling factor for the four different 

structures in figure 3.8. The electric field expectation for the spin-less edge state 

wavefunctions is plotted in Fif. 3.8 to compare the compressible strips widths. The 
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Figure 3.8. Electric field expectation values of edge modes of n = 1, 2, 3 
LLs for four different structures are plotted as a function of the spin-less 
bulk filling factor. The structures are described in more detail in section 
3.4. Applied gate voltages (Vg) are -0.34V, -0.54V, -0.1V and +0.1V for 
plots a), b), c) and d) respectively. 

top gated structures require a negative bias on the top gate to deplete the 2DEG, 

whereas the 2DEG under trench gates is depleted at 0V because of the etched doping. 

A positive bias is applied in the fourth structure to pull the electrons towards the 

gate. It can be seen from the plots that the electric field expectation value goes to 

zero as the magnetic field is increased, for the edge states of Landau levels that are 

partially filled. The electric field expectation value for partially filled Landau levels 

starts dropping to zero close to half filled bulk Landau level, which means that the 

edge (extended) states lie at the center of the Landau level DOS. 

The two features that define the sharpness of the edge are the maximum value of 

E and its slope as a function of the filling factor. Both these features depend on 

the width of compressible region. The compressible region is narrower in a structure 

as compared to another at a particular magnetic field (equal sub-band energy drop 

across the compressible regions in the two structures), when E is stronger in that 

structure. Due to this, the slope of E as a function of the bulk filling factor is also 

steeper because the width of the compressible region decreases to a smaller value. 
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(a) 

(b) 

Figure 3.9. a) and b): Velocities of edge states with spin for the structure 
in fig 3.8a) and d) respectively plotted as a function of the bulk filling 
factor νbulk. 

The electric field in trench gated double delta doped structure is the highest among 

the four structures (figure 3.8). 

Figures 3.9a and 3.9b plot the edge state velocities for structures in Figs. 3.8a and  

3.8d respectively when the spin is included in the Hamiltonian. With spin included 

the edge state wavefunctions, which were in the center of the compressible region when 

spin was excluded, split into two and move towards opposite ends of the compressible 

region. This can be seen in Fig. 3.5 for ν = 1, 2. This is due to the Zeeman energy and 

the large effective spin splitting due to interactions [117]. Edge states with opposite 
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spin from consecutive n-Landau levels lie close to each other, e.g. in fig. 3.5 for 

ν = 2, 3. Therefore the velocity of even ν-Landau level edge states goes to zero just 

below the corresponding ν bulk filling factor as the wavefunction is close to the inner 

edge of the compressible region. The velocity of odd ν-Landau level edge states goes 

to zero close to ν − 1 bulk filling factor as the wavefunction is close to the outer 

edge of the compressible region. This explains the maximum conductance in fig. 3.6 

(conductance plot for the QPC in the IQHE regime). From these plots we can infer 

that the edge state velocity has an upper limit due to a finite width of the edge 

state wavefunctions. The velocities are also affected by the electrostatics. This can 

be clearly seen for the inner edge states, whose velocity decreases close to the even 

integer νbulk bulk filling factor and forms plateaus in between. 

These results explain the visibility going to zero close to νbulk = 1  and  νbulk = 2  for  

well defined outer and inner edge channels respectively, in the interferometer visibility 

measurements of Gurman et al. [86]. For higher bulk filling fractions, low velocity 

(due to the slow moving neutral modes possibly caused by Coulomb interactions) 

and inter edge scattering causes a drop in visibility [86], which cannot be predicted 

using this model. The velocities predicted by this model fall reasonably close to the 

experimentally measured values; for example ∼ 0.5 − 1.5 × 105 m/s measured by 

Mcclure et al [88] and  ∼ 2 − 8 × 104 m/s measured by Gurman et al. [86]. The 

velocities in the trench gated structures are predicted to be higher on an average by 

a factor between 1-2 and as much as 10 at certain filling factors for the outer edge. 

3.4.2 Gate voltage dependence of velocity 

The edges of the 2DEG in the interferometer region are defined by either negatively 

biased top gates or by trench gates. The 2DEG in the top gated structures is not 

depleted until a certain negative gate voltage is reached as the doping layer screens the 

top gate. Trench gated structures on the other hand have depleted 2DEG irrespective 

of the applied gate voltage when the doping layer is also etched. A positive gate bias 



70 

can then be applied on the trench gates to pull the edge of the 2DEG closer to the 

lithographically defined edge to possibly get a larger edge electric field. In the section, 

the edge state velocities for top and trench gated structures are compared, and their 

dependence on the gate voltage is studied. 

Figure 3.10. Velocities of edge modes for outermost (n = 1)  n−Landau 
level in same four structures as figure 3.8 at different magnetic fields are 
plotted as a function of the gate voltage. The spin-less bulk filling factors 
for the plotted magnetic fields are: a) nbulk = 3.04, 1.51 and 1.14; b) 
nbulk = 2.96, 2.12 and 1.27; c) nbulk = 3.75, 1.88 and 1.40; d) nbulk = 2.93, 
2.14 and 1.44; respectively. 

Figure 3.10 plots the velocity of the outermost n-Landau level edge mode at 

different magnetic fields as a function of the gate voltage for the four structures 

studied in the previous sub-section. The velocity for the top gated structure (fig. 

3.10a) increases as more negative voltage is applied on the gate and saturates at a 

certain value. This shows that the 2DEG is screened by the doping layer and the 

edge potential is the steepest when the doping layer is depleted. Fig. 3.10b shows  

velocities at high negative gate voltages in the saturated regime. A peak can be seen 

in the velocity near -0.6V for B=1.5T. This is because the edge state moves from 

under the outer top gate to under the inner top gate while passing through the region 

with exposed surface. This shows that the region with exposed surface has a larger 

electric field due to a higher local density of states. This effect is not seen at B=0.7T 

and B=0.9T because the wavefunctions become wider as magnetic field is reduced and 

the electric field is averaged out over a larger area. Figs. 3.10c and  3.10d are  for the  
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trench gated structures. The velocity increases in Fig. 3.10c the as the gate voltage 

becomes more positive for B=2.4T. This effect is less pronounced at lower magnetic 

fields where the wavefunctions are wider. Fig. 3.10d shows negligible dependence 

of the edge state velocity on gate voltage for the double-side doped trench-gated 

structure. This could be due to the positively charged lower doping layer pulling 

the edge state wavefunction closer to the lithographic edge. The gate voltage only 

changes the location of the edge state and not the electric field expectation value. 

3.4.3 Quantum well width dependence of velocity in double-sided delta 

doped structure 

In this sub-section the effect of quantum well width on edge state velocity is 

studied for the double-sided delta doped structure in fig. 3.8d. Fig. 3.11 plots the 

average of the edge state velocity for the n = 1 Landau level, calculated over the range 

of gate voltages in Fig. 3.10d. In general, E for edge states increases with the bulk 

2DEG sheet density. The bulk 2DEG sheet density increases as the quantum well 

width is increased; therefore, the velocity also increases with the quantum well width 

for this structure. However, the quantum well width cannot be arbitrarily increased 

as this will lead to the formation of a bilayer sheet density. Also, higher magnetic 

fields are required to get the same filling fraction for larger quantum well widths. 

The 9 nm-, 10 nm- and 11 nm-wide quantum wells have 2DEG sheet densities of 

1.93 × 1011, 2.11 × 1011 and 2.20 × 1011 cm-2 respectively. 

3.5 Summary 

A simulation method for comparing the edge state velocity in different structures 

was presented which was used for designing heterostructures with larger edge state 

velocity. Schrödinger and Poisson equations were solved self-consistently for QPCs 

defined on GaAs/AlGaAs heterostructures, and the electron density and electrostatic 

potential were obtained in the IQHE. A set of 1-dimensional wavefunctions are solved 

https://1011,2.11
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Figure 3.11. Edge state velocity for the n=1 Landau level averaged over 
different gate voltages as a function of the quantum well width for the 
structure in fig. 3.8d. 

for the interfacial quantum well on a lateral 2-dimensional grid, and the Thomas-

Fermi Approximation (TFA) is used to calculate lateral density of states to get the 

3-dimensional electron density used in the electrostatic simulations. The broadening 

of Landau levels due to disorder and various other effects is considered in the TFA 

using a Gaussian broadening of LLs. Electrostatic simulations show the formation 

of compressible and incompressible regions near the edge of the 2DEG. The sub-

band energies of the quantum well obtained from self-consistent simulations are used 

in 2-dimensional quantum transport calculations to get the transmission, edge state 

wavefunctions, velocities and current densities. 

Sheet density, sub-band energy and edge state wavefunction profiles for QPCs were 

obtained from the model. The model was benchmarked by comparing the calculated 

resistance with the measured resistance for the same structure fabricated experi-

mentally. The edge state wavefunctions were obtained from the quantum transport 
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simulations, which represent the solutions of the 2-dimensional IQHE Hamiltonian in 

the Landau gauge and for a spatially varying electric field. 

The velocity of edge states calculated using quantum transport simulations is 

equal to E /B, where  E is the electric field expectation value for the edge states. 

The edge state velocity has an upper limit due to a finite width of the edge state 

wavefunctions. The magnetic field and gate voltage dependence of the edge state 

velocity was also compared for different structures. The velocity in the double delta 

doped anistropic etched trench gated structures was found to be the highest among 

the four structures considered. It was also showed that the velocity increases with 

the quantum well width in double side doped structures. 

These results can be used to understand some of the visibility and velocity mea-

surements of electronic interferometers operating in the integer quantum Hall regime 

[86, 88]. The device designs proposed here may lead to improved edge state veloc-

ity and thus improved performance of future interferometers, and may enable the 

observation of interference in the fractional quantum Hall regime. 
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4. COMPUTATIONAL MODELING OF EXCHANGE 

SPLITTING IN SILICON-SILICON DIOXIDE DOUBLE 

QUANTUM DOTS 

Parts of this chapter will be submitted to journals in the future for publication, and 

the journals which publish the individual parts will own the copyrights for those parts. 

4.1 Introduction 

It was discussed in Section 1.2.2 that electrons trapped in electrostatic quantum 

dots at the interface of silicon and silicon-dioxide materials can be used for quantum 

computation. Single qubits are made from the spin of a single electron in which 

spin-up functions as |1 state and spin-down functions as |0 state. Initialization and 

read-out of the spin are done using an electron reservoir (“Res”) and a single electron 

transistor (“SET”) (Fig. 1.5) in which Coulomb blockade can be used for selective 

tunneling of an up or down spin electron from/to the dot. Qubit rotations or gates 

are performed using Rabi oscillations that can be induced by an effective oscillatory 

magnetic field. 

Two qubit gates can be made from two electrons in nearby dots that are tunnel 

coupled, which means that there is a finite overlap of electron wavefunctions between 

the two dots. The two electrons then form singlet states which are symmetric/anti-

symmetric in orbital/spin parts, and triplet states which are anti-symmetric/symmetric 

in orbital/spin parts respectively (Eqs. 1.7-1.12). The two qubit gate operation is 

then performed by applying an AC voltage to the confining gate of one qubit, that 

resonates with the energy separation between the ground singlet (anti-parallel-spin 

|S(1, 1) ) and triplet (parallel-spin |T+(B, A) and |T−(B, A) ) states.  For the  cnot 

https://1.7-1.12
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gate, the AC voltage pulse is resonant with |S(1, 1) -|T+(B, A) transition, in which 

the electron spin under the gate where the AC voltage is applied flips if the other 

electron is spin-up. 

If the dots aren’t tunnel coupled, the resonance frequencies ν(S→T+) and ν(S→T−) 

(Eq. 1.25) are equal. When the dots are tunnel coupled, the these two frequencies 

are separated by the exchange splitting EJ (Fig. 1.6b). The exchange splitting EJ 

defines the speed and fidelity of 2-qubit operations: if the slope of EJ vs detuning 

is large, charge noise couples strongly to the electrons leading to a smaller coherence 

time, and if EJ is small, a smaller 2-qubit gate speed leads to fewer possible 2-qubit 

operations over the coherence time. Therefore, the qubits have to be moved from 

“off” to “on” exchange coupling state before the operation and then restored. 

Although the exchange splitting has been calculated as a function of detuning 

analytically and computationally using quadratic and quartic dot potentials [54–59], 

these results are qualitative and don’t directly help in the device design process. A 

computational study of exchange splitting has the advantage over analytic studies of 

using atomistic one-electron wavefunctions having complex amplitudes for the valley 

part of the wavefunction, with full configuration interaction for two-electron inter-

actions to give a more accurate quantitative model. Additionally, engineering the 

devices that operate in the desired range of exchange splitting requires design of gate 

geometry and oxide thicknesses as shown in Fig. 4.1. This chapter presents a com-

putational study of the exchange splitting versus detuning, oxide thickness, and gate 

width and separation for a realistic device geometry. 

4.2 Methodology 

The electrostatic potential is calculated using the electrostatic simulation frame-

work described in Chap. 2, in which effective-mass Schrödinger Eq. 2.1 is solved 

self-consistently with the semiconductor Poisson equation 2.9. The calculated po-

tential is used in atomistic tight binding Hamiltonian [124] for calculating the single 
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Figure 4.1. An illustration of the various device parameters in Si/SiO2 

double quantum dot. tSiO2 and tAl2O3 are the SiO2 and Al2O3 thicknesses 
under the gate, p = 36 nm is the gate pitch, w is the gate width and d is 
the gate separation such that p = w + d 

electron wavefunctions. The atomistic tight binding model gives z+/- valley splitting 

due to the interface electric field. The one-electron atomistic wavefunctions are then 

used in full configuration interaction (FCI) method for calculating the two-electron 

energy levels and eigenvectors. The complete calculation is described in Fig. 4.2. 

Details of electrostatic, atomistic and FCI methods are given in this section. 

4.2.1 Electrostatic simulations 

The Schrödinger and Poisson equations are discretized on a FEM mesh as shown 

in Fig. 4.3. The Poisson mesh covers the whole device, 2 μm × 1.5 μm × 0.5 μm 

in size, whereas the Schrödinger mesh is only in the region under the gates where the 

dots form. The Schrödinger mesh is a sub-mesh of Poisson mesh having coinciding 

nodes between the two meshes. Having coincident nodes helps with convergence of 

the non-linear system. The Poisson mesh is generated using the commercial software 

“Sentaurus Device”. The node spacing along z-axis under confining gates is 0.1 nm 

since electrons are confined within 4 nm of the interface, and the effective mass along 

the vertical direction is ∼ 4 times smaller than the lateral effective mass requiring a 

more accurate parabolic band. 
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Figure 4.2. Flowchart describing the calculation of two-electron wave-
functions and energy levels from computationally calculated tight bind-
ing one-electron wavefunctions. The electrostatic potential used for tight 
binding calculations is self-consistently calculated using the electrostatic 
simulation framework. 

The effective masses used in the effective mass tensor (Eq. 2.2) are  ml 
∗ = 0.891m0 

and mt 
∗ = 0.201m0 which are the effective masses of the tight binding model in 

the X valley [124], as compared to the experimental effective masses m ∗ l = 0.916m0 

and mt 
∗ = 0.190m0, where  m0 is the free electron mass. Effective masses of the 

tight binding model are used so that the converged potential from effective-mass 

Schrödinger-Poisson system would be close to one that could be obtained by self-

consistently solving tight binding-Poisson system. The band gap is set to EC − EV = 

1.131 eV obtained from the tight binding model as compared to the experimental EC − 

EV = 1.118 eV. Dielectric constants in Si, SiO2 and Al2O3 used in the simulations 
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Figure 4.3. Finite element mesh used to discretize Schrödinger and Pois-
son equations with top gates shown as shaded regions. The mesh has 
∼ 550, 000 nodes and ∼ 3.5 million elements. 

are 11.9, 3.9 and 9.8 respectively. A charge density of 1 × 1012 cm−2 was used at 

the interface of Si and SiO2 materials to model surface impurities. The various gate 

voltages used in electrostatic simulations as per the experiments are shown in Table 

4.1. 

For capturing the correct density of states, which is important in electrostatics, 

a 4-band effective mass model is used. The energies for these 4 bands are shifted 

by the valley and Zeeman splittings, neglecting any overlap of the valley orbitals 

and spin mixing. The valley orbital overlap is important for Coulomb and exchange 

energies, but not for the one-electron density of states. A valley splitting of 1.9 meV is 



80 

used, which is obtained from tight binding simulations that used realistic electrostatic 

potential such that the vertical electric fields were accurately captured. The Zeeman 

splitting is calculated from the g-factor and magnetic field. The direction-dependent 

g-factor is obtained from tight binding simulations, which is 1.998 for magnetic field 

aligned with the [110] crystal direction. A magnetic field of 1.4 T is used in both 

experiments [12, 15] and simulations. 

Table 4.1. 
Gate names (Fig. 4.3) and voltages used in electrostatic simulations. 

Gate Name 

GC 

G1 

G2 

G3 

G4 

Res 

Gate Voltage (V) 

0.1 

V1 

V2 

0.1 

2.6 

3.4 

Gate Name 

SET source 

SET barrier 1 

SET island 

SET barrier 2 

SET drain 

Gate Voltage (V) 

2.2 

0.86 

2.2 

0.85 

2.2 

Detuning model 

It is difficult to define the detuning between the dots for simulations in terms 

of energy levels, as the double dot potential gives bonding and anti-bonding orbitals 

instead of energy levels in left and right dots. In this work, the charge in left and right 

dots is used to numerically define a detuning point. The total charge in the double 

dot is fixed to 2 electrons, as the simulations are done in the two-electron regime. 

∗ ∗ ∗ ∗The target charges q and q in left and right dots are set such that q = 2e, e.g.  1 2 1 + q1 

q1 
∗ = 1.4e and q2 

∗ = 0.6e. 

To get this charge configuration, the unknown target accumulation-gate voltages 

are V1 
∗ and V2 

∗ respectively, which can be calculated iteratively. This is automati-
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Figure 4.4. An illustration of the gate voltages, dot charges and dot-gate 
capacitances. Top gates are green rectangles and charges are blurry red 
ellipses. 

cally done using a Python script that calculates the gate-dot capacitance matrix 

containing elements C11, C21, C12 and C22 as shown in Fig. 4.4. The capacitance 

matrix at gate voltages V1 and V2 is calculated by adding a small value δV = 1  mV  

to each voltage independently and calculating the change in charges in the two dots 

by running an electrostatic simulation. 

⎡ ⎤ ⎡ ⎤ 
C11 C12 δq1/δV1 δq2/δV1 ⎣ ⎦ ⎣ ⎦CGD = = (4.1) 
C21 C22 δq1/δV2 δq2/δV2 

The voltages to be used in the next iteration Ṽ 
1 and Ṽ 

2 are calculated by inverting 

the capacitance matrix as follows 

⎡ ⎤ ⎡ ⎤−1 ⎡ ⎤ 
˜ ∗V1 − V1 C11 C12 q1 − q1 ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ = (4.2)
˜ ∗V2 − V2 C21 C22 q2 − q2 

This algorithm converges in 3-4 iterations to order 10−6 accuracy in the dot charges, 

given a reasonable set of initial voltages. 
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4.2.2 Tight binding simulations 

3d5The (20 band, sp s ∗ with spin-orbit parameter) atomistic tight binding (TB) 

model used here is optimized to fit the band structure of Si obtained from the density 

functional theory, and most accurately represents the valence band and the lower con-

duction band [124]. The TB Hamiltonian matrix elements consist of on-site energies 

in the diagonal and coupling integrals that are modeled using the linear combination 

of atomic orbitals method as shown by Slater and Koster [125]. The fine structure 

of electron energy levels and, especially the effect of the interface electric field on the 

valleys in Si quantum dots can be obtained using this model. Valley splitting due to 

the electric field contributes to the exchange splitting as well. Additionally, atomistic 

effects such as surface roughness and impurities, which could be beneficial for the 

spin qubit operation [60,61] can be accurately modeled using this method. The tight 

bonding model in the NEMO3D software [126] is used. 

It has been shown that the energy levels obtained using the tight binding method 

in Si quantum dots as small as 3 nm in diameter can be obtained using the effective 

mass (EM) model [127]. Thus, the EM model is used in electrostatic simulations to 

reduce computational cost and the electrostatic potential obtained is used in the TB 

method to model the atomistic effects. The wavefunctions obtained from TB are used 

to calculate the 2-electron Hamiltonian discussed next. 

4.2.3 Full configuration interaction simulations 

The two-electron Hamiltonian consisting of the lowest 6 states was discussed in 

Sec. 1.2.2. The Hamiltonian constructed from the lowest 6 truncated basis states is 

not enough for calculating the exchange splitting as it doesn’t capture the Coulomb 

and exchange energies due to higher valleys and orbitals [58]. Full configuration inter-

action (FCI) [59] can be used to computationally calculate the two-electron spectrum, 

with as many basis states as is required. In the FCI method, the two-electron basis 
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states are the Slater Determinants (SD) of one-electron wavefunctions |ψa/b as shown 

below 

|ψa(r1) �|ψb(r2) � − |ψa(r2) �|ψb(r1)
SDa,b = √ (4.3)

2 

The one-electron wavefunctions |ψa/b are obtained from the tight binding model as 

described in the previous section. The two-electron FCI Hamiltonian matrix elements 

having 4 one-electron wavefunction indices a, b, c, d can be written in terms of 

Coulomb (J) and exchange (K) integrals as shown below 

2e 
ψ† †Ja,b,c,d = a(r1)ψb (r2) ψc(r1)ψd(r2) dr1 dr2 ,

4π� |r1 − r2|
2 (4.4) 
e 

ψ†Ka,b,c,d = a(r1)ψb 
†(r2) ψd(r1)ψc(r2) dr1 dr2

4π� |r1 − r2| 
Here the lowest 24 one-electron basis states obtained from the tight binding simu-

lations have been used. Thus, the size of the FCI Hamiltonian is 24
2 = 276. The 

Atomistic Configuration Interaction software in NEMO5 [128] was used for the FCI 

simulations. 

4.3 Results 

This section shows one-electron and two-electron energies and wavefunctions as a 

function of quantum dot detuning, oxide thicknesses and gate geometry. The detuning 

is controlled by the charges in left and right dots. The dot charges are taken from 

0.35e in the left and 1.65e in the right dot to 1.65e in the left and 0.35e in the right 

dot in changes of 0.05e in left and right dots such that the total charge in the two 

dots is 2e. The gate voltages required for obtaining these charges is calculated using 

the method described in Sec. 4.2.1. The quantity on x-axis in all detuning plots is 

the difference in gate voltages of “G1” (V1) and “G2” (V2), called the plunger voltage 

VP = V1 − V2. 
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4.3.1 Comparison of effective-mass and tight-binding energy levels 

To ensure that the electrostatic potential obtained from self-consistent EM Schrödinger-

Poisson simulations is suitable for the TB model, a comparison of EM and TB energy 

levels as a function of detuning is performed as shown in Fig. 4.5. An x-y cut (paral-

lel to the interface) of the wavefunctions for leftmost, middle and rightmost detuning 

points obtained from the TB model are also plotted in Fig. 4.5. A difference of 

∼ 1.3 meV is observed between the EM and TB energy levels for all the dot separa-

tions. This difference can be attributed to an abrupt interface in the TB model due 

to the absence of SiO2 where the electrons encounter an infinite barrier as compared 

to a finite barrier in the EM simulations. 

4.3.2 Tight binding model energy spectrum 

The FCI calculations require the lowest 16-24 TB wavefunctions for an accurate 

calculation of the exchange splitting. The lowest 24 TB wavefunctions are bonding 

and anti-bonding orbitals in the Z+, Z−, and a combination of X+, X−, Y+ and Y− 

valleys for both spins. The TB energy spectrum for 8-, 10- and 12-nm separation is 

plotted in Fig. 4.4. Care must be taken to ensure that wavefunctions for the same 

orbitals and valleys are used for FCI calculations at all detuning points. For example 

in Fig. 4.4 a), a higher orbital (shown in red, energy levels 17-18) crosses a lower 

orbital (energy levels 15-16). Therefore, if only 16 wavefunctions are used in FCI, 

this will lead to a jump in two-electron energy levels. Thus, only the energy levels 

depicted in black are used for FCI. 

4.3.3 Two-electron energy spectrum 

In this section, the lowest four two-electron energy levels and the ground state 

singlet amplitudes as a function of detuning is compared for 8-, 10- and 12-nm sepa-

ration. The energy levels are plotted relative to the Fermi level used in electrostatic 
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Figure 4.5. a) - c) Comparison of the lowest four energy levels obtained 
from effective-msss Hamiltonian (black/dark) and tight-binding Hamil-
tonian (cyan/light) as a function of detuning for 8-, 10- and 12-nm dot 
separation respectively. The Fermi level used in effective-mass electro-
static simulations is at 0 eV. d) - i) Anti-bonding, and m) - u) bonding 
orbital wavefunctions obtained from tight binding model. d) m), g) p) and 
j) s) are for leftmost, e) n), h) q) and k) t) are for zero, and f) o) i) r) and l) 
u) are for rightmost detuning points for 8-, 10- and 12-nm dot separation 
respectively. All the calculations are done using a gate pitch p = 36 nm, 
Al2O3 thickness tAl2O3 = 1 nm and SiO2 thickness tSiO2 = 5.9 nm. 

simulations, in Fig. 4.7. The shift in TB energy levels relative to EM energy lev-

els (Fig. 4.5) is  ∼ 1.3 meV. The approximate exchange and correlation energy 

between the bonding and anti-bonding orbitals (Eq. 1.23) obtained by subtracting 

2 × 1.3 = 2.6 meV from the S/T0 energy levels, are ∼ 4.9 meV,  ∼ 4.5 meV  and  

∼ 4.2 meV for 8-, 10- and 12-nm dot separations respectively. Exchange and cor-

relation energy is found to dominate as it is much larger than the orbital splitting, 

which is ∼ 0.8 meV,  ∼ 0.3 meV  and  ∼ 0.1 meV for 8-, 10- and 12-nm dot separations 

respectively. 
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Figure 4.6. a) - c) Tight binding energy spectrum for the double quantum 
dot as a function of detuning for 8-, 10- and 12-nm dot separations. The 
black lines with circles are the levels used in FCI calculations, whereas red 
lines with crosses are not used in FCI. The Fermi level used in effective-
mass electrostatic simulations is at 0 eV. All the calculations are done 
using a gate pitch p = 36 nm, Al2O3 thickness tAl2O3 = 1 nm and SiO2 

thickness tSiO2 = 5.9 nm. 

4.3.4 Ground singlet composition and singlet anti-crossings 

The ground singlet state is made up of the |S(B,B) , |S(A,A) and |S(B,A) 
singlets as shown in Sec. 1.2.2. These three singlet states are coupled to each other 

through one- and two-electron hopping integrals as shown in Eqs. 1.19, 1.21 and 

1.22. This leads to four separate anti-crossings where the |S(B,A) singlet mixes 
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Figure 4.7. a) - c) Two-electron energy levels obtained from FCI simula-
tions for 8-, 10-, and 12-nm separation. The Fermi level used in effective-
mass electrostatic simulations is at 0 eV. All the calculations are done 
using a gate pitch p = 36 nm, Al2O3 thickness tAl2O3 = 1 nm and SiO2 

thickness tSiO2 = 5.9 nm. 

Figure 4.8. a) - c) Contributions from |S(B, B) , |S(A,A) and |S(B,A) 
singlets to the ground singlet. Dashed lines show the anti-crossing 
points (not (1,1)-(0,2) anti-crossings) where amplitudes of |S(B, B) and 
|S(B, A) are equal. All the calculations are done using a gate pitch p = 
36 nm, Al2O3 thickness tAl2O3 = 1 nm and SiO2 thickness tSiO2 = 5.9 nm. 

with either |S(B, B) or a combination of |S(B, B) and |S(A, A) singlets. The 
anti-crossings on either side of zero detuning where |S(B, A) mixes with |S(B,B) 
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Figure 4.9. a) - c) Exchange splitting vs detuning for different dot separa-
tions. All the calculations are done using a gate pitch p = 36 nm, Al2O3 

thickness tAl2O3 = 1 nm and SiO2 thickness tSiO2 = 5.9 nm. 

singlet is the so-called (1,1)-(0,2) anti-crossing, where the nature of charge density 

changes from being in both dots to being in the lower dot. At this anti-crossing, the 

contributions of both |S(B, B) and |S(B,A) are close to 0.5. This anti-crossing is 
out of the detuning range plotted currently. 

The other two anti-crossings are located on either side of zero detuning, where 

|S(B,A) mixes with both |S(B,B) and |S(A, A) singlets. Here, the nature of 
the charge stays in the (1,1) regime. The relative contributions from |S(B,B) and 

|S(A,A) depends on the orbital splitting, or the energy separation between bonding 

and anti-bonding orbitals. Increasing the dot separation leads to a reduction in the 

orbital splitting, and the contributions of |S(B,B) and |S(A,A) become equal close 
to zero detuning as seen in Fig. 4.8. At zero detuning, this is similar to a H2 molecule 

in which the distance between the H atoms is increased such that the wavefunction 

overlap decreases, and the molecular orbital goes from only having |S(B,B) to having 
both |S(B, B) and |S(A, A) contributions. 
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Figure 4.10. Exchange splitting at zero detuning vs SiO2 and Al2O3 oxide 
thicknesses. 

4.3.5 Exchange splitting vs detuning 

Exchange splitting is the difference between ground singlet and the zero spin-

component triplet: EJ = ET0 − ES . EJ vs detuning for 8-, 10- and 12-nm dot 

separations is plotted in Fig. 4.9. When the exchange-correlation energy is smaller 

than the orbital splitting, exchange has been shown to increase monotonously with 

detuning [54–58]. As can be seen in Fig. 4.9, this is not true when the exchange-

correlation energy is much larger than orbital splitting. As the dot separation is 

increased from 8 to 12 nm, the orbital splitting reduces from ∼ 0.8 meV  to  ∼ 0.1 meV,  

while bonding-anti-bonding exchange-correlation energies reduce from ∼ 4.9 meV  to  

∼ 4.2 meV as discussed in Sec. 4.3.3. This causes the exchange splitting to decrease 

with detuning at 10- and 12-nm dot separations. This property could be useful in 

two-qubit gate operation when an exchange gate is used for turning the exchange on 

and off. A small slope of exchange splitting vs detuning would also decrease sensitivity 

to charge noise. 



90 

4.3.6 Exchange splitting vs oxide thicknesses 

Fig. 4.10 shows exchange splitting at zero detuning vs SiO2 and Al2O3 oxide 

thicknesses. The exchange splitting changes by orders of magnitude by changing 

oxides by just a few nm. This could be used to design devices with exchange splitting 

in the desired range. The dependence on oxides was modeled by changing the FEM 

mesh in electrostatic simulations to accommodate the different oxide geometries. 

4.4 Summary 

Si/SiO2 based quantum dots are a strong candidate for quantum computing de-

vices due to the long coherence time and advanced fabrication techniques. Exchange 

splitting between the ground singlet and triplet energy levels of two electrons in tun-

nel coupled quantum dots is used for two qubit operations. Exchange splitting is 

an important parameter in two qubit gate speed and coherence. Engineering the 

exchange splitting by designing devices with better suited gate geometries and oxide 

thicknesses is necessary, and can be sped up using realistic simulations of the devices. 

In this chapter, a modeling technique is developed for the quantum dot based de-

vices which can take the various device parameters such as gate geometry and oxide 

thickness into consideration while calculating the exchange splitting and two-electron 

energy spectrum. The electrostatics in these devices is realistically modeled by solv-

ing effective-mass Schrödinger and Poisson equations self-consistently. The converged 

electrostatic potential is then used for calculating atomistic wavefunctions using the 

empirical tight binding model for taking into account valley splitting, spin-orbit inter-

action due to surface roughness and the effect of electric field on the Si bands. These 

atomistic wavefunctions are then used in the full configuration interaction (FCI) to 

calculate the two-electron energy spectrum, from which exchange splitting can be 

obtained. 

The FCI calculations show that the exchange splitting can decrease with detun-

ing, if the orbital splitting (splitting between bonding and anti-bonding orbitals) is 
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much smaller than the exchange-correlation energy. This wasn’t observed before in 

analytical calculations. The configuration of the ground state singlet was also shown 

to consist mostly of the bonding-bonding and anti-bonding—anti-bonding singlets. 

Exchange splitting was shown to vary slowly with detuning as the dot separation is 

increased, which could be used to design low-noise two-qubit gate architecture. The 

behavior of exchange splitting with oxide thicknesses shows orders or magnitude of 

variation in changing the thickness by a few nano-meters, which could be used for 

device design. 
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5. SUMMARY AND OUTLOOK 

Quantum computing is becoming increasingly important because of its potential in 

solving complex optimization problems that are currently impossible to solve using 

classical computers. Several prototype of quantum computers are currently being re-

searched that are based on superconductors, semiconductors, trapped ions, topologi-

cal collective exitations, optical cavities etc., each having their own benefits. Proposal 

for topological quantum computers based on quasi-particles in the fractional quantum 

Hall effect (FQHE) is interesting due to the topological protection of the qubits to 

noise. Quantum dot based quantum computers are interesting due to their practical 

applications. Designing these devices can be challenging and time consuming due 

to the large number of parameters that need to be tuned from fabrication to their 

operation. Computational modeling of these devices can be helpful in reducing the 

time required for design. An overview of FQHE based topological and quantum dot 

based quantum computers was given in Chap. 1. 

The devices that could be used in both these types of quantum computers were 

computationally modeled in this work. The device modeling was guided by the three 

basic principles: smallest possible number of tunable parameters should be used, 

results should be comparable to the experiments, and predictions for design improve-

ments should be possible. A framework to model the electrostatics in these devices was 

developed, so that the underlying physics can be connected to the device parameters. 

The electrostatic framework takes into account the effect of gates, heterostructures, 

doping, interface and background impurities, and most importantly the quantum me-

chanics that dictates the behavior of electrons. A nano-meter precision in regions 

containing mobile electrons was achieved over micro-meter sized device geometries by 

using finite element meshes that can be coarsened and refined, such that the com-
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putational burden is manageable without affecting the accuracy. An overview of the 

electrostatic simulation framework was given in Chap. 2. 

FQHE based topological qubits are made from two quantum Hall interferome-

ters with a common QPC between them, and two quasi-particles are trapped on 

an anti-dot in each of the interferometers. The gate operations are performed by 

sending quasi-particles through the edge states of the interferometers around the 

quasi-particles trapped on the anti-dots such that their world lines are braided. The 

quasi-particles moving on the edge states must propagate fast enough so that they 

maintain coherence while the operation in completed. The coherence could be im-

proved by reducing the interferometer size, and by increasing the edge state velocity 

of the quasi-particles. An introduction to FQHE based topological qubits is given in 

Sec. 1.2.1. 

A computational study of the edge state velocity of electrons in the integer quan-

tum Hall effect (IQHE) was performed in Chap. 3. It was argued that an increase 

in electron velocity would also lead to an increase in the quasi-particle velocity. The 

velocity of electron edge states was found to be E /B, where  E is the expectation 

value of the electric field for the edge state wavefunction, and B is the magnetic field. 

The electric field at the edges was also found to be correlated with the sheet den-

sity of the 2DEG. Four different structures were studied, and it was found that the 

double-side doped quantum well structure with trench gates had the highest E for 

the structures considered, and that it was an order or magnitude larger than E in 

modulation-doped heterostructure with top gates at certain filling factors. The edge 

state velocity was also found to be larger and mostly independent of magnetic field, 

which suggests sharp edges. 

This computational framework can be extended in the future to model the edge 

state velocity of quasi-particles in the Composite Fermion (CF) picture, similar to the 

analytical work by Chklovskii et al [42]. Coulomb and Aharonov-Bohm oscillations 

in the interference pattern of quantum Hall interferometers can also be modeled by 

self-consistently solving quantum transport equations with the Poisson equation. 
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Si/SiO2 quantum dot based qubits are made by trapping single electrons at the 

Si/SiO2 interface, each in an electrostatic quantum dot made by applying a positive 

bias to the gates on top of the dots. A single qubit is made from an electron spin 

when an external magnetic field is applied, causing the up and down spins to have two 

different energies. A single qubit gate is made by applying an effectively oscillating 

magnetic causing Rabi oscillations between up-down spins. Two qubit operations are 

done by electrostatically coupling electrons in two neighboring dots such that there 

is a finite exchange splitting in the ground singlet and triplet (T0) states made from 

the two spins. An oscillating gate voltage can then be applied to one of the top gates 

forming the dots so that Rabi oscillations are induced between the singlet and triplet 

(T+) states making a cnot gate. An introduction to Si/SiO2 quantum dot based 

qubits was given in Sec. 1.2.2. 

A computational study of the exchange splitting was performed in Chap. 4. The  

whole device was electrostatically modeled by considering the effect of top gates, in-

terface charge and oxide thicknesses in a finite element mesh. The self-consistent 

electrostatic potential thus obtained was used in atomistic tight binding model to 

consider atomistic effects such as spin-orbit couping, valley splitting due to the elec-

tric field and surface roughenss. The one-electron atomistic wavefunctions were then 

used in full configuration interaction simulations to model the two-electron spectrum 

and configurations. Quantitative results were obtained for the orbital splitting and 

exchange-correlation energy of the two electrons in neighboring dots. Exchange split-

ting was found to change by orders or magnitude when the dot separation and oxide 

thicknesses were changed by a few nanometers. This result could be particularly 

useful when designing devices with fast, low noise two qubit operations. 

This computational framework could be further extended in the future to model 

dots in Si/SiGe and GaAs/AlGaAs heterostructures. A local oscillatory magnetic 

field for addressing a single qubit out of a million qubits may not be possible using 

ESR lines as is being done currently in experiments. Thus spin qubit operations would 

have to be performed using the spin-orbit coupling induced by surface roughness in 
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Si. The physics involved in this operation could be modeled using the tight binding 

simulations with realistic potentials, a method that was presented in this thesis. A 

study of charge noise could also be performed by calculating the change in electrostatic 

environment due to charging and discharging of traps in oxides. Turning the exchange 

splitting on and off for two-qubit operations and qubit idling respectively will be 

required in future devices. An exchange coupling gate could be used to achieve this, 

which would replace the detuning operation currently required for turning on the 

exchange splitting. The behavior of exchange splitting in this case can be inferred 

from the simulations performed in this work. 
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¨ A. WEAK FORMULATION OF SCHRODINGER AND 

POISSON EQUATIONS 

In this chapter, the FEM weak formulation of Schrödinger (Eq. 2.1) and Poisson (Eq. 

2.9) equations is derived. 

Schrödinger equation 

The 3D EM Schrödinger equation 2.1 is discretized over a volume Ω with surface 

Γ. The wavefunction of this equation is assumed to be completely confined within 

the volume V such that its derivative at the surface Γ is zero 

∇ψ(r).n̂ = 0, n̂ ⊥ Γ  (A.1)  

Equation 2.1 is multiplied with an arbitrary smooth function ν(r). 

�
2 1 − ∇. ∇ψ(r) ν(r) +  Vtot(r)ψ(r)ν(r) =  Eψ(r)ν(r)
2 m ∗(r) 

Integrating over the volume Ω 

�
2 1 − ∇. ∇ψ(r) ν(r) dΩ +  Vtot(r)ψ(r)ν(r) dΩ =  Eψ(r)ν(r) dΩ 
2 m ∗(r) 

Assuming the gradient of effective mass to be zero and expanding the first integral 

using integration by parts 

�
2 1 1 − ∇. ν(r) ∇ψ(r) dΩ − ∇ν(r).∇ψ(r) dΩ 
2 m ∗(r) m ∗(r) 

+ Vtot(r)ψ(r)ν(r) dΩ =  Eψ(r)ν(r) dΩ 
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The assumption of a zero effective mass gradient is valid because it only changes at 

the interface of two different materials and its derivative is a delta function at the 

interface. As flux is conserved at the element boundaries, a delta function derivative of 

effective mass will not have a considerable effect on the wavefuntion. Using divergence 

theorem, the first integral is converted into a surface integral which is zero due to the 

wavefunction vanishing at the boundary 

1 1 ∇. ν(r) ∇ψ(r) dΩ =  ν(r) ∇ψ(r).n̂ dΓ = 0  
m ∗(r) m ∗(r) 

Thus the equation reduces to it’s weak form 

�
2 1 ∇ν(r).∇ψ(r) dΩ +  Vtot(r)ψ(r)ν(r) dΩ =  Eψ(r)ν(r) dΩ  (A.2)  
2 m ∗(r) 

Applying Galerkin’s method to approximate the wavefunction ψ and the arbitrary 

function ν 

ψ(r) =  ψiϕi(r), ν(r) =  νiϕi(r) 
i i 

where ψi and νi are the coefficients of ith FEM basis function ϕi(r). Substituting this 

in the weak form gives us 

�
2 ∇ϕi(r).∇ϕj (r)

ψiνj dΩ +  Vtot(r)ϕi(r)ϕj (r) dΩ 
2 m ∗(r)

i,j 

= ψiνj E ϕi(r)ϕj (r) dΩ 
i,j 

Since ν is an arbitrary function, we can drop it from the equation. Then the equation 

becomes a matrix equation 

Kij ψi = EMij ψi, 

�
2 ∇ϕi(r).∇ϕj (r)

Kij = dΩ +  Vtot(r)ϕi(r)ϕj (r) dΩ, (A.3)2 m ∗(r) 

Mij = E ϕi(r)ϕj (r) dΩ 
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K matrix is the stiffness matrix and M is the mass or S matrix. Since the basisij ij 

functions only span the elements surrounding a node, the integrals are performed over 

each element with basis functions from surrounding nodes. This gives us overlaps 

only on the nearest neighbor nodes thus making the stiffness and S matrices sparse. 

Having these matrices sparse is important because it reduces matrix operation cost. 

The integrals are performed using Gaussian or Trapezoidal quadratures. Trapezoidal 

quadrature gives us a diagonal S matrix, which improves the scaling of Eigenvalue 

problem. 

Poisson equation 

The weak form of Poisson equation (Eq. 2.9) is derived in a way similar to 

the Schrödinger equation. Eq. 2.9 is multiplied by an arbitrary function ν(r) and  

integrated over volume Ω 

− ∇. ( 0 r(r)∇V (r)) ν(r) dΩ =  ρ(r)ν(r) dΩ 

It is assumed that the gradient of the dielectric constant is zero, which is true inside 

a material and untrue at a material interface. Integrating by parts and using the 

divergence theorem, gives the weak form of the equation 

∇ν(r).∇V (r) 0 r(r) dΩ − ν(r) 0 r(r)∇V (r).n̂ dΓ =  ρ(r)ν(r) dΩ  (A.4)  

Applying the Galerkin approximation 

V (r) =  Viϕi(r), ν(r) =  νiϕi(r) 
i i 

and eliminating the arbitrary function ν gives the linear matrix equation 
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Kij Vi = Bj , 

Kij = ∇ϕi(r).∇ϕj (r) r(r) dΩ − ϕj (r) r(r)∇ϕi(r).n̂ dΓ (A.5) 

4π 
Bj = ρ(r)ϕj (r) dΩ 

0 

This equation can be either linear or non-linear depending the form of charge density. 

For a fixed charge density, Eq. A.5 becomes a linear equation. For charge density 

that is potential dependent, it is a non-linear equation which can be solved iteratively. 



�

�
� ��

� �

111 

B. BOUNDARY CONDITIONS FOR THE POISSON 

EQUATION 

Boundary conditions (BCs) are used to model the effects of surface charges and gates. 

Surface charges and external electric fields can be incorporated using the Neumann 

boundary condition. Mixed or Robin boundary conditions can also be used for sur-

face charges when a voltage is also specified at the boundary. Dirichlet boundary 

conditions are used for setting the electrostatic potential at a boundary. 

Dirichlet boundary conditions 

Dirichlet BC is set in FEM for a surface node i by setting the elements of the 

stiffness matrix of Poisson equation (Eq. A.5) as follows 

⎧ ⎪ ⎨1, i = j 
Kij = , Bi = V0 (B.1) ⎪ ⎩0, i = j 

where V0 is the value of the electrostatic potential at the surface. 

Neumann boundary conditions 

In Neumann type boundary condition, the derivative of the potential (or the 

electric field) perpendicular to surface is specified. This can be included in the matrix 

form for a surface node i and any j in the following way 

Kij = ∇ϕi(r).∇ϕj (r) 0 r(r) dΩ 
(B.2) 

Bi = ϕi(r) 0 r(r)E0.n̂ dΓ dΩ 



� �
�

� �

�

�

�
� �

�
� �

� �
� �

�

112 

where E0 is the electric field to be specified on the surface. If the potential drops just 

inside the boundary, the electric field at the boundary is positive. 

Mixed or Robin boundary conditions 

In some cases when a gate has a high bias, charge accumulates under the gate 

because of either conduction band going below, or valence band going above the Fermi 

level. In such cases, it is better to specify the charge using a boundary condition 

rather than solving it in the 3D domain, which will require very fine elements near 

the surface. For boundaries with surface charge under the gate, the gate electrostatic 

potential and jump in flux due to the charge needs to be specified. This can be done 

using Robin or mixed boundary condition. 

For a mixed boundary condition, a point some distance d away from the surface 

is assumed to be at the fixed electrostatic potential V0. Derivation of this equation 

is done in [68]. The potential on the actual surface is still floating (obtained after 

solving the linear equation). Lets assume a surface charge σ0 stuck to the surface. The 

electric field will then jump by a value qσ0/� . This can be written in a mathematical 

form as follows 

V0 − Vj ϕjV0 − V j∇V.n̂ = Vj ∇ϕj .n̂ = − qσ0 = − qσ0 (B.3)
d d 

j 

where n̂ is the direction perpendicular to the surface Γ at the face of the element. 

This can be substituted in Eq. A.5 by replacing j Vj ∇ϕj .n̂ in the surface part of 

Kij . This gives the following forms for Kij and Bj for a mixed boundary condition 

0 r(r)
Kij = ∇ϕi(r).∇ϕj (r) 0 r(r) dΩ +  ϕi(r)ϕj (r) dΓ 

d 
(B.4)

V0
Bj = ϕj 0 r(r) − dσ0 dΓ 

d 
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C. NEWTON’S METHOD FOR ITERATIVELY SOLVING 

¨ THE SCHRODINGER-POISSON EQUATIONS 

The Newton’s method works to minimize a function by successively calculating cor-

rections to the variable calculated using linear extrapolation. A very simple example 

of a Newton iteration with a function of 1 variable is show in Fig. C.1. 

Figure C.1. An example of a Newton iteration with 1 function and 1 vari-
able. 

At each iteration, the slope of the function with respect to the variable is cal-

culated. This slope is the Jacobian when we have multiple functions with multiple 

variables. When discretizing the Poisson equation (Eq. A.5), the function of the 

Poisson equation is written as 

Fi = Kij Vj − Bi 
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where Kij Bi are as described in Eq. A.5. To solve the Poisson equation, the Euclidean 

norm of function F is minimized. A measure of the degree to which the equation is 

solved is the Euclidean norm of the function, also know as the residual and denoted 

by ||F ||2. 
For a given potential Vi

n at point i in the nth iteration, the potential in n + 1th 

iteration can be found by linear extrapolation. For this, the slope of the functions 

with respect to each variable has to be calculated. This slope is called the Jacobian 

Jij 

V n+1 = V n − J−1Fj (C.1)i i ij 

The Jacobian of the Poisson equation is calculated by differentiating the function at 

point i with respect to potential at point j. 

∂Fi ∂Bi
Jij = = Kij − (C.2)

Vj ∂Vj 

When differentiating the right hand side of Poisson equation (Eq. A.5), the deriva-

tive of charge density with respect to the potential is required 

∂Bi ∂ρ(r) 
= ϕj (r) dΩ 

∂Vj ∂Vj 

This derivative is evaluated by observing that the position dependent conduction band 

edge depends on the potential EC (r) =  EC − qV . Thus, differentiating the quantum 

electron density (2.3) gives the following expressions for no periodicity (0-dimensional 

for QDs), periodicity in 1 dimension (QPCs) and 2 dimensions (2DEG) 

∂n(r) ∂Ni(r)≈ ψi(r),
∂V (r) ∂Vii ⎧ ⎪gvgsq exp((Ei−EF )/kT ) ⎪ ⎪ 0 − D 

[1+exp((Ei−EF )/kT )]2 , ⎪ kT � (C.3)⎪ � ⎨ EF −Ei∂Ni(r) qm ∗ 
t (r) 

exp 
kT = gv � � , 1 − D

 �2 EF −Ei∂Vi(r) ⎪ 1+exp ⎪ kT ⎪ ⎪ ∗ ⎪⎩ 2qmt (r) Ei−EF−gv F− 3 , 2 − D
 �2 2 kT 
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In (C.3) it is assumed that the change in conduction band only affects the density 

and not the wavefunctions. This approximation leads to a diagonal Jacobian, and 

causes a slower convergence in QDs at low temperature. A damping factor  <  1 can  

be introduced in (C.1) to damp oscillations of F 

V n+1 = V n −  J−1 
i i ij Fj 

Similarly, the derivatives for donor and acceptor incomplete ionized densities with 

respect to the electrostatic potential can be calculated as follows 

∂nsemicl(r) qNC EF − EC (r)F− (C.4)= 1 
2∂V (r) kT kT 

∂psemicl(r) qNV EV (r) − EF 
= − F− (C.5)1 

2∂V (r) kT kT 

Newton method along with damping schemes such as under-relaxation [129], trust 

region [130] and others [131–134], works well when density of states is smooth. 
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D. PREDICTOR-CORRECTOR METHOD 

The Schrödinger-Poisson equation system can be solved self-consistently using New-

ton’s method as shown in Appendix C. For 3D, 2D and 1D periodicity the DOS 

(Fig. D is a smooth function of energy and Newton’s method converges even at low 

temperatures. Newton’s method has problems with convergence for 0D DOS (QDs) 

at low temperature because the energy levels are delta-function like. The Predictor-

Corrector method can be used in this case. 

Figure D.1. Density of states (DOS) for periodicity in 3, 2, 1 and 0 direc-
tions. 

This method relies on separating the non-linearity between 3D Schrödinger and 

Poisson equation and putting it into the Poisson equation. It was introduced for 1D 

and 2D periodic systems by Trellakis et. al. [108], and extended to quantum dots by 

Gao et. al. [68]. A derivation for quantum dots following that of Trellakis et. al. is 

presented here. In this method, the equations are decoupled by writing the quantum 

density approximately as a function of potential. The non-linear equation containing 

this approx. density is solved in an inner loop (Predictor) and the update carried to 

outer loop (Corrector) as shown in fig. D.2. 

The variation in electronic charge density in terms of variation of eigenvalues and 

eigenfunctions with respect to the potential is first expanded. Here, all three are 

assumed to be functionals of the potential. 
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Figure D.2. Flow chart of the Predictor-corrector method. Inner loop uses 
Newton’s method to solve predictor Poisson equation and gives a potential 
update to the outer Schrödinger solver. Initial potential is obtained by 
solving Poisson equation with semi-classical density. 

ñ [V + δV ] =  ñ [V ] +  δñ [V, δV ] , 

|ψi [V ]|2 

δñ [V, δV ] =  δ 
1 + exp (Ei [V ] − EF ) /kT 

i 

δEi [V, δV ] |ψi [V ]|2 exp (Ei [V ] − EF ) /kT 
= − 2 

i 
kT (1 + exp (Ei [V ] − EF ) /kT ) 

2ψi [V ] δψi [V, δV ]
+ 

1 + exp (Ei [V ] − EF ) /kT 
i 

Next, non-degenerate first order perturbation theory is applied for computing δψi [V, δV ] 

and Ei [V ] 

ψj | δV̂ |ψi
δψi [V, δV ] ≈ −q ψj [V ] 

Ei [V ] − Ej [V ]
j,j=i 

δEi [V, δV ] =  −q ψi| δV̂ |ψn 
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Substituting this back in the previous equation and using the symmetry of indices j 

and i, 

q |ψi [V ]|2 exp (Ei [V ] − EF ) /kT 
δñ [V, δV ] ≈ 

i 
kT (1 + exp (Ei [V ] − EF ) /kT )

2 

In deriving this, the assumption that the basis is complete is made and the derivative 

of the Fermi function is approximated as follows, 

2 (1  +  exp (Ei [V ] − EF ) /kT )
−1 1 exp (Ei [V ] − EF ) /kT 

Ei [V ] − Ej [V ] 
≈ −  

kT (1 + exp (Ei [V ] − EF ) /kT )
2 

ψj [V ] ψj | δV̂ |ψi = δV ψi [V ] − ψi [V ] ψi| δV̂ |ψi 
j,j=i 

. This approximation gives an non-exact and diagonal Jacobian. Thus, the Predictor 

density and it’s derivative with respect to potential can be written as 

|ψi|2 

ñ (δV ) =  ,
1 + exp (Ei − EF − qδV ) /kT 

i 
(D.1)

∂n |ψi|2 exp (Ei − EF − qδV ) /kT 
= 

∂V 
i (1 + exp (Ei − EF − qδV ) /kT )2 

Thus, the predictor density only on change in potential from the outer loop and 

wavefunctions calculated in the outer loop. 
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