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ABSTRACT 

Parab, Abhishek PhD, Purdue University, August 2018. Absolute Convergence of the 
Twisted Arthur-Selberg Trace Formula. Major Professor: Freydoon Shahidi. 

We show that the distributions occurring in the geometric and spectral side of 

the twisted Arthur-Selberg trace formula extend to non-compactly supported test 

functions. The geometric assertion is modulo a hypothesis on root systems proven 

among other cases, when the group is split. The result extends the work of Finis-

Lapid (and Müller, spectral side) to the twisted setting. We also give an application 

towards finiteness of residues of certain Rankin-Selberg L-functions. 
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1. INTRODUCTION 

Understanding the automorphic representations of a connected reductive group over 

a global field has been a central problem in the theory of automorphic forms and the 

Arthur-Selberg trace formula has been an indispensable tool in doing so. The trace 

formula was conceived by Selberg [Sel56] to show the existence of Maass forms via a 

Weyl law, and vastly generalized by Arthur to any connected reductive group G over 

a number field F . It is an identity of two distributions on G(A) where A = AF is the 

ring of adeles of F viz., 

JG (f) = JG (f),spec geom 

f being a smooth function on G(A) of compact support. The spectral side is a 

sum-integral over automorphic representations of G and the geometric side contains 

weighted orbital integrals. It was realized early on that an appropriate ‘twisted’ trace 

formula developed for a connected component Ge of a reductive group G would be 

useful in proving the ‘endoscopic’ cases of Langlands’ Functoriality conjectures. If θ 

is an F -automorphism of G of finite order, we can form the reductive group Gohθi of 

which Ge = G o θ is a connected component. The trace formula for Ge or the twisted 

trace formula was developed in the lectures given at the Friday Morning seminar 

at IAS organized by Clozel, Labesse and Langlands [CLL84] and has been exposed 

and improved upon in the book [LW13]. The twisted trace formula has also been 

instrumental in proving the cyclic (solvable) base change case in the book of Arthur 

and Clozel [AC89]. 

If φ : LH → LG is an L-homomorphism between the L-groups of quasisplit con-

nected reductive groups H and G, Langlands’ Functoriality predicts a transfer of 

automorphic representations of H to G. Among these are the L-homomorphisms 

arising out of endoscopic groups of which the classical groups (orthogonal and sym-
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plectic) are prototypical examples when G = GL(n) and θ(g) = tg−1 . Arthur [Art13] 

proved functoriality in this case and Mok [Mok15] extended it to unitary groups. 

This had been conditional on the Fundamental Lemma which was resolved by Ngô 

[Ngô10] and the stabilization of the twisted trace formula by Mœglin-Waldspurger 

[MW16a, MW16b]. Arthur proved the geometric side of the trace formula converges 

for f ∈ Cc ∞(G(A)) but he deftly didn’t make use of the convergence of the spectral 

side. The convergence was proven in [MS04] for G = GL(n) and later by Finis, 

Lapid and Müller [FL11a, FLM11] for general G. Our work extends their result to 

the twisted trace formula. 

Finis-Lapid have proven the absolute convergence of the spectral and geometric 

sides for more general test functions than those of compact support whose extension 

to the twisted setting is the main theme of this paper. Let K be a “good” maximal 

compact subgroup of G(A) and K be an open compact subgroup of the finite adeles 

G(Af ) in K. They consider a class C(G(A), K) of test functions f on G(A) which are 

right K-invariant at non-Archimedean places and at the Archimedean places satisfy, 

kf ∗ XkL1(G(A)) < ∞ for every X ∈ U(gC), the universal enveloping algebra of the 

Lie algebra gC acting as differential operators. For such test functions they prove 

the convergence on the spectral side [FL11b, FLM11] and also the geometric side 

[FL11a,FL16], thus constructing an invariant trace formula for a broader class of test 

functions. In the case when Ge is a component of G o hθi, the space C(Ge(A), K) can 

be defined similarly by considering the action of X on a smooth function f defined on 

Ge(A). The main result of this exposition is to derive the convergence and hence the 

continuity of the distributions occurring in the twisted Arthur-Selberg trace formula 

with Theorem 4.1.1 and Theorem 7.2.2 being the statements for the geometric and 

spectral sides respectively. 

The proof of convergence in the geometric side involves estimating the sums over 

certain twisted Bruhat cells and using the slow decay of intertwining operators and 

is carried out in Sections 4 and 5. The main steps follow [FL11a, FL16] except that 

the twisted equivalent of the crucial lemma 2.2 of [FL11a] does not hold. The cor-
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responding modification is discussed in Chapter 6 as the Root Cone Lemma. The 

convergence on the geometric side is modulo this geometric lemma but we prove it 

completely when G is split and also for cyclic base change. It is a lemma about root 

systems involving automorphisms of the Dynkin diagram of G so depends only on the 

semisimple part of G. We reduce it to split simple groups and then prove all cases 

in the Cartan-Killing classification. A crucial step in the proof when G is of type An 

was shown to us by P. Majer as an answer to a question [PM] on MathOverflow. The 

lemma for E6 type is proven using the Mathematical software SageMath [TSD17]. 

The convergence results usually involve a parameter T in a finite dimensional 

vector space a0 (see Chapter 2 for definition) chosen sufficiently away from the origin. 

In our setting however, T is allowed to vary only along a line but it is enough to 

ensure the convergence. Since the distributions involved are polynomials in T , they 

can be extended to any T ∈ a0 and in particular to the special point T0 that makes 

the distributions independent of the chosen minimal parabolic subgroup, see [Art81, 

Lemma 1.1]. For applications to limit multiplicities it is essential to keep track on 

the dependence the compact open subgroup K of G(Af ) in proving the bound on the 

seminorm µ but the non-twisted bounds work verbatim. 

Chapter 7 is devoted to proving the spectral side. The convergence of the spectral 

side in the non-twisted setting involved estimating the derivatives of certain inter-

twining operators appearing in the spectral expansion and has been the main result 

of [FL11b]. The crucial difference on the spectral side of the twisted trace formula is 

that the trace here is a composition of operators on different spaces. We introduce a 

unitary shift operator which converts the twisted trace formula to the usual one and 

invoke the estimates in [ibid]. 

In Chapter 8 we give an application of the continuity of the spectral side towards 

proving the finiteness of residues of certain Rankin-Selberg L-functions that was sug-

gested to us by J. Getz. One possible application is the Weyl Law for self-dual 

automorphic representations in the style of [LM09] which would explain the endo-
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scopic classification of classical groups in a more quantitative way. This is currently 

a work in progress. 
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2. NOTATION 

We will follow the notations of Labesse and Waldspurger [LW13] rather than of 

Arthur. Throughout, G will denote a connected reductive group over Q and Ge, a 
twisted G-space [ibid., Chapter 2] such that Ge(Q) is nonempty. Thus Ge is a left-G-
torsor equipped with a map 

Ad : Ge → Aut(G) 

which for x ∈ G, δ ∈ Ge satisfies, 
Ad(xδ) = Ad(x) ◦ Ad(δ). 

We will assume that G and Ge are the components of a reductive algebraic group. 
This is somewhat more restrictive than [LW13] but suffices for most applications of 

the twisted trace formula. All algebraic subgroups of G will be implicitly assumed to 

be defined over the rational numbers. We define a right-G-action on Ge via 
δx = θ(x)δ, with θ = Ad(δ). 

Any element y ∈ Ge(A) can be written (not uniquely) as y = xδ with x ∈ G(A) and 

δ ∈ Ge(Q). 
Throughout this paper, we fix a minimal parabolic subgroup P0 of G defined 

over Q with Levi decomposition P0 = M0 n N0 and a maximal compact subgroup 

KG = K = K∞Kf which is admissible relative to M0 in the sense of [Art81, §1]. 

Thus we have the Iwasawa decomposition 

G(A) = P0(A)KG. 

We will denote the (finite) Weyl group of (G, T0) by W G or W . Note that M0 

is the centralizer of a maximal torus which we denote by T0. The Lie algebra of G 



6 

will be denoted by g and the universal enveloping algebra of it’s complexification by 

U(gC). 

Let LG(M0) = LG = L denote the set of Levi subgroups containing M0, i.e., the 

(finite) set of centralizers of subtori of T0. For M ∈ L, we have the following notation. 

• We shall denote by LG(M), FG(M), PG(M), the (finite) set of Levi subgroups 

containing M , parabolic subgroups containing M and parabolic subgroups with 

Levi part M respectively. Whenever clear from the context, we shall ignore the 

superscript G or replace it with a reductive subgroup of G. The notations L, F 

(and P) will denote the Levi (resp. parabolic) subgroups containing M0 (resp. 

P0). 

• The Weyl group W G(M) = W (M) = NG(Q)(M)/M can be identified with a 

subgroup of W . 

• TM is the split part of the identity component of the center of M and AM = 

A0 ∩ TM (R). 

• The real vector space a ∗ is spanned by the lattice X∗(M) of rational characters M 

of M and aM, 
∗ 

C is it’s complexification. The dual space aM spanned by the co-

characters of TM is the Lie algebra of AM . Denote by aM the dimension of 

each. 

• The map HM : M(A) → aM is the homomorphism given by hχ, HM (m)i = 

log |χ(m)|A∗ , for any χ ∈ X∗(M). It’s kernel is M(A)1 . 

• XM = AM M(Q) \ M(A). 

• The Weyl group W (M) acts on P(M) and F(M) by conjugation; w.P = 

nwPn
− 
w 
1 . 

• RM is the set of reduced roots of TM on g and for every root α ∈ RM , α∨ 

denotes the corresponding co-root. It will be abbreviated R0 when M = M0. 
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• For w ∈ W, Q(w) denotes the smallest standard parabolic subgroup containing 

a representative nw of w. 

In particular, we have the above notation for M = G. For P ∈ P(M), we use the 

following additional notation. 

• NP is the unipotent radical of P and MP is the unique element L ∈ L(M) with 

P ∈ P(L). 

• AP = AMP ; aP = aM ; aP = dim aP . 

• For a point Z ∈ a0, ZP denotes the projection of Z onto aP . 

• The map HP : G(A) → aP is the extension of HM to a left NP (A)− and right 

K-invariant map. 

ˆ• ΔP (resp. ΔP ) is the subset of simple roots (resp. simple weights) of P , which 

G)∗is a basis for (aP . 

• XP = AP NP (Q)MP (A) \ G(A), YP = AGP (Q) \ G(A). 

• Denote by ξP the sum of roots in ΔP 
0 . More generally if Q is a parabolic 

subgroup containing P then denote by ξP
Q the sum of roots in ΔQ 

0 \ Δ0 
P . 

• For X ∈ aP , dP (X) = infα∈ΔP α(X). Indeed, it denotes the distance of X from 

the ‘walls’. 

• The Killing form induces an invariant inner product and a Euclidean structure 

on aGP . Vol(Δ
∨ 
P ) is the volume of the parallelopiped in aGP whose sides are roots 

in Δ∨ 
P . For Λ ∈ ia ∗ regular, define 1 

M Y 
�P (Λ) = Vol(Δ∨ 

P ) hΛ, α∨i−1 
. 

α∈ΔP 

We define �̂P (Λ) by replacing ΔP by Δ̂ 
P and similar sets �QP , �̂

Q
P whenever P ⊆ Q. 

1Arthur uses θP (Λ) for the inverse of �P (Λ) but following [LW13], we shall reserve the symbol θ for 
the automorphism on G. 
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• A(XP ) is the space of automorphic forms on XP (cf. [MW95, §I.2.17] and 

[BJ79, §4]). For an automorphic representation σ of M , the space A(XP , σ) is 

the space of automorphic forms Φ over XP such that for every x ∈ G(A), the 

function 

m 7→ Φ(mx), for m ∈ M(A) 

is an automorphic form in the σ−isotypical space of L2 (XM ).disc 

• The spaces A(XP ), Adisc(XP ) and Acusp(XP ) (resp. square-integrable and cus-

pidal forms) are pre-Hilbert spaces with respect to the inner product Z 
hΦ, ΨiP = Φ(x)Ψ(x)dx. 

XP 

We denote by A(XP ) the Hilbert space completion of A(XP ). 

Now we define some objects related to Ge. Some of the above notation needs to 

be modified appropriately for such objects. 

• We fix once and for all an element δ0 ∈ Ge(Q) such that the automorphism 

θ0 = Ad(δ0) preserves P0 and M0. Such an element is uniquely determined 

modulo conjugation by M0(Q). 

• A parabolic subset Pe of Ge is the normalizer in Ge of a parabolic subgroup P of 

G such that Pe(Q) =6 ∅. 
• Mf P is the Levi subset of Pe if there is a Levi decomposition Pe = MgP NP , where 

NP is the unipotent radical of P , which is invariant under Ad(δ), δ ∈ Pe(Q). 
• Pf 0 = P0.δ0 and any parabolic subset containing Pf 0 is called standard, denoted e eby PGe(M0) and abbreviated as P(M0) or simply P . The sets LGe(M) and 

FGe(M) are defined similarly for any M ∈ L. 

• When P = P0, we extend the map H0 = HP0 to Ge(A) by H0(xδ0) = H0(x). 

This is well-defined because G(Q) is in the kernel of HP . 
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• The automorphism θ0 on G induces a linear map, also denoted by θ0, on aM 

via the action on co-characters. The space aPe = aMf is the set of vectors of aM 

fixed under this automorphism. In particular, we can identify aPe as a subset of 

aP . 

• As before, aPe will denote the dimension of aPe. 
• An inclusion Pe ⊂ Qe of parabolic subsets gives aQe ⊂ aPe and a canonical decom-

position 
Qa e = a e ⊕ a 
e 
.P Q eP 

Q• A root α ∈ ΔQ
P induces a linear form αe on a ee 

by averaging 
P 

l−1X1 
θr(α),0l 

r=0 

e 
where l is the order of the automorphism θ0. Denote by ΔQ e the set of such 

P 
Qorbits. Analogously we define the set Δ̂ ee 
of orbits of weights $ ∈ Δ̂ Q

P . P 

• The (inclusion-reversing) bijection P 7→ ΔP
P0 
between standard parabolic sub-

groups and subsets of the simple roots, in the twisted case becomes a bijection 

Pe 7→ ΔPee 
0 of corresponding sets. 
P 

• For a standard parabolic subgroup P , we define subgroups P − ⊆ P ⊆ P + as 

follows. P − is the standard parabolic subgroup whose Levi has, for simple roots, 

those α ∈ ΔP 
0 such that the orbit of α under θ0 is contained in ΔP 

0 . Likewise P + 

is the standard parabolic subgroup whose Levi has, for simple roots, elements 

of orbits of ΔP 
0 under θ0. 

• Similar to the non-twisted case, we define for Λ ∈ ia ∗ regular,fM Y 
�Pe(Λ) = Vol(Δ

P 
∨ e) hΛ, α∨i−1 

. 
α∈Δ

Pe 
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G f e• The Weyl set W e 
= W is the quotient of the normalizer of M0 in G by M0. 

Indeed, fW = W o θ0 

and the representatives of the Weyl set can be chosen as nwδ0 where nw are 

representatives of W . 

• Throughout the paper, we shall fix a unitary character ω of G(A) which is trivial 

on AGG(Q). 

• A (twisted) representation of ( eG, ω) is a representation π of G on a vector space 

V along with an invertible endomorphism 

πe(δ, ω) ∈ GL(V ), δ ∈ Ge(Q) 
satisfying for every x, y ∈ G and δ ∈ Ge(Q), 

πe(xδy, ω) = π(x) πe(δ, ω) (π ⊗ ω)(y). 

• Since G is unimodular, the measure on G(A) induces a measure on Ge(A) via Z Z 
h(y)dy = h(xδ)dx, δ ∈ G(Q). 

Ge(A) G(A) 

• For an integrable function f on Ge(A), define Z 
f 1(y) = f(zy)dz. 

AG 

Remark 2.0.1 Although all results below are for groups defined over Q, they hold 

for groups defined over all number fields. The field of rational numbers makes the 

notations easier, for instance there is only one Archimedean place. 
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3. PRELIMINARIES 

There is an action of Ge(A) on the homogeneous space XG = AGG(Q) \ G(A) given 

by 

(y, ẋ) 7→ ẋ ∗ y = δ−1 xy 

where y ∈ Ge(A), x ∈ G(A) is a representative of ẋ and δ is any element of Ge(Q). 
When there is no confusion, we shall denote ẋ by it’s representative x. 

3.1 THE SPACE C(Ge(A), K) 
Fix a compact open subgroup K of G(Af ) in Kf , where Af is the ring of finite 

adeles. The right action of G(A) on Ge(A) restricts to that of K. For a smooth 

function h on Ge(R) and X ∈ U(g), we define the smooth function h ∗ X on Ge(R) by 

d 
(h ∗ X)(y) = h(y exp tX) . 

dt t=0 

We extend this action to smooth functions on Ge(A) by ignoring the non-Archimedean 

component. 

Define C(Ge(A), K) to be the space of smooth functions h on Ge(A) which are right 

K-invariant and which satisfy 

kh ∗ Xk < ∞,L1(Ge(A)) 
for any X ∈ U(g). The topology induced from the seminorms kf ∗ Xk makes L1(Ge(A)) 
C(Ge(A), K) into a Frechet space (i.e., complete, metrizable and locally convex), see 

[Trè67, Chapter 10]. Sometimes we will abbreviate khk1 for the L1-norm of h. The 

following lemma is proved in [Trè67, Proposition 7.7]. 
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Lemma 3.1.1 A linear form J on a locally convex space E is continuous if and only 

if there is a continuous seminorm µ on E such that for every f ∈ E, 

J(f) ≤ µ(f). 

Note that in [FLM11, FL16], Finis, Lapid and Müller prove the continuity of the 

usual (non-twisted) trace formula with the analogous space C(G(A), K). Indeed, we 

have a correspondence between the two spaces: 

Lemma 3.1.2 For f ∈ C(G(A), K) and δ ∈ Ge(Q) define the function (Lδf)(y) = 

f(δ−1y) on C(Ge(A), K) then this map is a bijection between the two spaces with inverse 

Lδ−1 . Moreover, kfk = kLδfk and Lδ(f ∗ X) = Lδ(f) ∗ X for any X ∈ U(gC). 

The bijection is obvious. The equality of L1 norms is a consequence of the defini-

tion of measure on the twisted space Ge(A). 
3.2 REDUCTION THEORY 

For Q ∈ P , T1, T ∈ a0, we define the Siegel set SP
Q 
0 
(T1, T ) consisting of x = pak ∈ 

G(A) such that k ∈ K, p ∈ ω, a fixed compact subset of M0(A)1N0(A) and a ∈ A0 

satisfying 

τQ τ Q(H0(a) − T1) = 1; ˆ (T − H0(a)) = 1.P0 P0 

If so, we have the partition lemma of Langlands that for any x ∈ G(A) and −T1, T 

sufficiently regular, i.e., d0(T ) ≥ c, d0(−T1) ≥ c1 for fixed positive constants c, c1, X X 
FP
Q 
0 
(δx, T )τQ

P (H0(δx) − T ) = 1, 
Q: δ∈P (Q)\Q(Q) 

P0⊆Q⊆P 

where F Q (◦, T ) is the characteristic function of the set Q(Q)SQ (T1, T ). In particular, P0 P0 

for P = G we have 

G(Q) SPG 
0 
(T1, T ) = G(A). 

Throughout the paper we fix such T1 ∈ a0. 
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3.3 THE OPERATOR ρ 

The usual right regular action ρ = ρG of G(A) on L2(XG), which is given by 

(ρ(g)Φ)(x) = Φ(xg) 

extends to a twisted representation ρe of Ge(A): 
(ρe(y, ω)Φ)(x) = (ωΦ)( ̇x ∗ y) = (ωΦ)(δ−1 xy) = ω(δ−1 xy).Φ(δ−1 xy), 

for any element δ of Ge(Q). The representation of G(A) on L2(XG) decomposes into 

a discrete spectrum and a continuous spectrum: 

L2(XG) = L2 (XG) ⊕ L2 (XG).disc cont 

We shall denote by Πdisc( eG, ω) the equivalence classes of automorphic representations 
π ∈ Πdisc(G) which extend to a twisted representation πe of Ge(A). They are precisely 

those satisfying π ∼ π ◦ θ [LW13, Lemme 2.3.2]. 

Fix P ∈ P(M). The induced representation of G(A) on A(XP ) is given by 

(ρP,ν (g)Φ)(x) = Φ(xg) exp hν + ρP , HP (xg) − HP (x)i . 

G(A)
It is isomorphic to Ind ρM,disc ⊗ exp hν, HM (◦)i , ρM,disc where ρM,disc is the restric-P (A) 

tion of ρM to L2 (XM ).disc 

A compactly supported smooth K-invariant function h on G(A) defines an oper-

ator ρP,ν (h) on A(XP ) by Z 
ρP,ν (h)(Φ) = h(x)ρP,ν (x)(Φ)dx 

XP 

whose image lies in the subspace of smooth K-invariant functions. 

We now define the twisted analog of ρ. Assume P ∈ P and δ ∈ Ge(Q). Denote 
by Q the parabolic subgroup obtained by conjugation by δ, i.e., Q = δP δ−1 = θ(P ) 

where θ = Ad(δ). Let σ be an automorphic representation of M . 

An element y ∈ Ge(A) defines an operator for ν ∈ a ∗ 
P,C , 

ρeP,σ,ν (δ, y, ω) : A(XP , σ) → A(XQ, σ ◦ θ−1) 
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by 

(ρeP,σ,ν (δ, y, ω)Φ)(x) = exp hθ(ν + ρP ), HQ(x)i (ωΦ)(δ−1 xy) exp ν + ρP , HP (δ
−1 xy) . 

Likewise, by integrating against a smooth function f ∈ C(Ge(A), K), we define the 
operator Z 

ρeP,σ,ν (δ, f, ω) = f(y)ρeP,σ,ν (δ, y, ω)dy 
Ge(A) 

from the space A(XP ) to A(XQ). Hopefully the notations of ρP,ν and ρeP,σ,ν for the 

induced representations of G(A) and Ge(A) will not be confused with ρP , which is half 

of the sum of positive roots of P . 1 

1Our notation differs from [LW13] wherein ρe(f, ω) stands for ρ(δ, f, ω) for some δ ∈ Ge(Q). 
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4. THE GEOMETRIC SIDE 

4.1 STATEMENT OF THE GEOMETRIC CONTINUITY 

Assume that f ∈ Cc ∞(Ge(A)) and denote Z 
f 1(y) = f(yz)dz 

AG 

where as usual, AG is the set of real points of the maximal Q-split torus in the center 

of G or equivalently, the kernel of the map HG : G(A) → aG. 

An element δ ∈ Ge(Q) has a Jordan decomposition 

δ = sδnδ = nδsδ 

where nδ is a unipotent element of G(Q) and sδ ∈ Ge(Q) is quasi-semisimple in that the 

automorphism Ad(sδ) induced on the derived group Gder is semisimple. Two elements 

of Ge(Q) are called coarse-conjugate if their quasi-semisimple parts are conjugate (in 

G(Q)). Denoting the set of equivalence classes by O, the geometric side will be an 

expansion e X eG,T (f) = G,TJ JO∈O(f) 
O∈O 

which we shall define and extend to the class C(Ge(A), K). 
Following [CLL84, Lecture 1, 2, 9] we define the “basic identity” for T ∈ a0 with 

d0(T ) > d0 as X X 
kT G,T 

P −a eG(x) = k 
e 
(x) = (−1)a e τ̂ e(H0(ξx) − T )k e(ξx)geom geom P P 

Pe⊇Pe0 ξ∈P (Q)\G(Q) 

where Z X 
kPe(x) = ω(x)f 1(x −1δnx)dn. 

NP (Q)\NP (A) 
δ∈Pe(Q) 
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We can decompose kT (x) according to coarse conjugacy classes:geom X 
kT kT 
geom(x) = (x)O 

O∈O 

where X X 
kT = (−1)aPe −aGe τ̂ e(H0(ξx) − T )k e (ξx),O(x) P P ,O 

Pe⊇ e ξ∈P (Q)\G(Q)P0 Z X 
k e (x) = −1δnx)dn.P ,O 

ω(x)f 1(x 
NP (Q)\NP (A) 

δ∈Pe(Q)∩O 

The last equality follows from a basic fact [Art78, p. 923] that 

Pe(Q) ∩ O = (Mf P (Q) ∩ O)NP (Q). 

We also set X X 
kgeom(x) = ω(x)f 1(x −1γx); kO (x) = ω(x)f 1(x −1γx). 

γ∈Ge(Q) γ∈O 

Following [CLL84], Labesse and Waldspurger [LW13] show that in the expression ZX 
JT (f) = kO 

T (x)dx, 
XGO∈O 

only finitely many coarse conjugacy classes O ∈ O give a nonzero contribution de-

pending on the support of f and the integral is absolutely convergent for all T ∈ a0 

with d0(T ) large enough. 

By the partition lemma of Langlands and Arthur, X X 
FP
Q 
0 
(ξx, T )τQ

P (H0(ξx) − T ) = 1, ∀x ∈ G(A), 
P0⊆Q⊆P ξ∈Q(Q)\P (Q) 

we obtain X X 
kO 
T (x) = (−1)aPe −aGe FP

Q 
0 
(ξx, T )τQ

P (H0(ξx)−T )τ̂Pe(H0(ξx)−T )kP ,e O 
(ξx) e ξ∈Q(Q)\P (Q)P ,Q: 

P0⊆Q⊆P 

By a combinatorial identity of Langlands [LW13, Lemme 2.11.5], we have X 
σR = τPeP Q τ̂Pe. 

R⊇P 
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So making a change of variables, we can write X X 
kO 
T (x) = FP

Q 
0 
(ξx, T )σeQR(H0(ξx) − T )kO,Q,R(ξx) 

Q⊆R ξ∈Q(Q)\G(Q) 

where X 
kO,Q,R(x) = (−1)aPe −aGe kP ,e O 

(x). 
Pe⊇Pe0:Q⊆P ⊆R 

The twisted version of Finis-Lapid’s extension of the geometric side is as follows. 

Theorem 4.1.1 Assume the Root Cone Lemma (Lemma 4.3.2) holds for the pair 

(G, θ). 

1. For any f ∈ C(Ge(A), K), O ∈ O and any T ∈ a0 suitably large multiple of the 

sum of positive coroots (see Theorem 4.3.5), the integrals Z Z 
JT kT JT kT(f) = (x)dx and (f) = geom geom O O(x)dx 

XG XG 

are absolutely convergent. 

2. JT (f) and JT (f) are polynomials in T of degree ≤ a e −a e whose coefficients geom O P0 G 

are continuous linear forms in f . 

3. There is r ≥ 0 and a continuous seminorm µ on C(Ge(A), K) such that Z ZX X 
kO(x) − JO 

T (f) ≤ F G(x, T )kO (x)dx − kO 
T (x) dx 

XT XGO∈O G O∈O 

≤ µ(f)(1 + kT k)r exp (−d0(T )), 

for any f ∈ C(Ge(A), K) and any T ∈ a0 “suitably large” . P 
4. JT (f) = JT (f).geom O∈O O 

In addition, the upper bound on the seminorm µ and the coefficients in part (2) 

depends on the level of K in the same way as in the non-twisted case [FL16, Theorem 

5.1]. 

We defer the proof of this theorem to Section 4.5. 



18 

4.2 A FEW TECHNICAL RESULTS 

In this section, we review some definitions and lemmas that will go into the proof 

of the geometric side. 

The modulus character 

For w ∈ W let δw denote the modulus function of M0(A)1 on Nw(A)\N0(A) where 

Nw = N0 ∩ wN0w−1 . In particular, if w = w0 is the long element in W , we denote 

δw0 by δ0. Denote also by δM0,N the modulus function of M0(A) on the unipotent 

radical N of any parabolic subgroup of G. The following lemma is easy to prove, cf. 

[Sha10, §4.1]. X X1 
Lemma 4.2.1 1. δw = 1 = α. 

2 α, δM0,Nw 2 
α>0, α>0 

w−1α>0 w−1α<0 

2. δ0 = δw.δM0,Nw . 

Lemma 4.2.2 

−1 
−1 (a 2) = δw 

−1b),δ0(a nwbnw 
−1)δw −1 (ab−1)δM0,N −1 (a 

w 

for any representative nw of w ∈ W and any a, b ∈ A0. 

Proof Using Lemma 4.2.1, we have 

δ0(a −1)δw−1 (a 2) = δw−1 (a −1)δM0,Nw−1 (a −1)δw−1 (a 2) 

−1)= δw−1 (a)δM0,N −1 (a 
w 

Following the proof of lemma 2.1 in [FL11a] we can write 

δ0(nwbn
− 
w 
1) = δM0,N −1 (b)δw(nwbn

− 
w 
1)

w 

−1 (b−1).= δM0,Nw−1 (b)δw 

Multiplying the two gives the desired equality. 
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Twisted Bruhat decomposition 

The Bruhat decomposition in the twisted case is similar to the usual case. Since 

the minimal parabolic P0 is chosen to be θ0-stable, any element we = wδ0 of the Weyl e 
set Wf = W G gives a twisted Bruhat cell 

C(we) = P0 e = P0(wδ0)P0wP0 = (P0wP0)δ0; 

and Ge is the union of such cells C(we). 
Note that subsets of ΔP0 are not always in bijection with standard parabolic sub-

sets but one needs to consider θ0-stable subsets of ΔP0 . If so, one gets for Q ∈ P , 

parabolic subgroups Q− ⊆ Q ⊆ Q+ and corresponding to the subsets ΔQ− 

, ΔQ+ 

in-P0 P0 

troduced in Chapter 2 which are stable under θ0. Indeed, standard θ0-stable parabolic 

subsets are the right parabolic subsets one needs to consider to get the alternating 

sum in the kernel of the twisted trace formula. Following the notation of [LW13, p. 

133], for Q ∈ P define [e eG(Q, G) := Ge(Q) \ P 0(Q). 
Qe+⊆Pe0(Ge 

Being a bi-Q(Q)-invariant set Ge(Q, G) is a finite disjoint union of twisted Bruhat cells 

C(we) over we ∈ Wf(Q, G) or equivalently, over w ∈ W satisfying Q.Q(w) = G, where 

Q(w) is the smallest standard parabolic subgroup containing w. 

Mellin transform 

For a function F ∈ Cc ∞(G(A)), we recall the definition of Mellin transform on A0 

and inversion formula: Z 
λ+ρ0 daφ(λ)(g) = F (ag)a 

A0 

The function can be recovered by the inverse-Mellin transform Z 
2 a 

Re λ=λ0 

F (ag) = φ(λ)(g)δ0(a) 
1 λdλ, 

where λ0 ∈ a0 
∗ and for convenience, we have denoted exp (hλ, H0(a)i) by aλ . 
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Intertwining operators 

We briefly recall the properties of intertwining operators; following [FL16], we will 

need it for principal series representations only. Later in the analysis of the spectral 

side we will define them more generally for any two associated parabolic subgroups. 

The space of representations parabolically induced from P0(A) is defined by 

I(λ) = {ϕ : G(A) → C smooth | φ(pg) = exp hλ + ρ0, H0(p)i φ(g) 

for every p ∈ P0(A), g ∈ G(A).} 

The intertwining operator is a map 

M(w, λ) : I(λ) → I(wλ) 

given by Z 
M(w, λ)φ(g) = φ(nw 

−1 ng)dn. 
Nw (A)\N0(A) 

It is well-known that the integral over λ is a product of local integrals and converges 

for λ in the positive Weyl chamber “sufficiently away from the origin”. It extends 

meromorphically to a0 
∗ 
,C with only simple poles which occur on the root hyperplanes 

[MW95, IV.1]. Moreover, 

M(w, λ)φ = m(w, λ)φ 

where Y 
m(w, λ) = mα(hλ, α∨i) 

α∈R0: 
w−1α<0 

and if λ0 is in the positive Weyl chamber of a0 
∗ with hλ0 − ρ0, $∨i > 0 for every 

$∨ ∈ Δ̂ 
0 
∨ , the function Y 

λ 7→ hλ, α∨i m(w, λ) (4.1) 
α∈Δ0: 
w−1α<0 

is holomorphic and of moderate growth on k Re λ−λ0k < � for some � > 0 sufficiently 

small. See [MW95, IV.1.11] and [HC68, Lemma 101] for details. 




 �


 �


 �
 �

21 

4.3 ROOT CONE LEMMA 

The Root Cone Lemma 4.3.2 will be used to prove the finiteness of derivatives of 

φT,Q,`(λ) in Theorem 5.1.1. We will prove this for various pairs (G, θ0) in Chapter 6 

including all cases when G is split semisimple. Note that this lemma depends only on 

the semisimple part of G. The continuity of the geometric side for groups G which 

are quasisplit but not split is conditional on proving this lemma which we assume to 

hold in this section. 

Lemma 4.3.1 1. If λ is any vector in a ∗ 
0 then X 

(1 − θ0 
−1)λ, $∨ = 0. 

$∨∈Δ̂ ∨ 
0 

0 

2. Suppose w ∈ W, w 6= 1 and λ is in the (open) positive Weyl chamber of a0 
∗ then X 

λ − θ0 
−1 w −1λ, $β 

∨ > 0. 
β∨∈Δ∨ 

ˆ ∨Δ 

0 

Proof The first statement follows because θ0 
−1 is a permutation on the set Δ0 

or equivalently on 0 . The two parts of the lemma estimate the sum of coeffi-

cients of respective vectors expressed in the basis {β ∈ Δ0} of roots. We write 

λ − θ−1 w−1λ as a sum of λ − w−1λ and (1 − θ−1)(w−1λ). If w 6= 1 then ΔQ(w) 
0 0 0 

is nonempty so by [Bou02, Ch. VI §1.6 Proposition 18] and the choice of λ, the P 
inner product β∨∈Δ∨ λ − w−1λ, $β 

∨ is positive. The other inner product sum 

0 

P 
β∨∈Δ∨ (1 − θ0 

−1)(w−1λ), $β 
∨ vanishes using Part 1. 

Q(w)
Recall that Δ0 is the subset of Δ0 corresponding to the smallest standard 

parabolic subgroup Q(w) containing a representative of w ∈ W . For λ, γ ∈ a0 
∗ set 

γ(λ, w, θ0) := λ − θ0 
−1 w −1λ − γ(w, θ0). 

Lemma 4.3.2 (Root Cone Lemma) For w ∈ W, w 6= 1, there exists an open cone 

Ω0 inside the positive Weyl chamber (a0 
∗)+ in a0 

∗ such that for every λ ∈ Ω0 and every 

β ∈ Δ0 
Q(w) 

, 




 �


 �


 �

22 

λ − θ0 
−1 w −1λ, $β 

∨ > 0. (4.2) 

Remark 4.3.3 By choosing λ ∈ (a0 
∗)+ suitably away from the origin we can ensure 

for fixed γ ∈ a ∗ 
0 that 

λ − θ0 
−1 w −1λ − γ, $β 

∨ > 0 

for all β ∈ Δ0 
Q(w) 

. Throughout this section fix the open subset Ωγ of points λ satisfying 

this condition. We need the RCL to get the two estimates below. 

Lemma 4.3.4 Assume γ ∈ a0 
∗, Q ∈ P and w ∈ W̃ (Q, G). Then for every λ ∈ a0 

∗ 

with Re(λ) ∈ Ωγ , the integral Z X 
ψT,Q,l(λ) := exp XQ, −(λ − θ0 

−1 w −1λ) + γ τQ(XQ − T ) hα, XQ − T il dXQ 
aQ α∈ΔQ 

converges absolutely. 

Proof By the condition on Q, we have ΔQ 
0 ∪ Δ0 

Q(w) 
= Δ0. We can apply the 

Root Cone Lemma 4.3.2 to obtain λ ∈ (a0 
∗)+ so that the right hand term in the 

inner product above is positive. Since elements of ΔQ are restrictions of elements in 

Δ0 \ ΔQ 
0 ⊆ Δ0 

Q(w) 
to aQ, the exponential term is negative whenever XQ is in the cone 

defined by τQ. It thus dominates the polynomial term, giving the required absolute 

convergence. 

P 
Lemma 4.3.5 There is an unbounded subset of the line R( $̂ ∨) in a0 inde-$̂ ∨∈Δ̂ ∨ 

0 

pendent of w ∈ W such that if we set γ(λ, w, θ0) = λ − θ0 
−1 w−1λ − γ(w, θ0) where 

λ ∈ Ωγ is chosen satisfying Theorem 4.3.3 then hγ(λ, w, θ0), T i > 0 whenever T 

belongs to this set. 

Proof Up to a positive number, the above inner product is the sum of coordinates 

of γ(λ, w, θ0) in the basis Δ0 of roots and the estimate follows by applying Part 1 

(respectively Part 2) of Theorem 4.3.1 to the vector γ(w, θ0) (resp. λ − θ0 
−1 w−1λ). 

The independence on w is also from Part 2. 
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4.4 TWO THEOREMS 

We now state two theorems which will give crucial estimates towards proving the 

main result on the geometric side and they will be proven in Chapter 5. 

Theorem 4.4.1 There exists an integer r ≥ 0, a vector ξ(Q) ∈ a ∗ 
0 with hξ(Q), βi > 0 

for every β ∈ ΔQ and a seminorm µ on C(Ge(A), K) such that for every Q ∈ P and 

l ≥ 0, Z X 
F Q(x, T )τQ(HQ(x) − T )kHQ(x) − TQkl |f 1(x −1γx)|dx 

YQ 
γ∈Ge(Q,G) 

� (1 + kT k)r exp −hξ(Q), T iµ(f), (4.3) 

holds for every f ∈ C(Ge(A), K) and T ∈ a0 suitably large multiple of the sum of 

positive coroots (see Theorem 4.3.5). Moreover, µ satisfies the same bound as in the 

non-twisted case. 

Remark 4.4.2 In the above sum, recall that [e eG(Q, G) := Ge(Q) \ P 0(Q). 
Qe+⊆Pe0( eG 

If Q = G then the inequality reduces to Z X 
F G(x, T ) |f 1(x −1γx)|dx ≤ µ(f)(1 + kT k)r exp (−d0(T )) 

XG 
γ∈Ge(Q) R P 

and the LHS is just |kO (x)|dx.XT O∈O 
G 

Theorem 4.4.3 Let Qe be a standard parabolic subset and we = wδ0 ∈ Wf(Q, G). 
Then there is an integer r ≥ 0, a vector ξ(Q) ∈ a0 

∗ with hξ(Q), βi > 0 for all β ∈ ΔQ 

and a seminorm µ on C(Ge(A), K) such that Z Z Z Z 
−1 −1 n n e|f 1(a waum)|χ(a)dmdudadn 

Nw (A)\N0(A) A0 N0(A) M0(A)1 

�K,l µ(f)(1 + kT k)r exp −hξ(Q), T i, 
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holds for every l ≥ 0, f ∈ C(Ge(A), K) and T ∈ a0 a suitably large multiple of the sum 

of positive coroots (see Theorem 4.3.5). Here, Nw = N0 ∩ nwN0n− 
w 
1 and X 

χ(a) = χT,Q,l(a) = τQ(HQ(a)−T ) τ̂P
Q 
0 
(T −H0(a))τP

Q 
0 
(H0(a)−T1) hHQ(a) − TQ, αil . 

α∈ΔQ 

4.5 CONTINUITY OF THE GEOMETRIC SIDE 

In this section, we prove Theorem 4.1.1 that the distribution JGe 
(f) initiallygeom 

defined for f ∈ Cc ∞(Ge(A)) extends to C(Ge(A), K). As in the non-twisted case, the 

proof involves modifying Arthur’s (or rather, Labesse-Waldspurger’s) proof in the 

compactly supported setting to our case. We imitate the method of Finis-Lapid 

[FL16] whenever possible. 

Proof [of Theorem 4.1.1] For Pe ⊇ Pe 0 and f ∈ C(Ge(A), K) we could replace the sum fover MP (Q) in the definition of Z X 
kPe(x) = ω(x)f1(x −1γnx)dn 

NP (A) 
γ∈MfP (Q) 

fby an integral over MP (A) of a finite sum of derivatives of f , following Theorem 3.1.2 

and [FL16, Lemma 2.1(1)]. Thus each k e(x) hence kT (x) is well-defined. We canP geom 

formally write Z ZX X X 
JT (f) ≤ JT (f) − kT (x)dx + |kT (x)|dx.O O O O 

XG XGO∈O O∈O O∈O 

By Theorem 4.4.2, it follows that to prove JT (f) and JT (f) exist and the relationgeom O P 
JT (f) = JT (f), it suffices to prove part (3). Part (2) is a formal property geom O∈O O 

which holds whenever JO 
T (f) is absolutely convergent, cf. [LW13, Théorème 11.1.1]. 

We now prove part (3). 

The first inequality is obvious. Recall that X X 
kT (x) = F Q (ξx, T )σeR(H0(ξx) − T )kO,Q,R(ξx).O P0 Q 

Q⊆R ξ∈Q(Q)\P (Q) 
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Using twisted Levi decomposition we can write X 
kO,Q,R(x) = kO,Q,R,S (x) 

S: 
Q⊆S⊆R 

where ZX X X 
kO,Q,R,S (x) = ω(x)f1(x −1ηνnx)dn, 

NP (A)
η∈MfS (Q,S) Pe: ν∈NS (Q)P 

Se⊆Pe⊆Re− [ 
Mf S (Q, S) = Mf S (Q) \ Pe0(Q). 

Pe0: 
Qe+⊆Pe0( eS e e Qe+ e Re−Here we are using that if P ⊇ P0 is such that Q ⊆ P ⊆ R then ⊆ P ⊆ . 

Note that if Q = R then σeR vanishes unless Q = R = G in which case it is 1. HenceQ 

the contribution from Q = R is precisely 

F G(x, T )kO,G,G(x) = FP
G 
0 
(x, T )kO (x). 

Thus, X X 
FP
G 
0 
(x, T )kO (x) − kO 

T (x) = FP
Q 
0 
(ξx, T )σeQR(H0(ξx) − T )kO,Q,R(ξx). 

Q(R ξ∈Q(Q)\G(Q) 

Making a change of variables, Z ZX XX 
F (x, T )kO(x) − kO 

T (x) dx = FP
Q 
0 
(x, T )σeQR(H0(x)−T )|kO,Q,R(x)|dx. 

XG YQO∈O O∈O Q(R 

Fixing Q ⊆ S ⊆ R with Q 6= R, we need to estimate ZX 
F Q(x, T )σeQR(H0(x) − T )|kO,Q,R,S (x)|dx. 

YQO∈O 

We can assume that σeQR(HQ(x) − T ) is 1 and so is τQ
R(HQ(x) − T ). Now invoke 

[FL16, Corollary 4.7], the hypotheses that F Q(x, T )τQ
R(HQ(x)−T ) = 1 being satisfied. 

(Since the dependence of µ on the level of K in the regular (non-twisted) case is only 

via this Corollary whose twisted equivalent remains same, the corresponding bound 

in the twisted case remains the same.) The aforementioned Corollary tracks Arthur’s 
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proof in [Art78, Art81] by applying Iwasawa decomposition to x which is justified 

since the expression above is left invariant under Q(Q)NR(A). Up to a constant 

whose dependence on K is tracked in [FL16, Corollary 4.7], 

�
 �� 
|kO,Q,R,S (x)| �K exp − ξS

R, T + (ξS
R)Q, H0(x) − T × ZX 
|f 1(x −1ηnx)|dndx. 

NS (A)
η∈MfS (Q,S) 

The remaining steps to reduce this to Theorem 4.4.1 are the same as in [FL16, p. 

21]. By using Theorem 3.1.2, we can invoke [FL11a, Lemma 3.4] to assume f ≥ 0 

and K = Kf . Further, we can apply Iwasawa decomposition with respect to S and 

use lemma 4.8 of [FL16] as is. The bound now follows by Theorem 4.4.1. 
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5. PROOFS OF THEOREMS 4.4.1 AND 4.4.3 

We will apply the twisted Bruhat decomposition to Theorem 4.4.1 to reduce it to 

Theorem 4.4.3. The proof of Theorem 4.4.3 involves estimating the integrals over 

twisted Bruhat cells. We will apply the Mellin transform and use the slow growth of 

intertwining operators with the estimate of [FL16, Proposition 3.4] to get the required 

estimate. 

5.1 REDUCTION OF THEOREM 4.4.1 to THEOREM 4.4.3 

The estimate below for Q ∈ P and any left Q(Q)−invariant measurable function 

f on G(A)1 , Z Z Z Z Z 
|f(x)|dx ≤ |f(namk)|δ0(a)−1τ Q (H0(a) − T1)dmdadudkP0 

YQ K N0(Q)\N0(A) A0 XM 

which occurs in [FL16, Equation 2] remains true in the twisted case. Indeed, averaging 

over Ge(Q, G) makes the integrand on the left hand side of Equation (4.3) bi-Q(Q)-

invariant. Applying this estimate we need to bound Z Z Z Z X � � 
|f 1 (namk)−1γ(namk) | χ(a)δ0(a)−1dmdadudk. 

K N0(Q)\N0(A) A0 XM 
γ∈Ge(Q,G) 

Here, X 
χ(a) = F Q(a, T ) τQ(HQ(a) − T ) τP

Q 
0 
(H0(a) − T ) hHQ(a) − TQ, αil . 

α∈ΔQ 

Ignoring the integration on the compact sets K and XM0 by [FL16, Prop. 2.1(2)] we 

are reduced to bounding the integral Z Z X � � 
|f 1 (na)−1γna |χ(a)δ0(a)−1dadn. 

N0(Q)\N0(A) A0 
γ∈Ge(Q,G) 
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Applying the twisted Bruhat decomposition to Ge(Q, G) by Section 4.2, we need 

to estimate for fixed we = wδ0 ∈ Ge(Q, G), the integral over N0(Q) \ N0(A) and A0 of 

the sum X X X 
−1 −1 −1|f 1(a n u mnweu1na)| χ(a)δ0(a)−1 .2 

u2∈Nw (Q)\N0(Q) u1∈N0(Q) m∈M0(Q) 

Applying [FL16, Lemma 3.3] to the translate g(u1) = f 1(bu1) with b = n−1u − 
2
1 mnwe 

allows us to replace the sum over u1 ∈ N0(Q) by the integral of functions g ∗ X for X 

ranging over a finite set of differential operators. Replacing g by one such derivative 

(and that with f1) reduces to bounding the sum-integral Z Z ZX X 
−1 −1 −1|f 1(a n u mnweu1a)| χ(a)δ0(a)−1dadn2 

N0(Q)\N0(A) A0 u1∈N0(A)u2∈Nw(Q)\N0(Q) m∈M0(Q) Z Z ZX X 
= |f 1(a −1 n −1 u −1 mnweau1)| χ(a)dadn.2 

N0(Q)\N0(A) A0 u1∈N0(A)u2∈Nw (Q)\N0(Q) m∈M0(Q) 

(Combining the sum over u2 and the integral over n gives), Z Z Z X 
−1 −1|f 1(a n mnweau1)| χ(a)dadn. 

Nw (Q)\N0(A) A0 u1∈N0(A) m∈M0(Q) 

Note that as a function of n, the inner integral is left Nw(A)-invariant. Hence we can 

write Z Z Z X 
|f1(a −1 n −1 mnweau1)| χ(a)dadn. 

Nw(A)\N0(A) A0 u1∈N0(A) m∈M0(Q) 

Also, 

−1 −1 −1 −1 −1 0 a u mnwau1 = a u −1(nwm 0)au1 = a u nwam u1 

−1 −1 0 0−1)m 0 −1 −1 0 = a u nwa(m u1m = a u nwau2m . 

Thus we need to bound Z Z Z X 
−1 −1|f 1(a n nweau1m)| χ(a)dadn, 

Nw(A)\N0(A) A0 u1∈N0(A) m∈M0(Q) 

which by [FL16, Lemma 2.1(1)] and Theorem 3.1.2 reduces to a finite sum of deriva-

tives. Replacing f by one such derivative as before, we need to bound Z Z Z Z 
−1 −1|f 1(a n nweau1m)| χ(a)dmdadn, 

Nw(A)\N0(A) A0 u1∈N0(A) M0(A)1 
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which reduces to Theorem 4.4.3. � 

For a finite dimensional space V , let D(V ) denote the space of invariant diferential 

operators on V with the standard filtration. The lemma below is a modification of 

lemma 3.5 of [FL16] in the twisted setting. 

Lemma 5.1.1 Suppose Q be a standard parabolic subgroup of G and w̃ = wδ0 ∈ 

W̃ (Q, G). Let Ω = Ωγ satisfy Theorem 4.3.3 for 

) 

⎛ ⎜⎜⎝ XX 
α − β 

⎞ ⎟⎟⎠ .γ = γ(w, θ0) = 
1
(1 − θ0 

−1 

2 
α,wα>0 β>0 

wβ<0 

Then the integral Z 
ϕT,Q,l(λ) := exp hX, −γ(λ, w, θ0)i 

X∈a0 X 
τQ(X − T ) τ̂Q (T − X)τQ (X − T1) hXQ − TQ, αil dX, P0 P0 

α∈ΔQ 

is absolutely convergent for Re(λ) in compact subsets of Ω and T in the unbounded set 

of Theorem 4.3.5. Moreover, for fixed Λ0 ∈ Ω and any differential operator D ∈ D(a0 
∗) 

of degree d, there is a vector ξ(Q) such that β(ξ(Q)) > 0 for all β ∈ ΔQ and 

0|(ϕT,Q,l ∗ D)(λ)| �D,l (1 + kT k)d+a
Q 

exp −hT, ξ(Q)i 

where Re(λ) = Λ0. 

Proof Similar to [FL16, Lemma 3.5], we can use the decomposition a0 = aQ ⊕ a0 
Q 

to write X = XQ + XQ and 

ϕT,Q,l(λ) = ψT
Q(λ).ψT,Q,l(λ) 

where Z 
ψT
Q(λ) := exp XQ , −γ(λ, w, θ0) τ0 

Q(XQ − T1)τ̂0 
Q(T − XQ)dXQ , 

Qa0 

and XZ 
ψT,Q,l(λ) := exp hXQ, −γ(λ, w, θ0)i τQ(XQ − T ) hα, XQ − T il dXQ. 

aQ α∈ΔQ 




 �


 �
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τ Q + T SThe function XQ 7→ τ0 
Q(XQ − T1) 0̂ (T − XQ) is the convex hull of the set {TS

Q 
1 : 

⊆ S ⊆ Q} [Art81, Section 6], hence the integral ψQ(λ) is it’s Fourier transformP0 T 

evaluated at −γ(λ, w, θ0) which is also the smooth function corresponding to the 

aforementioned (MQ,M0)-orthogonal set. In particular it is compactly supported and 

using Theorem 4.3.4, we have the convergence of ϕT,Q,l(λ). It remains to estimate 

the derivatives. Assume D = DQDQ where DQ ∈ D((a0 
Q)∗) and DQ ∈ D(aQ 

∗ ) and let 

d = dQ + dQ be their degrees. By loc. cit. ψT
Q(λ) equals X D E 

T Q + T S exp S 1 , −γ(λ, w, θ0) �Q(−γ(λ, w, θ0)) 
S:P0⊆S⊆Q D E X exp TS

Q + T1 
S , −γ(λ, w, θ0) 

= Vol((ΔS
Q)∨) Q . 

β∈Δ h−γ(λ, w, θ0), β∨iQ 
S:P0⊆S⊆Q S 

Tracking the dependence on T ∈ a0, we have X D E 
|ψQ Q 

T Q+a0 
T ∗ D

Q(λ)| �DQ (1 + kT k)dQ 
exp S , −γ(Λ0, w, θ0) . 

P0⊆S⊆Q D E 
T QObserve by the conditions on Λ0 and T , the inner product S , −γ(Λ0, w, θ0) isD E 

negative and equals TS
Q , −Λ0 + w−1Λ0 (using Theorem 4.3.1). Since Λ0 − w−1Λ0 

is a positive linear combination of the roots in ΔQ, there exists a ξ(Q) ∈ a0 
∗ whose 

coefficients in the basis Δ0 are nonnegative (depending on Λ0) such that D E 
TS
Q , −Λ0 + w −1Λ0 ≤ − T Q, ξ(Q) . 

(By the choice of T ), it is also possible to choose ξ(Q) independent of w, for example P 
we can choose ξ(Q) = N β for N suitably large. Therefore,β∈ΔQ 

0|ψQ ∗ DQ(λ)| �DQ (1 + kT k)dQ+a
Q 

exp − T Q, ξ(Q) .T 

The estimate for ψT,Q,` ∗ DQ(λ) is similar to that in lemma 3.5 of [FL16] and we have, 

|(ψT,Q,` ∗ DQ)(λ)| �DQ,` (1 + kT k)dQ exp −hTQ, ξ(Q)i . 
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5.2 PROOF OF THEOREM 4.4.3 

Proof The quantity to estimate is Z Z Z Z 
−1 −1|f 1(a n nweaum)|χ(a)dmdudadn, 

Nw (A)\N0(A) A0 N0(A) M0(A)1 

where 

τQχ(a) = χT,Q,l(a) = τQ(HQ(a) − T ) P̂0 
(T − H0(a))× X 

τQ hHQ(a) − TQ, αil .P0 
(H0(a) − T1) 

α∈ΔQ 

We split the integral over u ∈ N0(A) as n0u where u ∈ Nw−1 (A) \ N0(A) and n0 ∈ 

Nw−1 (A). Thus, we want to bound Z Z Z Z Z 
−1 −1 0|f 1(a n nwean um)|×

n∈Nw(A)\N0(A) A0 n0∈N −1 (A) u∈N −1 (A)\N0(A) M0(A)1 
w w 

χ(a) dm du dn 0 da dn. 

We can conjugate n0 over nwea: 
nwean 0 = nwδ0an 0 

−1)δ−1 = nwδ0(an 0 a 0 nw 
−1 nwδ0a 

00δ−1 −1 00 0 = nw(δ0n 0 )nw nwδ0a · · · n = an a −1 ∈ Nw−1 (A) 
00)n −1 = nwθ0(n w nwea 

000 −1 = nwn n nweaw 

000 000 −1where n ∈ Nw−1 (A) = N0(A) ∩ w−1N0(A)w. Therefore n1 := nwn nw ∈ Nw(A). 

Making this change of variable, we are reduced to bounding Z Z Z Z Z 
−1 −1|f 1(a n n1nweaum)|χ(a)× 

n∈Nw(A)\N0(A) n1∈Nw(A) A0 M0(A)1 u∈N −1 (A)\N0(A)w 

δM0,N −1 (a)
−1du dm da dn1 dn, w Z Z Z Z 

= |f1(a −1 
waum)|χ(a)δM0,N (a)−1 nn e −1 

N0(A) A0 M0(A)1 N −1 (A)\N0(A) 
w 

w 

du dm da dn 
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Z Z Z Z 
= |f 1(a −1 nnwθ0(aum)δ0)|χ(a)δM0,N (a)−1 

w−1 
N0(A) A0 M0(A)1 N −1 (A)\N0(A)w 

du dm da dn 

Z Z Z Z 
−1 (a)−1 = |h(a nnwθ0(aum))|χ(a)δM0,Nw−1 

N0(A) A0 M0(A)1 N −1 (A)\N0(A)w 

du dm da dn 

Z Z Z Z 
= |h(a −1nθ0(m)nwθ0(au))|χ(a)δM0,N (a)−1 

w−1 
N0(A) A0 M0(A)1 N −1 (A)\N0(A)w 

du dm da dn 

Z Z Z Z 
−1 (a)−1δ0(a)= |h(nθ0(m)a nwθ0(au))|χ(a)δM0,Nw−1 

N0(A) A0 M0(A)1 N −1 (A)\N0(A)w 

du dm da dn Z Z Z 
= |h(pa −1 nwθ0(au))|χ(a)δM0,N (a)−1δ0(a)du da dp.

w−1 
P0(A)1 A0 N −1 (A)\N0(A)w 

Here we have used the Theorem 3.1.2 on the right to get a function h on G(A) 

satisfying h(x) = f 1(xδ0) and that M0(A)1 is invariant under θ0 and that N0(A) 

normalizes M0(A)1 . By an application of Theorem 4.2.1, this equals Z Z Z 
|h(pa −1 nwθ0(au))|χ(a)δw−1 (a)dudadp. 

P0(A)1 A0 N −1 (A)\N0(A)w 

Recall the definition of the space of principal series representations in [FL11a, §3.3] 

and in particular, that of Fh: for h ∈ Cc ∞(G(A)), Z 
Fh(g) = h(pg)dp. 

P0(A)1 

Thus we want to consider Z Z 
|Fh(a −1 nwθ0(au))|χ(a)δw−1 (a)duda. 

A0 N −1 (A)\N0(A)w 

As u is integrated over Nw−1 (A) \ N0(A), so is θ0(u) by a change of variables. 

(Because θ0 : W G → W G maps nw to another representative of w ∈ W .) So look at Z Z 
|Fh(a −1 nwθ0(a)u)|χ(a)δw−1 (a)duda. 

A0 N −1 (A)\N0(A)w 




 �
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By [FL11a, Lemma 3.4] and Theorem 3.1.2, we can assume that f , hence Fh is of 

compact support. This justifies taking the Mellin transform below, Z Z Z � �λ−1 −1φ(λ)(nwu) a nwθ0(a)nw χ(a)δw−1 (a)× 
A0 N −1 (A)\N0(A) Re λ=λ0w 

1−1 −1δ0(a nwθ0(a)nw ) 2 dλduda, 

which by Theorem 4.2.2 reduces to Z Z Z � �λ−1 −1φ(λ)(nwu) a nwθ0(a)nw χ(a)δw−1 (aθ0(a −1)) 
A0 N −1 (A)\N0(A) Re λ=λ0w 

δM0,Nw−1 (a −1θ0(a))dλduda. 

Moreover, 

� −1 −1 
�λ −1 −1 a nw = exp λ, H0(a nwθ0(a)nw )θ0(a)nw 

= exp hλ, −H0(a) + w.θ0(a)i 

= exp − (1 − θ0 
−1 w −1)λ, H0(a) . 

Writing this integral over a0 and using Theorem 4.2.1 gives Z Z Z 
τ Qφ(λ)(nwu) exp hX − wθ0(X), λi τQ(X − T ) P̂0 
(T − X) 

a0 N −1 (A)\N0(A) Re λ=λ0w * +X X X1 1 
τP
Q 
0 
(X − T1) hXQ − TQ, αil exp X − θ0(X), α − β dλdudX. 

2 2 
α∈ΔQ α,wα>0 β>0 

wβ<0 

Z Z Z 
= φ(λ)(nwu)τQ(X − T ) τ̂P

Q 
0 
(T − X)τP

Q 
0 
(X − T1)× 

a0 N −1 (A)\N0(A) Re λ=λ0w * +X X 
exp X, −(λ − θ0 

−1 w −1λ) + 
1
(1 − θ0 

−1)( α − β) × 
2 

α,wα>0 β>0 
wβ<0 X 

hXQ − TQ, αil dλdudX. 
α∈ΔQ 

Following Theorem 5.1.1, we will denote the second term in the inner product by P P 
−γ(λ, w, θ0) where γ = −1 (1 − θ−1)( α − β>0 β).2 0 α,wα>0 

wβ<0 
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We will eventually prove the absolute convergence of this triple integral which will 

justify the changing the order of integration. Using Equation (4.1), the function Y 
h(λ) = m(w −1, λ) hλ, α∨i 

α∈Δ0: 
w−1α<0 

is of moderate growth so we are reduced to proving the absolute convergence of Z 
h(λ)ϕT,Q,l(λ)Q dλ, 

Re λ=λ0 α∈Δ0: hλ, α∨i 
w−1α<0 

where Z * +X X 
ϕT,Q,l(λ) := exp X, −(λ − θ0 

−1 w −1λ) + 
1
(1 − θ0 

−1)( α − β)
2 

α,wα>0 β>0 
X∈a0 wβ<0 

X 
τQ(X − T ) τ̂Q (T − X)τQ (X − T1) hXQ − TQ, αil dX, P0 P0 

α∈ΔQ 

is absolutely convergent by Theorem 5.1.1. Having proven Theorem 5.1.1 which is 

the twisted equivalent of [FL16, Lemma 3.5], we are in a position to apply [FL16, 

Proposition 3.4] from which the required estimate follows. 
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6. ROOT CONE LEMMA 

This section is devoted to proving Lemma 4.3.2, the Root Cone Lemma in various 

cases. It is clear that the radical of G plays no role in the statement of the lemma 

so we may as well assume that G is semisimple. After reducing to the case when 

G is simple, we do a case-by-case exhaustion in the case when G is connected split 

simple wherein, automorphisms of G correspond to those of the Dynkin diagram of 

G. We use the Cartan-Killing classification to enumerate all automorphisms and 

prove the lemma in each case. The proof for the automorphism of E6 was done using 

the software SageMath [TSD17]. The general case when G is connected simple but 

possibly not split eludes a proof. 

6.1 REDUCTION TO THE SIMPLE CASE 

The cyclic base change is a special case of this. Let E/F be a cyclic extension 

of number fields of order d with a generator θ of the Galois group. Let H be a 

connected reductive group over E and consider the group G = ResE/F H. We have 

G(E) ∼= H(E) × · · · × H(E) and is equipped with a Galois action which permutes 

the d copies H(E). Langlands’ Functoriality has been established for automorphic 

representations of H(AF ) and H(AE ) when H = GL(n) by Arthur and Clozel [AC89] 

by comparing the trace formula for H with the twisted trace formula for G. The 

lemma below proves RCL for cyclic base change. Moreover using it, we are reduced 

to proving RCL for automorphisms of connected almost-simple groups. 

Lemma 6.1.1 Let H be a connected reductive group. The Root Cone Lemma 4.3.2 

holds when G ∼= H × · · · × H (d copies) and θ is a d-cycle that permutes the d-copies 

of H. 




 �
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 �
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 �


 �

36 

Proof We will identify d copies of ‘objects’ of H with the corresponding copies in G. 

For instance, suppose w = (w1, · · · , wd) ∈ W G is given so that wi ∈ W H for i ∈ [d]. 

We need to show the existence of λ = (λ1, · · · , λd) ∈ (a0 
G)∗ so that λ − θ−1w−1λ is a 

QG(w)
positive linear combination of co-roots β∨ whenever β∨ ∈ Δ0 . There is no loss in 

generality to use θ, w instead of the notationally cumbersome θ−1, w−1 . Then, 

λ − θwλ = (λ1 − w2λ2, λ2 − w3λ3, · · · , λd−1 − wdλd, λd − w1λ1). 

Choosing coordinates λi, $β 
∨ for each i ∈ [d] and β ∈ ΔH 

0 will define the vectors 

H )∗)+λ1, · · · , λd ∈ ((a0 . Fix β ∈ Δ0 
H ; we have three cases. 

QH (wj ) QH (wi)• Suppose there are i, j ∈ [d] such that β ∈ Δ0 \ Δ0 . Choose 

λi+1, $
∨ > λi+2, $

∨ > · · · > λi, $
∨ .β β β 

For any i0 ∈ [d] \ {i}, reading i0 + 1 modulo d, we have 

− wi0+1λi0+1, $
∨ = − λi0+1, $

∨ + λi0+1 − wi0+1λi0+1, $
∨ > 0.λi0 β λi0 β β 

The former term is positive by the choice above and the latter is non-negative 

by [Bou02, Ch. VI §1.6 Proposition 18]. 

QH (wi)• Suppose that β ∈ ∩di=1Δ0 then choose 

λ1, $β 
∨ = λ2, $β 

∨ = · · · = λd, $β 
∨ > 0. 

Since λi−1 − wiλi, $β 
∨ = λi − wiλi, $β 

∨ , positivity follows from lemma 2.2 

of [FL11a] (whose proof is an application of loc. cit). 

QH (wi)• Finally, if β 6∈ ∩d Δ then λi can be choses such that λi, $∨ is positive. i=1 0 β 

We could now assume that G is almost-simple but since the RCL is a statement 

about the root system of G, we may assume that G is simple. Additionally when G is 

split, the statement reduces to the automorphisms of Dynkin diagrams of simple Lie 
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algebras. The Dynkin diagrams for the families Bn and Cn as well as the exceptional 

ones E7, E8, F4, G2 have no nontrivial automorphisms. The A-type has a unique 

automorphism and so does the D-type when n 6= 4. D4 has a nontrivial automorphism 

of order 3 whereas E6 has an involution. We handle each of these cases below by 

explicitly constructing root cones for different elements w ∈ W . 

6.2 ROOT CONE LEMMA FOR TYPE An 

Following [FH91], we can explicitly write a basis for the roots and weights as P nfollows. The space a0 of roots is spanned by L1, · · · , Ln such that i=1 Li = 0. 

Δ0 = {α1, · · · , αn−1 : αi = Li − Li−1} 

and 

Δ̂0 = {$1, · · · , $n−1 : $i = L1 + · · · + Li}. 

A vector 
n−1X n−1X n−1X ! n−1X 

λ = ai$i = aj Li =: biLi 
i=1 i=1 j=i b=1 

is in the positive Weyl chamber precisely when a1, a2, · · · , an−1 > 0 or equivalently, if 

b1 > b2 > · · · > bn−1 > 0. 

We can and will write λ as a sum b1L1 + · · · + bn−1Ln−1 + bnLn with bn = 0. 

The action of any w ∈ W ∼= Sn is by permuting the indices and θ0 
−1 = θ0 acts 

by θ0(Li) = −Ln−i which up to a sign, is the action of the long element w0 ∈ W . 

Denoting by τ ∈ Sn the action of w0w−1 , we see that 

n nX X 
θ0 
−1 w −1λ = −w0w −1λ = − biLτ(i) = −bτ −1(i)Li. 

i=1 i=1 

Thus, 

n � � n−1X X 
λ − θ0 

−1 w −1λ = bi + bτ −1(i) Li = (bi + bτ −1(i) − bτ −1(n))Li 
i=1 i=1 
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We now use the Cartan matrix to write this vector in terms of the roots. 

2 −1 0 · · · 0 1 0 0 · · · 0 1 −1 0 

Z = CU = 

⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 
= 

⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 
−1 2 −1 −11 1 0 · · · 0 

. 
0 1 
. .. . . . .. . . . . . . . .1 1 1 .. . . . .. . 

. . . .−1 2 −1 −1. . . . 0 1.. . . 

−1 2 1 1 1 1 1 1 1 · · · 1 2 

Since Z−1Li = αi for i = 1, 2, · · · , n − 1 we have 

Xn−1 n−1 

λ − θ−1 w −1λ = (bi + bτ −1(i) − bτ−1(n))Li = ciαi0 
i=1 i−1 

where 

X 
#X−i 1nX " 

1 
(n − i) (bj + bτ −1(j) − bτ −1(n)) − i (bj + bτ −1(j) − bτ−1(n))ci = 

n 
j=1 j=i+1" #X−i 1n 

= n (bj + bτ −1(j) − bτ −1(n)) − i (bj + bτ −1(j) − bτ −1(n)) . 
n 

j=1 j=1 

Therefore, 

X 

nci = n(b1 + · · · + bi + bτ −1(1) + · · · + bτ −1(i)) − 2i(b1 + · · · + bn). 

Thus we need to be able to choose coefficients bi such that ci above is positive 

whenever αi ∈ Δ0 
Q(w) 

. By [FL11a, p. 787], 

Δ
Q(w) 

= {α ∈ Δ0 : w$
∨ 6= $∨},0 α α 

which for GL(n) implies that αi ∈ Δ0 
Q(w) 

precisely if the permutation τ above satisfies 

τ([i]) 6= [i]+n−i, where [n] := {1, 2, · · · , n}, cf. [PM]. This is proven in the following 

Lemma 6.2.1 For n ≥ 2, fix a permutation τ ∈ Sn, τ 6= (1, n)(2, n − 1) · · · , i.e., τ 

isn’t the long element. Let 

Δ(τ) = {i ∈ [n − 1] : τ([i]) 6= {[i] + n − i}}. 

1 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

Then there exist real numbers b1 > b2 > · · · > bn−1 > bn = 0 such that the inequalities 
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b1 + b2 + · · · + bi + bτ −1(1) + · · · + bτ−1(i) b1 + b2 + · · · + bn 
> (6.1)

2i n 

hold simultaneously for every i ∈ Δ(τ). 

Proof For a given τ ∈ Sn and for any j ∈ [n] define the numbers 

aj := χΔ(j) − χΔ(j − 1) − χΔ(n − j) + χΔ(n − j + 1), 

where χΔ : Z → {0, 1} denotes the characteristic function of the set Δ := Δ(τ) ⊂ Z. 

Also, with c := 5n − an, define 

bj := aj − 5j + c. 

We may note right away that since |aj | ≤ 2, the bj are strictly decreasing, and that 

bn = 0, by the choice of the constant c. 

For any E ⊂ [n], for simplicity of notation we put X X 
α(E) := aj , β(E) := bj 

j∈E j∈E 

(so we may think α and β as discrete signed measures supported in [n]). 

For i ∈ [n], summing over j = 1, . . . i we have 

α([i]) = χΔ(i) − χΔ(n − i). 

Incidentally, for any i ∈ [n] we have i ∈ Δ if and only if, by definition, τ([i]) 6= 

[i] + n − i thus also, since τ is bijective, if and only if τ ([i]c) 6= ([i] + n − i)c , that is 

τ([n− i]+ i) =6 [n− i] or τ−1([n− i]) =6 [n− i]+ i, which means n− i ∈ Δ−1 := Δ(τ −1). 

Hence the last formula also writes 

α([i]) = χΔ(i) − χΔ−1 (i). 

Also note that, since n 6∈ Δ 

α([n]) = 0, 

and 

α([i] + n − i) = −α([n − i]) = −χΔ(n − i) + χΔ(i) = α([i]). 
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We proceed showing the inequalities on the arithmetic means. 

Case I. Assume i ∈ Δ \ Δ−1 . Then by definition of Δ−1 , τ−1([i]) = [i] + n − i, so 

that 

α([i]) + α(τ−1[i]) α([i] + n − i) χΔ(i) − χΔ−1 (i) 1 
= α([i]) + = = > 0,

2i 2i i i 

and summing the arithmetic means of −5j + c on the same sets we have plainly 

β([i]) + β(τ −1[i]) β([n])
> . 

2i n 

Case II. Assume i ∈ Δ ∩ Δ−1 . Thus τ−1([i]) 6= [i] + n − i and, just because bj are 

strictly decreasing 

β([i]) + β(τ−1[i]) β([i]) + β([i] + n − i)
> 

2i 2i 

and since we have α([i]) = α([i] + n − i) = α([n]) = 0 because χΔ(i) = χΔ−1 (i) = 1, 

summing as before the arithmetic means of the affine part of bj , 

β([i]) + β([i] + n − i) β([n]) 
= ,

2i n 

concluding the proof. 

6.3 ROOT CONE LEMMA FOR TYPE D` 

The root system D` has a unique automorphism when ` =6 4 which for ` = 3 

coincides with the automorphism θ0(x) = tx−1 of GL(3) (and has been proven in the 

previous section). The root system D4 has an automorphism of order 3 which will be 

considered later. 

Following [Bou02] we assume the ambient space is spanned by the vectors e1, · · · , e` 
and the roots are given by R0 = {±ei ± ej : 1 ≤ i < j ≤ `}. For a base Δ0, we choose 

Δ0 = {α1 = e1 − e2, · · · , α`−1 = e`−1 − e`, α` = e`−1 − e`}. 
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The corresponding dual basis of weights is [
Δ̂0 = {$i = e1 + · · · + ei :1 ≤ i ≤ ` − 2} 

1 1 {$`−1 = (e1 + · · · + e`−1 − e`), $` = (e1 + · · · + e`)}. 
2 2 

Since the root system D` is selfdual, the co-roots and co-weights are defined sim-

ilarly. The Weyl group W consists of even-signed permutations, i.e., any w ∈ W is a 

pair (σ, η) where σ ∈ S` and η = (η1, · · · , η`) is an ordered `-tuple of ±1 with even 

−1’s. The action of w on the basis is given by 

w.ei = ηieσ(i). 

The automorphism θ0 acts on Δ0 by permuting the set {α`−1, α`} and fixing other 

roots and similarly on the weights in Δ̂ 
0. 

• • · · · •α1 α2 α`−2 

Fig. 6.1. Involution for groups of type D` 

To prove the Root Cone Lemma for D`, we need to show that for fixed w = 

(σ, η) ∈ W there exists an open cone Ω ⊆ (a0 
∗)+ such that if λ ∈ Ω, the inequality 

λ − θ0 
−1 w −1λ, $i 

∨ = hλ, $i 
∨ − wθ0$i 

∨i > 0 (Equation (6.2))(i) 

•α` 

• 
�� 

θ0 

XX 

α`−1 
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holds whenever w$i 
∨ =6 $i 

∨ . Assume that λ = c1$1 + · · · + c`$` ∈ (a0 
∗)+ that is 

to say, ci > 0 for all i ≤ `. Observe that � � 
e`−1 + e` 

λ = c1e1 + c2(e1 + e2) + · · · + c`−1 e1 + · · · + e`−1 + 
2� � 

−e`−1 + e` 
+ c` e1 + · · · + e`−2 + 

2� � 
c`−1 + c` 

= (c1 + · · · + c`−2)e1 + · · · + c`−2 + e`−2
2� � � � 

c`−1 + c` −c`−1 + c` 
+ e`−1 + e`, (6.3)

2 2 

so if c1, · · · , c` > 0 then the only possible negative coefficient above is that of e`. If θ0 

fixes $i 
∨ then every λ ∈ (a0 

∗)+ satisfies the Inequality (Equation (6.2))(i), as can be 

seen from [FL11a, Lemma 2.2]. It suffices to prove these inequalities for i = ` − 1, `. 

We first analyze the case i = ` − 1 and set I(w) = {σ(i) : 1 ≤ i ≤ `, ηi = −1}. 

$∨ − wθ0$
∨ = $∨ − w$∨ 

`−1 `−1 `−1 ` 

1 1∨ ∨ ∨ ∨ ∨ = 
2
(e1 + · · · + e`−1 − e` ) − 

2
(η1eσ(1) + · · · + η`eσ(`)) ⎛ ⎞ X 

∨ ∨ = e ` .⎝ 
σ(i) 
⎠− e 

i∈I(w) 

• If I(w) = ∅ then η = (1, · · · , 1) and $∨ −w$∨ = −e∨ so to ensure the quantity `−1 ` ` 

λ, $` 
∨
−1 − w$` 

∨ is positive, by Equation (6.3) above we can take c`−1 > c`. 

• If I(w) 6= ∅ and inf I(w) < ` − 1, we can choose ci � c`−1, ci � c` for some 

i ∈ I(w) \ {` − 1, `} to get the positivity condition. 

• Finally if inf I(w) ≥ ` − 1 then η must have exactly two sign changes and 

I(w) = {` − 1, `} in which case $∨ − w$∨ = e∨ so every λ ∈ (a0 
∗)+ satisfies`−1 ` `−1 

Inequality (Equation (6.2))(l − 1). 

The case i = ` is slightly more involved. Observe that if w$∨ =6 ` then η =6` $∨ 

(1, · · · , 1) where w = (σ, η). Thus we can assume I(w) 6= ∅. 
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$` 
∨ − wθ0$` 

∨ = $∨ − w$∨ 
` `−1 

1 1∨ ∨ ∨ ∨ = 
2
(e1 + · · · + e` ) − 

2
(η1eσ(1) + · · · + η`−1eσ(`−1) − η`eσ(`)) 

1 � � ∨ ∨ ∨ ∨ ∨ = e + · · · + e − η1e − · · · − η`e + η`e1 ` σ(1) σ(`) σ(`)2 X 
= η`eσ(`) + ei 

∨ . 
i∈I(w) 

Thus $∨ − wθ0$∨ is a positive linear combination of {ei} whenever η` 6= −1. If` ` 

η` = −1 then ηi0 = −1 for some i0 =6 `; X 
∨ ∨ ∨ ∨$∨ − w$∨ = −e e` `−1 σ(`) + eσ(`) + eσ(i0) + i 

i∈I(w)\{i0,`}X 
∨ ∨ = e + ei , 

i∈I(w)\{i0,`} 

i0 

which again is a positive linear combination of {ei}’s. In either case, choosing c`−1 < c` 

ensures that Inequality (Equation (6.2))(l) holds. Observe that this choice is consis-

tent with the choices in Inequality (Equation (6.2))(l − 1). 

6.4 ROOT CONE LEMMA FOR THE TRIALITY AUTOMORPHISM 

OF D4 

Assume that θ0 is the automorphism of D4 permuting the set {α1, α3, α4} cyclically 

as shown in 6.4. 

We need to find conditions on c1, c2, c3, c4 > 0 where � � � � � � � � 
c3 + c4 c3 + c4 c3 + c4 −c3 + c4

λ = c1 + c2 + e1 + c2 + e2 + e3 + e4
2 2 2 2 

so that 

(a) hλ, $4 
∨ − w$1 

∨i > 0 whenever w$4 
∨ 6= $4 

∨; 

(b) hλ, $∨ − w$∨i > 0 whenever w$∨ 6= $3 
∨; and3 4 3 

(c) hλ, $1 
∨ − w$3 

∨i > 0 whenever w$1 
∨ =6 $1 

∨ . 



44 

•α3 

θ0 

�� 

• 

θ0 
)) 

α1 
•α2 

•α4 
θ0 

YY 

Fig. 6.2. Triality automorphism of D4 

Let us analyze the inequality in each case. 

(a) Observe that 
1 

$∨ 
4 − w$∨ (e ∨ 

1 + e ∨ 
2 + e ∨ 

3 + e ∨ 
4 ) − η1e 

∨ 
σ(1).= 1 2 

∨ei ’s• If η1 = −1 then this vector is a positive combination of the so the 

condition hλ, $∨ 
4 − w$∨ 

1 i > 0 can be ensured by choosing c3 < c4. 

• If η1 = 1 and σ(1) ∈ {2, 3, 4} then choosing c1 � c3, c4 guarantees Inequal-

ity (a) holds. 

• Finally if η1 = 1 and σ(1) = 1 then � � 
1 hλ, $∨ 

4 − w$∨ 
1 

∨ 
1 + e ∨ 

2 + e ∨ 
3 + e ∨ 

4 )i = λ, (−e = −c1 + c4. 
2 

∨ 
1 =

∨Pick c1 < c4. Observe that if η1 = 1 and σ(1) = 1 then w$ $ so1 

Inequality (c) need not be verified. 

(b) Writing hλ, $∨ 
3 − w$∨ 

4 
∨ 
4 − w$∨ 

4i as a sum of hλ, $ i (which is positive by [FL11a, 

−c3+c4∨ 
3 − $∨ 

4 i = hλ, −e∨ 
4Lemma 2.2]) and hλ, $ i = , we can ensure Inequality (b)

2 

holds if c3 < c4. 

(c) The Inequality (c) is proven similarly; � � 
c1 − c3hλ, $∨ 

1 − w$∨ 
3 i = 

1 
λ, (e 
2 

∨ 
1 − e ∨ 

2 − e ∨ 
3 + e ∨ 

4 ) = ,
2 

so choose c1 > c3. 
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α1 `` >>α3 bb 

θ0 

<<α4 α5 α6 

It is easy to verify that choices made above are consistent with each other. 

6.5 ROOT CONE LEMMA FOR TYPE E6 

Following notations of [Bou02], the automorphism of E6 is shown in the figure 

below. 

•α2 

Fig. 6.3. Automorphism of groups of type E6 

We have written a SageMath code which proves the Root Cone Lemma for E6. 

More specifically, the program loops over every element in the Weyl group and tries 

to find a point in the root cone satisfying the required inequalities. Since Lemma 

4.3.2 is an open condition, existence of a point ensures there is a nonempty open cone 

for that element. The program outputs the number of elements for which a point is 

found, which turns out to be 51840, the size of the Weyl group of E6. The program 

code is given in Appendix A. 
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7. THE SPECTRAL SIDE 

We begin by reviewing the spectral side of the twisted trace formula. 

7.1 TWISTED (G, M)-FAMILIES 

Recall the definition of a (G, M)-family [Art81, §6]. A collection 

c(Λ, P ), P ∈ P(M), Λ ∈ iaM 
∗ 

of smooth functions is called a (G, M)-family if 

c(Λ, P ) = c(Λ, P 0) 

for any pair P, P 0 ∈ P(M) of adjacent groups and any point Λ in the hyperplane 

spanned by the common wall of the chambers corresponding to P and P 0 . It is 

well-known that a (G, M)-family c(Λ, P ) gives naturally a smooth function of Λ as X 
cM (Λ) = cM

G (Λ) := �P (Λ)c(Λ, P ). 
P ∈P(M) 

A (G, M)-family c(Λ, P ) also gives a (G,e Mf)-family 

e ∗ e{c(Λ, P ) : Λ ∈ ia , P ∈ P(Mf)}eP 

by restricting Λ ∈ iaP 
∗ to the subspace ia ∗ e. The corresponding smooth function is 

P 

given by X 
cMf(Λ) = �Pe(Λ)c(Λ, Pe). eP ∈P(Mf) 
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7.2 INTERTWINING OPERATORS 

Let P and Q be associated parabolic subgroups. This means that the set W (aP , aQ) 

f 

of isomorphisms from aP to aQ arising from restrictions of elements of W is non-empty. 

Fix w ∈ W (aP , aQ) and ν ∈ a ∗ The intertwining operator MQ|P (w, ν) is defined by P,C. 

MQ|P (w, ν)Φ(x) = exp −hwν + ρQ, HQ(x)i× Z 
−1 −1Φ(nw nx) exp ν + ρP , HP (nw nx) dn, 

Nw,P,Q(A) 

where Nw,P,Q = NQ ∩ nwNP nw 
−1 \ NQ. It is an operator from A(XP ) to A(XQ) which 

maps the subspace A(XP , σ) to A(XQ, θ ◦ σ). The intertwining operator M(w, λ) 

defined in Section 4.2 corresponds to P = Q = P0 is just a special case of this one. 

As remarked before, the integral converges only for Re(ν) in a certain chamber but 

MP |Q(w, ν) can be analytically continued to a meromorphic function of ν ∈ a ∗ Set P,C. 

MQ|P (ν) = MQ|P (1, ν). 

For P, P1 ∈ P(M) and ν, Λ ∈ iaP 
∗ , the collection 

M(P, ν; Λ, P1) := MP1|P (ν)
−1MP1|P (ν + Λ), P1 ∈ P(M), Λ ∈ ia ∗ 

M 

is a (G, M)-family with corresponding smooth function of Λ given by X 
MM (P, ν; Λ) = MG

M (P, ν; Λ) := �P1 (Λ)M(P, ν; Λ, P1). 
P1∈P(M ) 

As discussed above, we have the associated (G,e Mf)-family M(P, ν; Λ, Pf 1), Pf 1 ∈ P(Mf) 
∗ ∗ 
M 

and the smooth function MM (P, ν; Λ) where Λ belongs to the subspace ia of iaM . 

Set 

MfM (P, ν) = MfM (P, ν; 0). 

It is one of the basic properties of (G, M)-families that the limit of MM (P, ν; Λ) as 

Λ → 0 exists. We are now ready to state the twisted trace formula for a test function 

h ∈ C∞(Ge(A)) as in [LW13, Theorème 14.3.3].c 

e
JG(h, ω) = 

X |fW L| 
|f | det (θL − 1|

ee1 GJ (h, ω), (7.1)
L ee GL∈L e G G )|a /aM 

W G| eL 




 �
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where X X|W M |Ge 1 Ge 
J (f, ω) = J (h, ω),e M,weL

L
Ma

|W L|
M∈LL 

we∈W eL(M)reg 

| det (we− 1| )| 

where finally, Z � � 
G GJ 
e 
(h, ω) = trace M 

e 
(P, ν)MP | e w, h, ω)M,we e wP (0)ρP,disc,ν ( e L 

dν. eG eL 
i(a )∗ 

The previous expression can also be written as ZX � � 
G GJ 
e 
(h, ω) = trace M 

e 
(P, ν)MP | e w, h, ω)M,we e wP (0)ρP,σ,ν ( e L 

dν. eG eL 
i(aσ∈Πdisc(M) )∗ 

The absolute convergence of the spectral side would imply that the distribution 

JG
e
(f, ω) extends continuously to C(Ge(A), K). We prove it by adopting the method 

of [FL11b] and [FLM11] for the twisted trace formula. In the regular (non-twisted) 

trace formula, ML(P, ν),MP |w.P (0) and ρP,ν (h) are operators on the space A(XP ) 

and the trace of their composition is integrated over the parameter ν. However, the 

twisted regular representation ρP,disc,ν ( ew, f, ω) maps vectors in A(XP ) into those in 

A(XQ) where Q = θ(P ) = Ad(we)(P ). The intertwining operator MP |Q(ν) does the 

(SP,ν (we)Φ)(x) = exp −(hwνe + ρQ, HQ(x)i)Φ(n ) exp ( ν + ρP , HP (n ) ). 

opposite, hence MP |Q(ν) ◦ ρP,disc,ν ( ew, f, ω) is an operator on A(XP ). 

unitary operator S = SP,ν (we) which satisfies the lemma below. 

We define a 

SP,ν (we) : A(XP ) → A(XQ) 

−1 −1 xnwe xnwewe we 

Recall above that nwe is the representative of we in Ge(Q). 
Lemma 7.2.1 1. For any y ∈ Ge(A), y = nweg with g ∈ G(A), we have 

ρP,disc,ν ( e w) ρP,ν (g).w, y, ω) = ω SP,ν ( e 
Here, ω is the operator (ωΦ)(x) = w(x)Φ(x). 

2. 

w, f, ω) = ω SP,ν ( eρP,disc,ν ( e w) ρP,ν (h), 

where h = Lw−1 f . 
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3. The operator SP,ν (we) is unitary and invertible. 

Proof This follows from the definitions and Theorem 3.1.2. 

Theorem 7.2.2 For any f ∈ Cc ∞(Ge(A)), the spectral side of the twisted trace formula 

is given by (7.1). In this equation the sums are finite (except the one over σ ∈ 

Πdisc(M)) and the integrals are absolutely convergent with respect to the trace norm, 

hence define distributions on C(Ge(A), K). 
Proof We fix Le ∈ LGe,M ∈ LL , we ∈ W Le(M)reg and show that the integral Z 

GkM 
e 
(P, ν)MP | e w, h, ω)kdνe wP (0)ρP,disc,ν ( e L 

i(a )∗eG eL 

converges, where k ◦ k denotes the trace norm of the operator on the space A(XP ). 

GSince the operator Mee(P, ν) equals MG
L (P, ν) on the subspace iaLe, hence it decom-L 

poses into finite sums of the composition of intertwining operators and their first-order 

derivatives. Referring to notations therein, we recall 

Theorem 7.2.3 [FLM11, Theorem 2] Let M ∈ L, P ∈ P(M), L ∈ L(M),m = aL
G 

and µ ∈ (aM 
∗ )m be in general position. Then we have X 

ML(P, λ) = ΔXL,µ(β)(P, λ). 
β∈BP,L 

Since the sum is over a finite set, it suffices to prove the convergence, for a fixed 

m-tuple X of parabolic subgroups, of Z 
i(a eG eL 

kΔX (P, ν)MP | e w, h, ω)kdν. wP (0)ρP,disc,ν ( e 
)∗ 

By Theorem 7.2.1, we can write this as Z 
i(a eG eL 

kΔX (P, ν)MP | ewP (0) ◦ ω SP,ν (we)ρP,ν (h)kdν. 
)∗ 

If we denote the composite operator MP | e w) by U for convenience, we seewP (0) ω SP,ν ( e 
that the resulting expression Z 

kΔX (P, ν) U ρP,ν (h)kdν 
i(a eG eL )∗ 



����

����
��

50 

resembles that in [FLM11, Theorem 3]. The theorem follows by imitating the proof 

of reducing [FLM11, Theorem 3] to [FLM11, Proposition 1] and observing that U 

restricts to a unitary operator on the finite dimensional space A(XP , σ)
τ,K of K-fixed 

vectors in the σ-isotypical subspace of A(XP ) which transform according to τ ∈ K̂ ∞ 

under K∞. 

Remark 7.2.4 Let us elaborate the last step in the above proof. 

We have the algebraic decomposition M 
A(XP ) = A(XP , σ) 

σ∈Πdisc(M(A)) 

where A(XP , σ) is the K-finite part of A(XP , σ). We further decompose 

A(XP , σ) = ⊕τ∈K̂ ∞ 
A(XP , σ)

τ 

according to the isotypical subspaces for the action of K∞. Let A(XP , σ)
K be the 

subspace of K-invariant functions in A(XP ), and similarly for A(XP )
τ,K for any 

τ ∈ K̂ ∞. The integral reduces to ZX X 
eG 
kΔX (P, ν) U ρP,ν (h)k dν. 

)∗i(a A(XP ,σ)τ,K 
σ∈Πdisc(M(A)) τ∈K̂ ∞ e 

ee 

L 

The operator norm of the composition of operators is controlled by the norms of 

the operators. Using this trick in [FLM11, §5.1], we can replace the test function h 

by a high enough exponent of the operator Δ = Id −Ω + 2ΩK∞ . Replacing ΔX (P, ν) 

with it’s expansion, the integrals equals a constant multiple of ZX X 
G 
L 

kMP1|P (ν)
−1δP1|P 0 (ν)MP 0 |P2 (ν)1 1 

)∗i(aσ∈Πdisc(M(A)) τ∈K̂ ∞ 

e 

. . . δPm−1|P 0 (ν)MP 0 |Pm (ν)δPm|P 0 (ν)MP 0 |P (ν) U ρP,ν (Δ
2k)k dν 

m−1 m−1 m m 
A(XP ,σ)τ,K 

which can be simplified to Z mX X Y 
G 

dim(A(XP , σ)
τ,K ) |µ(σ, ν, τ)|−2k kδPi|P 0 (ν) A(XP ,σ)τ,K kdν. i 

)∗i(aσ∈Πdisc(M(A)) i=1τ∈K̂ ∞ eL 

Now we can proceed according to [FLM11, §5.1]. 
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8. AN APPLICATION 

In this section we discuss an application of the convergence of the spectral side to the 

finiteness of residues of poles of certain Rankin-Selberg L-functions. 

Suppose E/F is a Galois extension of number fields and G = GL(n). Assume that 

the Galois group Γ is generated by two elements θ, σ (which for proving functoriality 

for base change can be done without loss in generality, cf. [Get12, §7]). If w is finite, Q
let Kw = ) and Kw = O(n, Ew) otherwise. Then K = is a “good” G(OEw w Kw 

maximal compact subgroup in the sense of [Art81]. Denote the set of Archimedean 

places of E by ∞. For each w ∈ ∞, let φw be a smooth function on Ge(Ew) of compact Q 
support and bi-invariant under Kw, and set φ∞ = w∈∞ φw. A cuspidal automorphic 

representation π of GL(n, AE ) decomposes as π = ⊗wπw and we can form the partial 

Rankin-Selberg L-function L∞(s, π × πeσ) where πe is the contragradient of π and 

πσ(g) = π(gσ). 

Theorem 8.0.1 With notations as above, we have that the sum of residues X Y 
trace πw(φw) Ress=1 L

∞(s, π × πeσ) (8.1) 
π'πΓ w|∞ 

is finite. The above sum is taken over cuspidal automorphic representations of GL(n, AE ) 

invariant under Γ which are unramified at every finite place. 

Remark 8.0.2 The functorial transfer of automorphic representations attached to 

the below L-homomorphism 

bE/F : 
L GL(n)F → L ResE/F GL(n)E 

when Gal(E/F ) is cyclic of prime order is understood completely thanks to the work of 

Arthur and Clozel [AC89]. Following remarks in §7 of [Get12], to study functoriality 
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for bE/F it suffices “in principle” to assume Gal(E/F ) is a universal perfect central 

extension of a simple nonabelian group, hence a quasi-simple group. By [GK00, Corol-

lary], we can assume that Gal(E/F ) = hσ, θi. For conjectural applications to Lang-

lands’ “Beyond Endoscopy” program to approach Functoriality, it is important to un-

derstand residues of L-functions coming from various L-homomorphisms. The result 

at hand gives a geometric expression for such a sum of residues. 

Proof The convergence of the expression X 
trace π∞(φ∞)L

∞(s, π × πeσ) 
π'πΓ 

for Re(s) � 0 would follow by applying the convergence of the spectral side of the 

twisted trace formula to a certain basic function. However taking the residue at s = 1 

is a delicate question to prove which, will require the main result from [Get15] about 

spherical Fourier transforms. Let F 0 be the fixed field of θ in E and consider the 

group G = ResE/F 0 GL(n)E . The automorphism θ acts on 

G(E) ∼= GL(n, E) × · · · × GL(n, E) 

(the number of copies being the order of θ, say `) and we can form the semidirect 

product G o hθi of which G o θ is a coset. Since this automorphism θ preserves the 

Borel subgroup and torus, we can identify the group G with the coset G o θ using the 

map x 7→ x o θ and also identify functions on both cosets. We will construct the test 

function in C(Ge(AE ), K) which by the above identification and Theorem 3.1.2 can be 

considered on the space C(G(AE), K). We will apply the spectral side convergence 

result to this function. 

It is known that for every non-Archimedean place w, there exists a unique smooth 

function φw,s on G(Ew), the basic function, such that 

trace πw(φw,s) = Lw(s, π × πeσ) (8.2) 

holds for every irreducible admissible unramified representation πw of G(Ew) and 

Re(s) � 0. (See [Ngô14] and [Get12] for details.) Using the decomposition Ge(AE ) = 
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Q
G(A∞)Ge(A∞) define the function φs = φ∞ w<∞ φw,s. Then for Re(s) large enough 

depending on n, the function Z 
fs(y) = φs(ay)da, y ∈ Ge(AE ) 

AG 

as well as it’s Archimedean (spherical) Fourier transform (as defined in [Get15]) Z Y 
f̂  
s(y) = (Fr,ψ(φ∞) φw,s)(ay)da 

AG w<∞ 

are elements of C(Ge(AE ), K). Here ψ is the additive character used to define the 

Fourier transform and for the case at hand, r can be taken to be the standard repre-

sentation. Note that the Fourier transform Fr,ψ(φ∞) of the Archimedean component 

is in the space Sp(G(E∞)//K∞) of [Get15, §3.3] for p ∈ (0, 1] so in particular satis-

fies the condition at the Archimedean component of our class C(Ge(A), K). If π is a 

cuspidal automorphic representation of G(AE ) then it’s contribution to the spectral 

side of the trace formula for Ge will be nonzero precisely if it is invariant under θ and 

thanks to the choice of the test function, would then equal Y 
m(π)LS(s, π × πeσ) trace πw(φw). 

w∈S 

Although Equation (8.2) is valid for Re(s) � 0, the completed Rankin-Selberg L-

function L(s, π × πeσ) is known to be entire when π 6' πσ . Clearly the residue at 

s = 1 in this case is zero. However if π ' πσ then L(s, π × π̃σ) has meromorphic 

continuation to C, satisfies a functional equation, has simple poles at s = 0, 1 and 

no other poles [JPSS83]. Additionally by the multiplicity one theorem for GL(n) 

[Sha74], m(π) = 1. By [Get15, Proposition 5.3], the sum X 
trace π∞(φ∞). Ress=1 L

∞(s, π × π̃σ) 
π 

equals Z ZX X1 
trace π(fs) ds − 

1 
trace π(f̂  

s) ds 
2πi 2πi Re(s)=σ Re(s)=σπ π 

This sum is over cuspidal automorphic representations π invariant under the Galois 

group Gal(E/F ) and unramified at every finite place. Although this depends on [ibid, 
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Conjecture 5.2], the functional equation is known for Rankin-Selberg L-functions. 

As explained above the two terms in the above difference are both bounded by the 

discrete part of the twisted trace formula with test functions satisfying Equation (8.2) 

for Re(s) = σ sufficiently large. Thus their difference is finite. 



APPENDICES 
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A. SAGEMATH CODE FOR E6 

# Proof of the root cone conjecture for the (unique) automorphism of 

the Dynkin Diagram of E_6 using "SageMath". 

R = RootSystem([‘E’, 6]); 

X = R.root_space() 

W = X.weyl_group() 

alpha = X.basis() 

alphacheck = X.coroot_space().basis() 

varpi = X.fundamental_weights_from_simple_roots() 

varpicheck = X.coroot_space().fundamental_weights_from_simple_roots() 

def theta(vector): 

sigma = PermutationGroupElement(‘(1,6)(3,5)(2)(4)’) 

for i in range(1, len(varpi)+1): 

if vector == varpi[i]: 

break 

return varpi[sigma(i)] 

def delta(w): 

list = [] 

for item in varpi: 

if (w.action(item)).to_ambient() != item.to_ambient(): 

list.append(item) 

return list 
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def rhs(w, vector): 

return (vector - w.action(theta(vector))).to_ambient() 

def isPositive(Lambda, w): 

for vector in delta(w): 

if (Lambda.to_ambient()).dot_product(rhs(w, vector)) <= 0: 

return False 

return True 

def isSuccess(w): 

for x_1 in range(1,4): 

for x_2 in range(1,4): 

for x_3 in range(1,4): 

for x_4 in range(1,4): 

for x_5 in range(1,4): 

for x_6 in range(1,4): 

Lambda = x_1 * varpicheck[1] + x_2 * 

varpicheck[2] + x_3 * varpicheck[3] + 

x_4 * varpicheck[4] + x_5 * varpicheck[5] + 

x_6 * varpicheck[6] 

if isPositive(Lambda, w): 

return (Lambda, True) 

Lambda = 0 * varpicheck[1] 

return (Lambda, False) 

count = 0 

for w in W: 

if isSuccess(w)[1] == True: 

count = count + 1 
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else: 

print "Root Cone Conjecture fails for w = ", w 

print "Number of successful elements = ", count 

print "(Order of W = ", W.cardinality(), ")" 
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Birkhäuser Boston, Inc., Boston, MA, 2016. 

[MW16b] , Stabilisation de la formule des traces tordue, Progress in Mathematics, 317, vol. 2, 
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