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ABSTRACT 

Author: Miller, Megan, M.G. PhD 
Institution: Purdue University 
Degree Received: August 2018 
Title: A Pseudo-rigorous LiDAR System Calibration Approach and a Strategy for 

Stability Analysis. 
Major Professor: Ayman Habib 

With LiDAR systems being a crucial technology for near real-time mapping and spatial 

analysis, the user community needs standardized LiDAR system calibration procedures 

that are robust for the wide range of users and scenarios. More specifically, a 

comprehensive calibration approach should entail rigor in automation for matching and 

handling the irregularity of LiDAR data, as well as generality in terms of type of terrain 

used and of raw measurement availability. Most times, the sensor model and raw 

measurements are unavailable to the end user, and therefore rigorous LiDAR system 

calibration is not possible. For this scenario, pseudo-rigorous methods have been 

developed that synthesize the raw measurements from the point cloud (and in some cases 

the trajectory) using certain assumptions (e.g. parallel flight lines). This work introduces a 

new pseudo-rigorous calibration approach called the Quasi-Rigorous/Quasi-Simplified. 

The existing pseudo-rigorous approaches include the Simplified and Quasi-Rigorous. The 

Quasi-Rigorous/Quasi-Simplified approach requires less raw measurements than the 

Quasi-Rigorous and it can be used for any type of terrain and can incorporate control unlike 

the Simplified approach. In addition to this new calibration approach, there is a performance 

analysis to test the robustness of the new and existing pseudo-rigorous approaches in non-

ideal conditions, as well as a stability analysis strategy to analyze LiDAR system 

calibration results from two different dates. The stability analysis strategy quantifies the 

variation in system parameters over time and serves as an important Quality Assurance tool 

for consistently producing accurate point clouds throughout the lifespan of a LiDAR 

mapping system. The experimental results show the successful implementation of the new 

Quasi-Rigorous/Quasi-Simplified approach with real and simulated data and compares the 

results with existing rigorous and pseudo-rigorous approaches. After inspecting the point 

cloud alignment and adjusted coordinates, it was shown that the Quasi-Rigorous/Quasi-

Simplified approach is successful in significantly reducing the impact of systematic errors 
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even though it makes several assumptions. Also, when compared to the existing Simplified 

and Quasi-Rigorous pseudo-rigorous approaches, the Quasi-Rigorous/Quasi-Simplified 

approach provides maximum capability while maintaining minimal assumptions and no 

requirements for raw measurements. In the performance analysis, it was shown that the 

Quasi-Rigorous/Quasi-Simplified and existing pseudo-rigorous calibration approaches are 

robust under non-ideal conditions, and a 52-100 Percent Improvement was observed even 

in the extreme cases. Using simulated data, the stability analysis results show how to 

implement the strategy as a Quality Assurance tool given a stable and an unstable stability 

analysis outcome. In addition to this, the new calibration approach, and the previous 

pseudo-rigorous calibration approaches, were successfully used to calibrate a multi-beam 

spinning LiDAR (VLP-16). This has not previously been done since the pseudo-rigorous 

calibration methods are developed specifically for single-beam linear scanning LiDAR 

systems. 
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1. INTRODUCTION 

Background 

Airborne light detection and ranging (LiDAR) systems are now a prominent tool for direct 

acquisition of accurate dense point clouds. A LiDAR system refers to the laser-ranging and 

integrated direct geo-referencing units. The direct geo-referencing unit integrates a Global 

Navigation Satellite System (GNSS) and an Inertial Navigation System (INS) to provide 

the platform position and orientation at a high frequency. In addition to each component of 

the LiDAR system having had many advances in the past decade, airborne platforms used 

for data collection have had significant advances and changes. Altogether, this progress 

has accelerated the growing use and application of LiDAR systems because they are now 

more accurate, readily available, and not as costly. With the large user community and its 

continual increase, development of standard operating procedures for LiDAR system 

calibration will ensure that the systems consistently meet industry standards. LiDAR 

system calibration accurately decouples and estimates system parameters, thus minimizing 

the impact of systematic errors on the resulting point cloud. The calibration process 

requires a rigorous mathematical model that relates all system parameters and 

measurements from each system component in order to calculate ground coordinates. In 

addition to that, the model should include parameters that account for systematic errors 

within the LiDAR system. There are several different approaches to LiDAR system 

calibration; their strategies differ vastly and none of them simultaneously address all of the 

inherent challenges that arise when working with LiDAR mapping systems. Most times, 

rigorous LiDAR system calibration is not possible because the raw measurements are 

unavailable, and pseudo-rigorous approaches that synthesize the raw measurements from 

the point cloud (and in some cases the trajectory) are used. The topic of stability analysis 

of LiDAR system calibration in the LiDAR community is yet to be addressed and is very 

timely now that systems are becoming more compact and readily available. 
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Challenges in LiDAR System Calibration 

LiDAR system calibration compares overlapping point clouds and control information in 

order to reduce or remove the impact of systematic errors on the resulting point cloud. 

There are various ways to approach calibration, and they are all driven by the absence or 

availability of raw measurements (the raw measurements being referred to are the 

integrated GNSS/INS position and orientation information, and the LiDAR unit 

measurements of two angles and a range). The existing approaches to eliminate and/or 

reduce the effect of systematic errors are categorized as either system-driven (calibration) 

or data-driven (strip adjustment). System-driven approaches are superior because they 

constrain point cloud reconstruction to the geometric relationship that exists between the 

GNSS/INS unit, LiDAR scanning mechanism, and ground coordinate of the LiDAR 

footprint (i.e. the sensor model). While system-driven approaches preserve the link to the 

sensor model, data-driven approaches arbitrarily fit data strips together through a 

transformation model that may not scale appropriately to the entire dataset. The data-driven 

approaches for eliminating discrepancies are never a suitable substitute to using system-

driven procedures, but they are sometimes employed because the end user does not have 

access to the raw measurements. Typically, the data provider has sole access to the raw 

measurements and their LiDAR system calibration is sometimes considered a trade secret. 

Overall, there is a need for standardized LiDAR system calibration procedures which are 

system-driven even in the absence of raw measurements and are also general for the wide 

range of users. 

Another challenge in LiDAR system calibration arises from the irregular nature of LiDAR 

data and in the primitive selection for comparing overlapping strips. With irregular data, 

distinct control and tie points are not easily identifiable making it more difficult to preserve 

the link to the sensor model therefore that link is often sacrificed, and the procedure is no 

longer system-driven. Although distinct points are not readily available in LiDAR data, 

points are generally a superior primitive choice (as opposed to lines or planes) in calibration 

since the goal of calibration is to refine the system parameters of the sensor model. The 

only time this is not true is when the unknown parameters of interest are extended to include 

the parameters defining such primitives (but this is not often the case). 
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There have been various types of system-driven calibration approaches developed that 

appropriately handle the irregularity of LiDAR data, but many have an unfavorable reliance 

on control surfaces (as opposed to using overlapping strips), urban settings, manual 

operations, and/or preprocessing of data to extract certain linear/planar features. These 

dependencies and limitations have to do with the overall strategy of the calibration 

algorithm, and an ideal algorithm will have automated procedures and minimal 

requirements for control and urban settings. Also, some of the existing approaches have 

chosen to only focus on the angular biases found in the boresight rotation matrix defining 

the orientation of the LiDAR unit with respect to the IMU body frame. These approaches 

that focus on angular biases are important developments because these boresight biases 

tend to have the largest impact on the resulting point cloud, but it is not a complete solution 

to the other biases that might be present in the LiDAR system. Overall, a LiDAR system 

calibration approach that simultaneously addresses the inherent challenges along with an 

automated strategy and minimum dependencies on control and type of terrain cover is non-

existent. 

Research Objectives 

The following research objectives address the need of the LiDAR mapping community for 

a comprehensive, standardized LiDAR system calibration approach which simultaneously 

addresses the inherent challenges. The objectives include the development of a new 

calibration strategy, a performance analysis of pseudo-rigorous approaches, and 

development of a strategy for performing a stability analysis on LiDAR system parameters. 

 Develop a new calibration approach that is generic for the many types of users and 

holds the following characteristics: 

o Operates without access to raw measurements, 

o Uses point primitives to preserve the link to the sensor model, 

o Has an automated procedure that accounts for the irregularity of LiDAR 

point clouds, 
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o Has a reliance on overlapping strips instead of expensive control surfaces, 

o Is ground cover independent (does not require urban settings with various 

geometric shapes from buildings and other man-made features), 

o Estimates all system parameters; which includes both the linear and angular 

mounting parameters as well as the internal characteristics of the LiDAR 

unit, and 

o Is able to incorporate control into the calibration math model. 

 Assess the performance of the new and existing pseudo-rigorous approaches under 

non-ideal conditions that deviate from the underlying assumptions of their 

respective math models. More specifically, the analysis will individually inspect 

each deviation from an assumption with the following assessments: 

o Side by side comparison of the estimated system parameters/biases before 

and after deviating from the specific assumption, 

o RMSE of the difference between the resulting point cloud coordinates and 

true coordinates for the following 4 cases: 

 Non-deviated, before calibration, 

 Non-deviated, after calibration, 

 Deviated, before calibration, 

 Deviated, after calibration, and 

o Quantify the percent improvement after calibration for the non-deviated and 

deviated scenario to understand the impact that the non-ideal scenario has 

on the ability of the calibration algorithm to improve the accuracy of the 

data. 

 Develop a stability analysis strategy which can be utilized as a QA tool for 

consistent production of accurate point clouds over the lifespan of a LiDAR 

mapping system. The developed stability analysis strategy will have the following 

characteristics: 

o Quantifies variation of system parameters over time, 

o Guides the process of determining optimal calibration frequency, and 
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o Operates with or without access to raw measurements (by synthesizing the 

measurements in the latter case). 

Dissertation Outline 

Chapter 2 contains the literature review and provides the background information 

pertaining to the above research objectives. First, the details of LiDAR point cloud 

generation are discussed. Then, there is a discussion on QA procedures to be taken before 

data collection, as well as the QC procedures after collection. This leads into the 

background of LiDAR system calibration; then the strategy of LiDAR calibration 

algorithms is discussed in terms of the theoretical basis, the data collection strategy, and 

the primitives. Then, rigorous and pseudo-rigorous calibration approaches are discussed 

and derived with a focus on the ones to which the Quasi-Rigorous/Quasi-Simplified 

(QRQS) experimental results will be compared. Chapter 3 introduces the methodology for 

addressing the research objectives. For the new QRQS calibration approach, the 

assumptions are detailed and development of the math model follows from those 

assumptions. Then, the details of the methods used to synthesize the raw measurements 

and of the calibration strategy are discussed. For the stability analysis strategy, first, the 

general outline for both the rigorous and pseudo-rigorous calibration approaches is 

explained. Then, steps involved for synthesizing the raw measurements in the pseudo-

rigorous stability analysis are detailed. Finally, the stability analysis strategy is covered. 

Chapter 4 shows the experimental results of the new calibration approach, the performance 

analysis, and the application of the stability analysis strategy. Chapter 5 provides the 

conclusions, research contributions, and recommendations for future work. 
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2. LITERATURE REVIEW 

Overview 

There are numerous research efforts that address the topic of Quality Assurance (QA) and 

Quality Control (QC) for point clouds derived from LiDAR systems. Although all of the 

QA and QC steps are important to ensure accurate point clouds, calibration is the most 

prominent and is extremely important in order to ensure positional accuracy of the final 

product. The existing approaches for LiDAR system calibration and the many processes 

entailed within it will be covered in the following sections. Before getting to the specific 

discussion of calibration, there is a review on the generation of LiDAR point clouds and 

then an overview of all the QA and QC procedures. 

Generation of LiDAR Point Clouds 

The laser unit emits a laser pulse, records the amount of time that pulse takes to reflect off 

of a surface and return to the unit, and then it calculates a range based on that time. The 

laser ranging theorem, detailed physical principles, and fundamental concepts are well 

documented in Baltsavias (1999). This type of laser ranging system is classified as a time-

of-flight (ToF) unit; there are also triangulation based laser ranging units that do not use 

the time-of-flight (Wehr and Lohr, 1999), but these types of lasers will not be discussed 

here. The distance calculated is between the laser beam firing point and the footprint on 

the ground. The footprint is where the laser beam hits the surface of the scanned object. 

The scan pattern of a laser unit is either linear or elliptical depending on the mechanics of 

the unit. For airborne LiDAR systems, the scanning mirror motion in addition to the 

forward motion of the platform effectively scans a strip of land below. Some LiDAR 

systems (e.g. from commercial providers such as OpTech, RIEGL, LEICA) have a full 

waveform digitizer that records several returns from the emitted pulse, as opposed to only 

gathering the last return from the emitted pulse. These types of LiDAR systems are useful 

for mapping scenes such as tree canopies because the laser is able to penetrate through the 

canopy level and has multiple returns before the last return (Shan and Toth, 2009). 
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Specifications of the LiDAR collection are chosen carefully because they have the potential 

to affect both the positional accuracy and the accuracy of the recorded intensity value. The 

vertical accuracy of LiDAR point cloud coordinates is better (e.g., smaller RMSE) than the 

horizontal accuracy (Filin, 2001), and is actually quite accurate when compared to other 

mapping approaches (May and Toth, 2007). Accuracy values are affected by many factors, 

which include the accuracy of the GNSS/INS position and orientation integration process, 

and the accuracy of the system parameters (depends on whether or not they have been 

derived through a rigorous calibration). The intensity information that is associated with 

each point is the ratio between the strength of the reflected light and the emitted light 

(Coren and Sterzai, 2006). LiDAR intensity data is heavily dependent on the reflectance 

properties of the object and is usually used for some post-processing activities such as 

segmentation and classification (Wang and Tseng, 2004). Although the validity of the 

intensity information is usually a concern of the laser unit manufacturer, some calibration 

solutions use intensity values to facilitate calibration (Ravi et al., 2018). Habib et al. (2011) 

provides research on the intensity correction and evaluation process. The point density is 

also an important factor which is dependent on the LiDAR specifications because it 

determines the level of detail an object will have in the final dataset. 

The common approach to determine the coordinate values of each LiDAR pulse involves 

many coordinate systems and is well documented in Habib et al. (2009a) and Shan and 

Toth (2009). The coordinate systems involved in LiDAR data collection are discussed 

before deriving the math model that relates all system parameters and measurements to the 

ground coordinate. The notation of spatial offsets and rotations are detailed below in order 

to clearly denote with what coordinate systems they are affiliated. 

𝒃 a) 𝒓𝒂, a 3 x 1 vector, denotes the spatial offset between point 𝒂 and point 𝒃. When point 

𝒂 is the origin of a coordinate system, 𝒓𝒂
𝒃 represents the coordinates of that origin 

expressed in terms of coordinate system 𝒃 as a reference 

𝒃 b) 𝑹𝒂, a 3 x 3 matrix, denotes the rotational matrix to apply in order to transform from 

coordinate system 𝒂 to coordinate system 𝒃 
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Figure 2.1: Coordinate Systems and Vectors in the LiDAR Point-Positioning Equation 

(adapted from Habib et al., 2008) 

As can be seen in Figure 2.1, the LiDAR point-positioning equation involves four 

coordinate systems and they include the laser beam coordinate system, the laser unit 

coordinate system, the Inertial Measurement Unit (IMU) body frame, and the mapping 

coordinate system. 

a) Laser beam coordinate system (lb): 

 The laser beam firing point is the origin of this coordinate system. 

 The laser beam extends from the firing point to the laser beam footprint, 

and the z-axis of lb is aligned along the laser beam. 



 
 

 
 

               

            

     

               

            

     

              

            

            

           

              

        

 

   

 

   

 

      

               

               

   

             

            

            

           

  

9 

 If the z-axis positive direction is in the same direction of the laser beam, 

then the coordinates of object point I in this coordinate system are 

represented as eq. (2.1). 

 If the z-axis positive direction is in the opposite direction of the laser beam, 

then the coordinates of object point I in this coordinate system are 

represented as eq. (2.2). 

 The positive y-axis is nominally in the flight direction. If the positive z-axis 

is nominally in up direction, then the positive x-axis is nominally aligned 

with the across-flight direction such that the system is a right handed 

coordinate system. This configuration can be seen in Figure 2.2 (a). 

 𝒓𝒍𝒃 
𝑰 (𝒕) is time dependent. As the system scans, the range between the laser 

beam firing point and point I will change. 

0 
𝑟 (𝑡) =  0  (2.1) 

𝜌(𝑡) 

0 
𝑟 (𝑡) =  0  (2.2) 

−𝜌(𝑡) 

b) Laser unit coordinate system (lu): 

 The origin of this coordinate system is at the laser beam firing point, which 

is the same as the laser beam coordinate system, which is at the laser beam 

firing point. 

 The positive y-axis is nominally aligned along the flying direction, and the 

positive z-axis points nominally in the up direction. Therefore, the x-axis is 

aligned nominally along the across-flight direction such that the system is a 

right handed coordinate system. This configuration can be seen in Figure 

2.2 (a). 
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 The rotational matrix, 𝑹𝒍𝒃 
𝒍𝒖(𝒕) , characterizes the scanning direction at a 

single point in time. 

 For system with a steering mirror, 𝑹𝒍𝒃 
𝒍𝒖(𝒕) is defined by the values from the 

encoders on the the mirror steering mechanism. If it is an elliptical system, 

then it requires two rotation angles (𝛂(𝒕), 𝜷(𝒕)); 𝑹𝒍𝒃 
𝒍𝒖(𝒕) for this scenario is 

defined in eq. (2.3). The angle of rotation around the x-axis of the laser unit 

coordinate system is 𝜶(𝒕), and the angle of rotation around the once rotated 

y-axis of the laser unit coordinate system is 𝜷(𝒕). The relationship between 

the laser beam and laser unit coordinate systems with 𝜶(𝒕) and 𝜷(𝒕) scan 

angles can be seen in Figure 2.2 (b) and (c), respectively. If it is a linear 

𝒍𝒖(𝒕) system, then just one rotation angle is required (𝜷(𝒕)) to define 𝑹𝒍𝒃 

because there will be no rotation about the x-axis, the 𝛂(𝒕) angle will be 

equal to zero. 

 Eq. (2.4) defines the coordinates of point I relative to the laser unit 

coordinate system. 

 𝒍𝒖(𝒕) is time dependent since the scanning direction is continuously 𝑹𝒍𝒃 

changing. 

(𝑡)𝑅  

1 0 0 𝑐𝑜𝑠(𝛽(𝑡)) 0 𝑠𝑖𝑛(𝛽(𝑡)) (2.3) 
= 0 𝑐𝑜𝑠(𝛼(𝑡)) −𝑠𝑖𝑛(𝛼(𝑡))   0 1 0  

0 𝑠𝑖𝑛(𝛼(𝑡)) 𝑐𝑜𝑠(𝛼(𝑡)) −𝑠𝑖𝑛(𝛽(𝑡)) 0 𝑐𝑜𝑠(𝛽(𝑡)) 

𝑟 (𝑡) = 𝑅  (𝑡)𝑟 (𝑡) (2.4) 

c) Inertial Measurement Unit (IMU) body frame (b): 

 The axes of this reference frame is aligned along the axes of the 

accelerometers and gyroscopes of the IMU. 

 Eq. (2.5) defines the coordinates of point I relative to the IMU coordinate 

system. 
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𝒃 𝒃  The lever arm 𝒓𝒍𝒖, and boresight matrix 𝑹𝒍𝒖, are the spatial and rotational 

offsets between the laser unit coordinate system and IMU body frame, 

respectively. These terms are time independent because the Laser unit and 

IMU are rigidly fixed relative to one another (negligible aircraft flexure is 

assumed). 

𝑟 (𝑡) = 𝑟  + 𝑅  
 𝑅  (𝑡)𝑟 (𝑡) (2.5) 

d) Mapping reference frame (m): 

 This reference frame is the datum for the reconstructed point cloud and it is 

defined by the GNSS reference frame or a user specified reference frame. 

 The position 𝒓𝒃
𝒎(𝒕), and the orientation 𝑹𝒎

𝒃 (𝒕), of the IMU body frame 

relative to the mapping reference frame are derived through a post-

processing GNSS/INS integration step. 

 Eq. (2.6) defines the coordinates of point I relative to the mapping reference 

frame. 

 𝒓𝒎
𝒃 (𝒕) and 𝑹𝒃

𝒎(𝒕) are time dependent because the platform is in motion. 



 
 

 
 

 

               

         

 

   

 

             

             

               

               

 

           

          

            

                 

            

               

           

12 

Figure 2.2: The Laser beam (lb) Coordinate System with Respect to the Laser unit (lu) 

Coordinate System at Various 𝜶 and 𝜷 Scan Angles 

𝑟 (𝑡) = 𝑟 (𝑡) + 𝑅 (𝑡)𝑟  + 𝑅 (𝑡)𝑅  
 𝑅  (𝑡)𝑟 (𝑡) (2.6) 

Note that this LiDAR point-positioning equation does not have redundancy in deriving the 

ground coordinates. It is a summation of system parameters and direct measurements of 

the LiDAR system (Habib et al., 2009b). This characteristic plays a major role in the 

evaluation of the positional quality of LiDAR point clouds, which is discussed in the next 

section. 

Quality Assurance (QA) and Quality Control (QC) of LiDAR Mapping 

LiDAR mapping requires specific procedures to maintain quality throughout all 

preparation and collection steps. Before collection, there are typical QA procedures to 

complete in order to ensure that the point cloud is derived in such a way that optimizes 

quality. Likewise, QC measures that quantitatively evaluate the resulting point cloud after 

collection are also of utmost importance to verify the data quality and are usually defined 

beforehand. QA measures include the LiDAR scanner settings, planning collection routes, 
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a rigorous derivation of the system parameters via calibration, and a stability analysis of 

the calibration parameters (Habib et al., 2010a). The LiDAR scanner settings to be decided 

on include the scan angle, the scan rate, the laser beam divergence angles, and the laser 

pulse repetition rate. To specify collection routes, the flying height and lateral distance 

between flights should be planned. All of these QA procedures affect the presence or 

absence of occlusions, the inter-point spacing of the point cloud, and the positional 

accuracy. The QC is done after data collection by the end user. QC procedures include 

establishing measures that effectively verify the point cloud completeness and correctness. 

They include quantitative evaluation of the relative and absolute accuracy of the 

coordinates (Habib et al., 2010c), of the inter-point spacing (Lari and Habib, 2012), and 

also of the higher-level LiDAR data processing such as segmentation and classification 

(Lari and Habib, 2014; Habib and Lin, 2016). 

These QA and QC procedures require attention to detail and knowledge of how each one 

affects the point cloud derivation process; there are also inherent and traditional obstacles 

in LiDAR QA and QC that require attention. The rigorous calibration of LiDAR systems 

remains to be a challenge for several reasons that are mostly related to the fact that the 

footprint of LiDAR is non-selective (Alharthy et al., 2004). Meaning, we are not 

guaranteed that the LiDAR footprint will fall on the center of a control target. Instead of 

directly using the coordinates of an observed control target, like in photogrammetry, highly 

reflective geometric shaped targets (e.g. spherical or square) can be placed over control 

points and the geometric center can be determined from the LiDAR point cloud (assuming 

the scanner settings are set such that there is an adequate amount of points on the geometric 

target) (Glennie, 2007). Moreover, the non-selective nature of LiDAR makes tie-point 

generation difficult because tie points cannot simply be selected from overlapping strips. 

Because the utilization of control and the tie-point generation are not straightforward for 

LiDAR data, the LiDAR calibration process requires more steps than photogrammetric 

calibration in order to generate and compare conjugate features in overlapping LiDAR 

surfaces (Kersting, 2011; Habib et al., 2008). 
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The QC procedures are also affected by the non-selective nature of LiDAR. For example, 

the process of evaluating inter-point spacing throughout the entire point cloud is difficult 

because it is always irregular (Habib and Lin, 2016). It is also important to note that 

evaluating inter-point spacing directly verifies some of the QA procedures. Evaluating 

positional accuracy is another QC procedure that is also greatly affected by the fact that the 

point-positioning equation is not based on redundant measurements, another consequence 

of the non-selective nature of LiDAR (Habib et al., 2009a; Habib et al., 2010a). Therefore, 

the traditional positional accuracy measures, i.e. variance-covariance matrices and a-

posteriori variance factors, cannot be derived. QC can be divided into two categories, 

Internal Quality Control (IQC) and External Quality Control (EQC). EQC is an absolute 

measure that entails checkpoint analysis using control information. EQC is not only 

expensive but it does not provide the horizontal verification unless special targets are used 

(such as highly reflective geometric shaped targets previously mentioned) (Csanyi and 

Toth, 2007; Wotruba et al., 2005). IQC is a relative measure between overlapping strips, 

and actually every IQC can be employed as an EQC procedure by comparing point clouds 

with control surfaces instead of comparing point clouds with each other (Habib et al., 

2010a). Strip adjustment is an IQC procedure that not only assesses the quality of 

overlapping strips, but it goes beyond all other QC procedures by also attempting to 

improve the alignment of overlapping strips by applying a rigid-body transformation 

(Habib et al., 2009a). Research has been done on different strip adjustment techniques that 

vary depending on the discrepancies detected, the matching procedure used, or the type of 

primitive used (points, lines, planes). Some developed strip adjustment procedures only 

detect vertical discrepancies (Crombaghs et al., 2000; Kager and Krauss, 2001). Since the 

biases have the greatest impact on the horizontal coordinates, this is not a complete strip 

adjustment solution. Others detect all discrepancies but have a simple transformation to 

model them (Maas, 2002; Filin and Vosselman, 2002). Since it is well known that the 

impacts of some biases are not linear, this is an approximate approach to strip adjustment. 

Because LiDAR points are irregular, some have alternatively used planes or lines as 

conjugate features instead of points (Hamza and Habib, 2013; Skaloud and Lichti, 2006; 

Kager, 2004; Pfeifer et al., 2005; Vosselman, 2002). However, these types of features only 

exist in urban areas (Bretar et al., 2004). In order not to be restricted to urban areas, some 
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use natural features that are locally approximated by planes (Filin and Vosselman, 2004). 

Primitives are the driving force for the success of any QA or QC procedure and they need 

to be carefully chosen. The decision on which primitive is appropriate for use when 

comparing overlapping LiDAR strips depends on how they can be automatically identified, 

how they can be represented, and how they can be robustly compared. A more in-depth 

discussion on primitives is provided in section 2.4.3. 

These inherent obstacles and decisions within the QA and QC procedures occur due to the 

nature of LiDAR scanners, and a standardized approach for the community at large is yet 

to be adopted. Although both QA and QC are needed to ensure comprehensive quality of 

point clouds, the research objectives of this study focus on the QA procedures related to 

LiDAR system calibration and stability analysis. 

LiDAR System Calibration and Stability Analysis Background 

There are three different types of LiDAR system calibration methods which are 

implemented at different stages. The first is laboratory calibration, then platform 

calibration, and finally the in-situ calibration (Kersting et al., 2012). 

a) Laboratory calibration is done by the system manufacturer on all components 

within the system. This includes the range offset and mirror angle scale. If the 

manufacturer sells a LiDAR system (i.e. the scanning and ranging unit together 

with an integrated GNSS/INS), the lever arm and boresight are determined. 

b) Platform calibration is done by the data provider to determin the lever arm offset. 

c) In-situ calibration is done by data provider near the time of data collection. It is 

carried out to refine all parameters since the previous laboratory and platform 

calibrations might be unstable over time and possibly biased. For the in-situ 

calibration, the observed discrepancies between the LiDAR-derived and control 

surfaces are used to refine the mounting parameters and biases in the system 

measurements (mirror angles and ranges). 
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This work focuses on the in-situ calibration because current and past in-situ calibration 

approaches have many shortcomings. These shortcomings include empirical and/or non-

transparent methodologies, lengthy and costly procedures, and usually a heavy reliance on 

control surfaces (Filin 2001). As mentioned before there are no commonly accepted 

LiDAR system calibration methodologies, each manufacturer provides their own 

calibration approach in their software, and the data providers might also have their own 

approach. Many times, the calibration approach significantly degrades the accuracy and 

when this is the case, it adversely affects any post-processing or conclusions drawn from 

the data. These shortcomings are often due to the fact that these are data-driven approaches 

which fit strips together without constraining the point cloud reconstruction to the physics 

of the sensor model. The integrity and usability of data can be greatly increased by the use 

of a standardized calibration that corrects the systematic errors with a system-driven 

approach which preserves the link to the sensor model. 

A data-driven calibration process only uses the point cloud data, as opposed to the system-

driven approaches which use system measurements and system parameters. The data-

driven processes are developed because users do not always have access to raw 

measurements, due to manufacturer restrictions. When raw measurements are discussed 

here, it is referencing any of the measurements involved in the reconstruction of a LiDAR 

point at a certain time. These raw measurements include the position and orientation of the 

IMU body frame, and the scan angle and range. These data-driven approaches have major 

drawbacks because there is no reliance on the physical sensor model (i.e. the LiDAR point-

positioning equation). Instead, they arbitrarily fit data strips together through a 

transformation model that may not scale appropriately to the entire data set. The link to the 

sensor model is very important and should always be present in a formal LiDAR system 

calibration. Establishing a link to the point-positioning equation using only the point cloud 

data was successfully accomplished in Habib et al., 2009 and Habib et al., 2010a, with the 

development of the Simplified (S) calibration. This approach was accomplished through a 

mathematical analysis of the LiDAR point-positioning equation that indirectly relates it to 

the detected discrepancies, and it will be derived in full below because it is one of the 

calibration approaches used as a comparison in the experimental results. This development 
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of the S calibration established the first system-driven calibration to only use the point 

cloud. The S calibration is separated into two distinct steps, the first is a registration 

algorithm that determines the discrepancies between overlapping strips and the second is a 

linear Least Squares estimation of the system parameters. The new calibration approach 

derived in this research is a data-driven calibration like the S, but it is a 1-step approach 

where the matching and system parameter estimations are iteratively optimized together. 

When raw measurements are available, then the mathematical relationship of the point-

positioning equation is directly incorporated, making it a system-driven calibration. Such 

calibration can be further classified as a rigorous calibration or pseudo-rigorous calibration, 

depending on whether the raw measurements are fully or partially available, respectively. 

There have been various types of system-driven calibration approaches developed that 

differ based on a need for control surfaces (as opposed to using overlapping strips), 

dependence on urban settings, manual operations, and/or preprocessing of data. If control 

surfaces are readily available and economical, approaches that constrain the LiDAR point 

to those control surfaces would be suitable (Filin 2001), but this is not always the case and 

calibration solutions that take this approach are not suitable for all users. The majority of 

calibration methodology development has been done on the premise of comparing 

overlapping strips (to avoid dependency on control surfaces) for both rigorous approaches 

(Kersting, 2011; Kersting et al., 2012; Skaloud and Lichti, 2006; Friess, 2006) and pseudo-

rigorous approaches (Habib et al., 2010b; Bang, 2010; Kersting 2012; Burman, 2000; Toth, 

2002; Morin, 2002). The approaches that rely on the presence of planar features are 

restricted to urban areas where there are several slopes and aspects of planes available. In 

addition to that restriction, they also either have a dependence on manual selection 

(Skaloud and Lichti, 2006), or there is a preprocessing step that the point clouds go through 

for plane segmentation (Friess, 2006). As mentioned before, preserving the native link to 

the system’s point-positioning equation is of utmost importance. But, that link is often 

sacrificed due to the irregularity of LiDAR data. One of the existing calibration approaches 

preserves the link to the sensor model (and does so within an architecture that is able to 

handle the irregularity of LiDAR points), but it approximates the ground truth by averaging 

the coordinates of tie points in overlapping strips (Morin, 2002). This is not an assumption 
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that should be applied generally to all overlapping flight strip comparisons, due to the 

nature of some biases when the system is flown in different directions. Lastly, some of the 

existing approaches have chosen to only focus on the angular biases found in the boresight 

rotation matrix that defines the orientation of the laser unit with respect to the IMU body 

frame. These are important developments because these biases tend to have the largest 

impact on the resulting point cloud, but it is not a complete solution to the other biases that 

might be present in the LiDAR system. The Quasi-Rigorous (QR) calibration approach 

proposed by Bang (2010) and Habib et al. (2010b), and the rigorous calibration approach 

proposed by Kersting (2011) and Kersting et al. (2012), use point primitives to preserve 

the link to the sensor model. They have an automated procedure that accounts for the 

irregularity of LiDAR point clouds, they rely on overlapping strips instead of expensive 

control surfaces, and they determine both linear and angular mounting parameters and 

internal characteristics. Since these calibration approaches are two of the three used as a 

comparison in the experiment results, they will be derived in the section below giving more 

insight into the conjugate feature matching procedure and the metrics and models 

employed. The Universal LiDAR Error Model (ULEM) developed by Rodarmel et al. 

(2015) is another approach that accomplishes system driven calibration. ULEM provides a 

comprehensive and efficient sensor modelling approach for error propagation and data 

adjustment (to include calibration), which specifically focuses on being accessible to the 

user community with standardized parameters, existing file formats, and efficient storage 

and calculations. The ULEM model is different from calibration specific models in that it 

is geared towards overall data adjustment (which includes determination of calibration 

parameters), and essentially parallels the photogrammetric approach to bundle adjustment. 

More specifically, ULEM provides the architecture to handle multi-ray points as well as 

simultaneous refinement of system calibration parameters and system measurements 

within the adjustment process. The ULEM allows for specification of values of not only 

the full adjustable parameter (system calibration and system measurement) error 

covariance matrix, but also parameters that model their temporal de-correlation. 

Calibration is performed throughout the lifespan of a LiDAR system and one should also 

consider performing a stability analysis over time to quantify how the calibration 
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parameters change over time. Stability analysis is a timely subject because LiDAR systems 

are becoming more compact, economical, and readily available, and they are being used 

more often and for more types of engineering projects. Thus, this mapping tool is fading 

away from being a commodity. When a mapping tool that requires rigorous calibration is 

relied upon on such a regular basis, knowing the stability or reliability of that calibration 

also becomes more important. To the best of the author’s knowledge, procedures for 

stability analysis of LiDAR system calibration have never been discussed in literature. 

There is research on the stability of photogrammetric systems and the research done here 

will consider insights taken from those studies (Habib et al., 2005; Lichti et al., 2009; Habib 

et al., 2014). 

Strategy of LiDAR System Calibration 

The system parameters to be established through LiDAR system calibration should be 

decoupled and estimated simultaneously in a Least Squares Adjustment. In order for the 

simultaneous estimation to be effective and accurate, there are several choices to be made 

about the strategy of the calibration process. This includes deciding upon an optimal, and 

minimal data collection strategy that magnifies the visibility of biases. Another prominent 

choice is the type of primitives to use when comparing overlapping strips and control 

information, whether they are the data points, or higher-level features within the point 

cloud (i.e. linear or planar features). The primitive choice conclusively influences the 

model to be chosen because the model should be able to incorporate the chosen features. 

The reasoning for certain architectural choices, in regard to the collection configuration, 

primitives, and the calibration mathematical model, will be outlined in the following 

sections after the theoretical basis of LiDAR calibration is discussed. 

2.3.1 Theoretical Basis of LiDAR Calibration 

The purpose of system calibration is to effectively reconstruct a point cloud as close as 

possible to the actual surface that was scanned. As noted before, the mathematical 

reconstruction of a point cloud is a function of measurements and system parameters. The 

calibration process provides the values of the system parameters by eliminating biases, and 
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the process of eliminating biases aids in reconstructing the point cloud as close as possible 

to the true representation. There are two different sets of system parameters to be estimated 

within the system calibration. The first set of parameters are referred to as the mounting 

parameters. The mounting parameters describe the spatial and rotational relationship 

between the IMU body frame and the laser unit coordinate system, and they are referred to 

as the lever arm (𝒓𝒍𝒖 
𝒃 ) and boresight (𝑹𝒍𝒖 

𝒃 ) components, respectively. The other set of 

parameters are within the laser unit. The calibration of these parameters is referred to as a 

sensor calibration and the parameters are referred to as internal characteristics. They 

include the range offset (𝜟𝝆) and the scan angle scale factors (𝑺𝜶, 𝑺𝜷). In addition to the 

scale factor characteristic, the scan angles of a laser unit do contain biases that one might 

consider to model as an internal characteristic, but they are directly correlated with the 

boresight angles and cannot be uncorrelated no matter what the flight configuration. 

Because of this correlation, the scan angle biases cannot be simultaneously estimated with 

the boresight angles. The more significant scan angle error is the scale factors (𝑺𝜶, 𝑺𝜷) 

(Morin, 2002; Csanyi, 2008). The range offset error is a factor of several sources and has 

been determined to be a constant bias in the research of Filin (2001); Csanyi (2008); and 

Skaloud and Litchi (2006). 

The notation of the two sets of parameters is listed here: 

a) Mounting Parameters: 

 Lever arm (𝒓𝒍𝒖 
𝒃 ) components: (𝚫𝐗, 𝚫𝐘, 𝚫𝐙)𝐓 

 Boresight (𝑹𝒍𝒖 
𝒃 ) components: (𝜟𝝎, 𝜟𝝋, 𝜟𝜿)𝑻 

b) Internal Characteristics: 

 Range (𝝆) offset: 𝜟𝝆 

 Scale factors of the scan angles (𝜶, 𝜷): 𝑺𝜶, 𝑺𝜷 

First, the system parameters outlined above are determined either from a laboratory or 

manufacturer calibration, or an initial estimate. Then, through an in-situ LiDAR system 

calibration, those values are refined in order to determine their true values. The calibration 

uses the initial values then strategically determines their refined value by comparing 
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overlapping strips and control information. The comparison process is carried out by 

detecting and minimizing discrepancies that inhibit the compatibility. This comparison is 

depicted in Figure 2.3. In order to have a reliable calibration that uses minimal, or no, 

control, the discrepancy minimization should be done using corresponding features within 

the point clouds. In order to do so successfully, the following tasks from Habib et al. (2017) 

should be completed; a) Determine which, if any, parameters would not produce a 

discrepancy, and then determine the minimal control necessary to estimate such a 

parameter (covered in section 2.3.2). b) Maximize the visibility of discrepancies between 

overlapping point clouds with a strategic data collection (covered in section 2.3.2). c) 

Identify which primitive would be appropriate for comparing LiDAR point clouds and 

account for the irregularity of LiDAR data (covered in section 2.3.3). d) Establish an 

automated strategy to match these primitives. Then, incorporate these matches and the 

sensor model into a procedure which evaluates system parameters (covered in section 

2.4.3). e) Develop procedures which can handle the absence of system measurements 

(covered in section 2.4.2). 

Figure 2.3: LiDAR System Calibration Strategy to Minimize Discrepancies between 

Overlapping Point Clouds (a) and Control Surfaces (b) (adapted from Bang, 2010) 
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2.3.2 LiDAR Data Collection Strategy 

In order to reduce the control requirement and rely on features within the point cloud, the 

optimal data collection is the one that maximizes the impact of the systematic errors. This 

ensures that discrepancies between conjugate features are detected. First, the point-

positioning equation will be inspected to make assumptions that are associated with the 

nature of airborne LiDAR collection and a general use case involving a linear scanner 

flying in a straight line. Then, the impact that the mounting parameter and internal 

characteristic biases have on the reconstructed point cloud will be determined. Some of the 

terms (e.g. 𝑹𝒃
𝒎(𝒕)) of the equation are different for forward and backward flights, and they 

are denoted by a subscript of f and b, respectively (not to be confused with the b that is 

used to denote the IMU body frame). Moreover, some equations have multiple signs on 

each term, which indicates that the equation is representative of both forward and 

backward flights. The top sign represents the forward flight, and the bottom sign represents 

the backward flight. 

The list of assumptions below essentially simplifies the point-positioning equation (2.7) 

into a different version where we can easily depict and discuss the impact that biases have 

on a reconstructed point cloud. 

𝑟 (𝑡) = 𝑟 (𝑡) + 𝑅 (𝑡)𝑟  + 𝑅 (𝑡)𝑅  
 𝑅  (𝑡)𝑟 (𝑡) (2.7) 

1. The IMU body frame is aligned with its 𝒙𝒃, 𝒚𝒃, and 𝒛𝒃 axes pointing in starboard, 

flight, and up directions, respectively. 

2. The airborne platform is flying with a constant heading along the South-to-North 

(denoted as forward) and North-to-South (denoted as backward) directions. 

Therefore, the 𝑹𝒃
𝒎(𝒕) rotation matrices for these flight lines are defined as per eq. 

(2.8) and eq.(2.9), respectively. 
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1 0 0 
𝑅  (𝑡){𝑓𝑜𝑟𝑤𝑎𝑟𝑑} = 0 1 0  (2.8) 

0 0 1 

−1 0 0 
𝑅  (𝑡){𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑} =  0 −1 0  (2.9) 

0 0 1 

3. The IMU body frame and the laser unit coordinate system are almost parallel to 

each other with small boresight angles (𝜟𝝎, 𝜟𝝋, 𝜟𝜿) describing their rotational 

𝒃 relationship. Thus, the 𝑹𝒍𝒖 rotation matrix can be represented by eq. (2.10). 

1 −𝛥𝜅 𝛥𝜑 
𝑅  ≈  𝛥𝜅 1 −𝛥𝜔  (2.10) 

−𝛥𝜑 𝛥𝜔 1 

4. The IMU body frame and the laser unit coordinate system are relatively close to 

each other. Therefore, the lever arm can be represented by the incremental vector 

in eq. (2.11). 

Δ𝑥 
𝑟  

 = Δ𝑦  (2.11) 
Δ𝑧 

5. We are dealing with a linear vertical scanner that maps a relatively flat terrain (with 

respect to the flying height) across the flight direction. Therefore, there is only one 

scan angle 𝜷 and its corresponding scan angle scale factor is denoted as 𝑺. The 

𝒍𝒖(𝒕),coordinates of a given point I relative to the laser unit coordinate system, 𝒓𝑰 

would be represented by eq. (2.12), where 𝒙(𝒕) and 𝒛 are the x-laser unit coordinate 

and the z-laser unit coordinate of the LiDAR point with respect to the laser unit 

frame, respectively (as seen in Figure 2.4). The z-laser unit coordinate is considered 

constant due to the assumption that we are dealing with a relatively flat terrain. 
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These two coordinates are dependent on the mirror angle measurement 𝜷, range 

measurement 𝝆, and the internal characteristics 𝚫𝝆 and 𝑺, as seen in eq. (2.13) and 

eq. (2.14). 

𝑥(𝑡) 
𝑟 (𝑡) =  0  (2.12) 

𝑧 

𝑥(𝑡) = −(𝜌(𝑡) + 𝛥𝜌) 𝑠𝑖𝑛(𝑆𝛽(𝑡)) (2.13) 

𝑧 = −(𝜌(𝑡) + 𝛥𝜌) 𝑐𝑜𝑠(𝑆𝛽(𝑡)) (2.14) 

Figure 2.4: Laser unit Coordinates and their Relation to the Range and Mirror Anlge 

Measurements 

These assumptions result in the new form of the point-positioning equation seen in eq. 

(2.15). 
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±Δ𝑥 ±1 ∓Δ𝜅 ±Δ𝜑 𝑥(𝑡) 
𝑟 (𝑡) = 𝑟 (𝑡) + ±Δ𝑦  + ±Δ𝜅 ±1 ∓Δ𝜔   0  (2.15) 

Δ𝑧 −Δ𝜑 Δ𝜔 1 𝑧 

Now the second step in the development of the acquisition scenario, defining the impact of 

the biases, can be completed. By investigating when and where the system parameter biases 

impact the reconstructed point cloud, we can determine what types of flights are needed to 

maximize the visibility of discrepancies between overlapping strips. More specifically, this 

will determine which system parameter biases are dependent on flying direction, flying 
mheight, and/or the scan angle. The impact is represented as δrI , and is accomplished via 

taking the derivative of eq. (2.15) with respect to each bias, and then multiplying each 

resulting derivative by its respective bias. The results are shown in Table 2-1. In this table, 

a bias is represented by the symbol 𝜹, which precedes the system parameter it is referring 

to, and the impact it has on the 𝑿𝒎, 𝒀𝒎, or 𝒁𝒎 coordinate is separated into the columns of 

𝜹𝑿𝒎, 𝜹𝒀𝒎, and 𝜹𝒁𝒎, respectively. Eq.(2.16) is the result of summing the columns of Table 

2-1 to form the vector representation of the impact that the biases have on the coordinates. 

Eq.(2.17) is essentially the same as eq. (2.16) but it is reorganized by the different types of 

system parameters (the first term pertains to the lever arm, the second term pertains to the 

boresight angles, and the third and fourth terms pertain to the range offset and the scan 

angle scale factor, respectively). 

https://Eq.(2.17
https://Eq.(2.16
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Table 2-1: Impact of System Parameter Biases on Each Component of the Reconstructed 

Coordinate (Habib et al., 2009a) 

𝜹𝑿𝒎 

Impact 

𝜹𝒀𝒎 𝜹𝒁𝒎 

±𝛿Δ𝑥 0 0 

0 ±𝛿Δ𝑦 0 

0 0 𝛿Δ𝑧 

0 ∓𝑧 𝛿Δω 0 

±𝑧 𝛿Δ𝜑 0 −𝑥(𝑡)𝛿Δ𝜑 

0 ±𝑥(𝑡) 𝛿Δκ 0 

∓ sin 𝑆𝛽(𝑡)  𝛿𝛥𝜌 0 − cos 𝑆𝛽(𝑡)  𝛿𝛥𝜌 

±𝑧𝛽(𝑡)𝛿𝑆 0 −𝑥(𝑡)𝛽(𝑡)𝛿𝑆 

B
ia

s 

𝛿Δ𝑥 

𝛿Δ𝑦 

𝛿Δ𝑧 

𝛿Δω 

𝛿Δ𝜑 

𝛿Δκ 

𝛿Δ𝜌 

𝛿S 

±𝛿Δ𝑥 ± 𝑧𝛿Δ𝜑 ∓ sin 𝑆𝛽(𝑡)  𝛿𝛥𝜌 ± 𝑧𝛽(𝑡)𝛿𝑆 

𝛿𝑟  =  ±𝛿Δ𝑦 ± 𝑥(𝑡)𝛿Δκ ∓ 𝑧𝛿Δω  (2.16) 
𝛿Δ𝑧 − 𝑥(𝑡)𝛿Δ𝜑 − cos 𝑆𝛽(𝑡)  𝛿𝛥𝜌 − 𝑥(𝑡)𝛽(𝑡)𝛿𝑆 

±𝛿Δ𝑥 0 ∓𝛿Δ𝜅 ±𝛿Δ𝜑 𝑥(𝑡) 
𝛿𝑟 = ±𝛿Δ𝑦 + ±𝛿Δκ 0 ∓𝛿Δω  0  + 

𝛿Δ𝑧 −𝛿Δ𝜑 𝛿Δω 0 𝑧 
(2.17) 

∓ sin 𝑆𝛽(𝑡)  𝛿𝛥𝜌 ±𝑧𝛽(𝑡)𝛿𝑆 
 0 + 0  
− cos 𝑆𝛽(𝑡)  𝛿𝛥𝜌 −𝑥(𝑡)𝛽(𝑡)𝛿𝑆 

After deriving the impact of each bias for both the forward and backward flights in Table 

2-1, we can see many patterns and affects that are useful for developing the optimal and 

minimal configuration. One can understand which biases impact each coordinate, and then 

even more importantly whether or not a bias impact is dependent on flying direction, flying 

height, and/or scan angle. Understanding these relationships will guide the process of 

developing the optimal and minimal configuration because it will reveal which biases will 

be visible when comparing overlapping point clouds and control information. Table 2-2, 
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Table 2-3, and Table 2-4 depict which biases impact the X, Y, and Z coordinates, 

respectively. As depicted in Figure 2.5, if an expression in the bias impact columns of these 

tables includes 𝒙(𝒕) , 𝜷(𝒕) , or 𝐬𝐢𝐧(𝜷(𝒕)) , then it is scan angle dependent, and if an 

expression includes 𝒛(𝒕), then it is flying height dependent. If an expression contains the 

double signage ± or ∓ , then it is flying direction dependent. The only time such 

observation is not true is when an expression includes ± or ∓ in addition to the x-laser unit 

coordinate 𝒙(𝒕), the scan angle 𝜷(𝒕), or the sine of the scan angle 𝒔𝒊𝒏(𝜷(𝒕)). This is 

because the sign of 𝒙(𝒕) , 𝜷(𝒕) , and 𝒔𝒊𝒏(𝜷(𝒕)) also changes depending on the flight 

direction, as seen in Figure 2.5. As an example, the term ±𝒙(𝒕) is not flying direction 

dependent because the sign of 𝒙(𝒕) also changes for forward and backward flights, thus 

negating the flying direction dependence from the double signage. In a similar manner, if 

an expression has only 𝒙(𝒕), 𝜷(𝒕), or 𝒔𝒊𝒏(𝜷(𝒕)), then it is flying direction dependent. 

Finally, when an expression has two of the three flying direction dependent terms (𝒙(𝒕), 

𝜷(𝒕), and 𝒔𝒊𝒏(𝜷(𝒕))), and no double signage, there will be no dependence on flying 

direction. 

Table 2-2: Biases that Impact the X Coordinate and their Dependencies 

Bias Bias Impact Dependencies 

Flying Direction 

Dependent 

Flying Height 

Dependent 

Scan Angle 

Dependent 

𝜹𝚫𝒙 ±𝛿Δ𝑥 Yes No No 

𝜹𝚫𝝋 ±𝑧 𝛿Δ𝜑 Yes Yes No 

𝜹𝚫𝝆 ∓ sin 𝑆𝛽(𝑡)  𝛿𝛥𝜌 No No Yes 

𝜹𝐒 ±𝑧𝛽(𝑡)𝛿𝑆 No Yes Yes 
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Table 2-3: Biases that Impact the Y Coordinate and their Dependencies 

Bias Bias Impact Dependencies 

Flying Direction 

Dependent 

Flying Height 

Dependent 

Scan Angle 

Dependent 

𝜹𝚫𝒚 ±𝛿Δ𝑦 Yes No No 

𝜹𝚫𝛚 ∓𝑧 𝛿Δω Yes Yes No 

𝜹𝚫𝛋 ±𝑥(𝑡) 𝛿Δκ No No Yes 

 
 

 
 

           

    
    

 
   

 
  

 
     
      
      

 

           

    
    

 
   

 
  

 
     
      
     
     

 

Table 2-4: Biases that Impact the Z Coordinate and their Dependencies 

Bias Bias Impact Dependencies 

Flying Direction Flying Height Scan Angle 

Dependent Dependent Dependent 

𝜹𝚫𝒛 𝛿Δ𝑧 No No No 

𝜹𝚫𝝋 −𝑥(𝑡) 𝛿Δ𝜑 Yes No Yes 

𝜹𝚫𝝆 − cos 𝑆𝛽(𝑡)  𝛿𝛥𝜌 No No Yes 

𝜹𝐒 −𝑥𝛽(𝑡)𝛿𝑆 No No Yes 
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Figure 2.5: Illustration of the Flying Direction Dependent Terms, (𝜷(𝒕), 𝒔𝒊𝒏(𝜷(𝒕)), and 

𝒙(𝒕)), other than the Double Signage Term 

The term strip-pair, is used to denote two overlapping flight strips that we have chosen to 

compare. As seen in Table 2-2, Table 2-3, and Table 2-4, the four mounting parameter 

biases 𝜹𝜟𝑿, 𝜹𝜟𝒀, 𝜹𝜟𝝎, and 𝜹𝜟𝝋, are dependent on the flying direction; therefore, a strip-

pair with opposite flying directions can be used to estimate them. The biases 𝜹𝜟𝑿 and 𝜹𝜟𝝋 

both impact the X coordinate, but they can be decoupled using opposite flying directions 

since 𝜹𝜟𝝋 also impacts the Z coordinate. The biases 𝜹𝜟𝒀 and 𝜹𝜟𝝎 both only impact the 

Y coordinate and they cannot be decoupled with just opposite flying directions. Therefore, 

we use an additional strip pair with different flying directions at a different flying height 

from the first one since 𝜹𝜟𝝎 is flying height dependent (Table 2-3). The scan angle 

dependent biases seen in Table 2-2, Table 2-3, and Table 2-4 are the mounting parameter 

bias 𝜹𝜟𝜿 and the internal characteristic biases 𝜹𝜟𝝆 and 𝜹𝑺. To detect these biases, a strip 

pair with less than 100 percent overlap should be used so that when compared, the 

discrepancy is visible since the overlapping points have differing scan angles. Furthermore, 
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that overlap should be minimized to maximize the difference in scan angle (which 

maximizes the observed discrepancy). As seen in Table 2-4 the impact of 𝜹𝜟𝒁 will not be 

seen no matter what the flight configuration is, and therefore control information in the Z 

direction is necessary to estimate this bias (Habib et al., 2009b). The resulting optimal 

configuration can be seen in Figure 2.6 and it is composed of five flight lines as well as 

vertical control. The first two strip-pairs are comprised of forward and backward flights 

with almost 100% overlap, and the two strip-pairs are at different flying heights. The third 

strip-pair is two parallel flight lines with a large lateral distance between them (about 50% 

overlap). Furthermore, the terrain between the overlap case with a large lateral distance 

should have adequate elevation variation, since planimetric discrepancies across the flight 

direction are needed for the 𝜹𝜟𝝆 estimation. This is because the impact is relatively small 

and can therefore be insignificant compared to the noise level of the data (making it 

undetectable) if the elevation variation is low. If this area does not exhibit enough elevation 

variation, then 𝜹𝜟𝝆 also needs vertical control in order to be estimated. When this is the 

case, the 𝜹𝜟𝒛 and 𝜹𝜟𝝆 biases cannot be simultaneously estimated because their impact on 

the 𝒁𝑰
𝒎 coordinate is highly correlated when the scan angle is relatively small. With the 

established optimal and minimal configuration, the calibration process can be carried out 

by detecting discrepancies between overlapping strips and then minimizing such 

discrepancies by estimating the system parameters using the point-positioning equation. 
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Figure 2.6: Optimal/Minimal Flight Configuration for Airborne LiDAR System 

Calibration (adapted from Bang, 2010) 

2.3.3 Calibration Primitives 

Employing point based matches for the calibration strategy ensures the mathematical 

relationship between the point cloud and the sensor model (sensor model contains the 

system parameters to be estimated) is preserved, but these matches do not actually exist 

because LiDAR data is irregular. With irregular data, conjugate points in overlapping data 

are not as straightforward as they are with other geospatial data (such as photogrammetry), 

where distinct control and tie points can be identified. Higher level features, such as lines 

and planes, can be reliably derived and used as conjugate features (Hamza and Habib, 2013; 

Vosselman, 2002; Pfeifer et al., 2005), but we are not always guaranteed to have these 

features available in the covered areas. In addition to the problem of the availability of 

higher level features, using them as conjugate features requires preprocessing of the data 

in order to extract them. The most prominent drawback of using higher level features is 

that the link between the features and the sensor model is lost unless the parameters are 

extended to include the parameters of that feature. Since using points as conjugate features 
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is the only way to preserve this crucial relationship to the sensor model, an approach that 

properly accounts for the irregularity of LiDAR points needs to be used. Bretan (2004) uses 

interpolated regions to bypass the issue of distinct points but does not have an optimal 

matching procedure. Throughout the many tests on primitives and conjugate features, the 

most recommended correspondence for LiDAR point cloud analysis is between discrete 

points in one scan, and a triangulated irregular networks (TIN) of the other scan (Habib et. 

al., 2010d; Maas, 2002). The concept of point-patch pairs is illustrated in Figure 2.7. The 

point and the patch are considered to be pseudo-conjugate points, they are not distinct 

conjugates, but they belong to conjugate features. 

Figure 2.7: Point-patch Pair 

The matching approach used in these calibration methods is the Iterative Closest Patch 

(ICPatch) (Habib et al., 2009b; Bang, 2010), and it properly accounts for the irregularity 

of LiDAR data by using the point-to-patch matches in conjunction with a weight 

modification. The process of pairing points with their corresponding patches involves 

matching a point from strip B to the closest patch in strip A. In order to be confirmed as a 

point-patch pair, there are three criteria that need to be met (Habib et. al., 2010d). 

1. Of all the patches, the patch is the closest to the projected point, 

2. The normal distance observed between the point and that patch is less than the 

determined threshold (which is determined based on the point cloud noise level), 

and 
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3. The projection of the point onto the patch falls inside the patch. 

The result of ICPatch is a set of point-patch pairs, and when these matches are employed 

in the calibration, any vertex of the patch is used as the pseudo-conjugate to the point from 

B. During calibration, instead of minimizing the XYZ discrepancies, the normal distance 

between the point and the conjugate patch should be minimized through a weight 

modification process. The weight modification steps are defined here: 

a) Calculate the variance-covariance matrix using error propagation and the calibration 

math model, and then calculate its corresponding weight matrix 𝑷𝑿𝒀𝒁. 

b) Define a new uvw coordinate system where w coincides with the normal to the patch, 

and the u-v plane coincides with the patch as seen in Figure 2.8. 
𝒖𝒗𝒘 c) Derive the rotation matrix from the XYZ mapping frame to the uvw frame, 𝑹𝑿𝒀𝒁 . Using 

error propagation, calculate the weight matrix corresponding to the uvw system 

according to eq. (2.18). 

𝑝  𝑝  𝑝  

= 𝑝  𝑃  𝑝  
 𝑝  𝑃 𝑅   = 𝑅  (2.18) 

𝑝  𝑝  𝑝  

d) Because we wish to only consider the weight along the patch normal direction, the 

weight matrix is modified to eq. (2.19). 

0 0 0 
𝑃  = 0 0 0  (2.19) 

0 0 𝑝  

e) Use error propagation again to define the new weight matrix with respect to the XYZ 

frame. This operation can be seen in eq. (2.20), which is the final weight matrix that 

will be used in the calibration. 

   𝑃  (2.20) 𝑃  = 𝑅  𝑅  
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Figure 2.8: Formation of the uvw Modified Coordinate System for ICPatch Weight 

Modification (adapted from Bang, 2010) 

The weight modification is necessary to account for the fact that a point based procedure 

is being used with pseudo-conjugate points. The initial discrepancy equation is formed with 

the point in strip A and a vertex of the matching patch from strip B, the weight modification 

allows the conjugate point in strip B to move around in the plane of the patch to ensure the 

minimization of the normal distance from the patch to the point (Habib et. al., 2010d). 

When comparing control points with LiDAR points, the TIN is generated from the LiDAR 

point cloud, because control points are usually minimized for cost and therefore not dense 

enough to characterize the ground surface (if a control surface is provided as opposed to 

control points, then the TIN may also be generated from the control surface). Other research 

has used higher-level features, such as planes or lines, as conjugate primitives (Vosselman, 

2002); but with such approaches the crucial link to the sensor model is lost (Habib et al., 

2008; Skaloud and Lichti, 2006). ICPatch is preferred here because it is based on the 

original, irregular points as input, and the matching procedure accounts for the irregularity 

of LiDAR data. In addition to the generation of the point-patch pairs, ICPatch also 

estimates a rigid body transformation between strip A and strip B. 
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System Calibration Procedures 

The following sections derive the calibration procedures for both rigorous and pseudo-

rigorous approaches. From this point on, the rigorous approach proposed by Kersting 

(2011) is referred to as the Rigorous (R) approach, and the S (Bang, 2010) and QR (Bang, 

2010) approaches are collectively referred to as the Pseudo-rigorous approaches (Pseudo-

rigorous approaches will also entail the new QRQS approach once it has been developed 

in Chapter 3). 

2.4.1 Rigorous (R) LiDAR System Calibration 

The R calibration procedure is used when all raw measurements are available. The 

development of the calibration math model follows upon the previously established 

theoretical basis in 2.3.1 of comparing overlapping point clouds and control information 

through the use of the point-positioning equation (2.6). The symbolic form of eq. (2.6) is 

eq. (2.21). In eq. (2.21), the approximate values of the system parameters are represented 

as 𝒙𝒐, the unknown corrections to the approximate values of the system parameters are 

represented as 𝜹𝒙, and the system measurements are represented as 𝒚. The true system 

parameter values are represented as 𝒙, and the expanded form of 𝒙 is shown in eq. (2.22). 

The expanded form of vector 𝒚 is shown in eq. (2.23). Also in eq. (2.21), the noise in the 

system measurements is 𝒆, whereas 𝜮 represents the variance-covariance matrix of that 

noise vector and is expanded in eq. (2.24). 

𝑟 (𝑡) = 𝑓(𝑥  + 𝛿𝑥, 𝑦 − 𝑒) & 𝑒~(0, 𝛴) (2.21) 
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𝛥𝑋 
⎡ ⎤𝛥𝑌 
⎢ ⎥ 𝛥𝑍 
⎢ ⎥𝛥𝜔 
⎢ ⎥ 

𝑥 = 𝛥𝜑 
⎢ ⎥ (2.22) 

𝛥𝜅 ⎢ ⎥ 
𝛥𝜌 ⎢ ⎥ 
𝑆⎢ ⎥ 

⎣ 𝑆 ⎦ 

𝑋 
⎡ ⎤𝑌 
⎢ ⎥ 
𝑍 ⎢ ⎥ 𝜔 

⎢ ⎥ 
𝑦 = 𝜑 ⎢ ⎥ (2.23) 

⎢𝜅 ⎥ 
𝜌 ⎢ ⎥ 

⎢𝛼 ⎥ 
⎣𝛽⎦ 

𝜎
⎡

0 0 0 0 0 0 0 0 
⎤ 

0⎢ 𝜎  0 0 0 0 0 0 0 ⎥ 
⎢ 0 0 𝜎  0 0 0 0 0 0 ⎥ 
⎢ 0 0 0 𝜎  0 0 0 0 ⎥0 

𝛴 = 
⎢ 

0
⎢ 0 0 0 𝜎  0 0 0 ⎥ 

0 
⎥ (2.24) 

⎢ 0 0 0 0 0 𝜎  0 0 0 ⎥ 
⎢ 0 0 0 0 0 0 𝜎  0 0 ⎥ 
⎢ 

0⎢ 0 0 0 0 0 0 𝜎  
⎥ 

0 ⎥ 
⎣ 0 0 0 0 0 0 0 0 𝜎 ⎦ 

The two flight lines within a strip-pair are denoted by subscripts 𝑨 and 𝑩 , and their 

respective time stamps associated with a specific point of interest are denoted as 𝒕𝑨 and 𝒕𝑩, 

respectively. Eq. (2.25) represents the mathematical relationship between pseudo-

conjugate points, and it shows that when the true system parameter values x (𝒙 = 𝒙𝒐 + 𝜹𝒙) 

are used and the noise impact (𝒆𝑨 and 𝒆𝑩) removed, the conjugate points should have 
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identical coordinates. In order to be used in a Least Squares Adjustment, eq. (2.25) must 

be linearized, which is shown on the right side of eq. (2.26). In eq. (2.26), the terms 𝒇𝑨 and 

𝒇𝑩, are the predicted point cloud coordinates reconstructed using the approximate values 

for the system parameters 𝒙𝒐, and the noise-contaminated measurements 𝒚𝑨 and 𝒚𝑩, for 

flight lines 𝑨 and 𝑩, respectively. The Jacobian matrices in eq. (2.26) 𝑱𝒙𝑨 
and 𝑱𝒙𝑩 

are 

relative to the system parameters, and the matrices 𝑱𝒚𝑨 
and 𝑱𝒚𝑩 

are relative to the system 

measurements. The Jacobian matrices are evaluated using the approximate system 

parameter values 𝒙𝒐, and the measurements 𝒚. Next, we rearrange eq. (2.26) so that the 

predicted coordinates 𝒇𝑨 and 𝒇𝑩 are on the left side leaving the system parameters to be 

estimated on the right side. This leads to the final representation of the R calibration math 

model, eq. (2.27). It is stated in eq. (2.27) that the combined error term from this 

discrepancy equation is 𝑱𝒚𝑨
𝒆𝑨 − 𝑱𝒚𝑩

𝒆𝑩 , and it is distributed with a mean of zero and 

𝑻 𝑻 variance-covariance matrix of (𝑱𝒚𝑨
𝚺𝑨𝑱𝒚𝑨 

+ 𝑱𝒚𝑩
𝚺𝑩𝑱𝒚𝑩 

). During implementation, the 𝜮 

matrix is filled using the reported hardware uncertainties and assumes no correlation 

between measurements acquired at different time stamps. 

𝑟
 
(𝑡 ) − 𝑟

 
(𝑡 ) = 𝑓(𝑥  + 𝛿𝑥, 𝑦  − 𝑒 ) − 𝑓(𝑥  + 𝛿𝑥, 𝑦  − 𝑒 ) 

(2.25) 
= 0 

𝑟 (𝑡 ) − 𝑟 (𝑡 ) ≈ (𝑓 + 𝐽 𝛿𝑥 − 𝐽 𝑒 ) − (𝑓 + 𝐽 𝛿𝑥 − 
(2.26) 

𝐽 𝑒 ) = 0, 𝑤ℎ𝑒𝑟𝑒 𝑓  = 𝑓(𝑥 , 𝑦 ), 𝑓  = 𝑓(𝑥 , 𝑦 ) 

𝑓 (𝑡 ) − 𝑓 (𝑡 ) = − 𝐽 𝛿𝑥 − 𝐽 𝑒  + (𝐽 𝛿𝑥 − 𝐽 𝑒 ) 

(2.27) 
& 𝐽 𝑒  − 𝐽 𝑒 ~ 0, 𝐽 𝛴 𝐽

 
+ 𝐽 𝛴 𝐽  

A discrepancy equation should also be developed for comparing flight strips with control. 

The development of this discrepancy equation is shown in eq. (2.28) through eq. (2.30), 

and it follows the same sequence of eq. (2.25) thorough eq. (2.27) (except the conjugate 
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point from flight line B is now a control point). The noise-free control point is represented 
𝒎 𝒎 as 𝒓𝑰𝑪 

, and the noise-contaminated control point is represented as 𝒓𝑰𝑪𝒐 
. The noise 

contaminating the control point is represented as 𝒆𝑪 , and its variance-covariance matrix is 

represented as 𝜮𝑪. Eq. (2.30) shows that the uncertainty of the combined error term in the 

discrepancy equation is (𝑱𝒚𝑨
𝒆𝑨 − 𝒆𝑪), and it is distributed with a mean of zero and a 

𝑻 variance-covariance matrix of (𝑱𝒚𝑨
𝚺𝑨𝑱𝒚𝑨 

+ 𝚺𝑪). To carry out the calibration, eq. (2.27) and 

eq. (2.30) are simultaneously used in a Least Squares Adjustment solving for the unknown 

system parameters (Mikhail and Ackerman, 1976). Upon estimation of the system 

parameters, the calibration is then completed by reconstructing the coordinates through the 

LiDAR point-positioning equation with the updated set of system parameters. 

𝑟 (𝑡 ) − 𝑟
 

= 𝑓(𝑥 + 𝛿𝑥, 𝑦 − 𝑒 ) − (𝑟 − 𝑒 ) 
(2.28) 

= 0 & 𝑒 ~(0, 𝛴 ), 𝑒 ~(0, 𝛴 ) 

𝑟 (𝑡 ) − 𝑟
 

≈ (𝑓 + 𝐽 𝛿𝑥 − 𝐽 𝑒 ) − (𝑟 − 𝑒 ) =0 (2.29) 

𝑓 (𝑡 ) − 𝑟
 
= −𝐽 𝛿𝑥 + 𝐽 𝑒  − 𝑒  & (𝐽 𝑒  − 

(2.30) 
𝑒 )~(0, 𝐽 𝛴 𝐽

 
+ 𝛴 ) 

2.4.2 Pseudo-rigorous LiDAR System Calibration 

Since the manufacturer may not always provide the raw measurements, system-driven 

calibration approaches in the full or partial absence of raw measurements need to be 

developed and discussed. The raw measurements, being referred to here, consist of the 

position and orientation of the IMU body frame interpolated at the time of the individual 

laser pulses, 𝒓𝒃
𝒎(𝒕) and 𝑹𝒃

𝒎(𝒕), respectively, as well as the range and mirror angles needed 

to define 𝒓𝑰 
𝒍𝒖(𝒕). When these measurements are available, the R calibration procedure is 

the most suitable. The two calibration approaches detailed below show how a calibration 
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can be approached in the absence of system raw measurements. Note that these calibration 

approaches are all restricted to linear scanners, but there is a possibility of expanding the 

theory in future research to incorporate elliptical scanners. The QR calibration is employed 

whenever the time-tagged point cloud and the time-tagged trajectory are available. The S 

calibration is the approach that can be employed when just the point cloud information is 

available. 

2.4.2.1 Quasi-Rigorous (QR) Calibration Procedures 

The QR calibration is developed assuming we have the time-tagged point cloud and time-

tagged position information of the trajectory. The point cloud coordinates are derived using 

biased system parameters, denoted henceforth as biased point cloud coordinates. The QR 

calibration math model and procedure will be developed in a similar manner as the R, but 

instead of determining the system parameters, the system parameter biases are determined 

and the missing raw measurements are synthesized using the given data. The missing raw 

measurements are 𝑹𝒃
𝒎(𝒕) and 𝒓𝑰 

𝒍𝒖(𝒕), and to effectively synthesize the measurements, the 

data should follow a certain assumption that will allow the point-positioning equation to 

be simplified. The assumption is that we are dealing with a linear vertical scanner which 

maps the terrain across the flight direction. Therefore, there is only one scan angle 𝜷(𝒕), 

𝒍𝒖 and the coordinates of a given point I relative to the laser unit coordinate system 𝒓𝑰 , can 

be represented by the lateral and vertical distances between the flight trajectory and the 

point in question, respectively, as seen in eq. (2.31). Here, 𝒛(𝒕) is a function of time 

because it is not assumed to be constant (as was the case in section 2.3.2). Also, the rotation 

matrix from the body frame to the mapping frame 𝑹𝒃
𝒎(𝒕), is now only a function of heading 

𝛋(𝐭), because the platform maintains a constant height with no roll and pitch. In addition 

to this assumption, the QR calibration also has expectations about the location and 

orientation of the IMU body frame and laser unit coordinate systems. It is important to note 

that these expectations can always be met by introducing virtual coordinate systems, and 

therefore they are not required in order to carry out the calibration. First, it is expected that 

the IMU body frame is aligned with its 𝒙𝒃, 𝒚𝒃, and 𝒛𝒃 axes pointing in the starboard, flight, 

and up directions, respectively. Also, the IMU body frame and the laser unit coordinate 

systems are expected to be almost parallel and close to each other with small boresight 
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angles (𝜟𝝎, 𝜟𝝋, 𝜟𝜿) and a small lever arm offset (𝜟𝑿, 𝜟𝒀, 𝜟𝒁) describing their rotational 

and translational relationship, respectively. The linear vertical scanner assumption and the 

expectations about the coordinate system configurations collectively simplify the LiDAR 

point-positioning equation into eq. (2.32) below. 

𝑥(𝑡) 
𝑟 (𝑡) =  0  (2.31) 

𝑧(𝑡) 

𝑟  (𝑡) 

𝑐𝑜𝑠(𝜅(𝑡)) 
= 𝑟  (𝑡) + 𝑠𝑖𝑛(𝜅(𝑡)) 

0 

−𝑠𝑖𝑛(𝜅(𝑡)) 0 
𝑐𝑜𝑠(𝜅(𝑡)) 0   

0 1 

𝛥𝑥 
𝛥𝑦  
𝛥𝑧 (2.32) 

𝑐𝑜𝑠(𝜅(𝑡)) 
+ 𝑠𝑖𝑛(𝜅(𝑡)) 

0 

−𝑠𝑖𝑛(𝜅(𝑡)) 
𝑐𝑜𝑠(𝜅(𝑡)) 

0 

0 1 
0   𝛥𝜅 
1 −𝛥𝜑 

−𝛥𝜅 
1 

𝛥𝜔 

𝛥𝜑 
−𝛥𝜔   

1 

𝑥(𝑡) 
0  

𝑧(𝑡) 

The symbolic representation of a biased coordinate is seen in eq. (2.33). The term 

𝒓𝑰
𝒎(𝒕, 𝒃𝒊𝒂𝒔𝒆𝒅), represents the biased point cloud coordinates derived using the inaccurate 

system parameters. In eq. (2.33), the true system parameters are represented as 𝒙 and the 

term 𝜹𝒙𝒃 , represents the biases contaminating the system parameters (the subscript b 

distinguishes it from the term 𝜹𝒙 which was introduced in the R procedure as the 

corrections to the approximate values of system parameters). The measurements are 

represented as 𝒚, the noise free system measurements as 𝒚𝒏𝒇, the error associated with 

those measurements as 𝒆, and the time tag of the point in question as 𝒕. Using Taylor series 

expansion, eq. (2.33) could be expanded to the form in eq. (2.34). The term 𝒇 𝒙, 𝒚𝒏𝒇, 𝒕 , 

represents the true coordinates of the point in question 𝒓𝑰
𝒎(𝒕). Eq.(2.34) is reformulated 

into eq. (2.35) by writing the true coordinates in terms of the biased coordinates. Now the 

discrepancy equations can be formed under the presumption that true conjugate points 

should have identical coordinates. This relationship is seen in eq. (2.36), and it is then 

reformulated into eq. (2.37) so that the biased coordinates are on the left and the values to 

be estimated are on the right. When control is incorporated, the discrepancy equation to 

https://Eq.(2.34
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use is eq. (2.38). Instead of comparing a biased point coordinate from A to a biased point 

coordinate from 𝑩, eq. (2.38) compares a biased point coordinate from A to the control 
𝒎 point 𝒓𝑰𝑪𝒐 

. 

𝑟 (𝑡, 𝑏𝑖𝑎𝑠𝑒𝑑) = 𝑓(𝑥 + 𝛿𝑥 , 𝑦  + 𝑒, 𝑡) (2.33) 

𝑟 (𝑡, 𝑏𝑖𝑎𝑠𝑒𝑑) ≈ 𝑓 𝑥, 𝑦 , 𝑡  + 𝐽 𝛿𝑥  + 𝐽 𝑒 
(2.34) 

≈ 𝑟 (𝑡) + 𝐽 𝛿𝑥  + 𝐽 𝑒 

𝑟 (𝑡) = 𝑟 (𝑡)(𝑏𝑖𝑎𝑠𝑒𝑑) − 𝐽 𝛿𝑥  − 𝐽 𝑒 (2.35) 

𝑟 (𝑡 ) − 𝑟 (𝑡 ) =≈ (𝑟 (𝑡 , 𝑏𝑖𝑎𝑠𝑒𝑑) − 𝐽 𝛿𝑥  − 𝐽 𝑒 ) − 
(2.36) 

(𝑟 (𝑡 , 𝑏𝑖𝑎𝑠𝑒𝑑) − 𝐽 𝛿𝑥  − 𝐽 𝑒 ) = 0 

𝑟
 
(𝑡 , 𝑏𝑖𝑎𝑠𝑒𝑑) − 𝑟

 
(𝑡 , 𝑏𝑖𝑎𝑠𝑒𝑑) 

(2.37) 
= 𝐽 𝛿𝑥  + 𝐽 𝑒  − (𝐽 𝛿𝑥  + 𝐽 𝑒 ) 

𝑟 (𝑡 , 𝑏𝑖𝑎𝑠𝑒𝑑) − 𝑟
 
= (𝐽 𝛿𝑥 + 𝐽 𝑒 ) − 𝑒  (2.38) 

The discrepancy equations can then be evaluated using the biased point cloud coordinates 

and the Jacobian matrices. The term 𝑱𝒙𝜹𝒙𝒃, is shown in eq. (2.39) and is evaluated using 

synthesized raw measurements from the time-tagged point clouds and system trajectory. 

Figure 2.9 depicts what spatial relationships are used to synthesize the raw measurements. 

Using this figure, the raw measurements can be synthesized according to the following 

steps: 

 The trajectory heading can be estimated for a given LiDAR point captured at time 

t by analyizing the trajectory points within the time range [𝒕 − 𝜟𝒕, 𝒕 + 𝜟𝒕] and 
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fitting a line through these selected points. The trajectory heading is estimated from 

this orientation of this line that is approximating the local trajectory. The heading 

is then used to determine 𝑹𝒃
𝒎(𝒕). 

 The firing point of the laser pulse can be determined by projecting the LiDAR point 

in question onto the trajectory. 

𝒍𝒖(𝒕) = The firing point of the laser beam is used to evaluate 𝒓𝑰 [𝒙(𝒕) 𝟎 𝒛(𝒕)]𝑻; 

where 𝒙(𝒕) and 𝒛(𝒕) are the x-laser unit coordinate and the z-laser unit coordinate 

𝒍𝒖(𝒕) can of the LiDAR point with respect to the laser unit frame. The elements of 𝒓𝑰 

be used to determine the mirror scan angle 𝜷 according to Figure 2.9 through basic 

trigonometry. 

𝐽 𝛿𝑥  

𝑐𝑜𝑠(𝜅(𝑡)) 𝛿𝛥𝑋 − 𝑠𝑖𝑛(𝜅(𝑡)) 𝛿𝛥𝑌 
= 𝑠𝑖𝑛(𝜅(𝑡)) 𝛿𝛥𝑋 + 𝑐𝑜𝑠(𝜅(𝑡)) 𝛿𝛥𝑌  

𝛿𝛥𝑍 

𝑠𝑖𝑛 𝜅(𝑡)  𝑧(𝑡)𝛿𝛥𝜔 + 𝑐𝑜𝑠 𝜅(𝑡)  𝑧(𝑡)𝛿𝛥𝜑 − 𝑠𝑖𝑛(𝜅(𝑡)) 𝑥(𝑡)𝛿𝛥𝜅 
(2.39) 

+ −𝑐𝑜𝑠(𝜅(𝑡)) 𝑧(𝑡)𝛿𝛥𝜔 + 𝑠𝑖𝑛 𝜅(𝑡)  𝑧(𝑡)𝛿𝛥𝜑 + 𝑐𝑜𝑠(𝜅(𝑡)) 𝑥(𝑡)𝛿𝛥𝜅  

−𝑥(𝑡)𝛿𝛥𝜑 

−𝑐𝑜𝑠(𝜅(𝑡)) 𝑠𝑖𝑛(𝑆𝛽(𝑡)) 𝛿𝛥𝜌 + 𝑐𝑜𝑠 𝜅(𝑡)  𝑧(𝑡)𝛽(𝑡)𝛿𝑆 

+ −𝑠𝑖𝑛(𝜅(𝑡)) 𝑠𝑖𝑛(𝑆𝛽(𝑡)) 𝛿𝛥𝜌 + 𝑠𝑖𝑛 𝜅(𝑡) 𝑧(𝑡)𝛽(𝑡)𝛿𝑆  

−𝑐𝑜𝑠(𝑆𝛽(𝑡)) 𝛿𝛥𝜌 − 𝑥(𝑡)𝛽(𝑡)𝛿𝑆 
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Figure 2.9: Synthesizing the System Raw Measurements for the QR Calibration 

Procedure (adapted from Bang, 2010) 

Once the trajectory line fitting, firing point estimation, x-laser unit coordinate and the z-

laser unit coordinate calculations are complete, the calibration can be carried out to 

estimate the system parameter biases. Upon estimation of the system parameter biases, the 

adjusted coordinates are found by removing their impact 𝑱𝒙𝜹𝒙𝒃. The process of removing 

the impact completes the calibration and it is shown in eq. (2.40), which is evaluated using 

the biased coordinates, synthesized measurements, and estimated system parameter biases. 

𝑟  = 𝑟  − 𝐽 𝛿𝑥  (2.40) ( ) ( ) 

2.4.2.2 Simplified (S) Calibration Procedures 

The S calibration can be used when the system raw measurements are fully unavailable. 

The S calibration is markedly different from the R and QR approaches because it requires 

two steps instead of one. The first step compares overlapping strips to determine the 
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transformation parameters between them, and the second step uses that transformation to 

perform an estimation of the system parameter biases via a linear relationship. The linear 

relationship developed is between the system parameters and the discrepancies which are 

observed when overlapping strips are compared. In other words, the magnitudes and the 

directions of the observed discrepancies are directly related to the inherent biases in the 

system parameters. However, such a mathematical relationship is only derived through the 

use of assumptions, which are listed below: 

 Terrain elelvation variation should be much smaller when compared with the flying 

height. Given this assumption, the z-laser unit coordinate of the LiDAR point with 

respect to the laser unit frame, 𝒛(𝒕), can be assumed to be constant and denoted as 

𝒛, which is equivalent to −𝑯. 

 We are dealing with a linear vertical scanner that maps the terrain across the flight 

direction (i.e. the pitch and roll are approximately 0°). Therefore, the coordinates 

of a given point I relative to the laser unit coordinate system 𝒓𝑰 
𝒍𝒖(𝒕) would be 

represented by eq. (2.41), where 𝒙(𝒕) and 𝒛 are are the x-laser unit coordinate, and 

the z-laser unit coordinate of the LiDAR point with respect to the laser unit frame. 

𝑥(𝑡) 
𝑟 (𝑡) =  0  (2.41) 

𝑧 

 The xy-axes of the mapping reference frame will be defined at the average terrain 

elevation. 

 The xy-axes of the mapping reference will be defined such that the y-axis is half-

way between the flight lines in question and aligned along the flight direction, 

ensuring that the strips are flown in the South-to-North and North-to-South 

directions. 

In addition to these assumptions, the S calibration also has expectations about the location 

and orientation of the IMU body frame and laser unit coordinate systems. It is important to 

note that these expectations can always be met by introducing virtual coordinate systems, 
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and therefore they are not required in order to carry out the calibration. First, it is expected 

that the IMU body frame is aligned with its 𝒙𝒃, 𝒚𝒃, and 𝒛𝒃 axes pointing along starboard, 

flight, and up directions, respectively. Also, the IMU body frame and the laser unit 

coordinate systems are expected to be almost parallel and close to each other with small 

boresight angles (𝜟𝝎, 𝜟𝝋, 𝜟𝜿) and a small lever arm offset (𝜟𝑿, 𝜟𝒀, 𝜟𝒁) describing their 

rotational and translational relationship, respectively. With these coordinate system 

expectations and the listed assumptions, the LiDAR point-positioning equation simplifies 

to the form in eq. (2.42). Some of the terms in eq. (2.42) have double signage, the upper 

sign is used if the strip has a South-to-North flight direction (denoted as forward), and the 

bottom sign is used if the strip has a North-to-South flight direction (denoted as backward). 

±𝛥𝑥 ±1 ∓𝛥𝜅 ±𝛥𝜑 𝑥(𝑡) 
𝑟 (𝑡) = 𝑟 (𝑡) + ±𝛥𝑦 + ±𝛥𝜅 ±1 ∓𝛥𝜔  0  (2.42) 

𝛥𝑧 −𝛥𝜑 𝛥𝜔 1 −𝐻 

The S method uses biased point cloud coordinates, and therefore the biased representation 

of eq. (2.42) should be formed. This is done in the same manner as in the QR procedure 

and is shown in eq. (2.43). Eq. (2.43) accounts for the biases in the system parameters 𝛅𝒙𝒃 

and the noise in the system measurements 𝒆. The noise free system measurements are 

represented as 𝒚𝒏𝒇, the true value of the system parameters is represented as 𝒙, and the 

time tag of the point in question as 𝒕. To be used in the calibration, this equation is 

linearized, resulting in eq. (2.44). Eq. (2.45) is formed from eq. (2.44) and uses the 

relationship 𝒓𝑰
𝒎(𝒕) = 𝒇 𝒙, 𝒚𝒏𝒇  to define the relationship between the true coordinates, 

𝒓𝑰
𝒎(𝒕), and the biased coordinates, 𝒓𝑰

𝒎(𝒕, 𝒃𝒊𝒂𝒔𝒆𝒅). The Jacobian matrix in eq. (2.44) and 

eq. (2.45) is found by taking the derivative of eq. (2.42) with respect to the system 

parameters. With that Jacobian matrix, the impact of the system parameter biases on the 

derived coordinates 𝑱𝒙𝜹𝒙𝒃 can be formed and is shown in eq. (2.46). Eq. (2.45) and eq. 

(2.46) are then used to develop the discrepancy equations representing the mathematical 

relationship between conjugate points in overlapping strips. In developing the discrepancy 

equations, the A and B subscripts denote the two different overlapping strips; there is also 

an f and b notation to denote whether each strip is flying in the forward or backward 



 
 

 
 

           

              

               

             

       

 

   

 

    

 

    

 

  

  

 
 

  

 

 

   

 

  

  

   

 

 

 

46 

direction, respectively. Eq. (2.47) is the discrepancy equation representing the strip-pair 

with opposite flying directions, and eq. (2.48) is the discrepancy equation for a strip-pair 

with flights in the same direction. The current implementation of the S calibration does not 

incorporate control and therefore does not have a discrepancy equation for that scenario, 

as the other calibration approaches do. 

𝑟 (𝑡, 𝑏𝑖𝑎𝑠𝑒𝑑) = 𝑓(𝑥 + 𝛿𝑥 , 𝑦  + 𝑒, 𝑡) (2.43) 

𝑟 (𝑡, 𝑏𝑖𝑎𝑠𝑒𝑑) ≈ 𝑓 𝑥, 𝑦  + 𝐽 𝛿𝑥  + 𝐽 𝑒 (2.44) 

𝑟 (𝑡, 𝑏𝑖𝑎𝑠𝑒𝑑) = 𝑟 (𝑡) + 𝐽 𝛿𝑥 + 𝐽 𝑒 (2.45) 

±𝛿𝛥 𝑋 ∓ 𝐻𝛿𝛥𝜑 ∓ 𝑠𝑖𝑛(𝑆𝛽)𝛿𝛥𝜌 ∓ 𝐻𝛽𝛿𝑆 
𝐽 𝛿𝑥  =  ±𝛿𝛥 𝑌 ∓ 𝐻𝛿𝛥𝜔 ± 𝛿𝛥𝜅  (2.46) 

𝛿𝛥 𝑍 − 𝑥𝛿𝛥𝜑 − 𝑐𝑜𝑠(𝑆𝛽) 𝛿𝛥𝜌 − 𝑥𝛽𝛿𝑆 

𝑟
 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) − 𝑟

 
(𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑) = 

𝑎 
2𝛿𝛥𝑦 + 2𝐻𝛿𝛥𝜔 + (𝑥 (𝑡 ) + 𝑥 (𝑡 ))𝛿𝛥𝜅 , where 

𝑏 

𝑎 = 2𝛿𝛥𝑥 − 2𝐻 𝛿𝛥𝜑 − 𝑠𝑖𝑛 𝑆𝛽 (𝑡 )  + 𝑠𝑖𝑛 𝑆𝛽 (𝑡 )  𝛿𝛥𝜌 (2.47) 

− 𝐻 𝛽 (𝑡 ) + 𝛽 (𝑡 ) 𝛿𝑆 

𝑏 = − 𝑥 (𝑡 ) − 𝑥 (𝑡) 𝛿𝛥𝜑 − (𝑐𝑜𝑠(𝑆𝛽 (𝑡 )) − 

𝑐𝑜𝑠(𝑆𝛽 (𝑡)))𝛿𝛥𝜌 − 𝑥 (𝑡 )𝛽 (𝑡 ) − 𝑥 (𝑡 )𝛽 (𝑡 ) 𝛿𝑆 
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𝑟
 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) − 𝑟

 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) = 

− 𝑠𝑖𝑛 𝑆𝛽 (𝑡 )  + 𝑠𝑖𝑛 𝑆𝛽 (𝑡 )  𝛿𝛥𝜌 − 𝐻 𝛽 (𝑡 ) − 𝛽 (𝑡 ) 𝛿𝑆 (2.48) 
 (𝑥 (𝑡 ) − 𝑥 (𝑡 ))𝛿𝛥𝜅  

− 𝑥 (𝑡 ) − 𝑥 (𝑡 ) 𝛿𝛥𝜑 − 𝑥 (𝑡 )𝛽 (𝑡 ) − 𝑥 (𝑡 )𝛽 (𝑡 ) 𝛿𝑆 

In order to remove the need for the raw measurements, the following steps are used to 

reformulate the discrepancy equations. In these steps, the compact representations of a 

biased point 𝒓𝑰
𝒎

𝑨
(𝒕𝑨, 𝒇, 𝒃𝒊𝒂𝒔𝒆𝒅) and 𝒓𝑰

𝒎
𝑩

(𝒕𝑩, 𝒃, 𝒃𝒊𝒂𝒔𝒆𝒅) are switched to their full vector 

form, as seen in eq. (2.49), for the remainder of this section. 

𝑟
 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) − 𝑟

 
(𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑) = 

𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 𝑋 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑) 
(2.49) 

𝑌
 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)  − 𝑌

 
(𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑)  

𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 𝑍 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑) 

Reformulation of discrepancy equation (2.47) (overlapping strips flying in opposite 

directions) starts with the expression 𝐬𝐢𝐧(𝑺𝜷𝑨(𝒕𝑨)) + 𝒔𝒊𝒏(𝑺𝜷𝑩(𝒕𝑩)) 𝜹𝚫𝝆. It is assumed 

that within the nominal scan angle of a LiDAR system (range of 0°- 30°), the diffferences 

between the sine and the tangent of an angle are small enough to be ignored, and therefore 

can be used interchangably in this expression. With this assumption, the tangent of the scan 

angles are rewritten as the ratios in eq. (2.50) and eq. (2.51), and they are used to rewrite 

the expression as shown in eq. (2.52). 

𝑡𝑎𝑛(𝑆𝛽 (𝑡 )) = 
𝑥 (𝑡 )

− 
𝐻 

(2.50) 

𝑡𝑎𝑛(𝑆𝛽 (𝑡 )) = 
𝑥 (𝑡 )

− 
𝐻 

(2.51) 
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𝑠𝑖𝑛 𝑆𝛽 (𝑡 )  + 𝑠𝑖𝑛 𝑆𝛽 (𝑡 )  𝛿𝛥𝜌 

≈ 𝑡𝑎𝑛 𝑆𝛽 (𝑡 )  + 𝑡𝑎𝑛 𝑆𝛽 (𝑡 )  𝛿𝛥𝜌 

= 
𝑥 (𝑡 )

− − 
𝑥 (𝑡 )

 𝛿𝛥𝜌 
(2.52) 

𝐻 𝐻 

= 
𝑥 (𝑡 ) + 𝑥 (𝑡 )

−   𝛿𝛥𝜌 
𝐻 

Figure 2.10 shows the two scenarios that use this discrepancy equation (2.47). The term, 

𝑫, is the lateral distance between the two flight lines, and the forward and backward flight 

lines are denoted by A and B, respectively. In the first scenario, B is to the right of A and 

denoted as 𝑩𝑹. In the second scenario, B is to the left of A and denoted as 𝑩𝑳. To represent 

both scenarios in the following equations, the top and bottom signs are used for the 𝑩𝑹 and 

𝑩𝑳 scenarios, respectively. It can be seen in Figure 2.10 that in the 𝑩𝑹 scenario the 

expression (𝒙𝑨(𝒕𝑨) + 𝒙𝑩(𝒕𝑩)) is equivalent to 𝑫 and in the 𝑩𝑳 scenario it is equivalent to 

– 𝑫 (as is shown in eq. (2.53)). Applying this equivalency to eq. (2.52) reduces it to eq. 

𝒙𝑨(𝒕𝑨)
(2.54), and further simplification is seen in eq. (2.55) by assumming 𝜷𝑨(𝒕𝑨) = − 

 

𝒙𝑩(𝒕𝑩)
and 𝜷𝑩(𝒕𝑩) = − .
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Figure 2.10: An Object Point and its Measurements Observed from the Two Different 

Scenarios of Overlapping Strips flown in Opposite Directions (A & BL, A & BR) (adapted 

from Bang, 2010) 

(𝑥 (𝑡 ) + 𝑥 (𝑡𝐵)) = ±𝐷 (2.53) 

𝐷 
𝑠𝑖𝑛 𝑆𝛽 (𝑡 )  + 𝑠𝑖𝑛 𝑆𝛽 (𝑡𝐵)  𝛿𝛥𝜌 = ∓  𝛿𝛥𝜌 (2.54) 

𝐻 

𝐷 
𝛽 (𝑡 ) + 𝛽 (𝑡𝐵)  = ∓ (2.55) 

𝐻 

The expression 𝐜𝐨𝐬(𝑺𝜷(𝑡)) 𝜹𝚫𝝆, in eq. (2.47) does not significantly change within the 

nominal scan angle range of 0°- 30°; therefore, (𝐜𝐨𝐬(𝑺𝜷𝑨(𝒕𝑨)) − 𝐜𝐨𝐬(𝑺𝜷𝑩(𝒕𝑩)))𝜹𝚫𝝆 can 

be reduced to zero. With that expression cancelling out, the discrepancy equation for 

overlapping strips flying in opposite directions can be represented as eq. (2.56). 
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𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 𝑋 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝑌
 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)  − 𝑌

 
(𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑)  

𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 𝑍 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑) 

(2.56) 𝐷 
⎡ 2𝛿𝛥𝑥 − 2𝐻 𝛿𝛥𝜑 ± 𝛿𝛥𝜌 ± 𝐷𝛿𝑆 ⎤ 

𝐻 
= ⎢ ⎥ 

2𝛿𝛥𝑦 + 2𝐻𝛿𝛥𝜔 ± 𝐷𝛿𝛥𝜅 ⎢ ⎥ 
⎣− 𝑥 (𝑡 ) − 𝑥 (𝑡 ) 𝛿𝛥𝜑 − 𝑥 (𝑡 )𝛽 (𝑡 ) − 𝑥 (𝑡 )𝛽 (𝑡 ) 𝛿𝑆⎦ 

From Figure 2.10, the equivalency in eq. (2.57) can be observed, and the term 𝑿𝑩(𝒕𝑩) 

𝒎 represents 𝑿𝑰𝑩 
. Considering eq. (2.57), as well as the equivalencies in eq. (2.53) and 

𝒙𝑨(𝒕𝑨) 𝒙𝑩(𝒕𝑩)
𝜷𝑨(𝒕𝑨) = − and 𝜷𝑩(𝒕𝑩) = − , the expression 𝒙𝑨(𝒕𝑨)𝜷𝑨(𝒕𝑨) −

 

𝒙𝑩(𝒕𝑩)𝜷𝑩(𝒕𝑩)  from eq. (2.56), simplifies to eq. (2.58). Given eq. (2.57) and eq. (2.58), 

the discrepancy equation (2.56) simplifies into eq. (2.59). 

(𝑥 (𝑡 ) − 𝑥 (𝑡 )) = 2𝑋 (𝑡 ) (2.57) 

𝐷 
𝑥 (𝑡 )𝛽 (𝑡 ) − 𝑥 (𝑡 )𝛽 (𝑡 )  = ∓2𝑋 (𝑡 ) (2.58) 

𝐻 

𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 𝑋 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝑌
 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)  − 𝑌

 
(𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑)  

𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 𝑍 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝐷 (2.59) 
⎡2𝛿𝛥𝑥 − 2𝐻 𝛿𝛥𝜑 ± 𝛿𝛥𝜌 ± 𝐷𝛿𝑆⎤ 

𝐻 ⎢ ⎥ 
= 2𝛿𝛥𝑦 + 2𝐻𝛿𝛥𝜔 ± 𝐷𝛿𝛥𝜅 ⎢ ⎥ 

⎢ 𝐷 ⎥ 
−2𝑋 (𝑡 )𝛿𝛥𝜑 ± 2𝑋 (𝑡 ) 𝛿𝑆 ⎣ ⎦𝐻 

To further simplify eq. (2.59), it is observed that the third row of this equation represents 

the impact that the biases have on the vertical discrepancy between conjugate points. This 
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vertical impact can be reformulated as a rotation around the flying direction through the 

following steps. First, the discrepancy equation can be written as a sum of two vectors, as 

seen in eq. (2.60). Next, the biased coordinates in the forward flight can be expressed in 

terms of the conjugate point in the backward flight line. This relationship is expressed in 
𝒎 eq. (2.61) (this assumes that 𝑿𝑰

𝒎
𝑩

(𝒃, 𝒃𝒊𝒂𝒔𝒆𝒅) is equivalent to 𝑿𝑰 , this replaces the exact 

equality with an approximate equality). 

𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 𝑋 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝑌
 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)  − 𝑌

 
(𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑)  

𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 𝑍 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝐷 
2𝛿𝛥𝑥 − 2𝐻 𝛿𝛥𝜑 ± 𝛿𝛥𝜌 ± 𝐷𝛿𝑆 

=  𝐻  (2.60) 
2𝛿𝛥𝑦 + 2𝐻𝛿𝛥𝜔 ± 𝐷𝛿𝛥𝜅 

0 

0 
0

+  𝐷 
−2𝑋 (𝑡 )𝛿𝛥𝜑 ± 2𝑋 (𝑡 ) 𝛿𝑆 

𝐻 

𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝑌
 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)  

𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝐷 
2𝛿𝛥𝑥 − 2𝐻 𝛿𝛥𝜑 ± 𝛿𝛥𝜌 ± 𝐷𝛿𝑆 

𝐻 ≈  
2𝛿𝛥𝑦 + 2𝐻𝛿𝛥𝜔 ± 𝐷𝛿𝛥𝜅 

0 
(2.61) 

0 
0

+  𝐷 
−2𝑋 (𝑡 )𝛿𝛥𝜑 ± 2𝑋 (𝑡 ) 𝛿𝑆 

𝐻 

𝑋 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑) 

+ 𝑌
 
(𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑)  

𝑍 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑) 
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The addition of the last two vectors in eq. (2.61) can be rewritten as a matrix multiplication. 

This equivalency is shown in eq. (2.62), and substituting this into the discrepancy equation 

results in eq. (2.63). 

0 𝑋 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑) 

 
0 

 + 𝑌
 
(𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑)

𝐷 
−2𝑋 (𝑡 )𝛿𝛥𝜑 ± 2𝑋 (𝑡 ) 𝛿𝑆 𝑍 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑)

𝐻 

𝐷 (2.62) 
⎡ 1 0 2𝛿𝛥𝜑 ∓ 2 𝛿𝑆⎤ 𝑋 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑)

𝐻 ⎢ ⎥ 
= 0 1 0 𝑌

 
(𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑)⎢ ⎥ 

⎢ 𝐷 ⎥ 𝑍 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑)
−2𝛿𝛥𝜑 ± 2 𝛿𝑆 0 1⎣ ⎦𝐻 

𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝑌
 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)  

𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝐷 
2𝛿𝛥𝑥 − 2𝐻 𝛿𝛥𝜑 ± 𝛿𝛥𝜌 ± 𝐷𝛿𝑆 

𝐻 ≈  
2𝛿𝛥𝑦 + 2𝐻𝛿𝛥𝜔 ± 𝐷𝛿𝛥𝜅 (2.63) 

0 

𝐷 
⎡ 1 0 2𝛿𝛥𝜑 ∓ 2 𝛿𝑆⎤ 𝑋 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑)

𝐻 ⎢ ⎥ 
+ 0 1 0 𝑌

 
(𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑)⎢ ⎥ 

⎢ 𝐷 ⎥ 𝑍 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑)
−2𝛿𝛥𝜑 ± 2 𝛿𝑆 0 1⎣ ⎦𝐻 

Now, the middle matrix on the right side of eq. (2.63) will be converted to the rotation 

𝑫 
matrix about the flying direction seen in eq. (2.64). The 𝐬𝐢𝐧(−𝟐𝜹𝚫𝝋) and 𝐬𝐢𝐧(±𝟐 𝜹𝑺),

𝑯 

𝑫 
approximate to −𝟐𝜹𝚫𝝋 and ±𝟐 𝜹𝑺, respectively, and the values for 𝐜𝐨𝐬(−𝟐𝜹𝚫𝝋) and 

𝑯 

𝑫 
𝐜𝐨𝐬(±𝟐 𝜹𝑺) are close to 1.0 since the angular values are small. The multiplication of 

𝑯 

𝐃 
𝟐𝜹𝚫𝝋 ∓ 𝟐 𝜹𝑺 and 𝒁𝑰

𝒎
𝑩

(𝒕𝑩, 𝒃, 𝒃𝒊𝒂𝒔𝒆𝒅) can be assumed to be very small and almost 
𝐇 

equivalent to zero due to the assumption of relatively flat terrain and the user defined 

coordinate system. From these conclusions, the rotation matrix about the flying direction 
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𝐃 
by an angle of 𝟐𝜹𝚫𝝋 ∓ 𝟐 𝜹𝑺 is formed, 𝑹 𝐃 . The final form of the 

𝐇 (𝟎, 𝟐𝜹𝚫𝝋∓𝟐 𝜹𝑺 , 𝟎) 
𝐇 

discrepancy equation for two overlapping strips flown in opposite directions is eq. (2.64), 

when there is 100% overlap the equation simplifies to eq. (2.65) (because 𝑫 will be equal 

to zero). 

𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝑌
 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)  

𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝐷 
2𝛿𝛥𝑥 − 2𝐻 𝛿𝛥𝜑 ± 𝛿𝛥𝜌 ± 𝐷𝛿𝑆 

𝐻 ≈  
2𝛿𝛥𝑦 + 2𝐻𝛿𝛥𝜔 ± 𝐷𝛿𝛥𝜅 

0 

𝐷 
⎡ 1 0 +2𝛿𝛥𝜙 ∓ 2 𝛿𝑆⎤ 𝑋 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑)

𝐻 ⎢ ⎥ 
+ 0 1 0 𝑌

 
(𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑)  (2.64) ⎢ ⎥ 

⎢ 𝐷 ⎥ 𝑍 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑)
−2𝛿𝛥𝜑 ± 2 𝛿𝑆 0 1⎣ ⎦𝐻 

𝐷 
2𝛿𝛥𝑥 − 2𝐻 𝛿𝛥𝜑 ± 𝛿𝛥𝜌 ± 𝐷𝛿𝑆 

𝐻 =  
2𝛿𝛥𝑦 + 2𝐻𝛿𝛥𝜔 ± 𝐷𝛿𝛥𝜅 

0 

𝑋 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑) 

+ 𝑅  𝑌
 
(𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑)  

(  ∓  ) 
𝑍 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 2𝛿𝛥𝑥 − 2𝐻 𝛿𝛥𝜑 
𝑌 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)  ≈ 2𝛿𝛥𝑦 + 2𝐻𝛿𝛥𝜔 + 
𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 0 

(2.65) 
𝑋 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝑌
 
(𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑) s 𝑅 (  )  

𝑍 (𝑡 , 𝑏, 𝑏𝑖𝑎𝑠𝑒𝑑) 

Now, reformulation of the discrepancy equation for overlapping strips flying in the same 

direction (2.48), is completed with similar steps using Figure 2.11 (now strip A and strip 
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B are both forward flights). The equivalencies in eq. (2.66) and eq. (2.67) can be 

observed from Figure 2.11. 

Figure 2.11: An Object Point and its Measurements Observed from Overlapping Strips 

Flown in the Same Direction (adapted from Bang, 2010) 

(𝑥 (𝑡 ) − 𝑥 (𝑡 )) = −𝐷 (2.66) 

(𝑥 (𝑡 ) + 𝑥 (𝑡 )) = 2𝑋 (𝑡 ) (2.67) 

Starting with the expression −𝐬𝐢𝐧(𝑺𝜷𝑨(𝒕𝑨)) + 𝒔𝒊𝒏(𝑺𝜷𝑩(𝒕𝑩)) 𝜹𝚫𝝆 from eq. (2.48), it is 

assumed that within the nominal scan angle range of 0°- 30°, the differences between the 

sine and the tangent of an angle are small enough to be ignored, and therefore can be used 
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interchangeably. With this assumption, the tangent of the scan angles are rewritten as the 

ratios in eq. (2.50) and eq. (2.51), and they are used to rewrite the expression as shown in 

eq. (2.68). Which is further simplified to eq. (2.69) and then (2.70) using eq. (2.66) and the 

𝒙𝑨(𝒕𝑨) 𝒙𝑩(𝒕𝑩)
assumptions 𝜷𝑨(𝒕𝑨) = − and 𝜷𝑩(𝒕𝑩) = − , respectively. 

 

−𝑠𝑖𝑛 𝑆𝛽 (𝑡 )  + 𝑠𝑖𝑛 𝑆𝛽 (𝑡 )  𝛿𝛥𝜌 

≈ − 𝑡𝑎𝑛 𝑆𝛽 (𝑡 )  + 𝑡𝑎𝑛 𝑆𝛽 (𝑡 )  𝛿𝛥𝜌 (2.68) 

𝑥 (𝑡 ) 𝑥 (𝑡 ) 
=  −  𝛿𝛥𝜌 

𝐻 𝐻 

𝐷 
−𝑠𝑖𝑛 𝑆𝛽 (𝑡 )  + 𝑠𝑖𝑛 𝑆𝛽 (𝑡 )  𝛿𝛥𝜌 ≈ − 𝛿𝛥𝜌 (2.69) 

𝐻 

𝐷 
𝛽 (𝑡 ) − 𝛽 (𝑡 )  = (2.70) 

𝐻 

Next, the expression 𝒙𝑨(𝒕𝑨)𝜷𝑨(𝒕𝑨) − 𝒙𝑩(𝒕𝑩)𝜷𝑩(𝒕𝑩)  from eq. (2.48) is simplified to 

eq. (2.71) using the equivalencies in eq. (2.66) and eq. (2.67), and the assumptions 

𝒙𝑨(𝒕𝑨) 𝒙𝑩(𝒕𝑩)
𝜷𝑨(𝒕𝑨) = − and 𝜷𝑩(𝒕𝑩) = − . With eq. (2.70) and eq. (2.71), the discrepancy 

 

equation is now of the form in eq. (2.72). 

𝐷 
𝑥 (𝑡 )𝛽 (𝑡 ) − 𝑥 (𝑡 )𝛽 (𝑡 )  = 2𝑋 (𝑡 ) (2.71) 
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𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝑌
 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)  − 𝑌

 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)  

𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝐷 (2.72) 
⎡ − 𝛿𝛥𝜌 − 𝐷𝛿𝑆 ⎤ 

𝐻 ⎢ ⎥ 
= −𝐷𝛿𝛥𝜅 ⎢ ⎥ 

𝐷 ⎢ ⎥ 
𝐷𝛿𝛥𝜑 − 2𝑋 (𝑡 )𝛿𝑆 ⎣ ⎦𝐻 

To further simplify eq. (2.72), it is observed that the third row of this equation represents 

the impact that the biases have on the vertical discrepancy between conjugate points, and 

this impact can be reformulated as rotation around the flying direction of the mapping 

frame through using the same logic as was used with the previous discrepancy equation. 

The right side of the discrepancy equation can be written as a sum of two vectors and the 

biased coordinates in the forward flight can be expressed in terms of the conjugate point in 

the backward flight line. These steps are reflected in eq. (2.73). Next, the addition of the 

last two vectors in eq. (2.73) can be rewritten as a matrix multiplication. This equivalency 

is shown in eq. (2.74), and substituting this into the discrepancy equation results in eq. 

(2.75). 

𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝑌
 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)  

𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝐷 0 
− 𝛿𝛥𝜌 − 𝐷𝛿𝑆 

𝐻 0
≈  +  𝐷  (2.73) 

−𝐷𝛿𝛥𝜅 
− 2𝑋 (𝑡 )𝛿𝑆 

𝐷𝛿𝛥𝜑 𝐻 

𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 

+ 𝑌
 
(𝑡𝑩, 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)  

𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 
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0 𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 
0

 𝐷  + 𝑌
 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)  

−
𝐻

2𝑋 (𝑡 )𝛿𝑆 𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 
(2.74) 

1 0 0 𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 
0 1 0 

=  𝐷  𝑌
 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)  

−2
𝐻

𝛿𝑆 0 1 𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝑌
 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)  

𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝐷 
− 𝛿𝛥𝜌 − 𝐷𝛿𝑆 

≈  𝐻  (2.75) −𝐷𝛿𝛥𝜅 
𝐷𝛿𝛥𝜑 

1 0 0 𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 
0 1 0 

+  𝐷  𝑌
 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)  

−2
𝐻

𝛿𝑆 0 1 𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 

Now, the middle matrix on the right side of eq. (2.75) will be converted to the rotation 

𝑫 
matrix about the flying direction seen in eq. (2.63). The 𝐬𝐢𝐧(−𝟐𝜹𝚫𝝋) and 𝐬𝐢𝐧(±𝟐 𝜹𝑺),

𝑯 

𝑫 
approximate to −𝟐𝜹𝚫𝝋 and ±𝟐 𝜹𝑺, respectively, and the values for 𝐜𝐨𝐬(−𝟐𝜹𝚫𝝋) and 

𝑯 

𝑫 
𝐜𝐨𝐬(±𝟐 𝜹𝑺) are close to 1.0 since the angular values are small. The multiplication of 

𝑯 

𝐃 
𝟐 𝛅𝐒 and 𝒁𝑰

𝒎
𝑩

(𝒕𝑩, 𝒇, 𝒃𝒊𝒂𝒔𝒆𝒅) can be assumed to very small and almost equivalent to zero 
𝐇 

due to the assumption of relatively flat terrain and the use of a user defined coordinate 

system. From these conclusions, the rotation matrix about the flying direction by an angle 

𝐃 
of 𝟐 𝛅𝐒 is formed, 𝑹 𝐃 . The final form of the discrepancy equation for two 

𝐇 (𝟎, 𝟐 𝜹𝑺 , 𝟎) 
𝐇 

overlapping strips flown in the same directions is eq. (2.76). 



 
 

 
 

 

 

 

 

 

               

                 

               

                

       

 

  

 

  

 

                  

                

              

 

58 

𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝑌
 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)  

𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑) 

𝐷 
− 𝛿𝛥𝜌 − 𝐷𝛿𝑆 

𝐻 ≈  
−𝐷𝛿𝛥𝜅 
𝐷𝛿𝛥𝜑 

𝐷 (2.76) ⎡ 1 0 2 𝛿𝑆⎤ 𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)
𝐻 ⎢ ⎥ 

+ 0 1 0 𝑌
 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)⎢ ⎥ 

⎢ 𝐷 ⎥ 𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)
−2 𝛿𝑆 0 1⎣ ⎦𝐻 

𝐷 𝑋 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)− 𝛿𝛥𝜌 − 𝐷𝛿𝑆 
=  𝐻  + 𝑅  𝑌

 
(𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)

−𝐷𝛿𝛥𝜅 (  ) 
𝑍 (𝑡 , 𝑓, 𝑏𝑖𝑎𝑠𝑒𝑑)𝐷𝛿𝛥𝜑 

By observing eq. (2.64) it can be seen that overlapping strips flown in opposite directions 

introduce a constant shift along the X and Y directions, as well as a rotation around the 

flying direction. These shifts and the rotation are related to the biases according to eq. 

(2.77). This model is general in the sense that it does not assume 𝑫 = 𝟎. When 𝑫 = 𝟎, 

some of the terms cancel out. 

𝐷 
⎡2𝛿𝛥𝑥 − 2𝐻 𝛿𝛥𝜑 ± 𝛿𝛥𝜌 ± 𝐷𝛿𝑆⎤ 

𝑋  𝐻 ⎢ ⎥ 
𝑌   = 2𝛿𝛥𝑦 + 2𝐻𝛿𝛥𝜔 ± 𝐷𝛿𝛥𝜅 (2.77) ⎢ ⎥ 
𝜑 𝐷 ⎥⎢ 

2𝛿𝛥𝜑 ± 2 𝛿𝑆 ⎣ ⎦𝐻 

By observing eq. (2.76) it can be seen that flight lines of the same direction result in a 

constant shift along the X, Y, and Z directions, and a rotation around the flying direction. 

These shifts and the rotation are related to the biases according to eq. (2.78). 
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𝐷 
𝑋  

⎡− 𝛿𝛥𝜌 − 𝐷𝛿𝑆 
𝐻 ⎢ 

⎤ 
⎥ 

𝑌
  = ⎢ 
𝑍  ⎢ 

−𝐷𝛿𝛥𝜅 
𝐷𝛿𝛥𝜑 

⎥ 
⎥ 

(2.78) 

𝜑 ⎢ 𝐷 ⎥ 
⎣ 2 𝛿𝑆 

𝐻 ⎦ 

In conclusion, the S calibration procedure relates the detected discrepancies between 

overlapping strips to the biases in the system parameters, and those discrepancies can be 

modeled by three shifts and a rotation around the flight direction (Kersting et al, 2012; 

Bang, 2010). The first step of the S calibration method determines these transformation 

parameters (three shifts and a rotation), and the second step determines the system 

parameter biases through a Least Squares estimation using eq. (2.77) and eq. (2.78). After 

estimating the system parameter biases, the adjusted coordinates are found by removing 

the impact of the estimated system parameter biases 𝑱𝒙𝜹𝒙𝒃. The process of removing the 

impact is shown in eq. (2.79), which can be derived from the relationship between the true 

and biased coordinates (eq. (2.45)). 

𝑟  
 

= 𝑟   − 𝑅( , , ) 

(2.79) 
𝛿Δ 𝑋 − 𝐻 − 𝑍(𝑡) 𝛿Δ𝜑 − sin(𝛽(𝑡))𝛿Δ𝜌 − 𝐻 − 𝑍(𝑡) 𝛽(𝑡)𝛿𝑆 

∗  𝛿Δ𝑌 + (𝐻 − 𝑍(𝑡))𝛿Δ𝜔 + 𝑥(𝑡)𝛿Δ𝜅  
𝛿Δ𝑍 − 𝑥(𝑡)𝛿Δ𝜑 − cos(𝛽(𝑡))𝛿Δ𝜌 − 𝑥(𝑡)𝛽(𝑡)𝛿𝑆 

In eq. (2.79), the term 𝑯 is the flying height above average terrain elevation, 𝜿 is the 

heading of the flight line in question, and 𝒁(𝒕), 𝒙(𝒕), and 𝜷(𝒕) are the elevation, lateral 

coordinate, and scan angle, respectively, of the point in question. It is necessary to rotate 

the correction term by the heading of the flight line in question because the term is based 

on the assumption that the flight direction is parallel to the y-axis of the mapping coordinate 

system. The trigonometric and spatial relationships needed to synthesize the raw 

measurements according to the following steps are shown in Figure 2.10 and Figure 2.11. 

 The x-laser unit coordinate of the LiDAR point with respect to the laser unit frame 

𝒙(𝒕) is determined through the use of the approximate center of scan line. It is the 
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equivalent to the 𝑿(𝒕) coordinate of the LiDAR point in question, minus/plus half 

the lateral distance between the two point clouds, 𝑫 (appropriate sign depends on 

the configuration). 

 The encoder angle 𝜷(𝒕) is determined using the flying height, 𝑯 , the 𝒁(𝒕) 

coordinate of the LiDAR point in question, I, and the lateral laser unit coordinate 

𝒙 (i.e. 𝜷(𝒕) = −𝒂𝒕𝒂𝒏(𝒙(𝒕)/(𝑯 − 𝒁(𝒕))). 

Using these synthesized raw measurements, along with the biased coordinates and 

estimated system parameter biases, eq. (2.79) can be evaluated, resulting in the adjusted 

coordinates and thus completing the calibration. 

2.4.3 Rigorous and Pseudo-rigorous Calibration Strategies 

The implementation of the introduced calibration approaches is shown in Figure 2.12. This 

figure shows how to use the ICPatch matching process in an iterative procedure, and how 

that iterative procedure is slightly different for each approach. The iterative procedure 

refines the matches based on the current estimates of the following values: 

a) System parameters (for the R approach) 

b) System parameter biases (for the QR approach) 

c) Transformation parameters (for the S approach) 

In Figure 2.12, the R and QR calibration procedures simultaneously solve the matching 

and system parameters/system parameter biases within the iterative procedure, while the 

S procedure requires an additional estimation step in order to evaluate the system parameter 

biases. After finding the point-patch matches through the ICPatch process and determining 

the estimations listed above, the R approach updates the coordinates by reconstructing both 

strips, the QR updates the coordinates of both strips by removing the impact of the biases, 

and the S approach updates the coordinates in strip B by transforming them (with the 

resulting rigid-body transformation, 3 shifts and a rotation). After updating the coordinates 

for all approaches, the primitive matching and parameters estimation are repeated until the 

change in estimation is smaller than a predefined threshold. After this iterative procedure, 

the 2nd step of the S approach is then completed by estimating the system parameter biases. 

Finally, the initial point cloud coordinates are reconstructed/adjusted for each calibration 
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approach using the final estimates of the system parameters/system parameter biases. It is 

important to note that within the iterative procedure, the new point-patch matches are used 

for the estimation step, but the initial coordinate values are used as opposed to the updated 

coordinate values. 

Figure 2.12: Implementation of the R, QR, and S Calibration Procedures 
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3. METHODOLOGY FOR ADDRESSING RESEARCH 

OBJECTIVES 

Overview 

The research objectives include the development of a new calibration approach, a 

performance analysis on the Pseudo-rigorous approaches, and the development of a 

strategy for performing a stability analysis. The new calibration approach to be developed 

has the same data requirements as the S procedure, but it provides a more robust calibration 

by combining the two steps of the S procedure into one comprehensive step. When 

compared to the S calibration, the new calibration approach is different because it has the 

ability to incorporate control, and it has more flexibility in data collection and application 

by removing certain data assumptions. Development of a LiDAR calibration stability 

analysis strategy is yet to be addressed in the community, and it is very important now that 

systems are becoming more compact and readily available. The stability analysis will 

compare LiDAR system calibration results from two separate times and analyze their 

impact on the reconstructed point cloud. This portion of the research will give a quantitative 

approach for understanding the variation in system parameters over time and the optimal 

calibration frequency. 

Quasi-Rigorous/Quasi-Simplified (QRQS) Calibration 

This research focuses on developing a one-step calibration algorithm that operates without 

access to raw measurements, incorporates the sensor model, and can be used for any type 

of terrain cover. Current approaches do not address these issues simultaneously in one 

calibration solution (they only address one or two issues). Existing approaches will be used 

as a reference in discussing the QRQS development; namely, the S, QR, and R, which have 

been developed in previous research by Bang (2010), Habib et al. (2010b), Kersting (2011), 

and Kersting et al. (2012). The S calibration is a two-step procedure while the others are 

one-step. For the new calibration approach developed here, the level of detail needed from 

the flight collection is the same as the S calibration (point clouds), but its capabilities are 
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more similar to that of the QR. The strategy associated with the QRQS math model has 

two less assumptions than the S approach; the flight lines do not have to be parallel and the 

terrain variation does not have to be low. In addition to having less assumptions than the S 

approach, this QRQS calibration can handle any type of terrain, it is a one-step strategy, 

and it can incorporate control into the procedure. Incorporating control enables the 

detection of a bias that significantly affects the vertical component of a point cloud. 

3.2.1 Assumptions and Math Model 

The QRQS calibration can be used when the system raw measurements are fully 

unavailable. The missing raw measurements for this approach are 𝒓𝒃
𝒎(𝒕), 𝑹𝒃

𝒎(𝒕), and 

𝒍𝒖(𝒕), and in order to effectively synthesize them, the following assumptions are made: 𝒓𝑰 

a) We are dealing with a linear vertical scanner that maps the terrain across the flight 

direction (i.e. the pitch and roll are approximately 0°). Therefore, the coordinates 

of a given point I relative to the laser unit coordinate system, 𝒓𝑰 
𝒍𝒖(𝒕), would be 

represented by eq. (3.1), where 𝒙(𝒕) and 𝒛(𝒕) are the x-laser unit coordinate and 

the z-laser unit coordinate of the LiDAR point with respect to the laser unit frame, 

respectively. 

𝑥(𝑡) 
𝑟 (𝑡) =  0  (3.1) 

𝑧(𝑡) 

b) The strips of the individual strip-pairs must be flown in a straight trajectory. 

In addition to these assumptions, the QRQS calibration also has expectations about the 

location and orientation of the IMU body frame and laser unit coordinate systems. It is 

important to note that these expectations can always be met by introducing virtual 

coordinate systems, and therefore they are not required in order to carry out the calibration. 

First, it is expected that the IMU body frame is aligned with its 𝒙𝒃, 𝒚𝒃, and 𝒛𝒃 axes pointing 

along starboard, flight, and up directions, respectively. Also, the IMU body frame and the 

laser unit coordinate systems are expected to be almost parallel and close to each other, 
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with small boresight angles (𝜟𝝎, 𝜟𝝋, 𝜟𝜿) and small lever arm offset values (𝜟𝑿, 𝜟𝒀, 𝜟𝒁) 

describing their rotational and translational relationship, respectively. With these 

coordinate system expectations and the listed assumptions, the LiDAR point-positioning 

equation simplifies to the form in eq. (3.2). The term 𝜿(𝒕) is the heading of the flight line 

in question. 

𝑟  (𝑡) 

𝑐𝑜𝑠(𝜅(𝑡)) 
= 𝑟  (𝑡) + 𝑠𝑖𝑛(𝜅(𝑡)) 

0 

−𝑠𝑖𝑛(𝜅(𝑡)) 0 
𝑐𝑜𝑠(𝜅(𝑡)) 0   

0 1 

𝛥𝑥 
𝛥𝑦  
𝛥𝑧 (3.2) 

𝑐𝑜𝑠(𝜅(𝑡)) 
+ 𝑠𝑖𝑛(𝜅(𝑡)) 

0 

−𝑠𝑖𝑛(𝜅(𝑡)) 
𝑐𝑜𝑠(𝜅(𝑡)) 

0 

0 1 
0   𝛥𝜅 
1 −𝛥𝜑 

−𝛥𝜅 
1 

𝛥𝜔 

𝛥𝜑 
−𝛥𝜔   

1 

𝑥(𝑡) 
0  

𝑧(𝑡) 

The symbolic representation of eq. (3.2) is eq. (3.3), where the true system parameters are 

represented as 𝒙, the noise-free measurements are represented as 𝒚𝒏𝒇, and the time tag of 

the point in question as 𝒕. The biased point cloud coordinates 𝒓𝑰
𝒎(𝒕, 𝒃𝒊𝒂𝒔𝒆𝒅) are shown in 

eq. (3.4), where the random error associated with the measurements is 𝒆 and the term 𝜹𝒙𝒃 

represents the biases contaminating the system parameters. To start the process of forming 

the calibration math model, eq. (3.4) could be expanded to the form in eq. (3.5) using 

Taylor series expansion. In eq. (3.5), the term 𝒇 𝒙, 𝒚𝒏𝒇, 𝒕 , represents the true coordinates 

of the point in question 𝒓𝑰
𝒎(𝒕), and the terms 𝑱𝒙 and 𝑱𝒚 represent the Jacobian matrices with 

respect to the system parameters and measurements, respectively. Eq. (3.5) is reformulated 

into eq. (3.6) by expressing the true coordinates in terms of the biased coordinates. Now, 

the discrepancy equations can be formed under the presumption that conjugate points (one 

from point cloud 𝑨 and one from point cloud 𝑩) should have identical coordinates. This 

relationship is seen in eq. (3.7), and it is then reformulated into eq. (3.8) so that the known 

and unknown values are on opposite sides of the equation. It is stated in eq. (3.8) that the 

combined error term from this discrepancy equation is 𝑱𝒚𝑨
𝒆𝑨 − 𝑱𝒚𝑩

𝒆𝑩  , and it is 

𝑻 𝑻 distributed with a mean of zero and variance-covariance matrix of (𝑱𝒚𝑨
𝚺𝑨𝑱𝒚𝑨 

+ 𝑱𝒚𝑩
𝚺𝑩𝑱𝒚𝑩 

). 

When control is incorporated, the discrepancy equation to use is eq. (3.9). Instead of 



 
 

 
 

                  

                

               

              

             

 

   

 

   

 

 
   

 

 

   

 

 

 

 

 

  

 

 

 

 
 

   
 

 

65 

comparing a biased point from point cloud A to one in point cloud 𝑩, eq. (3.9) compares a 
𝒎 biased point from A to the control point 𝒓𝑰𝑪𝒐 

. The noise contaminating the control point is 

represented as 𝒆𝑪, and its variance-covariance matrix is represented as 𝜮𝑪. In eq. (3.9), the 

uncertainty of the combined error term in the discrepancy equation is (𝑱𝒚𝑨
𝒆𝑨 − 𝒆𝑪), and it 

𝑻 is distributed with a mean of zero and a variance-covariance matrix of (𝑱𝒚𝑨
𝚺𝑨𝑱𝒚𝑨 

+ 𝚺𝑪). 

𝑟 (𝑡) = 𝑓 𝑥, 𝑦 , 𝑡  (3.3) 

𝑟 (𝑡, 𝑏𝑖𝑎𝑠𝑒𝑑) = 𝑓(𝑥 + 𝛿𝑥 , 𝑦  + 𝑒, 𝑡) (3.4) 

𝑟 (𝑡, 𝑏𝑖𝑎𝑠𝑒𝑑) ≈ 𝑓 𝑥, 𝑦 , 𝑡 + 𝐽 𝛿𝑥  + 𝐽 𝑒 
(3.5) 

≈ 𝑟 (𝑡) + 𝐽 𝛿𝑥  + 𝐽 𝑒 

𝑟 (𝑡) = 𝑟 (𝑡, 𝑏𝑖𝑎𝑠𝑒𝑑) − 𝐽 𝛿𝑥  − 𝐽 𝑒 (3.6) 

𝑟
 
(𝑡 ) − 𝑟

 
(𝑡 ) 

= (𝑟 (𝑡 , 𝑏𝑖𝑎𝑠𝑒𝑑) − 𝐽 𝛿𝑥  − 𝐽 𝑒 ) (3.7) 

− (𝑟 (𝑡 , 𝑏𝑖𝑎𝑠𝑒𝑑) − 𝐽 𝛿𝑥  − 𝐽 𝑒 ) = 0 

𝑟
 
(𝑡 , 𝑏𝑖𝑎𝑠𝑒𝑑) − 𝑟

 
(𝑡 , 𝑏𝑖𝑎𝑠𝑒𝑑) 

= 𝐽 δx  + 𝐽 𝑒  − 𝐽 δx  + 𝐽 𝑒  (3.8) 

& 𝐽 𝑒  − 𝐽 𝑒 ~ 0, 𝐽 𝛴 𝐽
 
+ 𝐽 𝛴 𝐽  

𝑟 (𝑡 , 𝑏𝑖𝑎𝑠𝑒𝑑) − 𝑟
 
= (𝐽 𝛿𝑥 + 𝐽 𝑒 ) − 𝑒  

(3.9) 
& (𝐽 𝑒  − 𝑒 )~(0, 𝐽 𝛴 𝐽

 
+ 𝛴 ) 
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The discrepancy equations can then be evaluated using the biased point cloud coordinates 

and the Jacobian matrices 𝑱𝒙𝑨 
and 𝑱𝒙𝑩 

(𝑱𝒚𝑨 
and 𝑱𝒚𝑩 

are used in the error propagation). The 

terms 𝑱𝒙𝜹𝒙𝒃, 𝑱𝒚, and 𝐞 are shown in eq. (3.10), eq. (3.11), and eq. (3.12) respectively, and 

the Jacobian terms can be evaluated after synthesizing the missing raw measurements 

𝒍𝒖(𝒕)). (𝒓𝒃
𝒎(𝒕), 𝑹𝒃

𝒎(𝒕), and 𝒓𝑰 

𝐽 𝛿𝑥  

𝑐𝑜𝑠(𝜅(𝑡)) 𝛿𝛥𝑋 − 𝑠𝑖𝑛(𝜅(𝑡)) 𝛿𝛥𝑌 
= 𝑠𝑖𝑛(𝜅(𝑡)) 𝛿𝛥𝑋 + 𝑐𝑜𝑠(𝜅(𝑡)) 𝛿𝛥𝑌  

𝛿𝛥𝑍 

𝑠𝑖𝑛 𝜅(𝑡)  𝑧(𝑡)𝛿𝛥𝜔 + 𝑐𝑜𝑠 𝜅(𝑡)  𝑧(𝑡)𝛿𝛥𝜑 − 𝑠𝑖𝑛(𝜅(𝑡)) 𝑥(𝑡)𝛿𝛥𝜅 
(3.10) 

+ −𝑐𝑜𝑠(𝜅(𝑡)) 𝑧(𝑡)𝛿𝛥𝜔 + 𝑠𝑖𝑛 𝜅(𝑡)  𝑧(𝑡)𝛿𝛥𝜑 + 𝑐𝑜𝑠(𝜅(𝑡)) 𝑥(𝑡)𝛿𝛥𝜅  

−𝑥(𝑡)𝛿𝛥𝜑 

−𝑐𝑜𝑠(𝜅(𝑡)) 𝑠𝑖𝑛(𝑆𝛽(𝑡)) 𝛿𝛥𝜌 + 𝑐𝑜𝑠 𝜅(𝑡)  𝑧(𝑡)𝛽(𝑡)𝛿𝑆 

+ −𝑠𝑖𝑛(𝜅(𝑡)) 𝑠𝑖𝑛(𝑆𝛽(𝑡)) 𝛿𝛥𝜌 + 𝑠𝑖𝑛 𝜅(𝑡) 𝑧(𝑡)𝛽(𝑡)𝛿𝑆  

−𝑐𝑜𝑠(𝑆𝛽(𝑡)) 𝛿𝛥𝜌 − 𝑥(𝑡)𝛽(𝑡)𝛿𝑆 

𝐽
 

1 0 0 𝑎 −𝑐𝑜𝑠 𝜅(𝑡)  𝑠𝑖𝑛 𝑆𝛽(𝑡)  cos 𝜅(𝑡)  𝑧(𝑡)𝑆 

= 0 1 0 𝑏 −𝑠𝑖𝑛 𝜅(𝑡)  𝑠𝑖𝑛 𝑆𝛽(𝑡)  sin 𝜅(𝑡)  𝑧(𝑡)𝑆  , 𝑤ℎ𝑒𝑟𝑒 
0 0 1 0 −𝑐𝑜𝑠 𝑆𝛽(𝑡)  −𝑥(𝑡)𝑆 

𝑎 = cos 𝜅(𝑡) 𝑧(𝑡)𝛿𝛥𝜔 − sin 𝜅(𝑡)  𝑧(𝑡)𝛿𝛥𝜑 − 𝛿𝛥𝑌 cos 𝜅(𝑡)  (3.11) 

− 𝛿𝛥𝑋 sin 𝜅(𝑡)  − sin 𝜅(𝑡)  𝑥(𝑡) − cos 𝜅(𝑡)  𝑥(𝑡)𝛿𝛥𝜅, 

𝑏 = 𝑐𝑜𝑠 𝜅(𝑡) 𝑧(𝑡)𝛿𝛥𝜑 + 𝑠𝑖𝑛 𝜅(𝑡)  𝑧(𝑡)𝛿𝛥𝜔 + 𝛿𝛥𝑋 𝑐𝑜𝑠 𝜅(𝑡)  

− 𝛿𝛥𝑌 𝑠𝑖𝑛 𝜅(𝑡)  + 𝑐𝑜𝑠 𝜅(𝑡)  𝑥(𝑡) − 𝑠𝑖𝑛 𝜅(𝑡)  𝑥(𝑡)𝛿𝛥𝜅 

𝑒
 

⎡ ⎤𝑒
⎢ ⎥𝑒

𝑒  = ⎢
𝑒

⎥ (3.12) 
⎢ ⎥ 

𝑒⎢ ⎥ 
⎣ 𝑒 ⎦ 
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3.2.2 Synthesizing Raw Measurements 

To synthesize the raw measurements, first, a global heading for the entire flight line in 

question is determined by inspecting the Minimum Bounding Rectangle (MBR). The MBR 

is the rectangle with minimum area that encloses all the points within a given flight 

(Freeman and Shapira, 1975; Kwak and Habib, 2013), and can be seen in Figure 3.1. The 

outputs from the MBR generation are coordinates of the resulting rectangle’s four corners. 

Then, the trajectory heading and other raw measurements are synthesized according to the 

following steps: 1) As illustrated in Figure 3.1, the scan pattern of a point cloud will be in 

a zigzag pattern with scan lines that are almost parallel with two sides of the MBR. The 

midpoints of those two sides are the starting and ending points of the vector representing 

the flight direction (from the sequence of points, one can infer which midpoint is the 

starting point). These points reveal the heading of the trajectory 𝜿 and with that, the term 

𝑹𝒃
𝒎(𝒕) can be evaluated according to eq. (3.13). 2) The synthesized flight trajectory is 

found by raising the flight direction vector up to the flying height. 3) The trajectory position 

for the point in question 𝒓𝒃
𝒎(𝒕) is the result of projecting the point onto the synthesized 

trajectory. 4) As illustrated in Figure 3.2, the x-laser unit coordinate of a LiDAR point x(t) 

is essentially the lateral distance, with the appropriate sign, between the LiDAR point in 

question and the flight direction. The z-laser unit coordinate of the LiDAR point with 

respect to the laser unit frame z(t) can be determined by subtracting the flying height above 

the datum from the LiDAR point elevation (i.e. 𝒛(𝒕) = −(𝑯 − 𝒁(𝒕))). The laser unit 

𝒍𝒖(𝒕) = [𝒙(𝒕)coordinates make up the term 𝒓𝒍 𝟎 𝒛(𝒕)], which can be used to evaluate the 

mirror scan angle 𝜷(𝒕) through basic trigonometric relationships. Following these steps for 

each strip will result in the raw measurements needed to carry out the calibration and 

estimate the system parameter biases. 

𝑐𝑜𝑠(𝜅(𝑡)) −𝑠𝑖𝑛(𝜅(𝑡)) 0 
𝑅 (𝑡) = 𝑠𝑖𝑛(𝜅(𝑡)) 𝑐𝑜𝑠(𝜅(𝑡)) 0  (3.13) 

0 0 1 
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Figure 3.1: Minimum Bounding Rectangle Procedure for Determining Flight Direction 

Figure 3.2: Synthesizing the System Raw Measurements for the QRQS Calibration 

Procedure 
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Upon synthesizing the raw measurements, the system parameter biases are estimated and 

the adjusted coordinates can be evaluated by removing the impact of the estimated system 

parameter biases 𝑱𝒙𝜹𝒙𝒃. Removing the impact completes the calibration process and this 

removal is shown in eq. (3.14), which is evaluated using the biased coordinates, the 

synthesized measurements, and the estimated system parameter biases. 

𝑟 (𝑡)( ) = 𝑟 (𝑡)( ) − 𝐽 𝛿𝑥  (3.14) 

3.2.3 Calibration Strategy 

The calibration strategy involves an iterative process of matching (with ICPatch) and 

solving for the system parameter biases (depicted in Figure 3.3). The process starts with 

strip A and strip B as input data, and then a TIN is formed with strip A. Next, the 

measurements that are needed for the discrepancy equations are synthesized. Before 

estimating the system parameters using the discrepancy equations (3.8) and (3.9), the 

closest point-patch pairs are determined, either from initial approximations on the first 

iteration, or from the adjusted point clouds which resulted from the previous iteration. After 

the first iteration, the adjusted point clouds are used for the matching procedure in case the 

matches change after adjusting the point cloud. It is important to note that the matches, 

which are calculated after adjusting the coordinates, are used in the parameter estimation 

step, but the original biased coordinate values are always used (as opposed to using the 

updated coordinate values). When the iteration process converges, the final adjusted 

coordinates are determined by removing the impact of the biases using eq. (3.14), and the 

calibration is complete. 
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Figure 3.3: Workflow of the QRQS Calibration Procedure 

LiDAR System Calibration Stability Analysis 

Reliable and accurate recovery of LiDAR system parameters through calibration is what 

allows LiDAR technology to be as accurate as possible. LiDAR calibration is well 

understood, but the process of analyzing the stability of the system parameters over time 

has not been established. This research will give a quantitative strategy for stability analysis 

by comparing outcomes from calibration results derived at separate times. An overview of 

the stability analysis for LiDAR calibration is discussed; then the strategy for carrying out 

the stability analysis is reviewed. 
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3.3.1 Stability Analysis Overview 

The R calibration reconstructs the point cloud after estimating the system parameters 

shown in eq. (3.15) (when dealing with a linear scanner 𝑺𝜶 is not included), and the 

Pseudo-rigorous calibration methods (S, QR, and QRQS) adjust the point cloud after 

estimating the system parameter biases shown in eq. (3.16). The stability analysis process 

for both the R and Pseudo-rigorous approaches reconstructs/adjusts a LiDAR point cloud 

using temporally different calibration results, and it analyzes the observed spatial offsets 

between them. To quantify the stability, an RMSE measure is used to determine if there is 

a significant difference between the coordinates reconstructed/adjusted with the two 

different calibration results. The stability analysis measure for the R and Pseudo-rigorous 

approaches is the same, but the stability analysis strategy for Pseudo-rigorous approaches 

requires additional steps to synthesize the missing raw measurements. 

𝛥𝑋 
⎡ ⎤𝛥𝑌 
⎢ ⎥ 𝛥𝑍 
⎢ ⎥𝛥𝜔 
⎢ ⎥ 

𝛿𝑥 = 𝛥𝜙 
⎢ ⎥ (3.15) 

𝛥𝜅 ⎢ ⎥ 
𝛥𝜌 ⎢ ⎥ 
𝑆⎢ ⎥ 

⎣ 𝑆 ⎦ 

𝛿𝛥𝑋 
⎡ ⎤𝛿𝛥𝑌 
⎢ ⎥ 
𝛿𝛥𝑍 

⎢ ⎥ 
𝛿𝑥  = 

𝛿𝛥𝜔 
⎢ ⎥ 
𝛿𝛥𝜙 ⎢ ⎥ 

(3.16) 

𝛿𝛥𝜅 ⎢ ⎥ 
𝛿𝛥𝜌 ⎢ ⎥ 

⎣ 𝛿𝑆 ⎦ 
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3.3.2 Stability Analysis Strategy 

The strategy for the stability analyses for the R calibration approach and the Pseudo-

rigorous calibration approach are illustrated in Figure 3.4 and Figure 3.5, respectively. For 

each of the stability analysis procedures, the quantitative measure is the degree of similarity 

between a point cloud which is reconstructed/adjusted from a set of calibration parameters 

derived at time T1, and the same point cloud reconstructed/adjusted from a set of calibration 

parameters derived at time T2. The point clouds are from the same exact collection flight, 

the only difference is the set of system parameters used to reconstruct/adjust them. 
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Figure 3.4: Workflow of the Stability Analysis Procedure for the R Calibration Approach 



 
 

 
 

 

           

  

 

             

           

                  

                   

        

74 

Figure 3.5: Workflow of the Stability Analysis Strategy for the Pseudo-rigorous 

Calibration Approaches 

For the R stability analysis, the reconstruction is done using the LiDAR point-positioning 

equation (3.17). For the Pseudo-rigorous stability analysis, the adjusted coordinates are 

found by removing the impact of the biases as shown in eq. (3.18). The impact of the biases 

for the S approach is shown in eq. (3.19). The impact of the biases for the QR and the 

QRQS approaches is shown in eq. (3.20). 
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𝑟 (𝑡) = 𝑟 (𝑡) + 𝑅 (𝑡)𝑟  + 𝑅 (𝑡)𝑅  
 𝑅  (𝑡)𝑟 (𝑡) (3.17) 

𝑟 (𝑡)( ) = 𝑟  ( ) − 𝐽 𝛿𝑥  (3.18) 

±𝛿𝛥 𝑋 ∓ 𝐻𝛿𝛥𝜑 ∓ 𝑠𝑖𝑛(𝑆𝛽)𝛿𝛥𝜌 ∓ 𝐻𝛽𝛿𝑆 
𝐽 𝛿𝑥  𝑺 =  ±𝛿𝛥 𝑌 ∓ 𝐻𝛿𝛥𝜔 ± 𝛿𝛥𝜅  (3.19) 

𝛿𝛥 𝑍 − 𝑥𝛿𝛥𝜑 − 𝑐𝑜𝑠(𝑆𝛽) 𝛿𝛥𝜌 − 𝑥𝛽𝛿𝑆 

𝐽 𝛿𝑥  𝑸𝑹,𝑸𝑹𝑸𝑺 

𝑐𝑜𝑠(𝜅(𝑡)) 𝛿𝛥𝑋 − 𝑠𝑖𝑛(𝜅(𝑡)) 𝛿𝛥𝑌 
= 𝑠𝑖𝑛(𝜅(𝑡)) 𝛿𝛥𝑋 + 𝑐𝑜𝑠(𝜅(𝑡)) 𝛿𝛥𝑌  

𝛿𝛥𝑍 

𝑠𝑖𝑛 𝜅(𝑡)  𝑧(𝑡)𝛿𝛥𝜔 + 𝑐𝑜𝑠 𝜅(𝑡)  𝑧(𝑡)𝛿𝛥𝜑 − 𝑠𝑖𝑛(𝜅(𝑡)) 𝑥(𝑡)𝛿𝛥𝜅 
(3.20) 

+ −𝑐𝑜𝑠(𝜅(𝑡)) 𝑧(𝑡)𝛿𝛥𝜔 + 𝑠𝑖𝑛 𝜅(𝑡)  𝑧(𝑡)𝛿𝛥𝜑 + 𝑐𝑜𝑠(𝜅(𝑡)) 𝑥(𝑡)𝛿𝛥𝜅  

−𝑥(𝑡)𝛿𝛥𝜑 

−𝑐𝑜𝑠(𝜅(𝑡)) 𝑠𝑖𝑛(𝑆𝛽(𝑡)) 𝛿𝛥𝜌 + 𝑐𝑜𝑠 𝜅(𝑡)  𝑧(𝑡)𝛽(𝑡)𝛿𝑆 

+ −𝑠𝑖𝑛(𝜅(𝑡)) 𝑠𝑖𝑛(𝑆𝛽(𝑡)) 𝛿𝛥𝜌 + 𝑠𝑖𝑛 𝜅(𝑡) 𝑧(𝑡)𝛽(𝑡)𝛿𝑆  

−𝑐𝑜𝑠(𝑆𝛽(𝑡)) 𝛿𝛥𝜌 − 𝑥(𝑡)𝛽(𝑡)𝛿𝑆 

In order to determine the degree of similarity between the point clouds that have been 

reconstructed/adjusted with calibration parameters derived at two separate times, an RMSE 

analysis will be used on the difference between the resulting reconstructed/adjusted 

coordinates. Using the reconstructed/adjusted coordinates from T1 and T2 , the RMSE of 

their difference is calculated using eq. (3.21) and compared to the expected noise. The 

expected noise is determined through a rigorous error propagation that accounts for all the 

uncertainty values associated with each individual raw measurement coming from the 

GNSS, INS, and laser unit. If the RMSE values are within the expected noise of the point 

cloud, then the point clouds are deemed similar. In this case, the change in system 

parameters over time are not considered to be significantly different and therefore stable 
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over the specified time period. If the RMSE values are not within the expected noise level 

of the data, then the system is considered to be unstable over the specific period of time. 

(𝑟 (𝑇 ) − 𝑟 (𝑇 ))  

𝑅𝑀𝑆𝐸(𝑇 , 𝑇 ) =  (3.21) 
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4. RESULTS OF THE QUASI-RIGOROUS/QUASI-SIMPLIFIED 

(QRQS) CALIBRATION AND SATBILITY ANALYSIS 

Overview 

The results shown in this chapter focus on the implementation of the new QRQS calibration 

approach. First, section 4.2 shows the performance of the new method compared to existing 

methods, using data from a low altitude Unmanned Aerial Vehicle (UAV) platform. Then, 

section 4.3 uses simulated data at a higher altitude to test the new approach (and the existing 

Pseudo-rigorous approaches) in non-ideal scenarios to quantify their accuracy 

improvement ratios in conditions that do not meet their underlying assumptions. Section 

4.4 uses the same data as section 4.3 to demonstrate the implementation of the stability 

analysis strategy. 

Results of the Quasi-Rigorous/Quasi-Simplified (QRQS) Calibration using a 

UAV based LiDAR System 

The QRQS calibration method has been developed to address the absence of raw 

measurements in LiDAR system calibration. This method carries out calibration with only 

the point cloud coordinates by using the previously discussed strategies to synthesize the 

missing raw measurements, and it does so while maintaining the rigor of calibration by 

preserving the sensor model. The following results show the implementation of the QRQS 

calibration method using data from a UAV platform specifically designed for cost effective 

low altitude metric mapping. 

4.2.1 Platform and Sensors 

The platform and sensors used to collect the data can be seen in Figure 4.1, which shows a 

VLP-16 PUCK Hi-Res LiDAR unit and an Applanix APX-15 UAV navigation board 

mounted on a DJI M600 UAV. The VLP-16 PUCK Hi-Res LiDAR unit has 16 laser beams 

oriented in fixed positions within the 𝒙𝒍𝒖  - 𝒚𝒍𝒖  plane. Collectively, the beams were 

scanning at a rate of 300kHz (pulses/second) and spinning 360° at a rate of 10Hz 
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(cycles/second) during the data collection (although the LiDAR is spinning 360°, only 

points between -30° and 30° of nadir were reconstructed to focus on the ground). In Figure 

4.1, the original laser unit (𝒍𝒖) and IMU body frame (𝒃) coordinate systems are shown, 

and because they do not follow the expectations in the Pseudo-rigorous methods (i.e. the 

IMU body frame is not parallel to the laser unit coordinate system), virtual coordinate 

systems are implemented. The virtual IMU body frame (𝒃′) and virtual laser unit (𝒍𝒖′) 

coordinate systems shown in Figure 4.1 were incorporated into the point-positioning 

equation according to eq. (4.1). 

Figure 4.1: Alignment of Original and Virtual Coordinate Systems on the UAV LiDAR 

System used in this Analysis 

𝑟 (𝑡) = 𝑟 (𝑡) + 𝑅 (𝑡)𝑅 𝑟  

(4.1) 
   

+ 𝑅 (𝑡)𝑅 𝑅 𝑅  𝑅  (𝑡)𝑟 (𝑡) 

The data used for this analysis is shown in Figure 4.2. There were six strip-pairs collected 

at 15m and 25m flying heights over a field with five geometric targets shaped like huts (as 

well as various checkerboards and reflective stop signs). Two of the huts were oriented so 

that the ridges were aligned along the North (N) and South (S) directions (along flight 
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directions), and the ridges of the other three huts were aligned in the East (E) and West (W) 

directions (across flight directions). These huts were used to provide the height variation 

needed in the otherwise flat terrain (elevation variation of terrain with huts: 1.0m, without 

huts: 0.2m). Three of the six strip-pairs were used for calibration to satisfy the optimal and 

minimal data requirement, the first and second strip-pairs contain two overlapping strips 

flying in opposite directions, at a flying height of 15m and 25m above ground, and with 

100% overlap. The third strip-pair contained two flight strips flying in the same direction, 

at a flying height of 15m above ground, and 12m lateral distance between them. As is the 

case when flying UAVs, it is natural to have variation in the pitch and roll of the platform. 

For the forward flight lines, the pitch and roll variation ranges were -2.2°:0.5° and 

0.01°:1.6°, respectively. For the backward flight lines, the pitch and roll variation ranges 

were 0.4°:4.1° and -2.4°:0.0°, respectively. The uncertainty of each involved 

measurement/derived measurement within the airborne LiDAR system is shown in Table 

4-1. In this table, the GNSS/INS uncertainties are based on the Applanix APX-15 UAV 

board specifications sheet (Trimble Applanix, 2016) and the range uncertainty is based on 

the VLP-16 PUCK Hi-Res specification sheet (Velodyne LiDAR, 2016). The mirror angle 

encoder uncertainty is set to a quarter of the reported angular resolution on the VLP-16 

PUCK Hi-Res LiDAR unit specifications sheet. The standard deviation for a reconstructed 

point was determined to be 6cm in the X and Y coordinates and 4cm in the Z coordinate by 

rigorously propagating the uncertainty values from Table 4-1 to the ground using the 

LiDAR Error Propagation Calculator developed by Habib et al. (2006). In the calibration 

programs, the 𝜮 matrix (previously shown in eq. (2.24)) diagonal values come from the 

uncertainty of each measurement shown in Table 4-1. As for the a-priori variance-

covariance matrix of the estimated system parameters/system parameter biases 𝜮𝒙, their 

diagonal values were set to be very low if the parameters/biases were known (e.g. 1x10^-

9), or they were set to be high values (e.g. 1x10^9) to allow the program to estimate the 

parameter/bias. These low and high values are used to set the parameter/bias as fixed or 

free, respectively, but the user can input any value which is appropriate for their scenario. 

For the 𝜮 and 𝜮𝒙 matrices in the experimental results of this dissertation, only the diagonal 

elements are filled, the full variance-covariance matrix is not formed. The ULEM approach 

(Rodarmel et al., 2015) mentioned in the literature review does model the correlations 
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rigorously using what is called the Strictly Positive Definite Correlation Function (SPDCF) 

discussed by Dolloff (2013). Employing the full variance-covariance matrix is used to fully 

exploit the data, and although the effects of not using it may be negligible when flying 

heights are low, it may not be valid for higher altitude scenarios. 

Figure 4.2: Flight Trajectories and Test Field Containing Geometric Targets (huts) as 

seen in 3D Point Clouds and Orthophoto 

Table 4-1: Uncertainty of the LiDAR System Measurements 

GNSS/INS position – X, Y, Z (m) (0.03,0.03,0.03) 

GNSS/INS orientation – 𝜔, 𝜑, 𝜅 (") (72,72,360) 

Mirror Angle Encoder (") 81 

Range (m) 0.03 

The Pseudo-rigorous calibration approaches were designed for single-beam linear laser 

scanners. This configuration allows the raw measurements to be synthesized through an 

inspection of the point cloud. When observing the resulting point cloud produced from a 

multi-beam and spinning laser scanner without any raw measurements (e.g. beam ID, 

recorded encoder angle, etc.), it is impossible to know which beam each point came from; 

therefore, it is impossible to synthesize the raw measurements. The orientation of the 16 

laser beams within the VLP-16 PUCK Hi-Res are show in Figure 4.3. Using only the points 
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from one of the 16 beams (the one that is closest to vertical at ~1° from nadir, laser beam 

#2 or #15) produces a similar scanning pattern as a single-beam linear scanner, which 

allows the missing raw-measurements to be synthesized. It is important to note that the R 

approach is capable of calibrating a multi-beam spinning laser scanner system without 

isolating data from a single beam; however, it requires the system raw measurements. 

Figure 4.3: Orientation of VLP-16 PUCK Hi-Res Laser Beams 

4.2.2 Calibration Results and their Quantitative and Qualitative Comparison with 

Existing Calibration Approaches 

The R results discussed here include two different implementations, the 16-beam R and 

the 1-beam R. The Pseudo-rigorous approaches include the S, QR and QRQS. The 16-

beam R results were based on a feature based calibration which used all 16 beams (Ravi et 

al., 2018), and the 1-beam R, S, QR, and QRQS use the points from 1 laser beam over the 

entire terrain (no feature extraction). For the 16-beam R, the checkerboard targets, building 

facades, hut-shaped targets, and the reflective stop signs were extracted from the point 

clouds shown in Figure 4.2. The 16-beam R and 1-beam R estimate the parameters and 

output the corrections (𝜹𝚫) to the approximate values, while the S, QR, and QRQS 

approaches estimate the biases (𝜹𝚫𝒃). The biases can be distinguished from the corrections 

by the subscript b. The biases should be of the same magnitude as the corrections, but with 

the opposite sign. For this comparison, the results of all the approaches will be introduced 

and then the adjusted coordinates resulting from the 16-beam R will be used as the 
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reference for evaluating the performance of the others (while focusing on the performance 

of the QRQS Pseudo-rigorous approach). The results of the calibration methods are shown 

in Table 4-2. The range bias is not estimated because there is not enough elevation variation 

in the across flight direction, and the scan angle scale factor bias is not estimated because 

the VLP-16 PUCK Hi-Res is a spinning LiDAR unit which does not have an oscillating 

mirror. 

Table 4-2: Results for the 16-beam R, 1-beam R, S, QR, and QRQS Approaches using 

the VLP-16 PUCK Hi-Res LiDAR on a UAV Platform 

16-beam R 1-beam R S QR QRQS 
Rigorous Estimated Corrections Pseudo-rigorous Estimated Biases 

𝜹𝚫𝑿 (m): 0.02 0.01 𝜹𝚫𝑿𝒃 (m): 0.01 -0.03 -0.02 

𝜹𝚫𝒀 (m): 0.01 0.06 𝜹𝚫𝒀𝒃 (m): -0.02 -0.02 0.01 

𝜹𝚫𝝎 (°): 0.04 -0.13 𝜹𝚫𝝎𝒃 (°): -0.10 -0.08 -0.11 

𝜹𝚫𝛗 (°): -0.70 -0.86 𝜹𝚫𝛗𝒃 (°): 0.83 0.86 0.83 

𝜹𝚫𝜿 (°): -0.33 -0.33 𝜹𝚫𝜿𝒃 (°): 0.15 0.17 0.16 

(biases should be of the same magnitude as the corrections, but with the opposite sign) 

For the qualitative comparison of the QRQS approach with the existing approaches, the 

alignment of overlapping strips before and after calibration can be seen in Table 4-3. This 

table shows a hut which was oriented so that the ridges were aligned along the North (N) 

and South (S) directions (along flight directions), and another hut that was oriented so that 

its ridges were aligned in East (E) and West (W) directions (across flight directions). The 

point clouds before calibration have an offset between the overlapping strips, while the 

overlapping point clouds after calibration show a significant improvement in alignment. 

Each of the approaches was successful in reducing the impact of systematic errors on the 

resulting point clouds, and the 16-beam R and 1-beam R approaches show the best 

alignment as expected. When comparing the alignment of QRQS with S, it is observed that 

the alignment in the vertical direction is better for the QRQS. When comparing the 

alignment of QRQS with QR, it is observed that they are very similar. This outcome is 

expected because the development of the QRQS math model is significantly different from 

that of the S, but very similar to that of the QR. 
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Table 4-3: Qualitative Analysis of Point Cloud Coordinates on the North-South (N-S) and 

East-West (E-W) Huts Before Calibration and After Calibration for the 16-beam R, 1-

beam R, S, QR, and QRQS Approaches 

N-S Hut E-W Hut 
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ef
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C
al
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A

ft
er
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 R

) 
A

ft
er

 C
al

. 
(1

-b
ea

m
 R
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er

 C
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. 
(S

) 

Red = forward flight, Black = backward flight 

The quantitative assessment of the QRQS approach and the existing approaches inspects 

the adjusted/reconstructed coordinates to see if there is a significant difference between 
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them and the reconstructed coordinates from the 16-beam R approach. Table 4-4 shows 

the Root-Mean-Squared Error (RMSE) of the differences between the 

adjusted/reconstructed coordinates from the 16-beam R approach and the S, QR, QRQS, 

and 1-beam R approaches. The Total Statistics row shows the mean and standard deviation 

(st. dev) of the X, Y, and Z coordinate differences. In Table 4-4, the RMSE values range 

from 0cm to 6cm, and the highest values are observed in the Z and Y adjusted coordinates 

from the S and QRQS approaches, respectively. This 6cm RMSE in the Z adjusted 

coordinates of the S approach is higher than 4cm error propagation results for the Z 

coordinate. This 6cm RMSE in the Y adjusted coordinates of the QRQS approach is of the 

same magnitude as the 6cm error propagation results for the Y coordinate and is therefore 

not deemed significant. The mean and standard deviation values show the spread of the 

differences, and the low mean values signify that the presence of systematic errors is low. 

Although the huts in Table 4-4 show signs of remaining systematic errors, they are only 

detected in the RMSE analysis of the Z adjusted coordinates of the S approach. Therefore, 

the adjusted/reconstructed coordinates from the QR, QRQS, and 1-beam R are not 

considered to be significantly different from the reconstructed coordinates of the 16-beam 

R approach. Since the QRQS approach (like the S and QR existing Pseudo-rigorous 

approaches) makes several assumptions, it is not guaranteed to fully remove the presence 

of systematic errors, but it is successful in significantly reducing them. This analysis has 

shown that the QRQS approach is suitable for calibration in the full absence of raw 

measurements, while the S approach still has a significant amount of systematic error in 

the Z coordinate after calibration. The next analysis will demonstrate the limitations of the 

S approach and capabilities of the QRQS approach by analyzing their performance after 

deviating from their math model assumptions. 



 
 

 
 

          

           

 

   
 

   
 

    

 
 

      

     

     

 
 

 
 

 
     

     

 
     

     

 
     

     

 

        

         

 

             

             

              

           

             

              

                

        

 

85 

Table 4-4: RMSE of the Difference between Adjusted/Reconstructed Coordinates from 

each Calibration Approach and the Reconstructed Coordinates from the 16-beam R 

S QR QRQS 1- beam R 

X(m) 0.01 . 0.05 0.04 0.03 
R

M
SE

 P
er

C
oo

rd Y(m) 0.01 0.02 0.06 0.02 

Z(m) 0.06 0.00 0.02 0.00 

mean 0.00 0.01 0.01 0.01 

T
ot

al
 S

ta
ts

. P
er

 
C

oo
rd

. 

X(m) 

Y(m) 

Z(m) 

st.dev 

mean 

st.dev 

mean 

st.dev 

0.01 

0.00 

0.01 

0.01 

0.05 

0.04 

0.00 

0.02 

0.00 

0.00 

0.04 

0.01 

0.05 

0.00 

0.02 

0.03 

0.00 

0.02 

0.00 

0.00 

Performance of the Quasi-Rigorous/Quasi-Simplified (QRQS) Approach and 

Existing Calibration Approaches Before and After Deviating from their 

Assumptions 

In order to highlight the differences between the QRQS approach and the other Pseudo-

rigorous approaches, as well as quantify how robust they perform in non-ideal scenarios, 

this analysis will compare the results before and after calibration for scenarios that were 

both deviated from the respective assumptions and non-deviated. This analysis uses 

simulated data and characterizes how well the calibration approaches hold up in data 

collection scenarios that do not strictly adhere to the assumptions their math models are 

based on. In doing so, the results also reveal the limitations of the S calibration approach 

when compared to the new QRQS approach. 
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4.3.1 Rigorous Data Simulation 

The point clouds used in this analysis were generated by simulating flights using ray tracing 

techniques over a predefined DEM from the USGS. The DEM used is of natural terrain 

that does not have any man-made objects such as buildings with gable roofs. The terrain 

elevation of the DEM was scaled down from a 400m elevation variation to a 100m variation 

in order to test the S calibration assumption of low elevation variation with respect to the 

2000m flying height. Simulating the data provided a very reliable way to investigate the 

impact of individual deviations. The simulation process actually mimics the rigorous 

mathematical model of the LiDAR system with ray tracing techniques, and it accounts for 

LiDAR unit specifications and all hardware uncertainties (i.e. GNSS/INS, range 

measurement, and scan angle). An example of two simulated flight lines and the resulting 

point clouds is shown in Figure 4.4 (the headings of the flight lines in this simulation differ 

by 30°). 

Figure 4.4: Simulated Point Clouds and Trajectories Deviated from Being Parallel by 30° 

(planimetric view) 

For the simulation, the user defines the LiDAR unit specifications and the uncertainty of 

each measurement within the system. The pulse repetition rate was set at 33.3 kHz, the 

scan rate was set at 40 scans/sec, and the laser scan angle at 30°. The uncertainty values in 

Table 4-5 were used to generate random noise for each linear and angular measurement 

per pulse. These values reflect the uncertainty levels of high altitude industrial grade aerial 

LiDAR mapping systems. The configuration of the strip-pairs is show in Table 4-6. 
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Table 4-5: Uncertainty of the LiDAR System Components for Simulated Data 

GNSS/INS Position - X, Y, Z (m) 0.05, 0.05, 0.10 

GNSS/INS Orientation - 𝜔, 𝜑, 𝜅 (") 9, 9, 18 

Mirror Angle Encoder (") 3 

Range (m) 0.02 

Table 4-6: Configuration of Strip-pairs for Simulated Data 

Strip-pair Flying Height (m) Lateral Distance 

Between Trajectories (m) 

1 1000 0 

2 2000 0 

3 2000 500 

Throughout this analysis, there will be three sets of coordinates used; namely, true, biased, 

and adjusted coordinates. The true and biased coordinates were outputs from the simulator, 

and the adjusted coordinates were determined after calibration. The biased coordinates 

were contaminated with noise and system parameter biases, as is the case in a real-world 

scenario. The true coordinates have no noise and no system parameter biases. The adjusted 

coordinates were the result of adjusting the biased coordinates using the estimated system 

parameter biases. 

Control was not used in the tests on assumption deviations in order to show how well the 

calibration approaches perform using non-urban terrain that has no control available. The 

last set of results demonstrate the ability of the R, QR, and QRQS approaches to incorporate 

control. For the test on assumption deviations, the lever arm bias in the Z direction, 𝜹𝜟𝒛𝒃, 

was not estimated because it requires vertical control. The range bias, 𝜹𝜟𝝆𝒃 , was not 

estimated in some of the results because, as mentioned before, in order to estimate the range 

bias without control a high amount of elevation variation is required in the across flight 

direction. 
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Only the assumptions required for successful calibration were included in this analysis. 

Thus, if an assumption is not included, this implies that the LiDAR data can always be 

mathematically manipulated in order to meet that assumption. For example, the IMU body 

frame and the laser unit coordinate system are assumed to be almost parallel and when they 

are not, virtual coordinate systems can be introduced. Since the virtual coordinate systems 

meet the assumptions, any measurements should be modified so they are with respect to 

the virtual coordinate systems. Then, the calibration can be carried out as it normally would 

be. There is a section for each assumption deviation with the resulting estimated biases and 

the RMSE of the difference between the adjusted coordinates and true coordinates. The 

RMSE is shown for before and after calibration, denoted as 𝑹𝑴𝑺𝑬𝒃𝒆𝒇𝒐𝒓𝒆 and 𝑹𝑴𝑺𝑬𝒂𝒇𝒕𝒆𝒓, 

respectively. The 𝑹𝑴𝑺𝑬𝒂𝒇𝒕𝒆𝒓 is expected to be higher in the deviation scenario when 

comparing it to the non-deviation scenario. For the 𝑹𝑴𝑺𝑬𝒃𝒆𝒇𝒐𝒓𝒆, there is no expectation 

for it to be worse or better in the deviation scenario because the assumptions being deviated 

from pertain to the LiDAR calibration. Table 4-7 shows the evaluated accuracy and 

expected accuracy of this data. The evaluated accuracy represents the RMSE of the 

differences between the true coordinates and the noise-contaminated true coordinates, and 

it is denoted as 𝑹𝑴𝑺𝑬𝒕𝒓𝒖𝒆. The expected accuracy is from error propagation and is very 

similar to the evaluated accuracy. To evaluate the results, the estimated biases will be 

compared to the simulated biases, and the RMSE of the adjusted and true coordinates will 

be compared to the accuracy values in Table 4-7. In addition to this, there is a Percent 

Improvement measure which quantifies the improvement in accuracy after calibration and 

it will be used to understand the impact of deviating from the assumptions. The ratio used 

to calculate this measure is shown in eq. (4.2). Using this measure, it can be concluded that 

if 𝑹𝑴𝑺𝑬𝒂𝒇𝒕𝒆𝒓 is equal to 𝑹𝑴𝑺𝑬𝒃𝒆𝒇𝒐𝒓𝒆, then the Percent Improvement will be 0, and if 

𝑹𝑴𝑺𝑬𝒂𝒇𝒕𝒆𝒓 is equal to 𝑹𝑴𝑺𝑬𝒕𝒓𝒖𝒆, then the Percent Improvement will be 100. 
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Table 4-7: Evaluated Accuracy (RMSE of Differences between True & Bias-Free 

Coordinates) and Expected Accuracy (via Error Propagation) at Various Scan Angles 

X (m) (across flight dir.) 

Y (m) (along flight dir.) 

Evaluated 
Accuracy 

(𝑹𝑴𝑺𝑬𝒕𝒓𝒖𝒆) 

0.096 

0.100 

Expected Accuracy 
(Error Propagation) 

15° scan 
0° scan angle 

angle 
0.112 0.110 

0.108 0.116 

30° scan 
angle 
0.101 

0.136 

Z (m) 0.105 0.102 0.105 0.113 

(  )
𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = ∗ 100 (4.2) 

( ) 

4.3.2 Deviating from the Parallel Flight Lines Assumption 

The S calibration requires that the flight lines be parallel to each other for the calibration 

math model to be valid. Four different calibration tests were done using varying levels of 

deviation from being parallel (0°, 10°, 20°, and 30°) and resulting estimated biases are 

shown in Table 4-8. The angular deviation value represents the collective deviation of 

flight lines in a strip-pair, i.e. if there is a 10° deviation from being parallel it means that 

each flight line is individually deviated by 5°. In Table 4-8, it is observed that the results 

from the 0° deviation are similar to the simulated biases, and the estimations for the 𝜹𝜟𝒙𝒃, 

𝜹𝜟𝜿𝒃, and 𝜹𝑺𝒃 show a gradual increase in difference from the simulated values as the 

flight lines deviate further from being parallel. 
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Table 4-8: The Estimated S Calibration Parameters with Parallel and Non-Parallel Flight 

Lines 

Non-deviation Deviation 
0° 

Deviation 
10° 20° 

Deviation Deviation 
30° 

Deviation 
Simulated Biases 

𝜹𝚫𝑿𝒃 (m): 0.200 

𝜹𝚫𝒀𝒃 (m): 0.200 

𝜹𝚫𝝎𝒃 (°): 36.000 

𝜹𝚫𝛗𝒃 (°): 36.000 

𝜹𝚫𝜿𝒃 (°): 36.000 

𝜹𝑺𝒃: 0.00100 

0.205 

0.189 

37.013 

35.993 

34.653 

0.00096 

Estimated Biases 

0.237 0.259 

0.188 0.186 

36.364 36.692 

34.704 33.053 

37.735 45.743 

0.00080 0.00073 

0.282 

0.197 

35.688 

31.300 

51.379 

0.00055 

The RMSE analysis of these four tests is shown in Table 4-9. The adjusted coordinates in 

the non-deviated and deviated scenarios are individually compared to the true coordinates, 

and the RMSE of each of those differences indicates the overall accuracy. For the test 

where there is 0° deviation from being parallel, the RMSE values after calibration meet the 

evaluated/expected accuracy of 10cm in Table 4-7. When compared to the before 

calibration, the after calibration RMSE values also show a Percent Improvement at or close 

to 100% for the test with 0° deviation. We can see that as the flight lines were deviated 

further from being parallel, the X coordinate accuracy consistently gets worse, the Y 

coordinate accuracy does not degrade, and the Z coordinate accuracy degrades but not as 

much as X. This pattern is expected and can be attributed to the degraded bias estimation 

in the lever arm in the across flight direction, 𝜹𝜟𝒙𝒃, and the degraded estimation of the 

scan angle scale factor bias, 𝜹𝑺𝒃. The scan angle scale factor bias additionally affects the 

Z coordinate. Even in this non-ideal scenario of non-parallel flight lines, there is still a 

significant Percent Improvement. The 10° and 20° deviations show a 90-100 and 82-99 

Percent Improvement, respectively, and even in the extreme case of 30° deviation there is 

a 61-95 Percent Improvement, showing that the Simplified calibration performs well in this 

non-ideal condition. 
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Table 4-9: RMSE Analysis of S Calibration Results with Parallel and Non-Parallel Flight 

Lines 

Non-deviation Deviation 

0° 
Deviation 

10° 
Deviation 

20° 
Deviation 

30° 
Deviation 

𝑹
 𝑴

 𝑺
 𝑬

 𝒃 𝒆
 𝒇

 𝒐
 𝒓 𝒆 X(m) 0.575 0.521 0.511 0.458 

Y(m) 0.565 0.505 0.503 0.516 

Z(m) 0.26 0.254 0.255 0.231 

𝑹
 𝑴

 𝑺
 𝑬

 𝒂 𝒇
 𝒕 𝒆

 𝒓 X(m) 0.093 0.144 0.174 0.239 

Y(m) 0.099 0.101 0.106 0.121 

Z(m) 0.105 0.114 0.118 0.133 

P
er

ce
nt

Im
p

ro
ve

-
m

en
t 

X(%) 100 90 82 61 

Y(%) 100 100 99 95 

Z(%) 97 91 88 75 

 
 

 
 

             

 

    

   
 

 
 

 
 

   
  

     

     

     

 

     

     

     

    
 

 

     

     

     

 

       
    

              

                

              

              

              

             

            

           

            

  

 

4.3.3 Performance of the Quasi-Rigorous/Quasi-Simplified (QRQS) Calibration 
with Non-Parallel Flight Lines 

In contrast to the S calibration approach, the QRQS calibration approach does not have 

an assumption that the flight lines should be parallel. The results in Table 4-10 show the 

ability of the QRQS calibration approach to handle non-parallel flight lines. The results in 

in Table 4-10 contrast the results shown in Table 4-9 where the estimated parameters 

from the S calibration differ from the simulated parameters as flight lines are deviated 

from parallel. Furthermore, the RMSE analysis shown in Table 4-11 shows that the 

percent improvement values after the QRQS calibration for all non-parallel scenarios are 

within the 97-100% range, confirming that the QRQS calibration approach does 

effectively calibrate scenarios that have flight lines which are deviated from being 

parallel. 
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Table 4-10: The Estimated QRQS Calibration Parameters with Parallel and Non-Parallel 

Flight Lines 

Parallel Non-Parallel 
0° 

Deviation 
10° 

Deviation 
20° 

Deviation 
30° 

Deviation 
Simulated Biases Estimated Biases 

𝜹𝚫𝑿𝒃 (m): 0.200 0.203 0.207 0.210 0.204 

𝜹𝚫𝒀𝒃 (m): 0.200 0.196 0.190 0.193 0.201 

𝜹𝚫𝝎𝒃 (°): 36.000 36.215 35.201 35.817 36.504 

𝜹𝚫𝛗𝒃 (°): 36.000 35.959 36.502 35.993 35.993 

𝜹𝚫𝜿𝒃 (°): 36.000 34.852 35.521 34.608 35.025 

𝜹𝑺𝒃: 0.00100 0.00099 0.00099 0.00099 0.00099 

Table 4-11: RMSE Analysis of QRQS Calibration Results with Parallel and Non-Parallel 

Flight Lines 

Parallel Non-Parallel 

0° 
Deviation 

10° 
Deviation 

20° 
Deviation 

30° 
Deviation 

𝑹
𝑴

 𝑺
𝑬

 𝒃𝒆
𝒇

𝒐
𝒓

𝒆 X(m) 0.575 0.575 0.573 0.572 

Y(m) 0.565 0.558 0.564 0.565 

Z(m) 0.26 0.265 0.268 0.265 

𝑹
𝑴

 𝑺
𝑬

 𝒂𝒇
𝒕𝒆

𝒓 X(m) 0.093 0.099 0.105 0.105 

Y(m) 0.100 0.101 0.100 0.096 

Z(m) 0.105 0.103 0.103 0.104 

P
er

ce
nt

Im
p

ro
ve

-
m

en
t 

X(%) 100 100 99 99 

Y(%) 100 100 100 100 

Z(%) 97 98 98 98 
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4.3.4 Deviating from the Low Terrain Relief Assumption 

To test the low terrain relief with respect to the flying height assumption from the S 

approach, results from a scenario that follows the assumption (100m range in terrain 

elevation variation) were compared to one that does not (300m range in terrain elevation 

variation). The estimated biases are shown in Table 4-12 and it is observed that the test 

with low terrain relief results in estimated biases that are similar to the simulated ones, 

while the 300m range terrain relief test shows degraded estimation in several of the 

estimated biases. 

Table 4-12: The Estimated S Calibration Parameters Before and After Deviation from the 

Low Terrain Relief Assumption 

Non-deviation Deviation 
100m Range 300m Range 

Terrain Relief Terrain Relief 
Simulated Biases 

𝜹𝚫𝑿𝒃 (m): 0.200 

𝜹𝚫𝒀𝒃 (m): 0.200 

𝜹𝚫𝝎𝒃 (°): 36.000 

𝜹𝚫𝛗𝒃 (°): 36.000 

𝜹𝚫𝜿𝒃 (°): 36.000 

𝜹𝑺𝒃: 0.00100 

Estimated Biases 

0.205 0.230 

0.189 0.116 

37.013 43.869 

35.993 37.437 

34.653 24.910 

0.00096 0.00132 

Table 4-13 shows the RMSE analysis on the adjusted coordinates between these two 

scenarios. As expected, the RMSE after calibration in the 100m range case is at or below 

the 10cm evaluated/expected accuracy values in Table 4-7, and the Percent Improvement 

is close to 100. For the 300m range case, the RMSE after calibration is slightly larger than 

10cm, and therefore we also see a lower Percent Improvement when compared to the 

scenario that follows the assumption. In conclusion, even when the terrain relief is not low 

with respect to the flying height, the after calibration RMSE improves by 87%-100%, 

showing that the calibration performs well in this non-ideal scenario. 
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Table 4-13: RMSE Analysis of the S Calibration Procedure Before and After Deviation 

from the Low Terrain Relief Assumption 

Non-deviation Deviation 

100m Range 
Terrain Relief 

300m Range 
Terrain Relief 

𝑹
 𝑴

 𝑺
 𝑬

 𝒃 𝒆
 𝒇

 𝒐
 𝒓 𝒆 X (m) 0.575 0.336 

Y(m) 0.565 0.453 

Z(m) 0.26 0.177 
𝑹

 𝑴
 𝑺

 𝑬
 𝒂 𝒇

 𝒕 𝒆
 𝒓 X(m) 0.093 0.131 

Y(m) 0.099 0.094 

Z(m) 0.105 0.108 

P
er

ce
nt

Im
p

ro
-

ve
m

en
t 

X(%) 100 87 

Y(%) 100 100 

Z(%) 97 90 

When the terrain relief is not low with respect to the flying height, as is the case in the 

scenario with a 300m variation, it is observed that the lever arm bias in the flight direction, 

𝜹𝜟 y, the bias in the boresight pitch, 𝜹𝚫𝛚 , the bias in the boresight heading, 𝜹𝚫𝛋 , and the 

bias in the scan angle scale factor, 𝜹𝐒 , estimations are significantly different from their 

simulated values. This behavior is expected because the S calibration math model does not 

account for high variation in the terrain. In Table 4-13, the after calibration RMSE of the 

X coordinate slightly increased due to the inaccurate bias estimations in the scan angle 

scale factor bias, 𝜹𝐒 . The inaccurate bias estimations in the lever arm in the flight direction, 

𝜹𝜟 y, and the heading bias, 𝜹𝚫𝛋 , both affect the Y coordinate accuracy, but a decreased 

accuracy is not observed for Y in Table 4-13 because their impacts have canceled each 

other out due to having a similar magnitude but the opposite sign. In conclusion, even 

though the terrain relief varies by 300m, the comparison of the RMSE values in Table 4-13 

between the before and after calibration shows that the after calibration RMSE improves 

by 87%, 100%, and 90% for the X, Y, and Z coordinates, respectively. 
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4.3.5 Deviating from the Vertical Scanner Assumption 

All three of the Pseudo-rigorous calibration approaches (S, QR, and QRQS) require the 

scanner to be vertical in order for the calibration math model to be valid. The tables below 

compare results from a vertical scanner to a non-vertical scanner (the platform pitch and 

roll were at 8° instead of ~0°). For the S, QR, and QRQS approaches, Table 4-14, Table 

4-16, and Table 4-18 show the estimated calibration parameters, respectively, for the 

vertical and non-vertical scenarios. In each of the three tables, a similar pattern is observed; 

namely, the estimated biases from the vertical scanner are very similar to the simulated 

biases and the non-vertical scanner estimated biases show a deviation from the simulated 

biases. In the lever arm biases, the 𝜹𝜟𝒚𝒃 is impacted the most, and in the boresight biases, 

the 𝜹𝜟𝝋𝒃 bias is impacted the most. 

The RMSE analyses for the S, QR, and QRQS calibration approaches are shown in Table 

4-15, Table 4-17, and Table 4-19, respectively. For the vertical scanner scenario in these 

tables, the after calibration RMSE is very close to the 10cm evaluated/expected accuracy, 

and the Percent Improvement is at or close to 100. For the non-vertical scenario, the after 

calibration RMSE value for the X coordinate accuracy is degraded, the Y coordinate 

accuracy does not degrade, and the Z coordinate accuracy degrades but not as much as X. 

As for the Percent Improvement in the non-vertical scenarios, Table 4-15 shows that it was 

52%-100% for the S approach, Table 4-17 shows that it was 57%-99% for the QR 

approach, and Table 4-21 shows that it was 56%-100% for the QRQS approach. Although 

the performance of these approaches for the non-vertical scanner scenario is not ideal, there 

is still a significant improvement in the accuracy for all three of the Pseudo-rigorous 

calibration approaches. 
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Table 4-14: The Estimated S Calibration Parameters Before and After Deviation from the 

Vertical Scanner Assumption 

Non-deviation Deviation 

Vertical 
Scanner 

Non-Vertical 
Scanner 

(pitch, roll=8°) 
Simulated Biases Estimated Biases 

𝜹𝚫𝑿𝒃 (m): 0.200 0.205 0.197 

𝜹𝚫𝒀𝒃 (m): 0.200 0.189 0.144 

𝜹𝚫𝝎𝒃 (°): 36.000 37.013 40.289 

𝜹𝚫𝛗𝒃 (°): 36.000 35.993 2.785 

𝜹𝚫𝜿𝒃 (°): 36.000 34.653 33.539 

𝜹𝑺𝒃: 0.00100 0.00096 0.00098 

Table 4-15: RMSE Analysis of the S Calibration Procedure Before and After Deviation 

from the Vertical Scanner Assumption 

Non-deviation Deviation 

Vertical 
Scanner 

Non-Vertical 
Scanner 

(pitch=8°, 
roll=8°) 

𝑹
𝑴

 𝑺
𝑬

 𝒃𝒆
𝒇

𝒐
𝒓

𝒆

Y(m) 0.565 0.492 

Z(m) 0.26 0.286 

X(m) 0.575 0.478 

𝑹
𝑴

 𝑺
𝑬

 𝒂𝒇
𝒕𝒆

𝒓 X(m) 0.093 0.283 

Y(m) 0.099 0.101 

Z(m) 0.105 0.133 

P
er

ce
nt

Im
p

ro
-

ve
m

en
t 

X(%) 100 52 

 
 

 
 

             

   

    

   
 

 
 

  
    

     

     

     

     

     

    

 

             

     

    

  
 
 

 
 
 

  

   

   

   

 

   

   

   

     

   

   

 

Y(%) 100 100 

Z(%) 97 82 
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Table 4-16: The Estimated QR Calibration Parameters Before and After Deviation from 

the Vertical Scanner Assumption 

Non-deviation Deviation 

Vertical 
Scanner 

Non-Vertical 
Scanner 

(pitch=8°, 
roll=8°) 

Simulated Biases Estimated Biases 

𝜹𝚫𝑿𝒃 (m): 0.200 0.201 0.182 

𝜹𝚫𝒀𝒃 (m): 0.200 0.198 0.157 

𝜹𝚫𝝎𝒃 (°): 36.000 35.959 40.139 

𝜹𝚫𝛗𝒃 (°): 36.000 36.120 3.666 

𝜹𝚫𝜿𝒃 (°): 36.000 35.946 30.273 

𝜹𝑺𝒃: 0.00100 0.00100 0.00100 

Table 4-17: RMSE Analysis of the QR Calibration Procedure Before and After Deviation 

from the Vertical Scanner Assumption 

Non-deviation Deviation 

Vertical 
Scanner 

Non-Vertical 
Scanner 

(pitch=8°, 
roll=8°) 

𝑹
𝑴

 𝑺
𝑬

 𝒃𝒆
𝒇

𝒐
𝒓

𝒆 X(m) 0.575 0.478 

Y(m) 0.565 0.492 

Z(m) 0.26 0.286 

𝑹
𝑴

 𝑺
𝑬

 𝒂𝒇
𝒕𝒆

𝒓 X(m) 0.093 0.261 

Y(m) 0.099 0.102 

Z(m) 0.105 0.131 

P
er

ce
nt

Im
p

ro
-

ve
m

en
t 

X(%) 100 57 

Y(%) 100 99 

Z(%) 97 83 
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Table 4-18: The Estimated QRQS Calibration Parameters Before and After Deviation 

from the Vertical Scanner Assumption 

Non-deviation Deviation 

Vertical 
Scanner 

Non-Vertical 
Scanner 

(pitch=8°, 
roll=8°) 

Simulated Biases Estimated Biases 

𝜹𝚫𝑿𝒃 (m): 0.200 0.203 0.189 

𝜹𝚫𝒀𝒃 (m): 0.200 0.196 0.161 

𝜹𝚫𝝎𝒃 (°): 36.000 36.215 39.870 

𝜹𝚫𝛗𝒃 (°): 36.000 35.959 3.843 

𝜹𝚫𝜿𝒃 (°): 36.000 34.852 30.900 

𝜹𝑺𝒃: 0.00100 0.00099 0.00100 

Table 4-19: RMSE Analysis of the QRQS Calibration Procedure Before and After 

Deviation from the Vertical Scanner Assumption 

Non-deviation Deviation 

Vertical 
Scanner 

Non-Vertical 
Scanner 

(pitch=8°, 
roll=8°) 

𝑹
𝑴

 𝑺
𝑬

 𝒃𝒆
𝒇

𝒐
𝒓

𝒆 X(m) 0.575 0.478 

Y(m) 0.565 0.492 

Z(m) 0.26 0.286 

𝑹
𝑴

 𝑺
𝑬

 𝒂𝒇
𝒕𝒆

𝒓 X(m) 0.093 0.267 

Y(m) 0.100 0.101 

Z(m) 0.105 0.131 

P
er

ce
nt

Im
p

ro
-

ve
m

en
t 

X(%) 100 56 

Y(%) 100 100 

Z(%) 97 83 
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4.3.6 Investigating the Number of Control Points 

The QR, QRQS, and R calibration approaches have the option to incorporate control, which 

is used to estimate the bias in the range measurement. The tables below compare the results 

that had 15 control points, versus results that had 100 control points. Table 4-20, Table 

4-22, and Table 4-24 show the calibration results for the QR, QRQS, and R calibration 

approaches, respectively. The corresponding RMSE analysis are shown in Table 4-21, 

Table 4-23, and Table 4-25, respectively. 

For the QR calibration, the results are shown in Table 4-20, and Table 4-21 shows the 

RMSE analysis of those results. For the R calibration, the results are show in Table 4-24, 

and Table 4-25 shows the RMSE analysis of those results. 

Table 4-20: QR Calibration Results While Varying the Number of Control Points 

15 Control 
Points 

100 Control 
Points 

Simulated Biases Estimated Biases 

𝜹𝚫𝑿𝒃 (m): 0.200 0.205 0.211 

𝜹𝚫𝒀𝒃 (m): 0.200 0.196 0.194 

𝜹𝚫𝝎𝒃 (°): 36.000 36.888 37.095 

𝜹𝚫𝛗𝒃 (°): 36.000 36.423 36.498 

𝜹𝚫𝜿𝒃 (°): 36.000 34.703 35.425 

𝜹𝑺𝒃: 0.00100 0.00099 0.00100 

𝜹𝚫𝝆𝒃 (m): 0.300 0.314 0.305 
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Table 4-21: RMSE Analysis of QR Calibration Results While Varying the Number of 

Control Points 

15 
Control 
Points 

100 Control 
Points 

𝑹
𝑴

 𝑺
𝑬

 𝒃𝒆
𝒇

𝒐
𝒓

𝒆 X(m) 0.597 0.598 

Y(m) 0.498 0.496 

Z(m) 0.246 0.239 

𝑹
𝑴

 𝑺
𝑬

 𝒂𝒇
𝒕𝒆

𝒓 X(m) 0.092 0.092 

Y(m) 0.099 0.100 

Z(m) 0.107 0.105 

P
er

ce
nt

Im
p

ro
-

ve
m

en
t 

X(%) 100 100 

Y(%) 100 100 

Z(%) 95 96 

Table 4-22: QRQS Calibration Results While Varying the Number of Control Points 

15 Control 
Points 

100 Control 
Points 

Simulated Biases Estimated Biases 

𝜹𝚫𝑿𝒃 (m): 0.200 0.206 0.208 

𝜹𝚫𝒀𝒃 (m): 0.200 0.201 0.205 

𝜹𝚫𝝎𝒃 (°): 36.000 35.522 35.807 

𝜹𝚫𝛗𝒃 (°): 36.000 36.423 36.569 

𝜹𝚫𝜿𝒃 (°): 36.000 35.624 35.420 

𝜹𝑺𝒃: 0.00100 0.00099 0.00100 

𝜹𝚫𝝆𝒃 (m): 0.300 0.316 0.304 
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15 Control 
Points 

100 Control 
Points 

𝑹
𝑴

 𝑺
𝑬

 𝒃𝒆
𝒇

𝒐
𝒓

𝒆 X(m) 0.596 0.598 

Y(m) 0.496 0.495 

Z(m) 0.242 0.236 

𝑹
𝑴

 𝑺
𝑬

 𝒂𝒇
𝒕𝒆

𝒓 X(m) 0.092 0.092 

Y(m) 0.099 0.100 

Z(m) 0.107 0.105 

P
er

ce
nt

Im
p

ro
-

ve
m

en
t 

X(%) 

Y(%) 100 100 

100 100 

Z(%) 95 96 

Table 4-24: R Calibration Results While Varying the Number of Control Points 

Table 4-23: RMSE Analysis of QRQS Calibration Results While Varying the Number of 

Control Points 

15 Control 
Points 

100 Control 
Points 

Simulated Biases Estimated Biases 

𝜹𝚫𝑿𝒃 (m): 0.200 0.198 0.195 

𝜹𝚫𝒀𝒃 (m): 0.200 0.205 0.196 

𝜹𝚫𝝎𝒃 (°): 36.000 35.084 36.654 

𝜹𝚫𝛗𝒃 (°): 36.000 35.817 35.941 

𝜹𝚫𝜿𝒃 (°): 36.000 37.136 37.136 

𝜹𝑺𝒃: 0.00100 0.00101 0.00100 

𝜹𝚫𝝆𝒃 (m): 0.300 0.296 0.308 
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Table 4-25: RMSE Analysis of R Calibration Results While Varying the Number of 

Control Points 

15 Control 
Points 

100 Control 
Points 

𝑹
 𝑴

 𝑺
 𝑬

 𝒃 𝒆
 𝒇

 𝒐
 𝒓 𝒆 X(m) 0.595 0.597 

Y(m) 0.496 0.496 

Z(m) 0.233 0.236 

𝑹
 𝑴

 𝑺
 𝑬

 𝒂 𝒇
 𝒕 𝒆

 𝒓 X(m) 0.092 0.092 

Y(m) 0.100 0.100 

Z(m) 0.107 0.105 

P
er

ce
nt

Im
p

ro
-

ve
m

en
t 

X(%) 100 100 

Y(%) 100 100 

Z(%) 95 96 

Table 4-20 and Table 4-22 shows that the QR and QRQS calibration results do not 

significantly change between the case with 15 control points and the case with 100 control 

points. Similarly, it can be observed from the calibration results in Table 4-24 that the R 

calibration is not sensitive to the amount of control either. The RMSE results after 

calibration from the QR, QRQS, and R approaches meet the expected accuracy of 10cm 

(Table 4-7). When comparing the before RMSE with the after RMSE in Table 4-21 for the 

QR, Table 4-23 for the QRQS, and Table 4-25 for the R, the RMSE values improved by 

100%, 100%, and 96% for the X, Y, and Z coordinates, respectively, after all calibration 

approaches. 
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4.3.7 Summary of Performance Tests 

This series of tests on the individual Pseudo-rigorous approaches demonstrated that they 

are robust under non-ideal conditions, and a 52-100 Percent Improvement was observed 

even in the extreme cases. This demonstration is important because it allows one to see the 

capability of the calibration approaches to improve point cloud accuracy even when it is 

not possible to meet a certain assumption in the data collection phase. 

Results of the Stability Analysis 

The stability analysis should be performed throughout the lifespan of a LiDAR system in 

order to understand how the parameters vary over time and to establish the optimal 

calibration frequency for a specific LiDAR mapping system. The results shown here 

demonstrate how performing a stability analysis at different times is necessary in order to 

ensure consistent accuracy of derived point clouds. The data used here is the same data that 

was used in section 4.3 which was simulated by ray tracing techniques over terrain defined 

by a USGS DEM. The dates are hypothetical in order to demonstrate the developed strategy 

and the application of stability analysis as QA tool. 

There results from the three different calibration implementations are shown in Table 4-26. 

The first implementation of the stability analysis will be between set-1 and set-2, and the 

second implementation of the stability analysis will be between set-1 and set-3. 
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Table 4-26: Calibration Results from Hypothetical Times 

Set-1 Set-2 Set-3 

Estimated Biases 

𝜹𝚫𝑿𝒃 (m): 

 
 

 
 

       

     

   

      

      

      

      

      

     

      
 

     

             

               

               

                

                

             

       

 

              

 

 
    

 

  

  

  

 

0.20 0.18 0.28 

𝜹𝚫𝒀𝒃 (m): 0.22 0.20 0.18 

𝜹𝚫𝝎𝒃 (°): -0.33 -0.30 -0.47 

𝜹𝚫𝛗𝒃 (°): -0.24 -0.27 -0.19 

𝜹𝚫𝜿𝒃 (°): 0.02 0.01 -0.13 

𝜹𝑺𝒃: 0.001 0.001 0.002 

𝜹𝚫𝝆𝒃 (m): 0.33 0.33 0.35 

4.4.1 Stable Stability Analysis Results 

The RMSE results from the stability analysis between set-1 and set-2 calibration results 

are shown in Table 4-27. There were three strip-pairs used in total for these calibration 

results, and Table 4-28 shows a breakdown of the RMSE by individual strip-pair. In Table 

4-27, the RMSE values do not exceed the error propagation results shown in Table 4-7 and 

therefore the system is considered to be stable at the time of the set-2 calibration. More 

specifically, any differences between the calibration results are not large enough to have 

impacted the final point cloud significantly. 

Table 4-27: Stability Analysis RMSE Values of all Point Clouds from a Stable LiDAR 

System 

Coordinate 
RMSE of all Point 

Clouds 

X(m) 0.018 

Y(m) 0.014 

Z(m) 0.017 
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Table 4-28: Stability Analysis RMSE Values of Individual Point Clouds from a Stable 

LiDAR System 

Strip-
pair 

Coordinate 
RMSE of Point 

Cloud A 
RMSE of Point 

Cloud B 

1 

X(m) 

Y(m) 

Z(m) 

X(m) 

0.011 

0.016 

0.009 

0.011 

0.011 

0.013 

0.008 

0.027 

2 Y(m) 0.016 0.012 

Z(m) 0.009 0.026 

X(m) 0.027 0.011 

3 Y(m) 0.012 0.017 

Z(m) 0.026 0.009 

4.4.2 Unstable Stability Analysis Results 

The RMSE results from the stability analysis between set-1 and set-3 calibration results 

are shown in Table 4-29, and Table 4-30 shows a break down of the RMSE by individual 

strip-pair. In Table 4-29, the Y coordinate RMSE value exceed the error propagation results 

shown in Table 4-7, and therefore the system is considered to be unstable at the time of the 

set-3 calibration. 
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Table 4-29: Stability Analysis RMSE Values of all Point Clouds from an Unstable 

LiDAR System 

Coordinate 
RMSE of all Point 

Clouds 

X(m) 0.081 

Y(m) 0.140 

Z(m) 0.041 

Table 4-30: Stability Analysis RMSE Values of Individual Point Clouds from an 

Unstable LiDAR System 

Strip-
pair 

Coordinate 
RMSE of Point 

Cloud A 
RMSE of Point 

Cloud B 

X(m) 0.085 0.095 

1 Y(m) 0.098 0.095 

Z(m) 

X(m) 

0.017 

0.081 

0.018 

0.075 

2 Y(m) 0.126 0.158 

Z(m) 0.017 0.069 

X(m) 0.074 0.079 

3 Y(m) 0.157 0.136 

Z(m) 0.067 0.017 

Comparing the results from set-1, set-2, and set-3 with the stability analysis tool provides 

a way to define the optimal calibration period and essentially illustrates the process of 

utilizing the developed stability analysis strategy as a QA tool. Given the knowledge that 

the LiDAR system is stable between set-1 and set-2, but not stable between set-1 and set-
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3, the optimal calibration frequency would be the timeframe that spanned between set-1 

and set-2. 
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5. CONCLUSIONS, CONTRIBUTIONS, AND 

RECOMMENDATIONS FOR FUTURE WORK 

Research Conclusions 

This dissertation focuses on airborne LiDAR system calibration and the development of a 

new Quasi-Rigorous/Quasi-Simplified approach which simultaneously addresses the many 

challenges in LiDAR calibration, as well as the development of a stability analysis strategy 

for LiDAR calibration. In addition to these developments there is a performance 

assessment on the Quasi-Rigorous/Quasi-Simplified and existing approaches in non-ideal 

scenarios. 

The experimental results for the Quasi-Rigorous/Quasi-Simplified approach compares it to 

rigorous approaches which are used when all raw measurement available, as well as 

pseudo-rigorous approaches which synthesize the raw measurements when there is a full 

or partial absence of raw measurements. After inspecting the point cloud alignment and 

adjusted coordinates against rigorous approaches using data collected from a UAV 

platform, it was shown that the Quasi-Rigorous/Quasi-Simplified approach is successful in 

significantly reducing the impact of systematic errors even though it makes several 

assumptions. Furthermore, it was demonstrated that the Quasi-Rigorous/Quasi-Simplified 

approach is suitable for calibration in the full absence of raw measurements, and when 

compared to the existing Simplified and Quasi-Rigorous pseudo-rigorous approaches it 

provides maximum capability while maintaining minimal assumptions and no 

requirements for raw measurements. Using simulated data, the performance analysis on the 

new and existing pseudo-rigorous approaches demonstrated that the pseudo-rigorous 

approaches (Simplified, Quasi-Rigorous, and Quasi-Rigorous/Quasi-Simplified) are robust 

under non-ideal conditions that deviate from their assumptions, and a 52-100 Percent 

Improvement after calibration was observed even in the extreme cases. 

In the experimental results showing the application of the stability analysis strategy, it was 

demonstrated with simulated data how to use the strategy as a Quality Assurance tool for 
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consistently producing accurate point clouds throughout the lifespan of a LiDAR mapping 

system. This section performed a stability analysis twice between three sets of calibration 

results from the same LiDAR system. After quantifying the impact of the variation in 

system parameters on the point cloud it was determined that the system is stable between 

set-1 and set-2 but unstable between set-1 and set-3, and with this information one would 

set the optimal calibration frequency to be the time spanned between set-1 and set-2. 

In addition to the development of the Quasi-Rigorous/Quasi-Simplified approach and the 

strategy for stability analysis, the new calibration approach, and previous pseudo-rigorous 

calibration approaches, were successfully used to calibrate a multi-beam spinning LiDAR 

(VLP-16). This has not previously been done since the pseudo-rigorous calibration 

methods are developed specifically for single-beam linear scanning LiDAR systems. 

Research Contributions 

The most prominent contribution of this dissertation is the development of the Quasi-

Rigorous/Quasi-Simplified LiDAR system calibration approach. This new approach is 

generic for many types of users and holds the following characteristics: 

o Operates without access to raw measurements, 

o Uses point primitives to preserve the link to the sensor model, 

o Has an automated procedure that accounts for the irregularity of LiDAR 

point clouds, 

o Has a reliance on overlapping strips instead of expensive control surfaces, 

o Is ground cover independent (does not require urban settings with various 

geometric shapes from buildings and other man-made features), 

o Estimates all system parameters; which includes both the linear and angular 

mounting parameters as well as the internal characteristics of the LiDAR 

unit, and 

o Able to incorporate control into the calibration math model. 
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To summarize this, Table 5-1 scores the rigor of this new calibration approach, as well as 

the existing rigorous approach proposed by Kersting (2011) and pseudo-rigorous 

approaches proposed by Bang (2010). Then, the scores are shown in the graph of Figure 

5.1 which demonstrates how the Quasi-Rigorous/Quasi-Simplified maintains the 

maximum rigor of the existing pseudo-rigorous approaches while having less requirements. 

In conclusion, the Quasi-Rigorous/Quasi-Simplified LiDAR system calibration approach 

has the necessary rigor (by preserving the link to the sensor model) and generality in terms 

of data availability and type of terrain used (urban or non-urban) for the wide range of users 

in the LiDAR community. 

Table 5-1: Calibration Rigor Score of Existing Calibration Approaches (Red) and the 

New Quasi-Rigorous/Quasi-Simplified Approach (Blue) 

Can 
Incorporate 

Control 

Can Handle 
any type of 

Terrain 

1-Step 
Process 

Does not 
Synthesize 

Measurements 

Rigor 
Score 

Simplified 0 0 0 1 1 

Quasi-
Rigorous 

1 1 1 0 3 

Rigorous 1 1 1 1 4 

Quasi-
Rigorous/ 
Quasi-
Simplified 

1 1 1 0 3 
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Figure 5.1: Requirements vs Rigors Score of the New and Existing Calibration Methods 

Another contribution of this work is in the performance assessment of the new and existing 

pseudo-rigorous approaches under non-ideal conditions. In each of the non-ideal 

conditions there is a deviation from one of the underlying assumptions pertaining to the 

pseudo-rigorous calibration math models. This assessment demonstrates that the pseudo-

rigorous approaches can significantly improve point cloud accuracy even when all 

assumptions are not met. More specifically, the performance assessment individually 

inspects each assumption deviation with the following tasks: 

o Side by side comparison of the estimated system parameters/biases before 

and after deviating from the specific assumption, 

o RMSE of the difference between the resulting point cloud coordinates and 

true coordinates for the following 4 cases: 

 Non-deviated, before calibration, 

 Non-deviated, after calibration, 

 Deviated, before calibration, 

 Deviated, after calibration, and 
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o Quantify the percent improvement after calibration for the non-deviated and 

deviated scenario to understand the impact that the non-ideal scenario has 

on the ability of the calibration algorithm to improve the accuracy of the 

data. 

The final contribution of this dissertation is in the development of a stability analysis 

strategy. The stability analysis strategy is an important contribution because LiDAR 

mapping systems are no longer considered a commodity and are being used more often and 

for more types of engineering projects. The stability analysis strategy serves as a QA tool 

for consistent production of accurate point clouds over the lifespan of a LiDAR mapping 

system. The developed stability analysis strategy has the following characteristics: 

o Quantifies variation of system parameters over time, 

o Guides the process of determining optimal calibration frequency, and 

o Operates with or without access to raw measurements (by synthesizing the 

measurements in the latter case). 

Recommendations for Future Work 

Recommendations for future work related to the LiDAR system calibration and the specific 

research done here are as follows: 

o The Quasi-Rigorous/Quasi-Simplified calibration approach could be tested 

with other types of real data, such as data from a high-altitude LiDAR 

mapping system. 

o The Quasi-Rigorous/Quasi-Simplified approach could be expanded to 

handle multi-LiDAR systems. 

o The Quasi-Rigorous/Quasi-Simplified approach could be expanded to 

simultaneously adjust GPS/INS errors along with the determination of 

system parameters. This would entail modelling the full variance-

covariance matrix to appropriately represent correlations/decorelations over 

time. 
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o The Pseudo-rigorous approaches could be tested with various real datasets 

that deviate from their assumptions. 

o The stability analysis strategy developed for airborne LiDAR systems could 

be tested and validated with various real datasets. This should include 

defining the optimal calibration frequency for low-altitude and high-altitude 

systems, as well as systems with industrial and consumer grade lasers. 

o The stability analysis strategy could be extended to include terrestrial based 

applications such as mobile mapping. 

o A stability analysis for multisensor systems could be developed. 
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