
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

8-2018

Visual Analytics to Support Atomistic Simulations Design Visual Analytics to Support Atomistic Simulations Design

Daniel Felipe Mejia Padilla
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Recommended Citation Recommended Citation
Mejia Padilla, Daniel Felipe, "Visual Analytics to Support Atomistic Simulations Design" (2018). Open
Access Dissertations. 2025.
https://docs.lib.purdue.edu/open_access_dissertations/2025

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F2025&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/2025?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F2025&utm_medium=PDF&utm_campaign=PDFCoverPages

VISUAL ANALYTICS TO SUPPORT ATOMISTIC SIMULATIONS DESIGN

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Daniel Felipe Mejia Padilla

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Gerhard Klimeck, co-Chair

School of Electrical and Computer Engineering

Dr. Tillmann Kubis, co-Chair

School of Electrical and Computer Engineering

Dr. David Ebert

School of Electrical and Computer Engineering

Dr. Krishna Madhavan

School of Engineering Education

iii

To the memory of my father.

iv

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor Gerhard Klimeck, and the core

NEMO5 developers Jim Fonseca, Michael Povolotsky, and Tillman Kubis. I wish to

thank my wife and my family for their unconditional love and support.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 SIMULATION FRAMEWORK 4

2.1 Introduction . 4

2.2 Combined Model . 6

2.3 Case study . 9

2.4 Conclusions . 10

CHAPTER 3 INTERACTIVE VISUALIZATION SYSTEM 11

3.1 Requirements . 11

3.1.1 Conceptual phase . 11

3.1.2 Technical phase . 12

3.1.3 Dissemination phase . 12

3.2 System Implementation . 12

3.2.1 System structure . 13

3.2.2 User Interface . 14

3.2.3 NemoViz Plug-ins . 18

3.2.4 Dissemination Tools . 19

3.3 Defining a Simulation with Nemo5 . 20

3.3.1 Design Visualizations From Concept Stage To Design Model
Stage In Nemo5 . 22

3.3.2 Design Visualizations From The Design Model Stage To The
Develop Model Stage . 25

vi

Page

3.3.3 Design Visualizations From The Development/Design Model
Stage To The Run Model Stage 29

3.3.4 Design Visualizations From The Run Model Stage To The Com-
pare Stage . 30

3.3.5 Design Visualizations From The Run Model Stage To The Anal-
ysis Stage . 30

3.3.6 Design Visualizations From The Analysis Stage To Publication
Stage . 32

3.3.7 Visualizations Design From The Publication Stage To Replica-
tion Stage . 33

CHAPTER 4 HIGH-QUALITY IMAGES . 35

4.1 Atomistic Structures . 35

4.2 Devices . 39

4.3 Images Dissemination . 42

CHAPTER 5 NEMO5 CONTRIBUTIONS . 45

5.1 Contributions . 46

5.2 Infrastructure discussions . 47

5.2.1 Guiding principles . 47

5.2.2 Software distribution requirements 48

5.2.3 Testing framework . 48

5.2.4 Profiling and Logging framework 49

5.2.5 Input/Output framework . 50

5.2.6 Options framework . 50

5.2.7 Geometry specification framework 51

5.2.8 Simulation framework . 52

5.2.9 Documentation framework . 53

5.3 Nemo5 auto documentation . 54

5.3.1 Interface Factorizable . 54

5.3.2 Interface Documentable . 54

5.4 Impact . 55

vii

Page

CHAPTER 6 EVALUATION AND DISCUSSION 61

6.1 Informal evaluation test . 61

6.1.1 Defining evaluative dimensions 62

6.1.2 Determining dimensions’ importance 62

6.1.3 Developing instruments . 63

6.1.4 Constructing rubrics . 63

6.1.5 Measuring performance . 64

6.1.6 Results and Discussion . 64

6.2 Identification of relevant errors, Previous User Experience test 66

6.2.1 Defining evaluative dimensions and importance 66

6.2.2 Developing Instrument and Rubrics 67

6.2.3 Measuring Performance and Results 68

6.2.4 Results and Discussion . 69

6.3 Quantitative Evaluation . 70

6.3.1 Measurement instrument . 70

6.3.2 Measuring Performance . 74

6.3.3 Results and Discussion . 74

APPENDIX B NEMO5 GALLIUM ARSENIDE BAND-STRUCTURE CAL-

APPENDIX D INTERACTIVE ANALYTIC SYSTEMS FOR UNDERSTAND-
ING THE SCHOLARLY IMPACT OF LARGE-SCALE E-SCIENCE CY-

CHAPTER 7 SUMMARY AND OUTLOOK 77

APPENDIX A QUANTITATIVE VALIDATION TUTORIAL 79

CULATION INPUTDECK . 88

APPENDIX C EVALUATION MEASUREMENT TABLES 91

BER ENVIRONMENTS . 95

REFERENCES . 113

VITA . 120

viii

LIST OF TABLES

Table Page

5.1 Example implementation of factorizable interface, Dummy Module 55

5.2 NemoFactory instantiation example . 55

5.3 Example implementation of factorizable interface, Dummy Module 56

5.4 NemoFactory instantiation example . 60

6.1 Evaluative Dimensions and Dimensional Evaluation Questions 63

6.2 Scored value for Functionality and Efficiency 64

6.3 Percentages of participant answers to the validation 65

6.4 Tabulated results from user experience evaluation. 67

6.5 Scores (S) and Normalized scores (uS) for the three dimensions evaluated
in the user experience evaluation. 68

6.6 Mean, Standard Deviation, and number of questions included in the pilot
run. (+) Original, (-) Removed, (*) Included 70

6.7 Domain Position error explanation . 73

C.1 Participants Expertise with Nemo5 and previous exposition to NemoViz . 91

C.2 Number of correct answers for each user. 92

C.3 Times participants spend correctly answering a question. 93

C.4 Z-score for each time participants spend correctly answering a question.
Red values highlight outliers values removed during the analysis (based on
the empirical rule) . 94

ix

LIST OF FIGURES

Figure Page

2.1 Simulation design frameworks. 4

2.2 Romanowska process for building and evaluating simulation models 5

2.3 Schematic of the proposed framework for the simulation design process . . 7

2.4 Mapping of the proposed simulation design process using NEMO5 9

3.1 Nemoviz System Architecture . 13

3.2 NemoViz Server client layout . 15

3.3 NemoViz Main view . 17

3.4 NemoViz Relations View . 18

3.5 NemoViz Plugins Plotly . 19

3.6 NemoViz Hierarchical Visualization . 21

3.7 Three-dimensional representations of visual elements included in an input
deck . 23

3.8 Crystal unit cells representations . 23

3.9 NemoViz Database browser visualization 24

3.10 NemoViz Chord diagram examples . 25

3.11 NemoViz Properties visualization . 26

3.12 Properties visualizations . 26

3.13 Visualization of NEMO5 logs . 27

3.14 Visualization of the time-life of NEMO5 objects 28

3.15 Visualization of NEMO5 Tic-Toc output using the profiling view. 29

3.16 Nemo5 Launcher visualization interface . 29

3.17 Plug-ins visualizations . 31

3.18 Plug-in Parameterization . 31

3.19 Magnitude of the strain forces on the surface of a quantum dot’s core . . . 32

x

Figure Page

3.20 Two-dimensional MoS2 sheet input deck representation 32

3.21 Jupyter notebook generated including parameterized plug-ins 34

4.1 Atoms in a Silicon-Germanium Disk . 35

4.2 Silicon atoms distributed in a diamond lattice 36

4.3 Alloy structure of silicon and germanium atoms 37

4.4 silicon germanium atoms in an ultra-thin-body device 37

4.5 Multiple Water (H20) molecules between two graphene sheets 38

4.6 Periodic surface Roughness . 38

4.7 Basic unit cell used to simulate periodic surface roughness 39

4.8 Intensity of two energy level over a graphene sheet with a hole 39

4.9 Electric potential along an ultra-thin body transistor 40

4.10 Silicon and Germanium Alloy ultra-thin body transistor 40

4.11 Gallium Arsenide ultra-thin body transistor. 41

4.12 Cylindrical Gallium Arsenide Nanowire transistor 41

4.13 Intensity of an energy level inside a quantum dot with a conic core 42

4.14 Direction of strain forces on a quantum dot 43

4.15 Magnitude of strain forces on a quantum dot 43

4.16 Multiple Flying qubits . 44

5.1 Nemo5 lines of code by contributor . 45

5.2 NemoViz auto-documentation architecture 53

6.1 Normalized scores . 69

6.2 Visualizations of input decks after introducing artificial errors 71

6.3 Example of the Tutorial’s feedback after each test answer 72

6.4 Effectiveness and Efficiency average and quantiles 75

6.5 Comparison of expert and non-expert users. 76

D.1 The general workflow of our system for demonstrating the scholarly impact
of cyber-environments . 102

D.2 The web interface for importing bibliographic metadata from Google Scholar104

xi

Figure Page

D.3 The web interface for importing bibliographic metadata from Google Scholar105

D.4 The web interface for correcting and completing citation metadata 106

D.5 The web interface for correcting and completing citation metadata 107

D.6 The web interface for (1) annotation and (2) showing the voting result. . 108

D.7 Some of the visualizations and statistics available on the impact demon-
stration site. 109

xii

ABSTRACT

Daniel Mejia Ph.D., Purdue University, August 2018. Visual Analytics to Support
Atomistic Simulations Design. Major Professor: Gerhard Klimeck.

Nowadays, complex simulations of a variety of processes are extensively used in

academia and industry. Particularly in academia, powerful scientific software tools

are constantly developed to simulate complex systems; for instance, simulations of

quantum transport using the non-equilibrium greens Function formalism. The po-

tential impact of these scientific tools in industry is huge, but it is hindered by the

lack of usability of the software by those who are not deeply familiar with it. Visual

analytics is a new field that has shown the positive impact of interactive visualizations

in software usability and the cognitive process of the user. This research investigates

whether the implementation of interactive visual aids also improves the usability and

the cognitive processes of research codes users, particularly those used for simulation

design. To accomplish this goal, this study defines a framework for simulation design

in scientific research, identifies the stages in which visual aids can be implemented

to increase usability, and implements an interactive visualization system (NemoViz).

NEMO5, a tool for designing atomistic simulation, is used as a case study to measure

the effectiveness, efficiency, and user satisfaction of the use of visual aids in scientific

simulation design. The results from this research provide a framework of reference for

development of user-friendly simulation design tools, and will shed light on strategies

that scientific developers might implement to broaden the impact of their simulation

codes.

1

CHAPTER 1. INTRODUCTION

Nowadays, complex simulations of a variety of processes are extensively used in

academia and industry. For instance, since the 1960s, the drift diffusion model and

the understanding of electron transport in transistors have driven work in computa-

tional electronics at the mesoscopic scale [1]. Most recently, other models, such as

non-equilibrium greens function (NEGF) formalism for simulating quantum trans-

port, have been incorporated into codes to simulate phenomena at the nanoscopic

scale. However, these codes demand considerable user experience in semiconductor

physics to operate them properly [1]. This additional knowledge includes new layers

of information in the cognitive process of the user [2]; for example, crystallographic

information and other material science concepts. Additionally, the customization

of each simulation creates cognitive challenges associated with the need to control

parameters and the generation of process definitions and simulation models, among

others [2] [3]. Designers analyze parameters and their relations, create simulation

models, and evaluate results, among other cognitive challenges. This work focuses

on addressing the challenges of scientific simulation design by studying the impact

of visualizations on the cognitive process of simulation design. The cognitive process

required for simulation design can be improved by resources such as tutorials, man-

uals, visual aids, web resources, and others. The main advantage of manuals and

tutorials is that the user learns by example, which reduces the learning curve of the

simulation tools and allows users to efficiently achieve results [4]. The downside of

manuals and tutorials is that they restrict, or bias, the users thinking, limiting the

capacity of the simulation tool [5] [6]. Visual aids improve the cognitive process by

including external cognition as part of the process [7]. Properly designed, interactive

visual aids allow the user to rapidly understand the simulation tool and get results,

2

and also creates the flexibility to explore different aspects of the simulation. These

advantages no longer hold true when the visual aid is poorly designed. Visualizations

are usually part of a graphical user interface (GUI). Several studies have shown that

the use of visual representations and GUIs contribute to a more efficient transfer of

knowledge by reducing the computer users cognitive load [8]. Currently, almost all

software applications include a GUI; in some cases, there is no distinction between

the program and the GUI. The software industry complements their developments

by adding visual tools and programmatic interfaces. GUI design has become a main

part in the software development life cycle. However, this prevalence of GUIs does

not hold true in the case of scientific computing. Scientific computing typically deals

with complex problems and extensive computational solutions. Developing a final

user interface seems to be the least of scientific software developers concerns. The

interaction between the software and the final user is determined by the users ability

to customize the execution of the program by modifying a configuration file. Scien-

tific software tools are focused on solving the scientific problem, and they assume the

user is knowledgeable both in the field of study and about the tool itself. Non-user-

friendly software is not easily adopted by other scientists or successfully transferred

and used in industrial applications. Unfortunately, this is the case for many powerful

simulation codes that never leave university computers because they are difficult for

non-experts to use. Most scientific software developers are not aware of this limita-

tion. To enhance the impact of research codes, particularly in the field of modeling

and simulation, there is a need to standardize modeling and simulation frameworks

and tools. This will encourage the scientific community to create user-friendly codes

This research investigates how to better design effective, user-friendly simulations in

scientific research. Specifically, this research proposes the integration of visual an-

alytics to enhance the usability of scientific codes by non-experts in other scientific

fields and industry. Visual analytics is a new field of information visualization that

focuses on analytical reasoning facilitated by interactive visual interfaces [9].

3

This thesis is organized as follows: Chapter 2 describes different simulation frame-

works or models, and proposes a new framework based on key aspects of previously

published frameworks. Chapter 3 describes the implementation of an interactive

visualization system called NemoViz, which supports the framework proposed in

this research. Chapter 4 presents some of the high-quality images obtained using

NemoViz. Chapter 5 describes some of the additional contributions that were made

to the Nemo 5 code along with the development of NemoViz. Chapter 6 describes

the formal evaluation performed to evaluate NemoViz. Finally; Chapter 7 presents

general conclusions and recommendations for future work.

Additionally, appendices present the validation tutorials, input files used during

the validation, all data obtained from the evaluation, and the paper presented in

the 2015 IEEE International Conference on e-Science describing the interactive ana-

lytic system used to measure Nanohub impact. nanoHUB.org is a cyberinfrastructure

where researchers, and educators collaborate, share resources, and simulate real nan-

otechnology problems.

https://nanoHUB.org

4

CHAPTER 2. SIMULATION FRAMEWORK

2.1 Introduction

(a) Kruger simulation workflow. (b) Allen et al. model.

Fig. 2.1. Simulation design frameworks.

Three main frameworks, illustrated in Figures 2.1 and 2.2, describe the simula-

tion process. The first formal documented definition of a simulation workflow model

was proposed by Krüger et al. in the 1970s [10]. Krüger proposed that the simula-

tion workflow begins with the problem definition and undergoes the stages of data

collection and model building, validation, data analysis and interpretation, and fi-

nally, documentation (2.1(a)). His model introduced the term real world interaction,

which encompasses data collection, model building, and validation as the core of the

process. While his model is mostly linear, it is the first model to define the design

simulation loop. However, according to his model, the only two ways to trigger the

5

loop is through a bad validation of the model or a bad validation of the results. In the

1990s, Allen et al. proposed a simulation workflow designed for scientific simulations,

specifically for fluid simulations [11]. In his model, Allen highlights the importance

of conducting experiments in the real world and compares the results of the experi-

ments with the simulation results using theoretical models (Figure 1b). He clarifies

the definition of real world interaction as interactions between user and data that

arise from theoretical models or experimental results [11]. An interesting feature of

this model is that data acquisition is part of its process This is not always necessary,

since existing data can be used as validation sets. In this case, experimental data

generation or collection is not part of the simulation process.

Fig. 2.2. Romanowska process for building and evaluating simulation models

Most recently, Romanowska [12] proposed another framework for the simulation

process (see Figure 2.2). His model is unique in its flexibility navigating from one

6

stage of the process to another in no particular order. This model also includes two

additional stages: coding and testing, and result replication.

Combined, all of the above frameworks present the simulation process steps. How-

ever, when looking at each framework individually, one or more steps are missing. As

the simulation process in scientific research becomes more and more complex, there is

a need to integrate these frameworks into a single, more detailed model that describes

all possible steps and their interactions.

2.2 Combined Model

The combined framework proposed in this study is mainly based on work by

Romanowska [12]. It includes elements from the models proposed by Kruger [10] and

Allen et al. [11], and explicitly defines the possible interactions between stages. This

last feature is not present in any of the models proposed by other authors to date.

Figure 2.3 presents the schematic of the proposed framework. Each box represents a

stage in the simulation design process. The dotted boxes note input information, but

they are not part of the simulation design process itself. Possible relations between

stages are shown using lines that connect the stages.

The process begins with the conceptual phase. This phase consists of one stage.

the concept stage. Some authors refer to this stage as the identification of the research

question or the definition of the problem. During this stage, a simulation designer

defines the studys premises and assumptions, and tries to align some of those con-

cepts with a relevant question and possible solution. Usually, these premises and

assumptions come from previous knowledge of theoretical models or data reported

by experiments in scientific research; unfortunately, the designer is biased about the

expected results based on the subjective nature of human cognition and the nature

of human cognition. After the concept is clearly defined, the technical phase follows.

The first step in this phase is the design model stage. In this stage the designer repre-

sents the model in some technical language, from mathematical frameworks to specific

7

Fig. 2.3. Schematic of the proposed framework for the simulation design process

simulator inputs. Unless there is a completely new model, designers prefer to model

their concepts in well-defined research codes or a commercial simulator. This requires

modification to a relatively high number of parameters to represent the model. All

languages have their restrictions, and those restrictions can force the designer to pre-

fer a particular language to represent the model, choose a new simulator, develop

a new simulator, or re-evaluate the concept altogether. If the simulator allows for

the functionality desired by the designer, the natural process is to advance to the run

model stage. If not, new code should be developed. This is the case for many research

tools that are considered incomplete; new functionality needs to be implemented or

requested. In the develop model stage, the designer must advance through a tradi-

tional software development life-cycle: analysis, design, coding, and testing. This

process has been widely studied. Multiple frameworks have been proposed and they

are beyond the scope of this work. However, in the last decade, extreme programing

has become the standard in academia and industry due to its flexibility. Since high

performance computing (HPC) is strongly connected to simulation, some extra pro-

8

filing tools are required along with development. After the design model stage is the

run model stage. This stage seems trivial, but it is not. Nowadays, simulators claim

to be HPC efficient; therefore, the model should run in highly parallel systems and

run in heterogeneous systems that include accelerator cards, such as those installed

in the two main supercomputers Titan (USA) and Tianhe2 (China). The former uses

graphical processor units (GPUs), and the latter uses an Intel many integrated core

architecture (Intel MIC). The complexity of the execution requires some expertise.

Extra parameterization of variables can be used to run the model with specific rules;

for instance, the number of cores per node or multi-threading. The execution will

produce result data with which to compare the model with real world data. This

is the compare stage. Data from experiments or theoretical models represent spe-

cific observables that can differ from the observables simulated by the model. Some

post-processing is required to transform data into a similar shape, and the statistical

model can be applied to make conclusions. In the analysis and interpretation stage,

results from the previous stage are examined, hypotheses are created, and new ideas

are generated. These ideas are materialized into new concepts, new simulation de-

signs, and conclusions. Conclusions provide the input for the next phase. During

the dissemination phase, researchers share the new knowledge they have acquired, as

they would following any scientific research process. In general, the dissemination of

knowledge is done by publishing new findings in journals or in conference proceed-

ings. However, it is difficult to publish all parameters used by the simulation or the

exact code used in the simulation, and the reproducibility of results can, therefore,

be compromised. The process of reproducibility can be addressed by publishing a

snapshot of the simulation code in a specialized cyber-infrastructure. The benefit of

this model is its clear definition of steps and their connections; this allows for a clear

definition and measurement of the impact of the visualization tools.

9

Fig. 2.4. Mapping of the proposed simulation design process using NEMO5

2.3 Case study

The proposed framework describes the process of designing simulations in the

field of nanoelectronics using NEMO5 as the simulation engine. Figure 2.4 presents

an example of how the framework can be applied to a NEMO5 simulation. The

conceptual phase in NEMO5 is mainly defined by the users. For instance, the user

may want to test different device designs and their IV characteristics to select the best

model. The initial design might be based on experimental results and/or theoretical

data from drift diffusion equations.

The technical phase incorporates the input variables from the user, which NEMO5

pulls from the material database. The design model stage in NEMO5 is defined by the

input deck. For instance, the input deck defines the devices crystallographic informa-

tion, geometrical structure, physical model (QTBM or RGF), and the restrictions of

the physical model (boundary conditions for Poisson’s equation). The develop model

stage in NEMO5 consists of the implementation of a solver in C++ or Python. The

run model stage consists of the execution of the input deck. This is usually done with

10

the NemoLauncher. The other two stages of the technical phase, the comparison

stage and the analysis and interpretation stage, are not covered by NEMO5. Usually,

during the comparison stage, NEMO5 users create their own visualization scripts;

for example, to compare IV curves. In the analysis and interpretation stage, users

decide which device parameters to change in order to improve the device characteris-

tics; for instance, to improve the relation current versus its voltage. These decisions

might lead to new simulations. The dissemination phase is not covered by NEMO5

either. In this phase, the user presents the NEMO5 simulation results in journals,

at scientific conferences, and other venues (the publication stage). Finally, the user

publishes the final simulation parameters to allow reproducibility; on a few occasions,

the simulation is published as a tool in Nanohub to ensure reproducibility of results

by other researchers.

2.4 Conclusions

This chapter proposed a combined model that describes the simulation process and

delineates the main steps faced by simulation users. This framework could help to

describe the cognitive impact of visualizations in the process of designing a simulation,

particularly the impact of visualization on Nemo5’s users.

11

CHAPTER 3. INTERACTIVE VISUALIZATION SYSTEM

In this research, an interactive visualization system was designed involving the com-

plete simulation process described on Figure 2.3. The main functional requirements

for each phase are

• Conceptual phase: users visualize data from external sources, learn about pos-

sible physical models, and perform parameter exploration on those models.

• Technical Phase: users import simulation inputs, visualize spatial information

of loaded inputs, visualize no-spatial information and its relations with other

inputs, visualize simulation results, and visualize useful information to debug

new models.

• Dissemination phase: users export inputs as tools and graphical material that

support results’ reproducibility.

The following sections, discuss how these requirements were fulfilled.

3.1 Requirements

3.1.1 Conceptual phase

During this process, users upload raw data into the system, and data is processed

and transformed into visual representations such as heatmaps or line plots. Users can

visualize available physical models in the system, and access documentation for each

specific model. The documentation contains descriptive information about assump-

tions, formulas, restrictions, and possible parameters of the physical model. Users

can also explore databases containing material properties and change values.

12

3.1.2 Technical phase

Given a specific physical model and restrictions that represent external results,

users include simulation inputs into the system, and this information is processed to

extract spatial and abstract components of the simulation as well as the relations

between these components. Spatial components are visualized as three-dimensional

models and abstract components are listed with their relations. Users can filter

visible components and reconfigure each component. When users define a specific

experiment, the system runs the experiment and results are displayed as visual rep-

resentations. Users can then interpret the results and perform comparisons.

3.1.3 Dissemination phase

After a set of experiments has been conducted and new insights found, researchers

define the inputs that describe the new model, parameterize them, and export the

model as a tool. This tool is capable runoff running the model and visualizing the

output results.

3.2 System Implementation

NemoViz was developed as a modular visualization environment system. The sys-

tem was developed using HTML5, Webgl, Javascript, Python, and C++, and uses

Nemo5 as a library. Users can inspect Nemo5 input decks, explore three-dimensional

models, visualize simulation results, generate reproducibility tools, and export three-

dimensional models to generate high-quality images. All these components were de-

signed to support users during the entire process of designing a new simulation. The

following sections will introduce the actual user interfaces and examples of how users

can interact with a Nemo5 simulation.

13

Fig. 3.1. System Architecture: NemoViz is implemented using mod-
elviewcontroller (MVC), and client-server architectures

3.2.1 System structure

Figure 3.1 describes the architecture defined to develop NemoViz. In order to

be extensible for developing new visualizations, it is based on modelviewcontroller

(MVC), and client-server architectures. The client-side is implemented with JavaScript,

control elements are based on the Dojo toolkit library [13], Webgl visualizations use

Three.js as the core [14], and the D3 [15] library supports all other kinds of visualiza-

tions. The server-side is implemented with C++ supported by the Boost library [16],

and visualization plug-ins are implemented in Python, using well known visualization

libraries.

All user interactions with the client are captured as Javascript events via a web

browser, and they are passed to the asynchronous JavaScript and XML (AJAX)

controller. This controller dispatches events in the Webgl model, and triggers refreshes

of views that need to be changed. The AJAX controller can also demand information

from web services as JSON requests. All client requests are captured in the server by

the web services (WS) controller,

https://Three.js

14

The WS controller is in charge of four main tasks. The first task is to call a

Nemo5 kernel and execute small calculations using Nemo5’s API. These calculations

are triggered by the NemoViz model, sent to the WS controller and, when Nemo5’s

results are ready, passed back to the model. Then, the controller receives changes

required by the views in the client and notifies the AJAX controller. The second task

is similar to the previous task, but instead of calling Nemo5 calculations it executes

Nemo5 database queries and processes information related to Nemo5 parameters. The

third task is to communicate to the model any interaction that users have with visual

models. For example, to hide layers of information, or include advance calculation

of atoms positions. The last task is to execute Python code from a specific plug-in,

which captures HTML representations of a visualization, compresses the text, and

sends it back to the client by notifying the AJAX controller.

3.2.2 User Interface

NemoViz is based on Nemo5’s input structure of blocks of properties. A Nemo5

simulation is described as a text file (input deck). An input deck is written in a C-

like format (similar to a STRUCT statement). Table B contains a simple example,

and it shows how an input deck is divided into groups, identified by keywords at

the beginning of each curly bracket; henceforth these groups will be called blocks.

NemoViz was designed to show multiple visualizations of blocks and relations found

in an input deck provided as input. Figure 3.2. shows an example of an input deck

loaded in NemoViz.

NemoViz layout consists of four main visual containers. These containers are

synchronized accordingly to each user action, particularly enabling additional visu-

alizations when needed (e.g., if a domain is selected, the visualization details of the

crystal must be displayed). Description of the four containers are presented below.

15

Fig. 3.2. NemoViz server client layout consists of four main visualiza-
tions containers: (1) Outline view: A hierarchical data structure, (2)
Properties view: Editable options of a selected block, (3) Main view:
A three-dimensional representation of the model defined in an input
deck, and (4) Relations view: An abstract representation of a selected
block and its relationship with other blocks.

16

Outline view

The outline view visualization represents hierarchical data and defines a simu-

lation. It allows viewing the input deck in two different ways: a hierarchical tree

structure or a plain text editor. A hierarchical tree structure is a natural way to

represent the input deck’s blocks (see the top left figure of Figure 3.2). The user can

collapse and expand a block by clicking on the folder icon with its name. Users can

change from a tree-like view to a plain text editor by changing to ”input deck text”

mode.

Properties view

The properties visualization represents the state of a block. Each block represents

a set of parameters that configure part of the simulation. When a user selects a

block in the tree view or on any other visualization, the table on the properties view

appears and is filled with the name-value pairs that are defined in that block (see the

bottom left of Figure 3.2). Users can edit values in the table, and automatically see

the changes visualized in the other visualization containers, particularly in the main

view and the relations view. Also, the system alerts users about errors detected

in the parameters of a particular block by showing a tooltip. The properties view

also includes a toolbar where users can hide or show the visual representations of the

selected block and find possible parameters and documentation for the block and each

parameter.

Main view

This container is a set of visualizations comprising the main visualization, called

workspace, and instances of post-processing visualization plug-ins. Each plug-in in-

stance is loaded in a different container (tab), and has a unique name that is assigned

when the plug-in is executed the first time. Tabs can be renamed and closed. All vi-

17

Fig. 3.3. Main view: Blocks with a spatial representation are vi-
sualized in this view and users can filter the types of models that
are overlapped: A) different block types enabled for different parts
of the device, B) only geometrical representations are visualized, C)
only atomistic representations are visualized, and D) only meshes are
visualized

sualizations can be accessed by clicking on the tab identifier name, and the workspace

visualization cannot be closed.

TThe workspace visualization consists of three-dimensional models that represent

different aspects of the simulation. Any block that contains information about a

spatial representation (e.g., regions, domains, boundary conditions, finite element

domains, etc.), are included, as three-dimensional models in the main view, as is

depicted in Figure 3.3. All models have an opacity level to enable users to visually

detect overlapped elements. Traditional zoom/pan interaction techniques are enabled

so the user can visualize the models from different points of view, and information

about elements in the model is visible as a tooltip when the mouse is close to that

element.

18

Fig. 3.4. NemoViz representations of an example of a Gallium ar-
senide (GaAs) cuboid: a) Relations view showing all identified rela-
tions between blocks. B) Relations view showing relations of a selected
domain. c) Relations view showing relations of a selected region

Relations view

The relations visualization represents a block of the simulation and its relations.

This visualization is a mix between a bottom quadrant chord diagram, as shown in

Figure 3.4, and a three-dimensional canvas. The chord diagram is represented only in

the bottom quadrant, and it shows all detected relations between blocks in an input

deck, but it also highlights connections from a particular block. The relations view

also represents blocks as geometrical models; for instance, as a mesh or as an atomistic

structure and its material information. The user is allowed to navigate different blocks

in the inputdeck by clicking on the block’s name in the chord diagram, and all other

visualizations are synchronized accordingly.

3.2.3 NemoViz Plug-ins

Plug-ins are post-processing visualization scripts that not only represent output

data from a Nemo5 simulation (e.g., I-V characteristics (current vs. voltage plot),

error convergence plots, and spatially resolved density of states), but also external

19

(a) GaAs simulation: density of states map-

ping the Brillouin zone are represented as a

heat map.

(b) Quantum-dot simulation: eigenfunc-

tions of the ground state are represented as

3D contours.

Fig. 3.5. NemoViz Plugins Plotly

data such as: simulation memory consumption, tic-toc traces and object lifetimes.

Plug-ins are classified by type; each type represents a wrapper around specific Python

libraries. Currently, NemoViz supports five plug-in types based on popular visualiza-

tion libraries: Bokeh, Plotly (Figure 3.5(a)), Paraview, X3Dom and HTML/D3. Each

plug-in can be parameterized and configured, meta-variables allow users to change

parameters directly from the NemoViz client and execute the same script with differ-

ent inputs. Visualizations can go from simple line plots or histograms to heat maps

and three-dimensional surfaces. They can also include different layers of information

like heat maps and contour visualizations.

3.2.4 Dissemination Tools

NemoViz includes two main components that can help researchers to disseminate

their findings. The first component allows users to export three-dimensional models

as a Threejs scene. Threejs describes all elements included in the scene as a JSON file

20

including cameras, lights, and geometrical definitions. These files can be imported

into Blender using a Blender add-on called NemoViz loader. Blender would allow

researchers to create high-quality pictures of their models.

The second component is the reproducibility exporter. Researchers can define

parameters in the input deck and export these parameters as a Rappture tool that can

be published on nanohub.org. Rappture tools consist of an XML file that describes the

graphical user interface, and a Python script. The Python script takes the parameters

from the GUI, creates a valid Nemo5 input deck, and executes Nemo5. By default, it

captures all the output from the simulation as a log file, but researchers can modify

the Python script to include some visualization as part of the output.

The limited number of available visualizations is one of Rappture’s weaknesses,

and to include new visualizations would require heavy redevelopment of the Rapp-

ture infrastructure [17]. However, users have a second option with NemoViz: users

can export an inputdeck as a Jupyter notebook. In this case, researchers have the

option of not just predefined parameters, but the Jupyter notebook also includes in-

stances of the visualization plug-ins. The exported Jupyter notebook translates all

selected parameters as Jupyter widgets, and plug-ins codes as functions. The Jupyter

notebook also includes button widgets that trigger the execution of those functions.

Jupyter notebooks can be downloaded and published on nanohub.org as public tools

(this option was recently added).

3.3 Defining a Simulation with Nemo5

NEMO5 is described as a text file, also called an input deck. It contains text

written in a C-like format (similar to a STRUCT statement), with keywords at the

beginning of each structure that define the part of the simulation each block repre-

sents; there are clear sections or definitions. A NEMO5 input deck starts with the

Structure section, which contains information about structure and materials. The

information about materials, atomic composition, and nonstandard material param-

https://nanohub.org
https://nanohub.org

21

eters is contained under the Materials nested definition. The Geometry definition

specifies the geometric shape of individual regions, and Domain defines which regions

are aggregated to a domain. Each simulation takes place in a certain Domain, and

several simulations can be carried out, possibly by coupling. The Solvers definition

sets the simulation types. Each simulation, given its own solver definition , has a set

of options specific to its task. The Global section defines the location of the material

parameters and which of the defined solvers are executed on the top level. Some

general remarks on the input deck are as follows:

(a) Tree view (b) Editor view

Fig. 3.6. Hierarchical Visualization of NEMO5 input deck

1. Comments are done in C++-style: // marks the remainder of a line as comment,

and /*...*/ allows for multi-line comments.

2. Only ... are accepted as brackets. The opening bracket needs to be placed

in the same line as the section name and the closing bracket on a separate line.

There is no end line character.

3. Vectors are given as (a,b,c) or (1,2,3).

22

4. Vectors of vectors are given as [(a,b), (c,d)].

5. Misspelled parameters are simply ignored and do not create an error, unless the

corrected parameter is mandatory in a simulation and missing from the input

deck.

6. Spaces can either be spaces or tab stops.

3.3.1 Design Visualizations From Concept Stage To Design Model Stage

In Nemo5

Given that there is an intrinsic hierarchy of input deck sections, a natural way

to visually represent this hierarchy is a tree visualization: each node of the tree

represents a section in the input deck, and each node can be expanded or collapsed

to show children sections. Figure 3.6(a) shows the representation of the text from

an input deck loaded into the GUI. However, there is a loss of context with this

visualization, and this is the reason why some users prefer to visualize the full text.

An alternative visualization shows the full text and enables visual encoding elements

to fold and unfold blocks of text (see Figure 3.6(b)).

A simulation also describes elements with an intuitive three-dimensional repre-

sentation. Definitions, such as finite element grids or geometrical descriptions, can

be represented with three-dimensional objects, as shown in Figures 3.7(a) - 3.7(d).

NEMO5s input deck also contains information, such as crystallographic definitions,

that does not have a trivial representation in space. The process to understand or

mentally visualize these elements is one of the most challenging cognitive processes

in atomistic simulations. The cognitive process is boosted when non-trivial visualiza-

tions accompany reference visualizations as boxes or planes. The designer decides to

enable or disable each layer of information to avoid occlusion.

Given the complexity of crystal structure, a detailed visualization of the crystal

unit cell was also designed. All atoms included in the unit cell are shown as solid

spheres, with possible bonds as translucent discs and periodic atoms as translucent

23

(a) Geometrical definitions of a nanowire. (b) finite element meshes of a nanowire.

(c) Silicon ultra-thin body (UTB) (d) Si dome-like quantum dot.

Fig. 3.7. Three-dimensional representations of visual elements in-
cluded in an input deck

(a) GaAs crystal unit cell periodic in X (b) MoS2 crystal unit cell with periodicity

direction in all directions.

Fig. 3.8. Crystal unit cells representations

24

white discs . Also, curly arrows point to the periodic equivalent atom, as depicted in

Figure 3.8.

(a) interactive table that displays

parameter-defined values and the cal-

culated values

(b) Database Calculator, that allows for pa-

rameter overloading and calculating param-

eter values

Fig. 3.9. Database browser visualization

Additionally, the designer must choose the set of parameters used by the simula-

tion. This set is defined by a keyword, which is usually the last name of the main

author. All parameter sets are defined in an additional text file in a format similar

to the input deck. This file is called the material database, and its current size is

around one megabyte. Parameters can be overloaded via the input deck or directly

modified by the material database file. Parameters can be defined as values, strings,

rules, or functions with other parameters as arguments. Figure 3.9 presents a table

visualization designed to request data on demand.

Two visualizations were designed to represent relations between definitions. For

instance, Figure 3.10(a) presents a chord diagram visualization to highlight the rela-

tions between a solver, its domain, and execution. Figure 3.10(b) presents a directed

connected graph with context layout when a solver is selected.

25

(a) A chord diagram highlighting the re-

lations between a solver, its domain and

execution

(b) directed connected graph with context

layout when a solver is selected

Fig. 3.10. A chord diagram examples

3.3.2 Design Visualizations From The Design Model Stage To The De-

velop Model Stage

NEMO5 implements multiple physical models; however, some of these models are

developed using commercial libraries or require specific configurations. These models

can be excluded when NEMO5 is compiled. Currently, designers do not know which

models are available in a specific instance of NEMO5 based on the manual or code

documentation. However, given that NEMO Server has access to the NEMO object

factory, a list of solvers and their specific options are visualized, as illustrated in

Figure 3.11.

If the available models do not support the designers concept, then new features

must be implemented in the simulator. New features in NEMO5 could be imple-

mented in two ways.

The first solution is to include new parameters in an existing solver, and include

new function calls when these parameters are defined. Alternatively, a second so-

lution is to create a completely new solver. Any new solver has to be registered in

the NEMO5 object factory in order to be available from the input deck. In both

26

Fig. 3.11. Schroedinger solver visualization options and the descrip-
tion of its parameter DOS points.

(a) Visualization when there is empty

documentation

(b) Visualization when there is missing

documentation

Fig. 3.12. Properties visualizations and error handling

cases, NEMO5 forces the designer to document all new options and the description

of the new functionality. Validation of this documentation is represented as visual

aids, depicted in Figure 3.17. Color encoding is used to show the missing documenta-

tion. NEMO5 can be configured to not run if the documentation is incomplete. This

27

Fig. 3.13. Visualization of NEMO5 logs

visualization is supported by the fact that these solvers, and all NEMO5 objects in

general, implement two interfaces: a documentation interface and a factorizable inter-

face. Both interfaces are responsible for enforcing documentation in newly developed

components and allowing tracing of logs.

When a simulation is running, the designer does not have any feedback on the

status of the simulation. The only information that developers have is the log file.

Log files are usually long text files with the simulators internal status messages.

NEMO5 generates log files with different levels of detail. Browsing log files requires

significant experience with NEMO5, and only some specific keywords can guide the

search. Interactive visualizations can be used to guide this search or to display the

28

Fig. 3.14. Visualization of the time-life of NEMO5 objects

simulation status. Nemo5 logs can be visualized on NemoViz plug-ins, as illustrated

in Figures 3.13 and 3.14

NEMO5 also includes an embedded tic-toc system that allows designers and de-

velopers to benchmark and profile new codes. The profiling information is dumped

into an XML file that can be visualized as an interactive tree view, as illustrated in

Figure 3.15. This visualization was implemented with help of Santiago Perez.

29

Fig. 3.15. Visualization of NEMO5 Tic-Toc output using the profiling view.

(a) Visualization of the command-line tool NEMO (b) simulation execution queue

Launcher

Fig. 3.16. Nemo5 Launcher visualization interface

3.3.3 Design Visualizations From The Development/Design Model Stage

To The Run Model Stage

After the concept is completely translated into input deck language, NEMO can

be executed via NEMO Launcher. The launcher tool configures NEMO5 to use spe-

30

cific hardware resources, such as accelerator cards, or to define restriction in the MPI

execution. Nemo Launcher is a main component of the NEMO5 regression test sys-

tem. However, the launcher is a command-line utility that is not part of the NEMO

binary. A visualization that extracts the main components of the launcher and repre-

sents them as simulation parameters was designed and is depicted in Figure 3.16(a).

All simulations executed via the launcher can be visualized as a list Figure 3.16(b)

3.3.4 Design Visualizations From The Run Model Stage To The Compare

Stage

After a successful simulation is executed, NEMO5 generates multiple text files

that describe the physical model observables; however, these files come in different

formats. Additionally, some of the results from NEMO5 might not be compara-

ble to the experimental data results. Therefore, data may need to be transformed

and unified. Simulation designers create scripts to transform the data and perform

comparisons. Tools such as Matlab, PyLab, and R are widely used for data transfor-

mations as well as simple visualizations. Tools such as Paraview or Visit are used to

visualize three-dimensional data.

To support scripting flexibility, Nemo Server includes Nemo Server plug-ins. All

scripts written in Python can be loaded as NEMO Server plug-ins and visualized at

any time. Figure 3.5 presents examples of visualizations created with a Plotly plug-

in, which allows designers to generate two-dimensional visualizations. Figure 3.17(a)

presents visualizations created with a Paraview plugin. In fact, any Paraview state

can be exported as a Python script and loaded directly as a plug-in.

3.3.5 Design Visualizations From The Run Model Stage To The Analysis

Stage

After validation is performed in the compare stage, a designer enters the explo-

ration phase. The designer seeks better insight into the model by changing some of

31

(a) Silicon Ultra-thin-body UTB simula- (b) Transport simulation on MoS2 sheets,

tion, final self-consistent potential repre- streamlines represent the current flow be-

sented as a mesh surface tween atoms

Fig. 3.17. Plug-ins visualizations

(a) Parameterization of an energy- (b) Energy-momentum heatmap visual-

momentum heatmap plug-in ization

Fig. 3.18. Plug-in Parameterization

the parameters and running multiple simulation scenarios. Analysis is performed with

new data results. The designer tries to find patterns that explain how the model ad-

dresses the research question defined in the conceptual stage. This cognitive process

32

shares similar characteristics to the cognitive process in the compare stage. Visual-

izations described in the previous section also apply to this stage. However, given the

different data result sets, the designer should parameterize any visualization plug-in.

NemoViz allows plug-in to be parameterized as a Json file that can be uploaded to

the server (see Figure 3.18).

(a) Model exported from Paraview (b) Render obtained after post-processing

on Blender

Fig. 3.19. Magnitude of the strain forces on the surface of a quantum dot’s core

(a) Visualization of the main view in (b) Render obtained after post-processing

NemoViz on Blender

Fig. 3.20. Two-dimensional MoS2 sheet input deck representation

3.3.6 Design Visualizations From The Analysis Stage To Publication Stage

Results obtained during the compare and analysis stages can be used to create

high-impact images that document and enrich the designers work. Blender is an open

source tool that creates professional, three-dimensional models that can enhance the

33

visualization generated with a Paraview plug-in or from the input deck visualization.

NemoViz allows the export of Paraview plug-ins to Blender to create high-impact

images Figure 3.19(a) presents the visualization of the Paraview plug-in of a quantum

dot and Figure 3.19(b) presents the visualization of the model exported as VRML,

imported and rendered with Blender.

NemoViz also includes another option to create high impact-images. The input

deck visualization, instead of the plug-in, can be directly exported to Blender. Figure

3.20(a) depicts the visualization of the input deck in the Main view, and Figure

3.20(b) the result after applying material properties and textures in Blender to this

model.

NemoViz dissemination tools help users to generate visualizations that support

findings in the data. The next chapter describes some of the images generated from

simulation results; they highlight important information and convey data from the

simulation results.

3.3.7 Visualizations Design From The Publication Stage To Replication

Stage

Experiment replication is one of the most important aspects of science, and it is

included in the definition of the scientific method. If simulations are considered a

scientific research method, replication must be included as part of the process. One

way to replicate simulation is to publish tools on Nanohub. There are examples of

how Nanohub tools successfully replicate data published in papers [18]. Since NEMO5

is already part of the Nanohub pool of libraries, designers could easily create a tool

based on an input deck. NemoViz enables users to select experimentation parameters

and generate a template Rappture tool or Python notebook based on the inputdeck.

Plug-ins that generate example visualizations shown in this chapter can be included

as part of the notebook (see Figure 3.21).

34

Fig. 3.21. Jupyter notebook generated including parameterized plug-ins

35

CHAPTER 4. HIGH-QUALITY IMAGES

This chapter presents some of the visualizations generated with the help of NemoViz

dissemination tools. All images were rendered using Blender software. The images

shown in this chapter have been published supporting different research projects, and

they highlight important information obtained from simulation research projects and

convey data from final results.

4.1 Atomistic Structures

Fig. 4.1. Atoms in a Silicon-Germanium Disk

Atomistic simulations are based on the interaction between atoms. This interac-

tion is heavily defined by atoms’ positions and types. Visualizations of the atomistic

structure being simulated help an audience to understand details of the final results.

36

Fig. 4.2. Silicon atoms distributed in a diamond lattice

Some of the following figures highlight structure defects such as roughness, corruga-

tion, and atomic disorder. For example, Figure 4.1 presents a representation of a

disk of silicon-germanium (SiGe) after a strain model was applied to relax its atoms

positions. In this picture, colors represent different atom types: hydrogen (blue),

silicon (yellow) and germanium (light blue). Figure 4.2 represents the organization of

the atoms in a pure material. Each atom (in red) is surrounded by a gray shell, rep-

resenting the interaction field of each atom. Figure 4.5 shows multiple water (H2O)

molecules between two graphene sheets (carbon atoms) as the result of a relaxation

process in a molecular dynamics simulation.

Figures 4.3 and 4.4 represent the atomic-resolved SI-Ge alloy ultra-thin-body de-

vice with surface roughness. White spheres represent silicon atoms and green spheres

germanium atoms. Shells’ colors indicate source, drain, and channel regions. Green:

source (doped region); red: channel; orange: drain (doped region); and gray/black:

Oxide. Figures 4.6 and 4.7 show periodic surface roughness in a sheet of graphene.

In addition to the atomistic structure, some pictures include simulation results

on top of the atomistic structure. Spatially resolved data such as density of states,

37

Fig. 4.3. Alloy structure of silicon and germanium atoms

Fig. 4.4. silicon germanium atoms in an ultra-thin-body device

wave-functions, or electric potential energy applied to a simulation can be visualized

as volumetric data. For example, Figure 4.8 compares the wave-functions intensity

of two different energy level over a graphene sheet with a hole in the middle. Figure

38

Fig. 4.5. Multiple Water (H20) molecules between two graphene sheets

Fig. 4.6. Periodic surface Roughness

4.9 depicts the organization of the atoms in an ultra-thin body transistor and the

amount of electric potential along the transistor.

39

Fig. 4.7. Basic unit cell used to simulate periodic surface roughness

Fig. 4.8. Intensity of two energy level over a graphene sheet with a hole

4.2 Devices

In addition to the atomistic structure, some pictures describe well-known devices

in the semiconductor industry, transistors in particular. In these cases, images not

only represent devices from an atomistic point of view, but also contextualize the

data. For example, Figure 4.10 represents an internal composition of an ultra-thin

body transistor. Figure 4.11 includes the position of the atoms and their chemical

40

Fig. 4.9. Electric potential along an ultra-thin body transistor

Fig. 4.10. Silicon and Germanium Alloy ultra-thin body transistor

bonds along with the amount of electric potential in the transistor. Fig 4.11 represents

a cylindrical gallium arsenide nanowire showing the surfaces and the atoms.

41

Fig. 4.11. Gallium Arsenide ultra-thin body transistor.

Fig. 4.12. Cylindrical Gallium Arsenide Nanowire transistor

In Addition to transistors, quantum dots are devices of great interest in the semi-

conductor industry. Quantum dots are nanoscale particles that behave similarly to

an atom but can be created artificially. A quantum dot’s core can have different

42

shapes and composition. Both factors affect the energy levels inside a quantum dot.

Fig 4.13 portrays the intensity of an energy level inside a quantum dot with a conic

core (red). Fig 4.14 illustrate the directions of the strain forces on the surface of the

quantum dot core. Fig 4.15 depicts the magnitude of the strain forces on the surface

of the quantum dot core.

Fig. 4.13. Intensity of an energy level inside a quantum dot with a conic core

More experimental devices such as flying qubits were also simulated with Nemo5.

Their structure was exported with NemoViz and rendered on Blender. Fig 4.16 shows

multiple flying qubits, where their superposition is controlled by gates.

4.3 Images Dissemination

As mentioned before, all the previously mentioned figures supported research find-

ings and were published along with the results. Figures 4.3 and 4.4 were published

in [19] and presented at the Blue Waters Symposium [20]. Figures 4.13, 4.10, 4.15,

4.9, 4.14 and 4.11 were presented at the Blue Waters Symposium as well [21], [22].

43

Fig. 4.14. Direction of strain forces on a quantum dot

Fig. 4.15. Magnitude of strain forces on a quantum dot

Figures 4.1, 4.2, and 4.12 were included in promotional advertising for the Network

for Computational Nanotechnology (NCN) and the iNemo Research Group at Purdue.

44

Fig. 4.16. Multiple Flying qubits

Figures 4.6, 4.7, 4.5, 4.2 and Fig. 4.16 were included in National Science Foundation

(NSF) proposals.

Figures 4.9, 4.14, 4.13 and 4.13 were published in the Discovery NSF-supported

magazine, [23], and has been used as reference in multiple publications [24], [25], [26],

[23]. Similarly, Figure 4.11 was published in the Discovery NSF-supported magazine,

and used in multiple publications [27], [24], [25], [26] and [28]

45

CHAPTER 5. NEMO5 CONTRIBUTIONS

In Addition to the NemoViz infrastructure, I have contributed different features into

the NEMO5 code under the username denphi. I was the third contributor of the code

based on lines of code up to December 2017 (see Figure 5.1).

Fig. 5.1. Nemo5 lines of code by contributor

46

5.1 Contributions

Compilation: I re-factored all Makefile files and generalized the Makefile sys-

tem. I could compile NEMO as fully functional on OSX, and partially functional on

WINDOWS.

Code Optimizations: I re-factored the code that constructs the Hamiltonian

matrices, and included a cache system to reuse Hamiltonian matrices when possible.

Database improvements: I included multiple features in the material database:

database rules, database functional calls, database stack debugger, and database

views.

Documentation: I developed input/output system documentation and improved

the manual by including automatic documentation solvers. I implemented the NEMO5

command-line interface.

Python Interfaces: I developed multiple Python interfaces to NEMO5: Python

input decks, Python templates (meta solvers), and Python solvers. I created multiple

examples using these interfaces: Python RGF-Propagation, fitting code migrated to

Python, and read-in potential (OMEN/Nemo3D/File).

Profiling: I developed an embedded profiling system, and its visualization (San-

tiago). I also developed the lifetime/timeline profiling system

Input / Output: I extended the input deck to support iterators, develop device

templates, implement region surface solvers, and import shape regions (VTK).

Algorithms: I developed a new MPI parallelization scheme and implemented

the interaction radius concept. I defined the cluster solvers, helped with coupling

QTBM-Poisson, implemented the domain bisection algorithm, and developed a new

adaptive grid implementation using adaptive mesh refinements.

Others: I defined the template factory implementation and included genetic al-

gorithm libraries into Nemo5.

47

5.2 Infrastructure discussions

During the development of my contributions on the Nemo5 code, I was involved in

multiple discussions to define guidelines to future Nemo developments. All guidelines

were discussed as part of the software meetings hold by the Nanoelectronic Modeling

Group at Purdue University. People involved in these discussions were: Santiago

Perez-Rubiano, David Bermeo, James Charles, Daniel Mejia, Jim Fonseca, Tillmann

Kubis, Michael Povolotskyi, and Gerhard Klimeck. Santiago Perez-Rubiano docu-

mented all the following guidelines and they are included as reference.

5.2.1 Guiding principles

The NEMO tool is a multi-physics, multi-scale, high performance computing,

software for nanoelectronic devices simulation. Its target audience includes semicon-

ductor industry R&D groups, nanoelectronics research groups and nanoelectronics

students students. Its computational demands make it suitable for grid computing,

HPC and even cloud computing, and so it must be able to deal with several restric-

tions, e.g. resources reliability issues, limited resources availability, etc ...

The software is developed by physics or electrical engineers with little or no soft-

ware engineering background, however the developed software will evolve and has to

cope with constantly changing requirements. Because of these the core functionality

of the software should be really easy to reuse, hard to use in unintended ways e.g.

up to the point to keeping the developers from compiling when some unintended uses

are done. Perspectives

The NEMO tool needs to be seen from different perspectives in order to fully

understand all its requirements. Some of the most important perspectives include:

1. Developers trying to write their models in NEMO5 by taking advantage of

already available tools

2. Scientist trying to explore parameters, designs, etc

48

3. New users trying to understand the available features.

5.2.2 Software distribution requirements

• Should have a standard compilation process for both dynamic and static linking

(some supercopmuters require static linking).

• Should be easy to disable all non-strictly necessary third-party libraries from

the compilation process (e.g. VTK or libmesh).

• Should be compilable WITHOUT internet access!! (TianHe-2 and TMSC)

• Should be both an imperative (for experimentalist users?) and a declarative

language (for programmers) that allow one to connect between different com-

ponents..

• Should be compatible with Linux and Windows as much as possible (this will

help to extend its user base).

• Should be distributed as web-services preferable under a Service-oriented archi-

tecture.

5.2.3 Testing framework

• Adding unit tests should be easy for developers, specially attaching files to a

specific test for inputs should be easy.

• Tests should help on the search for scalability and so they need to measure time,

memory and CPU consumption as we are interested in later assigning resources

to different components based on their historic behavior.

• General tests should contain information regarding required execution resources

• Testing procedure (not just comparison of files in some cases) should be well

defined

49

• Unit tests should be mandatory. If such a test is missing for a new method, the

code should fail to compile.

5.2.4 Profiling and Logging framework

There should be well defined logging levels for final users (interested in measure-

ments), profiling information, debugging information, etc. The time, and network

location of every message must be recorded.

• Internal profiling (e.g. through a tic-toc system) should be available for devel-

opers to optimize their own code.

• Have the possibility to measure flops manually or automatically.

• Be able to classify tic-tocs in at least four categories : I/O, communication,

computation, math operations.

• This should help to automatically detect load imbalance problems.

• Its output must be available through appropriate visualization tools which let

the user:

• Filter/order sections of the code by their resources (time/memory/flops) con-

sumption

• Compare two almost identical simulations that ran with different amount of

resources. These would help to identify potential sources of scalability problems

(functions that do not scale well).

• Plot the resources consumption across MPI ranks

• Explore information hierarchically

• Filter information by identifiers

50

5.2.5 Input/Output framework

• Theres a set of inputs received by any simulation. This options could be gener-

ated on the fly by the simulation.

• The output of the simulations should, in general, be done through a unified

manager that decides where to store the output, otherwise every developer will

store whatever and wherever they want.

• The process to generate plots from the output of NEMO6 should be standard

and provided by a framework most of the time. This framework should be

extensible enough to use plotting scripts from Matlab, Python, etc...

5.2.6 Options framework

• Should support options generated on the fly depending on the value of some

other options.

• Should support the documentation of the options and the definition of its type

and expected values (if available). The definition of a default value should be

centralized (in the best case), in order for a user to know the default values

before actually executing a simulation.

• There must be a way to know all the options set for a simulation, even the

default ones

• Grouping options and lying out dependencies between them should be possible.

• Support inheritance of options

• Functionality should be dependent only on the presence or absence of an option.

• The way in which the options are parsed has to allow parameter exploration

somehow, an example of this could be the way in which Makefiles allow you to

define the value of a variable in the command line calls.

51

• There should be support for groups of options that depend on the value of

another option.

5.2.7 Geometry specification framework

A region in space may have an arbitrary form, size and position. Regions may also

have other algorithmic properties defined as well, like whether or not it is active, who

is it distributed among MPI ranks, boundaries for simulation models. Regions should

be represented as atomistic, continuous or Meshes. There should be mechanism to

translate between different regions. Regions represent element of different layers of

information, and each layers should share some common characteristics, there should

be at least there supported layers: macro, micro, and atomistic.

Macro characteristics

• Atom’s materials

• Form, size and position of chunks of materials

• Periodicity of chunks of materials

• Passivation on certain regions of the space

• Chemical coupling between different chunks of materials.

• It should be easy to import structures from other simulation software like VASP

• It should support different kinds of distribution among MPI ranks.

• It has to support regular/irregular/pseudoirregular structures (i.e. crystals,

pseudo crystals and amorphous structures, created by various algorithms)

• It has to be easy to set up.

Micro characteristics

• Type of crystal to model a unit cell.

52

• Type of lattice to model a unit cell.

• There should be a possibility to have a non-integer amount of unit cells.

Atomistic characteristics

• Connection with other atoms

• Position of the atoms

• Get the N nearest neighbor atoms.

5.2.8 Simulation framework

Simulations should return data on demand. They only initialize and solve the

problem when the data request method is called.

Main components on the tool should contain:

• Solvers: Basic computation unit. It should be stateless

• Methods: Group of solvers sharing a state.

• Modules: Group of methods and solvers, solving an specific computational prob-

lem.

• Meta-methods : Simulations with some undefined parameters that will be de-

fined at runtime by other simulations at different stages (maybe when the sim-

ulation is initialized or maybe when it is running).

All components should shared local structures like:

• Domain atoms information

• DOF map

• There should be a way to differentiate between stateful and stateless simulations.

53

• Simulations may have geometry distribution or resources restrictions that should

be explicitly stated somewhere

• There should be solver templates

• Methods need to be destroyed and recreated

5.2.9 Documentation framework

When writing an inputdeck one should be able to document details about:

• The structure that is being simulated, its geometry and its materials.

• The conceptual program flow.

• The expected outcome and output. Valid range for parameters..

Fig. 5.2. NemoViz auto-documentation architecture

54

5.3 Nemo5 auto documentation

Figure 5.2 shows the architecture of Nemo5 auto-documentation. all classes that

represent any entity on Nemo5 ecosystem should implement to basic interfaces: IDoc-

umentable and IFactorizable.

5.3.1 Interface Factorizable

This interface requires any class to implement two basic method. First, get factory name

method should return an unique name that is used as identifier by the factory. Second

get factory aliases that return a list of identifier aliases or alternative names to be

used by the factory.

All Nemo5 entities implement the Factorizable interface as shown in the table

5.1. Each class should define its class name and a parent class, and for each unique

parent class, a new Factory constructor would be created using a singleton pattern.

singletons are implemented using c++ templates and static variables. All objects

created by the factory are automatically casted to the parent class as is shown in

table 5.2.

5.3.2 Interface Documentable

All entities that are exposed to the final user have to implement the documentable

interface, this interface requires classes to implement basic methods to document the

options or parameters, developers have to document both inputs and outputs. Table

5.3 shows an example of basic documentation of input options of the Simulation class,

the first call documents an option required to run the simulation (”name”), a second

call documents an optional input (”domain”), and next calls defined the type of data

that options need to have in order to have a proper behavior.

All documentation can be requested using methods of the interface, using the

Nemo5 command line as shown in table 5.4, or using NemoViz.

55

Table 5.1.
Example implementation of factorizable interface, Dummy Module

. . .

class ModuleDummy :

/∗ ex tends ∗/ public Module ,

/∗ implements ∗/ public NemoFactorizable<ModuleDummy, Simulat ion>

{

public :

virtual std : : s t r i n g get f a c to ry name (void)

{ return ”ModuleDummy” ; }

virtual void g e t f a c t o r y a l i a s e s (std : : set <std : : s t r i ng >&)

{ return }

virtual ˜ModuleDummy () ;

virtual void do s o l v e () ;

. . .

}

Table 5.2.
NemoFactory instantiation example

. . .

Simulat ion ∗ e ;

e = NemoFactoryBase<Simulat ion > : : new ins tance (”ModuleDummy”) ;

. . .

5.4 Impact

Some publications that have used directly or indirectly some of my contributions

to Nemo5 are:

56

Table 5.3.
Example implementation of factorizable interface, Dummy Module

. . .

class Simulat ion :

/∗ implements ∗/ public NemoDocumentableBase<Simulat ion >

{

. . .

void s e t i nput opt i ons map (void)

{

s e t i nput opt ion map (”name” ,

InputOptions : : Req Def (”A unique name tag . . . ”)) ;

s e t i nput opt ion map (”domain” ,

InputOptions : : NonReq Def (”” , ”Domain r equ i r ed . . . ”)) ;

. . .

s e t i n pu t op t i on p r op e r t y (”name” , ” type ” ,

InputOptions : : Type Def (InputOptions : : TYPE STRING)) ;

s e t i n pu t op t i on p r op e r t y (”domain” , ” type ” ,

InputOptions : : Type Def (InputOptions : :TYPE DOMAIN)) ;

. . .

}

}

1. KuangChung Wang, Teodor Stanev, Daniel Valencia, James Charles, Alex Hen-

ning, Vinod Sangwan, Aritra Lahiri, Daniel Mejia, Prasad Sarangapani, Michael

Povolotskyi, A. Afzalian, Jesse Maassen, Gerhard Klimeck, Mark Hersam, Lin-

coln Lauhon, Nathaniel Stern, Tillmann Kubis, ”Control of interlayer physics

in 2H transition metal dichalcogenides” Journal of Applied Physics 122, 224302

(2017);

57

Nemo5 was used to explore different properties of TMD materials, quantum

transport properties were simulated using the RGFModule solver. This solver

encapsulates multiple solvers, dataflows and the RGF’s algorithm. This is pos-

sible by the inheritance of the Module solver. Modules allow developers to

create black boxes, that predefine a set of solvers and dataflows. In contrast,

this information is usually read from an inputdeck. A Nemo5 module control

the persistence of Nemo5 objects created on the module, can be created and

destroyed at any point of the simulation, and can embed other modules.

2. Geng, Junzhe, Prasad Sarangapani, Erik Nelson, Ben Browne, Carl Wordel-

man, Tillmann Kubis, and Gerhard Klimeck. ”NEMO5: realistic and efficient

NEGF simulations of GaN light-emitting diodes.” In Physics and Simulation of

Optoelectronic Devices XXV, vol. 10098, p. 1009813. International Society for

Optics and Photonics, 2017.

3. Long, Pengyu, Jun Z. Huang, Michael Povolotskyi, Devin Verreck, Gerhard

Klimeck, and Mark JW Rodwell. ”High-current InP-based triple heterojunction

tunnel transistors.” In Compound Semiconductor Week (CSW)[Includes 28th

International Conference on Indium Phosphide & Related Materials (IPRM) &

43rd International Symposium on Compound Semiconductors (ISCS), 2016, pp.

1-2. IEEE, 2016.

4. Charles, James, Prasad Sarangapani, Roksana Golizadeh-Mojarad, Robert An-

drawis, Daniel Lemus, Xinchen Guo, Daniel Mejia, Jim Fonseca, Michael Po-

volotskyi, Tillmann Kubis, Gerhard Klimeck, ”Incoherent transport in NEMO5:

realistic and efficient scattering on phonons” Journal of Computational Elec-

tronics, pp 17, 2016.

This work describes some of the transport capabilities of Nemo5, in partic-

ular incoherent transport using the self-consistent Born approximation. This

algorithm was implemented as a module in Nemo5 as described before for the

RGFModule. This model suffers from convergence issues with scattering in the

58

leads, and the solution in this case was to use a resonance mesh. ResonanceMesh

solver in nemo5 resolves the meshes using adaptive mesh refinements. This al-

gorithm not only gives a refined mesh close to the quantum resonances but also

full control over the final number of points in the mesh.

5. Wang, Kuang-Chung, Daniel Valencia, James Charles, Yu He, Michael Povolot-

skyi, Gerhard Klimeck, Jesse Maassen, Mark Lundstrom, and Tillmann Kubis.

”NEMO5: Predicting MoS 2 heterojunctions.” In Simulation of Semiconduc-

tor Processes and Devices (SISPAD), 2016 International Conference on, pp.

221-224. IEEE, 2016.

6. Ankit Sharma, Ahmed Reza, Kaushik Roy, ”Proposal of an Intrinsic-Source

Broken-Gap Tunnel FET to Reduce Band-Tail Effects on Subthreshold Swing:

A Simulation Study” IEEE Transactions on Electron Devices, Volume:6, Issue:

6, Page(s): 2597 - 2602, 2016

7. Ankit Sharma, Arun Akkala, Jaydeep , Kaushik Roy, ”Source-Underlapped

GaSbInAs TFETs With Applications to Gain Cell Embedded DRAMs” IEEE

Transactions on Electron Devices, Volume:63, Issue: 6, Page(s): 2563 - 2569;

doi:10.1109/TED.2016.2555627, 2016.

8. Ameen, Tarek A., Hesameddin Ilatikhameneh, Gerhard Klimeck, and Rajib

Rahman. ”Few-layer phosphorene: An ideal 2D material for tunnel transistors.”

Scientific reports 6 (2016): 28515., 2016

9. Chen, Fan W., Hesameddin Ilatikhameneh, Gerhard Klimeck, Zhihong Chen,

and Rajib Rahman. ”Configurable electrostatically doped high performance

bilayer graphene tunnel FET.” IEEE Journal of the Electron Devices Society

4, no. 3 (2016): 124-128.

10. Ilatikhameneh, Hesameddin, Gerhard Klimeck, and Rajib Rahman. ”Can ho-

mojunction tunnel FETs scale below 10 nm?.” IEEE Electron Device Letters

37, no. 1: 115-118, (2016)

59

11. Ilatikhameneh, Hesameddin, Yaohua Tan, Bozidar Novakovic, Gerhard Klimeck,

Rajib Rahman, and Joerg Appenzeller. ”Tunnel field-effect transistors in 2-D

transition metal dichalcogenide materials.” IEEE Journal on Exploratory Solid-

State Computational Devices and Circuits 1: 12-18. 2015

12. Chen, Fan W., Michael Manfra, Gerhard Klimeck, and Tillmann Kubis. ”NEMO5:

Why must we treat topological insulator nanowires atomically?.” In Proc. IWCE.

2015.

13. Ilatikhameneh, Hesameddin, Fan W. Chen, Rajib Rahman, and Gerhard Klimeck.

”Electrically doped 2D material tunnel transistor.” In Computational Electron-

ics (IWCE), 2015 International Workshop on, pp. 1-3. IEEE, 2015.

14. Li, Wenjun, Saima Sharmin, Hesameddin Ilatikhameneh, Rajib Rahman, Yeqing

Lu, Jingshan Wang, Xiaodong Yan et al. ”Polarization-engineered III-nitride

heterojunction tunnel field-effect transistors.” IEEE Journal on Exploratory

Solid-State Computational Devices and Circuits 1 (2015): 28-34.

60

Table 5.4.
NemoFactory instantiation example

$. / bin /nemo −h Dummy1

Usage : nemo INPUTDECK FILE [−− p r o f i l i n g [PROFILING TYPE . . .

NanoElectron ics MOdeling Tool 5 (NEMO5) , purdue univer . . .

Type nemo −−ve r s i on (−v) to s ee the program ve r s i on and . . .

Type nemo −−help(−h) [ENTITY TYPE] to s ee en t i t y opt ions

−−−

−−−−−−−−−−−−−−−−−−−− SOLVER −−−−−−−−−−−−−−−−−−−−−−−

Dummy1 : This s imu la t i on i s a TEST s imu la t i on . . .

[#] (∗) = requ i red , ()= default value

−−−

[1] () d i s a b l e i n i t (f a l s e) : f l a g command to . . .

. . .

[1 4] () a c t i v e r e g i o n s (()) : r e q u i r e d r e g i o n s . . .

[1 5] () b ound a ry r e g i o n s (()) : r e q u i r e d r e g i o n s . . .

[1 6] () d () : Name o f the s i m u l a t i o n to be . . .

[1 7] () d e f a u l t s o l v e r m a t t y p e (PetscMatrix . . .

[1 8] () domain () : Domain r e q u i r e d for this . . .

[1 9] (∗) name : A unique name tag / i d e n t i f i e r . . .

[2 0] () o u t p u t f i l e s u f f i x () : s u f f i x to be . . .

[2 1] () s u r f a c e o f r e g i o n s () : s u r f a c e . . .

[2 2] () t i c t o c n a m e ($ (name)) : P r e f i x for . . .

[2 3] (∗) type : A unique type tag / i d e n t i f i e r . . .

−−−

61

CHAPTER 6. EVALUATION AND DISCUSSION

Evaluation of new visualizations and visualization frameworks is one of the top chal-

lenges of the visual analytics field [29] [30], and there is an absence of well-defined

methods of evaluation. Measuring accuracy, utility, and efficiency are the most ac-

cepted measurement methods [31]. Recently, several studies have been exploring

user experience goals as part of the evaluation. However, user experience evalua-

tions should be complemented with other standard measures in order to identify key

elements of the visualization [32].

NemoViz was evaluated by two different methods: a user experience study defined

as an informal evaluation test, and a quantitative study that measured efficiency and

effectiveness. Both studies fell under the Purdue IRB Exemption (1706019282), and

users taking part in these studies were part of the Nanoelectronic Modeling Group at

Purdue University

6.1 Informal evaluation test

First, NemoViz was assessed through an informal evaluation. This evaluation

was designed to ask users of NEMO5 with previous exposure to NemoViz about

their experience with the tool. The design of the informal evaluation test followed

the main recommendations of Davidson’s methodology for designing evaluation tools

(2005-2018) [33].

1. Defining evaluative dimensions: Establish key components to be assessed.

2. Determining dimensions’ importance: Prioritize and justify the importance of

each dimension,

3. Developing instruments: Define tools that could gather the data appropriately.

62

4. Constructing rubrics: Define rules and formulas to assign scores.

5. Measuring performance: applying the rubrics to the data we gathered.

6. Results and conclusions.

6.1.1 Defining evaluative dimensions

To evaluate NemoViz the informal evaluation covered four dimensions:

• Functionality: The tool allows users to explore text files based on visualizations.

• Content/Design: The tool captures atomistic representation of the model and

summarizes relations between elements in the text files.

• Usability: The tool is easy to use.

• Efficiency: The tool helps users to save time.

The questions, listed in Table 6.1, were designed based on work of [34] and modified

to be used for the evaluation of NemoViz.

6.1.2 Determining dimensions’ importance

Table 6.1 shows the importance defined for each dimension. In this case, the most

important dimensions were as follows. First, to know if interactive visualization helps

users to save time when modifying input decks. Modifying and running input decks

are the tasks most commonly performed by users of any simulator tool, and a single

modification in the input parameters is equivalent to a new experiment. Second,

to know if NemoViz allows users to explore input decks in a simplified way. The

main design concept in the designing of NemoViz was to allow users to interactively

highlight different elements of the input deck. Other dimensions are important as

well, but they are not the main focus of the evaluation of the impact of NemoViz.

63

Table 6.1.
Evaluative Dimensions and Dimensional Evaluation Questions

Dimension Question Weighting

Functionality

Content/Design

Content/Design

Usability

Efficiency

NemoViz supports the user well in inspecting

a Nemo5 input deck

NemoViz structures and summarizes the

atomistic representation of a model defined

in a Nemo5 input deck

NemoViz structures and summarizes rela-

tions between different elements in a Nemo5

input deck

NemoViz is easy to use and self-explanatory.

NemoViz saves you time when modifying

Nemo5 input decks

Very important

Important

Important

Important

Very important

6.1.3 Developing instruments

The instrument consisted of five (5) questions designed to assess the usability

of NemoViz, and NemoViz’s ability to save users time, to structure and summarize

spatial information and relations from an input deck, and to enable users to explore

the input deck (Table 6.1). Information about the level of expertise of the user and

optional feedback were included as well. The questionnaire was created with the

Qualtrics survey tool, and it was sent as an on-line survey.

6.1.4 Constructing rubrics

The questions were scored using a Likert-type scale from 1 (strongly agree) to

5(strongly disagree).

64

6.1.5 Measuring performance

Table 6.2.
Scored value for each dimension. Functionality and Efficiency dimen-
sions scored the lowest values (lower scores are better.)

Dimension

Functionality

Content/Design 1

Content/Design 2

Usability

Efficiency

Score

9

14

15

15

12

Nine (9) NemoViz users answered the on-line survey. Most of the participants

(57%) were expert users of Nemo5, 29% were intermediate users, and 14% said they

had just started to use Nemo5. The most important dimensions scored the lowest

values (Table 6.2), supporting the hypotheses of the functionality and efficiency of

the tool.

6.1.6 Results and Discussion

The results from the informal evaluation test showed that 100% of the participants

(strongly agree + agree) agree that NemoViz provides support when exploring Nemo

5 input decks and captures the atomistic representation of the model defined in the

NEMO5 input deck. The exploration of the input decks is directly related to the

visualizations presented in the outline view of NemoViz. Some users also found the

relation view useful for exploring relationships among blocks. The representation

of the atomistic structure of the simulation is mostly shown in the main view of

NemoViz. Some characteristics of the structure were also located in the property and

relation views.

65

Table 6.3.
Percentages of participants that answer the questionnaire, listed from
1 (strongly agree) to 5 (strongly disagree)

Question 1 2 3 4 5

NemoViz supports the user well in inspecting

a Nemo5 input deck

NemoViz structures and summarizes the

atomistic representation of a model defined

in a Nemo5 input deck

NemoViz structures and summarize relations

between different elements in a Nemo5 input

deck

NemoViz is easy to use and self-explanatory

NemoViz saves you time when modifying

Nemo5 input decks

100%

43%

43%

43%

72%

0%

57%

43%

43%

14%

0%

0%

14%

14%

14%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

Regarding the ability of NemoViz to summarize relations between input deck

blocks, 86% of the participants perceived that NemoViz accurately represents these

relations (Table 6.3). Only 14% of the participants responded that NemoViz does

not add value to the structure and relations found in the text file of the input deck.

Regarding usability, 86% of participants reported that NemoViz was easy to use and

intuitive. We hypothesize that elements such as its simple design, extensive use of

visualizations, real-time synchronization of the multiple views, and incorporation of

widgets contribute to the usability. These elements were intentionally incorporated

into the design of NemoViz for this purpose.

Finally, and most importantly, a very significant number of users (86%) reported

that NemoViz helps them to save time when modifying the input decks. Modifying

and running the input decks are the tasks most commonly performed by users of any

66

simulator tool given that a single modification of the input parameters is equivalent

to a new experiment. The other 14% reported spending the same amount of time

modifying the NEMO5 input decks using NemoViz or using a text editor. It is worth

noting that 100% of the expert users reported a decrease in the time spent modifying

input decks when using NemoViz.

6.2 Identification of relevant errors, Previous User Experience test

The informal evaluation showed that the efficiency dimension scored highly. More-

over, optional feedback from the informal evaluation test highlighted the importance

of NemoViz to detect errors when modifying an input deck. The most common prob-

lem that users faced when modifying an input deck is the detection of errors. In other

words, users had to debug an input deck.

To determine NemoViz’s efficiency in debugging input decks, the most relevant

errors encountered by NEMO5 users were detected using an additional evaluation

based on user experience.

6.2.1 Defining evaluative dimensions and importance

In this study three different dimensions were measured:

• Frequency: How often users observed the error

• Complexity: How complicated is the process to fix the error.

• Difficulty: How much time a user takes to fix the error.

The most common input-deck errors were classified as follows:

• domain sizes are not correctly defined (structure dimension), domain positions

are not correctly defined (structure position),

• geometrical regions are not properly defined (spatial definitions)

67

• crystal orientation is not well defined (crystal information)

• missing connections between solvers (solution-solution relations)

• missing connections between domains (domain-domain relations)

• missing relations between domains and solvers (solution-structure relations)

• missing relations between regions and solvers (solution-spatial relations)

• inconsistency between the domains and geometrical regions (spatial-structure

relations).

6.2.2 Developing Instrument and Rubrics

Table 6.4.
Tabulated results from user experience evaluation.

Dimension Frequency Difficulty Complex

0 1 2 3 1 2 3 4 1 2 3

Structure Dimension

Structure Position

Spatial Definitions

Crystal information

Solution-Spatial Relations

Solution-Solution Relations

Structure-Structure Relations

Spatial-Structure Relations

Solution-Structure Relations

2

1

2

4

3

1

1

3

4

4

6

3

7

6

7

4

5

8

6

5

7

3

3

5

5

3

0

2

2

2

0

2

1

4

3

2

4

2

3

4

7

7

3

2

6

5

7

3

2

4

3

4

4

3

2

1

5

5

2

1

5

6

3

3

4

3

3

1

3

2

2

2

9

6

7

6

11

9

10

8

11

3

5

4

7

2

4

2

5

3

1

2

2

1

1

1

2

0

0

These previous experience measurements were designed as a survey to ask NEMO5

users about their own perception of debugging each type of error. The questionnaire

68

was created following the same format as the first evaluation, it was implemented with

Qualtrics survey tool, and it was sent as an on-line survey. Each question was scored

based on Likert-type scales: How often do you face this error? from 0 (never) to 3

(very often); How difficult is the process of fixing this error? from 1 (easy) to 4 (very

difficult); and how long does it usually take you to solve it? from 1 (few minutes) to

3 (more than an hour). Table 6.4 shows the tabulated data for each dimension

To compare between dimensions, scores were normalized and values between 0.0

and 1.0 were assigned.

6.2.3 Measuring Performance and Results

Table 6.5.
Scores (S) and Normalized scores (uS) for the three dimensions eval-
uated in the user experience evaluation.

Dimension Frequency Difficulty Complex

S uS S uS S uS

Structure dimension

Structure position

Spatial definition

Crystal Information

Solution-Spatial relations

Solution-Solution relations

Structure-Structure relations

Spatial-Structure relations

Solution-Structure relations

22

22

23

13

18

20

26

20

14

0.69

0.69

0.77

0.00

0.38

0.54

1.00

0.54

0.08

32

35

36

35

25

28

34

36

29

0.64

0.91

1.00

0.91

0.00

0.27

0.82

1.00

0.36

22

29

27

31

21

25

24

23

20

0.18

0.82

0.64

1.00

0.09

0.45

0.36

0.27

0.00

Fourteen (14) NEMO5 (not necessarily exposed to NemoViz) users answered this

new survey following the same format as the first evaluation. These results indicate

69

Fig. 6.1. Normalized scores: results are ordered by frequency and gray
areas highlights questions that scored above 0.6 in all dimensions.

that the most frequent errors were related to the structure definitions and relations.

The most complex and frequent errors were related to crystal information. However,

these latter errors were far less common. The results also suggest that errors involving

relations between regions and solutions were easily solvable.

6.2.4 Results and Discussion

Five (5) error types were classified as the most important errors Nemo5’s users

face when dealing with input-deck debugging (see Figure 6.1). Four (4) error types

obtained a high score (0.6 or higher) on all test dimensions: structure-structure re-

lations (StrStrRel), spatial definitions (SDef), spatial-structure relations (SStrRel),

and structure position (StrPos). However, based on the assumption that the most

70

frequent errors have a larger impact, the structure-dimension (StrDim) error is also

classified as an important error to evaluate.

6.3 Quantitative Evaluation

NemoViz expands the user’s cognitive process in different ways, and detecting the

input deck errors can be defined as two cognitive processes: spatial representations

that involve spatial cognition processes and well-defined mental models, as well as

abstract representations that require new mental models to represent the relations. A

measurement instrument was developed based on the error types previously identified.

6.3.1 Measurement instrument

Table 6.6.
Mean, Standard Deviation, and number of questions included in the
pilot run. (+) Original, (-) Removed, (*) Included

Statistics Questions

Error type Mean STD + - *

Structure-Structure Relations

Spatial Definition

Structure Dimension

Spatial-Structure Relations

Structure Position

56.96

49.78

25.09

103.66

35.11

10.11

3.76

6.11

25.83

9.91

8

8

8

8

8

2

4

2

2

2

6

4

6

6

6

Total 40 14 26

We validate the spatial representation errors by analyzing users’ understanding

of the main view, and the abstract representation by users’ understanding of the

relations view. We chose a widely used quantum transport calculation of a silicon

nanowire (see Appendix B). For each error type, four (4) input decks were created,

71

the corresponding errors introduced, and NemoViz visualization snapshots taken (see

Figure 6.2). The survey was implemented with the Qualtrics survey tool assigned to

a specific IP address, and a timer was added for each question.

Initially, two participants took the survey that included all forty (40) possible

questions. input deck associated with questions for which their answering time fell

more than three (3) standard deviations were removed from the pool of questions.

Twenty-six (26) possible questions were included as part of the instrument 6.6 (see

Table 6.6).

(a) NemoViz representation (b) Input deck segment

Fig. 6.2. Visualizations of failing input decks after introducing artifi-
cial errors of the abstract representations type

Users were asked to classify the correct type of error based on a visualization or

a segment of an input deck. In order to avoid biased results, the users were asked to

schedule an appointment in a controlled space with a prepared desktop to answer the

survey. Additionally, before the survey was taken, users had to take a small tutorial

on how NemoViz represents input decks.

The tutorial consists of a small description of the error types Nemo5’s users face

while debugging input decks (see Appendix A). Participants had to read the entire

72

Fig. 6.3. Example of the Tutorial’s feedback after each test answer

73

Table 6.7.
Domain Position error explanation

Domain position: The position of a domain is not

aligned with its adjacent domains. In this case, the

source source source contact domain (pink box) is

not aligned with the other domains included in the

source region, the pink box is moved down. Notice

that this visualization only shows half of the atoms

in the source source source contact domain (pink

box). This is because only the atoms that are part

of a region AND a domain are shown in the in-

tersection view. Since the domain is misplaced,

the atoms that are not part of a region are not

shown. This does not mean that the size (number

of atoms) of the domain is incorrect. The missing

atoms are just not shown due to the misplacement

of the domain. This simulation would simulate a

domain with half of its atoms missing.

text and answer a set of training questions (a question for each error type). For each of

the training questions, participants got feedback independently about the correctness

of their answer showing a description of the problem (Table 6.7) and an illustration

of the three-dimensional representation (see Figure 6.3).

After the tutorial section, users were exposed to three questions for each error type:

two visualizations and one text segment. A total of fifteen questions were grouped

into two sections: Questions involving spatial cognition processes (9 questions) and

questions involving new mental models to represent relations (6 questions). The order

of appearance of the questions was random.

74

6.3.2 Measuring Performance

The time taken by each respondent to answer each survey question and the number

of correct answers were measured. The effectiveness of users in detecting errors using

either the visualization or the text was calculated as the percentage of correct answers

(accurately identified errors) over the total number of questions. The effectiveness

using the visualization or text input decks was also compared. The efficiency of the

visualization and text input deck were similarly calculated as the time it took the

user to correctly identify an error.

Twelve (12) participants answered the survey, with an average effectiveness of

87%, an average time of 49.23 seconds for each answer, and an average time of 50.10

minutes to complete the tutorial and answer all the questions (see Appendix C).

6.3.3 Results and Discussion

In general, the users improved their effectiveness of error detection by 7% and

were able to detect errors twice as fast using NemoViz compared to simply analyzing

the text input decks. The left-hand box plot of Figure 6.4 shows the increased av-

erage accuracy. The standard deviation shrank dramatically to less than 10% when

using NemoViz. The right-hand box plot shows how the average time users took to

detect errors was cut in half when interactive visualizations were used. The standard

deviation was reduced even further.

We also analyzed data about the users’ expertise and the question type. The

graph in the bottom right quadrant of Figure 6.5 illustrates that non-expert users

improved their detection times threefold when using NemoViz. Expert users showed

a twofold improved detection time when using NemoViz (bottom left quadrant of

Figure 6.5). Detection times for the structure-structure relations and structure di-

mension questions did not show any dramatic improvement when using visualizations.

However, spatial-structure relations experienced extraordinary improvements in time

and efficiency (Top of Figure 6.5).

75

Fig. 6.4. Box plots showing users’ effectiveness and efficiency averaged
and quantiles. Blue boxes show visually based input results, orange
text-based input results.

76

Fig. 6.5. Comparison of expert and non-expert users. Top: Average
percentage of correct answers. Bottom: Average time to correctly
detect errors

77

CHAPTER 7. SUMMARY AND OUTLOOK

The potential impact of research simulation codes is hindered by the lack of usability

by those not already deeply familiar with them. This thesis describes how the intro-

duction of interactive visualizations helped whit this problem. Visual analytics were

included as a way to improve usability in a research code and decrease the learning

curve of new users.

In the process, a framework was proposed to describe the complete simulation

process and was illustrated with a case study. This framework is a combined model

that describes the complete simulation and serves as a reference to identify key stages

that would enhance usability and user experience. Nemo5 users’ experience was

described based on this framework, and the role of visualizations in this experience

was illustrated with examples.

Visualizations are useful for each step in the simulation process, but also help

users to transition from one step to another in the process. All examples described

in this work consisted of visualizations that support Nemo5 users and help them to

understand simulation inputs and outputs.

All visualizations in this work were implemented as part of an interactive visual-

ization system called NemoViz. This work defines the requirements needed for any

interactive system that aims to support atomistic simulations. NemoViz meets all

these requirements mainly through the use of interactive visualizations and tools to

disseminate simulation results.

NemoVizs impact was measured on the most important and common task Nemo5

users face: modifying an input deck. In general, users take a working and functional

simulation input and modify some parameters to create a new configuration. This new

input is equivalent to a completely new experiment, and small changes in parameters

78

can have huge impacts in the simulated structure. In particular, inclusion of errors

could make structures unreasonable. The detection of these errors involves a complex

cognitive process.

Results suggests that NemoViz enhances the cognitive process during error detec-

tion as follows: 1) it improves user efficiency and effectiveness in debugging NEMO5

input decks; and 2) it accelerates the learning curve of novice users by enhancing their

effectiveness to the level of expert users. Enhancing the cognitive process improves

the usability of research codes, and the introduction of visual analytics as part of the

design process highlights new ways to deliver research codes to final users.

This work describes some of the products created using NemoViz. These products

were generated mainly via the dissemination tools. This work documents the impact

they had in different research projects.

The infrastructure created along with this work defines an ideal workspace to

continue investigating the impact of visualization on the simulation process.

79

APPENDIX A

QUANTITATIVE VALIDATION TUTORIAL

Spatial Representations

Thank you for agreeing to take part in this important survey for my research.

This survey consists of a Nemo Server training session followed by a set of questions.

It should take you less than 20 minutes to complete the training and the questions.

Be assured that all answers you provide will be kept anonymously. As this survey is

trying to keep track of the effectiveness, please be sure you remove all distractions

that can affect your time of response.

All questions in this survey are based on a Nemo5 input-deck that simulates

quantum transport across a silicon nanowire as shown in the figure below. The

nanowire is surrounded by a gate all-around, and it contains two contacts to source

and drain regions.

The transport simulation uses the Quantum Transport Boundary Method (QTBM),

and its implementation in Nemo5 requires to explicitly define three additional adja-

cent domains for each contact as shown in the figure below. These domains have been

80

called source contact, source source contact, and source source source contact. This

naming scheme has become the ”standard” way to define the contacts in any Nemo5

Simulation.

Each domain in Nemo5 is represented as a block of atoms that is defined by the unit

cell of a specific material. The intersection between Domains and Geometrical regions

represents the spatial work-space to be used in the simulation as a representation of

the device to be simulated (the ”real device”)

Nemo Server is a web-based tool for visualization of Nemo5 input-decks. With

Nemo Server you will be able to see the 3D representations of the geometrical re-

gions and the domain definitions from a Nemo5 input-deck. The figure below shows

the view in Nemo Server of the geometrical regions from a Nemo5 input-deck that

simulate quantum transport across a silicon nanowire. In this example, there are 4

geometrical regions represented as translucent boxes. Each box represents a region of

81

the nanowire, as follows: source (light orange box), channel (blue box), drain (light

blue box), and gate (orange box). Make sure that you are able to identify these 4

regions in the figure below.

Nemo Server can also show domains defined in a Nemo5 input-deck. Nemo

Server shows the position of the atoms in each domain. The surrounding surface

of the domain is represented by a translucent box. The figure below shows the do-

mains for the simulation of quantum transport across a silicon nanowire. The figure

below shows 4 domains: source contact in purple, source source contact in green,

source source source contact in pink, and channel in blue. Make sure that you are

able to identify all these domains in the figure below. Notice that this is the same

device as in the previous example, but in this case, we are looking at the domains,

not the regions

Finally, Nemo Server gives you the option to visualize parts of the device that

are defined as a region AND as a domain. Some people call this the real device. You

could also think about this visualization as an intersection between the domains and

the regions (previous two figures). The figure below shows the visualization of the

real device for a simulation of quantum transport across a silicon nanowire (domains

82

AND regions) using Nemo Server. Keep track of the colors of the boxes to identify the

regions and the domains. For instance, the purple box represents the source contact

domain; the light orange box represents the source region. Take a moment to identify

all regions and domains in the intersection view (figure below). You might notice

that in the intersection view (domains AND regions) there are some atoms missing

in the channel domain. This is because Nemo Server only visualizes the atoms that

are going to be used in the Nemo5 simulation.

Now that you know how Nemo Server visualizes the devices from Nemo5 input-

decks, lets talk about frequent errors in Nemo 5 input-decks, and then we will practice

how to use Nemo Server to identify these errors.

Some of the most frequent errors that Nemo5 users face are SPATIAL DEFINI-

TIONS. These errors refer to errors with domains positions, errors with domains size,

and errors with geometrical shapes. Each of these errors would be illustrated below.

Domain position error: Number of atoms included in the domain box/unitcell is

correct; however, the position of a domain is not aligned with its adjacent domains.

The picture below shows an example of this type or error. In this example, there

83

is a misalignment between the source source source contact domain and its adjacent

domain source source contact.

Domain size error: Number of atoms included in the domain box/unitcell is NOT

correct. The picture below shows an example of this type or error. In this example,

the source source source contact domain has less number of atoms than its adjacent

domain source source contact. As a result, it looks smaller than the adjacent domains.

Notice that the position of the domain is correct, as it is centered in the source region.

Geometrical regions error: Geometrical regions are NOT aligned with domains;

however, the number of atoms (size) and the position of the domains are correct.The

84

picture below shows an example of this type or error. In this example, all the domains

are correctly defined, however, the source region is not aligned with the domains.

Errors due to SPATIAL DEFINITIONS can be detected if the user takes a careful

look at Nemo Server’s intersection view (regions AND domains). In the next pages,

you will be presented with a series of training questions to practice how to identify

errors in a Nemo5 input-deck by looking at visualizations generated by Nemo Server.

Remember that all questions in this survey are based on a Nemo5 input-deck that

simulates quantum transport across a silicon nanowire.

85

Abstract Representations

Another frequent set of errors that Nemo5 users face are SPATIAL RELATIONS.

There are two main spatial relations mistakes that Nemo5 input-decks have: Domain-

Domain and Domain-Region. Each of these errors is illustrated below.

Domian-Domain: Domain is not connected with adjacent domains (leads). Each

domain should be connected with its adjacent domains (also known as leads). if this

relation is missing Nemo5 will complain and will have an unexpected behavior.

Domain-Region: Domain is not connected with correct regions: Domains should

be connected with all regions it is contained, if this relation is missing Nemo5 will

complain and will have an unexpected behavior

Nemo Server uses a chord diagram to visualize all the relations defined in a Nemo5

input-deck. The figure below shows all the relations defined in a Nemo5 input-deck

86

for the simulation of a quantum transport across a silicon nanowire. Each block type

(region or domain) has a color in the inner chord. For instance, domains are light

green and regions are dark green. Each block in the input-deck has a specific color in

the outer-chord . For example, the source contact domain is purple and the channel

region is blue. Notice that these colors correspond to the colors of the regions and

domains in the 3D visualization. Nemo server shows the relations between blocks

by connecting them with an arch. For instance, the pink arch in the figure below

indicates that there is a relation between the source source source contact and the

source source contact.

The number of relations shown in the figure above could be overwhelming. This is

why Nemo Server allows the user to only look at the relations of a single block when

it is selected. The figure below shows multiple examples of the way that Nemo Server

represent the relations, depending on the block that the user selects (the selected

block is denoted by a red dot). Take a moment to understand the meaning of the

representations in the figure below.

Nemo server visualization of relations is useful to detect SPATIAL RELATIONS

errors, that is, Domain-Domain errors or Domain-Region errors. This kind of errors

are easily identified because when a relation between blocks is missing in a Nemo 5

input-deck, the chord diagram generated by Nemo Server will be missing the arch

that connect those two blocks.

87

88

APPENDIX B

NEMO5 GALLIUM ARSENIDE BAND-STRUCTURE

CALCULATION INPUTDECK

Structure {

Material {

name = GaAs

tag = substrate

crystal_structure = zincblende

regions = (1)

}

Domain {

name = structure1

type = pseudomorphic

base_material = substrate

dimension = (20,20,20)

periodic = (true, true, true)

regions = (1)

crystal_direction1 = (1,0,0)

crystal_direction2 = (0,1,0)

crystal_direction3 = (0,0,1)

}

Geometry {

Region {

shape = cuboid

region_number = 1

89

min = (0,0,0)

max = (5,5,5)

}

}

}

Solvers {

solver {

name = my_schroedi

type = Schroedinger

set {

domain = structure1

active_regions = (1)

tb_basis = sp3d5sstar_SO

job_list = (assemble_H, passivate_H, calculate_band_structure)

output = (energies, eigenfunctions_VTK)

charge_model = electron_hole

automatic_threshold = true

eigen_values_solver = krylovschur

k_space_basis = cartesian

k_points = [(0,0,0)]

}

}

solver {

name = my_overlap

type = MatrixElements

set {

domain = structure1

active_regions = (1)

operator = overlap

90

wf_simulation = my_schroedi

output_file = matrix_elements

}

}

solver {

name = my_structure

type = Structure

set {

domain = structure1

active_atoms_only = true

}

}

}

Global {

solve = (my_structure,my_schroedi,my_overlap)

database = all.mat

}

91

APPENDIX C

EVALUATION MEASUREMENT TABLES

Table C.1.
Participants Expertise with Nemo5 and previous exposition to NemoViz

Expertice Nemoviz

U1 Expert Yes

U2 Beginner Yes

U3 Expert Yes

U4 Intermediate Yes

U5 Intermediate No

U6 Beginner No

U7 Expert Yes

U8 Intermediate Yes

U9 Expert No

U10 Expert Yes

U11 Expert Yes

U12 Expert Yes

92

Table C.2.
Number of correct answers for each user. Red values highlight values
that were not taking into account due the empirical rule (z–score =
abs((x − µ)/σ) > 3). Q1: StrDim, Q2:StrPos, Q3:Sdef, Q4:SStrRel,
Q5:StrStrRel

User Q1 Q2 Q3 Q4 Q5 Effective Z–score Total

U1 0 1 0 0 0 0.10 3.05 10

U2 2 2 2 2 2 1.00 0.65 10

U3 2 2 1 2 1 0.80 0.17 10

U4 1 2 2 2 1 0.80 0.17 10

V
is
u
a
l
In

p
u
t U5

U6

U7

U8

2

2

2

0

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

1.00

1.00

1.00

0.70

0.65

0.65

0.65

0.58

10

10

10

10

U9 2 1 2 2 2 0.90 0.24 10

U10 1 2 2 2 2 0.90 0.24 10

U11 1 2 2 2 2 0.90 0.24 10

U12 2 2 2 2 2 1.00 0.65 10

U1 0 1 1 1 1 0.80 0.17 5

U2 1 1 1 1 1 1.00 0.85 5

U3 0 1 1 0 1 0.60 1.18 5

U4 0 0 1 1 0 0.40 2.20 5

T
e
x
tu

a
l
In

p
u
t

U5

U6

U7

U8

1

0

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1.00

0.80

1.00

0.60

0.85

0.17

0.85

1.18

5

5

5

5

U9 1 1 1 1 1 1.00 0.85 5

U10 1 1 1 1 1 1.00 0.85 5

U11 1 1 1 1 1 1.00 0.85 5

U12 1 1 1 0 1 0.80 0.17 5

93

Table C.3.
Times participants spend correctly answering a question. (G) Visual
Based Input. (T) Textual Based Input

Time StrDim StrPos Sdef SStrRel StrStrRel

G T G T G T G T G T

T1 24.45 32.14 12.75 28.66 23.66 85.70 63.35 254.81 57.34 39.58

T2 14.40 55.11 12.93 121.74 18.63 51.48 39.39 181.31 28.27 94.48

T3 32.37 32.42 21.51 47.55 13.38 68.68 75.74 162.18 45.74 17.22

T4 19.40 38.23 18.12 23.87 66.25 73.00 11.27 74.32 13.05 55.15

T5 6.04 53.85 39.98 45.66 32.97 101.02 12.66 30.53 42.61 40.38

T6 3.99 24.21 39.61 128.01 71.32 67.23 16.79 125.95 30.19 14.86

T7 25.93 98.30 67.07 17.56 15.23 122.24 19.20 44.37 29.53 205.66

T8 37.27 13.31 24.76 27.23 64.64 205.28 21.87 38.24 25.05 28.94

T9 21.53 11.31 196.17 41.29 121.91 47.09 62.14 21.68 162.67

T10 8.68 31.41 51.93 6.48 62.43 12.08 6.16 85.69

T11 9.33 16.43 11.24 93.13 6.84 53.06 20.11

T12 40.90 4.61 9.07 43.28 138.46 19.58

T13 59.87 7.50 7.63 28.94 79.94

T14 79.94 6.65 10.59 70.65 37.15

T15 82.37 22.13 63.24 27.10 149.12

T16 15.12 8.60 32.86 12.19 158.56

T17 4.69 23.53 11.68 21.95 117.79

T18 37.03 40.25 42.83 21.30

T19 16.47 12.92 20.92 40.74

T20 19.93 23.02 31.39 4.18

T21 17.86 5.96 13.75

T22 4.57 3.85

Mean

STD

28.60

23.94

43.44

24.51

21.13

14.44

68.84

56.38

27.73

21.39

91.28

42.00

33.56

30.28

108.21

73.29

49.05

43.19

69.52

60.20

94

Table C.4.
Z-score for each time participants spend correctly answering a ques-
tion. Red values highlight outliers values removed during the analysis
(based on the empirical rule)

Z–score StrDim StrPos Sdef SStrRel StrStrRel

G T G T G T G T G T

Z1 0.17 0.58 0.19 0.46 0.71 0.13 0.98 0.19 2.00 0.50

Z2 0.59 0.57 0.43 0.48 0.94 0.95 0.19 0.48 1.00 0.41

Z3 0.16 0.03 0.67 0.45 0.38 0.54 1.39 0.08 0.74 0.87

Z4 0.38 0.21 1.80 0.21 0.80 0.44 0.74 0.83 0.46 0.24

Z5 0.94 1.31 0.25 0.42 0.41 0.23 0.69 0.15 1.06 0.48

Z6 1.03 1.28 2.04 0.78 1.05 0.57 0.55 0.44 0.24 0.91

Z7 0.11 3.18 0.58 2.24 0.91 0.74 0.47 0.45 0.87 2.26

Z8 0.36 0.25 1.73 1.23 0.74 2.71 0.39 0.56 0.95 0.67

Z9 0.30 0.68 0.63 2.26 0.73 0.45 0.63 0.63 1.55

Z10 0.83 0.71 0.99 0.30 0.69 0.71 0.99 0.27

Z11 0.81 0.33 0.77 0.04 0.88 0.09 0.82

Z12 0.51 1.14 0.87 1.14 3.46 0.68

Z13 1.31 0.94 0.94 0.15 0.72

Z14 2.14 1.00 0.80 1.22 0.28

Z15 2.25 0.07 1.66 0.21 2.32

Z16 0.56 0.87 0.24 0.71 2.54

Z17 1.00 0.17 0.75 0.38 1.59

Z18 1.10 0.59 0.31 0.64

Z19 0.32 0.69 0.42 0.19

Z20 0.08 0.22 0.07 1.04

Z21 0.23 1.02 0.65

Z22 1.15 0.98

95

APPENDIX D

INTERACTIVE ANALYTIC SYSTEMS FOR

UNDERSTANDING THE SCHOLARLY IMPACT OF

LARGE-SCALE E-SCIENCE CYBER ENVIRONMENTS

The following text in this chapter was published as a short paper in the proceedings

of the ESCIENCE2015 (2015 IEEE International Conference on e-Science) [35], this

paper describes the interactive analytic system used to measure Nanohub.org impact.

c 2015 IEEE. Personal use of this material is permitted. Permission from IEEE

must be obtained for all other uses, in any current or future media, including reprint-

ing/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copy-

righted component of this work in other work

Introduction

The advent of Internet and Web 2.0 has given rise to the emergence and popularity

of cyber-environments. A cyber-environment is defined as a collection of computa-

tional resources, data, visualization resources made available through an online por-

tal [36], supported by underlying network, services, software, and hardware [37]. The

academic use of cyber-environments helps disseminate educational tools, scientific

workflow/simulations, academic publications, and other resources to benefit a much

wider range of audience. For example, as a leading cyber-environment in nanotechnol-

ogy, nanoHUB [38] has served about 310,000 users over the past 12 months with over

4,000 presentations, teaching materials, simulation tools, and other nanotechnology-

related resources as of today [39]. Another renowned cyber-environment, PhET [40],

https://Nanohub.org

96

is a virtual lab environment that offers over 75 million science simulation tools for

researchers, educators, and students. Last but not least, Molecular Workbench [41]

is an online platform that facilitates sharing of molecular dynamics simulations pri-

marily for educational purposes [42]. As more cyber-environments produce significant

impacts on their intended communities, it is critical to precisely measure and demon-

strate their scholarly performance. There is a large body of literatures discussing

what methods to use for evaluating research quality and how to apply these methods

in a specific context. Among all these assessment methods, bibliometrics is the most

widely used method, which evaluate research quality by quantitative analyses of sci-

entific publications. Tremendous prior studies have used bibliometrics to demonstrate

the scholarly impacts of theories [43], journals [44], [45], research areas [46] [47], and

countries [48]. The long history and popularity of applying bibliometrics in research

evaluation indicates the potential of using it to evaluate cyber-environment. Assess-

ing a cyber-environment with bibliometric data, however, places additional challenges

that are not commonly encountered in the aforementioned prior studies. First, analy-

ses of bibliometric data often have a clearly defined data source to draw publications

from and a programmatic sampling strategy to narrow down the dataset. For exam-

ple, it is a common practice for a bibliometric study to analyze papers that contain

specific keywords from certain journals over a period of time. On the contrary, the

scholarly impact of a cyber-environment is demonstrated not only by academic pub-

lications produced by the core team members who develop the platform, but also by

those published by users who utilize resources in the cyber-environment. For exam-

ple, a researcher contributes a simulation tool to the cyber-environment and studies

how the tool is adopted and used by other registered users. Nevertheless, these au-

thors rarely report their academic work built upon the cyber-environment facilities

and resources back to the online community. Also, users may publish their work in

a diversity of journals and conferences and therefore publication venues cannot be

determined easily. Finally, they may not cite the cyber-environment as a reference

and instead, only mention it in the footnote or acknowledgement. All these factors

97

make it extremely difficult to keep track of all the citations of a cyber-environment.

Second, due to the uncertainty and diversity of publications, the data quality is radi-

cally compromised. The majority of bibliometric studies have bibliographic metadata

drawn from only a few data sources. Therefore the data tend to be consistent and

suffer less from problems like name ambiguity, missing data fields, and missing full

text. Cyber-environment citations, however, are acquired from a large variety of

publishers and indexing engines. The citation data collected need to be carefully

handled to make sure that the data quality is appropriate for the analysis. Third,

most bibliometric analysis results are published once every few years and the most

recent publications cannot be factored in until the next analysis. While this may

not sound like a problem in some scenarios, it is critical for cyber-environments to

gain immediate feedbacks from the community users to improve the services. For

example, if the results show that a particular simulation tool has gained a lot of

attentions from scholars, this may be an indication that the tool is being frequently

used and require much more computational resources. Last but not least, the diver-

sity of cyber-environment audience implies the need of delivering the analysis results

in multiple facets. The funding agency may be interested in different statistics from

a hub user in the evaluation result. There is not a single template for reporting

analysis results that can suit all the needs and the audience should be granted more

freedom to navigate the results. This means, the traditional static representations

need to be transformed into an interactive form. This paper presents our attempt

to demonstrate the scholarly impact of a cyber-environment based on bibliometric

data. In particular, we aim to address the four challenges above by answering the

following questions: 1. How to define the appropriate sample scope and increase data

quality in evaluating cyber-environments scholarly impact? 2. How to keep the eval-

uation results up-to-date and allow audience to interact with them? To answer the

first question, we present our workflow and implementation of a web-based citation

management system. The system facilitates metadata collection, data quality con-

trol, and metadata annotation in managing citations of a cyber-environment. For the

98

second question, we construct a public data gateway with interactive visualizations

and statistics to offer users the capability of interacting with the bibliometric data.

To show the effectiveness of the system, we apply it to showcase nanoHUBs scholarly

impact. To our best knowledge, the present study is the first attempt to characterize

an ill-defined bibliometric dataset and represent it in an interactive and visual form.

The system we propose in this study can be used to evaluate a broad range of other

cyber-environments. It also has the potential in other contexts where sample scope

cannot be easily defined.

Related Work

Research evaluation

Research evaluation can be performed via a number of different ways. Some or-

ganizations, such as the National Science Foundation in the US, depend on internal

and external evaluators to conduct and report evaluations of funded projects [49].

These evaluators are usually domain experts that have sufficient knowledge and ex-

perience to perform a comprehensive review [50]. However, the evaluators are either

permanently employed or contracted to perform the tasks and are often offered train-

ing programs to get prepared for the job. Therefore it is a costly approach and

is most appropriate for comprehensive evaluations of a very limited number of ob-

jects infrequently. Also, there are debates questioning the independency, objectivity,

knowledge, credibility, and ethic of evaluators [50]. Also, evaluators vary in their

competencies and in many organizations there is no widely accepted taxonomy of

what should be considered as essential evaluator competencies [51]. This may lead

to inconsistent evaluation results produced by different evaluators, which make it

difficult to compare results across programs/projects. Besides the human-based ap-

proach, scientists and government agencies have also sought for a more data-driven

solution. The popularity of digital resources online has transformed academic pub-

lishing and made data-driven solutions technologically feasible [52]. Data often refer

99

to the bibliographic data, which includes a wide range of formally written publi-

cations in academia such as journal papers, conference proceedings papers, books,

grant proposals, and other communication medium. Bibliometrics is defined as the

quantitative study of physical published units, or of bibliographic units, or of the

surrogates for either [53]. Since it was first coined in 1969 [54] bibliometrics has

sustained the mainstream in data-driven research evaluation. Therefore, we will dis-

cuss bibliometrics in greater depth in the next section. Another recent strand of data

driven research evaluation is altmetrics, also known as Scientometrics 2.0 [55]. Rather

than depending on academic articles, altmetrics focuses on evaluating academic work

based on social media data, measured by web-based metrics such as number of social

bookmarking [56], mention in microblogging platforms [57], and occurrences in social

networking applications [55]. To date, altmetrics is still in its infancy and has not

been widely adopted in research evaluation. Therefore, our approach selects biblio-

metrics as the primary toolkit for measuring research quality. Both bibliometrics and

altmetrics are capable of analyzing large-scale quantitative data and require radically

less human efforts than depending on evaluators.

Bibliometrics

Bibliometrics is a prevalent quantitative method used not only for assessing aca-

demic performance but also for demonstrating the evolution of a research community.

Citation analysis and content analysis are the two most popular methods in biblio-

metrics. Citation analysis refers to the examination of the frequency, patterns, and

graphs of citations in articles and books [58]. It is widely used to evaluate and compare

journal impacts of a given research area [44], [46], [59], examine past governmental

investments [60], [61], showcase institutes academic contributions to a field [62], [63],

and compare geographical patterns in co-citation and co-authorship [64]. However,

some scholars questioned [65], [66] and opposed [67] the use of citation analysis as a

quality evaluation tool because it fails to take other factors into consideration and

100

hence may yield misleading results. For instance, Sims and McGhee identified factors

that might threaten the validity of the citation analysis: fields of study, inconsisten-

cies in calculation due to manual annotation, inaccuracies in database processing,

bias against non-English language journals, self-citation, and time taken to review

manuscripts [59]. Content analysis, in the context of bibliometrics, aims to study

publications in greater depth and more descriptively than citation counting. In com-

bination with citation analysis, some scholars define content analysis as the study of

contexts in which citations occur [68] (also known as citation function [69]). In such

cases, content analysis supplements citation analysis with more contexts for citations

other than simple counts. The core of content analysis studies focus on proposing clas-

sification schemes for different citation types such as affirmative and negational [70].

Rather than focusing on contextualizing citations, another line of research attempts

to analyze attributes that are not immediately available from the basic metadata. In-

stead, it often requires efforts from domain experts or algorithms to annotate articles

with supplemental information. The additional descriptions generated manually by

human tend to be more insightful and purposeful and are used to classify literatures

into categories. As a result, statistics are presented regarding the intra-categorical

status and inter-categorical connections. For instance, scholars aim to understand a

large body of literature by study type such as comparative study, descriptive study,

and usability testing [71] and by topics [72]. The supplemental information can be

also derived from full text by algorithms automatically. For example, the additional

annotation extracted programmatically from full text can help characterize topical

trends in a domain [73]. Some researchers combine these two methods to reveal the

main theme in a research area by keyword co-occurrence [74] Regardless of whether

it is a citation analysis or a content analysis, analysis results of bibliometric data are

often represented as a formal document such as an evaluation report and an academic

paper. In such cases, it is up to the authors what to report, how to report, and how

often a report is published. It leaves little room for the audience to freely explore the

bibliometric data. Also, this traditional publishing process inevitably incurs a lag in

101

time, where the results written in the document are already obsolete when they are

published. There is a need for transformative changes in how bibliometric analysis

results are presented.

Methodology

Demonstrating the scholarly impact of cyber-environments has the difficulties of

defining sample scopes, increasing data quality, keeping results up-to-date, and allow-

ing user navigation. The first two difficulties can be overcome by a citation manage-

ment system, which is a web-based platform we develop for managing a high-quality

bibliographic database. The last two difficulties require development of a user in-

terface for visually monitoring and interacting with the most up-to-date scholarly

impact. In response, we design a workflow illustrated in Figure D.1 to tackle these

problems. Figure D.1 presents the two main components in our design: citation

management and visual analytics. In citation management, E-team refers to an ed-

itor team that works via the web interface on adding and managing new citations

relevant to the specific cyber-environment. Part of the citation information comes

directly from the data sources defined by the E-team, whereas supplemental informa-

tion is added to each citation manually later. Any change made by the E-team will be

saved into a bibliographic database. Those flagged as approved in the database are

used to produce statistics and visualizations, which are available in the public view.

Potential users such as project directors, evaluators, and hub users can interact with

the presented data to explore them in different aspects.

Citation management

The citation management module aims to provide a set of services for import-

ing and managing citation data with the E-team involved. For a new citation to

become valid and complete, it must go through a sequence of processes: Biblio-

graphic metadata acquisition, Full text download, Bibliographic metadata correction

102

Fig. D.1. The general workflow of our system for demonstrating the
scholarly impact of cyber-environments

103

and completion, Name disambiguation, Supplemental annotations, Final review and

publications.

1. Bibliographic metadata acquisition: There are two major challenges in acquir-

ing bibliographic metadata of publications that are relevant to the given cyber-

environment. First, the new citations must be relevant to the cyber-environment

and the definition of relevance may vary over time. This requires creation of a

list of data sources and development of corresponding processors to detect and

parse the new data. For instance, based on observations of where the past pub-

lications that cite the cyber-environment resources are archived, the acquisition

step may rely on metadata processors to download and extract bibliographic

data from Web of Science, Google Scholar, and EBSCOhost. Different sources

vary in the way metadata are downloaded and in the format the data is pre-

sented. For example, indexing engines such as Microsoft Academic Search and

Web of Science offers web API such as web services and JSON-RPC for querying

their databases. Some provides the option of file download in BibTex, EndNote,

and RIS formats. Others such as Google Scholar have no infrastructure to facil-

itate a batch download and therefore a webpage crawl needs to be developed to

mine information from their sites. Also, administrators without any program-

ming experience should be able to modify the sampling criteria to retrieve new

bibliographic metadata. Figure D.2 shows an example of finding new citations

using Google Scholar with the keyword nano.

Second, a regular routine must be set up to update the citation database so as

to keep it always up-to-date. The downloader and extractor mentioned above

run as a daemon program to pull new citations from the specified data sources

and insert them into the pending queue for further processing. During the

data acquisition step, the E-team decides whether to exclude certain citations

from the list based on the publication titles. The blacklisted record is saved to

prevent the same item from appearing in the future. However, the title per se

is sometimes insufficient for making a decision about the citations relevance. In

104

Fig. D.2. The web interface for importing bibliographic metadata
from Google Scholar

105

Fig. D.3. The web interface for importing bibliographic metadata
from Google Scholar

the following steps, the E-team will be offered opportunities to remove irrelevant

citations.

2. Full text download: Content analysis has to be performed over publication

full text. When the data sources provide full text download, the metadata

downloader mentioned earlier automatically retrieves the file and associates

it with the corresponding metadata in the database. However, full text may

sometimes be missing from the data sources. In such cases, the full text has to

be downloaded by the E-team from other data sources that may not be defined

before. It may also happen that the full text cannot be found anywhere online.

Figure D.3 illustrates the webpage for associating full text with new citations.

In our implementation, we place an indicator of how long an item remains in

the pending queue. An item that remains unresolved for a long time usually

implies the unavailability of full text.

3. Bibliographic metadata correction and completion: The bibliographic metadata

acquired from the data sources in many cases contain incomplete and even

incorrect data. For instance, a journal paper may miss the publication year

or a book may have incorrect publisher information. Such errors significantly

106

Fig. D.4. The web interface for correcting and completing citation metadata

threaten the validity of the analysis results. To solve this problem, we build a

user interface to facilitate the E-team to input data for the missing fields and

provide a link to the full text for reference, as shown in Figure D.4.

4. Name disambiguation: Name ambiguity problem is a common problem in bib-

liographic database [75]. It refers to cases where one individual is represented

as various names and different individuals share the same name. Taking au-

thor names as an example, an author may publish papers under different name

variations caused by first name abbreviation, middle initial omission, and even

typos [76]. On the other hand, the same name may represent more than one

scholar. Failure to identify such relationships incurs errors in studying au-

thor collaboration and also affects other author-related statistics. Existing ap-

proaches on author name disambiguation can be classified as either supervised

or unsupervised solutions. Supervised approaches [77], [78] involve human in

the decision-making process and are generally believed to produce higher-quality

result. Unsupervised solutions [79] [80] depend entirely on algorithms to detect

107

Fig. D.5. The web interface for correcting and completing citation metadata

name duplicates automatically and are capable of handling large-scale data. Be-

cause the number of citations of cyber-environments is relatively small and data

precision is more critical, we choose supervised solutions by detecting suspected

duplicates and offering users visual aids in the disambiguation process. Figure

D.5 shows a pair of suspected duplicate names with identical information high-

lighted. Similar to author name ambiguity, publications also undergo a similar

problem. Due to the inconsistency of data fields between two publications, two

actually identical documents may be mistakenly viewed as separate ones. We

apply a similar approach to compute the similarity of two citations by their

titles, abstracts, publication years, authors, and publication venues.

Supplemental annotations: The bibliographic metadata provide basic information

of a publication such as title, abstract, author, keyword, publication venue, and publi-

cation year. However, content analysis often requires more insightful and elaborative

data, which are most likely to be produced by human. Depending on the nature of

the cyber-environment and the purpose of the research evaluation, additional anno-

tations may include the study type, related cyber-environment resources, population

studied, and sample size. However, the E-team may not agree on how to annotate a

108

citation and therefore, we develop a voting mechanism and ensure that each citation

has at least three editors annotations. Based on the aggregated results, the E-team

leader decides the final annotation. Figure D.6 demonstrates the process of voting

and the result.

(a) (b)

Fig. D.6. The web interface for (1) annotation and (2) showing the voting result.

Final review: In the last stage of the citation management process, the E-team

leader reviews the bibliographic metadata and supplemental annotations and approves

the citation if all seems appropriate. If there is a problem, he/she can rewind the

citation to an earlier stage or even drop it. Once a citation is finally approved, it

enters the pool of published data, based on which analyses and visual representations

are created.

Visual analytics

The goal of the visual analytics module is to present the analytics visually and

allow any user to freely explore the up-to-date citation data. Traditionally, the schol-

arly impact is documented as reports and publications in which the authors can select

what and how to report. Instead of restricting audience to what they can see, we

offer many alternatives of looking at the bibliographic data and let audience decide

what they prefer to view. To achieve this goal, we develop a web portal with var-

ious visualizations and statistics for citations approved in the citation management

process.

109

(a) (b)

(c) (d)

(e) (f)

Fig. D.7. Some of the visualizations and statistics available on the
impact demonstration site.

Figure D.7 lists some of the visualizations and statistics available for the users

to navigate. Figure D.7(a) presents the number of citations in each year; D.7(b)

shows the main research topics among all the citations; D.7(c) demonstrates the

geographical distribution of the authors; D.7(d) is the collaboration network with

110

two degree of separations of a scholar; D.7(e) shows an authors academic profile;

and D.7(f) illustrates how citations are linked by common authors. Some of the

visualizations involve intensive computation and have to be executed in a distributed

environment such as Condor [81] and Hadoop [82] clusters. The technical details of

how to implement each visualization are beyond the scope of this paper.

Case Study: Nanohub

To demonstrate the usefulness of the workflow and implementations we pro-

pose, we select a cyber-environment called nanoHUB and study its scholarly impact.

nanoHUB is a resource hub for nanotechnology education and research and aims to

promote resource sharing and user collaboration. Over the past 12 months, it serves

over 310,000 users worldwide who add a large number of new scientific resources.

nanoHUB is selected in this study because it is a great example of cyber-environments

in academia with a long history and significant impact on many research and edu-

cation communities. Before our system was introduced, the nanoHUB editor team

collected and filtered citations manually on a timely basis. The team then compiled

a list of new citations in an Excel spreadsheet and sent it over to the database ad-

ministrator, who inserted and maintained the citation database. When there was a

demand for demonstrating nanoHUBs scholarly impact, the database administrator

along with other visualization designers created statistics and graphs using software

such as Pajek [83] and NetDraw [84]. It was not only a costly procedure but also

led to many problems. For example, the editor team found it difficult to coordinate

and sometimes ended up working on including the same citation multiple times on

the spreadsheet. The database administrator encountered the problem of name dis-

ambiguation and spent a lot of time resolving them case by case. The statistics and

visualization producers were tired of repeating similar tasks every time when the re-

port was demanded. We deploy our system using the cyber-infrastructure provided

by nanoHUB and treat citations in the legacy database as new citations. In our

111

case study, the E-team is composed of one domain expert (team leader) and four

undergraduate students with no domain knowledge. A 30-minute training session is

provided to the E-team to learn the new system. From then on, the E-team works

individually on the web-based interface to collect, correct, complete, and annotate

bibliographic data of nanoHUB citations. The E-team leader reviews other team

members efforts and the approved citations are presented as statistics and visualiza-

tions on the public site. The visual products are also included as part of the annual

report submitted to the funding agency. By 3/27/2015, a total of 1,740 citations

have been acquired from Google Scholar, out of which 281 are identified as irrelevant

to nanoHUB or duplicate to existing citations. 1210 citations have been approved

with complete metadata, full text, and annotations. The rest are to be processed

in the citation management system. Among the published citations, 1760 author

names are identified as ambiguous, out of a total of 4354 author names. The sup-

plemental annotations for nanoHUB citations are: (1) Whether the research project

is NCN-affiliated; (2) Whether the research study contains experimentalist/experi-

mental data; (3) What tools on nanoHUB are cited; and (4) What type of study it

belongs to.

Discussion

We select cyber-environments as a stereotype to show the effectiveness of the

workflow we propose. However, our solution is highly flexible and configurable so

that it can be applied to other similar scenarios. The intended use of our approach is

to showcase from many different perspectives the scholar impact of a relatively small,

ill-defined, constantly growing dataset where data precision and real-time updates are

of high priority. For example, our solution can also be used to show the evolution

of an emerging discipline that has no dedicated journals or conferences and is on the

way of forming its unique knowledge body. It can also be used to characterize the

impact of a renowned theory in multiple domains. Besides web-based solutions, there

112

are other alternative platforms for visualizing bibliometric data in an interactive way.

In general, standalone applications such as ClaiMapper [85] have the advantage over

web applications in performance. However, we deploy the computationally intensive

components to a distributed environment and show the cached content to the users.

Therefore, the overall performance exceeds that of a standalone application in some

cases. Also, web-base platforms require no software installation and are highly acces-

sible from any computer with Internet connections. Therefore, we choose to develop

a web-base data gateway for managing and presenting bibliometric data. One major

limitation of our current design is the scalability problem in citation management.

As discussed earlier, automating the citation management process can be achieved by

adopting the unsupervised name disambiguation algorithms and overlooking missing

data fields. However, automation compromises data quality and eventually affects the

accuracy of analysis results. To sustain high data precision while lowering the cost

of recruiting a dedicated team, we would like to explore in a future study the possi-

bility of deploying our implementations on crowdsourcing platforms such as Amazon

Mechanical Turk. Based on our observation of the E-team working on the nanoHUB

dataset, we believe that it is feasible to crowdsource the tasks of downloading full

text, correcting and completing metadata, and disambiguating names to ordinary

novice users

113

REFERENCES

[1] M. Lundstrom, “Drift-diffusion and computational electronics - still going strong
after 40 years!” in 2015 International Conference on Simulation of Semiconduc-
tor Processes and Devices (SISPAD), Sep. 2015, pp. 1–3.

[2] U. Wilensky and M. Resnick, “Thinking in Levels: A Dynamic Systems
Approach to Making Sense of the World,” Journal of Science Education
and Technology, vol. 8, no. 1, pp. 3–19, Mar. 1999. [Online]. Available:
https://doi.org/10.1023/A:1009421303064

[3] C. E. Hmelo-Silver and R. Azevedo, “Understanding Complex Systems: Some
Core Challenges,” Journal of the Learning Sciences, vol. 15, no. 1, pp. 53–61,
Jan. 2006.

[4] R. K. Atkinson, S. J. Derry, A. Renkl, and D. Wortham, “Learning from
Examples: Instructional Principles from the Worked Examples Research,”
Review of Educational Research, vol. 70, no. 2, pp. 181–214, Jun. 2000. [Online].
Available: http://rer.sagepub.com/content/70/2/181

[5] J. Wiley, “Expertise as mental set: The effects of domain knowledge in creative
problem solving,” Memory & Cognition, vol. 26, no. 4, pp. 716–730, Jul. 1998.
[Online]. Available: http://link.springer.com/article/10.3758/BF03211392

[6] M. llinger, G. Jones, and G. Knoblich, “Investigating the Effect of Mental
Set on Insight Problem Solving,” Experimental Psychology, vol. 55, no. 4, pp.
269–282, Jan. 2008. [Online]. Available: http://econtent.hogrefe.com/doi/abs/
10.1027/1618-3169.55.4.269

[7] M. Scaife and Y. Rogers, “External cognition: how do graphical
representations work?” International Journal of Human-Computer Studies,
vol. 45, no. 2, pp. 185–213, Aug. 1996. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1071581996900488

[8] W. O. Galitz, The Essential Guide to User Interface Design: An Introduction to
GUI Design Principles and Techniques. John Wiley & Sons, Apr. 2007.

[9] J. J. Padilla, S. Y. Diallo, and A. Tolk, “Do We Need M&S Science?” SCS
M&S Magazine, vol. 8, no. 2011, pp. 161–166, 2011. [Online]. Available: http:
//www.scs.org/magazines/2011-10/index file/Files/Padilla-Diallo-Tolk.pdf

[10] S. Krger, Simulation: Grundlagen, Techniken, Anwendungen. Berlin ; New
York: De Gruyter, Jan. 1975.

[11] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, reprint edi-
tion ed. Clarendon Press, Jun. 1989.

www.scs.org/magazines/2011-10/index
www.sciencedirect.com/science/article/pii/S1071581996900488
http://econtent.hogrefe.com/doi/abs
http://link.springer.com/article/10.3758/BF03211392
http://rer.sagepub.com/content/70/2/181
https://doi.org/10.1023/A:1009421303064

114

[12] I. Romanowska, “So You Think You Can Model? A Guide to
Building and Evaluating Archaeological Simulation Models of Dispersals,”
Human Biology Open Access Pre-Prints, Nov. 2015. [Online]. Available:
http://digitalcommons.wayne.edu/humbiol preprints/79

[13] “Dojo Toolkit.” [Online]. Available: http://dojotoolkit.org/

[14] “three.js - Javascript 3d library.” [Online]. Available: http://threejs.org/

[15] M. Bostock, “D3.js - Data-Driven Documents.” [Online]. Available: https:
//d3js.org/

[16] B. Karlsson, Beyond the C++ Standard Library: An Introduction to Boost.
Pearson Education, Aug. 2005, google-Books-ID: lFfuYJ0OeZkC.

[17] Lan Zhao, Carol X. Song, Rajesh Kalyanam, Larry Biehl, Robert Campbell,
Leif Delgass, Derrick Kearney, Wei Wan, Jaewoo Shin, I Luk Kim, and Carolyn
Ellis, “GABBs - Reusable Geospatial Data Analysis Building Blocks for Science
Gateways,” in 9th International Workshop on Science Gateways, Jun. 2017.

[18] A. Strachan, “Reproducing DFT calculations of Al2o3/GaAs interface structure
and Fermi level pinning,” 2015.

[19] R. Andrawis, J. D. Bermeo, J. Charles, J. Fang, J. Fonseca, Y. He,
G. Klimeck, Z. Jiang, T. Kubis, D. Mejia, D. Lemus, M. Povolotskyi,
S. A. P. Rubiano, P. Sarangapani, and L. Zeng, “NEMO5: Achieving High-end
Internode Communication for Performance Projection Beyond Moore’s Law,”
arXiv:1510.04686 [physics], Oct. 2015, arXiv: 1510.04686. [Online]. Available:
http://arxiv.org/abs/1510.04686

[20] G. Klimeck, “Accelerating Nanoscale Transistor Innovation with Nemo5,” Blue
Waters Highlight, 2015.

[21] J. Fonseca, H. Sahasrabudhe, E. Wilson, S. Mehdi, and G. Klimeck, “NEMO5
NanoElectronics MOdeling,” Blue Waters Symposium, 2014.

[22] J. Fonseca, “NEMO5 on Blue Waters - A Flexible Package for Nanoelectronics
Modeling Problems,” Blue Waters Symposium, 2016.

[23] A. Dubrow and N. Gaynor, “From massive supercomputers come tiniest
transistors,” Discovery - National Science Foundation, 2015. [Online].
Available: https://www.nsf.gov/discoveries/disc summ.jsp?cntn id=134313&
WT.mc id=USNSF 6

[24] “NSF-supported supercomputing resources enable research that would otherwise
be impossible,” 2015. [Online]. Available: http://primeurmagazine.com/weekly/
AE-PR-12-15-112.html

[25] A. Dubrow, “10 Ways Advanced Computing Catalyzes Science,” 2017.

[26] “Using supercomputers to design nanoelectronics components,” 2015. [On-
line]. Available: https://www.nanowerk.com/nanotechnology-news/newsid%
3D39269.php

[27] G. Klimeck, “Atomistic Modeling of Future Nanoscale Electronic Devices with
Nemo5,” Blue Waters Symposium, 2015.

https://www.nanowerk.com/nanotechnology-news/newsid
http://primeurmagazine.com/weekly
https://www.nsf.gov/discoveries/disc
http://arxiv.org/abs/1510.04686
https://d3js.org
http://threejs.org
https://three.js
http://dojotoolkit.org
http://digitalcommons.wayne.edu/humbiol

115

[28] “ / Japanese scientists have developed innovative transistors,” 2017. [Online].
Available: https://hightech.fm/2017/12/28/transistors

[29] J. Thomas and J. Kielman, “Challenges for Visual Analytics,” Information
Visualization, vol. 8, no. 4, pp. 309–314, Dec. 2009. [Online]. Available:
http://ivi.sagepub.com/content/8/4/309

[30] J. Scholtz, “User-Centered Evaluation of Visual Analytics,” Synthesis Lectures
on Visualization, Oct. 2017.

[31] Y. Zhu, “Measuring effective data visualization,” Advances in visual computing,
pp. 652–661, 2007. [Online]. Available: http://www.springerlink.com/index/
H474878RR850R168.pdf

[32] B. Saket, A. Endert, and J. Stasko, “Beyond Usability and Performance: A
Review of User Experience-focused Evaluations in Visualization,” in Proceedings
of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods
for Visualization, ser. BELIV ’16. New York, NY, USA: ACM, 2016, pp.
133–142. [Online]. Available: http://doi.acm.org/10.1145/2993901.2993903

[33] J. Davidson, Evaluation Methodology Basics The Nuts and Bolts of Sound
Evaluation. Sage, 2018. [Online]. Available: https://us.sagepub.com/en-us/
nam/evaluation-methodology-basics/book226129

[34] F. Beck, S. Koch, and D. Weiskopf, “Visual Analysis and Dissemination of Sci-
entific Literature Collections with SurVis,” IEEE Transactions on Visualization
and Computer Graphics, vol. 22, no. 1, pp. 180–189, Jan. 2016.

[35] K. Madhavan, D. F. Mejia, H. Xian, L. K. Zentner, V. A. Farnsworth, S. Samek,
and G. Klimeck, “Interactive Analytic Systems for Understanding the Schol-
arly Impact of Large-Scale E-science Cyberenvironments,” in 2015 IEEE 11th
International Conference on e-Science, Aug. 2015, pp. 288–291.

[36] K. Madhavan, “Cyber-environments as Platforms for Integrating Engineering
Research and Education,,” Proceedings of the Research in Engineering Education
Symposium, 2008.

[37] T. Roberts, “Todays Cyber Environment: Where Does Software Fit?” Defensive
Cyber Secur. Policies Proced. 2, vol. 12, no. 2, 2010.

[38] “nanoHUB.org - Resources: Tools: Resonant Tunneling Diode Simulation with
NEGF: Session: 1303996 ”Resonant Tunneling Diode Simulation with NEGF”.”
[Online]. Available: https://nanohub.org/tools/rtdnegf/session?sess=1303996

[39] G. Klimeck, G. B. A. III, K. P. C. Madhavan, N. Denny, M. G. Zentner, S. Shiv-
arajapura, L. K. Zentner, and D. L. Beaudoin, “Social Networks of Researchers
and Educators on nanoHUB.org,” in 2011 11th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing, May 2011, pp. 560–565.

[40] “PhET Interactive Simulations.” [Online]. Available: https://phet.colorado.edu/

[41] “Molecular Workbench.” [Online]. Available: http://mw.concord.org/modeler/

[42] R. F. Tinker and Q. Xie, “Applying Computational Science to Education: The
Molecular Workbench Paradigm,” Computing in Science Engineering, vol. 10,
no. 5, pp. 24–27, Sep. 2008.

http://mw.concord.org/modeler
https://phet.colorado.edu
https://nanoHUB.org
https://nanohub.org/tools/rtdnegf/session?sess=1303996
https://nanoHUB.org
https://us.sagepub.com/en-us
http://doi.acm.org/10.1145/2993901.2993903
http://www.springerlink.com/index
http://ivi.sagepub.com/content/8/4/309
https://hightech.fm/2017/12/28/transistors

116

[43] M. G. Jones and L. Brader-Araje, “The Impact of Constructivism on Education:
Language, Discourse, and Meaning,” Am. Commun. J., vol. 5, no. 3, pp. 1–10,
2002.

[44] E. Garfield, “Citation Analysis as a Tool in Journal Evaluation: Journals can
be ranked by frequency and impact of citations for science policy studies,”
Science, vol. 178, no. 4060, pp. 471–479, Nov. 1972. [Online]. Available:
http://science.sciencemag.org/content/178/4060/471

[45] Wankat Phillip C., “Analysis of the First Ten Years of the Journal of
Engineering Education,” Journal of Engineering Education, vol. 93, no. 1, pp.
13–21, Jan. 2013. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1002/j.2168-9830.2004.tb00784.x

[46] L. D. Brown and J. C. Gardner, “Using Citation Analysis to Assess the Impact
of Journals and Articles on Contemporary Accounting Research (CAR),”
Journal of Accounting Research, vol. 23, no. 1, pp. 84–109, 1985. [Online].
Available: http://www.jstor.org/stable/2490908

[47] Q. Zhou and K. C. Tan, “A bibliographic analysis of the literature on new service
development,” in 2008 4th IEEE International Conference on Management of
Innovation and Technology, Sep. 2008, pp. 872–877.

[48] S. Maggi, J. L. Kelsey, J. Litvak, and S. P. Heyse, “Incidence of
hip fractures in the elderly: A cross-national analysis,” Osteoporosis
International, vol. 1, no. 4, pp. 232–241, Sep. 1991. [Online]. Available:
https://link.springer.com/article/10.1007/BF03187467

[49] E. R. House, C. Haug, and N. Norris, “Evaluation policies and issues in the
National Science Foundation,” Boulder, CO Univ. Color. Sch. Educ., 1995.

[50] R. C. Sonnichsen, Building evaluation capacity within organizations. Transaction
Publishers New Brunswick, NJ and London, 1999.

[51] G. Ghere, J. A. King, L. Stevahn, and J. Minnema, “A Professional Development
Unit for Reflecting on Program Evaluator Competencies,” American Journal
of Evaluation, vol. 27, no. 1, pp. 108–123, Mar. 2006. [Online]. Available:
https://doi.org/10.1177/1098214005284974

[52] M. Henderson, S. Shurville, and K. Fernstrom, “The quantitative crunch:
The impact of bibliometric research quality assessment exercises on
academic development at small conferences,” Campus-Wide Information
Systems, vol. 26, no. 3, pp. 149–167, Jun. 2009. [Online]. Available:
http://www.emeraldinsight.com/doi/10.1108/10650740910967348

[53] R. Broadus, “Toward a definition of bibliometrics,” Scientometrics, vol. 12, no.
5-6, pp. 373–379, Nov. 1987. [Online]. Available: https://akademiai.com/doi/
abs/10.1007/BF02016680

[54] A. Pritchard, “Statistical bibliography or bibliometrics?” J. Doc., no. 25, pp.
348–349, 1969.

[55] J. Priem and B. H. Hemminger, “Scientometrics 2.0: New metrics of scholarly
impact on the social Web,” First Monday, vol. 15, no. 7, Jul. 2010. [Online].
Available: http://journals.uic.edu/ojs/index.php/fm/article/view/2874

http://journals.uic.edu/ojs/index.php/fm/article/view/2874
https://akademiai.com/doi
http://www.emeraldinsight.com/doi/10.1108/10650740910967348
https://doi.org/10.1177/1098214005284974
https://link.springer.com/article/10.1007/BF03187467
http://www.jstor.org/stable/2490908
https://onlinelibrary.wiley.com/doi/abs
http://science.sciencemag.org/content/178/4060/471

117

[56] S. Haustein and T. Siebenlist, “Applying social bookmarking data to evaluate
journal usage,” Journal of Informetrics, vol. 5, no. 3, pp. 446–457, Jul.
2011. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1751157711000393

[57] K. Weller and C. Puschmann, “Twitter for Scientific Communication: How Can
Citations/References be Identified and Measured,” 2011.

[58] R. E. Rubin, Foundations of Library and Information Science, 3rd Edi-
tion. New York: Neal-Schuman Publishers, 2010, vol. 3, google-Books-ID:
muk DwAAQBAJ.

[59] J. L. Sims and C. N. J. McGhee, “Citation analysis and journal impact factors
in ophthalmology and vision science journals,” Clinical & Experimental Ophthal-
mology, vol. 31, no. 1, pp. 14–22, Feb. 2003.

[60] D. Campbell, M. Picard-Aitken, G. Ct, J. Caruso, R. Valentim, S. Edmonds,
G. T. Williams, B. Macaluso, J.-P. Robitaille, N. Bastien, M.-C. Laframboise,
L.-M. Lebeau, P. Mirabel, V. Larivire, and . Archambault, “Bibliometrics
as a Performance Measurement Tool for Research Evaluation: The Case of
Research Funded by the National Cancer Institute of Canada,” American
Journal of Evaluation, vol. 31, no. 1, pp. 66–83, Mar. 2010. [Online]. Available:
https://doi.org/10.1177/1098214009354774

[61] D. Hicks, H. Tomizawa, Y. Saitoh, and S. Kobayashi, “Bibliometric techniques
in the evaluation of federally funded research in the United States,” Research
Evaluation, vol. 13, no. 2, pp. 76–86, Aug. 2004. [Online]. Available:
https://academic.oup.com/rev/article/13/2/76/1529274

[62] E. C. M. Noyons, H. F. Moed, and M. Luwel, “Combining mapping and citation
analysis for evaluative bibliometric purposes: A bibliometric study,” Journal of
the American Society for Information Science; New York, vol. 50, no. 2, pp.
115–131, Feb. 1999. [Online]. Available: https://search.proquest.com/docview/
231475449/abstract/B681478EDEE94BA5PQ/1

[63] E. Rahm and A. Thor, “Citation Analysis of Database Publications,”
SIGMOD Rec., vol. 34, no. 4, pp. 48–53, Dec. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1107499.1107505

[64] B. sdiken and Y. Pasadeos, “Organizational Analysis in North America
and Europe: A Comparison of Co-citation Networks,” Organization
Studies, vol. 16, no. 3, pp. 503–526, May 1995. [Online]. Available:
https://doi.org/10.1177/017084069501600306

[65] E. Garfield, “Is citation analysis a legitimate evaluation tool?” Scientometrics,
vol. 1, no. 4, pp. 359–375, May 1979. [Online]. Available: https:
//link.springer.com/article/10.1007/BF02019306

[66] R. Kostoff, “The use and misuse of citation analysis in research evaluation,”
Scientometrics, vol. 43, no. 1, pp. 27–43, Sep. 1998. [Online]. Available:
https://akademiai.com/doi/abs/10.1007/BF02458392

[67] M. MacRoberts and B. MacRoberts, “Problems of citation analysis,”
Scientometrics, vol. 36, no. 3, pp. 435–444, Jul. 1996. [Online]. Available:
https://akademiai.com/doi/abs/10.1007/BF02129604

https://akademiai.com/doi/abs/10.1007/BF02129604
https://akademiai.com/doi/abs/10.1007/BF02458392
https://link.springer.com/article/10.1007/BF02019306
https://doi.org/10.1177/017084069501600306
http://doi.acm.org/10.1145/1107499.1107505
https://search.proquest.com/docview
https://academic.oup.com/rev/article/13/2/76/1529274
https://doi.org/10.1177/1098214009354774
http://www.sciencedirect.com/science/article/pii

118

[68] L. C. SMITH, “Citation analysis,” Library Trends, vol. 30, pp. 83–106, 1981.
[Online]. Available: https://ci.nii.ac.jp/naid/10009572773/

[69] S. Teufel, A. Siddharthan, and D. Tidhar, “Automatic Classification of
Citation Function,” ser. EMNLP ’06. Stroudsburg, PA, USA: Association
for Computational Linguistics, 2006, pp. 103–110. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1610075.1610091

[70] D. E. Chubin and S. D. Moitra, “Content Analysis of References: Adjunct or
Alternative to Citation Counting?” Social Studies of Science, vol. 5, no. 4, pp.
423–441, 1975. [Online]. Available: http://www.jstor.org/stable/284806

[71] D. Koufogiannakis, L. Slater, and E. Crumley, “A Content Analysis of
Librarianship Research,” Journal of Information Science, vol. 30, no. 3, pp. 227–
239, Jun. 2004. [Online]. Available: https://doi.org/10.1177/0165551504044668

[72] K. Jrvelin and P. Vakkari, “Evolution of library and information science,
19651985: Content analysis of journal articles,” Journal of the Association for
Information Science and Technology, vol. 29, no. 1, pp. 423–441, 1975.

[73] X. Wang and A. McCallum, “Topics over Time: A non-Markov Continuous-time
Model of Topical Trends,” ser. KDD ’06. New York, NY, USA: ACM, 2006,
pp. 424–433. [Online]. Available: http://doi.acm.org/10.1145/1150402.1150450

[74] Y. Ding, G. G. Chowdhury, and S. Foo, “Bibliometric cartography of information
retrieval research by using co-word analysis,” Information Processing &
Management, vol. 37, no. 6, pp. 817–842, Nov. 2001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0306457300000510

[75] B.-W. On, D. Lee, J. Kang, and P. Mitra, “Comparative Study of Name
Disambiguation Problem Using a Scalable Blocking-based Framework,” ser.
JCDL ’05. New York, NY, USA: ACM, 2005, pp. 344–353. [Online]. Available:
http://doi.acm.org/10.1145/1065385.1065463

[76] Smalheiser Neil R. and Torvik Vetle I., “Author name disambiguation,” Annual
Review of Information Science and Technology, vol. 43, no. 1, pp. 1–43, Feb.
2011. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/aris.
2009.1440430113

[77] H. Han, L. Giles, H. Zha, C. Li, and K. Tsioutsiouliklis, “Two supervised learning
approaches for name disambiguation in author citations,” in Proceedings of the
2004 Joint ACM/IEEE Conference on Digital Libraries, 2004., Jun. 2004, pp.
296–305.

[78] C. Niu, W. Li, and R. K. Srihari, “Weakly Supervised Learning for Cross-
document Person Name Disambiguation Supported by Information Extraction,”
ser. ACL ’04. Stroudsburg, PA, USA: Association for Computational
Linguistics, 2004. [Online]. Available: https://doi.org/10.3115/1218955.1219031

[79] W. W. Cohen, P. Ravikumar, and S. Fienberg, “A Comparison of String Met-
rics for Matching Names and Records,” International Conference on Knowledge
Discovery and Data Mining (KDD) 09, Workshop on Data Cleaning, Record
Linkage, and Object Consolidation, 2003.

https://doi.org/10.3115/1218955.1219031
https://onlinelibrary.wiley.com/doi/abs/10.1002/aris
http://doi.acm.org/10.1145/1065385.1065463
http://www.sciencedirect.com/science/article/pii/S0306457300000510
http://doi.acm.org/10.1145/1150402.1150450
https://doi.org/10.1177/0165551504044668
http://www.jstor.org/stable/284806
http://dl.acm.org/citation.cfm?id=1610075.1610091
https://ci.nii.ac.jp/naid/10009572773

119

[80] Y. Song, J. Huang, I. G. Councill, J. Li, and C. L. Giles, “Efficient
Topic-based Unsupervised Name Disambiguation,” ser. JCDL ’07. New
York, NY, USA: ACM, 2007, pp. 342–351. [Online]. Available: http:
//doi.acm.org/10.1145/1255175.1255243

[81] D. Thain, T. Tannenbaum, and M. Livny, “Condor and the Grid,” 2003, pp.
299–335.

[82] D. Borthakur, “The Hadoop Distributed File System: Architecture and Design,”
2007.

[83] V. Batagelj and A. Mrvar, “Pajek-program for large network analysis,” Connec-
tions, vol. 21, no. 2, pp. 47–57, 1998.

[84] S. P. Borgatti, “NetDraw: Graph visualization software,” 2002.

[85] V. Uren, S. Buckingham Shum, M. Bachler, and G. Li, “Sensemaking
tools for understanding research literatures: Design, implementation and user
evaluation,” International Journal of Human-Computer Studies, vol. 64, no. 5,
pp. 420–445, May 2006. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1071581905001709

http://www.sciencedirect.com

120

VITA

Daniel Mejia is a Colombian who received his bachelor degree on Systems and

Computer Engineering from the Universidad de los Andes at Bogot-Colombia on

2002, and his master degree on Engineering from the same University on 2004. In

this year He started his PhD studies; being part of IMAGINE group; until 2005 when

He joined the industry. During this period of time his research was focused on Virtual

reality, Human-Machine interaction, and graphical programming.

From 2004 to 2009 he was a lecturer at Universidad de los Andes, and from 2005 to

2010 he worked as Information Technology Manager at Dayscript (Bogot, Colombia),

during this period of time he was involved in the development of the CMS Dayware

and different web portals (Golgolgol.net, Colfuturo, Fulbright Colombia, etc...)

On the summer of 2011, Daniel started his PhD at Purdue University and joined

the Klimeck’s research group. He is a former board officer in the Colombian Student

Asociation at Purdue (CSAP) (2011-2013)

During his tenure in the Klimeck group he worked on the following research

projects:

• Nemo5 Development

– Compilation of Nemo5 on multiple architectures: Mac (OSX, macports),

Windows (cygwin, real-petsc only) , linux-static (ubuntu, fedora), nanoHUB,

and support on standard architectures: Linux, Purdue clusters, and Cray

systems.

– Speed optimization of Hamiltonian-constructor (code optimization + mem-

ory reusability).

– Improving Nemo5 control files.

– Extending Nemo5 capabilities using Python.

https://Golgolgol.net

121

– Time/Memory tracking features on Nemo5.

– Online Tool to support creation of Nemo5 Input Decks.

– Nemo5 Graphical User Interfaces Nemui and Nemo Server.

– Nemo5 Documentation

– wxVTK modification to support GTK3

• NanoHUB

– Demonstrate nanoHUB Impact

– Different contributions on nanoHUB

– Summer School: Extending Nemo5 using Python scripting.

	Visual Analytics to Support Atomistic Simulations Design
	Recommended Citation

