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ABSTRACT 

Daniel Mejia Ph.D., Purdue University, August 2018. Visual Analytics to Support 
Atomistic Simulations Design. Major Professor: Gerhard Klimeck. 

Nowadays, complex simulations of a variety of processes are extensively used in 

academia and industry. Particularly in academia, powerful scientific software tools 

are constantly developed to simulate complex systems; for instance, simulations of 

quantum transport using the non-equilibrium greens Function formalism. The po-

tential impact of these scientific tools in industry is huge, but it is hindered by the 

lack of usability of the software by those who are not deeply familiar with it. Visual 

analytics is a new field that has shown the positive impact of interactive visualizations 

in software usability and the cognitive process of the user. This research investigates 

whether the implementation of interactive visual aids also improves the usability and 

the cognitive processes of research codes users, particularly those used for simulation 

design. To accomplish this goal, this study defines a framework for simulation design 

in scientific research, identifies the stages in which visual aids can be implemented 

to increase usability, and implements an interactive visualization system (NemoViz). 

NEMO5, a tool for designing atomistic simulation, is used as a case study to measure 

the effectiveness, efficiency, and user satisfaction of the use of visual aids in scientific 

simulation design. The results from this research provide a framework of reference for 

development of user-friendly simulation design tools, and will shed light on strategies 

that scientific developers might implement to broaden the impact of their simulation 

codes. 
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CHAPTER 1. INTRODUCTION 

Nowadays, complex simulations of a variety of processes are extensively used in 

academia and industry. For instance, since the 1960s, the drift diffusion model and 

the understanding of electron transport in transistors have driven work in computa-

tional electronics at the mesoscopic scale [1]. Most recently, other models, such as 

non-equilibrium greens function (NEGF) formalism for simulating quantum trans-

port, have been incorporated into codes to simulate phenomena at the nanoscopic 

scale. However, these codes demand considerable user experience in semiconductor 

physics to operate them properly [1]. This additional knowledge includes new layers 

of information in the cognitive process of the user [2]; for example, crystallographic 

information and other material science concepts. Additionally, the customization 

of each simulation creates cognitive challenges associated with the need to control 

parameters and the generation of process definitions and simulation models, among 

others [2] [3]. Designers analyze parameters and their relations, create simulation 

models, and evaluate results, among other cognitive challenges. This work focuses 

on addressing the challenges of scientific simulation design by studying the impact 

of visualizations on the cognitive process of simulation design. The cognitive process 

required for simulation design can be improved by resources such as tutorials, man-

uals, visual aids, web resources, and others. The main advantage of manuals and 

tutorials is that the user learns by example, which reduces the learning curve of the 

simulation tools and allows users to efficiently achieve results [4]. The downside of 

manuals and tutorials is that they restrict, or bias, the users thinking, limiting the 

capacity of the simulation tool [5] [6]. Visual aids improve the cognitive process by 

including external cognition as part of the process [7]. Properly designed, interactive 

visual aids allow the user to rapidly understand the simulation tool and get results, 
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and also creates the flexibility to explore different aspects of the simulation. These 

advantages no longer hold true when the visual aid is poorly designed. Visualizations 

are usually part of a graphical user interface (GUI). Several studies have shown that 

the use of visual representations and GUIs contribute to a more efficient transfer of 

knowledge by reducing the computer users cognitive load [8]. Currently, almost all 

software applications include a GUI; in some cases, there is no distinction between 

the program and the GUI. The software industry complements their developments 

by adding visual tools and programmatic interfaces. GUI design has become a main 

part in the software development life cycle. However, this prevalence of GUIs does 

not hold true in the case of scientific computing. Scientific computing typically deals 

with complex problems and extensive computational solutions. Developing a final 

user interface seems to be the least of scientific software developers concerns. The 

interaction between the software and the final user is determined by the users ability 

to customize the execution of the program by modifying a configuration file. Scien-

tific software tools are focused on solving the scientific problem, and they assume the 

user is knowledgeable both in the field of study and about the tool itself. Non-user-

friendly software is not easily adopted by other scientists or successfully transferred 

and used in industrial applications. Unfortunately, this is the case for many powerful 

simulation codes that never leave university computers because they are difficult for 

non-experts to use. Most scientific software developers are not aware of this limita-

tion. To enhance the impact of research codes, particularly in the field of modeling 

and simulation, there is a need to standardize modeling and simulation frameworks 

and tools. This will encourage the scientific community to create user-friendly codes 

This research investigates how to better design effective, user-friendly simulations in 

scientific research. Specifically, this research proposes the integration of visual an-

alytics to enhance the usability of scientific codes by non-experts in other scientific 

fields and industry. Visual analytics is a new field of information visualization that 

focuses on analytical reasoning facilitated by interactive visual interfaces [9]. 
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This thesis is organized as follows: Chapter 2 describes different simulation frame-

works or models, and proposes a new framework based on key aspects of previously 

published frameworks. Chapter 3 describes the implementation of an interactive 

visualization system called NemoViz, which supports the framework proposed in 

this research. Chapter 4 presents some of the high-quality images obtained using 

NemoViz. Chapter 5 describes some of the additional contributions that were made 

to the Nemo 5 code along with the development of NemoViz. Chapter 6 describes 

the formal evaluation performed to evaluate NemoViz. Finally; Chapter 7 presents 

general conclusions and recommendations for future work. 

Additionally, appendices present the validation tutorials, input files used during 

the validation, all data obtained from the evaluation, and the paper presented in 

the 2015 IEEE International Conference on e-Science describing the interactive ana-

lytic system used to measure Nanohub impact. nanoHUB.org is a cyberinfrastructure 

where researchers, and educators collaborate, share resources, and simulate real nan-

otechnology problems. 

https://nanoHUB.org
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CHAPTER 2. SIMULATION FRAMEWORK 

2.1 Introduction 

(a) Kruger simulation workflow. (b) Allen et al. model. 

Fig. 2.1. Simulation design frameworks. 

Three main frameworks, illustrated in Figures 2.1 and 2.2, describe the simula-

tion process. The first formal documented definition of a simulation workflow model 

was proposed by Krüger et al. in the 1970s [10]. Krüger proposed that the simula-

tion workflow begins with the problem definition and undergoes the stages of data 

collection and model building, validation, data analysis and interpretation, and fi-

nally, documentation (2.1(a)). His model introduced the term real world interaction, 

which encompasses data collection, model building, and validation as the core of the 

process. While his model is mostly linear, it is the first model to define the design 

simulation loop. However, according to his model, the only two ways to trigger the 
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loop is through a bad validation of the model or a bad validation of the results. In the 

1990s, Allen et al. proposed a simulation workflow designed for scientific simulations, 

specifically for fluid simulations [11]. In his model, Allen highlights the importance 

of conducting experiments in the real world and compares the results of the experi-

ments with the simulation results using theoretical models (Figure 1b). He clarifies 

the definition of real world interaction as interactions between user and data that 

arise from theoretical models or experimental results [11]. An interesting feature of 

this model is that data acquisition is part of its process This is not always necessary, 

since existing data can be used as validation sets. In this case, experimental data 

generation or collection is not part of the simulation process. 

Fig. 2.2. Romanowska process for building and evaluating simulation models 

Most recently, Romanowska [12] proposed another framework for the simulation 

process (see Figure 2.2). His model is unique in its flexibility navigating from one 
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stage of the process to another in no particular order. This model also includes two 

additional stages: coding and testing, and result replication. 

Combined, all of the above frameworks present the simulation process steps. How-

ever, when looking at each framework individually, one or more steps are missing. As 

the simulation process in scientific research becomes more and more complex, there is 

a need to integrate these frameworks into a single, more detailed model that describes 

all possible steps and their interactions. 

2.2 Combined Model 

The combined framework proposed in this study is mainly based on work by 

Romanowska [12]. It includes elements from the models proposed by Kruger [10] and 

Allen et al. [11], and explicitly defines the possible interactions between stages. This 

last feature is not present in any of the models proposed by other authors to date. 

Figure 2.3 presents the schematic of the proposed framework. Each box represents a 

stage in the simulation design process. The dotted boxes note input information, but 

they are not part of the simulation design process itself. Possible relations between 

stages are shown using lines that connect the stages. 

The process begins with the conceptual phase. This phase consists of one stage. 

the concept stage. Some authors refer to this stage as the identification of the research 

question or the definition of the problem. During this stage, a simulation designer 

defines the studys premises and assumptions, and tries to align some of those con-

cepts with a relevant question and possible solution. Usually, these premises and 

assumptions come from previous knowledge of theoretical models or data reported 

by experiments in scientific research; unfortunately, the designer is biased about the 

expected results based on the subjective nature of human cognition and the nature 

of human cognition. After the concept is clearly defined, the technical phase follows. 

The first step in this phase is the design model stage. In this stage the designer repre-

sents the model in some technical language, from mathematical frameworks to specific 
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Fig. 2.3. Schematic of the proposed framework for the simulation design process 

simulator inputs. Unless there is a completely new model, designers prefer to model 

their concepts in well-defined research codes or a commercial simulator. This requires 

modification to a relatively high number of parameters to represent the model. All 

languages have their restrictions, and those restrictions can force the designer to pre-

fer a particular language to represent the model, choose a new simulator, develop 

a new simulator, or re-evaluate the concept altogether. If the simulator allows for 

the functionality desired by the designer, the natural process is to advance to the run 

model stage. If not, new code should be developed. This is the case for many research 

tools that are considered incomplete; new functionality needs to be implemented or 

requested. In the develop model stage, the designer must advance through a tradi-

tional software development life-cycle: analysis, design, coding, and testing. This 

process has been widely studied. Multiple frameworks have been proposed and they 

are beyond the scope of this work. However, in the last decade, extreme programing 

has become the standard in academia and industry due to its flexibility. Since high 

performance computing (HPC) is strongly connected to simulation, some extra pro-
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filing tools are required along with development. After the design model stage is the 

run model stage. This stage seems trivial, but it is not. Nowadays, simulators claim 

to be HPC efficient; therefore, the model should run in highly parallel systems and 

run in heterogeneous systems that include accelerator cards, such as those installed 

in the two main supercomputers Titan (USA) and Tianhe2 (China). The former uses 

graphical processor units (GPUs), and the latter uses an Intel many integrated core 

architecture (Intel MIC). The complexity of the execution requires some expertise. 

Extra parameterization of variables can be used to run the model with specific rules; 

for instance, the number of cores per node or multi-threading. The execution will 

produce result data with which to compare the model with real world data. This 

is the compare stage. Data from experiments or theoretical models represent spe-

cific observables that can differ from the observables simulated by the model. Some 

post-processing is required to transform data into a similar shape, and the statistical 

model can be applied to make conclusions. In the analysis and interpretation stage, 

results from the previous stage are examined, hypotheses are created, and new ideas 

are generated. These ideas are materialized into new concepts, new simulation de-

signs, and conclusions. Conclusions provide the input for the next phase. During 

the dissemination phase, researchers share the new knowledge they have acquired, as 

they would following any scientific research process. In general, the dissemination of 

knowledge is done by publishing new findings in journals or in conference proceed-

ings. However, it is difficult to publish all parameters used by the simulation or the 

exact code used in the simulation, and the reproducibility of results can, therefore, 

be compromised. The process of reproducibility can be addressed by publishing a 

snapshot of the simulation code in a specialized cyber-infrastructure. The benefit of 

this model is its clear definition of steps and their connections; this allows for a clear 

definition and measurement of the impact of the visualization tools. 



9 

Fig. 2.4. Mapping of the proposed simulation design process using NEMO5 

2.3 Case study 

The proposed framework describes the process of designing simulations in the 

field of nanoelectronics using NEMO5 as the simulation engine. Figure 2.4 presents 

an example of how the framework can be applied to a NEMO5 simulation. The 

conceptual phase in NEMO5 is mainly defined by the users. For instance, the user 

may want to test different device designs and their IV characteristics to select the best 

model. The initial design might be based on experimental results and/or theoretical 

data from drift diffusion equations. 

The technical phase incorporates the input variables from the user, which NEMO5 

pulls from the material database. The design model stage in NEMO5 is defined by the 

input deck. For instance, the input deck defines the devices crystallographic informa-

tion, geometrical structure, physical model (QTBM or RGF), and the restrictions of 

the physical model (boundary conditions for Poisson’s equation). The develop model 

stage in NEMO5 consists of the implementation of a solver in C++ or Python. The 

run model stage consists of the execution of the input deck. This is usually done with 
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the NemoLauncher. The other two stages of the technical phase, the comparison 

stage and the analysis and interpretation stage, are not covered by NEMO5. Usually, 

during the comparison stage, NEMO5 users create their own visualization scripts; 

for example, to compare IV curves. In the analysis and interpretation stage, users 

decide which device parameters to change in order to improve the device characteris-

tics; for instance, to improve the relation current versus its voltage. These decisions 

might lead to new simulations. The dissemination phase is not covered by NEMO5 

either. In this phase, the user presents the NEMO5 simulation results in journals, 

at scientific conferences, and other venues (the publication stage). Finally, the user 

publishes the final simulation parameters to allow reproducibility; on a few occasions, 

the simulation is published as a tool in Nanohub to ensure reproducibility of results 

by other researchers. 

2.4 Conclusions 

This chapter proposed a combined model that describes the simulation process and 

delineates the main steps faced by simulation users. This framework could help to 

describe the cognitive impact of visualizations in the process of designing a simulation, 

particularly the impact of visualization on Nemo5’s users. 
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CHAPTER 3. INTERACTIVE VISUALIZATION SYSTEM 

In this research, an interactive visualization system was designed involving the com-

plete simulation process described on Figure 2.3. The main functional requirements 

for each phase are 

• Conceptual phase: users visualize data from external sources, learn about pos-

sible physical models, and perform parameter exploration on those models. 

• Technical Phase: users import simulation inputs, visualize spatial information 

of loaded inputs, visualize no-spatial information and its relations with other 

inputs, visualize simulation results, and visualize useful information to debug 

new models. 

• Dissemination phase: users export inputs as tools and graphical material that 

support results’ reproducibility. 

The following sections, discuss how these requirements were fulfilled. 

3.1 Requirements 

3.1.1 Conceptual phase 

During this process, users upload raw data into the system, and data is processed 

and transformed into visual representations such as heatmaps or line plots. Users can 

visualize available physical models in the system, and access documentation for each 

specific model. The documentation contains descriptive information about assump-

tions, formulas, restrictions, and possible parameters of the physical model. Users 

can also explore databases containing material properties and change values. 
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3.1.2 Technical phase 

Given a specific physical model and restrictions that represent external results, 

users include simulation inputs into the system, and this information is processed to 

extract spatial and abstract components of the simulation as well as the relations 

between these components. Spatial components are visualized as three-dimensional 

models and abstract components are listed with their relations. Users can filter 

visible components and reconfigure each component. When users define a specific 

experiment, the system runs the experiment and results are displayed as visual rep-

resentations. Users can then interpret the results and perform comparisons. 

3.1.3 Dissemination phase 

After a set of experiments has been conducted and new insights found, researchers 

define the inputs that describe the new model, parameterize them, and export the 

model as a tool. This tool is capable runoff running the model and visualizing the 

output results. 

3.2 System Implementation 

NemoViz was developed as a modular visualization environment system. The sys-

tem was developed using HTML5, Webgl, Javascript, Python, and C++, and uses 

Nemo5 as a library. Users can inspect Nemo5 input decks, explore three-dimensional 

models, visualize simulation results, generate reproducibility tools, and export three-

dimensional models to generate high-quality images. All these components were de-

signed to support users during the entire process of designing a new simulation. The 

following sections will introduce the actual user interfaces and examples of how users 

can interact with a Nemo5 simulation. 
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Fig. 3.1. System Architecture: NemoViz is implemented using mod-
elviewcontroller (MVC), and client-server architectures 

3.2.1 System structure 

Figure 3.1 describes the architecture defined to develop NemoViz. In order to 

be extensible for developing new visualizations, it is based on modelviewcontroller 

(MVC), and client-server architectures. The client-side is implemented with JavaScript, 

control elements are based on the Dojo toolkit library [13], Webgl visualizations use 

Three.js as the core [14], and the D3 [15] library supports all other kinds of visualiza-

tions. The server-side is implemented with C++ supported by the Boost library [16], 

and visualization plug-ins are implemented in Python, using well known visualization 

libraries. 

All user interactions with the client are captured as Javascript events via a web 

browser, and they are passed to the asynchronous JavaScript and XML (AJAX) 

controller. This controller dispatches events in the Webgl model, and triggers refreshes 

of views that need to be changed. The AJAX controller can also demand information 

from web services as JSON requests. All client requests are captured in the server by 

the web services (WS) controller, 

https://Three.js
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The WS controller is in charge of four main tasks. The first task is to call a 

Nemo5 kernel and execute small calculations using Nemo5’s API. These calculations 

are triggered by the NemoViz model, sent to the WS controller and, when Nemo5’s 

results are ready, passed back to the model. Then, the controller receives changes 

required by the views in the client and notifies the AJAX controller. The second task 

is similar to the previous task, but instead of calling Nemo5 calculations it executes 

Nemo5 database queries and processes information related to Nemo5 parameters. The 

third task is to communicate to the model any interaction that users have with visual 

models. For example, to hide layers of information, or include advance calculation 

of atoms positions. The last task is to execute Python code from a specific plug-in, 

which captures HTML representations of a visualization, compresses the text, and 

sends it back to the client by notifying the AJAX controller. 

3.2.2 User Interface 

NemoViz is based on Nemo5’s input structure of blocks of properties. A Nemo5 

simulation is described as a text file (input deck). An input deck is written in a C-

like format (similar to a STRUCT statement). Table B contains a simple example, 

and it shows how an input deck is divided into groups, identified by keywords at 

the beginning of each curly bracket; henceforth these groups will be called blocks. 

NemoViz was designed to show multiple visualizations of blocks and relations found 

in an input deck provided as input. Figure 3.2. shows an example of an input deck 

loaded in NemoViz. 

NemoViz layout consists of four main visual containers. These containers are 

synchronized accordingly to each user action, particularly enabling additional visu-

alizations when needed (e.g., if a domain is selected, the visualization details of the 

crystal must be displayed). Description of the four containers are presented below. 
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Fig. 3.2. NemoViz server client layout consists of four main visualiza-
tions containers: (1) Outline view: A hierarchical data structure, (2) 
Properties view: Editable options of a selected block, (3) Main view: 
A three-dimensional representation of the model defined in an input 
deck, and (4) Relations view: An abstract representation of a selected 
block and its relationship with other blocks. 
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Outline view 

The outline view visualization represents hierarchical data and defines a simu-

lation. It allows viewing the input deck in two different ways: a hierarchical tree 

structure or a plain text editor. A hierarchical tree structure is a natural way to 

represent the input deck’s blocks (see the top left figure of Figure 3.2). The user can 

collapse and expand a block by clicking on the folder icon with its name. Users can 

change from a tree-like view to a plain text editor by changing to ”input deck text” 

mode. 

Properties view 

The properties visualization represents the state of a block. Each block represents 

a set of parameters that configure part of the simulation. When a user selects a 

block in the tree view or on any other visualization, the table on the properties view 

appears and is filled with the name-value pairs that are defined in that block (see the 

bottom left of Figure 3.2). Users can edit values in the table, and automatically see 

the changes visualized in the other visualization containers, particularly in the main 

view and the relations view. Also, the system alerts users about errors detected 

in the parameters of a particular block by showing a tooltip. The properties view 

also includes a toolbar where users can hide or show the visual representations of the 

selected block and find possible parameters and documentation for the block and each 

parameter. 

Main view 

This container is a set of visualizations comprising the main visualization, called 

workspace, and instances of post-processing visualization plug-ins. Each plug-in in-

stance is loaded in a different container (tab), and has a unique name that is assigned 

when the plug-in is executed the first time. Tabs can be renamed and closed. All vi-
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Fig. 3.3. Main view: Blocks with a spatial representation are vi-
sualized in this view and users can filter the types of models that 
are overlapped: A) different block types enabled for different parts 
of the device, B) only geometrical representations are visualized, C) 
only atomistic representations are visualized, and D) only meshes are 
visualized 

sualizations can be accessed by clicking on the tab identifier name, and the workspace 

visualization cannot be closed. 

TThe workspace visualization consists of three-dimensional models that represent 

different aspects of the simulation. Any block that contains information about a 

spatial representation (e.g., regions, domains, boundary conditions, finite element 

domains, etc.), are included, as three-dimensional models in the main view, as is 

depicted in Figure 3.3. All models have an opacity level to enable users to visually 

detect overlapped elements. Traditional zoom/pan interaction techniques are enabled 

so the user can visualize the models from different points of view, and information 

about elements in the model is visible as a tooltip when the mouse is close to that 

element. 
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Fig. 3.4. NemoViz representations of an example of a Gallium ar-
senide (GaAs) cuboid: a) Relations view showing all identified rela-
tions between blocks. B) Relations view showing relations of a selected 
domain. c) Relations view showing relations of a selected region 

Relations view 

The relations visualization represents a block of the simulation and its relations. 

This visualization is a mix between a bottom quadrant chord diagram, as shown in 

Figure 3.4, and a three-dimensional canvas. The chord diagram is represented only in 

the bottom quadrant, and it shows all detected relations between blocks in an input 

deck, but it also highlights connections from a particular block. The relations view 

also represents blocks as geometrical models; for instance, as a mesh or as an atomistic 

structure and its material information. The user is allowed to navigate different blocks 

in the inputdeck by clicking on the block’s name in the chord diagram, and all other 

visualizations are synchronized accordingly. 

3.2.3 NemoViz Plug-ins 

Plug-ins are post-processing visualization scripts that not only represent output 

data from a Nemo5 simulation (e.g., I-V characteristics (current vs. voltage plot), 

error convergence plots, and spatially resolved density of states), but also external 
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(a) GaAs simulation: density of states map-

ping the Brillouin zone are represented as a 

heat map. 

(b) Quantum-dot simulation: eigenfunc-

tions of the ground state are represented as 

3D contours. 

Fig. 3.5. NemoViz Plugins Plotly 

data such as: simulation memory consumption, tic-toc traces and object lifetimes. 

Plug-ins are classified by type; each type represents a wrapper around specific Python 

libraries. Currently, NemoViz supports five plug-in types based on popular visualiza-

tion libraries: Bokeh, Plotly (Figure 3.5(a)), Paraview, X3Dom and HTML/D3. Each 

plug-in can be parameterized and configured, meta-variables allow users to change 

parameters directly from the NemoViz client and execute the same script with differ-

ent inputs. Visualizations can go from simple line plots or histograms to heat maps 

and three-dimensional surfaces. They can also include different layers of information 

like heat maps and contour visualizations. 

3.2.4 Dissemination Tools 

NemoViz includes two main components that can help researchers to disseminate 

their findings. The first component allows users to export three-dimensional models 

as a Threejs scene. Threejs describes all elements included in the scene as a JSON file 
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including cameras, lights, and geometrical definitions. These files can be imported 

into Blender using a Blender add-on called NemoViz loader. Blender would allow 

researchers to create high-quality pictures of their models. 

The second component is the reproducibility exporter. Researchers can define 

parameters in the input deck and export these parameters as a Rappture tool that can 

be published on nanohub.org. Rappture tools consist of an XML file that describes the 

graphical user interface, and a Python script. The Python script takes the parameters 

from the GUI, creates a valid Nemo5 input deck, and executes Nemo5. By default, it 

captures all the output from the simulation as a log file, but researchers can modify 

the Python script to include some visualization as part of the output. 

The limited number of available visualizations is one of Rappture’s weaknesses, 

and to include new visualizations would require heavy redevelopment of the Rapp-

ture infrastructure [17]. However, users have a second option with NemoViz: users 

can export an inputdeck as a Jupyter notebook. In this case, researchers have the 

option of not just predefined parameters, but the Jupyter notebook also includes in-

stances of the visualization plug-ins. The exported Jupyter notebook translates all 

selected parameters as Jupyter widgets, and plug-ins codes as functions. The Jupyter 

notebook also includes button widgets that trigger the execution of those functions. 

Jupyter notebooks can be downloaded and published on nanohub.org as public tools 

(this option was recently added). 

3.3 Defining a Simulation with Nemo5 

NEMO5 is described as a text file, also called an input deck. It contains text 

written in a C-like format (similar to a STRUCT statement), with keywords at the 

beginning of each structure that define the part of the simulation each block repre-

sents; there are clear sections or definitions. A NEMO5 input deck starts with the 

Structure section, which contains information about structure and materials. The 

information about materials, atomic composition, and nonstandard material param-

https://nanohub.org
https://nanohub.org
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eters is contained under the Materials nested definition. The Geometry definition 

specifies the geometric shape of individual regions, and Domain defines which regions 

are aggregated to a domain. Each simulation takes place in a certain Domain, and 

several simulations can be carried out, possibly by coupling. The Solvers definition 

sets the simulation types. Each simulation, given its own solver definition , has a set 

of options specific to its task. The Global section defines the location of the material 

parameters and which of the defined solvers are executed on the top level. Some 

general remarks on the input deck are as follows: 

(a) Tree view (b) Editor view 

Fig. 3.6. Hierarchical Visualization of NEMO5 input deck 

1. Comments are done in C++-style: // marks the remainder of a line as comment, 

and /*...*/ allows for multi-line comments. 

2. Only ... are accepted as brackets. The opening bracket needs to be placed 

in the same line as the section name and the closing bracket on a separate line. 

There is no end line character. 

3. Vectors are given as (a,b,c) or (1,2,3). 
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4. Vectors of vectors are given as [(a,b), (c,d)]. 

5. Misspelled parameters are simply ignored and do not create an error, unless the 

corrected parameter is mandatory in a simulation and missing from the input 

deck. 

6. Spaces can either be spaces or tab stops. 

3.3.1 Design Visualizations From Concept Stage To Design Model Stage 

In Nemo5 

Given that there is an intrinsic hierarchy of input deck sections, a natural way 

to visually represent this hierarchy is a tree visualization: each node of the tree 

represents a section in the input deck, and each node can be expanded or collapsed 

to show children sections. Figure 3.6(a) shows the representation of the text from 

an input deck loaded into the GUI. However, there is a loss of context with this 

visualization, and this is the reason why some users prefer to visualize the full text. 

An alternative visualization shows the full text and enables visual encoding elements 

to fold and unfold blocks of text (see Figure 3.6(b)). 

A simulation also describes elements with an intuitive three-dimensional repre-

sentation. Definitions, such as finite element grids or geometrical descriptions, can 

be represented with three-dimensional objects, as shown in Figures 3.7(a) - 3.7(d). 

NEMO5s input deck also contains information, such as crystallographic definitions, 

that does not have a trivial representation in space. The process to understand or 

mentally visualize these elements is one of the most challenging cognitive processes 

in atomistic simulations. The cognitive process is boosted when non-trivial visualiza-

tions accompany reference visualizations as boxes or planes. The designer decides to 

enable or disable each layer of information to avoid occlusion. 

Given the complexity of crystal structure, a detailed visualization of the crystal 

unit cell was also designed. All atoms included in the unit cell are shown as solid 

spheres, with possible bonds as translucent discs and periodic atoms as translucent 
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(a) Geometrical definitions of a nanowire. (b) finite element meshes of a nanowire. 

(c) Silicon ultra-thin body (UTB) (d) Si dome-like quantum dot. 

Fig. 3.7. Three-dimensional representations of visual elements in-
cluded in an input deck 

(a) GaAs crystal unit cell periodic in X (b) MoS2 crystal unit cell with periodicity 

direction in all directions. 

Fig. 3.8. Crystal unit cells representations 
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white discs . Also, curly arrows point to the periodic equivalent atom, as depicted in 

Figure 3.8. 

(a) interactive table that displays 

parameter-defined values and the cal-

culated values 

(b) Database Calculator, that allows for pa-

rameter overloading and calculating param-

eter values 

Fig. 3.9. Database browser visualization 

Additionally, the designer must choose the set of parameters used by the simula-

tion. This set is defined by a keyword, which is usually the last name of the main 

author. All parameter sets are defined in an additional text file in a format similar 

to the input deck. This file is called the material database, and its current size is 

around one megabyte. Parameters can be overloaded via the input deck or directly 

modified by the material database file. Parameters can be defined as values, strings, 

rules, or functions with other parameters as arguments. Figure 3.9 presents a table 

visualization designed to request data on demand. 

Two visualizations were designed to represent relations between definitions. For 

instance, Figure 3.10(a) presents a chord diagram visualization to highlight the rela-

tions between a solver, its domain, and execution. Figure 3.10(b) presents a directed 

connected graph with context layout when a solver is selected. 
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(a) A chord diagram highlighting the re-

lations between a solver, its domain and 

execution 

(b) directed connected graph with context 

layout when a solver is selected 

Fig. 3.10. A chord diagram examples 

3.3.2 Design Visualizations From The Design Model Stage To The De-

velop Model Stage 

NEMO5 implements multiple physical models; however, some of these models are 

developed using commercial libraries or require specific configurations. These models 

can be excluded when NEMO5 is compiled. Currently, designers do not know which 

models are available in a specific instance of NEMO5 based on the manual or code 

documentation. However, given that NEMO Server has access to the NEMO object 

factory, a list of solvers and their specific options are visualized, as illustrated in 

Figure 3.11. 

If the available models do not support the designers concept, then new features 

must be implemented in the simulator. New features in NEMO5 could be imple-

mented in two ways. 

The first solution is to include new parameters in an existing solver, and include 

new function calls when these parameters are defined. Alternatively, a second so-

lution is to create a completely new solver. Any new solver has to be registered in 

the NEMO5 object factory in order to be available from the input deck. In both 
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Fig. 3.11. Schroedinger solver visualization options and the descrip-
tion of its parameter DOS points. 

(a) Visualization when there is empty 

documentation 

(b) Visualization when there is missing 

documentation 

Fig. 3.12. Properties visualizations and error handling 

cases, NEMO5 forces the designer to document all new options and the description 

of the new functionality. Validation of this documentation is represented as visual 

aids, depicted in Figure 3.17. Color encoding is used to show the missing documenta-

tion. NEMO5 can be configured to not run if the documentation is incomplete. This 
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Fig. 3.13. Visualization of NEMO5 logs 

visualization is supported by the fact that these solvers, and all NEMO5 objects in 

general, implement two interfaces: a documentation interface and a factorizable inter-

face. Both interfaces are responsible for enforcing documentation in newly developed 

components and allowing tracing of logs. 

When a simulation is running, the designer does not have any feedback on the 

status of the simulation. The only information that developers have is the log file. 

Log files are usually long text files with the simulators internal status messages. 

NEMO5 generates log files with different levels of detail. Browsing log files requires 

significant experience with NEMO5, and only some specific keywords can guide the 

search. Interactive visualizations can be used to guide this search or to display the 
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Fig. 3.14. Visualization of the time-life of NEMO5 objects 

simulation status. Nemo5 logs can be visualized on NemoViz plug-ins, as illustrated 

in Figures 3.13 and 3.14 

NEMO5 also includes an embedded tic-toc system that allows designers and de-

velopers to benchmark and profile new codes. The profiling information is dumped 

into an XML file that can be visualized as an interactive tree view, as illustrated in 

Figure 3.15. This visualization was implemented with help of Santiago Perez. 
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Fig. 3.15. Visualization of NEMO5 Tic-Toc output using the profiling view. 

(a) Visualization of the command-line tool NEMO (b) simulation execution queue 

Launcher 

Fig. 3.16. Nemo5 Launcher visualization interface 

3.3.3 Design Visualizations From The Development/Design Model Stage 

To The Run Model Stage 

After the concept is completely translated into input deck language, NEMO can 

be executed via NEMO Launcher. The launcher tool configures NEMO5 to use spe-
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cific hardware resources, such as accelerator cards, or to define restriction in the MPI 

execution. Nemo Launcher is a main component of the NEMO5 regression test sys-

tem. However, the launcher is a command-line utility that is not part of the NEMO 

binary. A visualization that extracts the main components of the launcher and repre-

sents them as simulation parameters was designed and is depicted in Figure 3.16(a). 

All simulations executed via the launcher can be visualized as a list Figure 3.16(b) 

3.3.4 Design Visualizations From The Run Model Stage To The Compare 

Stage 

After a successful simulation is executed, NEMO5 generates multiple text files 

that describe the physical model observables; however, these files come in different 

formats. Additionally, some of the results from NEMO5 might not be compara-

ble to the experimental data results. Therefore, data may need to be transformed 

and unified. Simulation designers create scripts to transform the data and perform 

comparisons. Tools such as Matlab, PyLab, and R are widely used for data transfor-

mations as well as simple visualizations. Tools such as Paraview or Visit are used to 

visualize three-dimensional data. 

To support scripting flexibility, Nemo Server includes Nemo Server plug-ins. All 

scripts written in Python can be loaded as NEMO Server plug-ins and visualized at 

any time. Figure 3.5 presents examples of visualizations created with a Plotly plug-

in, which allows designers to generate two-dimensional visualizations. Figure 3.17(a) 

presents visualizations created with a Paraview plugin. In fact, any Paraview state 

can be exported as a Python script and loaded directly as a plug-in. 

3.3.5 Design Visualizations From The Run Model Stage To The Analysis 

Stage 

After validation is performed in the compare stage, a designer enters the explo-

ration phase. The designer seeks better insight into the model by changing some of 
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(a) Silicon Ultra-thin-body UTB simula- (b) Transport simulation on MoS2 sheets, 

tion, final self-consistent potential repre- streamlines represent the current flow be-

sented as a mesh surface tween atoms 

Fig. 3.17. Plug-ins visualizations 

(a) Parameterization of an energy- (b) Energy-momentum heatmap visual-

momentum heatmap plug-in ization 

Fig. 3.18. Plug-in Parameterization 

the parameters and running multiple simulation scenarios. Analysis is performed with 

new data results. The designer tries to find patterns that explain how the model ad-

dresses the research question defined in the conceptual stage. This cognitive process 
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shares similar characteristics to the cognitive process in the compare stage. Visual-

izations described in the previous section also apply to this stage. However, given the 

different data result sets, the designer should parameterize any visualization plug-in. 

NemoViz allows plug-in to be parameterized as a Json file that can be uploaded to 

the server (see Figure 3.18). 

(a) Model exported from Paraview (b) Render obtained after post-processing 

on Blender 

Fig. 3.19. Magnitude of the strain forces on the surface of a quantum dot’s core 

(a) Visualization of the main view in (b) Render obtained after post-processing 

NemoViz on Blender 

Fig. 3.20. Two-dimensional MoS2 sheet input deck representation 

3.3.6 Design Visualizations From The Analysis Stage To Publication Stage 

Results obtained during the compare and analysis stages can be used to create 

high-impact images that document and enrich the designers work. Blender is an open 

source tool that creates professional, three-dimensional models that can enhance the 
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visualization generated with a Paraview plug-in or from the input deck visualization. 

NemoViz allows the export of Paraview plug-ins to Blender to create high-impact 

images Figure 3.19(a) presents the visualization of the Paraview plug-in of a quantum 

dot and Figure 3.19(b) presents the visualization of the model exported as VRML, 

imported and rendered with Blender. 

NemoViz also includes another option to create high impact-images. The input 

deck visualization, instead of the plug-in, can be directly exported to Blender. Figure 

3.20(a) depicts the visualization of the input deck in the Main view, and Figure 

3.20(b) the result after applying material properties and textures in Blender to this 

model. 

NemoViz dissemination tools help users to generate visualizations that support 

findings in the data. The next chapter describes some of the images generated from 

simulation results; they highlight important information and convey data from the 

simulation results. 

3.3.7 Visualizations Design From The Publication Stage To Replication 

Stage 

Experiment replication is one of the most important aspects of science, and it is 

included in the definition of the scientific method. If simulations are considered a 

scientific research method, replication must be included as part of the process. One 

way to replicate simulation is to publish tools on Nanohub. There are examples of 

how Nanohub tools successfully replicate data published in papers [18]. Since NEMO5 

is already part of the Nanohub pool of libraries, designers could easily create a tool 

based on an input deck. NemoViz enables users to select experimentation parameters 

and generate a template Rappture tool or Python notebook based on the inputdeck. 

Plug-ins that generate example visualizations shown in this chapter can be included 

as part of the notebook (see Figure 3.21). 
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Fig. 3.21. Jupyter notebook generated including parameterized plug-ins 
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CHAPTER 4. HIGH-QUALITY IMAGES 

This chapter presents some of the visualizations generated with the help of NemoViz 

dissemination tools. All images were rendered using Blender software. The images 

shown in this chapter have been published supporting different research projects, and 

they highlight important information obtained from simulation research projects and 

convey data from final results. 

4.1 Atomistic Structures 

Fig. 4.1. Atoms in a Silicon-Germanium Disk 

Atomistic simulations are based on the interaction between atoms. This interac-

tion is heavily defined by atoms’ positions and types. Visualizations of the atomistic 

structure being simulated help an audience to understand details of the final results. 
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Fig. 4.2. Silicon atoms distributed in a diamond lattice 

Some of the following figures highlight structure defects such as roughness, corruga-

tion, and atomic disorder. For example, Figure 4.1 presents a representation of a 

disk of silicon-germanium (SiGe) after a strain model was applied to relax its atoms 

positions. In this picture, colors represent different atom types: hydrogen (blue), 

silicon (yellow) and germanium (light blue). Figure 4.2 represents the organization of 

the atoms in a pure material. Each atom (in red) is surrounded by a gray shell, rep-

resenting the interaction field of each atom. Figure 4.5 shows multiple water (H2O) 

molecules between two graphene sheets (carbon atoms) as the result of a relaxation 

process in a molecular dynamics simulation. 

Figures 4.3 and 4.4 represent the atomic-resolved SI-Ge alloy ultra-thin-body de-

vice with surface roughness. White spheres represent silicon atoms and green spheres 

germanium atoms. Shells’ colors indicate source, drain, and channel regions. Green: 

source (doped region); red: channel; orange: drain (doped region); and gray/black: 

Oxide. Figures 4.6 and 4.7 show periodic surface roughness in a sheet of graphene. 

In addition to the atomistic structure, some pictures include simulation results 

on top of the atomistic structure. Spatially resolved data such as density of states, 
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Fig. 4.3. Alloy structure of silicon and germanium atoms 

Fig. 4.4. silicon germanium atoms in an ultra-thin-body device 

wave-functions, or electric potential energy applied to a simulation can be visualized 

as volumetric data. For example, Figure 4.8 compares the wave-functions intensity 

of two different energy level over a graphene sheet with a hole in the middle. Figure 
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Fig. 4.5. Multiple Water (H20) molecules between two graphene sheets 

Fig. 4.6. Periodic surface Roughness 

4.9 depicts the organization of the atoms in an ultra-thin body transistor and the 

amount of electric potential along the transistor. 
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Fig. 4.7. Basic unit cell used to simulate periodic surface roughness 

Fig. 4.8. Intensity of two energy level over a graphene sheet with a hole 

4.2 Devices 

In addition to the atomistic structure, some pictures describe well-known devices 

in the semiconductor industry, transistors in particular. In these cases, images not 

only represent devices from an atomistic point of view, but also contextualize the 

data. For example, Figure 4.10 represents an internal composition of an ultra-thin 

body transistor. Figure 4.11 includes the position of the atoms and their chemical 
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Fig. 4.9. Electric potential along an ultra-thin body transistor 

Fig. 4.10. Silicon and Germanium Alloy ultra-thin body transistor 

bonds along with the amount of electric potential in the transistor. Fig 4.11 represents 

a cylindrical gallium arsenide nanowire showing the surfaces and the atoms. 
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Fig. 4.11. Gallium Arsenide ultra-thin body transistor. 

Fig. 4.12. Cylindrical Gallium Arsenide Nanowire transistor 

In Addition to transistors, quantum dots are devices of great interest in the semi-

conductor industry. Quantum dots are nanoscale particles that behave similarly to 

an atom but can be created artificially. A quantum dot’s core can have different 
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shapes and composition. Both factors affect the energy levels inside a quantum dot. 

Fig 4.13 portrays the intensity of an energy level inside a quantum dot with a conic 

core (red). Fig 4.14 illustrate the directions of the strain forces on the surface of the 

quantum dot core. Fig 4.15 depicts the magnitude of the strain forces on the surface 

of the quantum dot core. 

Fig. 4.13. Intensity of an energy level inside a quantum dot with a conic core 

More experimental devices such as flying qubits were also simulated with Nemo5. 

Their structure was exported with NemoViz and rendered on Blender. Fig 4.16 shows 

multiple flying qubits, where their superposition is controlled by gates. 

4.3 Images Dissemination 

As mentioned before, all the previously mentioned figures supported research find-

ings and were published along with the results. Figures 4.3 and 4.4 were published 

in [19] and presented at the Blue Waters Symposium [20]. Figures 4.13, 4.10, 4.15, 

4.9, 4.14 and 4.11 were presented at the Blue Waters Symposium as well [21], [22]. 
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Fig. 4.14. Direction of strain forces on a quantum dot 

Fig. 4.15. Magnitude of strain forces on a quantum dot 

Figures 4.1, 4.2, and 4.12 were included in promotional advertising for the Network 

for Computational Nanotechnology (NCN) and the iNemo Research Group at Purdue. 



44 

Fig. 4.16. Multiple Flying qubits 

Figures 4.6, 4.7, 4.5, 4.2 and Fig. 4.16 were included in National Science Foundation 

(NSF) proposals. 

Figures 4.9, 4.14, 4.13 and 4.13 were published in the Discovery NSF-supported 

magazine, [23], and has been used as reference in multiple publications [24], [25], [26], 

[23]. Similarly, Figure 4.11 was published in the Discovery NSF-supported magazine, 

and used in multiple publications [27], [24], [25], [26] and [28] 
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CHAPTER 5. NEMO5 CONTRIBUTIONS 

In Addition to the NemoViz infrastructure, I have contributed different features into 

the NEMO5 code under the username denphi. I was the third contributor of the code 

based on lines of code up to December 2017 (see Figure 5.1). 

Fig. 5.1. Nemo5 lines of code by contributor 
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5.1 Contributions 

Compilation: I re-factored all Makefile files and generalized the Makefile sys-

tem. I could compile NEMO as fully functional on OSX, and partially functional on 

WINDOWS. 

Code Optimizations: I re-factored the code that constructs the Hamiltonian 

matrices, and included a cache system to reuse Hamiltonian matrices when possible. 

Database improvements: I included multiple features in the material database: 

database rules, database functional calls, database stack debugger, and database 

views. 

Documentation: I developed input/output system documentation and improved 

the manual by including automatic documentation solvers. I implemented the NEMO5 

command-line interface. 

Python Interfaces: I developed multiple Python interfaces to NEMO5: Python 

input decks, Python templates (meta solvers), and Python solvers. I created multiple 

examples using these interfaces: Python RGF-Propagation, fitting code migrated to 

Python, and read-in potential (OMEN/Nemo3D/File). 

Profiling: I developed an embedded profiling system, and its visualization (San-

tiago). I also developed the lifetime/timeline profiling system 

Input / Output: I extended the input deck to support iterators, develop device 

templates, implement region surface solvers, and import shape regions (VTK). 

Algorithms: I developed a new MPI parallelization scheme and implemented 

the interaction radius concept. I defined the cluster solvers, helped with coupling 

QTBM-Poisson, implemented the domain bisection algorithm, and developed a new 

adaptive grid implementation using adaptive mesh refinements. 

Others: I defined the template factory implementation and included genetic al-

gorithm libraries into Nemo5. 
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5.2 Infrastructure discussions 

During the development of my contributions on the Nemo5 code, I was involved in 

multiple discussions to define guidelines to future Nemo developments. All guidelines 

were discussed as part of the software meetings hold by the Nanoelectronic Modeling 

Group at Purdue University. People involved in these discussions were: Santiago 

Perez-Rubiano, David Bermeo, James Charles, Daniel Mejia, Jim Fonseca, Tillmann 

Kubis, Michael Povolotskyi, and Gerhard Klimeck. Santiago Perez-Rubiano docu-

mented all the following guidelines and they are included as reference. 

5.2.1 Guiding principles 

The NEMO tool is a multi-physics, multi-scale, high performance computing, 

software for nanoelectronic devices simulation. Its target audience includes semicon-

ductor industry R&D groups, nanoelectronics research groups and nanoelectronics 

students students. Its computational demands make it suitable for grid computing, 

HPC and even cloud computing, and so it must be able to deal with several restric-

tions, e.g. resources reliability issues, limited resources availability, etc ... 

The software is developed by physics or electrical engineers with little or no soft-

ware engineering background, however the developed software will evolve and has to 

cope with constantly changing requirements. Because of these the core functionality 

of the software should be really easy to reuse, hard to use in unintended ways e.g. 

up to the point to keeping the developers from compiling when some unintended uses 

are done. Perspectives 

The NEMO tool needs to be seen from different perspectives in order to fully 

understand all its requirements. Some of the most important perspectives include: 

1. Developers trying to write their models in NEMO5 by taking advantage of 

already available tools 

2. Scientist trying to explore parameters, designs, etc 
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3. New users trying to understand the available features. 

5.2.2 Software distribution requirements 

• Should have a standard compilation process for both dynamic and static linking 

(some supercopmuters require static linking). 

• Should be easy to disable all non-strictly necessary third-party libraries from 

the compilation process (e.g. VTK or libmesh). 

• Should be compilable WITHOUT internet access!! (TianHe-2 and TMSC) 

• Should be both an imperative (for experimentalist users?) and a declarative 

language (for programmers) that allow one to connect between different com-

ponents.. 

• Should be compatible with Linux and Windows as much as possible (this will 

help to extend its user base). 

• Should be distributed as web-services preferable under a Service-oriented archi-

tecture. 

5.2.3 Testing framework 

• Adding unit tests should be easy for developers, specially attaching files to a 

specific test for inputs should be easy. 

• Tests should help on the search for scalability and so they need to measure time, 

memory and CPU consumption as we are interested in later assigning resources 

to different components based on their historic behavior. 

• General tests should contain information regarding required execution resources 

• Testing procedure (not just comparison of files in some cases) should be well 

defined 
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• Unit tests should be mandatory. If such a test is missing for a new method, the 

code should fail to compile. 

5.2.4 Profiling and Logging framework 

There should be well defined logging levels for final users (interested in measure-

ments), profiling information, debugging information, etc. The time, and network 

location of every message must be recorded. 

• Internal profiling (e.g. through a tic-toc system) should be available for devel-

opers to optimize their own code. 

• Have the possibility to measure flops manually or automatically. 

• Be able to classify tic-tocs in at least four categories : I/O, communication, 

computation, math operations. 

• This should help to automatically detect load imbalance problems. 

• Its output must be available through appropriate visualization tools which let 

the user: 

• Filter/order sections of the code by their resources (time/memory/flops) con-

sumption 

• Compare two almost identical simulations that ran with different amount of 

resources. These would help to identify potential sources of scalability problems 

(functions that do not scale well). 

• Plot the resources consumption across MPI ranks 

• Explore information hierarchically 

• Filter information by identifiers 



50 

5.2.5 Input/Output framework 

• Theres a set of inputs received by any simulation. This options could be gener-

ated on the fly by the simulation. 

• The output of the simulations should, in general, be done through a unified 

manager that decides where to store the output, otherwise every developer will 

store whatever and wherever they want. 

• The process to generate plots from the output of NEMO6 should be standard 

and provided by a framework most of the time. This framework should be 

extensible enough to use plotting scripts from Matlab, Python, etc... 

5.2.6 Options framework 

• Should support options generated on the fly depending on the value of some 

other options. 

• Should support the documentation of the options and the definition of its type 

and expected values (if available). The definition of a default value should be 

centralized (in the best case), in order for a user to know the default values 

before actually executing a simulation. 

• There must be a way to know all the options set for a simulation, even the 

default ones 

• Grouping options and lying out dependencies between them should be possible. 

• Support inheritance of options 

• Functionality should be dependent only on the presence or absence of an option. 

• The way in which the options are parsed has to allow parameter exploration 

somehow, an example of this could be the way in which Makefiles allow you to 

define the value of a variable in the command line calls. 
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• There should be support for groups of options that depend on the value of 

another option. 

5.2.7 Geometry specification framework 

A region in space may have an arbitrary form, size and position. Regions may also 

have other algorithmic properties defined as well, like whether or not it is active, who 

is it distributed among MPI ranks, boundaries for simulation models. Regions should 

be represented as atomistic, continuous or Meshes. There should be mechanism to 

translate between different regions. Regions represent element of different layers of 

information, and each layers should share some common characteristics, there should 

be at least there supported layers: macro, micro, and atomistic. 

Macro characteristics 

• Atom’s materials 

• Form, size and position of chunks of materials 

• Periodicity of chunks of materials 

• Passivation on certain regions of the space 

• Chemical coupling between different chunks of materials. 

• It should be easy to import structures from other simulation software like VASP 

• It should support different kinds of distribution among MPI ranks. 

• It has to support regular/irregular/pseudoirregular structures (i.e. crystals, 

pseudo crystals and amorphous structures, created by various algorithms) 

• It has to be easy to set up. 

Micro characteristics 

• Type of crystal to model a unit cell. 
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• Type of lattice to model a unit cell. 

• There should be a possibility to have a non-integer amount of unit cells. 

Atomistic characteristics 

• Connection with other atoms 

• Position of the atoms 

• Get the N nearest neighbor atoms. 

5.2.8 Simulation framework 

Simulations should return data on demand. They only initialize and solve the 

problem when the data request method is called. 

Main components on the tool should contain: 

• Solvers: Basic computation unit. It should be stateless 

• Methods: Group of solvers sharing a state. 

• Modules: Group of methods and solvers, solving an specific computational prob-

lem. 

• Meta-methods : Simulations with some undefined parameters that will be de-

fined at runtime by other simulations at different stages (maybe when the sim-

ulation is initialized or maybe when it is running). 

All components should shared local structures like: 

• Domain atoms information 

• DOF map 

• There should be a way to differentiate between stateful and stateless simulations. 
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• Simulations may have geometry distribution or resources restrictions that should 

be explicitly stated somewhere 

• There should be solver templates 

• Methods need to be destroyed and recreated 

5.2.9 Documentation framework 

When writing an inputdeck one should be able to document details about: 

• The structure that is being simulated, its geometry and its materials. 

• The conceptual program flow. 

• The expected outcome and output. Valid range for parameters.. 

Fig. 5.2. NemoViz auto-documentation architecture 



54 

5.3 Nemo5 auto documentation 

Figure 5.2 shows the architecture of Nemo5 auto-documentation. all classes that 

represent any entity on Nemo5 ecosystem should implement to basic interfaces: IDoc-

umentable and IFactorizable. 

5.3.1 Interface Factorizable 

This interface requires any class to implement two basic method. First, get factory name 

method should return an unique name that is used as identifier by the factory. Second 

get factory aliases that return a list of identifier aliases or alternative names to be 

used by the factory. 

All Nemo5 entities implement the Factorizable interface as shown in the table 

5.1. Each class should define its class name and a parent class, and for each unique 

parent class, a new Factory constructor would be created using a singleton pattern. 

singletons are implemented using c++ templates and static variables. All objects 

created by the factory are automatically casted to the parent class as is shown in 

table 5.2. 

5.3.2 Interface Documentable 

All entities that are exposed to the final user have to implement the documentable 

interface, this interface requires classes to implement basic methods to document the 

options or parameters, developers have to document both inputs and outputs. Table 

5.3 shows an example of basic documentation of input options of the Simulation class, 

the first call documents an option required to run the simulation (”name”), a second 

call documents an optional input (”domain”), and next calls defined the type of data 

that options need to have in order to have a proper behavior. 

All documentation can be requested using methods of the interface, using the 

Nemo5 command line as shown in table 5.4, or using NemoViz. 
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Table 5.1. 
Example implementation of factorizable interface, Dummy Module 

. . . 

class ModuleDummy : 

/∗ ex tends ∗/ public Module , 

/∗ implements ∗/ public NemoFactorizable<ModuleDummy, Simulat ion> 

{ 

public : 

virtual std : : s t r i n g get f a c to ry name ( void ) 

{ return ”ModuleDummy” ; } 

virtual void g e t f a c t o r y a l i a s e s ( std : : set <std : : s t r i ng >&) 

{ return } 

virtual ˜ModuleDummy ( ) ; 

virtual void do s o l v e ( ) ; 

. . . 

} 

Table 5.2. 
NemoFactory instantiation example 

. . . 

Simulat ion ∗ e ; 

e = NemoFactoryBase<Simulat ion > : : new ins tance ( ”ModuleDummy” ) ; 

. . . 

5.4 Impact 

Some publications that have used directly or indirectly some of my contributions 

to Nemo5 are: 
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Table 5.3. 
Example implementation of factorizable interface, Dummy Module 

. . . 

class Simulat ion : 

/∗ implements ∗/ public NemoDocumentableBase<Simulat ion > 

{ 

. . . 

void s e t i nput opt i ons map ( void ) 

{ 

s e t i nput opt ion map ( ”name” , 

InputOptions : : Req Def ( ”A unique name tag . . . ” ) ) ; 

s e t i nput opt ion map ( ”domain” , 

InputOptions : : NonReq Def ( ”” , ”Domain r equ i r ed . . . ” ) ) ; 

. . . 

s e t i n pu t op t i on p r op e r t y ( ”name” , ” type ” , 

InputOptions : : Type Def ( InputOptions : : TYPE STRING) ) ; 

s e t i n pu t op t i on p r op e r t y ( ”domain” , ” type ” , 

InputOptions : : Type Def ( InputOptions : :TYPE DOMAIN) ) ; 

. . . 

} 

} 

1. KuangChung Wang, Teodor Stanev, Daniel Valencia, James Charles, Alex Hen-

ning, Vinod Sangwan, Aritra Lahiri, Daniel Mejia, Prasad Sarangapani, Michael 

Povolotskyi, A. Afzalian, Jesse Maassen, Gerhard Klimeck, Mark Hersam, Lin-

coln Lauhon, Nathaniel Stern, Tillmann Kubis, ”Control of interlayer physics 

in 2H transition metal dichalcogenides” Journal of Applied Physics 122, 224302 

(2017); 
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Nemo5 was used to explore different properties of TMD materials, quantum 

transport properties were simulated using the RGFModule solver. This solver 

encapsulates multiple solvers, dataflows and the RGF’s algorithm. This is pos-

sible by the inheritance of the Module solver. Modules allow developers to 

create black boxes, that predefine a set of solvers and dataflows. In contrast, 

this information is usually read from an inputdeck. A Nemo5 module control 

the persistence of Nemo5 objects created on the module, can be created and 

destroyed at any point of the simulation, and can embed other modules. 

2. Geng, Junzhe, Prasad Sarangapani, Erik Nelson, Ben Browne, Carl Wordel-

man, Tillmann Kubis, and Gerhard Klimeck. ”NEMO5: realistic and efficient 

NEGF simulations of GaN light-emitting diodes.” In Physics and Simulation of 

Optoelectronic Devices XXV, vol. 10098, p. 1009813. International Society for 

Optics and Photonics, 2017. 

3. Long, Pengyu, Jun Z. Huang, Michael Povolotskyi, Devin Verreck, Gerhard 

Klimeck, and Mark JW Rodwell. ”High-current InP-based triple heterojunction 

tunnel transistors.” In Compound Semiconductor Week (CSW)[Includes 28th 

International Conference on Indium Phosphide & Related Materials (IPRM) & 

43rd International Symposium on Compound Semiconductors (ISCS), 2016, pp. 

1-2. IEEE, 2016. 

4. Charles, James, Prasad Sarangapani, Roksana Golizadeh-Mojarad, Robert An-

drawis, Daniel Lemus, Xinchen Guo, Daniel Mejia, Jim Fonseca, Michael Po-

volotskyi, Tillmann Kubis, Gerhard Klimeck, ”Incoherent transport in NEMO5: 

realistic and efficient scattering on phonons” Journal of Computational Elec-

tronics, pp 17, 2016. 

This work describes some of the transport capabilities of Nemo5, in partic-

ular incoherent transport using the self-consistent Born approximation. This 

algorithm was implemented as a module in Nemo5 as described before for the 

RGFModule. This model suffers from convergence issues with scattering in the 
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leads, and the solution in this case was to use a resonance mesh. ResonanceMesh 

solver in nemo5 resolves the meshes using adaptive mesh refinements. This al-

gorithm not only gives a refined mesh close to the quantum resonances but also 

full control over the final number of points in the mesh. 

5. Wang, Kuang-Chung, Daniel Valencia, James Charles, Yu He, Michael Povolot-

skyi, Gerhard Klimeck, Jesse Maassen, Mark Lundstrom, and Tillmann Kubis. 

”NEMO5: Predicting MoS 2 heterojunctions.” In Simulation of Semiconduc-

tor Processes and Devices (SISPAD), 2016 International Conference on, pp. 

221-224. IEEE, 2016. 

6. Ankit Sharma, Ahmed Reza, Kaushik Roy, ”Proposal of an Intrinsic-Source 

Broken-Gap Tunnel FET to Reduce Band-Tail Effects on Subthreshold Swing: 

A Simulation Study” IEEE Transactions on Electron Devices, Volume:6, Issue: 

6, Page(s): 2597 - 2602, 2016 

7. Ankit Sharma, Arun Akkala, Jaydeep , Kaushik Roy, ”Source-Underlapped 

GaSbInAs TFETs With Applications to Gain Cell Embedded DRAMs” IEEE 

Transactions on Electron Devices, Volume:63, Issue: 6, Page(s): 2563 - 2569; 

doi:10.1109/TED.2016.2555627, 2016. 

8. Ameen, Tarek A., Hesameddin Ilatikhameneh, Gerhard Klimeck, and Rajib 

Rahman. ”Few-layer phosphorene: An ideal 2D material for tunnel transistors.” 

Scientific reports 6 (2016): 28515., 2016 

9. Chen, Fan W., Hesameddin Ilatikhameneh, Gerhard Klimeck, Zhihong Chen, 

and Rajib Rahman. ”Configurable electrostatically doped high performance 

bilayer graphene tunnel FET.” IEEE Journal of the Electron Devices Society 

4, no. 3 (2016): 124-128. 

10. Ilatikhameneh, Hesameddin, Gerhard Klimeck, and Rajib Rahman. ”Can ho-

mojunction tunnel FETs scale below 10 nm?.” IEEE Electron Device Letters 

37, no. 1: 115-118, (2016) 
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11. Ilatikhameneh, Hesameddin, Yaohua Tan, Bozidar Novakovic, Gerhard Klimeck, 

Rajib Rahman, and Joerg Appenzeller. ”Tunnel field-effect transistors in 2-D 

transition metal dichalcogenide materials.” IEEE Journal on Exploratory Solid-

State Computational Devices and Circuits 1: 12-18. 2015 

12. Chen, Fan W., Michael Manfra, Gerhard Klimeck, and Tillmann Kubis. ”NEMO5: 

Why must we treat topological insulator nanowires atomically?.” In Proc. IWCE. 

2015. 

13. Ilatikhameneh, Hesameddin, Fan W. Chen, Rajib Rahman, and Gerhard Klimeck. 

”Electrically doped 2D material tunnel transistor.” In Computational Electron-

ics (IWCE), 2015 International Workshop on, pp. 1-3. IEEE, 2015. 

14. Li, Wenjun, Saima Sharmin, Hesameddin Ilatikhameneh, Rajib Rahman, Yeqing 

Lu, Jingshan Wang, Xiaodong Yan et al. ”Polarization-engineered III-nitride 

heterojunction tunnel field-effect transistors.” IEEE Journal on Exploratory 

Solid-State Computational Devices and Circuits 1 (2015): 28-34. 
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Table 5.4. 
NemoFactory instantiation example 

$ . / bin /nemo −h Dummy1 

Usage : nemo INPUTDECK FILE [−− p r o f i l i n g [PROFILING TYPE . . . 

NanoElectron ics MOdeling Tool 5 (NEMO5) , purdue univer . . . 

Type nemo −−ve r s i on (−v ) to s ee the program ve r s i on and . . . 

Type nemo −−help(−h) [ENTITY TYPE] to s ee en t i t y opt ions 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

−−−−−−−−−−−−−−−−−−−− SOLVER −−−−−−−−−−−−−−−−−−−−−−− 

Dummy1 : This s imu la t i on i s a TEST s imu la t i on . . . 

[#] ( ∗ ) = requ i red , ( )= default value 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

[ 1 ] ( ) d i s a b l e i n i t ( f a l s e ) : f l a g command to . . . 

. . . 

[ 1 4 ] ( ) a c t i v e r e g i o n s ( ( ) ) : r e q u i r e d r e g i o n s . . . 

[ 1 5 ] ( ) b ound a ry r e g i o n s ( ( ) ) : r e q u i r e d r e g i o n s . . . 

[ 1 6 ] ( ) d ( ) : Name o f the s i m u l a t i o n to be . . . 

[ 1 7 ] ( ) d e f a u l t s o l v e r m a t t y p e ( PetscMatrix . . . 

[ 1 8 ] ( ) domain ( ) : Domain r e q u i r e d for this . . . 

[ 1 9 ] ( ∗ ) name : A unique name tag / i d e n t i f i e r . . . 

[ 2 0 ] ( ) o u t p u t f i l e s u f f i x ( ) : s u f f i x to be . . . 

[ 2 1 ] ( ) s u r f a c e o f r e g i o n s ( ) : s u r f a c e . . . 

[ 2 2 ] ( ) t i c t o c n a m e ( $ (name ) ) : P r e f i x for . . . 

[ 2 3 ] ( ∗ ) type : A unique type tag / i d e n t i f i e r . . . 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
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CHAPTER 6. EVALUATION AND DISCUSSION 

Evaluation of new visualizations and visualization frameworks is one of the top chal-

lenges of the visual analytics field [29] [30], and there is an absence of well-defined 

methods of evaluation. Measuring accuracy, utility, and efficiency are the most ac-

cepted measurement methods [31]. Recently, several studies have been exploring 

user experience goals as part of the evaluation. However, user experience evalua-

tions should be complemented with other standard measures in order to identify key 

elements of the visualization [32]. 

NemoViz was evaluated by two different methods: a user experience study defined 

as an informal evaluation test, and a quantitative study that measured efficiency and 

effectiveness. Both studies fell under the Purdue IRB Exemption (1706019282), and 

users taking part in these studies were part of the Nanoelectronic Modeling Group at 

Purdue University 

6.1 Informal evaluation test 

First, NemoViz was assessed through an informal evaluation. This evaluation 

was designed to ask users of NEMO5 with previous exposure to NemoViz about 

their experience with the tool. The design of the informal evaluation test followed 

the main recommendations of Davidson’s methodology for designing evaluation tools 

(2005-2018) [33]. 

1. Defining evaluative dimensions: Establish key components to be assessed. 

2. Determining dimensions’ importance: Prioritize and justify the importance of 

each dimension, 

3. Developing instruments: Define tools that could gather the data appropriately. 
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4. Constructing rubrics: Define rules and formulas to assign scores. 

5. Measuring performance: applying the rubrics to the data we gathered. 

6. Results and conclusions. 

6.1.1 Defining evaluative dimensions 

To evaluate NemoViz the informal evaluation covered four dimensions: 

• Functionality: The tool allows users to explore text files based on visualizations. 

• Content/Design: The tool captures atomistic representation of the model and 

summarizes relations between elements in the text files. 

• Usability: The tool is easy to use. 

• Efficiency: The tool helps users to save time. 

The questions, listed in Table 6.1, were designed based on work of [34] and modified 

to be used for the evaluation of NemoViz. 

6.1.2 Determining dimensions’ importance 

Table 6.1 shows the importance defined for each dimension. In this case, the most 

important dimensions were as follows. First, to know if interactive visualization helps 

users to save time when modifying input decks. Modifying and running input decks 

are the tasks most commonly performed by users of any simulator tool, and a single 

modification in the input parameters is equivalent to a new experiment. Second, 

to know if NemoViz allows users to explore input decks in a simplified way. The 

main design concept in the designing of NemoViz was to allow users to interactively 

highlight different elements of the input deck. Other dimensions are important as 

well, but they are not the main focus of the evaluation of the impact of NemoViz. 
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Table 6.1. 
Evaluative Dimensions and Dimensional Evaluation Questions 

Dimension Question Weighting 

Functionality 

Content/Design 

Content/Design 

Usability 

Efficiency 

NemoViz supports the user well in inspecting 

a Nemo5 input deck 

NemoViz structures and summarizes the 

atomistic representation of a model defined 

in a Nemo5 input deck 

NemoViz structures and summarizes rela-

tions between different elements in a Nemo5 

input deck 

NemoViz is easy to use and self-explanatory. 

NemoViz saves you time when modifying 

Nemo5 input decks 

Very important 

Important 

Important 

Important 

Very important 

6.1.3 Developing instruments 

The instrument consisted of five (5) questions designed to assess the usability 

of NemoViz, and NemoViz’s ability to save users time, to structure and summarize 

spatial information and relations from an input deck, and to enable users to explore 

the input deck (Table 6.1). Information about the level of expertise of the user and 

optional feedback were included as well. The questionnaire was created with the 

Qualtrics survey tool, and it was sent as an on-line survey. 

6.1.4 Constructing rubrics 

The questions were scored using a Likert-type scale from 1 (strongly agree) to 

5(strongly disagree). 
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6.1.5 Measuring performance 

Table 6.2. 
Scored value for each dimension. Functionality and Efficiency dimen-
sions scored the lowest values (lower scores are better.) 

Dimension 

Functionality 

Content/Design 1 

Content/Design 2 

Usability 

Efficiency 

Score 

9 

14 

15 

15 

12 

Nine (9) NemoViz users answered the on-line survey. Most of the participants 

(57%) were expert users of Nemo5, 29% were intermediate users, and 14% said they 

had just started to use Nemo5. The most important dimensions scored the lowest 

values (Table 6.2), supporting the hypotheses of the functionality and efficiency of 

the tool. 

6.1.6 Results and Discussion 

The results from the informal evaluation test showed that 100% of the participants 

(strongly agree + agree) agree that NemoViz provides support when exploring Nemo 

5 input decks and captures the atomistic representation of the model defined in the 

NEMO5 input deck. The exploration of the input decks is directly related to the 

visualizations presented in the outline view of NemoViz. Some users also found the 

relation view useful for exploring relationships among blocks. The representation 

of the atomistic structure of the simulation is mostly shown in the main view of 

NemoViz. Some characteristics of the structure were also located in the property and 

relation views. 
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Table 6.3. 
Percentages of participants that answer the questionnaire, listed from 
1 (strongly agree) to 5 (strongly disagree) 

Question 1 2 3 4 5 

NemoViz supports the user well in inspecting 

a Nemo5 input deck 

NemoViz structures and summarizes the 

atomistic representation of a model defined 

in a Nemo5 input deck 

NemoViz structures and summarize relations 

between different elements in a Nemo5 input 

deck 

NemoViz is easy to use and self-explanatory 

NemoViz saves you time when modifying 

Nemo5 input decks 

100% 

43% 

43% 

43% 

72% 

0% 

57% 

43% 

43% 

14% 

0% 

0% 

14% 

14% 

14% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

Regarding the ability of NemoViz to summarize relations between input deck 

blocks, 86% of the participants perceived that NemoViz accurately represents these 

relations (Table 6.3). Only 14% of the participants responded that NemoViz does 

not add value to the structure and relations found in the text file of the input deck. 

Regarding usability, 86% of participants reported that NemoViz was easy to use and 

intuitive. We hypothesize that elements such as its simple design, extensive use of 

visualizations, real-time synchronization of the multiple views, and incorporation of 

widgets contribute to the usability. These elements were intentionally incorporated 

into the design of NemoViz for this purpose. 

Finally, and most importantly, a very significant number of users (86%) reported 

that NemoViz helps them to save time when modifying the input decks. Modifying 

and running the input decks are the tasks most commonly performed by users of any 
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simulator tool given that a single modification of the input parameters is equivalent 

to a new experiment. The other 14% reported spending the same amount of time 

modifying the NEMO5 input decks using NemoViz or using a text editor. It is worth 

noting that 100% of the expert users reported a decrease in the time spent modifying 

input decks when using NemoViz. 

6.2 Identification of relevant errors, Previous User Experience test 

The informal evaluation showed that the efficiency dimension scored highly. More-

over, optional feedback from the informal evaluation test highlighted the importance 

of NemoViz to detect errors when modifying an input deck. The most common prob-

lem that users faced when modifying an input deck is the detection of errors. In other 

words, users had to debug an input deck. 

To determine NemoViz’s efficiency in debugging input decks, the most relevant 

errors encountered by NEMO5 users were detected using an additional evaluation 

based on user experience. 

6.2.1 Defining evaluative dimensions and importance 

In this study three different dimensions were measured: 

• Frequency: How often users observed the error 

• Complexity: How complicated is the process to fix the error. 

• Difficulty: How much time a user takes to fix the error. 

The most common input-deck errors were classified as follows: 

• domain sizes are not correctly defined (structure dimension), domain positions 

are not correctly defined (structure position), 

• geometrical regions are not properly defined (spatial definitions) 
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• crystal orientation is not well defined (crystal information) 

• missing connections between solvers (solution-solution relations) 

• missing connections between domains (domain-domain relations) 

• missing relations between domains and solvers (solution-structure relations) 

• missing relations between regions and solvers (solution-spatial relations) 

• inconsistency between the domains and geometrical regions (spatial-structure 

relations). 

6.2.2 Developing Instrument and Rubrics 

Table 6.4. 
Tabulated results from user experience evaluation. 

Dimension Frequency Difficulty Complex 

0 1 2 3 1 2 3 4 1 2 3 

Structure Dimension 

Structure Position 

Spatial Definitions 

Crystal information 

Solution-Spatial Relations 

Solution-Solution Relations 

Structure-Structure Relations 

Spatial-Structure Relations 

Solution-Structure Relations 

2 

1 

2 

4 

3 

1 

1 

3 

4 

4 

6 

3 

7 

6 

7 

4 

5 

8 

6 

5 

7 

3 

3 

5 

5 

3 

0 

2 

2 

2 

0 

2 

1 

4 

3 

2 

4 

2 

3 

4 

7 

7 

3 

2 

6 

5 

7 

3 

2 

4 

3 

4 

4 

3 

2 

1 

5 

5 

2 

1 

5 

6 

3 

3 

4 

3 

3 

1 

3 

2 

2 

2 

9 

6 

7 

6 

11 

9 

10 

8 

11 

3 

5 

4 

7 

2 

4 

2 

5 

3 

1 

2 

2 

1 

1 

1 

2 

0 

0 

These previous experience measurements were designed as a survey to ask NEMO5 

users about their own perception of debugging each type of error. The questionnaire 
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was created following the same format as the first evaluation, it was implemented with 

Qualtrics survey tool, and it was sent as an on-line survey. Each question was scored 

based on Likert-type scales: How often do you face this error? from 0 (never) to 3 

(very often); How difficult is the process of fixing this error? from 1 (easy) to 4 (very 

difficult); and how long does it usually take you to solve it? from 1 (few minutes) to 

3 (more than an hour). Table 6.4 shows the tabulated data for each dimension 

To compare between dimensions, scores were normalized and values between 0.0 

and 1.0 were assigned. 

6.2.3 Measuring Performance and Results 

Table 6.5. 
Scores (S) and Normalized scores (uS) for the three dimensions eval-
uated in the user experience evaluation. 

Dimension Frequency Difficulty Complex 

S uS S uS S uS 

Structure dimension 

Structure position 

Spatial definition 

Crystal Information 

Solution-Spatial relations 

Solution-Solution relations 

Structure-Structure relations 

Spatial-Structure relations 

Solution-Structure relations 

22 

22 

23 

13 

18 

20 

26 

20 

14 

0.69 

0.69 

0.77 

0.00 

0.38 

0.54 

1.00 

0.54 

0.08 

32 

35 

36 

35 

25 

28 

34 

36 

29 

0.64 

0.91 

1.00 

0.91 

0.00 

0.27 

0.82 

1.00 

0.36 

22 

29 

27 

31 

21 

25 

24 

23 

20 

0.18 

0.82 

0.64 

1.00 

0.09 

0.45 

0.36 

0.27 

0.00 

Fourteen (14) NEMO5 (not necessarily exposed to NemoViz) users answered this 

new survey following the same format as the first evaluation. These results indicate 
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Fig. 6.1. Normalized scores: results are ordered by frequency and gray 
areas highlights questions that scored above 0.6 in all dimensions. 

that the most frequent errors were related to the structure definitions and relations. 

The most complex and frequent errors were related to crystal information. However, 

these latter errors were far less common. The results also suggest that errors involving 

relations between regions and solutions were easily solvable. 

6.2.4 Results and Discussion 

Five (5) error types were classified as the most important errors Nemo5’s users 

face when dealing with input-deck debugging (see Figure 6.1). Four (4) error types 

obtained a high score (0.6 or higher) on all test dimensions: structure-structure re-

lations (StrStrRel), spatial definitions (SDef), spatial-structure relations (SStrRel), 

and structure position (StrPos). However, based on the assumption that the most 
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frequent errors have a larger impact, the structure-dimension (StrDim) error is also 

classified as an important error to evaluate. 

6.3 Quantitative Evaluation 

NemoViz expands the user’s cognitive process in different ways, and detecting the 

input deck errors can be defined as two cognitive processes: spatial representations 

that involve spatial cognition processes and well-defined mental models, as well as 

abstract representations that require new mental models to represent the relations. A 

measurement instrument was developed based on the error types previously identified. 

6.3.1 Measurement instrument 

Table 6.6. 
Mean, Standard Deviation, and number of questions included in the 
pilot run. (+) Original, (-) Removed, (*) Included 

Statistics Questions 

Error type Mean STD + - * 

Structure-Structure Relations 

Spatial Definition 

Structure Dimension 

Spatial-Structure Relations 

Structure Position 

56.96 

49.78 

25.09 

103.66 

35.11 

10.11 

3.76 

6.11 

25.83 

9.91 

8 

8 

8 

8 

8 

2 

4 

2 

2 

2 

6 

4 

6 

6 

6 

Total 40 14 26 

We validate the spatial representation errors by analyzing users’ understanding 

of the main view, and the abstract representation by users’ understanding of the 

relations view. We chose a widely used quantum transport calculation of a silicon 

nanowire (see Appendix B). For each error type, four (4) input decks were created, 
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the corresponding errors introduced, and NemoViz visualization snapshots taken (see 

Figure 6.2). The survey was implemented with the Qualtrics survey tool assigned to 

a specific IP address, and a timer was added for each question. 

Initially, two participants took the survey that included all forty (40) possible 

questions. input deck associated with questions for which their answering time fell 

more than three (3) standard deviations were removed from the pool of questions. 

Twenty-six (26) possible questions were included as part of the instrument 6.6 (see 

Table 6.6). 

(a) NemoViz representation (b) Input deck segment 

Fig. 6.2. Visualizations of failing input decks after introducing artifi-
cial errors of the abstract representations type 

Users were asked to classify the correct type of error based on a visualization or 

a segment of an input deck. In order to avoid biased results, the users were asked to 

schedule an appointment in a controlled space with a prepared desktop to answer the 

survey. Additionally, before the survey was taken, users had to take a small tutorial 

on how NemoViz represents input decks. 

The tutorial consists of a small description of the error types Nemo5’s users face 

while debugging input decks (see Appendix A). Participants had to read the entire 
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Fig. 6.3. Example of the Tutorial’s feedback after each test answer 
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Table 6.7. 
Domain Position error explanation 

Domain position: The position of a domain is not 

aligned with its adjacent domains. In this case, the 

source source source contact domain (pink box) is 

not aligned with the other domains included in the 

source region, the pink box is moved down. Notice 

that this visualization only shows half of the atoms 

in the source source source contact domain (pink 

box). This is because only the atoms that are part 

of a region AND a domain are shown in the in-

tersection view. Since the domain is misplaced, 

the atoms that are not part of a region are not 

shown. This does not mean that the size (number 

of atoms) of the domain is incorrect. The missing 

atoms are just not shown due to the misplacement 

of the domain. This simulation would simulate a 

domain with half of its atoms missing. 

text and answer a set of training questions (a question for each error type). For each of 

the training questions, participants got feedback independently about the correctness 

of their answer showing a description of the problem (Table 6.7) and an illustration 

of the three-dimensional representation (see Figure 6.3). 

After the tutorial section, users were exposed to three questions for each error type: 

two visualizations and one text segment. A total of fifteen questions were grouped 

into two sections: Questions involving spatial cognition processes (9 questions) and 

questions involving new mental models to represent relations (6 questions). The order 

of appearance of the questions was random. 
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6.3.2 Measuring Performance 

The time taken by each respondent to answer each survey question and the number 

of correct answers were measured. The effectiveness of users in detecting errors using 

either the visualization or the text was calculated as the percentage of correct answers 

(accurately identified errors) over the total number of questions. The effectiveness 

using the visualization or text input decks was also compared. The efficiency of the 

visualization and text input deck were similarly calculated as the time it took the 

user to correctly identify an error. 

Twelve (12) participants answered the survey, with an average effectiveness of 

87%, an average time of 49.23 seconds for each answer, and an average time of 50.10 

minutes to complete the tutorial and answer all the questions (see Appendix C). 

6.3.3 Results and Discussion 

In general, the users improved their effectiveness of error detection by 7% and 

were able to detect errors twice as fast using NemoViz compared to simply analyzing 

the text input decks. The left-hand box plot of Figure 6.4 shows the increased av-

erage accuracy. The standard deviation shrank dramatically to less than 10% when 

using NemoViz. The right-hand box plot shows how the average time users took to 

detect errors was cut in half when interactive visualizations were used. The standard 

deviation was reduced even further. 

We also analyzed data about the users’ expertise and the question type. The 

graph in the bottom right quadrant of Figure 6.5 illustrates that non-expert users 

improved their detection times threefold when using NemoViz. Expert users showed 

a twofold improved detection time when using NemoViz (bottom left quadrant of 

Figure 6.5). Detection times for the structure-structure relations and structure di-

mension questions did not show any dramatic improvement when using visualizations. 

However, spatial-structure relations experienced extraordinary improvements in time 

and efficiency (Top of Figure 6.5). 
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Fig. 6.4. Box plots showing users’ effectiveness and efficiency averaged 
and quantiles. Blue boxes show visually based input results, orange 
text-based input results. 
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Fig. 6.5. Comparison of expert and non-expert users. Top: Average 
percentage of correct answers. Bottom: Average time to correctly 
detect errors 
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CHAPTER 7. SUMMARY AND OUTLOOK 

The potential impact of research simulation codes is hindered by the lack of usability 

by those not already deeply familiar with them. This thesis describes how the intro-

duction of interactive visualizations helped whit this problem. Visual analytics were 

included as a way to improve usability in a research code and decrease the learning 

curve of new users. 

In the process, a framework was proposed to describe the complete simulation 

process and was illustrated with a case study. This framework is a combined model 

that describes the complete simulation and serves as a reference to identify key stages 

that would enhance usability and user experience. Nemo5 users’ experience was 

described based on this framework, and the role of visualizations in this experience 

was illustrated with examples. 

Visualizations are useful for each step in the simulation process, but also help 

users to transition from one step to another in the process. All examples described 

in this work consisted of visualizations that support Nemo5 users and help them to 

understand simulation inputs and outputs. 

All visualizations in this work were implemented as part of an interactive visual-

ization system called NemoViz. This work defines the requirements needed for any 

interactive system that aims to support atomistic simulations. NemoViz meets all 

these requirements mainly through the use of interactive visualizations and tools to 

disseminate simulation results. 

NemoVizs impact was measured on the most important and common task Nemo5 

users face: modifying an input deck. In general, users take a working and functional 

simulation input and modify some parameters to create a new configuration. This new 

input is equivalent to a completely new experiment, and small changes in parameters 
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can have huge impacts in the simulated structure. In particular, inclusion of errors 

could make structures unreasonable. The detection of these errors involves a complex 

cognitive process. 

Results suggests that NemoViz enhances the cognitive process during error detec-

tion as follows: 1) it improves user efficiency and effectiveness in debugging NEMO5 

input decks; and 2) it accelerates the learning curve of novice users by enhancing their 

effectiveness to the level of expert users. Enhancing the cognitive process improves 

the usability of research codes, and the introduction of visual analytics as part of the 

design process highlights new ways to deliver research codes to final users. 

This work describes some of the products created using NemoViz. These products 

were generated mainly via the dissemination tools. This work documents the impact 

they had in different research projects. 

The infrastructure created along with this work defines an ideal workspace to 

continue investigating the impact of visualization on the simulation process. 
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APPENDIX A 

QUANTITATIVE VALIDATION TUTORIAL 

Spatial Representations 

Thank you for agreeing to take part in this important survey for my research. 

This survey consists of a Nemo Server training session followed by a set of questions. 

It should take you less than 20 minutes to complete the training and the questions. 

Be assured that all answers you provide will be kept anonymously. As this survey is 

trying to keep track of the effectiveness, please be sure you remove all distractions 

that can affect your time of response. 

All questions in this survey are based on a Nemo5 input-deck that simulates 

quantum transport across a silicon nanowire as shown in the figure below. The 

nanowire is surrounded by a gate all-around, and it contains two contacts to source 

and drain regions. 

The transport simulation uses the Quantum Transport Boundary Method (QTBM), 

and its implementation in Nemo5 requires to explicitly define three additional adja-

cent domains for each contact as shown in the figure below. These domains have been 
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called source contact, source source contact, and source source source contact. This 

naming scheme has become the ”standard” way to define the contacts in any Nemo5 

Simulation. 

Each domain in Nemo5 is represented as a block of atoms that is defined by the unit 

cell of a specific material. The intersection between Domains and Geometrical regions 

represents the spatial work-space to be used in the simulation as a representation of 

the device to be simulated (the ”real device”) 

Nemo Server is a web-based tool for visualization of Nemo5 input-decks. With 

Nemo Server you will be able to see the 3D representations of the geometrical re-

gions and the domain definitions from a Nemo5 input-deck. The figure below shows 

the view in Nemo Server of the geometrical regions from a Nemo5 input-deck that 

simulate quantum transport across a silicon nanowire. In this example, there are 4 

geometrical regions represented as translucent boxes. Each box represents a region of 
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the nanowire, as follows: source (light orange box), channel (blue box), drain (light 

blue box), and gate (orange box). Make sure that you are able to identify these 4 

regions in the figure below. 

Nemo Server can also show domains defined in a Nemo5 input-deck. Nemo 

Server shows the position of the atoms in each domain. The surrounding surface 

of the domain is represented by a translucent box. The figure below shows the do-

mains for the simulation of quantum transport across a silicon nanowire. The figure 

below shows 4 domains: source contact in purple, source source contact in green, 

source source source contact in pink, and channel in blue. Make sure that you are 

able to identify all these domains in the figure below. Notice that this is the same 

device as in the previous example, but in this case, we are looking at the domains, 

not the regions 

Finally, Nemo Server gives you the option to visualize parts of the device that 

are defined as a region AND as a domain. Some people call this the real device. You 

could also think about this visualization as an intersection between the domains and 

the regions (previous two figures). The figure below shows the visualization of the 

real device for a simulation of quantum transport across a silicon nanowire (domains 
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AND regions) using Nemo Server. Keep track of the colors of the boxes to identify the 

regions and the domains. For instance, the purple box represents the source contact 

domain; the light orange box represents the source region. Take a moment to identify 

all regions and domains in the intersection view (figure below). You might notice 

that in the intersection view (domains AND regions) there are some atoms missing 

in the channel domain. This is because Nemo Server only visualizes the atoms that 

are going to be used in the Nemo5 simulation. 

Now that you know how Nemo Server visualizes the devices from Nemo5 input-

decks, lets talk about frequent errors in Nemo 5 input-decks, and then we will practice 

how to use Nemo Server to identify these errors. 

Some of the most frequent errors that Nemo5 users face are SPATIAL DEFINI-

TIONS. These errors refer to errors with domains positions, errors with domains size, 

and errors with geometrical shapes. Each of these errors would be illustrated below. 

Domain position error: Number of atoms included in the domain box/unitcell is 

correct; however, the position of a domain is not aligned with its adjacent domains. 

The picture below shows an example of this type or error. In this example, there 
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is a misalignment between the source source source contact domain and its adjacent 

domain source source contact. 

Domain size error: Number of atoms included in the domain box/unitcell is NOT 

correct. The picture below shows an example of this type or error. In this example, 

the source source source contact domain has less number of atoms than its adjacent 

domain source source contact. As a result, it looks smaller than the adjacent domains. 

Notice that the position of the domain is correct, as it is centered in the source region. 

Geometrical regions error: Geometrical regions are NOT aligned with domains; 

however, the number of atoms (size) and the position of the domains are correct.The 
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picture below shows an example of this type or error. In this example, all the domains 

are correctly defined, however, the source region is not aligned with the domains. 

Errors due to SPATIAL DEFINITIONS can be detected if the user takes a careful 

look at Nemo Server’s intersection view (regions AND domains). In the next pages, 

you will be presented with a series of training questions to practice how to identify 

errors in a Nemo5 input-deck by looking at visualizations generated by Nemo Server. 

Remember that all questions in this survey are based on a Nemo5 input-deck that 

simulates quantum transport across a silicon nanowire. 
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Abstract Representations 

Another frequent set of errors that Nemo5 users face are SPATIAL RELATIONS. 

There are two main spatial relations mistakes that Nemo5 input-decks have: Domain-

Domain and Domain-Region. Each of these errors is illustrated below. 

Domian-Domain: Domain is not connected with adjacent domains (leads). Each 

domain should be connected with its adjacent domains (also known as leads). if this 

relation is missing Nemo5 will complain and will have an unexpected behavior. 

Domain-Region: Domain is not connected with correct regions: Domains should 

be connected with all regions it is contained, if this relation is missing Nemo5 will 

complain and will have an unexpected behavior 

Nemo Server uses a chord diagram to visualize all the relations defined in a Nemo5 

input-deck. The figure below shows all the relations defined in a Nemo5 input-deck 
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for the simulation of a quantum transport across a silicon nanowire. Each block type 

(region or domain) has a color in the inner chord. For instance, domains are light 

green and regions are dark green. Each block in the input-deck has a specific color in 

the outer-chord . For example, the source contact domain is purple and the channel 

region is blue. Notice that these colors correspond to the colors of the regions and 

domains in the 3D visualization. Nemo server shows the relations between blocks 

by connecting them with an arch. For instance, the pink arch in the figure below 

indicates that there is a relation between the source source source contact and the 

source source contact. 

The number of relations shown in the figure above could be overwhelming. This is 

why Nemo Server allows the user to only look at the relations of a single block when 

it is selected. The figure below shows multiple examples of the way that Nemo Server 

represent the relations, depending on the block that the user selects (the selected 

block is denoted by a red dot). Take a moment to understand the meaning of the 

representations in the figure below. 

Nemo server visualization of relations is useful to detect SPATIAL RELATIONS 

errors, that is, Domain-Domain errors or Domain-Region errors. This kind of errors 

are easily identified because when a relation between blocks is missing in a Nemo 5 

input-deck, the chord diagram generated by Nemo Server will be missing the arch 

that connect those two blocks. 
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APPENDIX B 

NEMO5 GALLIUM ARSENIDE BAND-STRUCTURE 

CALCULATION INPUTDECK 

Structure { 

Material { 

name = GaAs 

tag = substrate 

crystal_structure = zincblende 

regions = (1) 

} 

Domain { 

name = structure1 

type = pseudomorphic 

base_material = substrate 

dimension = (20,20,20) 

periodic = (true, true, true) 

regions = (1) 

crystal_direction1 = (1,0,0) 

crystal_direction2 = (0,1,0) 

crystal_direction3 = (0,0,1) 

} 

Geometry { 

Region { 

shape = cuboid 

region_number = 1 
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min = (0,0,0) 

max = (5,5,5) 

} 

} 

} 

Solvers { 

solver { 

name = my_schroedi 

type = Schroedinger 

set { 

domain = structure1 

active_regions = (1) 

tb_basis = sp3d5sstar_SO 

job_list = (assemble_H, passivate_H, calculate_band_structure) 

output = (energies, eigenfunctions_VTK) 

charge_model = electron_hole 

automatic_threshold = true 

eigen_values_solver = krylovschur 

k_space_basis = cartesian 

k_points = [(0,0,0)] 

} 

} 

solver { 

name = my_overlap 

type = MatrixElements 

set { 

domain = structure1 

active_regions = (1) 

operator = overlap 
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wf_simulation = my_schroedi 

output_file = matrix_elements 

} 

} 

solver { 

name = my_structure 

type = Structure 

set { 

domain = structure1 

active_atoms_only = true 

} 

} 

} 

Global { 

solve = (my_structure,my_schroedi,my_overlap) 

database = all.mat 

} 
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APPENDIX C 

EVALUATION MEASUREMENT TABLES 

Table C.1. 
Participants Expertise with Nemo5 and previous exposition to NemoViz 

Expertice Nemoviz 

U1 Expert Yes 

U2 Beginner Yes 

U3 Expert Yes 

U4 Intermediate Yes 

U5 Intermediate No 

U6 Beginner No 

U7 Expert Yes 

U8 Intermediate Yes 

U9 Expert No 

U10 Expert Yes 

U11 Expert Yes 

U12 Expert Yes 
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Table C.2. 
Number of correct answers for each user. Red values highlight values 
that were not taking into account due the empirical rule (z–score = 
abs((x − µ)/σ) > 3). Q1: StrDim, Q2:StrPos, Q3:Sdef, Q4:SStrRel, 
Q5:StrStrRel 

User Q1 Q2 Q3 Q4 Q5 Effective Z–score Total 

U1 0 1 0 0 0 0.10 3.05 10 

U2 2 2 2 2 2 1.00 0.65 10 

U3 2 2 1 2 1 0.80 0.17 10 

U4 1 2 2 2 1 0.80 0.17 10 

V
is
u
a
l 
In

p
u
t U5 

U6 

U7 

U8 

2 

2 

2 

0 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

1 

1.00 

1.00 

1.00 

0.70 

0.65 

0.65 

0.65 

0.58 

10 

10 

10 

10 

U9 2 1 2 2 2 0.90 0.24 10 

U10 1 2 2 2 2 0.90 0.24 10 

U11 1 2 2 2 2 0.90 0.24 10 

U12 2 2 2 2 2 1.00 0.65 10 

U1 0 1 1 1 1 0.80 0.17 5 

U2 1 1 1 1 1 1.00 0.85 5 

U3 0 1 1 0 1 0.60 1.18 5 

U4 0 0 1 1 0 0.40 2.20 5 

T
e
x
tu

a
l 
In

p
u
t

U5 

U6 

U7 

U8 

1 

0 

1 

1 

1 

1 

1 

0 

1 

1 

1 

1 

1 

1 

1 

0 

1 

1 

1 

1 

1.00 

0.80 

1.00 

0.60 

0.85 

0.17 

0.85 

1.18 

5 

5 

5 

5 

U9 1 1 1 1 1 1.00 0.85 5 

U10 1 1 1 1 1 1.00 0.85 5 

U11 1 1 1 1 1 1.00 0.85 5 

U12 1 1 1 0 1 0.80 0.17 5 
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Table C.3. 
Times participants spend correctly answering a question. (G) Visual 
Based Input. (T) Textual Based Input 

Time StrDim StrPos Sdef SStrRel StrStrRel 

G T G T G T G T G T 

T1 24.45 32.14 12.75 28.66 23.66 85.70 63.35 254.81 57.34 39.58 

T2 14.40 55.11 12.93 121.74 18.63 51.48 39.39 181.31 28.27 94.48 

T3 32.37 32.42 21.51 47.55 13.38 68.68 75.74 162.18 45.74 17.22 

T4 19.40 38.23 18.12 23.87 66.25 73.00 11.27 74.32 13.05 55.15 

T5 6.04 53.85 39.98 45.66 32.97 101.02 12.66 30.53 42.61 40.38 

T6 3.99 24.21 39.61 128.01 71.32 67.23 16.79 125.95 30.19 14.86 

T7 25.93 98.30 67.07 17.56 15.23 122.24 19.20 44.37 29.53 205.66 

T8 37.27 13.31 24.76 27.23 64.64 205.28 21.87 38.24 25.05 28.94 

T9 21.53 11.31 196.17 41.29 121.91 47.09 62.14 21.68 162.67 

T10 8.68 31.41 51.93 6.48 62.43 12.08 6.16 85.69 

T11 9.33 16.43 11.24 93.13 6.84 53.06 20.11 

T12 40.90 4.61 9.07 43.28 138.46 19.58 

T13 59.87 7.50 7.63 28.94 79.94 

T14 79.94 6.65 10.59 70.65 37.15 

T15 82.37 22.13 63.24 27.10 149.12 

T16 15.12 8.60 32.86 12.19 158.56 

T17 4.69 23.53 11.68 21.95 117.79 

T18 37.03 40.25 42.83 21.30 

T19 16.47 12.92 20.92 40.74 

T20 19.93 23.02 31.39 4.18 

T21 17.86 5.96 13.75 

T22 4.57 3.85 

Mean 

STD 

28.60 

23.94 

43.44 

24.51 

21.13 

14.44 

68.84 

56.38 

27.73 

21.39 

91.28 

42.00 

33.56 

30.28 

108.21 

73.29 

49.05 

43.19 

69.52 

60.20 
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Table C.4. 
Z-score for each time participants spend correctly answering a ques-
tion. Red values highlight outliers values removed during the analysis 
(based on the empirical rule) 

Z–score StrDim StrPos Sdef SStrRel StrStrRel 

G T G T G T G T G T 

Z1 0.17 0.58 0.19 0.46 0.71 0.13 0.98 0.19 2.00 0.50 

Z2 0.59 0.57 0.43 0.48 0.94 0.95 0.19 0.48 1.00 0.41 

Z3 0.16 0.03 0.67 0.45 0.38 0.54 1.39 0.08 0.74 0.87 

Z4 0.38 0.21 1.80 0.21 0.80 0.44 0.74 0.83 0.46 0.24 

Z5 0.94 1.31 0.25 0.42 0.41 0.23 0.69 0.15 1.06 0.48 

Z6 1.03 1.28 2.04 0.78 1.05 0.57 0.55 0.44 0.24 0.91 

Z7 0.11 3.18 0.58 2.24 0.91 0.74 0.47 0.45 0.87 2.26 

Z8 0.36 0.25 1.73 1.23 0.74 2.71 0.39 0.56 0.95 0.67 

Z9 0.30 0.68 0.63 2.26 0.73 0.45 0.63 0.63 1.55 

Z10 0.83 0.71 0.99 0.30 0.69 0.71 0.99 0.27 

Z11 0.81 0.33 0.77 0.04 0.88 0.09 0.82 

Z12 0.51 1.14 0.87 1.14 3.46 0.68 

Z13 1.31 0.94 0.94 0.15 0.72 

Z14 2.14 1.00 0.80 1.22 0.28 

Z15 2.25 0.07 1.66 0.21 2.32 

Z16 0.56 0.87 0.24 0.71 2.54 

Z17 1.00 0.17 0.75 0.38 1.59 

Z18 1.10 0.59 0.31 0.64 

Z19 0.32 0.69 0.42 0.19 

Z20 0.08 0.22 0.07 1.04 

Z21 0.23 1.02 0.65 

Z22 1.15 0.98 
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APPENDIX D 

INTERACTIVE ANALYTIC SYSTEMS FOR 

UNDERSTANDING THE SCHOLARLY IMPACT OF 

LARGE-SCALE E-SCIENCE CYBER ENVIRONMENTS 

The following text in this chapter was published as a short paper in the proceedings 

of the ESCIENCE2015 (2015 IEEE International Conference on e-Science) [35], this 

paper describes the interactive analytic system used to measure Nanohub.org impact. 

c 2015 IEEE. Personal use of this material is permitted. Permission from IEEE 

must be obtained for all other uses, in any current or future media, including reprint-

ing/republishing this material for advertising or promotional purposes, creating new 

collective works, for resale or redistribution to servers or lists, or reuse of any copy-

righted component of this work in other work 

Introduction 

The advent of Internet and Web 2.0 has given rise to the emergence and popularity 

of cyber-environments. A cyber-environment is defined as a collection of computa-

tional resources, data, visualization resources made available through an online por-

tal [36], supported by underlying network, services, software, and hardware [37]. The 

academic use of cyber-environments helps disseminate educational tools, scientific 

workflow/simulations, academic publications, and other resources to benefit a much 

wider range of audience. For example, as a leading cyber-environment in nanotechnol-

ogy, nanoHUB [38] has served about 310,000 users over the past 12 months with over 

4,000 presentations, teaching materials, simulation tools, and other nanotechnology-

related resources as of today [39]. Another renowned cyber-environment, PhET [40], 

https://Nanohub.org
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is a virtual lab environment that offers over 75 million science simulation tools for 

researchers, educators, and students. Last but not least, Molecular Workbench [41] 

is an online platform that facilitates sharing of molecular dynamics simulations pri-

marily for educational purposes [42]. As more cyber-environments produce significant 

impacts on their intended communities, it is critical to precisely measure and demon-

strate their scholarly performance. There is a large body of literatures discussing 

what methods to use for evaluating research quality and how to apply these methods 

in a specific context. Among all these assessment methods, bibliometrics is the most 

widely used method, which evaluate research quality by quantitative analyses of sci-

entific publications. Tremendous prior studies have used bibliometrics to demonstrate 

the scholarly impacts of theories [43], journals [44], [45], research areas [46] [47], and 

countries [48]. The long history and popularity of applying bibliometrics in research 

evaluation indicates the potential of using it to evaluate cyber-environment. Assess-

ing a cyber-environment with bibliometric data, however, places additional challenges 

that are not commonly encountered in the aforementioned prior studies. First, analy-

ses of bibliometric data often have a clearly defined data source to draw publications 

from and a programmatic sampling strategy to narrow down the dataset. For exam-

ple, it is a common practice for a bibliometric study to analyze papers that contain 

specific keywords from certain journals over a period of time. On the contrary, the 

scholarly impact of a cyber-environment is demonstrated not only by academic pub-

lications produced by the core team members who develop the platform, but also by 

those published by users who utilize resources in the cyber-environment. For exam-

ple, a researcher contributes a simulation tool to the cyber-environment and studies 

how the tool is adopted and used by other registered users. Nevertheless, these au-

thors rarely report their academic work built upon the cyber-environment facilities 

and resources back to the online community. Also, users may publish their work in 

a diversity of journals and conferences and therefore publication venues cannot be 

determined easily. Finally, they may not cite the cyber-environment as a reference 

and instead, only mention it in the footnote or acknowledgement. All these factors 
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make it extremely difficult to keep track of all the citations of a cyber-environment. 

Second, due to the uncertainty and diversity of publications, the data quality is radi-

cally compromised. The majority of bibliometric studies have bibliographic metadata 

drawn from only a few data sources. Therefore the data tend to be consistent and 

suffer less from problems like name ambiguity, missing data fields, and missing full 

text. Cyber-environment citations, however, are acquired from a large variety of 

publishers and indexing engines. The citation data collected need to be carefully 

handled to make sure that the data quality is appropriate for the analysis. Third, 

most bibliometric analysis results are published once every few years and the most 

recent publications cannot be factored in until the next analysis. While this may 

not sound like a problem in some scenarios, it is critical for cyber-environments to 

gain immediate feedbacks from the community users to improve the services. For 

example, if the results show that a particular simulation tool has gained a lot of 

attentions from scholars, this may be an indication that the tool is being frequently 

used and require much more computational resources. Last but not least, the diver-

sity of cyber-environment audience implies the need of delivering the analysis results 

in multiple facets. The funding agency may be interested in different statistics from 

a hub user in the evaluation result. There is not a single template for reporting 

analysis results that can suit all the needs and the audience should be granted more 

freedom to navigate the results. This means, the traditional static representations 

need to be transformed into an interactive form. This paper presents our attempt 

to demonstrate the scholarly impact of a cyber-environment based on bibliometric 

data. In particular, we aim to address the four challenges above by answering the 

following questions: 1. How to define the appropriate sample scope and increase data 

quality in evaluating cyber-environments scholarly impact? 2. How to keep the eval-

uation results up-to-date and allow audience to interact with them? To answer the 

first question, we present our workflow and implementation of a web-based citation 

management system. The system facilitates metadata collection, data quality con-

trol, and metadata annotation in managing citations of a cyber-environment. For the 
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second question, we construct a public data gateway with interactive visualizations 

and statistics to offer users the capability of interacting with the bibliometric data. 

To show the effectiveness of the system, we apply it to showcase nanoHUBs scholarly 

impact. To our best knowledge, the present study is the first attempt to characterize 

an ill-defined bibliometric dataset and represent it in an interactive and visual form. 

The system we propose in this study can be used to evaluate a broad range of other 

cyber-environments. It also has the potential in other contexts where sample scope 

cannot be easily defined. 

Related Work 

Research evaluation 

Research evaluation can be performed via a number of different ways. Some or-

ganizations, such as the National Science Foundation in the US, depend on internal 

and external evaluators to conduct and report evaluations of funded projects [49]. 

These evaluators are usually domain experts that have sufficient knowledge and ex-

perience to perform a comprehensive review [50]. However, the evaluators are either 

permanently employed or contracted to perform the tasks and are often offered train-

ing programs to get prepared for the job. Therefore it is a costly approach and 

is most appropriate for comprehensive evaluations of a very limited number of ob-

jects infrequently. Also, there are debates questioning the independency, objectivity, 

knowledge, credibility, and ethic of evaluators [50]. Also, evaluators vary in their 

competencies and in many organizations there is no widely accepted taxonomy of 

what should be considered as essential evaluator competencies [51]. This may lead 

to inconsistent evaluation results produced by different evaluators, which make it 

difficult to compare results across programs/projects. Besides the human-based ap-

proach, scientists and government agencies have also sought for a more data-driven 

solution. The popularity of digital resources online has transformed academic pub-

lishing and made data-driven solutions technologically feasible [52]. Data often refer 
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to the bibliographic data, which includes a wide range of formally written publi-

cations in academia such as journal papers, conference proceedings papers, books, 

grant proposals, and other communication medium. Bibliometrics is defined as the 

quantitative study of physical published units, or of bibliographic units, or of the 

surrogates for either [53]. Since it was first coined in 1969 [54] bibliometrics has 

sustained the mainstream in data-driven research evaluation. Therefore, we will dis-

cuss bibliometrics in greater depth in the next section. Another recent strand of data 

driven research evaluation is altmetrics, also known as Scientometrics 2.0 [55]. Rather 

than depending on academic articles, altmetrics focuses on evaluating academic work 

based on social media data, measured by web-based metrics such as number of social 

bookmarking [56], mention in microblogging platforms [57], and occurrences in social 

networking applications [55]. To date, altmetrics is still in its infancy and has not 

been widely adopted in research evaluation. Therefore, our approach selects biblio-

metrics as the primary toolkit for measuring research quality. Both bibliometrics and 

altmetrics are capable of analyzing large-scale quantitative data and require radically 

less human efforts than depending on evaluators. 

Bibliometrics 

Bibliometrics is a prevalent quantitative method used not only for assessing aca-

demic performance but also for demonstrating the evolution of a research community. 

Citation analysis and content analysis are the two most popular methods in biblio-

metrics. Citation analysis refers to the examination of the frequency, patterns, and 

graphs of citations in articles and books [58]. It is widely used to evaluate and compare 

journal impacts of a given research area [44], [46], [59], examine past governmental 

investments [60], [61], showcase institutes academic contributions to a field [62], [63], 

and compare geographical patterns in co-citation and co-authorship [64]. However, 

some scholars questioned [65], [66] and opposed [67] the use of citation analysis as a 

quality evaluation tool because it fails to take other factors into consideration and 
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hence may yield misleading results. For instance, Sims and McGhee identified factors 

that might threaten the validity of the citation analysis: fields of study, inconsisten-

cies in calculation due to manual annotation, inaccuracies in database processing, 

bias against non-English language journals, self-citation, and time taken to review 

manuscripts [59]. Content analysis, in the context of bibliometrics, aims to study 

publications in greater depth and more descriptively than citation counting. In com-

bination with citation analysis, some scholars define content analysis as the study of 

contexts in which citations occur [68] (also known as citation function [69]). In such 

cases, content analysis supplements citation analysis with more contexts for citations 

other than simple counts. The core of content analysis studies focus on proposing clas-

sification schemes for different citation types such as affirmative and negational [70]. 

Rather than focusing on contextualizing citations, another line of research attempts 

to analyze attributes that are not immediately available from the basic metadata. In-

stead, it often requires efforts from domain experts or algorithms to annotate articles 

with supplemental information. The additional descriptions generated manually by 

human tend to be more insightful and purposeful and are used to classify literatures 

into categories. As a result, statistics are presented regarding the intra-categorical 

status and inter-categorical connections. For instance, scholars aim to understand a 

large body of literature by study type such as comparative study, descriptive study, 

and usability testing [71] and by topics [72]. The supplemental information can be 

also derived from full text by algorithms automatically. For example, the additional 

annotation extracted programmatically from full text can help characterize topical 

trends in a domain [73]. Some researchers combine these two methods to reveal the 

main theme in a research area by keyword co-occurrence [74] Regardless of whether 

it is a citation analysis or a content analysis, analysis results of bibliometric data are 

often represented as a formal document such as an evaluation report and an academic 

paper. In such cases, it is up to the authors what to report, how to report, and how 

often a report is published. It leaves little room for the audience to freely explore the 

bibliometric data. Also, this traditional publishing process inevitably incurs a lag in 



101 

time, where the results written in the document are already obsolete when they are 

published. There is a need for transformative changes in how bibliometric analysis 

results are presented. 

Methodology 

Demonstrating the scholarly impact of cyber-environments has the difficulties of 

defining sample scopes, increasing data quality, keeping results up-to-date, and allow-

ing user navigation. The first two difficulties can be overcome by a citation manage-

ment system, which is a web-based platform we develop for managing a high-quality 

bibliographic database. The last two difficulties require development of a user in-

terface for visually monitoring and interacting with the most up-to-date scholarly 

impact. In response, we design a workflow illustrated in Figure D.1 to tackle these 

problems. Figure D.1 presents the two main components in our design: citation 

management and visual analytics. In citation management, E-team refers to an ed-

itor team that works via the web interface on adding and managing new citations 

relevant to the specific cyber-environment. Part of the citation information comes 

directly from the data sources defined by the E-team, whereas supplemental informa-

tion is added to each citation manually later. Any change made by the E-team will be 

saved into a bibliographic database. Those flagged as approved in the database are 

used to produce statistics and visualizations, which are available in the public view. 

Potential users such as project directors, evaluators, and hub users can interact with 

the presented data to explore them in different aspects. 

Citation management 

The citation management module aims to provide a set of services for import-

ing and managing citation data with the E-team involved. For a new citation to 

become valid and complete, it must go through a sequence of processes: Biblio-

graphic metadata acquisition, Full text download, Bibliographic metadata correction 
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Fig. D.1. The general workflow of our system for demonstrating the 
scholarly impact of cyber-environments 



103 

and completion, Name disambiguation, Supplemental annotations, Final review and 

publications. 

1. Bibliographic metadata acquisition: There are two major challenges in acquir-

ing bibliographic metadata of publications that are relevant to the given cyber-

environment. First, the new citations must be relevant to the cyber-environment 

and the definition of relevance may vary over time. This requires creation of a 

list of data sources and development of corresponding processors to detect and 

parse the new data. For instance, based on observations of where the past pub-

lications that cite the cyber-environment resources are archived, the acquisition 

step may rely on metadata processors to download and extract bibliographic 

data from Web of Science, Google Scholar, and EBSCOhost. Different sources 

vary in the way metadata are downloaded and in the format the data is pre-

sented. For example, indexing engines such as Microsoft Academic Search and 

Web of Science offers web API such as web services and JSON-RPC for querying 

their databases. Some provides the option of file download in BibTex, EndNote, 

and RIS formats. Others such as Google Scholar have no infrastructure to facil-

itate a batch download and therefore a webpage crawl needs to be developed to 

mine information from their sites. Also, administrators without any program-

ming experience should be able to modify the sampling criteria to retrieve new 

bibliographic metadata. Figure D.2 shows an example of finding new citations 

using Google Scholar with the keyword nano. 

Second, a regular routine must be set up to update the citation database so as 

to keep it always up-to-date. The downloader and extractor mentioned above 

run as a daemon program to pull new citations from the specified data sources 

and insert them into the pending queue for further processing. During the 

data acquisition step, the E-team decides whether to exclude certain citations 

from the list based on the publication titles. The blacklisted record is saved to 

prevent the same item from appearing in the future. However, the title per se 

is sometimes insufficient for making a decision about the citations relevance. In 
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Fig. D.2. The web interface for importing bibliographic metadata 
from Google Scholar 
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Fig. D.3. The web interface for importing bibliographic metadata 
from Google Scholar 

the following steps, the E-team will be offered opportunities to remove irrelevant 

citations. 

2. Full text download: Content analysis has to be performed over publication 

full text. When the data sources provide full text download, the metadata 

downloader mentioned earlier automatically retrieves the file and associates 

it with the corresponding metadata in the database. However, full text may 

sometimes be missing from the data sources. In such cases, the full text has to 

be downloaded by the E-team from other data sources that may not be defined 

before. It may also happen that the full text cannot be found anywhere online. 

Figure D.3 illustrates the webpage for associating full text with new citations. 

In our implementation, we place an indicator of how long an item remains in 

the pending queue. An item that remains unresolved for a long time usually 

implies the unavailability of full text. 

3. Bibliographic metadata correction and completion: The bibliographic metadata 

acquired from the data sources in many cases contain incomplete and even 

incorrect data. For instance, a journal paper may miss the publication year 

or a book may have incorrect publisher information. Such errors significantly 
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Fig. D.4. The web interface for correcting and completing citation metadata 

threaten the validity of the analysis results. To solve this problem, we build a 

user interface to facilitate the E-team to input data for the missing fields and 

provide a link to the full text for reference, as shown in Figure D.4. 

4. Name disambiguation: Name ambiguity problem is a common problem in bib-

liographic database [75]. It refers to cases where one individual is represented 

as various names and different individuals share the same name. Taking au-

thor names as an example, an author may publish papers under different name 

variations caused by first name abbreviation, middle initial omission, and even 

typos [76]. On the other hand, the same name may represent more than one 

scholar. Failure to identify such relationships incurs errors in studying au-

thor collaboration and also affects other author-related statistics. Existing ap-

proaches on author name disambiguation can be classified as either supervised 

or unsupervised solutions. Supervised approaches [77], [78] involve human in 

the decision-making process and are generally believed to produce higher-quality 

result. Unsupervised solutions [79] [80] depend entirely on algorithms to detect 
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Fig. D.5. The web interface for correcting and completing citation metadata 

name duplicates automatically and are capable of handling large-scale data. Be-

cause the number of citations of cyber-environments is relatively small and data 

precision is more critical, we choose supervised solutions by detecting suspected 

duplicates and offering users visual aids in the disambiguation process. Figure 

D.5 shows a pair of suspected duplicate names with identical information high-

lighted. Similar to author name ambiguity, publications also undergo a similar 

problem. Due to the inconsistency of data fields between two publications, two 

actually identical documents may be mistakenly viewed as separate ones. We 

apply a similar approach to compute the similarity of two citations by their 

titles, abstracts, publication years, authors, and publication venues. 

Supplemental annotations: The bibliographic metadata provide basic information 

of a publication such as title, abstract, author, keyword, publication venue, and publi-

cation year. However, content analysis often requires more insightful and elaborative 

data, which are most likely to be produced by human. Depending on the nature of 

the cyber-environment and the purpose of the research evaluation, additional anno-

tations may include the study type, related cyber-environment resources, population 

studied, and sample size. However, the E-team may not agree on how to annotate a 
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citation and therefore, we develop a voting mechanism and ensure that each citation 

has at least three editors annotations. Based on the aggregated results, the E-team 

leader decides the final annotation. Figure D.6 demonstrates the process of voting 

and the result. 

(a) (b) 

Fig. D.6. The web interface for (1) annotation and (2) showing the voting result. 

Final review: In the last stage of the citation management process, the E-team 

leader reviews the bibliographic metadata and supplemental annotations and approves 

the citation if all seems appropriate. If there is a problem, he/she can rewind the 

citation to an earlier stage or even drop it. Once a citation is finally approved, it 

enters the pool of published data, based on which analyses and visual representations 

are created. 

Visual analytics 

The goal of the visual analytics module is to present the analytics visually and 

allow any user to freely explore the up-to-date citation data. Traditionally, the schol-

arly impact is documented as reports and publications in which the authors can select 

what and how to report. Instead of restricting audience to what they can see, we 

offer many alternatives of looking at the bibliographic data and let audience decide 

what they prefer to view. To achieve this goal, we develop a web portal with var-

ious visualizations and statistics for citations approved in the citation management 

process. 
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. D.7. Some of the visualizations and statistics available on the 
impact demonstration site. 

Figure D.7 lists some of the visualizations and statistics available for the users 

to navigate. Figure D.7(a) presents the number of citations in each year; D.7(b) 

shows the main research topics among all the citations; D.7(c) demonstrates the 

geographical distribution of the authors; D.7(d) is the collaboration network with 
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two degree of separations of a scholar; D.7(e) shows an authors academic profile; 

and D.7(f) illustrates how citations are linked by common authors. Some of the 

visualizations involve intensive computation and have to be executed in a distributed 

environment such as Condor [81] and Hadoop [82] clusters. The technical details of 

how to implement each visualization are beyond the scope of this paper. 

Case Study: Nanohub 

To demonstrate the usefulness of the workflow and implementations we pro-

pose, we select a cyber-environment called nanoHUB and study its scholarly impact. 

nanoHUB is a resource hub for nanotechnology education and research and aims to 

promote resource sharing and user collaboration. Over the past 12 months, it serves 

over 310,000 users worldwide who add a large number of new scientific resources. 

nanoHUB is selected in this study because it is a great example of cyber-environments 

in academia with a long history and significant impact on many research and edu-

cation communities. Before our system was introduced, the nanoHUB editor team 

collected and filtered citations manually on a timely basis. The team then compiled 

a list of new citations in an Excel spreadsheet and sent it over to the database ad-

ministrator, who inserted and maintained the citation database. When there was a 

demand for demonstrating nanoHUBs scholarly impact, the database administrator 

along with other visualization designers created statistics and graphs using software 

such as Pajek [83] and NetDraw [84]. It was not only a costly procedure but also 

led to many problems. For example, the editor team found it difficult to coordinate 

and sometimes ended up working on including the same citation multiple times on 

the spreadsheet. The database administrator encountered the problem of name dis-

ambiguation and spent a lot of time resolving them case by case. The statistics and 

visualization producers were tired of repeating similar tasks every time when the re-

port was demanded. We deploy our system using the cyber-infrastructure provided 

by nanoHUB and treat citations in the legacy database as new citations. In our 
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case study, the E-team is composed of one domain expert (team leader) and four 

undergraduate students with no domain knowledge. A 30-minute training session is 

provided to the E-team to learn the new system. From then on, the E-team works 

individually on the web-based interface to collect, correct, complete, and annotate 

bibliographic data of nanoHUB citations. The E-team leader reviews other team 

members efforts and the approved citations are presented as statistics and visualiza-

tions on the public site. The visual products are also included as part of the annual 

report submitted to the funding agency. By 3/27/2015, a total of 1,740 citations 

have been acquired from Google Scholar, out of which 281 are identified as irrelevant 

to nanoHUB or duplicate to existing citations. 1210 citations have been approved 

with complete metadata, full text, and annotations. The rest are to be processed 

in the citation management system. Among the published citations, 1760 author 

names are identified as ambiguous, out of a total of 4354 author names. The sup-

plemental annotations for nanoHUB citations are: (1) Whether the research project 

is NCN-affiliated; (2) Whether the research study contains experimentalist/experi-

mental data; (3) What tools on nanoHUB are cited; and (4) What type of study it 

belongs to. 

Discussion 

We select cyber-environments as a stereotype to show the effectiveness of the 

workflow we propose. However, our solution is highly flexible and configurable so 

that it can be applied to other similar scenarios. The intended use of our approach is 

to showcase from many different perspectives the scholar impact of a relatively small, 

ill-defined, constantly growing dataset where data precision and real-time updates are 

of high priority. For example, our solution can also be used to show the evolution 

of an emerging discipline that has no dedicated journals or conferences and is on the 

way of forming its unique knowledge body. It can also be used to characterize the 

impact of a renowned theory in multiple domains. Besides web-based solutions, there 
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are other alternative platforms for visualizing bibliometric data in an interactive way. 

In general, standalone applications such as ClaiMapper [85] have the advantage over 

web applications in performance. However, we deploy the computationally intensive 

components to a distributed environment and show the cached content to the users. 

Therefore, the overall performance exceeds that of a standalone application in some 

cases. Also, web-base platforms require no software installation and are highly acces-

sible from any computer with Internet connections. Therefore, we choose to develop 

a web-base data gateway for managing and presenting bibliometric data. One major 

limitation of our current design is the scalability problem in citation management. 

As discussed earlier, automating the citation management process can be achieved by 

adopting the unsupervised name disambiguation algorithms and overlooking missing 

data fields. However, automation compromises data quality and eventually affects the 

accuracy of analysis results. To sustain high data precision while lowering the cost 

of recruiting a dedicated team, we would like to explore in a future study the possi-

bility of deploying our implementations on crowdsourcing platforms such as Amazon 

Mechanical Turk. Based on our observation of the E-team working on the nanoHUB 

dataset, we believe that it is feasible to crowdsource the tasks of downloading full 

text, correcting and completing metadata, and disambiguating names to ordinary 

novice users 
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