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ABSTRACT 

Liu, Qi PhD, Purdue University, August 2018. Divide and Recombine for Large and 
Complex Data: Model Likelihood Functions using MCMC and TRMM Big Data 
Analysis . Major Professor: William S. Cleveland. 

Divide & Recombine (D&R) is a powerful and practical statistical framework for 

the analysis of large and complex data. In D&R, big data are divided into subsets, 

each analytic method is applied to subsets with no communication among subsets, 

and the outputs are recombined to form a result of the analytic method for the entire 

data. This enables deep analysis and practical computational performance. The aim 

of this thesis is to provide an innovative D&R procedure to model likelihood of the 

generalized linear model for large data sets using Markov chain Monte Carlo (MCMC) 

methods and to present an analysis of Tropical Rainfall Measuring Mission (TRMM) 

data utilizing the DeltaRho D&R computational environment. 

The first chapter briefly introduces DeltaRho computation environment, followed 

by the introduction of univariate and multivariate skew-normal distribution and the 

derivation of parameter estimation using sample moments. Then a very basic in-

troduction to MCMC sampling is provided as the MCMC sampling method could 

be used to characterize the posterior distribution in Chapter 3. Finally, the chapter 

is closed by a nonparametric procedure for decomposing a seasonal time series into 

seasonal, trend and remainder components – STL. 

In the second chapter, an innovate D&R procedure is proposed to compute like-

lihood functions of data-model (DM) parameters for big data. The likelihood-model 

(LM) is a parametric probability density function of the DM parameters. The density 

parameters are estimated by fitting the density to MCMC draws from each subset 

DM likelihood function, and then the fitted densities are recombined. The procedure 
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is illustrated using normal and skew-normal LMs for the logistic regression DM on 

simulated data. Also, a novel diagnostic method is developed to measure the degree 

of the similarity between fitted density and the true likelihood function, with a real 

data application illustrated in the later section. 

In the last chapter, the focus is to present an analysis of TRMM big data uti-

lizing the DeltaRho D&R computational environment. First, the exploratory data 

analysis is conducted to investigate the spatial patterns of precipitation and the sea-

sonal behaviors of rain rates at different time scales. Then, spatio-temporal logistic 

models are constructed to explain the variation of 3-hr precipitation occurrence in 

automation for 460,800 locations, followed by model diagnostics and model inference. 

Furthermore, more advanced predictive models– two-stage logistic regression model, 

spatial-temporal autologistic regression model, and neighbor recurrent logistic regres-

sion model– are developed to forecast the probability of 3-hr precipitation occurrence 

at all locations. Finally, the chapter is ended with the application of spatio-temporal 

logistic models on daily heavy rainfall data. 
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1. BACKGROUND 

1.1 Divide and Recombine (D&R) for Large Complex Data 

1.1.1 D&R Statistical Framework 

D&R [1] is a powerful and practical statistical framework for the analysis of large 

and complex data. The data are divided into subsets. Analytic methods are applied 

to each of the subsets, and the outputs of each method are recombined to form a 

result for the entire data. 

First, the data are divided into subsets. Computationally, each subset is a small 

dataset. The division methods can be either defined by the analyst such as random 

division or based on a conditional variable in the dataset itself. For instance, if the 

dataset is a spatial temporal data, then it is reasonable to divide the data either by 

the time unit or by the location unit. 

There are two categories of analytic methods: statistical methods (including ma-

chine learning methods), whose output is numeric and categorical, and visualization 

methods, whose output is visual. In practise, due to the enormous number of the 

subsets, only a sample of visual displays of subset can be evaluated carefully [2]. 

When a statistical analysis method is applied to each subset of the division, it is an 

embarrassingly parallel computation which means there is no communication between 

each subset. 

Finally, the analysis results are recombined together with a selected recombination 

method. It can be a computational method which is applied to the outputs across all 

subsets to generate the final result for the whole dataset, or it can just simply combine 

the results of each subsets. For a statistical analytic method, the recombination 

results in numeric and categorical values. For example, suppose we carry out linear 
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regression on subsets. The outputs are the estimates of the regression coefficients, 

and covariance matrix of the estimates. The recombination can be simple average of 

the subset coefficient estimates, or means weighted by estimates of their variances. 

For a visualization method, the recombination is a visual display that assembles the 

panels for viewing across subsets. 

The D&R methods used for an analytic method are critical to the success of the 

D&R result. We seek optimal division and recombination methods that suit the 

analysis task at hand. For some problems, we can obtain D&R results which is the 

exactly the same as what we could have when the analytic method is applied to all 

data directly. In many cases, however, we can only obtain recombination results that 

serve as approximations to the ground true. 

1.1.2 DeltaRho Computation Environment 

DeltaRho [3] is a computational environment to carry out D&R. It consists of 

two parts: the front end and back end. The front end is R [4], which is a free 

software environment for statistical computing and graphic. The back end is the 

Hadoop distributed, parallel computational environment [5] which is an open-source 

software framework used for distributed storage and processing of datasets of big 

data using the MapReduce [6] programming model. RHIPE [7], the R and Hadoop 

Integrated Programming Environment, builds the bridge between R and Hadoop. 

RHIPE allows an R user to apply D&R to large complex data wholly from within R. 

This saves the analyst enormous time and efforts to manage the details of the Hadoop 

database management and parallel processing. The only thing that the analyst needs 

to conduct is to specific R code for the three D&R tasks: 

• divide the into subsets (D[dr] computations) 

• apply the analytic method to each subset (A[dr] computations) 
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• recombine the outputs of the A[dr] computations and write results to the HDFS 

(R[dr] computations) 

The data analyst writes R code to divide the data into subsets, and that create R 

objects containing the subsets, usually one object per subset. The code is an input 

to RHIPE R commands that communicate with Hadoop. The subset R objects are 

distributed by Hadoop across the nodes of the cluster in the HDFS. Then the analyst 

gives R code to RHIPE to apply an analytic method to each subset, and that create 

R objects containing the outputs of the method applications. The A[dr] outputs are 

R[dr] inputs. The analyst gives R code to RHIPE in order to recombine the R[dr] 

inputs, and create R objects containing the R[dr] outputs. For the RHIPE-Hadoop 

computation framework, A[dr] computations on the subsets are embarrassingly paral-

lel, which means no communication between the parallel computations, the simplest 

possible parallel processing. 

RHIPE R commands can have Hadoop write outputs of D[dr], A[dr], and R[dr] 

computations to the HDFS. D[dr] output objects are always written because they cre-

ate division subsets which will be used multiple times in the data analysis procedure. 

R[dr] outputs are almost always written to the HDFS because they tend to be either 

a final answer for a method, or data that need to be further analyzed to get a final 

answer. A[dr] computations are sometimes written, but are typically not when they 

are just the means to the recombination end. Whether written or not, the A[dr] and 

R[dr] computations can be run simultaneously. Embarrassingly parallel computations 

that are run by Hadoop consist of the same R code being applied to each object in 

a collection of objects. Hadoop assigns a core to compute on an object. There are 

typically far more objects than cores. When a core finishes its computation on an 

object, Hadoop assigns it to a new object. To minimize overall elapsed read/write 

time when objects are read from the HDFS, the Hadoop scheduling algorithm seeks 

to assign a core of a node as close as possible to the node on which an object is 

stored. In other words, Hadoop brings the core to the data, rather than the other 

way around. 
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1.2 Skew-normal 

1.2.1 Univariate Case 

To illustrate how to estimate parameters of the skew-normal, we introduce some 

basic definitions and relevant properties of the skew-normal (SN) family (Azzalini 

and Valle [8]). The skew-normal density function, in one-dimensional case, is given 

by � � 
2 (θ − ξ)2 θ − ξ 

f1(θ|ξ, ω2, α) = √ exp − Φ(α( )), ξ, α ∈ R, ω ∈ R+ ,
2ω22πω2 ω 

where Φ denotes the cumulative distribution function (CDF) of the standard normal 

distribution; ξ, ω, and α are the location, scale, and shape parameters, respectively. 

We say Θ ∼ SN(ξ, ω2, α) if random variable Θ has density function f1(θ|ξ, ω2, α). 

Suppose Θ ∼ SN(ξ, ω2, α) and Θ = ξ + ωZ, then 

Z = (Θ − ξ)/ω, 

which is the ”normalized” random variable with a distribution SN(0, 1, α). It’s worth 

noting that Z has non-zero mean if α 6= 0. More specifically, the mean, variance, and 

skewness of Z are 

4 − π µ3 

σ2 2 Z µZ = bδ, Z = 1 − µZ , γZ = ,
2 (1 − µ2 

Z )
3/2 p p

where b = 2/π and δ = α/ (1 + α2). Therefore, the mean, variance and skewness 

of Θ are 

µΘ = E[Θ] = ξ + ωµZ , (1.1) 

σ2 2 
Θ = var[Θ] = ω2(1 − µZ ), (1.2)� � 

3Θ − µΘ 4 − π µZ = E ( )3 = , (1.3)γΘ 2σΘ 2 (1 − µZ )
3/2 

which form the centered parametrization of SN(ξ, ω2, α). Also these three equa-

tions imply the way to estimate parameters of SN(ξ, ω, α). Given a random sample 
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θ1, θ2, · · · , θn from distribution SN(ξ, ω, α), we can calculate sample mean µ̂Θ, sam-

ple variance σ̂  
Θ
2 and sample skewness γ̂Θ. By solving equations (1.3), (1.2), (1.1), 

sequentially, we obtain 

ĉ  
µ̂Z = √ , (1.4)

21 + ĉ 
µ̂Z

α̂ = p , (1.5) 
b2 − µ̂Z 

2 

σ̂Θ
2 

ω2ˆ = 
2 , (1.6)

1 − µ̂Z 

ξ̂ = µ̂Θ − ω̂µ̂Z , (1.7) 

c = ( 2γ̂Θ )1/3where ˆ .
4−π 

The parameters estimation is straightforward when the sample is available. How-

ever, not all sample can successfully derive estimates of the parameters. As a matter 

of fact, 

δ ∈ (−1, 1) =⇒ µZ ∈ (−b, b). 

Therefore, 

4 − π b3 4 − π b3 

γΘ ∈ (− , ) ≈ (−0.9952717, 0.9952717). 
2 (1 − b2)3/2 2 (1 − b2)3/2 

If γ̂Θ derived from the sample falls in above region, then we call (µ̂Θ, σ̂Θ
2 , γ̂Θ) admis-

sible; otherwise inadmissible. As the normal density function is a special case of the 

skew-normal density function with α = 0. If a normal density is considered as a can-

didate approximate function for the logistic likelihood function, then the parameters 

of the normal density can be easily estimated by the sample mean and the sample 

standard error. 
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1.2.2 Multivariate Case 

The Multivariate SN distribution has been widely discussed by Azzalini, Dalla 

Valle and Capitanio. Similar to the univariate case, the p-dimensional SN density 

function is defined by � � 
2 1 

fp(θ|ξ, Ω, α) = p exp − (θ − ξ)|Ω−1(θ − ξ) Φ(α|ω−1(θ−ξ)), ξ, α ∈ Rp, Ω ∈ Rp×p, 
(2π)p|Ω| 2 

where Ω is a p × p positive definite matrix, ξ is a vector location parameter, α is 

a vector shape parameter, and ω is a diagonal matrix formed by the square root of 

the diagonal of Ω. We say Θ ∼ SN(ξ, Ω, α) if a multivariate random variable Θ has 

density function fp(θ|ξ, Ω, α). 

To derive the estimating formulas, let Θ = ξ + ωZ. Then 

Z = ω−1(Θ − ξ), 

which is the ’normalized’ variable with distribution SN(0, Ω, α), where Ω = ω−1Ωω−1 . p
It is worth noting that the diagonal elements of Ω are all ones. Let b = 2/π, 

4−π zi 
3 

δ = (1 + α|Ωα)−1/2Ωα and γzi = µ 
)3/2 , then22 (1−µzi 

|µZ = E[Z] = bδ, ΣZ = var[Z] = Ω − µZ µZ , γZ = (γz1, . . . , γzp). 

Therefore, it is trivial that 

µΘ = E[Θ] = ξ + ωµZ , 

|= var[Θ] = ωΣZ ω = Ω − ωµZ µ ω, ΣΘ Z 

γΘ = γZ . 

The derivation of the parameters estimation for the multivariate skew-normal p
density is similar to univariate case. To simplify the notation, let σZ = diag(ΣZ ) p
and σΘ = diag(ΣΘ), i.e. the square root of the diagonal of the variance matrix 

of Z and Θ, respectively. Given a multivariate random variable sample θ1, . . . , θn 

drawn from distribution SN(ξ, Ω, α), sample mean µ̂Θ, sample covariance Σ̂ 
Θ, and 
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component-wise skewness γ̂Θ can be easily computed. Then µ̂Z can be obtained by 

using (1.4). Therefore, the parameters could be estimated as follows: q 
|δ̂ = µ̂Z /b, σ̂Z = diag(I − µ̂Z µ̂Z ), (1.8) 

σ−1 ˆω̂ = diag(ˆZ σ̂Θ), ξ = µ̂Θ − ωµ̂Z , (1.9) 
−1ˆ ˆ

| Ω δ 
Ω̂ = Σ̂ 

Θ + ω̂µ̂Z µ̂Z ω,ˆ α̂ = q , (1.10) 

δ| ˆ
−1 
ˆ1 − ˆ Ω δ 

σ−1 σ−1where diag(ˆ σ̂Θ) is a main diagonal matrix with components (ˆ ˆ i = Z Z σΘ)ii, 

1, · · · , p. 

There are several properties of this estimation method. First of all, this method 

enables us to estimate parameters of the multivariate skew normal in a closed form, 

rather than in an iterative approach, which greatly reduces the computational cost. 

The estimation procedure for the multivariate case is an extended version of the 

univariate case since the multivariate case reduces to the univariate case when p = 

1. Given (ξ, Ω, α), there must exist only one corresponding (µ, Σ, γ). However, not 

vice versa. As a matter of fact, the corresponding (ξ, Ω, α) may not exist even though 

(µ, Σ, γ) satisfy the constraint that Σ is positive definite. Additional constraints 

should include 

4 − π b3 4 − π b3 

γΘi ∈ (− , ) ≈ (−0.9952717, 0.9952717), i = 1, · · · , p, 
2 (1 − b2)3/2 2 (1 − b2)3/2 

1 − δ|Ω 
−1 
δ > 0. 

For the first constraint, it is implicit in the genesis of the multivariate skew-normal 

random variable. Because the marginal distribution of a subset of the components of 

the multivariate skew normal random variable is still a skew-normal random variable 

(Azzalini & Dalla Valle [9]). For the second constraint, it is straightforward. In 

order to obtain the parameters estimates, we resample the data until (ξ, Ω, α) can be 

estimated. In chapter 2, we will assume the sample of the logistic likelihood function 

is a good approximate sample of the SN distribution. Simulation studies show that 

(ξ, Ω, α) usually can be successfully estimated with a sample drawn from the subset 
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logistic likelihood for the first time when the subset likelihood function is not too flat. 

Due to that the likelihood is flat around the neighborhood of the maximum likelihood 

estimate (MLE) when the number of observations in a subset is small, the skewness 

of a sample drawn from a flat density function is very sensitive to the sample. 

1.3 Markov Chain Monte Carlo Sampling 

Markov chain Monte Carlo (MCMC) methods are a class of computer driven sam-

pling methods ( [10], [11], [12]). They enable one to characterize a distribution by 

randomly sampling values out of the distribution without knowing all of the distribu-

tions mathematical properties. A particular strength of MCMC is that it can be used 

to draw samples from distributions even when all that is known about the distribution 

is how to calculate the density for different samples [13]. 

The MCMC has two properties: Monte-Carlo and Markov chain. Monte-Carlo is 

a broad class of computational algorithms that rely on repeated random sampling to 

obtain numerical results. The fundamental idea is to use randomness to solve prob-

lems that might be deterministic in principle. For example, a Monte-Carlo approach 

would be to draw a large number of random samples from a normal distribution, and 

calculate the sample mean of those, rather than finding the mean of a normal distribu-

tion by directly calculating it from the distributions equations. The advantage of the 

Monte-Carlo method is obvious: calculating the mean of a large sample of numbers 

can be much easier than calculating the mean directly from the normal distributions 

equations. This benefit is most remarkable when random samples are easy to draw, 

and when the distributions equations are hard to compute in other ways. 

The Markov chain property of MCMC is the idea that the random samples are 

generated by a special sequential process. A Markov chain is a stochastic model 

describing a sequence of possible events in which the probability of each event depends 

only on the state in the previous event. The basic principle is that once this chain 
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has run sufficiently long enough it will find its way to the targeted distribution of 

interest, and we can obtain statistics of interest by using samples. 

MCMC is a strategy for generating samples while exploring the state space using 

a Markov chain mechanism. This mechanism is constructed so that the chain spends 

more time in the most important regions. The difficult problem of constructing a 

Markov chain with the desired properties is to determine how many steps are needed 

to converge to the stationary distribution within an acceptable error. For different 

stationary distributions, appropriate MCMC algorithms should be chosen wisely to 

generate samples. The Metropolis-Hastings (MH) algorithm ( [14], [15]), and the 

Gibbs sampler [16] are two most popular MCMC methods. The Gibbs sampler can 

considered as a special case of the MH algorithm. More theoretical results about 

MCMC can be found in [17]. 

MCMC is particularly useful in Bayesian inference due to that posterior distri-

butions are often difficult to work with through analytic methods. More specifically, 

MCMC enables the user to approximate aspects of posterior distributions that can-

not be directly calculated such as random samples from the posterior, and posterior 

means. Bayesian inference uses the information provided by observed data about 

a (set of) parameter(s), formally the likelihood, to update a prior state of beliefs 

about a (set of) parameter(s) to become a posterior state of beliefs about a (set of) 

parameter(s). Formally, Bayes rule is defined as 

p(β|D) ∝ p(D|β)p(β) 

where β indicates a (set of) parameter(s) of interest and D indicates the data, 

p(β|D) indicates the posterior of β given the data, p(D|β) indicates the likelihood 

of the data given β, and p(β) indicates the prior of β. The symbol ∝ means is 

proportional to. 

The important point for this exposition is that the likelihood of the data given 

the parameter(s) of interest can be considered as our target posterior distribution 

with an uniform prior on the parameters. In this case, sampling from the likelihood 

is via MCMC: drawing a sequence of samples from the posterior (likelihood). In the 
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case of logistic regression model, Polson et al. [18] propose a new data-augmentation 

strategy, which leads to a simple and effective method for sampling from the logistic 

likelihood function. This method is fully automatic, with no tuning needed to get 

optimal performance. It is therefore sufficiently fast and reliable to be used as a black-

box sampling routine in the models involving the logit link. Such logistic sampling, 

which is implemented by the R function ”logit” in the R package BayesLogit, is 

applied for the subset likelihood sampling in the chapter 2. Other computationally 

efficient methods to draw approximate posterior samples can be found in [19] [20] [21] 

[22] [23] [24] [20] [25] [26] [27] [28]. 

1.4 Seasonal Trend Decomposition using Loess (STL) 

STL [29] is a nonparametric procedure for decomposing a seasonal time series into 

three components: trend, seasonal and remainder. It is a powerful design for seasonal 

time series, which is based on a series of applications of the locally weighted regression. 

STL also enables analysts to specify amounts of seasonal and trend smoothing which 

range from a small amount of smoothing to a large amount. 

1.4.1 Basic Procedure 

Suppose a time series {Yi}Ni=1, where N is the total number of observations. STL 

decomposes it into the trend component, the seasonal component, and the remainder 

component which are denoted by Ti, Si and Ri, respectively, for i = 1 to N. Then 

Yi = Ti + Si + Ri. 

In this procedure, the seasonal periodicity np is supposed to be predefined based on 

a prior knowledge of the time series. For example, the data we will demonstrate 

in Chapter 3 is the about monthly rain rate. There are 12 observations in each 

annual period, so the np is equal to 12. All smoothing operation are based on loess 

method [30]. There are two smoothing parameters for each smoothing operation 
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(seasonal smooth and trend smooth): window size and the degree. The window 

size specifies the number of observations used in local smoothing while the degree 

indicates the degree of locally-fitted polynomial which should be 0 or 1 (2 is optional 

for stlplus [31]). 

Generally, the procedure of STL of decomposing a time series into these three 

components consists of two recursive procedures: an inner loop nested inside an 

outer loop. For the inner loop and the outer loop, the number of iterations ninner 

and nouter are two parameters which should be specified. Each iteration of the outer 

loop includes the inner loop and a computation of robustness weights which will be 

used in the next run of inner loop to reduce the influence of abnormal behavior on 

the seasonal and trend components. 

The inner loop is the procedure to estimate seasonal and trend components iter-

atively. Suppose Si
k, Ti

k for i = 1 to N are the seasonal and trend components at the 

end of k-th iteration. For the iteration k+1 in the inner loop, a detrended series is 

computed by subtracting Ti
k (Ti

k = 0 for k = 0) from Yi. Then the seasonal com-

ponent is obtained by applying smoothing operation on each cycle sub-series of the 

detrended series with given seasonal window swindow and seasonal degree sdegree. For 

the monthly rain rate data, each sub-series would be one of a collection of a sub-series 

of all January values, a sub-series of all February values, etc. Once the seasonal com-

ponent is computed, a deseasonalized series is calculated by subtracting Si
k+1 from Yi. 

The trend component is estimated by applying the smoothing operation on deseason-

alized series with predefined trend window twindow and trend degree tdegree. It is worth 

noting that the seasonal fitting procedure and the trend fitting procedure compete 

with each other in the variation explanation of the original time series. A low-pass 

filter is applied to smooth cycle sub-series before the trend component estimation 

procedure. 

After the inner loop, the remainder is calculated as follows: 

R̂ 
i = Yi − Ŝ 

i − T̂  
i 
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ˆWe can define a weight for each observed time point using Ri for i = 1 to N. There 

might be some extreme observations in the original time series which result in very 

large |R̂ 
i|. Let 

h = 6 × median(|R̂ 
i|). 

Then the robustness weight at the time point i is 

|R̂ 
i|

ρi = B( )
h 

where B is the bi-square weight function: ⎧ ⎪⎨(1 − x2)2 if 0 ≤ x < 1 
B(x) = ⎪⎩0 if x > 1. 

So the weights for each observation will be used in the next inner loop. Collectively, 

the inner loop and robustness computation form the outer loop and it iterate nouter 

times. More detailed explanations of the whole procedure and other parameters can 

be found in [29] [31]. 

1.4.2 Choosing Turning Parameters 

We briefly introduce 7 main parameters in the STL procedure in the previous 

section. They are: the seasonal periodicity np, the number of iterations ninner and 

nouter for the inner loop and outer loop, seasonal window swindow and seasonal degree 

sdegree, trend window twindow and trend degree tdegree. It is quite straightforward to 

specify the seasonal periodicity np based on the common sense of a time series. For 

example, np = 365 for the daily temperature due to yearly periodicity. With respect 

to the iteration times, ninner = 1 or 2 is sufficient in general while nouter = 10 provides 

near certainty of convergence in [29]. To be safe, we can specify a larger value for 

both ninner and nouter. 

As discussed in [29], the turning procedure of seasonal window swindow, seasonal 

degree sdegree, trend window twindow, and trend degree tdegree can be very tricky. Each 
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sub-series becomes smoother as swindow increases. Both swindow and sdegree determine 

the variation in the data that makes up the seasonal component. Definitely, the 

choice of these two parameters depends on the characteristics of the series. Accord-

ing to [29], swindow should be odd and at least 7. If swindow is specified as ”periodic”, 

then each sub-series is constant and seasonal degree is redundant. In addition, vi-

sualization diagnostic plots are used to help data analysts to decide the value. The 

seasonal diagnostic plot demonstrates both the estimated seasonal component Ŝ 
i and 

the detrended component Ŝ 
i + R̂ 

i against time i conditional on each sub-series. This 

plot can help us to balance the bias-variance trade-off in the seasonal smoothing 

procedure. 

On the other hand, the choice of twindow often is restricted by the needs of the 

decomposition. There are two roles of the trend component in helping to estimate 

the seasonal component. One is to eliminate persistent, long-term variation in the 

data. Therefore, twindow is necessary to get large enough that the smoother misses 

even persistent effects. Another is to play a role in robustness iterations. Collectively, 

we need to choose twindow such that 

1.5np
twindow ≥ −1 . 

1 − 1.5swindow 

The diagnostic plot can also be applied to determine the trend window twindow, and 

trend degree tdegree. 

1.5 Overview of Later Chapters 

In chapter 2, an innovate D&R procedure to compute likelihood functions of gen-

eralized linear regression models for big data is proposed. The likelihood-model (LM) 

is a parametric probability density function of the DM parameters. The density pa-

rameters are estimated by fitting the density to MCMC draws from each subset DM 

likelihood function, and then the fitted densities are recombined. In section 2, normal 

and skew-normal are presented to illustrate the choice of LM, followed by the recom-

bination methods to formulate an approximate all-data likelihood using approximate 
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subset likelihoods in section 3. LM diagnostic method – contour probability algorithm 

is discussed in detail in section 4. Section 5 provides a real data example illustrat-

ing that the skew-normal likelihood modeling better captures the posterior density, 

and presents the performance of the likelihood modeling for a variety of simulated 

datasets. Section 6 is a concluding discussion. 

Chapter 3 presents a case study: an analysis of TRMM big data using D&R 

methods. First, the exploratory data analysis is conducted to investigate the spatial 

patterns of precipitation and the seasonal behaviors of rain rates at different time 

scales. Then, spatio-temporal logistic models are constructed to explain the varia-

tion of 3-hr precipitation occurrence in automation for 460,800 locations, followed 

by model diagnostics and model inference. Furthermore, more advanced predictive 

models– two-stage logistic regression model, spatial-temporal autologistic regression 

model, and neighbor recurrent logistic regression model– are developed to forecast the 

probability of 3-hr precipitation occurrence at all locations. Finally, the chapter is 

ended with the application of spatio-temporal logistic models on daily heavy rainfall 

data. 
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2. MODEL LIKELIHOOD FUNCTIONS USING MCMC 

2.1 Introduction 

2.1.1 Motivation and Related Works 

Statistical inference on big data is becoming increasingly important in an era when 

data is easily accessible and its volume grows exponentially. When a training set or 

an observation set becomes too large for a single machine to process, one approach 

to address this problem is subsampling. Kleiner et al. [32] proposed the bags of 

little bootstrap (BLB) approach which is a combination of subsampling, the m-out-

of-n bootstrap, and the bootstrap. Ma et al. [33] presented a leveraging method 

in which one samples a small proportion of the data from the full sample and then 

performs intended computations using the small subsamples as a surrogate. Liang 

et al. [34] proposed a resampling-based stochastic approximation method of which at 

each iteration, a small subsample is drawn from the full dataset, and then the current 

estimate of the parameters is updated accordingly under the framework of stochastic 

approximation. However, these methods suffer either slow convergence rates or not 

full use of data. 

Another solution is to divide big data into multiple small data sets and store them 

in multiple machines. One of the intuitive methods to address the big data challenges 

is to implement corresponding computing algorithms across multiple machines. It is 

well known that many statistical maximum likelihood estimation (MLE) problems 

are ultimately solved by iterative algorithms such as the Fisher’s scoring algorithm 

or expectation maximization (EM) algorithm of Dempster et al. [35]. For example, 

computing MLEs of the parameters in logistic regression is a typical problem solved 

by iterative algorithms. In the simplest forms of these algorithms, each iterative 
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step requires the whole data. For small or medium data sets, we can load the whole 

data into memory and implement interactive algorithms to compute MLEs. However, 

it becomes problematic when the data are too big for a single processor because it 

is computationally expensive and time-consuming to combine the messages across 

multiple machines for each iterative step, regardless of the size of the messages being 

passed (Scott et al. [24]). 

The third approach is to analyze data within the D&R framework. The D&R 

is a statistical approach to analyze large complex data by dividing the data into 

subsets, applying analytic methods to each subset independently with no commu-

nication among subsets, and recombining all subset results to form a result of the 

analytical method for the entire data [1]. In general, the first two approaches are 

implemented in Apache Spark [36] in which a dataset is cached in memory, while the 

third method is executed using MapReduce in the Hadoop ecosystem [5]. Apache 

Spark has in-memory cache property that makes it faster when the iterative algo-

rithms are implemented. The primary difference between data analysis within Spark 

and within MapReduce processing system in Hadoop is the frequency of the commu-

nication between the nodes. Lin et al. [37] considered a distributed version of the trust 

region Newton method (TRON) to solve logistic regression and linear support vector 

machine (SVM) in Spark. Therefore, the frequency of the communication between 

the nodes depends on the number of iterations. In contrast, there is only one final 

step requiring communication among multiple nodes when using the D&R approach. 

Moreover, Spark does not have its own distributed system, and it processes data in 

memory, which means Spark requires a greater investment in memory than Hadoop 

does. 

In the D&R paradigm, Scott et al. [24] proposed the consensus Monte Carlo 

algorithm that performs distributed approximate Bayesian analyses with minimal 

communication. The idea is to break the data into subsets, distribute each subset 

to a node which does a full Monte Carlo simulation from a posterior distribution 

given its own data, and then combine the posterior simulation from each node to 
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produce a set of global draws representing the consensus belief among all nodes. This 

method can be applied to draw a consensus sample of the posterior distribution of the 

coefficients in logistic regression. However, further recombination methods should be 

explored to accommodate models for which posterior distribution moves away from 

Gaussianity, especially when the dimension of the coefficients is high. Similarly, there 

are demands for innovative methods that provide an appropriate approximation of 

the coefficients in regression or classification models for distributed data with minimal 

communication. 

Instead of computing the exact MLE of parameters in regression or classifica-

tion problems for big data with many iterations across multiple cluster nodes, an 

appropriate approximation of an acceptable error within the D&R framework can 

be promising. Assume all observations are independent and identically distributed 

(i.i.d.). Take the logistic regression as an example, we want to seek an approximate 

likelihood function for the coefficient parameters. There are several reasons why we 

might want a likelihood in addition to the point estimate, or confidence intervals for 

the parameters. First, the likelihood is a natural device for combining information 

across observations: in particular, the likelihood for independent observations is just 

the product of the individual observation likelihoods. Second, prior information for 

parameters may be combined with the likelihood to produce a Bayesian posterior 

distribution for inference. 

To find approximate likelihood methods for distributed large-scale data, Gautier 

[38] studied D&R methods for likelihood-based model fitting. More specifically, the 

analyst applies a division method to the data, and then parallelly computes MLE 

for each subset. Using the subset MLEs as well as the observed Fisher information, 

an analyst can fit a likelihood model on each subset. Finally, the fitted all-data 

likelihood is formulated by multiplying the fitted subset likelihoods. Gautier defined 

the maximizer of the fitted all-data likelihood as the likelihood modeling estimates 

(LMEs). This method is equivalent to approximate the subset likelihood function by 

using a normal density with a mean (the subset MLE), and variance matrix (inverse 



18 

of the observed Fisher information), up to a constant multiplier. There are two 

disadvantages for Gautier’s method. The most serious limitation, however, is that 

it is based purely on the aspects of the true distribution at a specific value of the 

variable, and so can fail to capture important global properties. Furthermore, the 

inference based on the normality might be not reliable if the departure from normal 

assumption of the subset likelihood is serious. For example, the model can be very 

complex and the subset data based on some divisions might be not large enough. 

For subset likelihood modeling to succeed in statistical inference within the D&R 

framework, the fitted likelihood should retain as much information as possible about 

the observed subset likelihood. In this paper, we propose a new strategy to model 

the subset likelihood. We consider the subset likelihood as a probability distribution 

function up to a multiplier constant, then draw a sample of a reasonable size from the 

distribution by using MCMC sampling methods. And the fitted subset likelihood is 

estimated by using the sample from the observed subset likelihood. Finally, all-data 

likelihood function is approximated by the product of fitted likelihoods of the divided 

subsets. This method is characterized by capturing the likelihood information by 

using the sample. The quality of the information greatly depends on how well the 

sample reflect the subset likelihood function. Therefore, the sampling method is of 

great importance. 

2.1.2 Main Idea 

The fundamental idea for the likelihood modeling within D&R framework using 

MCMC is as follows. Suppose that the data consist of N independent observations. 

Each observation contains explanatory variables xi ∈ Rp (including intercept) and 

response variable yi. The likelihood function for data model (DM) parameters on the 

data is a function of coefficient parameters θ given by 

NY 
L(θ) = L(θ|xi, yi) 

i=1 
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We assume that the dataset (X, Y) is too large to reside in a singe machine. Therefore, 

it is divided into R subsets: (X1, Y1), . . . , (XR, YR), each with M observations, such 

that (x(s)i, y(s)i) is the i-th observation of the subset (Xs, Ys). Thus, the all-data 

likelihood function is given by 

L(θ) = 
RY 

s=1 

L(s)(θ), (2.1) 

which we refer to as the independent product equation, where L(s)(θ) is the subset 

likelihood function defined by 

MY 
L(s)(θ) = L(θ|Xs, Ys) = L(θ|x(s)i, y(s)i). 

i=1 

This equation indicates that under the independence assumption, the likelihood of 

the full data can be represented by the product of subset likelihood functions. In 

likelihood modeling (LM), we work with some parameterized class of distributions 

g(θ|φ), where φ is the parameter of density function (e.g. mean and covariance 

matrix in the Gaussian density function). For each subset, the density parameters for 

pre-chosen density family are estimated by fitting the density to MCMC draws from 

each subset DM likelihood function. Then 

g(s)(θ|φ̂) ≈ Cs × L(s)(θ). 

Finally, the full-data likelihood function can be approximated by the product of the 

subset fitted density functions, up to a multiplicative constant. 

R RY Y1 
L(θ) ≈ g(s)(θ|φ̂) = C × g(s)(θ|φ̂). (2.2)

Cs s=1 s=1 

There are many candidate distributions g(θ|φ), just as there are many models for 

DM. Of course, one thing is attempting to try is normal density as the likelihood 

function tends to normal when n becomes big. There are two fundamental questions: 

1. How to assess whether some candidate distribution well approximates the subset 

likelihood function? 
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2. How close to the full-data likelihood function the approximated recombined 

likelihood function is? 

To answer these two questions, we propose the contour probability algorithm to vi-

sually quantify the distance between two unnormalized density functions. The model 

diagnostics are applied to both subset likelihood modeling and the final all-data like-

lihood modeling. 

2.1.3 Overview of Later Sections 

The remainder of this chapter is organized as follows. In section 2, normal and 

skew-normal families are presented to illustrate the choice of LM. Section 3 addresses 

how to merge approximate subset likelihoods to formulate an approximate all-data 

likelihood. And the likelihood modeling algorithm is proposed for the skew-normal 

family. LM diagnostic method – contour probability algorithm is discussed in detail 

in section 4. Section 5 provides a real data example illustrating that the skew-normal 

likelihood modeling better captures the posterior density, and presents the perfor-

mance of the likelihood modeling for a variety of simulated datasets. Section 6 is a 

concluding discussion. 

2.2 The Choice of LM 

Model building procedure can also be used for LM, including diagnostic methods 

to check how well LM fits the subset likelihoods and full-data likelihood. This is just 

like model building and checking for the DM, although the details for the diagnostics 

are not the same. 

There are many candidates, just as there are many models for DM. Normal and 

skew-normal are presented here as illustrations. The modeling building and checking 

can, as with a DM, lead to insight about a better LM. 
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2.2.1 Normal Family 

One thing which is attempting to try is normal density as the likelihood function 

tends to normal when n becomes big. Our objective is to find 

N(θ|µ, Σ) → L(θ|Xs, Ys) 

where µ and Σ are the mean and covariance matrix of the normal distribution. 

There are two approaches to estimate the parameters in the normal density func-

tion. One is to match the mode of the normal density to the mode for the subset 

likelihood function, which is computed by maximum likelihood estimation (MLE); 

and estimate the covariance matrix as a function of the Hessian matrix evaluated 

at the MLE. We refer this method as Local Information (Local) method. This 

method is equivalent to approximate the subset likelihood function by using a normal 

density with a mean (the subset MLE), and variance matrix (inverse of the observed 

Fisher information), up to a constant multiplier. 

µ̂ = argmax l(θ|Xr, Yr) 
θ 

Σ̂ = I−1 

where I is the observed Fisher information. Another approach is to generate a sample 

according to the stationary function L(θ|Xs, Ys) using Markov chain Monte Carlo 

ˆ(MCMC) methods, and estimate (µ̂, Σ) using the sample moments. We call it the 

Moment Matching (MM) method. 

The inference based on the normality might be not reliable if the subset likelihood 

seriously departs from the normal density, especially when the model can be very 

complex and the subset data based on some divisions might be not large enough. 

Therefore, we propose a more general density family – skew-normal (SN) family to 

model likelihoods. 
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2.2.2 Skew-normal Family 

Generally, the MM and the MLE (Local) methods are two widely used methods 

for estimation of population density parameters. The MM is preferable to the Local 

method for the skew-normal family due to following reasons. For statistical inference, 

one concerns the behavior of the likelihood function and other related quantities 

for a sample from the SN distribution in the neighborhood of α = 0 (the shape 

parameter in the skew-normal density function), a value of particular relevance since 

there the SN family reduces to the normal one. First, a sort of non-quadratic shape 

of the log-likelihood function has been exhibited with many data in Azzalini et al. [8]. 

Another unpleasant phenomenon is that, at α = 0, the expected Fisher information 

is singular, even if all parameters are identifiable. Moreover, closed-form solutions for 

the maximum likelihood estimator do not exist. Therefore, we estimate parameters 

of the skew-normal using the MM method instead of the Local method. 

As discussed in Chapter 1, the p-dimensional SN density function is defined by � � 
2 1 

fp(θ|ξ, Ω, α) = p exp − (θ − ξ)|Ω−1(θ − ξ) Φ(α|ω−1(θ−ξ)), ξ, α ∈ Rp, Ω ∈ Rp×p, 
(2π)p|Ω| 2 

where Ω is a p × p positive definite matrix, ξ is a vector location parameter, α is 

a vector shape parameter, and ω is a diagonal matrix formed by the square root of 

the diagonal of Ω. We say Θ ∼ SN(ξ, Ω, α) if a multivariate random variable Θ has 

density function fp(θ|ξ, Ω, α). 

Given a sample generated from L(θ|Xs, Ys) using MCMC methods, sample mean 

µ̂Θ, sample covariance Σ̂ 
Θ, and component-wise skewness γ̂Θ can be easily computed. 

There is a mapping: 

(ξ,̂ Ω̂, α̂) → (µ̂Θ, Σ̂ 
Θ, γ̂Θ). 

However, not vice versa. In order to obtain the parameters estimates, we resample 

the data until (ξ,̂ Ω̂, α̂) can be estimated. The detail derivations for the parameter 

estimation of the skew-normal density can be found in Chapter 1. 
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2.3 Recombination 

In this section, we will address how to merge approximate subset likelihoods to 

formulate an approximate all-data likelihood function such that the overall quality 

of inference is resonable and accepatable comparing the one for the true likelihood 

function. The subset likelihood is, in general, a nontrivial function of all of the data 

in a given subset as it can not be expressed without reading all of the data. Therfore, 

the subset likelihood modelling is introduced to model each subset likelihood on some 

distribution family such that each fitted subset likelihood can be expressed by only a 

small number of distribution parameters, up to a multiplicative constant (left bottom 

to left top in Figure 2.1). The approximation of full-data likelihood is the product 

of approximate subset likelihoods (right bottom to right top in Figure 2.1). We will 

investigate two likelihood models in detail: skew-normal model and normal model. 

True All-data Likelihood

Approximate subset likelihood Approximate All-data Likelihood

True Subset Likelihood
Product

Product

Approximate Approximate

Fig. 2.1.: A diagram of likelihood modeling for big data 

2.3.1 Normal Moment Matching Estimation 

Recall that the likelihood function for each subset is given by 

MY 
L(s)(θ) = L(θ|x(s)i, y(s)i). 

i=1 
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which is a function of θ. Assume that subset likelihood function L(s)(θ) is approxi-

ˆmated by the normal density function N(θ|µ̂s, Σs), up to a multiplicative constant. 

The all-data likelihood function is approximated by 

RY 
LNorm(θ) = C1 

ˆN(θ|µ̂s, Σs), 
s=1 

Which is also normal density function, up to a multiplicative constant; and where C1 

is a constant. Therefore, the recombined approximate log likelihood for the normal 

model is 

lNorm(θ) = log LNorm(θ) = c1 − 
1 
(θ − µ̂)|Σ̂−1(θ − µ̂),
2 

where c1 is a constant; and XR RX 
Σ̂−1 = Σ̂ 

( 
− 
s 
1
), µ̂ = Σ̂ Σ̂−1 µ̂(s).(s) 

s=1 s=1 

Here (µ̂(s), Σ̂ 
(s)) are sample mean and sample covariance matrix of the MCMC draws 

from the subset likelihood function. 

Definition 2.3.1 The normal D&R estimate using the MM method (NMM) is de-

fined by 

ˆ lNorm(θ) =θNMM = arg max µ.ˆ 
θ 

2.3.2 Skew-normal Moment Matching Estimation 

Consider the subset likelihood model is limited in the skew-normal family, then 

L(s)(θ) is approximated by the skew-normal SN(θ|ξ̂  
(s), Ω̂ 

(s), α̂(s)), up to a multiplica-

tive constant. Therefore, the all-data likelihood function is approximated by 

RY 
LSN (θ) = C2 SN(θ|ξ̂  

(s), Ω̂ 
(s), α̂(s)). 

s=1 

Where C2 is a constant. The recombined approximate log likelihood for the skew-

normal model is 
R R � �X X1 

lSN (θ) = log SN(θ|ξ̂  
(s), Ω̂ 

(s), α̂(s)) = c2− (θ−ξ̂)|Ω̂−1(θ−ξ̂)+ log Φ λ̂| (θ − ξ̂  
(s)) ,(s)2 

s=1 s=1 

(2.3) 
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where c2 is a constant and 

RX 
Ω̂−1 Ω̂−1 = (s), 

s=1 

ˆ| | ω−1λ = α̂ ˆ(s) (s) (s) , 

RX 
ˆ ˆ Ω̂−1 ˆξ = Ω (s)ξ(s). 

s=1 

(ξ̂  
(s), Ω̂

− 
(s 
1
), α̂(s)) is estimated by using formulas (1.5)-(1.7) in the chapter 1 if p = 1 or 

(1.8)-(1.10) if p > 1; and ω̂(s) is the diagonal matrix formed by the square root of the 

diagonal of Ω̂ 
(s). 

Definition 2.3.2 The skew-normal D&R estimate using the MM method (SNMM) 

is defined by 

ˆ lSN (θ).θSNMM = arg max (2.4) 
θ 

Actually, lSN (θ) is a concave function because it is the sum of log skew normal 

density functions which are concave. Therefore, the recombined approximate log-

likelihood for the skew-normal model is unimodal, which guarantees the local optimum 

is the global optimum. 

To prove that the multivariate skew-normal density is concave, we assume θ ∼ 

SN(ξ, Ω, α). Then the log density function is � � 
1 1 1 

log f(θ) = − log (2π)p|Ω| − (θ − ξ)|Ω−1(θ − ξ) + log Φ (λ|(θ − ξ)) ,
2 4 2 

where λ| = α|ω−1 . The first and second order relevant derivatives respect to θ 

are 

∂ λkφ(λ
|(θ − ξ))

log f(θ) = −(θ − ξ)|Ω−·k 
1 + ,

∂θk Φ(λ|(θ − ξ)) 

∂2 φ0(λ|(θ − ξ))Φ(λ|(θ − ξ)) − φ2(λ|(θ − ξ))
Hj,k = log f(θ) = −Ω−1 + λj λk ,

∂θj θk 
jk Φ2(λ|(θ − ξ)) 

https://1.8)-(1.10
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Where 
1 − 1 (λ|(θ−ξ))2 

2φ(λ|(θ − ξ)) = √ e , 
2π 

Z λ|(θ−ξ) 1 − 1 2x
2Φ(λ|(θ − ξ)) = √ e dx, 

−∞ 2π 

−1 − 1 (λ|(θ−ξ))2 
φ0(λ|(θ − ξ)) = √ e 2 λ|(θ − ξ). 

2π 

The log f(θ) is concave if and only if Hessian matrix H is negative semidefinite. 

Let 
φ0(t)Φ(t) − φ2(t) φ(t)(tΦ(t) + φ(t)) 

g(t) = = − . 
Φ2(t) Φ2(t) 

It is trivial to prove that tΦ(t)+ φ(t) ≥ 0, t ∈ R. Therefore, it is straightforward that 

g(t) ≤ 0, t ∈ R and 

T Ω−1 v T Hv = −v v + g(λ|(θ − ξ))(λ|v)2 < 0, v ∈ Rp/{0}. 

From the general theory about the MLE, the sampling distribution of a MLE 

is approximately normal. And the asymptotic estimated covariance matrix for the 

coefficient parameter estimates is obtained from the Fisher scoring estimation method. 

Specifically, the asymptotic covariance matrix is given by a function of the information 

matrix. Based on above approximate log likelihood function, the observed Fisher 

information matrix can be estimated by 

R | | |
∂2 

lSN (θ) = Ω̂−1− 
X φ( 

0 
s)(λ̂

 
(s)(θ − ξ̂  

(s)))Φ(s)(λ̂ 
(s)(θ − ξ̂  

(s))) − φ(
2 
s)(λ̂

 
(s)(θ − ξ̂  

(s))) ˆ ˆ|I = − λ
| 

λ(s) (s),∂θ∂θT Φ2 (λ̂ (θ − ξ̂  
(s)))s=1 (s) (s) 

where 
| 1 − 1 (λ̂| (θ−ξ̂  

(s)))
2 

2 (s)φ(s)(λ̂ 
(s)(θ − ξ̂  

(s))) = √ e , 
2π 

Z ˆ|λ (θ−ξ̂  
(s)) 1| − 1 x

2Φ(s)(λ̂ 
(s)(θ − ξ̂  

(s))) = 
(s) 

√ e 
2 
dx, 

−∞ 2π 

φ0 (ˆ| (θ − ˆ √−1 − 1 (λ̂| 
(s)
(θ−ξ̂  

(s)))
2 ˆ| (θ − ˆλ ξ(s))) = e 2 λ ξ(s))).(s) (s) (s)2π 
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Therefore, 

θ̂  
SNMM −→L N(θ, I−1). (2.5) 

In real world applications, the optimizer of (2.3) is not easy to compute when the 

number of subsets R is large. For this scenario, we propose a simplified version of the 

recombined log likelihood for the skew-normal model as follows: � �1 
(θ − ξ̂)|Ω̂−1(θ − ξ̂) + R × log Φ |λ̂ (θ − ξ̂  

A) ,lSSN (θ) = c − A2 

where PR λ̂| 
( )s| s=1

λ̂ = ,A R 
RX 

ξ̂  
A = ξ̂  

(s)/R. 
s=1 

Definition 2.3.3 The simplified skew-normal D&R estimate using the MM method 

(SSNMM) is defined by 

ˆ lSSN (θ).θSSNMM = arg max (2.6) 
θ 

From a Bayesian perspective, the likelihood function is proportional to the pos-

terior density function when the prior is the uniform distribution. Therefore, the re-

combined likelihood function provides a good approximate posterior density function, 

which can be used to perform statistical inference such as posterior mean estimation, 

credible interval computation and hypothesis testing. 

Based on the above derivation, we summarize the likelihood model fitting proce-

dure using skew-normal density as follows. In general, the distribution family that 

analysts choose to model the subset likelihood depends on both the data itself and 

data model. Therefore, it is critical to develop diagnostic methods which enable 

analysts to judge whether the choice of distribution family is valid. 

2.4 LM Diagnostics – Contour Probability Algorithm 

For univariate likelihood functions, the visible comparison between approximate 

likelihood and true likelihood can be achieved by plotting log likelihood ratio over a 
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Algorithm 1 Likelihood Model Fitting Procedure using Skew-normal Density 

Require: X, Y {X ∈ RN×p and Y ∈ RN } 

Divide (X, Y ) into R submatrix Xi ∈ RMi×p, Yi ∈ RMi , i = 1, . . . , R 

The following for loop is computed in parallel 

for s = 1: R do 

Generate MCMC draws according to the stationary function L(s)(θ) 

Estimate (ξ̂  
(s), ω̂(s), α̂(s)) using MCMC draws 

end for 

Recombine subset approximate likelihoods to formulate the log of approximate 

likelihood lSN (θ) 

Calculate the SNMM θ̂  
SNMM based on (2.4), and its covariance matrix Cov(θ̂  

SNMM) 

using the observed Fisher information 

return (θ̂  
SNMM, Cov(θ̂  

SNMM)) 
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neighborhood of the MLE. In contrast, it is a big challenge to visualize how close one 

likelihood function is to another likelihood function when the dimension of the pa-

rameter vector is high. In the case of one-dimensional distributions, the Kolmogorov-

Smirnov (K-S) test by Massey 1951 [39], is based on the maximum distance between 

the cumulative distribution functions of two histograms or probability densities. The 

K-S test is non-parametric and independent of the shapes of the underlying distribu-

tions. However, it does not generalize naturally to higher dimensions, and there is no 

widely accepted test for comparing N-dimensional distributions [40]. Another popu-

lar method is the likelihood ratio test. However, for our case, it requires computing 

normalizing constant of the likelihood function, which is computationally intense and 

numerically unstable for high dimensional functions, such as the logistic likelihood 

function, with a huge number of observations. 

A new method is proposed to measure the similarity between approximate mul-

tivariate likelihood function and the true multivariate likelihood function without 

calculating the corresponding normalizing constants. Instead of using the difference 

between the empirical distribution function of the sample of the approximate likeli-

hood function and the cumulative distribution function of the true likelihood distri-

bution, we consider a series of probabilities that samples, which are drawn from the 

approximate likelihood, fall in regions bounded by predefined high dimensional ellip-

soids, respectively. What is the contour probability? Why can contour probabilities 

measure the difference between two likelihood functions? 

The idea of the contour probability is motivated by the Monte Carlo method. 

Take a univariate normal density function as an example. In Figure 2.2, the upper 

2panel is a plot for the function f(x) = e− x 2 

. Suppose the normalizing constant C is 
√ R −a f(x)unknown even though it is known to be 2π, how to calculate E = 

a C dx? The 

principle of the Monte Carlo method [41] for approximating E is to generate a sample 

(x1, · · · , xn) from the f(x) and propose the empirical average as an approximation P n I|xi|<|a|i=1Ê = . 
n 
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2Fig. 2.2.: The upper panel displays the plot for f(x) = e− x 
. In the lower panel, 

T(x) is the reference density function, which is the standard normal density function, 

while g(x) is the approximate density function which is the normal density function 

with mean 0.3 and standard error 1.1. The blue dots on the bottom are a random 

sample generated from T(x) and the green ones are from g(x). 

As f(x) is concave, it is equivalent to P n If(xi)/f (0)>0.8i=1Ê = 
n 

where I is an indicator function. For a given ratio h ∈ (0, 1), Ah = {x|f(x)/f(0) > h} 

is a region bounded by a contour, and there is only one corresponding probability R 
Eh = 

Ah 

f
C 
(x) dx. Therefore, there is a mapping 

CP : h ∈ (0, 1) → Eh ∈ (0, 1) 
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It is worth noting that the probability is estimated by using the sample generated from 

the target function, without knowing the normalizing constant. Also, this method 

can be naturally generalized to multivariate concave positive functions. 

In order to demonstrate how the contour probabilities can measure the difference 

between two functions, we consider the probability density function of N(0,1) and 

N(0.3,1) as the reference function and the approximate function, respectively, which 

are displayed in the lower panel of Figure 2.2. Assume a sample (x1, · · · , xn) and a 

sample (y1, · · · , yn) are drawn from T (x) and g(y), respectively. For a given h = 0.8, R −a R −a
Ah = {x|T (x)/T (0) > h} = (a, −a). Then ET = T (x)dx and Eg = g(y)dy

a a 

can be estimated by P n P nI|xi|<|a| IT (xi)/T (0)>0.8i=1 i=1ˆ ˆET = ⇐⇒ ET = 
n nPP n n 

i=1 i=1I|yi|<|a| IT (yi)/T (0)>0.8
Ê  

g = ⇐⇒ Ê  
g = 

n n 

Therefore, there will be a pair of probabilities (Ê  
T (h), Ê  

g(h)) for any given ratio 

h ∈ (0, 1). A series of points (Ê  
T (h), Ê  

g(h)) are supposed to lie around the straight 

line y = x in that Ê  
g is supposed to be close to Ê  

T if g(x) well approximates T(x). 

Alternatively, if the contour probability difference is plotted against the contour prob-

ability of T(x), i.e. (Ê  
g(h) − Ê  

T (h), Ê  
T (h)), the points should be not far away from 

y = 0. 

All of above reasoning suggests the contour probability algorithm (CPA) in algo-

rithm 2. Assume L(θ) and Lapprox(θ) are the true likelihood function and approximate 

likelihood function, respectively and L(θ) is unimodal. 

2.5 Real Data and Simulated Experiments 

This section proceeds through a real data example illustrating the contour prob-

ability algorithm and simulated examples for logistic regression to assess the perfor-

mance of likelihood modeling on big data. 
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Algorithm 2 Contour Probability Algorithm (CPA) 

, k, L(θ) and Lapprox(θ)Require: hi ∈ (0, 1), i = 1, · · · 

) from L(θ) and Lapprox(θ),Draw a sample (θ1, · · · , θn1) and a sample (θ1 
a , · · · , θna 

2 

respectively 

Compute MLE of L(θ) denoted by θ̂  
MLE 

for i = 1: k do 

Count the number of the points θ̃  satisfying 

L(θ̃) 
> hi ⇐⇒ l(θ̃) − l(θ̂  

MLE) > log(hi) 
L(θ̂  

MLE) 

in both the approximate likelihood sample and the true likelihood sample, de-

noted by ai and ti, respectively. 

ai tiAi := , Ti := 
n2 n1 

end for 

return A = (A1, · · · , Ak), T = (T1, · · · , Tk), 
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2.5.1 Data and Model 

We use one simple example to show how skew-normal likelihood modeling can 

capture more information of subset likelihoods or subset posterior densities. The 

data are the summary of exit polls in 58 counties in California (see Appendix A.1). 

The polls were conducted several hours before the end of the primary on June 7, 

2016, with the total number of sampled people in each county fixed by design. The 

final goal is to predict Hillary Clintons vote share in each county, as well as her vote 

share in California overall. Here we are only interested in the performance of the 

likelihood modeling on the selected data model for this dataset. The data include 

following variables. 

• Fips (j): The Federal Information Processing Standard (FIPS) code that uniquely 

identifies a county in the United States. 

• Total voters (Nj ): The total number of registered voters in the California Demo-

cratic primary. 

• Sample voters (nj ): The total number of voters in the exit poll. 

• Sample Clinton (yj ): The total number of votes for Clinton in the exit poll. 

The data from counties j = 1, ..., 58, are assumed to follow independent binomial 

distributions: 

yj |θj ∼ Binomial(nj , θj ), j = 1, . . . , 58, 

with the number of sample votes, nj , known. The parameters θj are assumed to be 

independent samples from a beta distribution: 

θj |α, β ∼ Beta(α, β), 

and we shall assign a noninformative hyper-prior distribution to reflect our ignorance 

about the unknown hyper-parameters. However, we must check that the posterior 

distribution is proper. One reasonable choice of the hyper-prior density of (α, β) is 

(α, β) ∼ (α + β)−5/2 . 



34 

The corresponding posterior density is proper as long as 0 < yj < nj for at least 

one experiment j [42]. Combining the sampling model for the observable yj 
0 s and 

the prior distribution yields the joint posterior distribution of all the parameters and 

hyper-parameters, which can be expressed as follows 

JY 
p(α, β, θ1, . . . , θJ ) ∝ p(α, β) Binomial(yi|θi)Beta(θi|α, β) 

i=1 YJ 
Γ(α + β)∝ (α + β)−5/2 θα+yi−1(1 − θi)

ni+β−yi−1 

i=1 
Γ(α)Γ(β) i . 

Thus we can write the marginal posterior density of the hyper-parameters as 

J ZY Γ(α + β) 
p(α, β|y) ∝ (α + β)−5/2 θi

α+yi−1(1 − θi)
ni+β−yi−1dθi (2.7) 

i=1 
Γ(α)Γ(β) YΓ(α + β) 

J 
Γ(α + yi)Γ(β + ni − yi)∝ (α + β)−5/2( )J (2.8)

Γ(α)Γ(β) Γ(α + β + ni)i=1 

2.5.2 Approximate Methods for Posterior Distribution 

In this section, Local Information, Moment Matching methods with the nor-

mal family, and Moment Matching with the SN family are applied to approximate 

the posterior density. 

Figure 2.3 shows the comparison between the posterior distribution of the hyper-

parameters (α, β) and its approximate densities. The MM skew-normal approxima-

tion can capture the skewness of the posterior distribution while the MM normal and 

Local normal cannot. The distances between the mode of the true posterior and the 

one for the MM skew-normal approximation, MM normal, and Local normal are 0.87, 

2.91, and 0, respectively. 

Besides the comparison of the joint density, the comparison of the marginal den-

sity is also of interest. Figure 2.4 is a plot of the quantiles of a marginal sample 

from the approximate densities against the quantiles of a marginal sample from the 

true posterior density with a sample size 10000. Panels in the first column are Q-Q 

plots of marginal densities of the MM skew-normal approximate density against the 
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Fig. 2.3.: Comparison between the true posterior density and approximate densities. 

The red point in each panel is the mode of the true posterior distribution. 

ones for the true posterior density. The second and third columns are for the MM 

normal approximate density and the Local normal approximate density against the 

true posterior density, respectively. Panels in the first row represent the marginal 

Q-Q plot for the parameter β while the ones in the second row are for α. If the two 

sets come from the same distribution, the points should fall approximately along the 

red reference line. Obviously, the MM skew-normal approximate density well approx-

imates the true density while there is an unignorable departure from the MM normal 

approximation to the true density. The Local normal approximation is even worse. 

Figure 2.5 demonstrates the summary comparisons of the marginal density of the 

hyper-parameters α and β between the true density and its approximations. Based 

on Figure 2.5, we can conclude that the approximation performance of the MM skew-

normal approximation approach is better than the ones for the MM normal and Local 

normal methods in terms of the closeness of median, 50% intervals, and 95% intervals. 

In order to have a deeper insight of the difference between the true posterior 

density and the approximation densities, we compute contour probabilities for three 
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Quantile of marginal distribution of true posterior 
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Fig. 2.4.: Pair quantile comparisons among the true posterior density and its approx-

imate densities. The red line is a 45-degree reference line in each panel. 

approximate density and true posterior function using CPA when h0 is are chosen 

such that Ti ∈ (0.05, 0.1, · · · , 0.95). Contour probability differences between approx-

imate densities and the true posterior density are plotted against the true contour 

probability. Figure 2.6 indicates that the MM skew-normal approximation method 

significantly outperforms the MM normal and the Local normal methods. 

2.5.3 Simulated Experiments 

In this section, the goal is to see the performance of the likelihood modeling for 

logistic regresson model on a distributed data, comparing to all-data likelihood on a 

singe machine of the same data. Thus the data will have to be small enough for a 
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approximation, ”normal” indicates the estimates from the marginal density of the 

MM normal approximation, ”normal L” implies the estimates from the marginal 

density of the Local normal approximation. 
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Contour probabilities for true posterior density 
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Fig. 2.6.: Contour probability differences between approximate densities and the true 

posterior density under series of regions bounded by ellipsoids 

single machine run to be possible. To assess the performance of likelihood modeling 

on distributed data for the logistic regression, we set up the experiments as follows: 

• run: the number of simulations 

• m: log2 of the number of subset observations 

• r: log2 of the number of subsets 

• p: the number of the covariate variables 

• Coefficient vector θ = (1, · · · , 1) 

iid• Design matrix X with each row xi ∼ Np(0, 1), 

i• Response variable Y with the element yi ∼ Bernoulli(1/(1 + exp(−x
T θ))) 
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Contour probability for the all−data true likelihood function 
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Fig. 2.7.: Scatter plots of the contour probability differences between approximate 

likelihoods and the true likelihood, against the true contour probability in the cases 

of m = 8, r = 3, 4,run = c(1, 2, · · · , 5), and θ = (1, 1, 1, 1, 1) 

For each combination of (m, r, run), the true likelihood function can be computed 

when data are generated with p = 5 and stored in a single machine. In contrast, 

the MM skew-normal approximate likelihood, MM simplified skew-normal likelihood 

(MM SSN), and MM normal likelihood are estimated using the likelihood modeling 

algorithm when the same data are stored in a distributed cluster. Then, contour prob-

abilities for both approximate likelihoods and true likelihood are estimated using the 

CPA. Figure 2.7 displays plots of the contour probability differences against the true 

contour probability for casesm = 8, r = 3, 4,run = c(1, 2, · · · , 5). It is straightforward 

that the smaller the absolute contour probability difference is, the closer to the true 
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likelihood function the approximate likelihood function is. The contour probabilities 

of the true likelihood range from 0.05 to 0.95 with a step size 0.05. Based on all pan-

els, we can make a conclusion that the SN family are preferable to the normal family. 

And the MM simplified skew-normal model can be a good alternative candidate to 

replace the MM skew-normal model when we want to reduce computation workload 

for a large r. 

2.5.4 Computation Performance 

An analyst not only cares about how close to the true likelihood the approximate 

likelihood is, but also cares how fast it is to compute the approximate likelihood. 

Here, we compare the running time to draw 10,000 samples from the true likelihood 

using MCMC and the approximate likelihood on the same size of data. 

Table 2.1.: Computation Performance. a) Running time (in hours) of the naive 

MCMC algorithm and likelihood modeling algorithm on clusters of different number 

of nodes for the case p = 8, 2r = 600,000, m = 7, iterations = 10,000. b) Running 

time (in seconds) on different size of data using likelihood modeling on the cluster of 

10 nodes. 

(b) 
(a) 

Number of Nodes 

Methods 10 50 500 

Multi-machine MCMC 164.2 5 2.75 

Likelihood Modeling 2.04 

r 

m 8 11 14 

8 126(3.96) 128(7.81) 661(7.90) 

10 534(6.1) 546(4.3) 2598(6.01) 

12 2104(52.1) 2165(107) 10210(279) 

Scott 2013 [24] presents timings from a multi-machine MCMC algorithm for a 

single layer hierarchical logistic regression model on a 500-machine cluster and a 50-

machine cluster. The running time to complete the job on a cluster of 500 machines 
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and 50 machines is 2.75 hours and 5 hours, respectively. Scott concludes that a ten-

fold reduction in computing resources only produced a two-fold increase in compute 

time. In contrast, we run similar simulation experiments on a cluster of 10 machines 

using the likelihood modeling algorithm and MCMC algorithm (see Table 2.1 (a)). 

All experiments are implemented on the WSC Cluster which consists of 10 nodes with 

total 200 cores, 128 GB RAM, 128.9 TB disk and 10 Gbps Ethernet interconnect. And 

all machines are running R version 3.3.1, Java 1.7.0 07b10, Cloudera Hadoop 0.20.2-

cdh3u5 and Rhipe 0.75 [1]. The likelihood modeling algorithm reduced computation 

time in 80 folds with the same cluster setting. There might be a smarter way of 

setting up MCMC algorithm to reduce computation time. The bottleneck of the 

multi-machine MCMC algorithm is that the iterative algorithm is implemented as a 

chain of jobs where the output from each job is used as input to the next job. 

The next test case is to run experiments to assess computation performance 

of the likelihood modeling algorithm. The test cases are all combinations of r = 

(8, 11, 14),m = c(8, 10, 12) for run = 3, p = 10. The value in each cell at Table 2.1 

(b) is the average of three runs while the value in parenthesis is the corresponding 

standard deviation of the three runs. It is noticing that the running time does not 

increase much when r increases from 8 to 11 with m fixed. Given m, the running time 

for r=14 is around 5 times the one for r = 11. The one possible explanation is that 

jobs for r = 11 make full use of all containers while there are some idle containers 

when running jobs for r = 8. 

2.6 Discussion 

We have proposed an innovative D&R procedure to model the likelihood of gen-

eralized linear regression models on distributed datasets. There are many candidate 

models for likelihoods, just as there are many models for DM. Normal family and skew-

normal family have been investigated to illustrate the likelihood modeling procedure. 

Also, we discussed two methods to estimate parameters of the given likelihood model 
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family: MM with MCMC draws and Local method. Moreover, the contour probability 

algorithm has been introduced to measure the similarity between approximate mul-

tivariate likelihood function and the true multivariate likelihood function. In terms 

of accuracy, the MM skew-normal likelihood model outperforms normal likelihood 

model in the application of CPA on Exit Poll data. On the computation of point 

view, the likelihood modeling definitely speeds up computation for generalized linear 

models, keeping the inference capability for big data. As the likelihood modeling 

procedure is designed to work in the D&R framework. 

In summary, the likelihood modeling algorithm can provide a relatively accurate 

estimate of the MLE of the parameters in the generalized linear model; it is well 

aligned with modern parallel and distributed computing architectures and is scalable 

to very large datasets. 

Nevertheless, the likelihood modeling has some limitations. First of all, LM is 

constructed under the assumption that all observations are independent. Second, 

MCMC sampling method is used to generate a sample based on the subset likelihood 

function. There is a trade-off between computation time and the effective sample, 

especially in high dimension space. There are two possible future work. One of the 

potential future works is to modify methods within the D&R framework for non-iid 

data. Another follow-up work is to investigate more efficient strategies to capture 

information of the subset likelihood. 
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3. MODELING FOR TRMM BIG DATA 

3.1 Introduction 

Rainfall is one of the most eminent and complex atmospheric phenomena. It is 

complex as it involves interaction of several atmospheric processes and is vital for the 

survival and sustenance of the earth. Precipitation patterns and rainfall time series 

forecasting are two of the most important issues in many real-world applications 

such tropical cyclones, extreme weather, floods, landslides, climate prediction, soil 

moisture, agriculture, freshwater availability and world health. Due to the complexity 

of the atmospheric processes that generate rainfall, it is very challenge for researchers 

to propose good global models. 

In general, there are two kinds of models for rainfall. First, the conceptual phys-

ical approach entails using the fundamental laws of physics to represent and explain 

the hydrological processes governing the behavior of the hydrosystem. Another is 

statistical models that are created based upon historical observations and the clima-

tological conditions for specific locations. A statistical model for rainfall has at least 

two useful properties: (1) it can describe the relationship between rainfall at a given 

location and other weather-related variables, such as climate variables and rainfall 

observed at other nearby locations, in order to reduce the unexplained variation in 

rainfall amounts, and (2) it provides a principled way to quantify the uncertainty that 

accompanies rainfall processes. 

From a statistical point of view, one of challenges in precipitation modeling is 

that the probability distribution of precipitation depends on the space-time averaging 

scale [43] as precipitation has a high spatial and temporal variability. In general, 

precipitation data are measured as averages over space-time scales determined by the 

mechanism and resolution. The rainfall variability decreases with increasing space 
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Table 3.1.: The percentage of rainfall occurrences for different averaging time win-

dows from 10-minute to 91-day, where 30-day and 91-day represent the monthly and 

seasonal cases, respectively. 

Time 

Percentage 

10-min 

1.77 

15-min 

2.55 

30-min 

4.91 

1-hr 

6.47 

3-hr 

10.42 

6-hr 

14.77 

1-day 

32.71 

1-week 

88.57 

30-day 

99.76 

91-day 

100 

or time doman over which an average is taken. This leads to the fact that temporal 

and areal average are very similar. Hudlow and Patterson [44] showed for the rainfall 

during GATE measured by radar that the hourly rainfall averaged over an area of 

28×28km2 has a very similar statistical distribution as the daily rainfall for a 4×4km2 

area. Also, Table 3.1 demonstrates the percentage of nonzero rainfall for different 

averaging time windows over 12 irregularly sites in Virginia, Maryland, and North 

Carolina [45]. By analyzing rain rates on different space-time averaging scales, it is 

easy to see that precipitation statistics are strongly scale dependent [46]. For example, 

the range of spatial dependence for monthly rain rates is much larger than that for 

hourly rain rates. 

Another challenge arises due to a particular feature of precipitation fields. A 

mixed distribution with a point mass probability of zeros is often used to describe 

the frequent occurrence of rainfall zeros [47]. The spatio-temporal dependence in 

rainfall zeros is a critical aspect of any space-time stochastic model for precipitation. 

For the daily precipitation, Zheng and Katz [48] proposed a approach for modeling 

the spatial dependence in rainfall occurrence using the previous state information 

at multiple sites. Hughes and Guttorp [49] used non-homogeneous hidden Markov 

model to relate atmospheric circulation to precipitation occurrence at 30 rain-gauge 

stations in south-western Australia. 

Modeling the spatio-temporal dependence is necessary to better characterize the 

movement or the spatial patterns of the precipitation over short time scales. Although 

much progress has been achieved in the development of precipitation modeling, the 
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generation of multisite precipitation sequences with realistic spatial dependence re-

mains a challenge even for the daily time scale. Precipitation models in previous works 

are commonly developed for daily data and mostly focus on reproducing means of 

the precipitation [45]. Devi et al. [50] applied different neural network models such as 

feed forward back propagation neural network (BPN), cascade-forward back propa-

gation neural network (CBPN), distributed time delay neural network (DTDNN) and 

nonlinear autoregressive exogenous network (NARX), and compared their forecasting 

capabilities for daily rainfall prediction at Nilgiris and Coonoor. Mislan et al. [51] in-

vestigated that BPN algorithm has provided a good model to predict monthly rainfall 

in Tenggarong, East Kalimantan - Indonesia. 

In this Chapter, we focus on building explanatory models for 3-hr rainfall occur-

rence based on the joint use of spatial and temporal features, and predictive models 

which can produce the conditional rain probabilities given historical data at the center 

location and its neighborhood. The investigation uses the Tropical Rainfall Measur-

ing Mission (TRMM) version 7 3B42 Multi-satellite Precipitation Analysis (TMPA) 

data. 

The remainder of this chapter is organized as follows. We briefly introduce TRMM 

data and the goal of data analysis in section 2 and 3, respectively. Data preparation 

procedures such as handling missing values and sampling methods are discussed in 

section 4, followed by the exploratory data analysis in section 5. Section 6 illustrates 

the procedure of builiding explanatory models for 3-hr rainfall occurrence. In section 

7, we develop two-stage logistic regression models, Markov random field model, and 

neighbor recurrent logistic regression model to forcast 3-hr rainfall occurrence. Then, 

we extend the application of the spatial temporal logistic regression model to the 

extreme weather– daily heavy rainfall in section 8. The chapter is closed with the 

conclusion in section 9. 
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3.2 Data 

The Tropical Rainfall Measuring Mission (TRMM), a joint mission of NASA and 

the Japan Aerospace Exploration Agency, was launched in 1997 to study rainfall 

for weather and climate research. The TRMM is the first coordinated international 

effort to provide reliable rainfall measurement from space. The data [52] are esti-

mated by using a calibration-based sequential scheme for combining precipitation 

estimates from multiple satellites, as well as gauge analyses where feasible. They 

consist of 3-hourly precipitation rates (mm/hr) from 1998-01-01 00:00 UTC to 2015-

04-30 21:00 UTC (50632 time steps) on a fixed degree latitude-longitude grid (0.25 x 

0.25), globally from 50S to 50N (1440 x 400 locations). The total size of the dataset 

is 50632 × 1440 × 400 × 8/230 = 217.289 GB. 

We can view data in two different perspectives: by time and by location. For the 

fixed time t, the subset data consist of 3-hourly rain rates at 0.25◦ × 0.25◦ latitude-

longitude resolution from 50S to 50N. If we divide the whole data by the location. 

For each location, the data are a 3-hourly rain rate time series of length 50632 with 

coverage from 1998-01-01 00 to 2015-04-30 21 UTC. 

It shows that data quality on high latitudes 40◦ − 50◦N(S) is inconsistent with 

ones on lower latitudes 0◦ − 40◦N(S). Also, there are a high number of missing 

observations and a large length of consecutive missing runs in 1998 due to the lack of 

satellite over the Indian Ocean for half of the year and probably a few days of missing 

data from another geostationary satellite over Asia [53]. Therefore, we restrict our 

data analysis on the location from 40◦S to 40◦N rather than from 50◦S to 50◦N , 

and eliminated the data of the first half year. This results in a great reduce in the 

percentage of missing observations. The final data consist of 49,184 observations at 

each of 460,800 locations. Figure 3.1 shows levelplot of the log2 of rain rate average 

across all locations 0◦ − 40◦N(S). For each location, the rain rate average is mean of 

the time series from 1998-07-01 00 to 2015-04-30 21 UTC, with missing observations 

ignored in cases when missing values are present. 
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Fig. 3.1.: Levelplot of log2 of mean of rain rates over time 

It is quite challenging to conduct data analysis on TRMM big data. First, the 

quality of data is a big concern, because rain rate is measured indirectly through mul-

tiple sensors flying on a variety of satellites. The TRMM Multi-satellite Precipitation 

Analysis (TMPA) [52] provides reasonable performance at monthly scales, although 

it is shown to have precipitation rate-dependent low bias due to lack of sensitivity to 

low precipitation rates over the ocean in one of the input products. In terms of shorter 

time scales such as daily scale and 3-hourly scale, the TMPA estimates demonstrate 

considerably more uncertainty. 

Another challenge comes from a particular property of precipitation. The pre-

cipitation displays small-scale variability and highly non-normal statistical behavior 

that requires frequent, closely spaced observations for adequate representation. The 

precipitation pattern varies considerately from continents to oceans, from forests to 

deserts, and from mountains to flat lands. A mixed distribution with a point mass 

probability of zeros is often used to describe the frequent occurrence of rainfall ze-

ros [47]. The spatio-temporal dependence in rainfall zeros is a critical aspect of any 

space-time stochastic model for precipitation. 
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3.3 Goal 

From a statistical point of view, two objectives of data analysis on TRMM big 

data are: 1) Build an explanatory model to explain the variation of the response 

(3-hr rainfall occurrence); 2) Develop a predictive model for 3-hr rainfall occurrence. 

The explanatory modeling primarily focuses the goal of explaining the response with 

multiple explanatory variables. On the other hand, we define predictive modeling 

as the process of applying a statistical model or data mining algorithm to data for 

the purpose of predicting new or future observations. In particular, we focus on 3-hr 

rainfall occurrence prediction, where the goal is to predict rain probabilities in next 

3-hr given its historical data. 

The process of explanatory modeling is quite different from the one for predic-

tive modeling. Galit Shmueli et al. [54] provide a thorough discussion of a variety 

of differences between explanatory and predictive modeling, from its sources and its 

purpose to the practical implications of the distinction at each step in the model-

ing process. From bias and variance perspective, explanatory modeling focuses on 

minimizing bias to obtain the most accurate representation of the underlying the-

ory. In contrast, predictive modeling seeks to minimize the combination of bias and 

estimation variance, occasionally sacrificing theoretical accuracy for improved em-

pirical precision. In classical inference, the explanatory model focuses on in-sample 

estimates by explained-variance metrics of the entire data sample, while predictive 

model focuses on out-of-sample estimates by assessing prediction performance metrics 

on unseen data samples which are not used during model fitting [55]. 

While explanatory power provides information about the strength of an underlying 

causal relationship, it does not imply its predictive power. One effect assesses to be 

statistically significant by a p-value may sometimes not yield successful predictability 

based on cross-validation, and vice versa. In Figure 3.2 [56], differences between 100 

brain measurements (data points) drawn from each of two groups are evaluated using 

two-sample t-tests (”P-value”) and classification (”Classification”), where data points 
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Fig. 3.2.: Examples for that classical statistical inference and classification perfor-

mance can lead to diverging conclusions 

on either side of the dotted lines are predicted as being from different groups. In three 

cases with different data distributions, (A) t-test was statistically significant, while 

classification accuracy was poor, (B) t-test was not statistically significant, while clas-

sification accuracy was high, (C) t-test was statistically significant and classification 

accuracy was high. This toy example illustrates that null-hypothesis rejection and 

pattern recognition constitute two different statistical analyses that do not necessar-

ily judge data distributions by the same aspects. Hence, group effects as assessed by 

significant p-values do not always entail a high classification performance, and vice 

versa. 

Before developing explanatory models, a natural question is which model best 

fits the data. The basic principles of model selection are 1) simple models have 

low variance, but risk bias; 2) More complicated models reduce bias and fit the 

sample data better, but can be highly variable and do not necessarily generalize to 

the population better; 3) Automatic model selection approaches and criteria can be 

informative, provided that we use the results cautiously and continue to think about 

the scientific meaning and plausibility of the models under consideration. 

It should come as no surprise that many approaches have been proposed over the 

years for dealing with this key issue. Both frequentist and Bayesian statisticians have 

made great contributions on developing model selection methods including informa-
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tion criterion (AIC and BIC), subset selection procedures (stepwise selection, best 

subset selection), shrinkage methods (Ridge and Lasso), cross-validation, goodness 

of fit tests (deviance goodness of fit test, Pearson chi-square goodness of fit test and 

Hosmer-Lemeshow test). 

In explanatory modeling, model validation is to validate that the model fits the 

data {X, Y }. And the top priority in terms of model performance in explanatory 

modeling is assessing explanatory power, which measures the strength of relationship 

indicated by the model. Generally, R2-type values can be used to indicate the level 

of explanatory power in linear regression as it indicates the proportion of variation of 

the response which is explained by the model. 

Several pseudo R2 measures for logistic regression are logically analogous to or-

dinary linear regression R2 measures. There are many different ways to calculate 

R2 for logistic regression and, unfortunately, no consensus on which one is best [57]. 

Mittlbock and Schemper [58] reviewed 12 different measures; Menard [59] considered 

several others. McFaddens R2 is perhaps the most popular pseudo R2 of them all. In 

the TRMM data analysis, we will develop explanatory models on all available data 

based on pseudo R2 measures, and conduct model validation, model evaluation. 

On the other hand, we do not really care how well the method works on the 

training data in predictive modeling. Rather, we are interested in the accuracy of 

the predictions that we obtain when we apply our method to unseen test data. As 

explanatory power does not imply its predictive power [54], R2 measures are not 

appropriate for predictive modeling. 

In predictive modeling, the biggest danger to generalization is overfitting the train-

ing data. Hence validation consists of evaluating the degree of overfitting, by com-

paring the performance of the model on the training and holdout sets. If performance 

is significantly better on the training set, overfitting is implied. Assessment of this 

performance is extremely important, since it guides the choice of learning method or 

model, and gives us a measure of the quality of the ultimately chosen model. There-

fore, we divide the data set into two parts: training data and test data. First, we fit 
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candidate models to a set of the training data which consist of 3-hr rain rates from 

1998 to 2013. Then we apply learning models on test data which include observations 

from 2014 to 2015 to check the predictive power of candidate models. 

In terms of measures of predictive power, the most critical metric regards how 

well the model does in predicting the dependent variable on test observations. The 

fitted value for a logistic regression model is an estimate of the observation’s class 

membership probability to which different thresholds may be applied to predict class 

membership. It might happen that model one is better than model two when one 

threshold is chosen, while model two is preferable if another threshold is selected. In 

order to compare the overall prediction performance of different models, we use the 

receiving operating characteristic (ROC). ROC [60] is a measure of classifier perfor-

mance. Using the proportion of positive data points that are correctly considered as 

positive and the proportion of negative data points that are mistakenly considered 

as positive, we generate a graphic that shows the trade-off between the rate at which 

you can correctly predict something with the rate of incorrectly predicting something. 

Ultimately, we are concerned about the area under the ROC curve (AUC). This met-

ric ranges from 0.50 to 1.00, and values above 0.80 indicate that the model does a 

good job in discriminating between the two categories which comprise our response 

variable. 

3.4 Data Preparation 

The raw TRMM data is a collection of NetCDF files. Each of file contains 3-hr 

rain rates of all locations and other metadata. The first step is to extract 3-hr rain 

rates from NetCDF and transfer them to HDFS as key-value pairs. Here, the key 

is the time and the value is a matrix of rain rates. We call this version as by-time 

division. As discussed in the previous section, our goal is to build models for 3-hr 

rainfall occurrence. It is necessary to generate a by-location division. Using RHIPE, 

the division by-location can be handily generated from the by-time division. For the 
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by-location division, there are 460,800 key-value pairs with the longitude and latitude 

of location as the key and a time series of rain rates as the corresponding value. 

In this section, we will discuss two common data preparation operations: handling 

missing values and data sampling. To the best of my knowledge, the presence of 

missing values can reduce the data available to be analyzed, cause a significant bias 

in the results, and eventually influence the reliability of its results. There exist missing 

values in the TRMM data, thereby requiring one to determine the extent and type 

of missingness, and to choose a course of action accordingly. 

3.4.1 Missing Values 

The first task is to study the patterns of missing data before conducting data 

analysis. Considering by-time division and by-location division as a two-dimensional 

view point of data would give us a more comprehensive understanding of the TRMM 

data. Also, it is reasonalble to analyze the missing pattern in these two dimensions: 

by time and by location. 

For the by-location division, we investigate the missingness from two aspects: 

missing ratios and missing runs. The missing ratio at a location is defined as the 

number of missing observations plus one divided by the total number of observations 

in the time-series of length 49,184 while the missing runs are the lengths of consecutive 

missing observations in the time-series. 

Figure 3.3 graphically displays the log2 of the missing ratios across 460,800 loca-

tions. The ratios in the original scale are in the range [2.033 ×10−5 , 0.025] while their 

log scale (base 2) is in the range [-15.59, -5.321]. Generally speaking, the missing 

ratios are greatly influenced by the satellite’s path. 

Overall the missing ratios are small. However, it is possible that the max length of 

missing runs can be very large, which might cause problems when we conduct time-

series analysis. For example, there will be around 490 missing observations if the 

missing ratio is 0.01. These missing observations might scatter sparsely in the time-
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Fig. 3.3.: Levelplot of log2 of the missing ratios across all locations. The log2 of the 

missing ratios are represented by colors. The more blue, the smaller the missing ratio. 

series of length 49,184 such as [0.1, NA, 0.1, 0.3, NA, · · · ] or they are clustered together 

in a short time such as [0.5, NA, NA, NA, · · · , NA, 0.5, · · · , 0.7, 1, NA, NA, NA, · · · ]. 

To see the pattern of these missing runs graphically, we make the plot the max of the 

length of missing runs against longitude and latitude in Figure 3.4, where the max of 

the length of missing runs is defined as one plus the longest length of NA sub-series 

of the original time-series in each location. The large missing runs happen in the high 

latitude 36N-40N and longitude 137E-142E. And the largest missing run is 64, which 

means the longest consecutive unobserved days is 8 as there are eight observations 

per day. 

Figure 3.3 and Figure 3.4 demonstrate the missing pattern in space. On the other 

hand, the missing behavior over time is illustrated in Figure 3.5 and 3.6. For the 

by-time division, there are 1440 × 320 = 460800 observations in each 3-hr timestamp, 

which starts at 1998-07-01 00:00 UTC. Every one point in Figure 3.5 indicates the log 

of the number of missing values plus one (log base 2) at the corresponding timestamp. 

It is clear that there are a large number of missing values between 21550 and 22550 

timestamp, due to satellites upgrade between December 2005 and March 2006. In 

terms of the missing ratio, Figure 3.6 display the quantile plot of log2 of missing ratios 

for by-time division data. There are more than 99% of the time in which the missing 
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Fig. 3.4.: Scatter plot of log of the max length of missing runs against longitude 

(latitude) 

ratio is less than 2.2%. And 2.5%, 50%, and 97.5% quantiles of missing ratios are 0, 

0, and 0.7%, respectively. 

Based on the analysis of missing pattern in both spatial and temporal dimensions, 

we can make a conclusion that missing ratios are quite small in most cases. Therefore, 

we can simply throw out those cases in the final model fitting stage, with a minor 

influence on the reliability of analysis results. 
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Fig. 3.5.: Plot of of log2 of the number of missing observations (+1) over time. A 

loess smooth curve with span 0.05 and degree 1 is displayed in red line. 

Fig. 3.6.: Quantile plot of log2 of the ratio of missing observations to total number 

observations for each timestamp. 2.5%, 50% and 97.5% quantiles are indicated by 

three red vertical lines, respectively. 
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3.4.2 Sampling 

Nothing serves comprehensive analysis better than data visualization. This princi-

ple has been widely accepted and used for decades [61]. Visualization can be helpful 

in exploratory data analysis, model building, diagnosis. For a large and complex 

dataset, this requires making a large number of displays many of which can have 

a large number of pages and many panels per page. It will be overwhelmed if we 

make every diagnostic plot for models on big data. In order to conduct deep analysis 

in the model building procedure integrated with data visualization, it is necessary 

to obtain a representative sample of all locations. In past decades, a large number 

of sampling methods have been proposed such as simple random sampling (SRS), 

stratified sampling, cluster sampling and systematic sampling. As the TRMM data 

are spatio-temporal data, SRS and cluster sampling would lead to significant loss of 

original information. The downsample method, a specific case of stratified sampling 

and systematic sampling, is a reasonable and efficient sample method on the TRMM 

data. 

Quantile of rain frequency of sampled 450 locations
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Fig. 3.7.: Quantile plot of rain frequency of sampled 450 locations against the one for 

all locations. The reference line y = x is graphed by the red line 
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We sample 450 locations which consist of all combination pairs of 45 equally spaced 

longitudes and 10 equally spaced latitudes from 460,800 locations, resulting in 8◦ × 8◦ 

latitude-longitude resolution. To check whether the sample is representative, we test 

whether the distribution of rain frequency of the whole population (all locations) is 

the same to the one for the subsample. Figure 3.7 graphs quantile of rain frequency 

of sampled 450 locations against the one for all 460,800 locations. The fact that the 

blue points are scattered along the straight line indicates that these two distributions 

are quite similar. Therefore, these 450 locations are good representative locations in 

terms of the rain frequency. Figure 3.8 shows the log2 of missing ratios at the sampled 

450 locations. 

Fig. 3.8.: Levelplot of log2 of missing ratios on the sampled locations 

In the following sections, all candidate models will be first applied to data of 450 

locations and potential good candidate models will be chosen to be applied to all data 

after visual diagnostics and data validation. 

3.5 Exploratory Data Analysis 

Exploratory data analysis (EDA) is a critical first step in analyzing the data. 

EDA is for seeing what the data can tell us beyond the formal modeling or hypothesis 

testing task. More specifically, it can help us detect and describe patterns, trends, and 

relations in data with motivation from certain purposes of investigation. EDA makes 
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intensive use of data visualization, the basic objective of which is to provide an efficient 

graphical display for summarizing and reasoning about quantitative information. 

As discussed before, the TRMM data have two dimensions: by time and by loca-

tion. Ideally, we would like to investigate the evolution of spatial patterns in time, 

and distribution of temporal behaviors over space of the TRMM data, respectively. 

However, it will be overwhelmed by a huge amount of plots if we make plots for the 

data at 3-hr time scale for around 17 years, with 0.25◦ × 0.25◦ latitude-longitude 

resolution. Therefore, we display spatio-temporal patterns for an aggregated version 

of the TRMM data. And seasonal behaviors are investigated in more detail by using 

STL+ model. 

3.5.1 Spatio-temporal Patterns for Aggregated Data 

Fig. 3.9.: Levelplot of non-zero rainfall probability over time at each location 

For the by-location division, the data is a rain rate time-series of length 49,184 

at each location. The first aggregation method is to compute the probability of non-

zero rainfall for each of 460,800 locations, with missing values removed. Figure 3.9 

demonstrates the spatial patterns of non-zero rainfall probabilities. It is clear that 
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Fig. 3.10.: Levelplot of the mean of the log of positive rainfall at each location 
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Fig. 3.11.: Levelplot of standard deviation of log of positive rainfall at each location 

equatorial regions have a much higher frequency of rainfall than off-equatorial area. 

In general, the frequency of rainfall over west oceans is significantly larger than the 

one on the continents. Besides, tropical South America and tropical Africa are rainy 

regions on the continents. 

Apart from the frequency of precipitation occurrence, rainfall intensity is, defi-

nitely, of great interest. The extremely variable nature of rain makes it difficult to 

compute time averages and higher moments of the rainfall amounts directly from the 

observational data. Experience shows that the probability density functions (PDFs) 

for positive rain rates are highly asymmetrical and skewed toward larger rain rates. 

Therefore, a Gaussian PDF is not appropriate in this case. There are many PDFs that 

are bounded on the left by zero and positively skewed. Among these distributions, 

the gamma distribution and lognormal are widely used to model rain rates. Cho et 

al. [62] conducts a comparison of Gamma and lognormal distributions for character-

izing satellite rain rates from the TRMM 3A26 data. This comparison indicates that 

the Gamma fits outperform the lognormal fits in wet regions, whereas the lognormal 

fits are better than the Gamma fits for dry regions. Due to that most of continents 
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are dry regions, the lognormal distribution is used to characterize positive rain rates 

for the visualization purpose. 

Figure 3.10 displays geographical patterns of the mean of log-transformed positive 

rain rates. It indicates that rainfall intensity is relatively high in equatorial regions, 

South Africa, Australian, South America, east of North America, and south of Asia. 

East of South Atlantic Ocean and South Pacific Ocean, and North Africa have low 

rainfall intensity. To see the variability of log-transformed positive rain rates, we can 

refer to Figure 3.11 for more detail. Collectively, Figure 3.9, 3.10 and 3.11 provide the 

basic statistical characteristics of the TRMM data in space. For example, southeast 

of Pacific Ocean has relatively low rainfall frequency, low rainfall intensity if it rains, 

and low variability of rainfall based on 3.9, 3.10 and 3.11, respectively. 

Fig. 3.12.: Time series plot of 3-hr mean rain rate 

To explore temporal behaviors of the TRMM data, we aggregate 3-hr rain rates 

over space. For each timestamp, 3-hr mean rain rate is calculated by averaging 3-hr 

rain rates over 460,800 locations. Collectively, all 49,184 mean rain rates form a time 

series at a time scale of 3-hr shown in Figure 3.12. Obviously, there exists seasonal 

pattern in the mean rain rates. Furthermore, a monthly mean rain rate time series is 

obtained by averaging 3-hr mean rain rates over each month. Finally, we can easily 
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generate a time series of yearly rain rates from the monthly mean rain rate time series 

through averaging monthly rain rates over each year. For yearly rain rates, we only 

consider years in which all monthly rain rates are available as the average over a 

partial year can result in a biased estimate. 
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Figure 3.13 plots yearly rain rates from 1999 to 2014, superimposed by the red 

loess curve with degree=1, span=1/3. Based this aggregation method, yearly rain 

rates vary across years in a shape similar to a sin trigonometric curve. In order 

to explore seasonal patterns, we plot monthly rain rate against year conditional on 

month in Figure 3.14. For each month panel, blue points are the monthly mean 

rain rates at the corresponding year while the red curve is the loess curve fitted with 

degree=1, span=0.5 on blue points. Each monthly sub-series goes down first and 

goes up later as year increases, which is consistent with the yearly rainfall pattern in 

Figure 3.13. Due to the same scale in all panels in Figure 3.14, it is significant that 

there is an increase trend from April to June and from October to December. 

Collectively, there are some seasonal patterns in aggregated data. We expect a 

variety of seasonal behaviors for different locations. As the Earth travels around the 

Sun, the area of sunlight in each hemisphere changes. At a solstice, the area of sunlight 

is at a maximum in one hemisphere and a minimum in the other hemisphere. In the 

next subsection, seasonal patterns will be discussed in more detail for representative 

sampled locations. 

3.5.2 Seasonal Behavior 

Let Rs,t be the observed precipitation rate on the t-th period at site s. The index 

t represents the index of 3-hr interval if it is the 3-hourly data, the index of the 

month if it is the monthly data. The next step of exploratory data analysis is to 

investigate yearly seasonal behaviors of the data. we will model monthly data using 

Seasonal Trend Decomposition using Loess (STL), to explore potential seasonality 

and long-term trend across all locations. 

As discussed in chapter one, STL is a filtering procedure for decomposing a sea-

sonal time series into three components: trend, seasonal, and remainder. Suppose the 

data, the trend component, the seasonal component, and the remainder component 
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are denoted by Yi, Ti, Si and Ri, respectively, for i = 1 to N. Here N is the total 

number of observations. Then 

Yi = Ti + Si + Ri. 

Fig. 3.15.: Quantile plot of monthly rain rate and it’s log transformation 

Before applying a STL model on monthly rain rate data, it is essential to know 

what the data distribution looks like. We define the monthly rain rate as the average 

of 3-hour rain rates over each month at given year. The monthly rain rates across 

all 460,800 locations are in the range [0, 4.23]. The zero rain rate indicates that 

it does not rain for the whole month in the corresponding locations, most likely in 

the desert regions. To look at the distribution of the monthly rain rate, we made a 

uniform quantile plot of monthly rain rates for all locations shown in the left panel of 

Figure 3.15. This plot indicates that the monthly rain rates are highly right-skewed. 

In contrast, the log transformation is applied to the monthly data plus a positive 

constant and its corresponding uniform quantile plot is displayed in the right panel of 

Figure 3.15. This plot implies that the distribution of the log-transformed monthly 

rain rates becomes quite close to the uniform distribution, except it has heavier tails. 
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Fig. 3.16.: Decomposition plot of log-transformed monthly rain rate at location 

(4.125◦S, 92.125◦W) 

Now, we apply a STL+ model on the log-transformed monthly rainfall data for 

450 sampled locations with twindow = 84, tdegree = 1, swindow = periodic, inner = 

10, outer = 10. For each location, there are 202 monthly rain rates from July 1998 

to April 2015. The time series is split into 12 cycle-subseries, each of which is de-

fined to be the subseries at each time point of the seasonal cycle. For example, all 

the observations of January will be the first subseries. This STL+ fit has a special 

case. swindow = periodic makes the seasonal component strictly periodic, that is, each 

seasonal subseries is constant through time. Figure 3.16 demonstrates the decompo-

sition plot of log-transformed monthly rain rate at location (4.125◦S, 92.125◦W) for 

this STL+ model. 

The top panel shows the log transformation of monthly rain rate plus 1/64 (re-

sponse) against the index of the month. The second panel graphs the corresponding 
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Fig. 3.17.: Seasonal diagnostic plot for log-transformed monthly rain rate at location 

(4.125◦S, 92.125◦W) 

decomposed seasonal component: variation in the data at or near the seasonal fre-

quency, which is one cycle per year in the monthly data. The third panel plots a trend 

component: the low frequency variation in the data. While the remainder component 

shown in the bottom panel is the remaining variation beyond that explained in the 

seasonal and trend component. Scale for each series has the same number of units 

per centimeter, which enables the variability of each series to be compared. Com-

paring these four time-series, we can make a conclusion that most of the variability 

of the data can be explained by the seasonal component while the trend component 

can barely explain the variability of the data. Is this an appropriate STL model to 

decompose this log-transformed monthly data? What can we do next if not? To 

answer these question, we can resort to diagnostic plots. 
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Fig. 3.18.: Decomposition plot of log-transformed monthly rain rate at location 

(27.875◦N, 3.875◦E) 

Figure 3.17 is the seasonal diagnostic plot for log-transformed monthly data at 

location (4.125◦S, 92.125◦W). Each cycle-subseries is graphed separately against year. 

First, the January values are plotted, then the February values are graphed, and so 

forth. The midmean of the values is portrayed by the red horizontal line, namely 

seasonal component. The seasonal component plus the remainder component, the 

data with the trend component removed, is plotted against year, displayed by the 

blue dots. The black smooth curve fitted by loess is superposed on them. The loess 

smoothing line here can be helpful to judge the lack of fit for the seasonal component. 

The plot shows that the seasonal component is able to capture the trend of the data. 

Clearly, there is not any lack of fit problem left in the remainder for June-December 

sub-series since loess smoothing line is all around horizontal red line. We still can not 

make a conclusion for January-April sub-series even through red lines for January-
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April sub-series are greatly different from the black loess curves in that the variation 

of these sub-series are quite large and there are not enough monthly data to help us 

make a judgment. 

Link to figure 

Fig. 3.19.: Time series plot of data, seasonal, trend and remainder for 450 locations 

Based on Figure 3.16 and 3.17, we see the strong yearly seasonality in the monthly 

rainfall at location (4.125◦S, 92.125◦W). However, the characteristics of seasonality 

vary dramatically among different locations even with the same smoothing parame-

ters. Therefore, we can not extend the conclusion to all locations. Figure 3.18 displays 

the STL decomposition on the data at the location (27.875◦N, 3.875◦E). By compar-

ing data, seasonal, trend, and remainder time-series, neither seasonal component nor 

trend component can greatly explain the variation in the data. More figures for the 

STL decomposition on the representative sampled locations can be found in the link 

at Figure 3.19. 

what is the overall performance of STL+ model on log-transformed monthly data 

across all 460,800 locations? The seasonal amplitude, which is defined as the differ-

ence between the maximum and minimum in the seasonal series, can be used for the 

measurement of the variation of the data explained by the seasonal component. Sim-

ilarly, the trend magnitude, which is defined as the difference between the maximum 

and minimum in the trend series, is the measurement of the variation of the data 

explained by the trend component. For each location, a STL+ model with the same 

tuning parameters is fitted to log-transformed monthly rain rates. Then the seasonal 

amplitude and trend magnitude are computed. Collectively, there are 460,800 ampli-

tudes and magnitudes in total for all locations. Figure 3.20 demonstrates the quantile 

plot of seasonal amplitude and trend magnitude for all locations and shows that the 
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Fig. 3.20.: Quantile plot of seasonal amplitude and trend magnitude for all locations 

seasonal amplitude is greatly larger than the trend magnitude, which means a larger 

portion of variation in the data can be explained by the seasonal component overall. 

3.5.3 Spatial Correlation 

Assume we apply a STL+ model on the log-transformed monthly rainfall data. A 

portion of variation in the data can be explained by the seasonal component overall. 

Generally speaking, a relatively large portion of variation in the data remains in the 

remainder. It is worthwhile to investigate whether the variation left in the remainder 

can be explained through some spatial features. For any location in the TRMM data, 

there are four closest locations in left, right, upper and lower direction, respectively. 

We call these four locations as spatial neighbors of a center location, displayed in 

Figure 3.21. 

The distances between the center location and its neighborhood locations are quite 

close to each other. A reasonable and realistic distance in spatial dimension is the 

Great-circle distance, which is the shortest distance between two points on the surface 

of a sphere. More specifically, let φ1, λ1 and φ2, λ2 be the geographical latitude and 
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Fig. 3.21.: Spatial neighbors of a center location 

longitude of two points a and b, and 4φ, 4λ their absolute differences. Then 4δ, the 

central angle between them, is given by: q 
4δ = 2 arcsin sin2(4φ/2) + cos(φ1) cos(φ2) sin2(4λ/2) 

Then the distance between these two points, i.e. the arc length, for a sphere of radius 

r is 
4δ

d(a, b) = 2πr 
360 

As the difference in latitude and longitude is either (0◦ , 0.25◦) or (0.25◦ , 0◦) for the 

neighbor locations, 4δ = 2 arcsin(cos(φ) sin(0.125)) or 0.25. In the TRMM data, the 

max φ is 40, so the min value of 4δ is around 0.19. The distance between the center 

location and its neighborhoods is in the range between 13.2 and 17.4 miles. 

In applied statistics, a partial residual plot is widely used to show the relationship 

between a given independent variable and the response variable, given that other 

independent variables are also in the model. Similarly, we can make a remainder plot 

to investigate the relationship of the log-transformed monthly rainfall between the 
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transformed monthly rain rates at center location (4.125◦S, 92.125◦W)) and its neigh-

borhoods 

center location and its neighborhoods, given that the seasonal variables are included 

in the model. 

Figure 3.22 is a scatter plot of the remainder decomposed from STL+ model 

on log-transformed monthly rain rates at the center location (4.125◦S, 92.125◦W)) 

against ones at its neighborhood locations. A significant correlation between remain-

ders indicates that spatial features should be included in the model to further explain 

the variation of data. 
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3.6 Explanatory Modeling 

Rainfall exhibits extensive variability on a wide range of spatial and temporal 

scales, and the data correlation in space and time is unknown. In this section, we will 

build explanatory models for 3-hr rainfall occurrence with the joint use of spatial and 

temporal features based on EDA. The top priority in terms of model performance in 

explanatory modeling is assessing explanatory power, which measures the strength of 

relationship indicated by a model function. 

In terms of explanatory power, one of the most popular methods is McFadden R2 

for Logistic regression. Logistic regression is estimated by maximizing the likelihood 

function. Let L0 be the value of the likelihood function for a model with no predictors, 

and let LM be the likelihood of the model being estimated. McFaddens R2 is defined 

as 

R2 
McF = 1 − log(LM )/ log(L0) 

where log(·) is the natural logarithm. 

To understand whether this definition makes sense, suppose first that the covari-

ates in our current model give no explanatory information about the outcome. For 

individual binary data, the likelihood contribution of each observation is between 0 

and 1 (a probability), and so the log likelihood contribution is negative. If the model 

has no explanatory ability, the likelihood value for the current model will not be 

much greater than the likelihood of the null model even though it is always larger. 

Therefore the ratio of the log-likelihood of the current model to one for the null model 

will be close to 1, and McFaddens R2 will be close to zero, as we would expect. 

Next, suppose our current model explains virtually all of the variation in the 

outcome Y. How would this happen? As the logistic regression model’s purpose is to 

give a prediction for P (Y = 1) for each observation, we would need P (Y = 1) ≈ 1 

for those observations who did have Y = 1, and P (Y = 1) ≈ 0 for those observations 

who had Y = 0. If this is the case, the probability of seeing Y = 1 is almost 1 

when P (Y = 1) ≈ 1, and similarly, the probability of seeing Y = 0 is almost 1 when 
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P (Y = 1) ≈ 0 . This means that the likelihood value for each observation is close to 

1. As the log of 1 is 0, the log-likelihood value will be close to 0. Then McFaddens 

R2 will be close to 1. 

3.6.1 Spatio-temporal Logistic Model 

Suppose Rs,t is the observed precipitation rate on the t-th period at the location s. 

Here, the index t stands for the index of 3-hr interval. Then we define the precipitation 

occurrence Ys,t on the t-th period at location s as follows: ⎧ ⎪⎨0 if Rs,t = 0 
Ys,t = ⎪⎩1 if Rs,t > 0. 

Based on the exploratory data analysis in the previous section, spatial features 

are helpful in variation explanation of monthly rainfall. Intuitively, spatial features 

are expected to be good explanatory variables for 3-hr rainfall data as well. To make 

notations simple, we define the neighborhood relationship as follows: 

Loc1 Loc2 Loc3 

Loc4 Loc5 Loc6 

Loc7 Loc8 Loc9 

Where Loc5 is the center location in which the rainfall status (rain or no-rain) is 

considered as the response variable in our models while other locations are the neigh-

borhood of the center location. The rainfall status at neighborhood locations are 

constructed as explanatory variables. We assume that whether it rains or not at the 

center location is correlated with whether it rains or not at its neighborhoods. Intu-

itively, the closer to the center location the neighborhood is, the higher the correlation 

is. Therefore, we classify these 8 neighborhood locations into two layers. The first 

layer includes Loc2, Loc4, Loc6, and Loc8. The second layer consists of Loc1, Loc3, 

Loc7, and Loc9. 
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Combining spatial correlation with seasonal behaviors found in exploratory data 

analysis, we propose the following spatial-temporal (ST) logistic model: 

• ST Model 1: logit(p(Ys,t = 1)) = monthβm
s + yearβy

s + hourβh
s + lag1βl

s 
1 + 

lag2βl
s 
2 + Loc1β1 

s + · · · + Loc4β4 
s + Loc6β6 

s + · · · + Loc9β9 
s 

where the Loci indicates the rainfall status (1: rain; 0: no-rain) on the t-th pe-

riod at the i-th neighborhood location, i =6 5. And the βi
s, i =6 5 is the corresponding 

neighborhood variable coefficient. In the model, month, hour, and lagk are the cate-

gorial variables. Due to yearly seasonal patterns discovered in EDA, month variable 

is included in the model. In total, there are 12 levels for the month factor and βm
s 

is the month coefficient vector. Hour factor is included due to the diurnal rainfall 

cycle in some regions [63] such as Indochina peninsula. There are 8 levels of the hour 

factor as there are 8 observations per day for 3-hourly data. Here βh
s is the coefficient 

vector for hour variable. lagk indicates whether it rains at time t-k at the center 

location (Loc5). In majority of sampled locations, the rain rates have an autocor-

relation function that has a geometric decay as the lag increases and have a partial 

autocorrelation function which has a significant cutoff at 2. This suggests that it is 

appropriate to add lag1 and lag2 in the model. Finally, the year is a numeric variable, 

which can be used to explain the trend. βy
s, βl

s 
1, βl

s 
2 are the coefficient parameters for 

year, lag1 and lag2, respectively. 

In the ST model 1, the categorical values of month would cause a gap in two con-

secutive days, for example, May 31 and June 1, which are supposed to have similar 

yearly seasonal behavior. This motivates us to include day-of-year seasonality in the 

model in order to maintain the continuity of probability of precipitation occurrence 

over days. Therefore, we model precipitation occurrence by logistic regression on a se-

ries of harmonics to include seasonality in addition to the neighborhood precipitation 

occurrence. Specifically, within each season of a given year, the precipitation occur-

rence Y(s,t) is fitted using logistic regression accounting for the location-dependency 

and the day-of-year seasonality. The updated model is 
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• ST Model 2: logit(p(Ys,t = 1)) = yearβs + hourβs + lag1βs + lag2βs +y h l1 l2 P13 {βs sin(2π day×26 × i ) + βs cos(2π day×26 × i )} + Loc1β1 
s + · · · + Loc4β4 

s +i=1 si 365 26 ci 365 26 

Loc6β
s · · + Loc9βs 
6 + · 9 

Where day is the index of day of year, which is in the range between 1 and 365. And 

βsi
s and βci

s are corresponding coefficient parameters for Sine and Consine series. 

3.6.2 Model Selection 

In explanatory modeling, the candidate models are compared according to the ex-

planatory power. Stepwise regression procedure iteratively tries to remove predictor 

variables from the model in an attempt to delete variables that do not significantly 

add to the fit. Stepwise-type methods might appear suitable for achieving high ex-

planatory power. 

Table 3.2.: Model selection summary 

Variable 

Proportion of locations 

year 

37.3% 

hour 

40.4% 

lag1 

40.0% 

lag2 

27.6% 

season 

37.0% 

neighborhoods 

100% 

We apply stepwise model selection procedure to data at all 460,800 locations in 

parallel; and choose a final model based on AIC for each location. Table 3.2 is the 

summary of model selection results from the full model – ST model 2. Here the ”sea-

son” is defined by a set of sin(2π day×26 × i ), cos(2π day×26 × i ), i = 1, · · · , 13. And 
365 26 365 26 

neighborhoods consist of a set of neighborhood locations {Loci, i 6= 5}. Proportion of 

locations is the ratio of the number of locations in which the variable is included in 

the final selected model, to the total number of locations. For example, if anyone of 

seasonal features is included in the final selected model at one location, we will count 

1; otherwise, we count 0. Then we obtain the number of locations for ”season” by 

summing these counts over locations, and the proportion is this number divided by 

460,800. It is interesting to note that the stepwise model selection schema keeps spa-



76 

tial features in the final model for all locations. However, there are only 37% locations 

which keep season features in the final model. One explanation is that the rainfall 

status at neighborhood locations, in fact, already include yearly season information 

to some extent, because rain rates at the center location and neighborhood locations 

are collected at the same time. 

Fig. 3.23.: Levelplot of the coefficient of year in the final selected model using stepwise 

model selection procedure on all locations 

There are 37.3% of locations including ”year” in the final selected model. Figure 

3.23 displays heatmap of the coefficient of year at locations where year is selected in 

the final model. As shown in this Figure, the coefficient is negative along west coast 

of the United States, Chile and Peru, Egypt, Sudan, Western Sahara and Namibia. 

This implies that the expected change in log odds between rain and no-rain in these 

regions is the value of coefficient of year as it increases one year. In other words, odds 

of rainfall becomes smaller and smaller as time goes in these regions. 

To see explanatory power, we make a levelplot in Figure 3.24 to display the spatial 

patterns of the explanatory power of the final selected models for all locations. The 

value in each pixel represents McFaddens R2 of the selected model fitted on 3-hr rain 

rates at the corresponding latitude-longitude location. 75% of final models selected by 

the stepwise model selection procedure can achieve McFaddens R2 at least 0.7. The 
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Fig. 3.24.: Levelplot of McFaddens R2 for the final selected model using stepwise 

model selection procedure on all locations 

representation of both temporal and spatial variables in the selected models, are found 

to explain a substantial amount of variance in these 75% of locations. The regions 

where the model selection routine ends up with a model of low explanatory power 

align with those locations where the rain intensity is relatively small by comparing 

with Figure 3.10. 

3.6.3 Model Diagnostics 

In order for our analysis to be valid, the selected model has to satisfy the assump-

tions of logistic regression. When the assumptions of logistic regression analysis are 

not met, we may have problems, such as biased coefficient estimates or very large 

standard errors for the logistic regression coefficients, and these problems may lead 

to invalid statistical inferences. Therefore, we need to check that our model fits suffi-

ciently well and check for influential observations that have an impact on the estimates 

of the coefficients before we can use our model to make any statistical inference. In 
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this section, we are going to focus on conducting model diagnostics for the selected 

model. 

Diagnostic methods can be graphical or numerical. We generally prefer graphical 

methods because they tend to be more versatile and informative. It is virtually 

impossible to verify that a given model is exactly correct. As George Box said: ”all 

models are wrong, but some are useful”. The purpose of the diagnostics is more to 

check whether the model is not grossly wrong. 

Diagnostic methods can be divided into two types [64]. Some methods are designed 

to detect single cases or small groups of cases that do not fit the pattern of the rest 

of the data. Outlier detection is an example of this. Other methods are designed to 

check the assumptions of the model. These methods can be subdivided into those that 

check the structural form of the model, such as the choice and transformation of the 

predictors, and those that check the stochastic part of the model, such as the nature 

of the variance about the mean response. Here, we focus on methods for checking the 

assumptions of the model. 

When we build a logistic regression model, we assume that the logit of the out-

come variable is a linear combination of the independent variables. This involves 

two aspects, as we are dealing with the two sides of our logistic regression equation. 

First, consider the link function of the outcome variable on the left-hand side of the 

equation. We assume that the logit function (in logistic regression) is the correct 

function to use. Secondly, on the right-hand side of the equation, we assume that 

we have included all the relevant variables, that we have not included any variables 

that should not be in the model, and the logit function is a linear combination of 

the predictors. It could happen that the logit function as the link function is not the 

correct choice or the relationship between the logit of the outcome variable and the 

independent variables are not linear. In either case, we have a specification error. The 

misspecification of the link function is usually not too severe compared with using 

other alternative link function choices such as probit (based on the normal distribu-
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tion). In practice, we are more concerned with whether our model has all the relevant 

predictors and if the linear combination of them is sufficient. 

Residual analysis for logistic regression is more difficult than for linear regression 

models because the response Yi take on only the value 0 and 1. Consequently, the 

i-th ordinary residual will assume one of two values: ⎧ ⎪⎨1 − π̂i if Yi = 1 
ei = ⎪⎩−π̂i if Yi = 0 

Fig. 3.25.: xyplot of studentized Deviance residual against fitted probability 

The ordinary residuals will not be normally distributed and, indeed, their distri-

bution under the assumption that the fitted model is correct is unknown. Plots of 

ordinary residuals against fitted values or predictor variables will generally be un-

informative [65]. If the logistic regression model is correct, then E(Yi) = πi and it 

follows asymptotically that: 

E(Yi − πi) = Eei = 0 

This suggests that if the model is correct, a lowess smooth of the plot of the residuals 

against the estimated probability π̂i or against the linear predictor should result 
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approximately in a horizontal line with zero intercepts. Any significant departure 

from this line suggests that the model may be inadequate. 

Figure 3.25 displays studentized Deviance residual plot for 10 out of 450 sampled 

locations. In fact, plots for other sampled locations are quite similar to Figure 3.25. 

The blue dots on each panel show studentized Deviance residual against the fitted 

probability for the corresponding location (latidude, longitude), superposed by the 

lowess smooth curve in red line. The fact that the lowess smooth approximates a line 

having zero slope and intercept suggests that there is apparently no significant model 

inadequacy. 

Another way to check whether the model fits the data is to directly compare the 

fitted probabilities and observed values. If the probability of seeing Y = 1 is almost 

1 when Y = 1, and similarly the probability of seeing Y = 1 is almost 0 when Y = 0, 

then the model fits the data. 

Figure 3.26 is a xyplot of observed values and fitted probabilities against the index 

of 3-hr data in the year 1999 at the location (4.125◦S, 92.125◦W ). Observed values 

are indicated by colors: no rain in black and rain in red. The length of the bar at the 

index of time t corresponds to the fitted probability of final selected model at time t. 

Figure 3.26 shows that the rainfall probability is quite close to 1 in most cases when 

it rains, and the rainfall probability is close to 0 when there is no-rain. This pattern 

is observed in other representative sampled locations as well. 

Finally, checking for multicollinearity is a standard operation in assessing model 

fit. This practice is relevant in explanatory modeling, where multicollinearity can 

lead to inflated standard errors, which interferes with inference. Generalized variance-

inflation factor (VIF) for each explanatory variables in the final selected model can 

be obtained by using function vif in the car package. We can conclude that multi-

collinearity is not an issue for the final selected model based on the quantile plot of 

max vif of explanatory variables in the selected model for 450 sampled locations in 

Figure 3.27. 
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location:  (4.125S, 92.125W) in the year:  1999
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Fig. 3.26.: xyplot of response and fitted probability against the time 
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Fig. 3.27.: Quantile plot of max VIF of explanatory variables for 450 locations 
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3.6.4 Model Inference 

Based on the model diagnostics, the final selected logistic model is an appropriate 

model for the data. Any complete data analysis requires that analysts are able to 

make statistical inference as well. Especially, the estimation of probability of rainfall 

and it’s confidence interval are of high interest. Consider a Bayesian analysis with a 

uniform prior, the posterior distribution of parameter β is proportional to likelihood 

function, namely 
nY 

p(β|X, y) ∝ pyi (1 − pi)
1−yi 

i 
i=1 

where logit(pi) = log(
1− 
pi 
pi 
) = Xβ. The following strategy is useful for simulating a 

draw from the posterior predictive probability distribution of data, given draws from 

the posterior distribution of the parameters. 

1. Draw the parameter vector β from its posterior distribution, p(β|X, y), given 

the observed data (y, X). 

2. Obtain a draw of predictive probability using π = logit(Xβ) given the drawn β 

PCA for the true likelihood 
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Fig. 3.28.: Normal approximation diagnostics using CPA 
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If the posterior distribution p(β|X, y) is unimodal and roughly symmetric, it can 

be convenient to approximate it by a normal distribution; that is, the logarithm of 

the posterior density is approximated by a quadratic function of β [42]. 

p(β|X, y) ∼ N(β,ˆ [I(β̂)]−1) 

where I(β̂) is the observed fisher information, and 

∂2log(p(β|X, y))
I(β) = − . 

∂β2 

Recall that we introduce CPA to measure the similarity between approximate mul-

tivariate likelihood function and the true multivariate likelihood function in chapter 

2. Similarly, we can compare the posterior distributions of the hyper-parameters β 

and its normal approximate density using CPA as well. Figure 3.28 displays contour 

probability differences between approximate densities and the true posterior density 

under series of regions bounded by ellipsoids for 15 out of 450 representative locations. 

The larger the contour probability difference is, the further the approximate density 

departs away from the true posterior density. Collectively, all contour probability 

differences, no matter which ellipsoid region, no matter which location, are in the 

range between -0.03 and 0.038. Furthermore, most of contour probability differences 

are within 0.02. This implies that it is valid to approximate the posterior distribution 

of β using the normal distribution. 

Here, we illustrate that the posterior predictive probability distribution using 

draws from the normal approximate distribution of parameters is quite close to the 

one using draws from the posterior distribution of the parameters in Figure 3.29. In 

each panel, one scatter point is the corresponding quantile of the predictive prob-

ability distribution for one observation using 1000 draws from normal approximate 

parameter distribution, against the one using the posterior distribution of parameters 

conditional on locations. The approximate predictive distribution performs quite well 

in terms of approximating quantiles of the posterior predictive distribution in that 

the scatter points lie along the straight line y = x. This result is promising as the 
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Fig. 3.29.: Comparison of approximate predictive probability distribution and the 

true one 

predictive probability distribution for new data can easily obtained by using draws 

from the multivariate normal distribution with known mean and variance. To have 

an overall perspective of the 95% confidence interval of the fitted probability of rain-

fall occurrence, we compute the difference between the upper (lower) bound of 95% 

confidence interval and the median for each observation, instead of showing error bar 

of each fitted probability in the time series of length 49184. 

Figure 3.30 only shows the result for 9 locations. In each panel, the blue points 

are for the difference between the upper bound of 95% confidence interval and the 

median for each observation, against the median probability; while the pink ones are 

for the difference between the median of 95% confidence interval and the lower bound. 

Scatter points in all panels appear in a parabola shape, indicating that the variance 

of low (high) probability of rainfall is relatively small in contrast with the one for 
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Fig. 3.30.: 95% confidence interval for fitted probability 

the probability around 0.5. In other words, we have a high confidence in predicting 

no-rain when the fitted probability is small, and forecasting rain when the fitted 

probability is high. On the other hand, we are more uncertain whether it will rain or 

not when the fitted probability is around 0.5. This finding makes sense, empirically. 

3.7 Predictive Modeling 

Above two ST models are useful for explaining the variation of precipitation oc-

currence at the center location, but not applicable for predicting future rainfall oc-

currence because the neighborhood rain rates at the time of prediction is unknown. 

Before we start developing advanced models to predict 3-hr rainfall occurrence, lets 

try a simple, common-sense approach. It will serve as a sanity check, and will es-

tablish a baseline that we will have to beat in order to demonstrate the usefulness of 
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more-advanced models. For example, the dataset contains 80% observations of no-

rain and 20% observations of rain, then a common-sense approach to the classification 

task is to always predict no-rain when we make a prediction in the further. Such a 

classifier is 80% accurate overall, and any learning-based approach should therefore 

beat this 80% score in order to demonstrate usefulness. 

The first step is to find significant features to develop appropriate models to 

characterize the probability of precipitation occurrence at time t for each location. In 

rainfall prediction community, the first or second order Markov chain has been widely 

applied in the simulation of daily rainfall variability across multiple weather stations. 

With the consideration of different Markov chain orders and seasonal variability, 

we model the logit transformation of the probability of precipitation occurrence at 

location s at time t as a linear function of several lags of time series, the indicator of 

the month and hour, and year as follows. 

Pk βs• Model k: logit(p(Ys,t = 1)) = monthβm
s + yearβy

s + hourβh
s + j=1 lj lagj , 

k = 1, · · · , 8 

where lagj = Ys,t−j . 

First of all, we fit each of 8 models (k = 1, · · · , 8) to training data at sampled 

450 locations and compute predicted proabilities on the test data. Given a specific 

model and a location, the corresponding ROC curve can be graphed and the AUC 

can be computed. Therefore, we can see the performance of the models in discrim-

inating between rain and no-rain using the overall distribution of AUC for sampled 

450 locations. In Figure 3.31, each line corresponds to the uniform quantile plot of 

AUC for one model. For example, the blue curve is the quantile plot of AUC for the 

model with lag one, the pink one is for the model with lag one and lag two, and so 

forth. In principle, the higher the AUC is, the better the model is. Based on Figure 

3.31, the model 1 underperform the rest of considered models, which indicates that 

the first order Markov chain is not appropriate for 3-hr precipitation occurrences. 

Therefore, model 2 is selected as the pure temporal model, which will be considered 
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Fig. 3.31.: Uniform quantile plot of AUC for 8 models across 450 sampled locations. 

The red vertical lines are 0.025, 0.5, 0.975 quantiles. 

as the benchmark model later, as it is the simplest model that has similar predictive 

power with other 6 models. 

As shown in Figure 3.31, the proportion of locations where AUC is larger than 0.8 

is less than 0.5, even for the best model. Definitely, we want to find a better model to 

predict 3-hr rainfall occurrence. One potential approach is to make full use of spatial 

information in the data which leads us to develop a spatial-temporal logistic model 

for 3-hr precipitation occurrences in the next section. 

3.7.1 Two-stage Model 

The unavailability of neighborhood predictors at the prediction time poses a big 

challenge for us to build powerful predictive models. A model with only temporal 
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predictors can be considered as the benchmark model, which is model 1 as follows. On 

the other hand, the ST model 1 with the assumption that the neighborhood informa-

tion is available, is considered as our golden standard model. Can we propose other 

models that have a better predictive power than the benchmark model and achieve 

as close as possible to the predictive power of the golden standard model? Intuitively, 

it is a good idea to replace the observed spatial predictors with the predicted ones in 

the golden standard model. Therefore, we propose two-stage models as follows. 

• Model 1: logit(p(Ys,t = 1)) = yearβs + monthβs + hourβh
s + lag1βl

s 
1 + lag2βs 

y m l2 

• Model 2: logit(p(Ys,t = 1)) = yearβs + monthβs + hourβh
s + lag1βl

s 
1 + lag2βs 

y m l2 + 

Loc1β1 
s + · · · + Loc4β4 

s + Loc6β6 
s + · · · + Loc9β9 

s 

• Model 3 (two-stage): logit(p(Ys,t = 1)) = yearβy
s+monthβm

s +hourβh
s +lag1βl

s 
1+ 

lag2βl
s 
2 + Loĉ 1β1 

s + · · · + Loĉ 4β4 
s + Loĉ 6β6 

s + · · · + Loĉ 9β9 
s 

• Model 4 (two-stage): logit(p(Ys,t = 1)) = yearβy
s+monthβm

s +hourβh
s +lag1βl

s 
1+ 

lag2βl
s 
2 + Loc̃ 1β1 

s + · · · + Loc̃ 4β4 
s + Loc̃ 6β6 

s + · · · + Loc̃ 9β9 
s 

ˆ ˜Where Loci and Loci are the fitted status of rainfall (0 or 1) and fitted probability of 

rainfall at t-th time period on i-th neighborhood location using Model 1, respectively. 

Figure 3.32 shows the predictive power of four candidate models on the test data. 

At each location, we fit model 1 and model 2 to a set of the training data which 

consist of 3-hr rain rates from 1998 to 2013. Then we apply learning models to test 

data which include observations from 2014 to 2015 and compute the area under the 

corresponding ROC curves, respectively. For two-stage models, spatial predictors are 

obtained by computing predicted rainfall status or predicted rainfall probability us-

ing model 1 on the corresponding neighborhood location. Here the predicted rainfall 

status is determined by choosing the optimal threshold which maximizes the predic-

tion accuracy. Collectively, there are 450 AUCs for each of four models over 450 

representatives sampled locations. Uniform quantile plot of 450 AUCs for these four 

models is displayed in figure 3.32. Obviously, model 2 has a distinguished predictive 
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Uniform quantile plot of AUC
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Fig. 3.32.: Uniform quantile plot of AUC for 4 models on test data across 450 sampled 

locations. The red vertical lines are 0.025, 0.5, 0.975 quantiles. 

power since more than 97.5% of AUCs is larger than 0.9. Model 1 and two-stage 

model 3 perform quite similar in terms of the predictive power. Using fitted rainfall 

probability in the two-stage model 4 can improve the predictive power, comparing to 

the pure temporal model 1. 

3.7.2 Markov Random Field Model 

To build a more powerful predictive model, we propose a two-stage model (model 

4), which is to replace the unknown rainfall status of the neighborhood with the 

fitted probability of rainfall. Another approach is the autologistic model which is a 

Markov random field model for spatial binary data [66]. One advantage of autologistic 

models is that they can model some interactions in a more direct and interpretable 
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fashion, capturing some of the dynamics of a process [67]. The spatial-temporal 

autologistic regression model captures the relationship between a binary response 

and potential explanatory variables, and adjusts for both spatial dependence and 

temporal dependence simultaneously by a space-time Markov random field [68]. 

Let Z be the random field of interest, where Zs,t ∈ {0, 1} represents the observation 

at the lattice site s and time point t with s = 1, · · · , n and t = 1, · · · , T , the full 

conditional distributions for the traditional auto-logistic model are given by X 
logit(P (Zs,t = 1)) = Xs,tβs + αsj Zj,t, 

j 6=s 

where Xs,t is the temporal predictors at time t at site s, βs are the regression param-

eters, and αs = {αsj , j =6 s} are dependence parameters such that αsj =6 0 iff Zs and 

Zj are neighbors. 

In the TRMM data, it is about 3-hr rain rate observations at different locations 

at a series of time. They are stored as key-value pairs in HDFS with the time as key 

and a matrix of rain rates as the value. The spatial-temporal autologistic regression 

model building procedure is shown as follows: 

• Step I: Swapping to a by-location division. 

The observations are divided into one key-value pair per location. The key is 

a pair of longitude and latitude index, and the value is observations across the 

time in the corresponding location. Each row represents an observation at a 

given time. More specifically, each observation consists of the status of rainfall 

occurrence at the center location and its corresponding 4 nearest neighbors, 

month, year, hour and its lags . 

• Step II: Fit logistic regression in parallel. 

For each location, a logistic regression model is applied to the training observa-

tions. And then the coefficient parameters α̂s and β̂  
s can be learned. Actually, 

ˆγ̂s = Xs,testβs can be computed for the test observations to save the data size 

to be shuffled in MapReduce job. 
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• Step III: Swapping to a by-time division. 

The observations are divided into one key-value pair per time. The key is the 

ˆindex of the test time and the value are βs or γ̂s, and α̂s for the corresponding 

locations. 

• Step IV: Gibbs sampling in parallel. 

Simulate Zs,t from the auto-logistic model: 

P 
Xs,tβ̂  

s+ α̂sj Z
? 

exp j∼s j,t 

Zs,t ∼ Binomial(1, p), p = P 
β̂  
s+ α̂sj Z? 

j∼s j,t 1 + expXs,t 

where j ∼ s indicates j is the neighbor of s and Xs,t is a temporal vector 

including year, month, hours and lags at site s. Z? initializes at the observed j,t 

rainfall occurrence. We can compute the ratio of Zs,t = 1 from the sample given 

the location, which is an estimate of the probability of rainfall occurrence at 

time t. 

• Step V: Swapping to by-location division. 

This step is similar to Step I. The key is still a pair of longitude and latitude 

index. Each observation of the value is estimated the probability of precipitation 

occurrence at the corresponding time at the given location. 

To see the performance of the Markov random field model, we apply the whole 

procedure on TRMM train dataset and test dataset. For simplicity, we only use 4 

nearest neighborhood locations due to similar predictive power with 8 neighborhood 

locations. The corresponding golden standard model and alternative good predictive 

model are proposed as follows for comparison. 

• Model 1: logit(p(Ys,t = 1)) = yearβs + monthβs + hourβh
s + lag1βl

s 
1 + lag2βs 

y m l2 + 

Loc2β2 
s + Loc4β4 

s + Loc6β6 
s + Loc8β8 

s 

• Model 2: logit(p(Ys,t = 1)) = yearβs + monthβs + hourβh
s + lag1βl

s 
1 + lag2βs 

y m l2 + 

LocGibbsβ2 
s + LocGibbsβ4 

s + LocGibbsβ6 
s + LocGibbsβs 

2 4 6 8 8 
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Fig. 3.33.: Uniform quantile plot of AUC for 3 models across 450 sampled locations. 

The red vertical lines are 0.025, 0.5, 0.975 quantiles. 

• Model 3: logit(p(Ys,t = 1)) = yearβy
s + monthβm

s + hourβh
s + lag1βl

s 
1 + lag2βl

s 
2 + 

Loct−1β2 
s + Loct−1β4 

s + Loct−1β6 
s + Loct−1βs 

2 4 6 8 8 

Where Loct 2 
−1 means the rainfall status of the previous time at location i. The fitted 

probability in Model 2 is estimated by using Gibbs sampling in spatial-temporal 

autologistic regression model building procedure 

Figure 3.33 demonstrates that the Markov random field method does not improve 

the predictive power of the logistic regression. Even the logistic regression (model 

3) which includes the rainfall status of the previous time at neighborhood locations 

outperforms the Markov random field. 
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3.7.3 Summary 

Model 4 in the two-stage model subsection and Model 3 in the Markov random field 

model subsection are promising. To assess the overall performance on all locations, we 

apply the two-stage model, neighbor recurrent models (4 neighbors and 8 neighbors), 

benchmark model and golden model on 460,800 locations. 

Fig. 3.34.: Uniform quantile plot of prediction accuracy on the test data for baseline 

model, benchmark model, golden model, two-stage model, neighbor recurrent model 

1 and neighbor recurrent model 2 

• Baseline model: Ys,t = 0 

• Benchmark model: logit(p(Ys,t = 1)) = yearβs + monthβs + hourβh
s + lag1βs 

y m l1 + 

lag2βl
s 
2 

• Golden model: logit(p(Ys,t = 1)) = yearβs + monthβs + hourβh
s + lag1βs 

y m l1 + 

lag2βl
s 
2 + Loc1β1 

s + · · · + Loc4β4 
s + Loc6β6 

s + · · · + Loc9β9 
s 
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• Two-stage model): logit(p(Ys,t = 1)) = yearβs + monthβs + hourβh
s + lag1βs 

y m l1 + 

lag2βl
s 
2 + Loĉ 1β1 

s + · · · + Loĉ 4β4 
s + Loĉ 6β6 

s + · · · + Loĉ 9β9 
s 

• Neighbor recurrent model 1: logit(p(Ys,t = 1)) = yearβs +monthβs +hourβs 
y m h + 

lag1βl
s 
1 + lag2βl

s 
2 + Loct−1β2 

s + Loct−1β4 
s + Loct−1β6 

s + Loct−1βs 
2 4 6 8 6 

• Neighbor recurrent model 2: logit(p(Ys,t = 1)) = yearβs +monthβs +hourβs 
y m h + 

lag1βl
s 
1 + lag2βl

s 
2 + Loct−1β1 

s + · · · + Loct−1β4 
s + Loct−1β6 

s + · · · + Loct−1βs 
1 4 6 9 9 

Fig. 3.35.: Uniform quantile plot of AUC on the test data for benchmark model, 

golden model, two-stage model, neighbor recurrent model 1 and neighbor recurrent 

model 2 

In terms of prediction accuracy, Figure 3.34 demonstrates the distribution of clas-

sification accuracy of all 6 predictive models on the test data over all locations. 1) 

All advanced models outperform the baseline model; 2) The golden model has a sig-

nificant better predictiion accuracy than those models without knowing the rainfall 
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status of neighborhoods; 3) Neighbor recurrent models and two-stage model have a 

quite similar prediction performance, but perform slightly better than the benchmark 

model. 

Fig. 3.36.: Levelplot of AUC on the test data for benchmark model, golden model, 

two-stage model, neighbor recurrent model 1 and neighbor recurrent model 2 
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The predictive power of these five candidate models except the baseline model over 

all locations, are shown in Figure 3.35 and Figure 3.36. We graph the quantile plot of 

the AUCs for each of five models on the test data at 460,800 locations in Figure 3.35. 

To see the performance geographically, we make levelplot of AUCs in Figure 3.36 

for benchmark model, golden model, two-stage model, neighbor recurrent model 1 

and neighbor recurrent model 2, respectively. Comparing with the benchmark model 

indicated in pink curve, advanced models such as the two-stage model and neighbor 

recurrent models have a higher predictive power. Overall, the neighbor recurrent 

model 2 is the best predictive model among above proposed models. 

Furthermore, more complex models with higher order of predictors and interaction 

between predictors are fitted to 3-hr data, resulting in no improvements in predictive 

power. 

3.8 Extreme Weather 

Satellite-derived rainfall can be a critical tool for identifying hazards from flood 

events. One extension of spatio-temporal models developed in the previous section is 

to apply on heavy rainfall data. In this section, the goal is to build explanatory models 

for daily heavy rainfall occurrence based on the joint use of spatial and temporal 

features. We define heavy rain as follows: ⎧ ⎪⎨0 if Rs,t ≤ cs 
Ys,t = ⎪⎩1 if Rs,t > cs. 

Where cs is the threshold for location s. 

Intuitively, the threshold varies from location to location, due to a large variation 

of rain rates and rain frequency across the earth. Here, the 95-quantile of rain rates 

at each location for each summer and winter season is chosen to be the threshold for 

the corresponding location and season. We use the concept of monsoon years” [69] 

starting with summer as May through October, followed by winter as November 
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Fig. 3.37.: Uniform quantile plot of McFaddens R2 on 450 sampled locations. The 

red vertical lines are 0.025, 0.5, 0.975 quantiles. 

through the next April. Then we build spatio-temporal logistic models for each 

location with temporal features and spatial features as follows. 

• Model: logit(p(Ys,t = 1)) = yearβy
s + lag1βl

s 
1 + lag2βl

s 
2 + seasonβs

s + Loc1β1 
s + 

· · · + Loc4β4 
s + Loc6β6 

s + · · · + Loc9β9 
s 

Where season is the indicator of summer with value 1 at summer and 0 at winter. 

Loci indicates whether it is a heavy rain at the i-th neighborhood location near the 

center location s. We fit this model to 450 sampled locations and graph quantile plot 

of McFaddens R2 in Figure 3.37. The plot implies that this spatial-temporal model 

has a great explanatory power overall. 

3.9 Conclusion 

In summary, we have described the procedure of data processing of the TRMM 

data, marginally analyzed the patterns of missingness over time and across space, 

followed by a brief introduction of sampling methods to obtain representative loca-

tions on which we can conduct comprehensive data analysis. Next, we studied the 
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spatial patterns of precipitation frequency, rainfall intensity and its variability, and 

the seasonal behaviors of monthly and yearly mean rain rates. Extensively utilizing 

DeltaRho computational environment, STL+ model were fitted to log-transformed 

monthly rain rates on all 460,800 locations, demonstrating that a significantly larger 

portion of variation in the data can be explained by the seasonal component than the 

trend component. Further spatial correlation analysis of the remainder components 

provided a strong evidence that the spatial features have an additional explanatory 

power of data, given that the seasonal variables are included in the model. Fur-

thermore, we have proposed and validated spatio-temporal logistic models, which are 

automatically selected by using the stepwise AIC method, to explain the variation of 

the 3-hr precipitation occurrence for all 460,800 locations. The final selected mod-

els achieved a great explanatory power measured by McFadden’s R2 on more than 

75% locations. Finally, we developed more advanced predictive models to forecast 

the probability of 3-hr precipitation occurrence on all locations: two-stage logistic 

regression model, spatial-temporal autologistic regression model, and neighbor re-

current logistic regression model. Overall, two-stage model and neighbor recurrent 

model displayed significantly higher predictive power, quantified by the AUC, than 

the spatial-temporal autologistic regression model and benchmark model. The regions 

where two-stage model and neighbor recurrent model did not show great predictive 

power has a property of low rainfall intensity. 
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[58] Martina Mittlböck, Michael Schemper, et al. Explained variation for logistic 
regression. Statistics in medicine, 15(19):1987–1997, 1996. 

[59] Scott Menard. Coefficients of determination for multiple logistic regression anal-
ysis. The American Statistician, 54(1):17–24, 2000. 

[60] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 
27(8):861–874, 2006. 

[61] F.J. Anscombe. Graphs in statistical analysis. American Statistician, 27:17–21, 
1973. 



103 

[62] Hye-Kyung Cho, Kenneth P Bowman, and Gerald R North. A comparison of 
gamma and lognormal distributions for characterizing satellite rain rates from the 
tropical rainfall measuring mission. Journal of Applied Meteorology, 43(11):1586– 
1597, 2004. 

[63] HG Takahashi, H Fujinami, T Yasunari, and J Matsumoto. Diurnal rainfall pat-
tern observed by tropical rainfall measuring mission precipitation radar (trmm-
pr) around the indochina peninsula. Journal of Geophysical Research: Atmo-
spheres, 115(D7), 2010. 

[64] Julian J Faraway. Extending the linear model with r: Generalized linear. Mixed 
effects and nonparametric regression models, 1, 2006. 

[65] Michael H Kutner, Chris Nachtsheim, John Neter, and William Li. Applied linear 
statistical models. McGraw-Hill Irwin, 2005. 

[66] John Hughes, Murali Haran, and Petruţa C Caragea. Autologistic models for 
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Table 3.: California Democratic Poll Exit 

fips total voters sample voters sample Clinton 

6001 199445 100 52 

6003 241 198 94 

6005 3769 150 75 

6007 24202 103 33 

6009 5126 104 54 

6011 1275 100 45 

6013 117523 122 68 

6015 2388 179 81 

6017 20130 166 79 

6019 55285 155 92 

6021 1321 177 95 

6023 19470 153 46 

6025 8597 196 129 

6027 1749 124 53 

6029 33340 112 60 

6031 6623 163 98 

6033 5189 127 62 

6035 1516 198 91 

6037 1035968 144 61 

6039 8688 101 54 

6041 47288 123 71 

6043 2048 115 62 

6045 7390 140 43 

6047 12577 126 61 

6049 551 200 81 

continued on next page 
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Table 3.: continued 

fips total voters sample voters sample Clinton 

6051 1681 118 61 

6053 30311 146 90 

6055 12242 177 99 

6057 14154 187 75 

6059 226598 165 93 

6061 30402 112 69 

6063 2747 173 65 

6065 123078 152 90 

6067 119943 166 88 

6069 3504 101 62 

6071 124555 124 69 

6073 253744 138 75 

6075 153003 140 83 

6077 42003 121 81 

6079 33266 175 99 

6081 77763 189 118 

6083 46898 184 97 

6085 181757 162 105 

6087 45486 150 59 

6089 12290 113 58 

6091 493 183 81 

6093 3962 106 39 

6095 55903 177 106 

6097 88257 128 70 

6099 27885 117 69 

continued on next page 
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Table 3.: continued 

fips total voters sample voters sample Clinton 

6101 

6103 

6105 

6107 

6109 

6111 

6113 

6115 

4340 

3117 

1568 

14414 

5557 

85219 

24260 

3387 

120 

154 

103 

168 

182 

130 

163 

196 

65 

86 

40 

106 

100 

65 

81 

85 
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Description

In divide and recombine framework, big data are divided into subsets, each analytic method is ap-
plied to subsets, and the outputs are recombined. The likelihood-model for logistic regression is
a parametric probability density function of the parameters in the logistic regression. The den-
sity parameters are estimated by fitting the density to MCMC draws from each subset data-model
likelihood function, and then the fitted densities are recombined.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.
The likelihood-model of logistic regression is a parametric probability density function of the pa-
rameters in the logistic regression. The density parameters are estimated by fitting the density to
MCMC draws from each subset data-model likelihood function, and then the fitted densities are
recombined.

Author(s)

Qi Liu

Maintainer: Qi Liu <liuqi.jlu@gmail.com>

References

• http://deltarho.org

• Qi Liu, Anindya Bhadra, Bowei Xi, and William S. Cleveland, Likelihood modeling for big
data analysis using divide and recombine methods

See Also

datadr

Examples

## Not run:
set.seed(100)
library(datadr)
library(sn)
library(BayesLogit)
library(MASS)
library(mvtnorm)
library(moments)
x <- matrix(rnorm(1000*5), ncol=5)
ttheta <- rep(1,5)
y <- rbinom(1000, 1, 1 / (1 + exp(- x %*% ttheta)))
df <- cbind(y,x)
df <- as.data.frame(df)
names(df) <- c("y", "x1","x2","x3","x4","x5")
df_ddf <- ddf(df)
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# in memory backend
df_div <- divide(df_ddf, by =rrDiv(500))
rst<- drml(df_div, y~x1+x2, size =1000, burnin =50, approx_method = "SN")
pred <- predNew.local(rst, y~x1+x2, df, 1000)

# disc backend
tmpdir <- "./tmp"
DiskConn <- localDiskConn(file.path(tmpdir, "KV"), autoYes = TRUE)
addData(DiskConn, df_div)
DiskConn <- ddf(DiskConn)
DiskConn <- updateAttributes(DiskConn)
rst<- drml(DiskConn, y~x1+x2, size =1000, burnin =50, approx_method = "SN")
DiskConn_output <- localDiskConn(file.path(tmpdir, "output1"), autoYes = TRUE)
pred <- predNew.dr(rst, y~x1+x2, DiskConn, 1000, DiskConn_output)
head(pred[[1]]$value)

# hdfs backend
library(Rhipe)
rhinit()
seq.file <- list()
seq.file[[1]] <- list(2, df[1:500,])
seq.file[[2]] <- list(2, df[501:1000,])
rhwrite(seq.file, file="/tmp/test1", chunk=1, kvpairs=T, verbose=F)
HDFSconn <- hdfsConn("/tmp/test1", autoYes = TRUE)
HDFSconn <- ddo(HDFSconn)
HDFSconn <- updateAttributes(HDFSconn)
rst<- drml(HDFSconn, y~x1+x2, size =1000, burnin =50, approx_method = "SN")
HDFSoutput <- hdfsConn("/tmp/output", autoYes = TRUE)
pred <- predNew.dr(rst, y~x1+x2, HDFSconn, 1000, HDFSoutput)
head(pred[[1]]$value)

## End(Not run)

drml Model Likelihood of Logistic Regression in Divide and Recombine
Framework

Description

Model the posterior distribution of parameters in logistic regression by normal distribution or skew
normal distribution, where the prior distribution is the uniform distribution.

Usage

drml(ddo_object, formula = formula, size, burnin,
approx_method = approx_method)
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Arguments

ddo_object a ddo/ddf object (in memory, ) which is obtained by dividing whole data into
subsets

formula an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specification are the
same to the formula in lm.

size the number of MCMC iterations saved (target distribution is the posterior distri-
bution of parameters in the logistic regression)

burnin the number of MCMC iterations discarded.

approx_method the method to approximate the posterior distribution such as normal or skew
normal, the default one is normal distribution

Value

norm.mean mean parameter of recombined fitted normal distribution

norm.var variance (covariance) of recombined fitted normal distribution

sn.mod mean parameter of normal approximation to recombined fitted skew normal dis-
tribution if approx_method is "SN"

sn.cov variance (covariance) of normal approximation to recombined fitted skew nor-
mal distribution if approx_method is "SN"

Author(s)

Qi Liu

See Also

divide, recombine

Examples

set.seed(100)
library(datadr)
x <- matrix(rnorm(1000*5), ncol=5)
ttheta <- rep(1,5)
y <- rbinom(1000, 1, 1 / (1 + exp(- x %*% ttheta)))
df <- cbind(y,x)
df <- as.data.frame(df)
names(df) <- c("y", "x1","x2","x3","x4","x5")
df_ddf <- ddf(df)
df_div <- divide(df_ddf, by =rrDiv(500))
rst<- drml(df_div, y~x1+x2, size =1000, burnin =50, approx_method = "Norm")
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LMsubset Subset Likelihood Modeling for Logistic Regression

Description

Model the posterior distribution of parameters (likelihood function) in logistic regression using
the normal distribution or skew normal distribution, where the prior distribution is the uniform
distribution.

Usage

LMsubset(formula = formula, data = data, size, burnin, conf_level,
approx_method = approx_method)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specification are the
same to the formula in lm.

data a data frame containing the variables in the model. If not found in data, the
variables are taken from environment(formula).

size the number of MCMC iterations saved (target distribution is the likelihood func-
tion of parameters in the logistic regression)

burnin the number of MCMC iterations discarded.

conf_level a vector which consists of levels of credible intervals

approx_method the method to approximate the posterior distribution such as normal ("Norm")
or skew normal ("SN"), the default one is normal distribution

Details

Fit logistic regression to data with formula, simulate a sample of size = size with burnin = burnin
using Monte carol methods from the posterior distribution (likelihood function) of coefficients.
There are two approximate methods considered in this function: Normal approximation and Skew-
normal approximation.

Value

prob_compare a dataframe with two columns: approximate probability and true proability. The
probability under different credible regions defined by conf_levels is estimated
by using Monte Carlo methods

norm.mean mean parameter of fitted normal distribution

norm.var variance (covariance) of fitted normal distribution

sn.xi location parameter of fitted skew normal distribution if approx_method is "SN",
Null otherwise
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sn.omega scale parameter of fitted skew normal distributionif approx_method is "SN",
Null otherwise

sn.alpha shape parameter of fitted skew normal distributionif approx_method is "SN",
Null otherwise

Author(s)

Qi Liu

See Also

subset_approx

Examples

x <- matrix(rnorm(1000*5), ncol=5)
y <- rbinom(1000,1,0.5)
df <- as.data.frame(x)
names(df) <- paste("x",1:5,sep="")
df$y <- y
rst <- LMsubset(y~x1+x2, data =df, size=500, burnin =50, conf_level = seq(0.05, 0.95, 0.05), approx_method = "SN")

predNew.dr Fitted Values at distributed Datasets Based on the Fitted Results from
Likelihood Modeling

Description

predNew.dr is a function to provide the 0.025, 0.5, 0.975 quantiles of the distribution of fitted predict
probability based on the fitted density of model parameters.

Usage

predNew.dr(fitted_par, formula, ddo_object, size = 1000, output)

Arguments

fitted_par object returned by drml function

formula an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specification are the
same to the formula in lm.

ddo_object a ddo or ddf object initiated from HDFS connection or localDisk connection

size the number of samples drawn from the distribution of model parameters

output a "kvConnection" object indicating where the output data should reside (see
localDiskConn, hdfsConn).
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Value

0.025, 0.5, 0.975 quantiles of the distribution of fitted predict probability

See Also

predNew.local, datadr

Examples

## Not run:
set.seed(100)
library(datadr)
x <- matrix(rnorm(1000*5), ncol=5)
ttheta <- rep(1,5)
y <- rbinom(1000, 1, 1 / (1 + exp(- x %*% ttheta)))
df <- cbind(y,x)
df <- as.data.frame(df)
names(df) <- c("y", "x1","x2","x3","x4","x5")

# local disk backend
tmpdir <- "./tmp"
DiskConn <- localDiskConn(file.path(tmpdir, "KV"), autoYes = TRUE)
addData(DiskConn, df_div)
DiskConn <- ddf(DiskConn)
DiskConn <- updateAttributes(DiskConn)
rst<- drml(DiskConn, y~x1+x2, size =1000, burnin =50, approx_method = "SN")
DiskConn_output <- localDiskConn(file.path(tmpdir, "output1"), autoYes = TRUE)
pred <- predNew.dr(rst, y~x1+x2, DiskConn, 1000, DiskConn_output)
head(pred[[1]]$value)

# HDFS backend
library(Rhipe)
rhinit()
seq.file <- list()
seq.file[[1]] <- list(2, df[1:500,])
seq.file[[2]] <- list(2, df[501:1000,])
rhwrite(seq.file, file="/tmp/test1", chunk=1, kvpairs=T, verbose=F)

HDFSconn <- hdfsConn("/tmp/test1", autoYes = TRUE)
HDFSconn <- ddo(HDFSconn)
HDFSconn <- updateAttributes(HDFSconn)
rst<- drml(HDFSconn, y~x1+x2, size =1000, burnin =50, approx_method = "SN")
HDFSoutput <- hdfsConn("/tmp/output", autoYes = TRUE)
pred <- predNew.dr(rst, y~x1+x2, HDFSconn, 1000, HDFSoutput)
head(pred[[1]]$value)

## End(Not run)



8 predNew.local

predNew.local Fitted Values at New Data (in Memory) Based on the Fitted Results
from Likelihood Modeling

Description

predNew.local is a function to provide the 0.025, 0.5, 0.975 quantiles of the distribution of fitted
predict probability based on the fitted density of model parameters.

Usage

predNew.local(fitted_par, formula, data, size = 1000)

Arguments

fitted_par object returned by drml function

formula an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specification are the
same to the formula in lm.

data a data frame containing the variables in the model. If not found in data, the
variables are taken from environment(formula).

size the number of samples drawn from the distribution of model parameters

Value

0.025, 0.5, 0.975 quantiles of the distribution of fitted predict probability

Examples

set.seed(100)
library(datadr)
x <- matrix(rnorm(1000*5), ncol=5)
ttheta <- rep(1,5)
y <- rbinom(1000, 1, 1 / (1 + exp(- x %*% ttheta)))
df <- cbind(y,x)
df <- as.data.frame(df)
names(df) <- c("y", "x1","x2","x3","x4","x5")
df_ddf <- ddf(df)
df_div <- divide(df_ddf, by =rrDiv(500))
rst<- drml(df_div, y~x1+x2, size =1000, burnin =50, approx_method = "SN")
pred <- predNew.local(rst, y~x1+x2, df, 1000)
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subset_approx Likelihood Modeling for Logistic Regression in subset sense

Description

Model the posterior distribution of parameters (likelihood function) in logistic regression using
the normal distribution or skew normal distribution, where the prior distribution is the uniform
distribution.

Usage

subset_approx(x, y, size, burnin, conf_level, approx_method = approx_method)

Arguments

x the model matrix

y the response variable

size the number of MCMC iterations saved (target distribution is the posterior distri-
bution of parameters in the logistic regression)

burnin the number of MCMC iterations discarded.

conf_level a vector which consists of levels of credible intervals

approx_method the method to approximate the posterior distribution such as normal or skew
normal, the default one is normal distribution

Value

prob_compare a dataframe with two columns: approximate probability and true proability. The
probability under different credible regions defined by conf_levels is estimated
by using Monte Carlo methods

norm.mean mean parameter of fitted normal distribution

norm.var variance (covariance) of fitted normal distribution

sn.xi location parameter of fitted skew normal distribution if approx_method is "SN",
Null otherwise

sn.omega scale parameter of fitted skew normal distributionif approx_method is "SN",
Null otherwise

sn.alpha shape parameter of fitted skew normal distributionif approx_method is "SN",
Null otherwise

Author(s)

Qi Liu
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Examples

x <- matrix(rnorm(1000*5), ncol=5)
y <- rbinom(1000,1,0.5)
a <- subset_approx(x,y, size=5000, burnin =500, conf_level = seq(0.05, 0.95, 0.05), approx_method = "Norm")
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