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ABSTRACT 

Author: Joe, Jaewan. PhD 
Institution: Purdue University 
Degree Received: May 2018 
Title: Agent-based Approach for System Identification and Optimal Control of High Performance 

Buildings. 
Major Professor: Panagiota Karava 

Commercial buildings have strong impacts on humans and the environment. They not only affect 

occupants’ comfort, health, and well-being but also consume more than 19% of the total energy 

consumption in the US. High performance building designs can achieve significant energy savings, 

with new building technologies such as advanced building envelopes, thermally activated building 

systems, on-site power production and thermal storage; dynamic effects related to variability in 

occupancy and environmental conditions; diversity in occupant thermal preferences; and the 

integration of these diverse technologies into an overall control system design. Model-based 

predictive control (MPC) is a promising approach for the realization of high performance buildings 

as operations can be optimized for the specific building and climate through an estimated process 

model that predicts the future evolution of the system, while incorporating the most up-to-date 

information on weather forecast and system dynamics.  

Despite of the advantages, there are still significant obstacles associated with the realization of 

MPC implementation in actual buildings. First of all, the process of generating a control-oriented 

building model, which is referred as system identification, can be complex and not easily 

reproduced, due to the customized design of buildings and HVAC systems. Also, MPC 

computation could become intractable due to the large decision dimension for large-scale systems. 

To date, the formulation, solution, and integration of optimal controls into existing building 

management systems (BMS), may not be easily scalable to other buildings on account of the design 

customization and control intractability. It is envisioned that in the future, with new technology 

for sensing, information processing and communication, distributed intelligence would be 

embedded into devices and would be widely deployed into actual buildings. Towards the 

realization of this plug-and-play intelligent building operation, the research objective of this thesis 

is to develop a multi-agent system approach to optimal control of high performance buildings, 

based on new algorithms for distributed system identification and distributed model predictive 
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control (DMPC). From the application perspective, the focus is thermal environment control of 

open-plan office spaces. Radiant floor systems are evaluated as high performance features and 

used as test-beds to demonstrate the proposed agent-based framework for zone and local 

environment control. 

As a first step, a multi-agent systems approach for data-driven grey-box building models is 

introduced. Each zone is divided into sub-systems (agents), and a parameter set for each sub-

system is first estimated individually, and then integrated into an inverse model for the zone using 

the dual decomposition algorithm. Two case-studies are designed and conducted using the Living 

Laboratories at Purdue’s Herrick Building as test-beds to validate the estimated control-oriented 

models under realistic operation conditions. The results show that the model prediction accuracy 

of the new approach is fairly good for implementation in predictive control while models can be 

developed and integrated with improved efficiency, flexibility and scalability, compared to 

centralized approaches. 

In the next step, a centralized MPC strategy is developed for zone thermal environment control in 

an occupied office space with radiant comfort delivery along with a chiller and boiler as HVAC 

sources. The MPC controller deploys an optimization algorithm based on constraint quadratic 

programming with hard comfort bounds, which yields an exact numerical solution, and it is straight 

forward and robust for this application. Results from the MPC implementation during the cooling 

season show that more than 34% cost savings are achieved by load shifting to utilize higher chiller 

efficiency with lower outdoor air temperature, and lower electricity prices. In the heating 

application, the energy use reduction from the optimized control is around 16% compared to 

conventional control. 

In the final step, a distributed optimization algorithm, inspired by the Proximal Jacobian 

Alternating Direction Method of Multipliers (PJ-ADMM), is introduced. It includes multiple 

MPCs run iteratively while exchanging control input information until they converge. With this 

tractable approach, agents solve individual optimization problems in parallel, through information 

exchange and broadcasting, with a smaller scale of the input and constraints, facilitating optimal 

solutions with improved efficiency. The developed algorithm is tested using field data from an 

occupied open-plan office space with localized comfort delivery along with distributed sensing, 

control, and data communication capabilities. The radiant comfort delivery system with predictive 

control is capable of providing localized thermal environments, thereby improving occupant 



 
xii 

satisfaction, while achieving more than 27% reduction in electricity consumption compared to 

baseline feedback control. 

In summary, this thesis introduces a new agent-based approach for system identification and MPC, 

which is implemented and tested using an actual building as test-bed. The results show 

significantly improved performance compared to conventional systems and controls. The overall 

methodology could be packaged into a toolbox integrated into open-source building control 

platforms, existing building management systems, or embedded into new smart devices. It is a 

scalable solution that can be extended to other smart and connected environments, e.g., multiple 

building systems, multi-zone buildings, building clusters integrated with power grids and 

automobiles.  
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INTRODUCTION 

1.1 Motivation  

The boundary conditions for building control of modern buildings are becoming increasingly 

dynamic, as evidenced by deployment of new building technologies for energy and comfort 

delivery, increasing use of intermittent, low carbon energy sources, the view of occupants as 

service users who participate, decide, provide feedback, and communicate with building systems, 

and the advent of dynamic electricity pricing and smart electric grids. Advanced supervisory 

control strategies, such as model predictive control (MPC), have the potential to address the 

growing complexity of control requirements of modern buildings, considering their specific energy 

and comfort delivery features and the local climate. Also, MPC can leverage information from the 

deployment of low-cost sensing, and other smart and connected devices to optimize the operation 

of a building over a prediction horizon while incorporating the most up-to-date information on 

weather forecast and system dynamics. 

For example, in recent years, following the development of low-cost sensing, smart devices and 

the Internet of Things (IoT) technology, the potential for spatial control granularity is extended 

and conventional zone control with a single set-point is evolving to occupancy prediction-based 

(Jia and Spanos 2016, Liao and Barooah 2010, Yang et al. 2014, Zhang et al. 2010, Zhao et al. 

2014) or personalized control (Zhang, Arens, and Zhai 2015, Bauman et al. 2015, Pasut et al. 2015, 

Xu et al. 2017). Space conditioning is provided when zones are occupied (Weng and Agarwal 

2012) to achieve energy savings and satisfy occupants with diverse thermal preferences (Jazizadeh, 

Ghahramani, and Becerik-Gerber 2013; Jazizadeh et al. 2014; Konis and Annavaram 2017; Lee et 

al. 2017; Lee et al. 2018; Ryu, Kim, and Yun 2015). Building systems and devices are beginning 

to embed analytical software for communications and enhanced control functions. To provide 

thermal environments with higher resolution, new smart devices can be deployed in building 

systems, and eventually transform the configuration of Building Management Systems (BMS) 

fundamentally (Stluka et al. 2017). At the same time, the connectivity between building occupants 

and such devices is extended with sensing and computing abilities of cell phones or single board 

computers (e.g., Raspberry Pi) and wireless communication methods (e.g., ZigBee or Bluetooth), 

and it is geared towards a new BMS configuration (Zhao et al. 2016).  
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To accommodate this trend for high performance buildings, the multi-agent approach proposed in 

this thesis provides an ideal framework as agents and their network can be easily configured and 

dynamically re-configured and are amenable for designing scalable sensing, data processing, 

optimization, and control algorithms in adaption to the changing conditions. For buildings with 

complex systems for better performance, it is possible to utilize their modularity to deploy plug-

and-play approaches that improve efficiency, flexibility and scalability.  

In this thesis, from the application perspective, the focus is thermal environment control of open-

plan office spaces. Open-plan spaces have become a new trend in office buildings, and with the 

availability of data from sensors, smart devices and occupants, smart comfort delivery can provide 

significant opportunities for energy savings (Bauman et al. 2015; Pasut et al. 2015) as conditioning 

can be deployed where it is actually needed. Radiant floor systems are evaluated as high 

performance features and used as test-bed to demonstrate the proposed agent-based framework. 

Specific advantages of the radiant floor system are (Fabrizio et al. 2012; Kim and Olesen 2015a; 

Kim and Olesen 2015b; Nall 2013a; Nall 2013b; Nall 2013c; Olesen 2008; Rhee and Kim 2015; 

Sastry and Rumsey 2014): (a) The room air temperature can be maintained at lower and higher 

setpoint for the heating and cooling season respectively due to the radiative heat exchange with 

the large floor surface, thereby less energy is consumed while maintaining equivalent comfort. (b) 

The large slab surface area yields uniform heat transfer to the room so occupant thermal comfort 

is improved. (c) The system is operated with moderate chilled or hot water temperature so the 

efficiency of the plant is higher. Therefore, radiant floor systems provide improved thermal 

comfort, and reduced energy use when advanced control strategies are used (Gayeski et al. 2012; 

May-Ostendorp et al. 2013). From a localized thermal management perspective, radiant systems 

with distributed sensing and control loops, are capable of providing different thermal environments 

by selectively conditioning a slab section as opposed to air systems in which the air is mixed easily 

in an open space. This leads to better occupant comfort as different thermal preferences can be 

simultaneously met.  

1.2 Control-oriented building models 

To date, research on MPC of buildings has been mainly carried out in simulation environments 

(Braun, Montgomery, and Chaturvedi 2001; Cigler et al. 2012; Corbin et al. 2012; Feng et al. 2015; 

Hu and Karava 2014; Lehmann et al. 2013; Li et al. 2015; Oldewurtel et al. 2012; Sourbron, 
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Verhelst, and Helsen 2013; Sun et al. 2010). Experimental and field studies, despite being the 

exemption rather than the rule, show promising results (Bengea et al. 2013; De Coninck and Helsen 

2016; Ma, Borrelli, and Hencey 2012; Ma et al. 2012; Široký et al. 2011; Matuško, and Borrelli 

2014; West, Ward, and Wall 2014). In previous studies has been concluded that the pathway of 

obtaining a suitable model that can be implemented in a predictive controller is time-consuming, 

corresponding to around 70% of the project engineering cost (Henze 2013), and not easily 

repeatable. Developing control-oriented models through a system identification approach, based 

on actual experiments, can be a long process particularly for high performance buildings due to 

the large number of sub-systems for energy and comfort delivery and the increased complexity of 

the integrated building system and its dynamic behavior. In such cases, the model structure 

typically includes a large number of estimate parameters, increasing the computational time and 

impeding finding a global minimum. Also, various sub-systems form a multiple input and multiple 

output (MIMO) system entailing different characteristics of dynamics in each sub-system; thereby, 

a centralized parameter estimation approach is hardly feasible for this case. Agent-based methods, 

i.e. a special class of distributed approaches enables parallel estimation of each sub-system. This 

includes identifying agents, their function and network structure, and estimating model parameters 

for both individual agents in the system, using information locally known or observable by each 

agent, and their connections. Decomposition methods are used to solve a large-scale optimization 

problem by breaking it up into smaller sub-problems with lower dimension of variables, and 

solving the sub-problems independently.  

1.3 Multi-agent distributed MPC 

It is believed that smart building features would be widely adopted if intelligence is embedded into 

physical devices (Cai et al. 2016a). Distributed optimization methods enable this realization for 

the control of coupled but separable sub-systems that are jointly optimized. In order to coordinate 

the solution of the sub-problems, a network of intelligent agents is formed. In multi-agent networks, 

agents are equipped with the capability of sensing, information processing and communication 

(Jennings and Bussmann 2003; Necoara, Nedelcu, and Dumitrache 2011; Negenborn and Maestre 

2014; Samar, Boyd, and Gorinevsky 2007). This approach, known as multi-agent DMPC, is a 

tractable solution for large-scale problems due to the reduced computation cost with less decision 

variables for each local optimization problem, the feasibility to find an optimal solution by 
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focusing on one objective, the possibility to easily adapt model parameters with respect to the 

varying environments, and the robustness in terms of whole system operation in the case of fault 

or failure of subsystems (Figure 1.1).  

Figure 1.1 Multi-agent distributed MPC compared with centralized MPC 

1.4 Objectives 

This thesis presents an agent-based approach for system identification and MPC with the following 

distinct advantages: (a) scalability: sub-system models can be developed and integrated in a plug-

and-play manner, reducing the expertise and engineering cost that is required for control-oriented 

models of high performance buildings, such as those with complex energy and comfort delivery 

systems; (b) efficiency: each agent faces a smaller-scale problem compared to centralized 

identification schemes; (c) flexibility: agents form agent-networks that can be easily configured 

and dynamically re-configured in adaptation to system upgrades and retrofits. These advantages 

are demonstrated with experimental and simulation studies and implementation to an actual test-

bed. The specific objectives of this thesis are: 

1. Develop a distributed system identification approach for data-driven building models.  

a. Identify building sub-system agents, their function and network structure. 

b. Design and conduct an experimental approach to estimate the sub-system (agent) 

model parameters and formulate the dual decomposition method for developing the 

integrated model for the zone.  

c. Demonstrate the approach with different case studies. 
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2. Evaluate the performance of radiant floor systems with MPC in office environments. 

a. Formulate a robust optimization algorithm for MPC. 

b. Implement the MPC controller during the cooling and heating seasons. 

c. Analyze the energy performance of the system through comparison with baseline 

air delivery systems and conventional controls. 

3. Develop a DMPC algorithm for intelligent control of office buildings with high resolution 

thermal environments. 

a. Formulate a distributed optimization problem for MPC. 

b. Implement the DMPC algorithm in an actual test-bed with radiant comfort delivery. 

c. Investigate the performance of the algorithm and localized comfort delivery system. 

1.5 Outline 

Figure 1.2 shows the outline of this study. Chapter 2 presents a state-of-art literature review on 

studies related to the multi-agent systems, distributed optimization for building control 

applications, and advanced technology for thermal environment control including radiant and 

localized comfort delivery systems. The agent-based framework for control-oriented building 

models is discussed in Chapter 3. Chapter 4 evaluates the energy performance of radiant floor 

cooling and heating systems with MPC through implementation in an actual test-bed and 

comparison with baseline air delivery systems and conventional controls. In Chapter 5, a 

distributed optimization algorithm is deployed into MPC formulation and the developed DMPC 

controller is implemented to optimize the operation of a localized radiant cooling system.  

Figure 1.2 Research outline 



 

 

 

 

 

 

 

 

 

 

 

 

 

6 

LITERATURE REVIEW 

2.1 Agent-based approach 

Agent-based methods have been applied to building control problems. Several studies are concept-

based, focused on defining the agents and their functions (Davidsson and Boman 2005; Duan and 

Lin 2008; Kelly and Bushby 2012; Sharples, Callaghan, and Clarke 1999; Simoes and Bhattarai 

2011; Treado 2010; Treado and Delgoshaei 2010; Zhao, Suryanarayanan, and Simões 2013; Mo 

2003). Other studies considered actual buildings to demonstrate the application of decomposition 

methods (Cai et al. 2015; Ma, Anderson, and Borrelli 2011; Moroşan et al. 2010), manage the 

needs and resources (Lacroix, Ines, and Mercier 2012; Mokhtar et al. 2013; Yang and Wang 2013), 

and exchange information of room air temperature trajectory between adjacent zones (Moroşan et 

al. 2010; Putta et al. 2014). Our literature review shows that very few studies have developed 

estimation frameworks in sensor networks of complex systems, based on distributed optimization 

(Necoara, Nedelcu, and Dumitrache 2011; Samar, Boyd, and Gorinevsky 2007). Also, this 

approach has not been exploited previously as a potential solution for control-oriented models of 

building systems that can be easier to develop and integrate. This distributed formulation is distinct 

from the control application in the sense that is a static problem in terms of the estimate parameters 

and could be easily generalized to other cases where the controller type is identical.  

In previous studies that utilize the multi-agent approach for building control applications, agents 

are defined in many different ways. For example, in some cases definitions are made according to 

the HVAC source, namely electrical, heating and cooling agents (Zhao, Suryanarayanan, and 

Simões 2013; Simoes and Bhattarai 2011). Other definitions are based on the control hierarchy 

such as central, local (Wang, Yang, and Wang 2010), or producer, distributor, consumer (Lacroix, 

Ines, and Mercier. 2012). Finally, agents may also represent building occupants (Davidsson and 

Boman 2005; Duan and Lin 2008; Mo and Mahdavi 2003). Although theoretical approaches for 

agent definitions exist (Jennings and Bussmann 2003), previous research mainly focuses on 

specific examples or case studies. 
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2.2 System identification 

Grey-box models are considered as robust controllers and have been adopted for many building 

applications (Bacher and Madsen 2011; Berthou et al. 2014; Braun and Chaturvedi 2002; Cai and 

Braun 2015; De Coninck and Helsen 2016; Hazyuk, Ghiaus, and Penhouet 2012; Jiménez, 

Madsen, and Andersen 2008; Kramer, Schijndel, and Schellen 2013; Prívara et al. 2012; Prívara 

et al. 2013; Reynders, Diriken, and Saelens 2014; Široký et al. 2011; Žáčeková, Váňa, and Cigler 

2014). Their structure is fairly simple compared to white-box models implemented in building 

energy simulation tools, and thereby are suitable for implementation in MPC. Compared to black-

box models, grey-box models require a shorter period of data for training (Braun and Chaturvedi 

2002; Reynders, Diriken, and Saelens 2014) and preserve the physical meaning and insight of each 

parameter (Hazyuk, Ghiaus, and Penhouet 2012; Reynders, Diriken, and Saelens 2014). Also, 

grey-box models do not require training data for different control schemes unlike black-box 

models, whose prediction is hardly matched with the experimental data unless all control schemes 

and output ranges are reflected in the training period (Braun and Chaturvedi 2002; Hazyuk, Ghiaus, 

and Penhouet 2012). In some cases, a grey-box model has been utilized as an initial model and 

then transferred to a final ARMAX (Jiménez, Madsen, and Andersen 2008), transfer function 

(Braun and Chaturvedi 2002; Hazyuk, Ghiaus, and Penhouet 2012), or Model Predictive Control 

Relevant Identification (MRI) model (Prívara et al. 2012; Prívara et al. 2013; Žáčeková, Váňa, and 

Cigler. 2014). Overall, complexities in the estimation problem are associated with the non-linearity 

between the estimate parameter and output trajectory, and non-convexity of the objective function. 

As a result, falling in many local minima is quite common and reaching a global minimum is a 

difficult and time-consuming task. 

Several studies emphasize the advantages of grey-box models and show good agreement with 

results from building simulation programs such as EnergyPlus (Prívara et al. 2013) and TRNSYS 

(Berthou et al. 2014; Braun and Chaturvedi 2002; Li et al. 2015; Prívara et al. 2012; Sourbron, 

Verhelst, and Helsen 2013), Modelica (De Coninck et al. 2015; De Coninck and Helsen 2016; 

Reynders, Diriken, and Saelens 2014), and white-box models developed in Matlab environment 

(Hazyuk, Ghiaus, and Penhouet 2012; Hu and Karava 2014). However, simulation studies have 

limitations with regards to their applicability to the actual building estimation problem. Features 

of building simulation that differentiate it from the actual building operation are: (a) Information 

of occupancy schedule and internal heat gain is available. (b) Sensing reflects the true value 
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without consideration of sensor uncertainty and sensor error range. (c) All temperature points of 

the building envelope and equipment heat gain are available, which are unlikely to be measured in 

actual buildings. (d) Rich input excitation is feasible by triggering set-point variations to unrealistic 

bounds. (e) Heat transfer coefficients and material properties are perfectly known so initial 

estimate parameters are decided based on those. Other studies were based on experiments in test-

cells with well-controlled environments that allow rich input excitation without occupant 

interruptions (Bacher and Madsen 2011). Also, good agreement with experimental data from an 

actual multi-zone building has been achieved allowing a rough approximation of the state by 

averaging the room air temperature from 8 different zones (Braun and Chaturvedi 2002), and 

treating the internal heat gain as an additional estimate parameter (Braun and Chaturvedi 2002; 

Cai and Braun 2015). 

Identifiability is an important consideration in data-driven modelling indicating if the identified 

set of estimated parameters represents unique values so it is considered as a true system (Ljung 

1999). Local (or output) identifiability represents the sensitivity of the estimate parameter variation 

to the output trajectory for given training data, thus, it is dependent on the data and model structure 

simultaneously. It is quantitatively expressed by the information matrix and represents the degree 

of the parameter influence to the output trajectory:  

Tˆ ˆY( ) Y( ) m m 
  

, θ, and m represent the output trajectory, estimate parameter, and number of estimate parameters. 

Local identifiability is guaranteed by the full rank of information matrix, which means all 

parameters affect the output trajectory. Structure identifiability is not related to the training data 

but the model structure. It represents the parameter variation to output trajectory given zero initial 

state and zero input except initial input of one; each element of output trajectory is expressed with 

Markov parameter sequence:  

M( ) n1 
 

where: 
n1M( ) C( ) B( ) C( ) A( ) B( )  C( ) A( ) B( )    

M and n represent Markov parameter sequence and number of iteration. A, B, and C represent 

matrices of state space formulation. A model is structural identifiable when the structure 
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identifiability matrix is full rank. Local identifiability and structure identifiability have been 

studied theoretically (Doren et al. 2009) and a systematic experiment design for the building 

estimation problem has been proposed to increase the identifiability (Agbi, Song, and Krogh 

2012). A recent study for a building estimation problem used the identifiability to reduce the 

number of estimate parameters by fixing less identifiable parameters with defined thresholds (Jie 

and Braun 2015). 

Correlation is another important consideration in estimation problems, and it is defined differently 

according to the associated variables such as the estimate parameter, input signal, and residual. 

Parameter correlation refers to the correlated effects from two different parameters to the output 

trajectory; in case that two parameters give similar effects, the variation of one parameter is 

dependent on that of the other during the optimization process. A potential solution is transforming 

the parameter set to a less correlated that is a linear combination of the initial set, through Principal 

Component Analysis (PCA). A theoretical discussion of the PCA method was presented in Del 

Barrio and Guyon 2003, followed by a building application example in Del Barrio and Guyon 

2004. Similar studies were carried out to decorrelate the parameters by transforming their 

coordinates (Jiménez, Madsen, and Andersen 2008) or fixing the most correlated parameters one 

at a time with defined thresholds (Jie and Braun 2015). An implementable solution is providing 

sufficient input excitation during the experiment. Pseudo random binary sequence (PRBS) is a 

typical method, which has been widely used for building applications. It has been applied for grey-

box models by exciting the heat input directly (Bacher and Madsen 2011; Hazyuk, Ghiaus, and 

Penhouet 2012) and black-box models by manipulating the set-point temperature (Li and Wen 

2014; Royer et al. 2012). Rich excitation is feasible in simulation (Hazyuk, Ghiaus, and Penhouet 

2012; Li and Wen 2014; Royer et al. 2014) and experimental studies in test-cells without actual 

occupants (Bacher and Madsen 2011), but sometimes it reaches unrealistic bounds (Bacher and 

Madsen 2011; Hazyuk, Ghiaus, and Penhouet 2012; Li and Wen 2014). A recent case-study found 

an optimal experiment design for the input signal, which is turned out to be a bang-bang type, and 

reduced the data set size for estimation (Cai et al. 2016). Regarding the correlation originated from 

the inputs, signals of exogenous inputs such as the outdoor air temperature and solar radiation can 

be easily correlated. Including several days in the training data set with different weather 

conditions such as cloudy and sunny days resolves this issue. Finally, correlation analysis of the 

residual typically entails the auto-correlation and the cross-correlation between the input signal 
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and residual, referred as whiteness and independence test respectively (Kramer, Schijndel, and 

Schellen 2013). The auto-correlation function of the residual in simulation studies reveals that the 

residual is a white noise type (Jiménez, Madsen, and Andersen 2008; Reynders, Diriken, and 

Saelens 2014), which means that there is no missing input and the model structure is not too simple 

(Kramer, Schijndel, and Schellen 2013). Strong cross-correlation between the input and the 

residual represents an incorrect model structure (Kramer, Schijndel, and Schellen 2013). Previous 

studies have shown less cross-correlation in a simulation study where the uncertainty is not 

significant (Jiménez, Madsen, and Andersen 2008) and an experimental study of an actual building 

with free floating conditions (Kramer, Schijndel, and Schellen 2013).  

Based on this background information, several days with different weather conditions were used 

for the experiments conducted in this study to collect training data, in order to decorrelate the 

exogenous input signal. Also, an air temperature setpoint was randomly selected from the comfort 

bound and implemented for a given time interval, to provide sufficient input excitation and to 

decorrelate the estimate parameters and increase their identifiability. For the grey-box model 

estimation, an approach using a sensitivity-based parameter range selection and range shift was 

implemented to avoid falling into a local minimum in the resulting non-linear and non-convex 

optimization problem. The local identifiability of each estimate parameter was quantified with the 

significance index for a given training data set, and utilized for the sub-system model comparison 

along with the correlation index based on the correlation coefficient of each two pairs of estimate 

parameters. The auto-correlation and cross-correlation functions were used to test the final 

estimated models as a post process technique.  

2.3 Radiant floor system 

Radiant floor heating and cooling systems, also known as Thermally Activated Building Systems 

(TABS), has been investigated for a long time and their superior performance in terms of energy 

savings and improved comfort, have been revealed in many studies (Fabrizio et al. 2012; Kim and 

Olesen 2015a; Kim and Olesen 2015b; Nall 2013a; Nall 2013b; Nall 2013c; Olesen 2008; Rhee 

and Kim 2015; Sastry and Rumsey 2014). Specific advantages are: (a) The room air temperature 

can be maintained at lower and higher setpoint for the heating and cooling season respectively due 

to the radiative heat exchange with the large floor surface, thereby less energy is consumed while 

maintaining equivalent comfort. (b) The large slab surface area yields uniform heat transfer to the 
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room so occupant thermal comfort is improved. (c) The system is operated with moderate chilled 

or hot water temperature so the efficiency of the plant is higher. However, control of this system 

is challenging due to the large thermal mass. 

Many previous studies for the radiant floor system focused on the temperature regulation during 

the heating season. Conventional feedback control was implemented to control the valve and 

maintain the room air temperature (Ahn and Song 2010; Cho and Zaheer-uddin 1999; Haddad, 

Purdy, and Laouadi 2007; Rhee, Yeo, and Kim 2011) and Predicted Mean Vote (PMV) (Batista et 

al. 2013). Also, the outdoor air temperature was utilized to control the supply water temperature 

(Arteconi et al. 2014; Gwerder et al. 2008; Gwerder et al. 2009; Lehmann et al. 2011; Olesen, 

Sommer, and Duchting 2002; Park et al. 2014; Schmelas et al. 2015) and heat flux (Athienitis, 

1997) provided to the concrete slab. Nevertheless, the conditioned rooms are mostly overheated 

during the daytime, even in an experiment with a test-cell (Schmelas et al. 2015). This results in 

waste of heating energy attributed to the naïve control strategy that requires cooling for the daytime. 

This overheating issue might become more severe in office environments where a significant 

amount of internal heat gain is generated during the occupied hours.  

A distinct feature of the radiant floor system is the potential for load shifting in the cooling season. 

Many studies have focused on the energy and cost saving potential of air system due to pre-cooling 

(Turner, Walker, and Roux 2015; Braun et al. 2001; Braun 2003; Braun and Lee 2006; Cai et al. 

2016; Lee and Braun 2006), which in some cases included a thermal storage system in plant side 

(Henze, Felsmann, and Knabe 2004). In those studies, pre-cooling strategies have clearly shown 

the energy and cost saving potential even with rule-based controls applied to building energy 

simulation tools (Turner et al. 2015), control-oriented building models (Braun et al. 2001; Braun 

2003; Braun and Lee 2006; Lee and Braun 2006; Lee and Braun 2008), and field tests (Braun 2003; 

Lee and Braun 2006). The radiant floor system due to its large thermal capacity with concrete 

structure provides an opportunity to use pre-cooling. This was shown in a recent study with a 

heuristic control strategy (Park et al. 2014). 

Feedback and heuristic strategies are deficient for radiant floor systems in terms of preventing the 

overheating and maximizing the pre-cooling potential in the heating and cooling season, 

respectively. Advanced control methods such as MPC have the ability to incorporate exogenous 

inputs and predict the thermal dynamics, in order to optimize the system performance over a 

prediction horizon (Oldewurtel et al. 2012). For the heating season, a simulation study (Candanedo 
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et al. 2010) and experimental implementations were carried out using fuzzy logic (Kang, Hyun, 

and Park 2015) and artificial neural networks (Lee, Yeo, and Kim 2002) in residential buildings. 

Also, the radiant floor heating system has been investigated in office environments, with actual 

occupants (Váňa et al. 2014) and integrated with a storage tanks and a solar-assisted air-to-water 

heat pump to optimize the utilization of renewable energy sources (Li et al. 2015). In cooling 

applications, various optimization methods were applied to solve the non-linear problem such as 

pattern search and particle swarm optimizer (Gayeski et al. 2012; May-Ostendorp et al. 2013) or 

the CPLEX (CPLEX Optimization Software) was used (Feng at al. 2015). Some of them attempted 

to utilize the pre-cooling potential of a hybrid system of radiant ceiling (concrete) and mixed mode 

cooling with natural ventilation (May-Ostendorp et al. 2013), or with a low lift chiller taking 

advantage of the higher efficiency at night (Gayeski et al. 2012). In other simulation studies, the 

yearly performance of the radiant floor system with MPC was investigated (Sourbron, Verhelst, 

and Helsen 2013; Lehmann et al. 2013). 

Although, the radiant floor heating and cooling system has been investigated in many building 

applications including advanced control strategies with MPC, its potential has not been fully 

explored. In heating season, overheating is still seen in most cases (Candanedo et al. 2010; Kang, 

Hyun, and Park 2015; Lee, Yeo, and Kim 2002; Váňa et al. 2014) as it is difficult to prevent 

especially for buildings with large glazing area (Dermardiros et al. 2017) that might require 

sophisticated predictive control strategies. Very few studies examined the performance of radiant 

systems for cooling applications and pre-cooling is only observed in experiments with confined 

test-cells (Gayeski et al. 2012; May-Ostendorp et al. 2013). Moreover, for most MPC studies, the 

objective function formulation includes several terms (e.g., energy consumption and comfort), and 

thereby heuristic weights are multiplied to each term that might affect the controller performance. 

For non-linear optimization, an initial guess for the control input trajectory is required for every 

MPC calculation (Gayeski et al. 2012; Li et al. 2015), which might affect the controller 

performance and computation time. When it comes to the generalization of the MPC formulation 

to other configurations, such as localized comfort delivery, multi-zones or building clusters, using 

heuristics complicates the optimization problem. Also, in some studies, the evaluation of the MPC 

performance might not be realistic as the estimated model may have not been sufficiently accurate 

for implementation due to the system complexity (Feng et al. 2015) or it is not based on data that 
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are collected in an actual building (Candanedo et al. 2010; Henze, Felsmann, and Knabe 2004; 

Lehmann et al. 2013; Li et al. 2015; Sourbron, Verhelst, and Helsen 2013). 

2.4 Local conditioning system 

Despite the advent of new technology for distributed sensing, data communication, and 

information processing, advantages are confined to typical HVAC systems enhanced with new 

control functions (Baker and Hoyt 2016; Erickson and Cerpa 2012). Additional benefits could be 

leveraged using systems that facilitate the delivery of personalized or localized thermal 

environments (Gao and Keshav 2013a; Gao and Keshav 2013b). Various types of HVAC systems 

that provide different thermal conditions for an individual occupant (known as Task-ambient 

Conditioning (TAC) or Personal Environmental Control (PEC)) have been studied up to date 

(Heidarinejad et al. 2018; Vesely and Zeiler 2014; Zhang et al. 2010). These include a chair (Zhang, 

Arens, and Zhai 2015; Pasut et al. 2015) and desk diffusers (Amai et al. 2017; Kong et al. 2017) 

or heating panels (Amai et al. 2017, Vissers 2012) for conditioning body parts. However, heating 

is much easier to implement than cooling, primarily due to the problem of dealing with rejected 

heat while infrared heaters may create discomfort due to thermal asymmetry. Also, with only few 

exemptions (Lee et al. 2018; Andersen et al. 2016) TAC or PEC systems have operated 

independently from the building’s environmental control. At the same time, different approaches 

with building-integrated HVAC such as under-plenum air distribution (UFAD) (Schiavon et al. 

2011) and thermally-activated building systems (TABS), such as radiant floor heating system 

(Foda and Sirén 2012), have been explored focusing on sizing the cooling capacity. Although, it 

is challenging for building-integrated HVAC such as VAV diffusers, UFAD, and radiant systems 

to reach the resolution of an individual occupant, localized thermal zones can be used to facilitate 

different occupancy schedules and occupants preferring warm, cool or accepting a wider range of 

thermal conditions (Lee et al. 2017, Lee et al. 2018). 

Open-plan spaces have become a new trend in office buildings, and with the availability of data 

from sensors, smart devices and occupants, smart comfort delivery can provide significant 

opportunities for energy savings (Bauman et al. 2015; Pasut et al. 2015) as conditioning is 

deployed where it is actually needed. When implemented in a building, it is expected to enable an 

expansion of the temperature set-points in unoccupied spaces, resulting in energy savings that can 
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be over 20% compared to baseline approaches depending on the building and climate (Hoyt, Arens, 

and Zhang 2014). 

From a localized thermal management perspective, radiant systems with distributed sensing and 

control loops, are capable of providing different thermal environments by selectively conditioning 

a slab section as opposed to air systems in which the air is mixed easily in an open space. This 

leads to better occupant comfort as different thermal preferences can be simultaneously met.  

However, conventional feedback strategies for radiant floor systems are limited in terms of 

providing the anticipated benefits for building climate control, due to the large thermal capacity. 

Model predictive control (MPC) is considered as a promising solution for this system as shown in 

literature (Bengea et al. 2014; Sourbron, Verhelst and Helsen 2013; Váňa et al. 2014; Feng et al. 

2015). In this approach, operation is optimized using information for the specific building and 

climate through an estimated process model to predict the future evolution of the system, while 

incorporating the most up-to-date information on weather forecast and system dynamics (Braun 

1990; Oldewurtel et al. 2012). The benefits of such systems can be augmented by incorporating in 

sensing and control frameworks the building occupants, i.e. their schedule and thermal preferences, 

to facilitate localized comfort delivery in open-plan office spaces.  

On the other hand, MPC requires high engineering cost for developing control-oriented building 

models which is referred to as system identification. In the case of high performance buildings, in 

which the requirements for thermal environments with higher resolution and energy savings are 

increased, complex building designs bring additional challenges for developing building models 

and typical parameter estimation techniques may become infeasible (Joe and Karava 2016). 

Moreover, as the building scale becomes large or finer control granularity is needed, the dimension 

of control variables is increased; thereby the computation cost to find optimal solutions is also 

higher, which makes the MPC problem intractable (Cai et al. 2016; Ma 2012). In this regard, 

scalable distributed algorithms need to be developed that are applicable to building applications 

for smart thermal environment control and flexible to different scales of the system for the 

generalization. 

2.5 Distributed algorithm for MPC 

In controls community, the concept of DMPC was developed to simplify complex control 

problems and has been investigated for a long time. As a result, several theoretical DMPC 
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approaches exist. An extensive overview and classification is presented in (Negenborn and 

Maestre 2014). Other comprehensive reviews exist with application to power (Camponogara et al. 

2002) and chemical system (Christofides et al. 2013) applications. In these studies, the general 

DMPC structure is discussed and compared to centralized or decentralized MPC approaches, by 

presenting the goal of decomposition (Camponogara et al. 2002) and reviewing the evolution of 

theoretical approaches (Christofides et al. 2013). With regards to the details of the optimization 

problem and its decomposition, a well-organized and comprehensive classification based on the 

couplings in cost function and constraints between the sub-systems is discussed in (Necoara, 

Nedelcu, and Dumitrache 2011) along with various decomposition algorithms.  

In building applications, Bender’s decomposition, one of the initial decomposition methods, was 

used for a multi-zone heating case with central radiant floor and individual convectors (Moroşan et 

al. 2010). A classical but more recent decomposition method, the primal decomposition, was 

utilized for solving a resource allocation problem using a coordinator between the grid and a multi-

zone building (Lamoudi, Alamir and Béguery 2011) and a building cluster (Pflaum, Alamir, and 

Lamoudi 2014). The dual decomposition method has been implemented on a multi-zone building 

application with an Air Handling Unit (AHU) and multiple Variable Air Volume (VAV) boxes 

(Koehler and Borrelli 2013; Ma, Anderson, and Borrelli 2011; Ma, Richer, and Borrelli 2012). This 

approach was also applied to a distributed estimation problem (Joe and Karava 2016) as a 

negotiation strategy and was demonstrated using a case study with an open-plan office space with 

a radiant floor system. However, dual decomposition is not guaranteed to converge for certain 

problems whose objective functions are not strictly convex, and requires a fine tuning of step-size 

parameters. On the other hand, the alternating directions of multipliers (ADMM) is another primal-

dual based method that utilizes an extra quadratic penalty term when formulating the Lagrangian 

function, which has much better convergence behavior compared to dual decomposition. ADMM 

has been used for several case studies of multi-zone buildings including HVAC component 

coordination (Cai et al. 2016a) and demand response (Cai et al. 2016c) and monthly optimization 

to reduce demand charge (Cai et al. 2016b) Nevertheless, the conventional ADMM method is 

based on a sequential update that requires the order and priority of the agents. Very recently a 

Proximal Jacobian ADMM (PJ ADMM) method that facilitates parallel computation was 

developed and implemented for a simulation case study with a single zone served with several roof 

top units (RTUs) (Hou et al. 2016). Other than typical decomposition method, token-based 
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scheduling strategy was used in a simulation study with multi-zones sharing a chiller plant. This 

method solves several sub-problems including multiple zones, chiller, and duct pressure 

distributions with sequential manner while zone modules are optimized in parallel (Radhakrishnan 

et al. 2015; Radhakrishnan et al. 2016). In our study, the DMPC algorithm is developed based on 

the PJ ADMM, and implemented to an actual building to demonstrate optimal performance under 

realistic conditions. 
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AGENT–BASED ESTIMATION FOR CONTROL 
ORIENTED BUILDING MODELS 

3.1 Overview 

The objective of the work presented in this chapter is to develop and demonstrate, for the first 

time, an agent-based framework for data-driven grey-box building models. The proposed method 

introduces building sub-system agents, and each sub-system agent uses information from sensors 

to solve a smaller-scale estimation problem, with a lower number of parameters compared to 

centralized schemes. Several models are considered for the sub-system agents and a systematic 

selection approach is established considering the root mean square error, the parameter sensitivity 

to output trajectory, and the parameter correlation. The final model is integrated from selected 

models for each agent. A classical decomposition approach, the dual decomposition, that takes 

advantage of the separable optimization problem with Lagrangian, is used to solve the maximum 

likelihood estimation problem in a distributed setting. Two methods are presented based on the 

distributed and decentralized estimation (Negenborn and Maestre 2014), resulting in a negotiated-

shared parameter model and a free-shared parameter model respectively.  

The developed agent-based system identification framework is demonstrated using a case-study 

of an open plan office space with multiple sub-systems (radiant floor, double façade, AHU) and 

uncontrolled occupant schedule. Additional case-studies are carried out for a localized radiant 

comfort system and parameter adaptation for different weather conditions and are discussed in 

Chapters 4 and 5. 

3.2 Methodology 

This section starts with the definition of the agent structure and then presents the formulation of 

the grey-box building sub-system models along with the methodology developed to improve the 

optimization process, and to establish the criteria for model quality. Finally, the shared parameter 

negotiation and agent-based estimation framework are described.  
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3.2.1 Agent definition 

In the proposed framework, each agent represents a building sub-system type: (a) terminal comfort 

delivery such as radiant heating/cooling system, chilled beam, under plenum air distribution; (b) 

building envelope (double façade, curtain wall, etc); (c) zone, i.e. space represented with a single 

zone or multiple sub-zones for local comfort delivery. Each agent in the multi-agent system can 

access only a portion of the sensors but has the ability to share data and communicate with its 

neighbouring agents. The integrated system agent is assembled with information from sub-system 

agents. Also, there may be sensors deployed outside of the building for measuring and monitoring 

environment parameters (environment agent).  

3.2.2 Estimation of sub-system models 

A grey-box model is formed from the heat balance equations on each node. An example for a 

temperature node is presented in Equation 3.1. X, Cp, R, and Q represent the node temperature, the 

specific heat capacity, the resistance between two nodes, and the heat flux input to the node, 

respectively. α is the heat flux coefficient and represents the ratio of the thermal influence of each 

disturbance input to the state. The neighbouring temperature node is denoted as Xadj. Then the 

continuous time state-space equation is formulated with the state matrix A, input matrix B, state 

vector X, and input vector u (Equation 3.2). All environment data including outdoor air temperature 

and solar radiation as well as the controlled heating and cooling supply to the zone form the input 

vector u. Variables such as the capacity, resistance, and heat flux coefficient α form matrix A and 

B. The solution of this first order ordinary differential equation is a discretized form of state-space 

equation assuming that the control inputs are constant for each time-step (Equation 3.1). For this 

study, the time-step, k, is set to 5 minutes. The temperature of the next time-step is a linear function 

of the temperature and input at the current time-step and Ad and Bd matrix. 

X  Xadj node Cp X    Qnode node   node node Radj~ node 
                                                            (Eq 3.1) 

X  AX   Bu                                                                                                              (Eq 3.2) 

X  A X   B uk 1 d k d k                                                                                                            (Eq 3.3) 

In general, the grey-box estimation problem is not linear nor convex in terms of estimate parameter 

and output temperature trajectory. Statistically, the model structure is a Maximum Likelihood 
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Estimator (MLE) that requires prior information for each estimate parameter, . A typical objective 

function is the summation of squared residual between the actual operation and the model 

prediction through all iterations, n. In this study, the square of the above function is used to expand 

the search space (Equation 3.4). The inverse of the capacity and resistance, and the heat flux 

coefficient, denoted with H, U and α (Equation 3.4), are estimate parameters, so each element in 

Ad and Bd matrix of the discrete-time state-space equation is in the form of multiplication of 

variables. 

2n
minimize  ˆ    y k  y k  

2 

k1 

where: 

X k 1 A ( )X k  B ( )u k    d d 

y k   d  ˆ C X k  

1 1 1 1 

 1 , ,CpnCp
, R1 ,, RnR 

1  n   H1, ,  HnH
,U1,,UnU

,1,, n   Cp  , , ,       

( E q 3 . 4 ) 

The explicit matrix expression is shown in Equation 3.5. The estimation trajectory is a linear 

function of the initial state and input trajectory. The lower-triangle matrix with Ad,  Bd and  Cd 

becomes larger as the estimation period is increased, and the estimation problem becomes more 

complex. Fmincon was used in Matlab environment among several optimization solvers for this 

constrained non-linear optimization problem. The active-set algorithm was selected (Mathworks 

2015). 

2T minimize Ŷ ( ) Y  Ŷ ( ) Y         
where: 

 ( )  C B ( )  0   0C A     ŷ  1  d d   d d    u 0  
   2     ˆ  2 C A   C A ( )   C B ( )  u y  d d ( )  d d   Bd ( )  d d   0 1       x0Ŷ ( )                  
        

n n1 n2y nˆ     C A ( ) B ( ) C A ( ) B ( )  C B ( ) u n 1  C A ( )  d d d d d  d  d d     d d   
1 1 1 1 , ,Cp , R ,, R , , ,  H  H ,U ,,U , , ,  Cp1  nCp 1 nR 1  n    1, ,  nH 1 nU 1  n   (Eq 3.5) 

This grey-box estimation has the following features: (a) Large number of parameters including the 

resistance, capacitance, and heat flux coefficient. (b) Large search region for each parameter; this 

large bound increases the chance to fall into a local minimum while there might be a global 

minimum. (c) Different sensitivity of each estimate parameter to the output trajectory so 
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parameters require different bounds, which requires trial and error based on intuition and 

engineering knowledge. Moreover, for the building estimation problem, typically a local minimum 

is found in the case of large air capacity that results in flat temperature when no or insufficient 

input excitation is given. 

In this study, a sensitivity-based parameter range selection and range shift is implemented to 

update the parameter bound during the optimization process. In our approach, each parameter has 

a different search range that has the same sensitivity to the output so that optimal values are found 

based on impartial optimization for all parameters. Lower and upper bounds of each parameter are 

set with a bound range γp that gives the same perturbation to the output trajectory (Equation 3.6). 

This is based on the standard deviation of the experimental output trajectory as follows: 

ini ini ini ini [ , p  UB  ]  [    ,    p ]p LB, , p p p p p 

where : 

 ˆ ini ini T ˆ ini ini 
2 

Y (   ) Y (   )p p p p p  arg min Ystd    
[0,0.99]  n 

                                                  (Eq 3.6) 

Typically, the optimal parameter set is not inside the initial parameter range so a range shift method 

is introduced. The algorithm runs until all parameters are located inside the stop range ε, which is 

the ratio between the distance from the initial value and bound and the distance from the initial 

and optimal value in each iteration (Table 3.1). Figure 3.1 shows the parameter range shift 

algorithm for parameter θp. k represents the time and the value of ε is 0.01 for this study. During 

the initial iterations, optimized values are close to the upper or lower bound while as the iterative 

process evolves parameter bounds are shifted with a different magnitude. In this way, the optimal 

value of each parameter is found based on different moving steps according to its significance. 

Finally, all parameters are inside the stop range and the iteration loop is terminated.  

Table 3.1 Iteration loop for the parameter range shift 

k1 k k kwhile (  ) ( p  UB   p )  p p , 

T
k1 k k  arg  min  Ŷ ( )  Y  Ŷ  2 

 ( )  Yp p p    k k k [ , , p  UB, ]p  p LB  

k 1 k 1 k 1 k 1 k 1 k 1[ , p  UB  ]  [    ,    p ]p LB, , p p p p p 

end 

https://��[0,0.99


 

 

  

 

 

 

21 

Figure 3.1 Graphical representation of the parameter range shift 

3.2.3 Criteria for model quality 

The agent-based estimation approach developed in this study, is based on the optimization of sub-

system models for which, each agent uses its own sensor and the experimental trajectory for the 

boundary temperature from its adjacent agent. The final model is assembled without further 

optimization. Therefore, accurate and robust models are required in the sub-system modelling step. 

In this regard, several criteria, including the prediction error, parameter significance and parameter 

correlation, are considered to select the best model among several candidates.  

The Root Mean Square Error (RMSE) that shows the error intuitively while maintaining the actual 

unit of the output data was used for the comparison of each sub-system model. , k, and n in 

Equation 3.7 represent the model output, time, and number of data. 

n  ˆ[ ] [ ]2 ˆT y k y k  Y Yk1RMSE   
n n                                                                                          (Eq 3.7) 

The models are also compared based on the significance index, SIp. Sensitivity of the output 

trajectory from the model parameter variation is denoted as sensitivity matrix S based on the 

parameter perturbation method (Equation 3.8) that enables the approximated calculation of 

sensitivity for the grey-box model where the output trajectory is not explicitly expressed with 

differentiable function according to each parameter (Del Barrio and Guyon 2003): 
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Ŷ ( )p Ŷ ( p  p )  Ŷ ( p     )
S  p  p p (Eq 3.8) 

S  Sp p p                                                                                                                         (Eq 3.9) 

T S Sp pSI  
np

                                                                                                                      (Eq 3.10) 

The variation of each parameter comes from the sensitivity-based parameter range γp discussed in 

Section 3.2. Herein γp is recalculated with the optimized value rather than the initial parameter. 

More specifically, 50 % of the γp is multiplied with the parameter value ( p 0.5 p p ). For a fair 

comparison between parameters with different units, the reduced sensitivity matrix is used 

(Equation 3.9) (Del Barrio and Guyon 2003). The significance index of parameter p, SIp is induced 

from the reduced sensitivity matrix, whose unit is°C (Equation 3.10). 

Finally, the correlation index, CIp (Equation 3.11) is also introduced for the sub-system model 

comparison. The correlation coefficient shows how much each two parameters are correlated, 

which is denoted as ρpq. In this study, the Pearson product-moment correlation coefficient is used. 

Kpq and σp represent the covariance between two reduced sensitivities from two parameters of θp 

and θq, and the standard deviation of the reduced sensitivity from the parameter θp. ̅  and ̅ 

represent column vectors consisting of averaged values of the reduced sensitivity matrices  and 

. The obtained correlation coefficients are averaged for each parameter except that with itself, 

which is 1. In Equation 3.11 m represents the number of estimate parameters, and p and q represent 

the two pairs of estimate parameters. A model with parameters that have lower correlation index 

is considered to be superior. 

 m  
CI p  

1 pq  1 
m 1   q1  

where : 
T S  S S  SK pq  p p   q q 

  
   T T

pq 
p q  S  S  S  S  S  S  S  S p p p p q q q q                                               (Eq 3.11) 
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3.2.4 Shared parameter negotiation 

In the agent-based estimation framework of this study, each agent has at least one sensor and 

boundary temperatures from neighboring agents or environment data such as the outdoor air 

temperature. Figure 3.2 presents an example of an integration of two sub-system agents. Each sub-

system agent has a parameter of resistance for a given physical location, named as shared 

parameter in this study (shared resistances are denoted with dotted lines in Figure 3.2). All sub-

system agents are estimated independently, yielding different values of the shared parameter which 

are denoted as R23(i) and R23(j). Since the final integrated system agent requires one value (R23(int)) 

where a shared parameter exists, a parameter negotiation based on the dual decomposition is used 

to converge the different values from the sub-system model estimation to an identical value.  

This type of distributed optimization problem is classified as Decoupled Cost but Coupled 

Constraints (DCCC) (Necoara, Nedelcu, and Dumitrache 2011). Decoupled cost is formed when 

the sensors are installed for all sub-agents and coupled constraints are shared parameters between 

each neighboring agent. In the dual decomposition method, the centralized optimization problem 

is transformed to Lagrangian dual function. The objective function of Lagrangian dual function 

consists of sub-problem’s objective functions and consensus constraints of shared estimate 

parameters multiplied by the dual variable (Lagrangian multiplier). In this way, the problem is 

split into separate Lagrangian dual functions solved in parallel by updating the dual variables so 

the complicating (shared) variables are converged to the identical value (Nedi´c and Ozdaglar 

2009). 

Figure 3.2 Example of sub-system and integrated system agents 



 

 

 

 

  

 

  

 

 

 

  

 

24 

Table 3.2 Dual decomposition algorithm for the negotiation between agent i and j 

k 1 k 1while ij ( )i ij ( j ) 

k 1 k k k  argmin  g ( )    i i i ij ij ( )i 
ki 

k 1 k k k  argmin  g ( )   j j j ij ij ( )j
k j 

k 1 k k 1 k 1ij  ij  ij ij ( )i ij ( j )  
end 

The typical dual decomposition without bounds for all iterations was not successful in our 

preliminary study because of the non-convex nature of the objective function. Therefore, lower 

and upper bounds for the shared parameters are set based on the assumption that the optimal value 

is located between two bounds which are the optimized values from the previous iteration. The 

dual decomposition algorithm for the negotiation between two sub-system agents i and j is shown 

in Table 3.2. θij(i)and θij(j) represent shared parameters that belong to agent i and j, respectively. A 

normalized form of the objective function g(θ), with a percentage of the relative difference 

between the optimal value from the sub-system agent f(θ*) and the current optimal value f(θ), was 

introduced for a fair optimization of each agent: 

k  f ( )k  f ( *   )
g( ) 100 f ( )* 

   (Eq 3.12) 

The dual variable λ is linearly updated with the time-step μ and the distance between the shared 

parameters θij(i) and θij(j). The initial λ and the time-step μ are set to 0 and 0.01, for this study. 

3.2.5 Residual analysis 

As discussed in Section 2 (Background), it may not be realistic to expect that the auto-correlation 

of the residual and cross-correlation between the input signal and residual based on experiments 

with the building in its actual operation mode (i.e. with uncertainty due to occupancy schedule, 

etc) is inside the high confidence range. Therefore, in this study residual analysis does not represent 

an absolute criterion but provides some useful information as a post processing technique. The 

equations of auto-correlation (Equation 3.13) and cross-correlation (Equation 3.14) functions are 

shown below: 
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n h k h  kr  r r  r k 1̂ rr ( )h  n k k r  r r  r  



k1          (Eq 3.13) 

n h k h  kr  r u  u k1̂ ru ( )h  n

i 

k k r  r u  u k1             (Eq 3.14) 

r, u, and h represent the residual between the experiment and prediction, input such as boundary 

temperature or heat flux, and the lag. 75% of the total estimation data length was set for the number 

of lags (h) since we use experimental datasets, although previous studies based on simulation used 

a significantly lower number (Bacher and Madsen 2011; Jiménez, Madsen, and Andersen 2008; 

Kramer, Schijndel, and Schellen 2013). The confidence range was set based on 95% confidence 

band: ±1.96/√ . 

3.2.6 Agent-based estimation 

The agent-based estimation framework consists of two different methods; the negotiated shared-

parameter and the free shared-parameter model, representing the distributed and decentralized 

approach respectively. Both start from sub-system model estimations. The outcome of the 

distributed method is a typical grey-box model where physical interpretation of the shared 

parameters is incorporated; different shared parameters from sub-system model estimations are 

negotiated to be identical. In the decentralized approach, the outcome is a ʺpseudo grey-box” 

model without physical interpretation, as two different shared parameters from the sub-system 

model estimations are maintained.   

3.2.6.1 Distributed method: negotiated-shared parameter model 

Figure 3.3 presents the agent-based estimation framework of the distributed method. Sensor 

information and parameter information are delivered as shown by the dotted and solid arrow 

respectively. The initial estimate parameter θ0 comes from the initial parameter agent, and may 

include information from the building drawings, literature, or a building audit. With this initial 

parameter, all sub-system models are estimated as discussed in Section 3.2. All models for each 

sub-system agent are compared to each other with three criteria including the RMSE, significance 

index SI, and correlation index CI, and the best models are selected (Section 3.3). As each sub-
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system agent is optimized, the shared parameters for the selected best models are negotiated to be 

identical based on the dual decomposition method. In this step, the sensitivity-based parameter 

range is fixed at the final (optimized) value from the sub-system agent. Then, sub-system agent 

optimizations are carried out independently for fine tuning, by fixing the shared parameters to 

estimate the rest of the parameters, to improve the accuracy of sub-system models. Finally, the 

integrated model is assembled and tested with RMSE and residual analysis of auto-correlation and 

cross-correlation. 

Figure 3.3 Agent-based estimation framework (distributed method) 
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3.2.6.2 Decentralized method: free-shared parameter model 

Figure 3.4 shows the information flow of the decentralized estimation. The initial steps are the 

same with the distributed estimation but the shared parameters are not negotiated. Therefore, 

coupled elements in off-diagonal parts of a state matrix have different value (R23(i) and R23(j)) 

originate from each sub-system agent. A generic example, for the integrated-system agent in 

Figure 3.2, is shown in Equation 3.15. 

     1 1 1 1 1
       
 Cp2 


 R12  R23(  )i 


 Cp2 


 R23(  )i 


  

A    
    1 1 1 1 1 
      Cp  R  Cp  R R   3 23( j) 3 23( )j 34      (Eq. 15) 

All sub-system agents are estimated independently using boundary temperatures for the adjacent 

agent from the experimental data. Thus, the integrated model yields good results once each sub-

model shows good agreement with the experiment data. In other words, well-estimated sub-system 

models guarantee the prediction accuracy of the integrated model regardless of the agreement of 

shared parameters. However, the physical meaning of shared parameters is compromised.  

Figure 3.4 Agent-based estimation framework (decentralized method) 
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3.3 Case study: single zone modelling 

This section presents a case-study for the implementation of the agent-based system identification 

framework. It starts with a description of the test-bed and the data collection process and then 

presents the model estimation and selection for each sub-system and the integrated system. 

3.3.1 Experiment 

An open plan office space (9.9 m by 10.5 m) that can host up to 20 occupants is a Living Laboratory 

and was considered as test-bed for this study (Figure 3.5). Its main features are a radiant floor slab 

and a south facing double façade system with 1.52 m cavity. A Building Management System 

(BMS) is available through the installed Tridium JACE controllers and Niagara/AX software 

framework (Tridium Inc), which in addition to a variety of internet-enabled features gives the 

ability to monitor, control, and automate all the building systems regardless of manufacturer or 

communication protocols. 

Figure 3.5 Exterior view of the building and test-bed (Living Lab 1) 

Figure 3.6 Section view of the open-plan office space with details of the floor slab (notation: T 
and sol represent the sensors for temperature and solar radiation) 
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Figure 3.7 Hydronic circuit of the radiant floor system (notation: T and m represent the sensors 
for temperature and flow rate) 

All sensor locations are illustrated in Figure 3.6 which presents a section view of the office. Details 

of the hydronic circuit for the radiant floor system are shown in Figure 3.7. Thermistors were used 

to measure the outdoor air temperature on the roof (BAPI, BA/10K-3, ±0.2% @0~70°C), the 

cavity air temperature in the double façade (BAPI, BA/10K-3, ±0.2% @0~70°C), and the room 

air temperature (BAPI, BA/BS2-WTH-SO, ±0.3°C @ 25°C). The solar radiation was measured 

with two LI-COR 200-SL pyranometers (resolution of 0.1 W/m2 and accuracy of 3%) mounted on 

the exterior glass surface (vertical) and the roof of the double façade (horizontal). Resistance 

Temperature Detectors (RTDs) were used for measuring the air temperature of the duct (ACI, 

A/TT1K-6, ±0.5% @-40~85°C), pipe water temperature of the radiant floor (ACI, A/TT1K-5, 

±0.5%), and slab temperature inside the concrete (ACI, A/TT1K-LTS, ±0.3°C @ 0°C). The slab 

is divided into 10 sections. An RTD sensor with copper shielding is embedded at the center of each 

section, around 1.9 cm from the top surface. The average reading of 10 RTD sensors was used for 

the estimation. The radiant floor in this office space has been constructed to provide local control 

and sensing capabilities, since this is a research Living Laboratory. In this study, although the 

average value of 10 RTD sensors was used, their difference was less than 1°C. Therefore, one or 

two sensors would be sufficient for this experiment and hence, the methodology can be generalized 

to typical buildings. The pipe circuit after the pump consists of 10 parallel loops in the concrete 

slab, which are merged prior to the heat exchanger (Figure 3.7). The supply and return water 

temperature was measured at the inlet and outlet side of the heat exchanger. The water flow rate 

was measured with a turbine flow meter (ONICOM, F-1110, ±1 @ 3~30ft/s) installed before the 

heat exchanger.  
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Occupants (graduate students) have different schedules which was not monitored and no 

information was stored for the internal heat gains including the equipment and people except the 

power consumption of the electric lighting, which was measured in the BMS system. A roller 

shade installed on the inside surface of the window was fixed at a low position to decrease the 

uncertainty due to the solar gains and to eliminate the need to account for the time varying 

resistance between the cavity and room that was used in previous studies (Gwerder and Gyalistras 

2013; Sun et al. 2010). The double façade has two vents on the lower section; one is between the 

cavity and outside and the other is between the cavity and the room. An exhaust fan with vent is 

located on the upper section of the façade. All vents were closed during the experiment and the 

fan was switched off so natural and mechanical ventilation in the cavity were not considered in 

this study. The room was conditioned using the radiant floor system by controlling the supply 

water temperature with PID so the air temperature set-point was met, while the water flow rate 

was fixed at 0.046 cubic meter per minute (12 gallon per minute), which is the maximum flow rate 

for the given pressure setpoint of 0.69 bar (10 pound per square inch) of the pipe. The air 

temperature set-point was modified every 2 hours, based on a randomly selected value between 21 

to 24°C. This is not the PRBS method but it was found to provide sufficient excitation to the system. 

The AHU provides ventilation to the room with supply air temperature equal to the set-point 

temperature through three cylinder wall diffusers located in the three corners of the room and one 

rectangle wall diffuser on northern wall. Room air temperature, controlled by the radiant floor 

system, was not regulated well with variant set point temperature due to the large capacity of the 

floor so heating and cooling was provided from the AHU and acted as a disturbance. The system 

identification experiment was carried out between June 1 and 20. Data collected during the first 

five days from the start of the experiment was used for estimation and data from the following 

fifteen days for validation. The estimation set is followed by the validation set not to repeat the 

calculation of initial states where there is no sensor installed. All data were averaged every 5 

minutes. 

3.3.2 Sub-system model estimation and selection 

With a centralized estimation approach, a large number of estimate parameters, roughly between 

12 and 24 depending on the model structure, is unavoidable. Also, each sub-system has different 

dynamics, e.g. the magnitude of fluctuation of double façade air temperature is much larger than 
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that of room air and slab temperature so the centralized estimation provides good results only for 

the double façade. Thus, in the agent-based approach, the single zone building model is represented 

by three different sub-system agents, namely, the double façade agent, radiant floor agent, and 

room agent. 

In the modeling framework developed in this study, sub-system models are simplified linear state-

space models that approximate with adequate resolution, the full dynamics; their structures 

represent a compromise between simplicity and preservation of physical sense. All parameters are 

time-invariant, temperature-independent, and some of them are lumped according to the model 

structure. Unknown initial values for states without sensor measurements are estimate variables as 

well. Radiative heat transfers between surfaces are not considered. Initial conduction resistances 

are originated from the drawing when available, and capacitances are based on the air volume. 

Initial values of the heat flux coefficient (α) are calculated between 0 and 1, based on standard 

building properties and prior experience. For the significance index comparison of each sub-

system model, all values are summed according to the estimate parameter type, i.e. U, H, and α. 

For the correlation index comparison of each sub-system model, averaged values along with the 

minimum and maximum of all estimate parameters are shown.  

3.3.2.1 Double façade agent 

Two sub-system model structures are considered for the double façade agent including first and 

second order models (Figure 3.8). Tcav and Text.win represent the cavity temperature where the 

installed sensor is located and the exterior window surface temperature for which no sensor 

information is available. A third order model that might have another state on the interior window 

between the cavity and the room is not considered in this study because the dynamics between two 

neighboring agents is assumed to be represented with a time-invariant resistance without any state 

for the shared parameter negotiation. Boundary temperatures from the outdoor environment (Tout) 

and the adjacent room agent (Troom), along with the solar radiation (Qsol,ver) are used as known 

inputs. The heat flux input on each state is multiplied by the corresponding coefficient (αsol.ext.win 

and αsol.cav). An initial value for the convective heat transfer coefficient on the double façade side 

was adopted from the literature (Park et al. 2004) and for the room side from TRNSYS type 56 

(TRNSYS 17 2010). Figure 3.9 shows the model comparison for the double façade agent; it 

consists of five figures and the x-axis represents the model number. The first figure shows the 
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RMSE of the estimation (E) and validation set (V). The second, third and fourth figures show the 

significance index of each parameter type, and the fifth figure shows the correlation index. Figure 

3.10 shows the estimation (5 days, 1~1440) and validation (15 days, 1441~5760) results. Model 2 

has lower error in the estimation period but the validation set shows almost the same accuracy for 

both models. The significance index does not provide a clear indication but parameters of model 

1 are less correlated to each other. Model 1 with one state that does not require initial state 

information for unmeasurable points has been selected to be the best model. 

Figure 3.8 Structure of double façade agent models 

Figure 3.9 Model comparison of double façade agent (E and V represent estimation and 
validation) 
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Figure 3.10 Estimation (1~1440) and validation (1441~5760) results for the double façade agent 
models 

3.3.2.2 Radiant floor agent 

Three sub-system model structures are considered for the radiant floor agent including two second 

order models and a third order model (Figure 3.11). Tslab represents the concrete temperature where 

the RTD sensors are located. In model 1 there is no additional parameter below Tsource since there 

is insulation (10 cm) and air plenum (60 cm) below the slab so this boundary is assumed to be 

adiabatic. In model 2, constant temperature of 21°C for the adjacent zone in the floor below is 

considered (Tadj) while model 3 has an additional state where the insulation and air plenum are 

located, denoted as Tsink. The air temperature from the room agent (Troom) is the boundary input 

and the heat flux from the hot water to the concrete through the pipe (Qrad) is the controlled input. 

The disturbance inputs for the heat flux due to transmitted solar radiation and lighting (Qsol.ver and 

Qlight) are considered along with their corresponding coefficients (αsol.slab and αlight.slab). Low-order 

models developed for radiant floor systems in the literature adopted a model structure with the hot 

water temperature as boundary input (Feng et al. 2015; Nghiem et al. 2012; Nghiem, Pappas, and 

Mangharam 2013; Široký et al. 2011; Sourbron, Verhelst, and Helsen 2013); some of them used 

the supply water temperature as a boundary temperature for control (Široký et al. 2011; Sourbron, 

Verhelst, and Helsen 2013) and others used the water flow rate with on/off control (Feng et al. 

2015; Nghiem et al. 2012; Nghiem, Pappas, and Mangharam 2013). The model structure developed 

in this study has Qrad as control input. In this way, both the supply water temperature and water 

flow rate could be controlled according to the sequence of Qrad. All initial values including the 

conduction resistance and capacity are based on the design drawings. However, the exact material 
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properties of concrete and insulation were not available, so assumptions were made, e.g. the 

concrete and insulation types are typical, and the pipe is located in the middle of the concrete slab. 

The convective heat transfer coefficient between the floor and the air is a constant value based on 

the European standard (European Standard (UNI EN 1264-5) 2009). 

Figure 3.11 Structure of radiant floor agent models 

Figure 3.12 shows the comparison with the RMSE, significance index, and correlation index for 

the radiant floor agent models and Figure 3.13 presents the estimation and validation results. The 

significance and correlation index of model 2 and 3 did not provide clear evidence for the model 

selection. The RMSE was sufficient to discard model 1; its predictions does not follow the 

experimental data because its structure is too simple to reflect the actual heat transfer phenomena 

below the slab. On the contrary, model 2 and model 3 could capture this dynamics using a constant 

temperature for the adjacent zone or an additional state. Model 3, shows the best performance, as 

its prediction follows the experiment trajectory with low error for the entire period so it was 

selected to be the best model. The significance index for α is very small that it is neglected in the 

integrated model. 
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Figure 3.12 Model comparison of radiant floor agent (E and V represent estimation and 
validation) 

Figure 3.13 Estimation (1~1440) and validation (1441~5760) results for the radiant floor agent 
models 

3.3.2.3 Room agent 

Three sub-system model structures are considered for the room agent including first, second, and 

third order models (Figure 3.14). The outdoor air temperature (Tout) is used as a boundary 

temperature along with the two temperatures from the two adjacent agents of the double façade 

(Tcav) and radiant floor (Tslab). Tenv, Text.env, and Tint.env are envelope temperatures considered in 

models 2 and 3 (Figure 3.14). The transmitted and incident solar radiation (Qsol.ver and Qsol.hor, 

respectively) and lighting (Qlight) heat gains are used as disturbance inputs multiplied by the 

corresponding coefficients (αsol.room, αsol.env, αsol.ext.env, and αlight.room,). The internal heat gain (Qint,heat) 

consists of heat flux values for computers, monitors and people (adopted from Hosni, Jones, and 
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Xu. 1999; Wilkins and Hosni 2011). Qint,heat is multiplied by the heat flux coefficient (αppl), which 

represents the number of people and it is an estimate parameter. The heat flux from the air handling 

unit (QAHU) is an input to the room air temperature (Troom). The room air temperature varies 

according to the temperature difference with adjacent mediums through convection and radiation. 

However, relatively direct changes are made due to AHU since a portion of the room air is 

displaced with heating and cooling injection. Therefore, the inverse of the air capacity in the input 

matrix (B), which is multiplied to the heat flux input from the air system of the state-space equation, 

is treated as a separate estimate parameter in addition to that in the state matrix (A). The first-order 

model considers only the room air temperature as state variable, which can be justified by the fact 

that is a high performance building so the external wall is well insulated (including two insulation 

layers and the air space). The second and third order models are more detailed in terms of including 

the inputs to the state that represents the envelope temperature. All initial values are from the 

European standard (European Standard (UNI EN 1264-5) 2009), literature (Park et al. 2004), and 

TRNSYS type 56 (TRNSYS 17 2010) for the floor surface, wall surface, and double façade side 

surface, respectively.  

Figure 3.14 Structure of room agent models 
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Figure 3.15 Model comparison of room agent (E and V represent estimation and validation) 

Figure 3.15 shows the comparison with the RMSE, significance index, and correlation index for 

the room agent models and Figure 3.16 presents the estimation and validation results. All models 

are good in terms of the RMSE. However, model 1 is less accurate than model 2 and model 3, and 

all significance indices are lower because the resistance between outdoors and the room, and the 

coefficients multiplied to Qlight and Qsolar are very small and could be neglected. Model 3 has lower 

significance indices and larger correlation indices compared to model 2. Therefore, model 2 has 

been selected to be the best model. 

Figure 3.16 Estimation (1~1440) and validation (1441~5760) results for the room agent models 
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3.3.3 Integrated-system model  

Figure 3.17 shows the thermal network of the integrated-system agent. The first order, third order, 

and second order models from the double façade, radiant floor, and room agent are assembled to 

the integrated-system agent. It has one boundary temperature corresponding to the outdoor air (Tout) 

and six states; three of them, i.e. the cavity air (Tcav), room air (Troom) and slab temperature (Tslab) 

have information from sensor data. Two different models are discussed in the following sections. 

Figure 3.17 Structure of integrated agent model 

3.3.3.1 Negotiated-shared parameter model 

Table 3.3 shows the dual decomposition algorithm for this case-study. i, j, and k represent double 

façade, radiant floor, and room agent. All values and procedures were set as explained in the 

methodology (Section 3.4). The number of the estimated variables are 4, 7, and 12 for the double 

façade agent, radiant floor agent, and room agent, respectively. Two of them are shared parameters 

(complicating variables) which result in four copies for three sub-system agents; one for the double 
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façade agent, one for the radiant floor agent, and two for the room agent. Therefore, it is a sparse 

problem in terms of the number of complicating variables (2) compared to that of all variables (23) 

and reasonable to apply the decomposition theory. 

Table 3.3 Dual decomposition algorithm for the case-study 

k1 k 1 k 1 k 1while  and ij ( )i ij ( j ) jk ( j ) jk (k ) 

k 1 k k k  argmin  g ( )    i  i  i  ij  ij ( )i 
k 
i 

k1 k k k k k  argmin  g ( )      j j j ij ij ( )j jk jk ( j )
k j 

k 1 k k k  argmin  g ( )   k  k  k  jk  jk  ( )k 
kk 

k 1 k k 1 k 1     0     ij ij ij ij ( )i ij ( j )
 k 1    k      k 1 k 1  
 jk   jk     jk ( )j jk (k )     0  jk    
end 

Figure 3.18 shows the evolution of shared parameters (upper two graphs) and dual variables (lower 

two graphs). The first shared parameter (θij(i) and θij(j)), which is the inverse of resistance between 

the double façade agent and room agent, is converged in fourteenth iterations. The second shared 

parameter (θjk(j) and θjk(k)), the resistance between the room agent and radiant floor agent, is 

converged in eighth iterations. In the meantime, the two dual variables (ij and jk) are converged 

to a constant value. 

Figure 3.19 represents the estimation and validation results of negotiated-shared parameter model. 

The three upper graphs show the comparison between the model prediction (blue line) and the 

experiment (green line) for the three agents. The two lower graphs present the exogenous and 

control input, which are the outdoor air temperature and heat flux input from the air system, solar 

radiation, and radiant floor system. The RMSE of the estimation period is 2.16, 0.29, and 0.24°C, 

and that of the validation period is 1.71, 0.46, and 0.37°C for cavity air, room air, and slab 

temperature, respectively. The estimation result is fairly robust and stable as the validation 

maintains its good prediction even for a period of 20 days which was considered to test the model, 

as information about the internal heat gain due to equipment and occupancy schedule was not 

available, and also the final integrated model is not estimated but built based on the information 
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from the sub-system (agent) models. Estimated values for all parameters are presented in Table 

3.4. 

An integrated model (Figure 3.17) developed based on standard centralized estimation, failed to 

provide accurate predictions for the room and slab temperatures. Also, integrated models 

assembled with the agent negotiation approach, did not provide accurate predictions, when sub-

system models with inferior performance (e.g. model 2 for the double façade agent, model 1for 

the room agent, model 1 for the radiant floor agent), based on the criteria presented in Section 3.3, 

were used. These two comparisons (results not shown) confirm the merits of the sub-system model 

evaluation and distributed system identification presented in this work. 

Table 3.4 Estimated values of negotiated-shared parameter model 

Hcav 

Hslab 

Hsource 

Hsink 

Hroom 

Henv 

1.13E-6 

3.53E-8 

3.61E-7 

4.14E-17 

2.43E-7 (rad+conv) 

8.00E-8 (conv) 

6.31E-8 

Uout~cav 

Ucav~room 

Uroom~slab 

Uslab~source 

Usource~sink 

Uroom~env 

Uout~env 

51.92 

29.07 

527.58 

1402.44 

249.39 

21.75 

269.36 

αsol.cav 

αsol.room 

αsol.env 

αlight.room 

αppl 

0.08 

3.77E-19 

0.17 

0.14 

1.91 

*H (°C/J) represents the inverse of capacity corresponding to the temperature node (indicated by the subscript) and 

U (W/°C) the inverse of resistance between the temperature nodes in Figure 3.17. 

Figure 3.18 Evolution of shared parameters and dual variables 
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Residual analysis including auto-correlation and cross-correlation has been used as post processing 

for the estimation period. The confidence range is set at ±0.0517 based on the 95% confidence 

standard deviation. Figure 3.20 shows a sample auto-correlation function of the residual from each 

agent and Figure 3.21 shows a sample cross-correlation function between the input and residual. 

All of them are outside of the confidence range, which are illustrated as two parallel lines, even 

though 75% of data length was examined.  

Figure 3.19 Estimation (1~1440) and validation (1441~5760) results of negotiated-shared 
parameter model 

Figure 3.20 Sample auto-correlation function of the residual (negotiated-shared parameter 
model) 
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Figure 3.21 Sample cross-correlation function between input and residual (negotiated-shared 
parameter model). 

3.3.3.2 Free-shared parameter model 

Figure 3.22 represents the estimation and validation results for the free-shared parameter model. 

The structure is the same with that explained for Figure 3.19. The RMSE of the estimation period 

is 2.16, 0.23, and 0.15°C, and that of the validation period is 1.68, 0.36, and 0.30°C for the cavity 

air, room air, and slab temperature, respectively. The prediction of the free-shared parameter model 

is slightly better than that of the negotiated-shared parameter model in both the estimation and 

validation period. Therefore, it has been shown that the physical meaning of the shared parameter 

model is compensated with a small loss in accuracy of the prediction, which however, is not 

significant considering the complexity of the integrated-system model. Estimated values for all 

parameters are presented in Table 3.5. Figure 3.23 and 3.24 show the sample auto-correlation and 

cross-correlation function for the free-shared parameter model, based on the same setting and 

structure used in the negotiated-shared parameter model. All results are generally similar with 

those obtained with the negotiated-shared parameter model but the auto-correlation of the room 

agent and the radiant floor agent are slightly better than the negotiated-shared parameter model.  
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Table 3.5 Estimated values of free-shared parameter model 

Hcav 

Hslab 

Hsource 

Hsink 

Hroom 

Henv 

4.68E-07 

3.47E-08 

3.48E-07 

4.63E-12 

1.97E-7 (rad +conv) 

7.91E-8 (conv) 

8.37E-08 

Uout~cav 

Ucav~room 

Uroom~slab 

Uslab~source 

Usource~sink 

Uroom~env 

Uout~env 

123.93 

72.87 (double façade agent) 

25.48 (room agent) 

679.76 (room agent) 

345.24 (radiant floor agent) 

1371.31 

280.28 

34.4 

300.43 

αsol.cav 

αsol.room 

αsol.env 

αlight.room 

αppl 

0.19 

1.89E-17 

0.17 

0.18 

2.74 

*H (°C/J) represents the inverse of capacity corresponding to the temperature node (indicated by the subscript) and 

U (W/°C) the inverse of resistance between the temperature nodes in Figure 3.17. 

Figure 3.22 Estimation (1~1440) and validation (1441~5760) results of free-shared parameter 
model. 
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Figure 3.23 Sample auto-correlation function of residual (free-shared parameter model). 

Figure 3.24 Sample cross-correlation function between input and residual (free-shared parameter 
model). 
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3.4 Chapter conclusions 

In this chapter, an agent-based estimation framework for data-driven building models has been 

introduced. An experimental case-study of a single-zone occupied office space with multiple sub-

systems (radiant floor, double façade, AHU) has been used to demonstrate the new approach. The 

results indicate that the agent-based estimation is a potential solution for control-oriented models 

of building systems that can be easier to develop and integrate whereas the conventional 

centralized approach could not provide accurate predictions for all states. The main conclusions 

are summarized as follows: 

 Sensitivity-based parameter range selection and shift was implemented and the 

optimization results for the sub-systems grey-box model estimation show that the chance 

for a global minimum is increased. Different structures of sub-system models were 

compared and the selection criteria based on model prediction error as well as the 

parameter sensitivity to output trajectory and parameter correlation proved to guarantee 

the accuracy of the integrated system model. 

 Integrated system models were assembled based on distributed and decentralized method. 

The distributed model requires the negotiation for the shared parameter but the 

decentralized model uses a different parameter value from sub-system agents. Both 

models show fairly good prediction accuracy in the validation set. However, in the free- 

shared parameter model the physical meaning may be compromised.  

 The residual analysis of auto-correlation and cross-correlation for both integrated agent 

models show that even though the residuals are small, the 95% confidence range for 

experiment-based estimation with unmeasured uncertainty due to occupancy and internal 

heat gains cannot be met. 

The experimental datasets used in this study are confined to the summer season although cooling 

and heating were used alternately. To overcome this limitation, adaptive estimation could be 

implemented in the future. The agent-based estimation is a suitable approach for this 

implementation. For example, each agent could incorporate adaptive parameters that need to be 

updated according to environmental conditions, such as outdoor air temperature, and control 

scheme. All sub-agents would be self-tuned by validating their prediction with measured data.  
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EVALUATION OF THE ENERGY PERFORMANCE OF 
A RADIANT FLOOR SYSTEM WITH MODEL PREDICTIVE 

CONTROL - IMPLEMENTATION IN AN OFFICE BUILDING AND 
COMPARISON WITH BASELINE CONTROL AND AIR DELIVERY 

SYSTEM 

4.1 Overview 

The objective of the work presented in this chapter is to provide a detailed evaluation of the energy 

and cost saving potential of radiant floor systems with MPC. The developed zone MPC controller 

includes data-driven building models estimated and validated for the heating and cooling seasons, 

and an optimizer based on constraint quadratic programming with hard comfort bounds, which 

yields an exact numerical solution with predicted exogenous disturbances. The MPC strategy is 

implemented in an occupied office building with a chiller and boiler as HVAC sources. Its 

performance is evaluated by comparison with (i) feedback simulation (ii) MPC simulation, and 

(iii) experimental results from neighboring thermal zones where an air system with feedback is 

used for conditioning.  

4.2 Test-bed 

The test-bed used in this study is an open-plan office space (9.9 m by 10.5 m) that can host up to 

20 occupants, and it is one of the Living Labs at Herrick building of Purdue campus. An exterior 

view of the building and section view with HVAC details are shown in Figures 4.1 and 4.2. The 

main features of the test-office are a radiant floor slab and a south-facing double façade system. 

The radiant floor has been constructed to provide cooling and heating with sensing capabilities. 

Steam and chilled water are delivered to the heat exchanger from the campus plant. Temperature 

sensors (ACI, A/TT1K-LTS, ±0.3°C) are embedded in each concrete slab and in the heat 

exchanger to monitor the supply and return water temperature. A turbine-type flow meter 

(ONICOM, F-1110, ±1%) is installed between the pipe and the heat exchanger. In addition, four 

RTD sensors (Digi-Key, 10K ohm, ±1%) and thermocouples (Omega, T-type, ±0.5°C) are 

installed in the room to capture the detailed dynamics of the thermal zone. The room has four wall 

diffusers for ventilation that are served from an Air Handling Unit (AHU). The vents and fan of 
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the double façade were kept closed during this study. A standard BMS is available through the 

installed Tridium JACE controllers and Niagara/AX software framework (Tridium Inc).  

Figure 4.1 Three living labs at Herrick building 

Figure 4.2 Test-bed with radiant floor system 
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4.3 Data-driven building model 

A data-driven grey-box building model is constructed based on the state-space formulation 

(Equation 4.1). The model includes five states. Tcav and Troom represent the cavity and room air 

temperature, and Tsur, Tso, and Tsi represent the concrete temperature; lower case sur, so, and si 

refer to the slab surface, slab core where the pipe is located, and lower slab temperatures. The solar 

radiation on south face (Qsol) multiplied with coefficients αcav, αroom, αsur is used as input to Tcav, 

Troom, and Tsur. The QAHU and Qrad are controlled inputs to Troom and Tso while the exogenous 

disturbance from the internal gains (equipment, lighting, and people), Qint, multiplied with 

coefficients βroom and βsur is input to Troom and Tsur. 

Figure 4.3 Grey-box model structure 

x n 1 Ad x n  Bd ,ww n  Bd ,q     q n (Eq 4.1) 

 x 1   Ad   Bd w, 0  0   w 0   Bd ,u 0  0   u 0  
   2         A B  B   0 A B B  0x  2 Ad  d d  ,w d ,w w 1 d d ,u d ,u u 1          x  0  
                        

X    0  n1 n2     n1 n2    
nx n  Ad  Ad Bd ,w Ad Bd w,  Bd w,  wn 1 Ad Bd ,u Ad Bd ,u  Bd u,  u n 1      

X Ω Ω w Ω ux w u 

(Eq 4.2) 
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Once this state-space formulation (Equation 4.1) is stacked in time series, the control input (u) and 

temperature trajectories (X) are in an explicit linear relation, which is a suitable form for 

implementation in the optimization algorithm (Equation 4.2). With this formulation, estimation is 

carried out with a distributed system identification approach that is described in detail in Chapter 

3. The thermal zone is disassembled into sub-systems and smaller scale of estimation problems 

are solved in parallel and then integrated while tuning different shared parameters between sub-

systems to become identical using dual decomposition method. Figure 4.4 shows the modelling 

results. RMSE of the model for the cooling season are 0.47 and 0.70°C for air and slab surface 

temperatures. The accuracy of the model for the heating season are 1.02 and 1.09°C for the air and 

slab surface temperatures. A model for the air delivery system is estimated for the cooling season, 

which yields an RMSE of 0.63 and 0.48°C. 

Figure 4.4 Modelling validation results 

4.3.1 HVAC system 

The cooling and heating source in the actual test-bed are provided from the campus plant. For the 

implementation and simulation, an air-cooled chiller model is assumed for the cooling season 

while a boiler is used for heating season. Performance data of the air-cooled chiller are adopted 

from the EnergyPlus engineering reference (EnergyPlus 2015) and the Energy Input Ratio (EIR) 
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method is used based on the catalogue data of an actual product (Trane CGAM20). The nominal 

capacity (Qref,cap) and coefficient of performance (Cref,COP) are 68.9 kW and 2.67, respectively. For 

our case-study, the capacity is scaled down to 8 %. The electricity consumption of the chiller is a 

multiplication of three polynomials (f in Equation 4.3) that represent the capacity, COP, and Part 

Load Ratio (PLR). The capacity and COP curves are biquadratic and require two control inputs. 

The leaving water temperature (Tleaving) is fixed at 13°C which yields a quadratic polynomial and 

the optimization problem has a convex form. The COP is plotted in Figure 4.5 as a function of 

outdoor air temperature, leaving water temperature and PLR. Lower outdoor air temperature and 

higher leaving water temperature result in higher COP. As for the PLR, any ratio larger than 30% 

results in high COP. 

f  f  f  fchiller Cap COP PLR 

where :  f  Q Curve T ,T Cap ref ,Cap biquad leaving outdoor 
 
 1                           (Eq 4.3) 
 fCOP  

C 
Curvebiquad Tleaving ,Toutdoor  

 ref ,COP 

  Q  load fPLR  Curvequad    Curvequad PLR  f  Cap  

Figure 4.5 COP of air-cooled chiller 

4.3.2 MPC formulation 

The MPC formulation for the cooling application is shown in Equation 4.4. The objective function 

is the electricity cost consumed by the chiller, while the fan and pump electricity consumption is 

neglected. The decision variable u, which is the control input to the model, is the trajectory of PLR 

in a given prediction horizon, 24hours. fchiller represents the electricity consumption of the HVAC 

source, which is a convex function as the PLR is the control input. TOU (Time of Use) electricity 

price is multiplied to the electricity consumption. Multiple inequality constraints are applied. The 

first constraint (Equation 4.4), represents the temperature bound of the conditioned zone; Tbound is 
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the upper or lower temperature bound, and CT is the matrix multiplied to all states to extract the 

target temperature states. Additional bounds are used for certain states of the system, for example, 

the slab temperature in the radiant system, and the capacity of the HVAC source. Ω represents the 

predefined matrices as shown in Equation 4.2. Finally, this constraint quadratic programming is 

solved with quadprog in Matlab environment (MathWorks 2014).  

min cos t  fchiller  u 

CT Ωu  fcap   Tbound CT  ΩT T0 Ωw w  (Eq 4.4)
s t. .  u         

For the heating application, the objective function is the summation of heating rate input to the 

slab. Optimization for the MPC is formulated with linear programming (Equation 4.5) and is 

solved with linprog in Matlab environment (MathWorks 2014). fboiler refers to all-ones row matrix. 

The same inequality constraints with cooling application are applied.  

min f uboiler 

CT Ωu  T C  Ω T Ω w  (Eq 4.5)bound T T 0 ws t. .  u         

4.4 MPC performance 

4.4.1 MPC implementation settings 

This section presents information on disturbances and constraints that were used for the 

implementation. For the disturbance prediction, the occupant heat gain is set to 65 W for a 

sedentary working person based on ASHRAE Standard 55 (ASHRAE 2013). The equipment heat 

gain for each occupant is calculated to be 50W based on measurements (historic data for weekends 

and weekdays) for the total power consumption and the actual number of occupants. The 

occupancy schedule is from 08 am to 10 pm considering the actual occupants of the test-bed. The 

air system provides ventilation by regulating the supply air temperature to be equal to the average 

of the lower and upper temperature bounds. The relative humidity of the room is set to 40% via 

the cooling coil control in AHU to eliminate the potential risk for condensation on the floor due to 

the low surface temperature. In this case, the reheat coil is ON to increase the supply air 
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temperature set-point to offset the latent cooling rate as the AHU input is not considered in MPC 

calculation. TOU electricity price is considered for cooling; $0.16/kWh and $0.067/kWh were 

used for the peak (12pm~6pm) and off-peak (otherwise) hours.  

The operative temperature, which is a linear combination of the air and Mean Radiant Temperature, 

is used to control the space. It is calculated based on a weighted average of the air and slab 

temperature as the air flow rate in the zone is less than 0.2m/s (ASHRAE 2013). For this purpose, 

a detailed experiment was conducted with an array of sensors including a globe meter and five 

thermocouples at various heights from the floor, to determine the two weighting coefficients. 

These are used in the actual MPC implementation for estimating the operative temperature (based 

on recommendations from ASHRAE 55 (ASHRAE 2013) using readings from the RTD sensor (at 

0.6 m height from the ground) for the air temperature and from the thermocouple (TC) for the slab 

surface temperature. The weighting coefficients were estimated to be 0.77 and 0.23 for the air and 

slab surface temperature for cooling. Those for heating were 0.85 and 0.15. The RMSE between 

the experiment and estimation of the operative temperature are 0.12 and 0.41°C. 

The vertical temperature difference between the head and ankle are used to quantify the thermal 

asymmetry (ASHRAE 2013) in cooling case. This metric is used to define the limit of the 

maximum difference between the air and slab surface temperature which is set to be 7°C based on 

recent studies with human test-subjects and a thermal manikin experiment (Krajčík et al. 2013; 

Krajčík et al. 2016). Also, the low-bound of the slab surface temperature is set to 15°C based on 

(Wang et al. 2009) to eliminate potential thermal discomfort of the occupants. This temperature 

bound for the floor affects the maximum cooling capacity of the radiant floor system as a large 

cooling rate is feasible when the concrete temperature is high and vice versa. Based on initial 

experiments, the maximum available cooling capacity for all floor slab sections was around 5kW 

when the slab surface temperature is 15°C so this was set as an inequality constraint in the 

optimization problem. The maximum slab temperature was set to be 29°C for heating based on 

(ASHRAE 2013) and the corresponding maximum heating capacity of the radiant floor system is 

set to 12.5kW. 

A schematic for the DMPC implementation is shown in Figure 4.6. MPC calculations are 

performed in a server computer with Matlab that has access to weather forecast data for 24 hours 

prediction. The optimal cooling and heating rates are calculated and sent to Niagara server through 

Modbus communication. Then the valves for each section in the radiant floor system are activated 
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to satisfy the signal in each loop for a given time-step, 30 min. After each time-step, sensor data 

for the zone and slab temperatures, the control and exogenous input are sent to the server computer, 

for the state estimation by the Kalman filter.  

Weather forecast data including outdoor air temperature, relative humidity, and cloud cover are 

extracted from the National Oceanic and Atmospheric Administration (NOAA) web-site to a 

server computer. The following model was used for calculating the global horizontal irradiance 

(GHI) based on cloud cover forecast (Seo 2010): 

GHI I sin( ) { C  ( ) C (CC 2   h C CC )0 0 1 2
           (Eq 4.6) C T( T ) C (RH) C V }   d3 out(k ) out(k3)  4  5  wind 

GHI is calculated based on the solar constant (I0, 1355 W/m2), solar altitude angle (h), outdoor air 

temperature (Tout, k is time-step), cloud cover (CC), relative humidity (RH), wind speed (Vwind), 

and regression coefficients (C0, C1, C2, C3, C4, C5, and d) that are estimated for different climate 

zones in the literature (Seo 2010). Coefficients for zone Cfa (warm temperature, fully humid, and 

hot summer) were selected considering the location of the test-bed. Then the solar irradiance 

incident on the south façade is calculated from GHI using the Solar Radiation Process algorithm 

(Type 16 in TRNSYS) (TRNSYS 18 2017).  

Figure 4.6 Data communication for MPC 
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The initial states for the unmeasured temperatures are calculated with the Kalman filter (Stengel 

1994). The predicted error covariance (P in Equation 4.7) is updated from the previous time-step 

(P−) with the state matrix (Ad) and the covariance matrix of process noise (Q) which is set based 

on the estimation results (averaged value of RMSE for the air and slab) in Section 4.3. The Kalman 

gain (K in Equation 4.8) is calculated with predicted error covariance and a covariance matrix of 

sensor noise (R in Equation 4.8) which is set based on temperature sensor accuracy. H is the matrix 

that extracts observed states from all states. Then the state (x) is updated based on the predicted 

state ( x̂ ) obtained from building dynamics (Equation 4.1) and the actual measurement (Y) along 

with the Kalman gain (Equation 4.9). Then the error covariance matrix (P+) is updated to calculate 

the Kalman gain of the next iteration (Equation 4.10).  

 TP  A P A  Qd d           (Eq 4.7) 

T TK P (H HPH  1R)  (Eq 4.8) 

ˆx x K  (Y H x̂)                                                                                                                    (Eq 4.9) 

P (I K    H )P                  (Eq 4.10) 

4.4.2 Simulation settings 

Simulations are performed for evaluating the performance of the MPC controller for the cooling 

and heating seasons. The time-step is set to 5 min for all simulations including the feedback and 

MPC to capture realistic feedback dynamics whereas MPC implementations were carried out with 

30 minutes of time-step. The MPC simulation is conducted for each day and the last state is an 

input to the initial state for the next day so it runs sequentially for a given period. The same 

disturbances for the weather and internal heat gain used in implementation were also applied for 

the simulations. All simulations have five days of warm-up period. 

4.4.3 MPC performance in cooling season 

4.4.3.1 Implementation results 

Figure 4.7 shows the implementation results for 10 consecutive days in the cooling season (Aug. 

13–22, 2017). The five-days warm-up period is excluded from the graph. The operative, room air, 

and slab surface temperatures along with their lower and upper-bounds are shown with control and 

exogenous inputs (heating rate to the slab, outdoor air temperature, and solar radiation). The 
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temperature is calculated using the maximum, average, and minimum value of measurement from 

the 4 sensors in the zone. There are small violations (6th and 8th day) of the operative temperature 

bound which means that some areas of the zone are not perfectly conditioned. However the 

difference is minor and the average value is inside the bound, which is used for the implementation. 

Also, the slab surface shows a relatively large range of temperature deviation. This is because the 

radiant floor consists of 10 loops and corresponding areas and pipe lengths are different so the 

cooling rates provided to each loop are not identical. 

Figure 4.7 MPC implementation results for the cooling season (Aug. 13–22, 2017) 

4.4.3.2 Performance comparison with feedback control  

MPC simulation (green) and implementation (red) results are compared with simulation feedback 

control (blue) to investigate the ideal and actual MPC performances. Figure 4.8 presents the 

operative temperature profiles as well as the cooling rate, COP and outdoor environment, and 

Table 1 shows the total energy and cost for 10 days of simulations and implementation. In 

operation with feedback control, the radiant cooling system turns ON when the actual operative 
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temperature is higher than the set-point temperature which is an average of lower and upper bounds 

to regulate the temperature inside the bounds. For this reason, different than the operation with the 

MPC controller, the cooling system remains ON until the end of occupied period when feedback 

control is used and the corresponding COP is low due to the high outdoor air temperature in the 

daytime. The MPC simulation shows pre-cooling at night and thereby higher COP is utilized with 

lower outdoor air temperature. Also, the radiant cooling system turns OFF in advance based on 

the optimization so the operative temperature at the end of occupied hour matches the upper 

comfort bound. As a result, 14% of cooling energy use reduction is achieved (333 VS 288kWh) in 

ideal MPC simulation. The corresponding electricity and cost savings are 23 and 45% compared 

to the feedback strategy (76 VS 59kWh and $7.2 VS $4.0). Considerable cost savings are achieved 

due to the pre-cooling with TOU price, and cooling is used mainly during the off-peak hours. In 

the implementation, significant energy and cost reductions (16 and 34%) are achieved (76 VS 64 

kWh, $7.2 VS $4.7) which is a comparable to the performance of the ideal MPC. 

Figure 4.8 Performance comparison of MPC with feedback control 
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Table 4.1 Total energy consumption and cost for feedback control and MPC cases 

Rad.Feed Rad.MPC(Ideal) Rad.MPC(Imp) 
Cooling consumption [kWh] 333 288 307 
Electricity consumption [kWh] 76 59 64 
Cost [$] 7.2 4.0 4.7 

4.4.3.3 Performance comparison with air system 

In this section, the performance of the radiant floor system with MPC strategy is compared with a 

typical air delivery system. For the air system, the decision variable for the MPC calculation is 

PLR and the cooling rate is input to the room air temperature node directly (Troom in Figure 4.3). 

The same HVAC source, an air-cooled chiller, is used in the objective function. The fan energy 

consumption is not considered. Figure 4.9 represents the operative temperature profiles with 

respect to cooling rate, COP and outdoor environments, and Table 2 shows total energy and cost 

for 10 days of simulations and implementation. Two control strategies for the air system with 

feedback (blue) and MPC (green) strategy are compared with the MPC implementation results 

(red) for radiant floor system. For the air system, MPC consumes more cooling and electricity than 

feedback control whereas 10% of total cost reduction was estimated ($9.5 VS $8.5). On the other 

hand, significant cooling energy, electricity, and cost reduction (18, 35, and 50%) was achieved in 

the MPC implementation for the radiant floor system compared to the air system with feedback 

control. Despite the optimized control of the air system, its cost saving potential is limited 

compared to the radiant floor system as pre-cooling is used to reduce the cost while consuming 

more cooling energy and electricity. This is due to the lower thermal capacity of the zone air 

compared to the concrete slab where the cooling could be stored longer as a heat sink. Also, as 

shown in Figure 4.5, another saving source is the higher efficiency of the chiller plant that feeds 

relatively low temperature of leaving water to the slab. 
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Figure 4.9 Performance comparison between the radiant and air delivery systems 

Table 4.2 Total energy consumption and cost for air and radiant cases 

Air.Feed Air.MPC Rad.MPC(Imp) 
Cooling consumption [kWh] 377 430 307 
Electricity consumption [kWh] 99 108 64 
Cost [$] 9.5 8.5 4.7 

4.4.3.4 Side-by-side comparison with air system 

MPC implementation results are compared with experimental data from other zones, namely the 

Living Labs 2 and 3 (LL2 and LL3) that have identical room dimensions and construction and air-

based thermal conditioning systems. Figure 4.10 shows operative temperature profiles along with 

disturbances including the outdoor air temperature, solar radiation, and internal equipment heat 

gain. A comparison during the exact same period was not practically feasible as different 

experiments were conducted in LL2 and LL3 during the implementation period. Instead, several 

days with similar disturbances including outdoor environments and internal heat gain were 
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selected from the cooling season. Set-point temperatures of LL2 and LL3 were 22.5 and 22.0°C 

and conditioned for 24 hours but the daily energy consumption and cost were calculated only for 

the occupied period (08am ~ 10pm). 

Figure 4.10 Temperature and disturbance inputs of experiment for cooling case 

Figure 4.11 represents the daily electricity consumption for three cases with respect to the range 

of the maximum outdoor air temperature. LL3 shows the highest consumption due to the lower 

set-point temperature and more equipment heat gain. In all cases, MPC consumes less electricity. 

The averaged daily electricity consumption is 6.4, 11.7, and 16.0kWh and the corresponding cost 

$0.47, $1.40, and %1.92. The radiant floor with MPC strategy can reduce the electricity 

consumption and cost around 45~60 and 66~75% compared to the air system with feedback control. 
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The higher saving potential of this side-by-side comparison than the comparison against the 

simulations (50%) in the previous section (Section 4.4.3.3) is the result of the lower set-point 

temperature used in LL2 and LL3; the air temperature was regulated close to the MPC upper-

bound in the simulated feedback control whereas actual zones were conditioned with mid (LL2) 

or biased down (LL3) set-points. 

Figure 4.11 Daily electricity consumption with maximum outdoor air temperature for cooling 
experiment 

4.4.4 MPC performance in heating season 

4.4.4.1 Implementation results 

Figure 4.12 shows the implementation results for 10 consecutive days in the heating season (Jan. 

27 – Feb. 5, 2018). The five-days warm-up period is excluded from the graph. The operative, room 

air, and slab surface temperatures along with their lower and upper bounds are shown with the 

control and exogenous inputs (heating rate to the slab, outdoor air temperature, and solar radiation). 

The temperature is calculated using the maximum, average, and minimum value of measurement 

from the 4 sensors in the zone. During the 8th day of the implementation period, the vent between 

the cavity and the room was opened for maintenance so the room air temperature was not regulated 

properly. The slab surface temperatures shows larger deviation compared to the cooling season 

because the temperature sensors that are close to the double façade are affected by the solar 

radiation due to the low altitude angle. 
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Figure 4.12 MPC implementation results for heating season (Jan. 27 – Feb. 5, 2018) 

4.4.4.2 Performance comparison with feedback control  

MPC simulation (green) and implementation (red) results are compared with simulation feedback 

control (blue) to investigate the ideal and actual MPC performances of the radiant floor heating 

system. Figure 4.13 represents shows the operative temperature profiles as well as the cooling rate 

and outdoor environment. In feedback control, heating turns ON when the actual operative 

temperature is higher than the set-point temperature which is an average of lower and upper bounds 

to regulate the temperature inside the bounds. Also, heating is activated in advance of occupied 

hours to satisfy the comfort bound in the morning; 2 hours was used by trial simulation with given 

specific data of 10 days. However it was challenging to maintain the comfort inside the bounds 

with feedback control, and overheating occurs especially in 10th day. In the case of MPC, optimal 

heating is provided so the operative temperature is as close as possible to the lower comfort bound 

in the morning so overheating in the daytime is minimized. Finally, 20% of heating energy saving 

was achieved (297 VS 237 kWh) in ideal case. In the implementation, comparable energy 

reductions (16%) with the ideal case was achieved. 
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Figure 4.13 Performance comparison between MPC and feedback control 

4.4.4.3 Side-by-side comparison with air system 

MPC implementation results are compared with experimental data from LL3 that has air-based 

thermal conditioning system. Four days (1st, 3rd, 6th and 8th) in MPC implementation were 

excluded due to the negligible heating load and malfunction. In LL3, even for the heating season, 

cooling load was required from time to time during the daytime due to the solar gain with low 

altitude angle, internal heat gain and high insulated building design. For this reason, severe cold 

and cloudy days (6 days) were selected where only the heating energy was consumed. Figure 4.14 

shows operative temperature profiles along with disturbances including the outdoor air 

temperature, solar radiation, and internal equipment heat gain. Set-point temperatures of LL3 was 

22.2°C, and conditioned for 24 hours but the daily energy consumption was calculated only for 

the occupied period (08am ~ 10pm). 
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Figure 4.14 Temperature and disturbance inputs of experiment for heating case 

Figure 4.15 represents the daily energy consumption for two cases with respect to the range of the 

maximum outdoor air temperature. Feedback control with air system in LL3 consumes more than 

radiant floor with MPC in most days. Averaged daily energy consumption of 6 days for each case 

are 32.2 and 45.6kWh, and 29% of energy reduction is achieved in MPC implementation compared 

with conventional air system. This higher saving potential than previous comparison with 

simulation case might be originated not only from the optimized control but also higher set-point 

temperature (22.2°C) of the air system, low outdoor air temperature, and less solar gain as shown 

in Figure 4.14. 
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Figure 4.15 Daily consumption with maximum outdoor air temperature for heating experiment 

4.5 Chapter conclusions 

In this chapter, a detailed evaluation of the energy and cost saving potential of a radiant floor 

system with MPC was presented. Data-driven building models were estimated, validated, and 

implemented to an actual test-bed with an open-plan office space. Significant energy and cost 

savings were calculated through comparisons with simulation and experimental cases. The main 

findings and limitations are summarized as follows: 

 In cooling implementation, cost saving of radiant floor system with MPC is about 34% 

compared to the simulated feedback control. This is due to the utilization of pre-cooling 

with higher chiller efficiency when the outdoor air temperature is low along with lower 

electricity price at night. 

 Compared to an air delivery system with feedback control, the cost saving potential of 

radiant and air system with MPC is 50 and 10%respectively. 

 In heating implementation of radiant floor system, the energy saving of MPC is about 

16% compared to the feedback control.  

 Further saving potential is observed in side-by side comparison between the 

implementation results and the experiment of adjacent room where the air system is 

serving for heating and cooling cases. 

In optimization formulation of this study, an exact numerical solution is found via constraint linear 

or quadratic programming with hard comfort bounds. It is free from trial and error to find the 

suitable weights, typically multiplied to the energy consumption and comfort violation terms in 



 

 

 

 

 

 

  

65 

the objective function of nonlinear optimization problems. Therefore, the demonstrated saving 

potential of implemented MPC via the comparison with simulations and experimental case studies 

are reliable and not subject to potential errors due to local minima. Also, this optimization 

formulation has lower computational cost compared to typical nonlinear optimization. It is fast 

enough even with a short time step; e.g., 5min in this study. Thereby this approach is suitable for 

distributed or cooperative optimization methods for large-scale problems that require light 

computation while facilitating communications between local problems.  

This formulation, however, is not able to utilize a maximum input bound. Especially, for the 

radiant floor system, maximum input to the slab is decided with maximum water flow rate of a 

pump, effectiveness of the slab, and current concrete temperature around the pipe area which is a 

state in model structure so input bound (maximum capacity) in a given prediction horizon is 

unknown. In this study, this bound is fixed at certain values (5 and 12.5 kW for cooling and heating 

cases) with minimum and maximum slab temperature bounds in conservative fashion. 

Nevertheless, sufficient saving potential was achieved.  

In this study, averaged values from historical data were used for calculating the number of 

occupants and schedule. Ideal control performance cannot be attained due to the prediction error 

of disturbance as well as the building model discrepancy. In the future, it is expected that user-

interactive technology will facilitate the interaction between the occupants and BMS so the 

occupants’ information could be estimated via statistical methods. 
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A DISTRIBUTED APPROACH TO MODEL 
PREDICTIVE CONTROL WITH APPLICATION TO RADIANT 
COMFORT DELIVERY SYSTEMS IN OFFICE SPACES WITH 

LOCALIZED THERMAL ENVIRONMENTS 

5.1 Overview 

The objective of the work presented in this chapter is to develop and demonstrate a multi-agent 

system approach to tractable optimal control of high performance buildings. A distributed 

optimization algorithm inspired by the Proximal Jacobian Alternating Direction Method of 

Multipliers (PJ-ADMM) is used in the distributed model predictive controller (DMPC) and 

multiple MPCs run iteratively while exchanging control input information until they converge. For 

the distributed system identification, the agent-based approach presented in Chapter 3, is extended 

to develop data-driven models for a new configuration of an open plan office with localized 

comfort delivery. The work presented in this chapter aims to demonstrate the potential of the agent-

based approach for developing control-oriented models in complex cases, such as office buildings 

with high resolution thermal environments. This chapter also addresses challenges associated with 

the control complexity along with the growing input dimension in such configurations and 

demonstrates DMPC implementation into an actual building test-bed for the first time.  

5.2 Distributed MPC algorithm 

In thermal environment control of buildings, the objective function is the HVAC energy 

consumption. The decision variable u, which is the control input to the model, is the trajectory of 

Part Load Ratio (PLR) in a given prediction horizon. fHVAC represents the electricity consumption 

of the HVAC source, which is a convex function when the PLR is the control input. The dimension 

of the trajectory is increased with the number of zones or systems that are connected to the shared 

HVAC source. The centralized MPC algorithm is formulated as a convex optimization problem 

(Equation. 5.1) with several linear inequality constraints. The first constraint represents the 

temperature bound of the conditioned zone; Tbound is the upper or lower temperature bound, and 

CT is the matrix multiplied to all states to extract the target temperature states. Additional bounds 

can be used for certain states of the system, for example, slab temperatures in radiant systems. The 
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last constraint is set for the capacity of the HVAC source. Ω represents the predefined matrices as 

shown in Equation 4.2. 

 u   i
   min fHVAC I I   ui+1     
      

            (Eq 5.1) 
CT Ωu,i  CT Ωu,i+1     ui  Tbound   CT  ΩT T0  Ωw  w 
      s t. .     u    i+1         
 I I          umax 

  

Algorithm 5.1 is the distributed MPC used in our study. It is inspired by the Proximal Jabcobian 

Alternating Direction Method of Multipliers (PJ-ADMM) (Hou et al. 2016), which is a variant of 

the classical ADMM method. The optimization in each controller is regulated with a proximal 

term and the control inputs of other agents (neighbors) are transferred from the previous iteration 

for parallel computing. Multiple optimizations for each agent (referred to as agent i) run in parallel 

until the convergence criteria are satisfied. In this formulation, the coupled cost is decomposed by 

k1 kfixing the control input of other agents ( u ) so the dimension of the control input (ui ) is neighbors 

reduced according to the number of agents. Decomposition is feasible as information from other 

agents is transferred from the previous iteration (referred to as step k-1). This enables parallel 

optimization, which would not be otherwise possible, as the objective function is evaluated with 

all control input trajectories from other agents. The same inequality constraints with centralized 

MPC are set. 

Each agent searches for the optimal control inputs while exchanging information with other agents. 

The regulation term with multiplier i is added to the objective function to encourage the 

convergence of the iterated control inputs. This multiplier is a vector which is updated with the 

deviation of two control input trajectories. In initial iterations, it is small so each agent calculates 

its objective function with less restriction. Then, as the iteration evolves, the regulation term 

becomes large and, the algorithm converges when the maximum value of the deviation of two 

control input trajectories is smaller than the stop criteria, εstop. The way Algorithm 5.1 updates the 

regulation term (i) helps speed up the convergence speed, however, it comes at the price of 

sacrificing optimality performance. 



 

   

 

 
 

 

 

 

 

  

  

 

68 

Algorithm 5.1 
0 01: initialize ui ,  ,i ,   

2: repeat following optimizations in parallel 
2k k 1 k 1 k 13: u  arg min  f u u   ui  uii HVAC i neighbors i  

ui 

k 1
CT,i Ωu,i 

Tbound  CT,i  ΩT T0  Ωw  w Ωneighbors uneighbors    
4: s t. .   

 ui 
k     

 k 1  1  u  u   max  neighbors  
k k 1 k k 15: i  i  ui  ui 

 

 
 

6: until max  
 
 

k k 1 u  u  
 k 

i 
  

i 
k 1  u  u i+1   i+1  

         

 
 
  stop 

 
 

5.3 Application of DMPC to optimal building climate control  

In this section, we present the application of our multi-agent system approach into an actual test-

bed. First, we describe the test-bed and the system identification for developing the building model. 

Then, we provide details for the DMPC implementation including the HVAC system, exogenous 

inputs and constraints, and we describe the data communication process. Finally, we discuss the 

performance of the DMPC controller with regards to thermal environment control and energy 

saving potential. 

5.3.1 Test-bed 

We explore the potential of the radiant system to provide localized thermal conditioning for the 

cooling season. For this purpose, the room is divided into four thermal zones corresponding to four 

sections of the radiant floor as shown in Figure 5.1. Each floor section consists of two pipe loops 

that are controlled together. RTD sensors (Digi-Key, 10K ohm, 1%) and thermocouples (Omega, 

T-type, ±0.5°C) are installed in each section (0.6 m height from the floor and on floor) to measure 

the air and slab surface temperatures (Figure 5.1). Ultrasonic flow meters (TUF-2000M, ±1%) and 

thermocouples (Omega, T-type, ±0.5°C) are attached and inserted at each pipe loop to capture the 

cooling rate for each section (Figure 5.2). The room has four wall diffusers for ventilation that are 
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connected to an Air Handling Unit (AHU). The vents and fan of the double façade were kept closed 

during this study. A standard BMS is available through the installed Tridium JACE controllers and 

Niagara/AX software framework (Tridium Inc). 

5.3.2 Building model 

The system identification experiment was conducted using the four room sections from the south 

to north direction as shown in Figure 5.1. To ensure sufficient excitation, cooling was provided to 

alternate floor sections for about six to twelve hours and the minimum surface temperature for the 

floor was 18~19°C. The room was occupied most of the day time so the air temperature was 

maintained with the ventilation system between 22 and 24°C. 

The typical (centralized) estimation approach is not feasible for this system due to the large number 

of estimate parameters and the different magnitude of state trajectories in each sub-system 

including the double façade, the four thermal zones and the radiant floor. Therefore, a distributed 

system identification approach is deployed with six sub-system models (represented by six agents) 

representing the four thermal zones, the radiant floor and the double façade. The six sub-system 

models are initially estimated in parallel, reducing the scale of the estimation problem, and then 

integrated in a plug-and-play manner. The structure of the integrated model (Figure 5.3) consists 

of 17 states and 27 resistances (17C27R) with one boundary temperature which is the outdoor air 

temperature. Figure 5.3 shows only a portion of the model by excluding the repeated structure for 

simplicity. Resistances between the air nodes are fixed according to the ventilation flow rate 

assuming the air is well-mixed since the wall-supply diffusers are distributed in four corners. The 

model structure of each thermal zone has one state and three or four resistances (1C3R or 1C4R). 

The radiant floor is treated as one agent. It consists of 12 states and 18 resistances (12C18R). The 

thermal capacity of each floor section is weighted with its area and the resistances between the 

four concrete sections (Rs,hor and Rs,ver in Figure 5.3) are identical. Thus, the estimation is carried 

out with three states and three resistances to simplify the optimization problem. Internal heat gains 

from the equipment, occupants, and lighting are distributed to each section evenly. 90 % of 

equipment and occupant heat gain and 60% of lighting heat gain is an input the air node. The 

remaining portions (10 and 40% respectively) are inputs to the slab surface temperature node.  
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Figure 5.1 interior fish eye view of living lab 1 

Figure 5.2 Pipe loops of the radiant floor system with temperature and flow meters installed. 
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Figure 5.3 Integrated and sub-system model structure 

The initial unmeasured temperature state for the internal concrete nodes (Tso and Tsi) is assumed 

to be the same with the slab surface temperature. Six optimizations run in parallel with six sub-

system models (agents). This yields different values for the shared estimate parameters between 

sub-systems. The dual decomposition method (explained in Section 3.3.4) is used to iterate the 

solution of the optimization problem until the deviation of the shared parameters is less than 5% 

of their value, in which case, they are assumed to be identical. Figure 5.4 shows the evolution of 

the shared parameters and reveals that 16 iterations are needed for the negotiation.  

Figure 5.4 Evolution of shared parameters 
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Figure 5.5 shows results for one estimation set and two validation sets. Air and surface 

temperatures are shown on the left and right respectively along with the heat flux and temperature 

input at the bottom. The estimation period includes three days during which the radiant floor 

cooling system was ON and two days with free floating conditions. The Root Mean Square Error 

(RMSE) during the estimation period for the air and slab surface temperature in each section ranges 

from 0.43 to 0.58 , and from 0.45 to 0.68 , respectively. The model was validated with two 

different datasets as shown in Figures 5.5 (b) and (c). During this period, the radiant floor cooling 

system was ON in alternate sections for eight hours and free floating was used for four hours 

between turns. When this process was completed for all sections, another 12 hours of free floating 

was provided. Two cycles were used for the two different validation sets, respectively. For the first 

validation set, the RMSE of the air and slab surface temperature ranges from 0.55 to 0.82 , and 

from 0.44 to 0.92 , respectively (Figure 5.5 (b)). The corresponding ranges for the second 

validations set are 0.58 to 0.66 , and 0.44 to 0.92 	 (Figure 5.5 (c)). This accuracy is considered 

to be reasonably good considering the complexity of the model. 

Figure 5.5 System identification results  

5.3.3 DMPC implementation 

5.3.3.1 HVAC system and objective function 

Same HVAC system (Air-cooled chiller) and implementation settings were applied with previous 

chapter; details are explained in Section 4.3.3 and 4.3.5. However, in this chapter, air-cooled chiller 
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is serving four room sections with parallel radiant loop (Figure 5.6) and control input is PLR 

provided to each section. The electricity consumption of the chiller consists of the objective 

function with a regulation term as explained in Section 5.3 (Algorithm 5.1). The initial control 

input trajectory u0 and multiplier ϕ0 are set to zero, and the step size and stop criteria (σ and εstop 

in Algorithm 5.1) are set to 50 and 0.0002. 

Figure 5.6 Test-bed with virtual air-cooled chiller (left) 

5.3.3.2 Implementation settings  

Four phases were considered during the implementation with different settings for the operative 

temperature bounds as shown in Table 5.1. For the first two phases, relatively large temperature 

bounds were used to ensure proper operation of the system, while the bounds for phase 3 were 

significantly different among the different sections to evaluate the potential for localized thermal 

environment control. For phase 4, lower bounds were set to see if relatively low operative 

temperature preferences could be met.  

Table 5.1. Lower and upper bounds of the operative temperature [°C] 

phase 1 phase 2 phase 3 phase 4 
room section1 22.0~25.0 21.0~24.0 22.5~25.5 20.5~23.5 
room section2 22.0~25.0 21.0~24.0 unoccupied 19.0~22.0 
room section3 21.0~24.0 22.0~25.0 19.5~22.5 19.0~22.0 
room section4 21.0~24.0 22.0~25.0 19.5~22.5 unoccupied 
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Figure 5.7 shows the implementation results for 11 consecutive days (September 16-26, 2017). 

The room air (Tar), slab surface (Tsl), and operative temperatures (Top) along with lower and 

upper bounds are shown for all sections along with the corresponding control and exogenous inputs. 

The gap on the graph for day 8 is due to data loss associated with a server communication failure. 

The operative temperature bounds for all sections are mostly satisfied for phase 1 and 2. Some 

exceedance hours due to upper bound violations are observed in phase 4. Although the operative 

temperature bounds are hard constraints in the optimization problem, the maximum cooling rate 

was provided occasionally when the temperature is violated. 

Figure 5.7 DMPC implementation results for four phases with different temperature bounds 
(September 16-26 2017) 
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5.3.3.3 Control performance analysis 

In this section, results from the DMPC implementation in an actual test-bed are compared with 

simulations for two feedback and two MPC control strategies, introduced in Figure 5.8. The 

simulations are used for evaluating the performance of the DMPC algorithm and the DMPC 

controller. For feedback control, the room is considered to be represented by a single thermal zone 

and it is conditioned using a temperature bound that corresponds to the average of the values used 

in the four sections for the DMPC implementation (21.5~24.5, 20.5~23.5, and 19.5~22.5°C). For 

the first feedback controller (Baseline-zone), all local sections are conditioned regardless of the 

occupancy unlike all the other cases in which localized conditioning is used for the occupied 

sections. The second feedback controller (Baseline-local) conditions only occupied sections. This 

comparison aims to investigate the energy saving potential of occupancy-based localized 

conditioning. To evaluate the DMPC algorithm, two simulation cases including CMPC and DMPC 

are used to investigate potential gaps between the theoretical and actual performance of the system. 

In simulation, MPC runs for each day and the last state is an input to the initial state for the next 

day so 11 consecutive MPCs run sequentially for 11days. The same disturbances for the weather 

and internal heat gain and algorithm settings, such as initial parameters (u0 and 0), step size (σ) 

and stop criteria (εstop), used in implementation were also used for the simulations. 

Figure 5.8 Different control scenarios used for the DMPC algorithm evaluation and the DMPC 
performance analysis 
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5.3.3.4 DMPC algorithm evaluation 

Figure 5.9 shows the evolution of the objective function value and the residual for the regulation 

term of DMPC sim. Each line represents the optimization of one day. Residual represents the 

maximum value of the regulation term which is the deviation between the decision variables of 

the current and the previous iterations. Mostly, high fluctuations of the residual are seen for the 

initial iterations, and then they decrease. The algorithm requires13 to 157 iterations to converge 

which takes less than 5 min for each time-step which is sufficient for implementation in actual 

controllers, as the time-step for this study is 30 min. 

Figure 5.9 Evolution of objective function and residual in DMPC sim 

Figure 5.10 DMPC algorithm evaluation 
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Table 5.2. DMPC algorithm evaluation 
Case CMPC-sim DMPC-sim DMPC-imp 

Cooling energy consumption[kWh] 350 327 314 
Electricity consumption [kWh] 74 76 72 

Figure 5.10 shows the cooling rate and COP variation during the test-period for the MPC 

simulations and DMPC implementation while Table 2 presents a summary of the results. 

Compared to CMPC, DMPC-sim results in lower cooling rate but higher electricity power 

consumption as the pre-cooling effect is less utilized. However, this compromise in DMPC 

controller performance is acceptable as the electricity consumption is increased by 2.8% only. As 

for the DMPC implementation, the cooling rate and electricity consumption is less compared to 

DMPC-sim; this is because the temperature bounds during implementation were not completely 

satisfied (see Section 4.3.4). Nevertheless, the pre-cooling effect is clearly seen with a higher COP 

and the total energy consumption is similar with the simulation; therefore, most of the potential 

benefits were captured in the implementation. If the room temperature would be perfectly 

regulated in implementation, the energy consumption would be the same with the simulation, 

which is a theoretical performance bound based on perfect disturbance prediction. 

5.3.3.5 DMPC performance analysis  

In this section, we investigate the energy saving potential of the occupancy-based control and 

DMPC by comparison with two feedback strategies. Table 3 shows the total cooling energy 

consumption and electricity consumption. The occupancy-based localized feedback control 

(baseline-local) saves 4.8% compared to the baseline-zone for the specific occupant schedule 

presented in Table 1; the unoccupied period for the local sections is 84 hours, i.e.16% of the total. 

When the MPC is implemented using different set-points (temperature bound) and occupancy-

based conditioning, which is DMPC-imp, around 27 % of electricity savings are possible compared 

to Baseline-zone. This is illustrated in Figure 5.11, which shows the operative temperature profiles 

with different bounds for all sections along with the cooling rate to the radiant floor and the COP 

variation. Compared to feedback control, DMPC utilizes pre-cooling so the chiller operates during 

the night or early in the morning to take advantage of the higher COP due to low outdoor air 

temperature. The variation of COP shows these distinct differences (Figure 5.11). Also, the MPC 

strategy itself saves 19 % of cooling energy (390 versus 314kWh) due to the large thermal capacity 
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of the radiant floor system; as for the feedback control, cooling is provided from the slab to the 

room after the occupied hour. 

Figure 5.11 DMPC energy performance analysis 

Table 5.3. DMPC energy performance analysis 
Case Baseline-zone Baseline-local DMPC-imp 

Cooling energy consumption [kWh] 390 372 314 
Electricity consumption [kWh] 99 94 72 

The baseline feedback control (Baseline-zone) is compared with the DMPC-sim strategy that 

facilitates localized control based on different occupant preferences. The differences are quantified 

using the summation of operative temperature exceedance hours (°C·h) during occupancy and the 

results are presented in Table 4. For phase 1 and 2, the temperature exceedance with the Baseline-

zone control is small because the temperature bounds of the different thermal zones are similar 

(21~24°C and 22~25°C). However, when the bounds are significantly different (19.5~22.5 and 

22.5~25.5°C in phase 3; 19~22 and 20.5~23.5°Cin phase 4), the temperature exceedance hours 
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with the Baseline-zone control are increased. No temperature exceedance is observed in sections 

2 and 4 for phase 3 and 4 as they were not occupied and thereby not conditioned. The total 

temperature exceedance hours for a period of 11 days are 64.7°C·h for the feedback control 

(Baseline-zone) and 22.2°C·h for DMPC-imp, i.e. 65.8% less. If different global temperature 

bounds such as the maximum or minimum value of the local bounds are implemented, the total 

exceedance hours of Baseline-zone are 191.3 or 45.6°C·h respectively which are still higher 

compared to DMPC-imp. 

Table 5.4. Temperature exceedance comparison between Baseline-zone and DMPC-imp [°C·h]  
Baseline-zone DMPC-imp 

phase1 phase2 phase3 phase4 phase1 phase2 phase3 phase4 
section1 0.3 1.7 17.9 5.5 0.2 0.0 1.1 2.5 
section2 0.0 1.8 - 2.8 0.1 0.0 - 13.3 
section3 1.3 0.0 15.3 2.5 0.0 0.0 0.0 3.8 
section4 0.2 0.0 15.4 - 0.0 0.0 1.1 -
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5.4 Limitations 

During the implementation, disturbance prediction such as occupant’s schedule and internal heat 

gain profiles were estimated based on historical data. Also, the solar irradiance forecast is 

calculated with a deterministic model based on the climate zone of the actual test-bed. In future 

work, a more precise method for the solar irradiance forecast using site-specific data could be used 

(e.g. (Liu et al. 2018)), along with statistical methods for occupant’s schedule (Jia and Spanos 

2016; Liao and Barooah 2010; Yang et al. 2014; Zhang et al. 2010). 

In this chapter, we introduced scalable control functions and demonstrated localized thermal 

environment control in open-plan spaces using a radiant floor system with distributed sensing and 

data communication capabilities. Different comfort bounds are reported in the literature (Krajčík 

et al. 2013; Krajčík et al. 2017; Wang et al. 2009; Nevins and Feyerherm 1967) while 

recommendations for comfortable operative temperature ranges in ASHRAE 55 (ASHRAE 2013) 

might not be applicable for radiant floor systems. In the future, we will leverage on-going work on 

learning algorithms for occupants’ thermal preferences (Lee et al. 2017; Lee et al. 2018) and the 

research presented in this chapter will be extended to integrate occupants’ feedback in DMPC 

controllers.  

In the case-study presented in this chapter, a standard BMS system was used for the 

implementation of the DMPC algorithm. Although the MPC computations run sequentially in a 

single server computer, parallel computing is realized as the information from other agents comes 

from the previous iterations. In the future, the developed algorithm can be implemented using new 

low-cost devices such as series of small single-board computers. It is envisioned that smart 

building features with distributed sensing, occupant interaction, data communication and 

computing abilities could be widely adopted if intelligence is embedded into physical devices (Cai 

et al. 2016a). The research presented in this chapter is the first step in this direction.  

5.5 Chapter conclusions 

In this chapter, a multi-agent system approach for smart thermal environment control of office 

buildings was presented. The study has shown that the distributed system identification algorithm 

based on dual decomposition method yields building models with good prediction accuracy even 
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for complex environments such as open-plan spaces with multiple individually controlled comfort 

delivery systems. 

Using a data-driven model and weather forecast, the DMPC controller was implemented to 

optimize the operation of an air-cooled chiller while providing different operative temperature 

bounds for each radiant floor loop. The control input for each radiant loop (agent) was calculated 

individually through the information exchange between agents and then provided to the actual 

BMS. The comparison with a centralized control approach shows that the DMPC algorithm 

captures most of the energy saving potential of the system. This approach is scalable so it can be 

generalized to larger scales of building systems such as multiple zones or building clusters. In this 

case, demand charge needs to be considered with electricity price information. Compared to 

feedback control, DMPC saves around 27% of the electricity consumption by utilizing the higher 

COP of the chiller through the pre-cooling period. At the same time, different thermal 

environments were achieved by facilitating local conditioning in open-plan office spaces.  
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CONCLUSIONS AND FUTURE WORK 

6.1 Main Achievements 

This thesis introduces and demonstrates a new agent-based approach to optimal control of high 

performance buildings. From the application perspective, the focus is thermal environment control 

of open-plan office spaces. Radiant floor systems are evaluated as high performance features and 

used as test-beds to demonstrate the proposed agent-based framework for zone and local 

environment control. 

More specifically, key achievements of this doctoral thesis are: 

 An agent-based estimation framework for data-driven building models. This includes 

identifying agents, their function and network structure, and estimating model parameters 

for both individual agents in the system, using information locally known or observable by 

each agent, and their connections. The proposed method introduces building sub-system 

agents, which are optimized independently, by solving locally a nonlinear programming 

problem while the information is exchanged between the agents. Then, they are integrated 

into one model with further parallel optimizations by applying the dual decomposition 

method.  

 Two case-studies using the Living Laboratories at Purdue’s Herrick Building as test-beds 

to validate the estimated control-oriented models under realistic operation conditions. The 

results show that the model prediction accuracy of the new approach is fairly good for 

implementation in predictive control while models can be developed and integrated with 

improved efficiency, flexibility and scalability, compared to centralized approaches. The 

distributed system identification algorithm based on dual decomposition method yields 

building models with good prediction accuracy even for complex environments such as 

open-plan spaces with multiple individually controlled comfort delivery systems. This 

approach provides a viable solution for control-oriented building models that can be easier 

to develop and integrate whereas the conventional centralized approach could not provide 

accurate predictions for all states.  

 A DMPC algorithm for intelligent control of office buildings with high resolution thermal 

environments. The developed algorithm is inspired by the Proximal Jacobian Alternating 
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Direction Method of Multipliers (PJ-ADMM) with multiple MPCs run iteratively while 

exchanging control input information until they converge. With this tractable approach, 

agents solve individual optimization problems in parallel, through information exchange 

and broadcasting, with a smaller scale of the input and constraints, facilitating optimal 

solutions with improved efficiency. 

 DMPC implementation into an actual building test-bed. The developed algorithm is tested 

using field data from an occupied open-plan office space with localized comfort delivery 

along with distributed sensing, control, and data communication capabilities. The 

comparison with a centralized control approach shows that the DMPC algorithm captures 

most of the energy saving potential of the system. Although the MPC computations run 

sequentially in a single server computer, parallel computing is realized as the information 

from other agents comes from the previous iterations. 

 Detailed evaluation of the energy and cost saving potential of radiant floor systems with 

MPC to reveal its potential as high performance feature in office buildings.  

o The developed zone (centralized) MPC controller includes data-driven building 

models estimated and validated for the heating and cooling seasons, and an 

optimizer based on constraint quadratic programming with hard comfort bounds 

which yields an exact numerical solution with predicted exogenous disturbances. 

The implementation in an occupied office building with a chiller and boiler as 

HVAC sources shows significant energy and cost savings through comparisons 

with baseline air delivery systems and controls. 

o In the DMPC implementation, the control input for each radiant loop (agent) was 

calculated individually through the information exchange between agents and then 

provided to the actual BMS. The developed DMPC controller is capable of 

providing thermal environments with high resolution, thereby improving occupant 

satisfaction, while achieving more than 27% reduction in electricity consumption 

compared to baseline feedback control. 

6.2 Future work 

The overall agent-based methodology developed in this thesis could be packaged into a toolbox 

integrated into open-source building control platforms, existing building management systems, or 
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embedded into new smart devices. It is a scalable solution that can be extended to other smart and 

connected environments, e.g., multiple building systems, multi-zone buildings, building clusters 

integrated with power grids and automobiles. 

It is envisioned that smart building features with distributed sensing, occupant interaction, data 

communication and computing abilities could be widely adopted if intelligence is embedded into 

physical devices. In this regard, the developed DMPC algorithm can be implemented using new 

low-cost devices such as series of small single-board computers (e.g., Raspberry Pi) and could be 

packaged into a toolbox integrated in advanced open-source building control platforms (e.g., 

Voltron). Also, it is expected that the human-related technology facilitates the interaction between 

the occupants and BMS so the occupants’ information could be estimated via statistical methods 

which improve the accuracy of the MPC controller. Moreover, as the occupant is regarded as a 

service user and participant for improving the energy performance of the building, untapped 

energy saving potential is anticipated from the utilizing the comfort-and-energy trade off. 

In the future, low cost devices of single board computer with sensors and occupants interaction 

protocol will be configured to provide the localized thermal environment with fine granularity as 

well as integrate the occupant in the loop to obtain the comfort feedback and occupancy 

information. Thereby we can leverage on-going work on learning algorithms for occupants’ 

thermal preferences as well as the relation of comfort and energy-related feedback provided to 

individual occupants. 
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