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1 Introduction

Short-term phonological memory is the capacity for holding speech-related information

for a short period of time. The formation of this short-term memory in the phonological store

is impacted drastically by a person’s language acquisition at a young age [5]. Even though

American Sign Language (ASL) is the primary mode of communication for most children

today who are born deaf in the United States of America, sign language acquisition has shown

be to as effective as spoken language in developing short-term memory [15].

Deaf children born to deaf parents learn ASL from their parents and hearing children

learn their first language from their parents. However, 90-95% of deaf and hard of hearing

children are born to hearing parents that do not know enough ASL to teach their children. This

lack of adequate language exposure can have detrimental effects on working memory in these

kids especially between the critical language learning ages of two and five [10, 3]. Studies

have shown that these pre-lingually deafened children with weaker working memory are able

to repeat only one or two signs compared to the average four to six signs [3]. This deficiency

of short-term memory combined with the weakening of other language skills can lead to

Language Deprivation Syndrome (LDS), a condition with poor lifelong outcomes, including a

2-7x increase in mental health problems [5], 50% unemployment rate [11], and a 3-30x

increase in suicide rates [16]. As a result, it is crucial to have proper development of

short-term memory through language acquisition. Studies have demonstrated that children

capable of expressing themselves in ASL at an early age quickly increase their short-term

memory, thereby mitigating the risk of suffering from LDS [14].
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Figure 1: Observed Working Memory Increase from Old CopyCat versions. All improvements
are statistically significant at p < 0.05

Fortunately, previous research has demonstrated that interactive games can significantly

improve short-term memory skills. A Wizard of Oz experiment conducted by Weaver et al.

showcased that children who play CopyCat alongside the class curriculum increase their scores

on Receptive, Generative, and Sentence Repetition metrics more than children who do not

play CopyCat (Figure 1) [14]. As these metrics provide a good estimate of a child’s short term

memory, one can expect similar results as long as the recognition accuracy is similar to a human

sign linguist’s accuracy of 92%.
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As technology becomes more advanced and recognition models become more accurate,

applications of gesture technology have become more widespread. One major application

involves the recognition and verification of sign language for practical communication as well

as basic learning. However, the majority of results published involve controlled lighting

conditions and sensor-based gloves, leading to minimal practically in the real world [9].

Furthermore, many systems do not recognize the importance of interaction between the

human and the computer, leading to an absence in the full scope of benefits that technology

such as this could provide. This limited environment and learning that often involves the

expensive financial cost and hassle of a custom setup usually leads to a cumbersome

experience for both the child as well as his or her parents [4].

As a result, the exploration and development of an inexpensive and accurate system in a

practical setting that focuses on the benefit of language acquisition with key user interactions

is much needed for the future generations of deaf children. Based on this evidence, we are

developing an educational machine-learning backed game called CopyCat. While previous

attempts at educational ASL games typically focus on language reception rather than phrase

generation [4, 3, 18], CopyCat is an interactive and entertaining game that helps deaf children

hone their ASL generation skills and facilitates short-term language memory acquisition. The

game presents the user with a scene, asks the user to describe it using sign language, and then

uses natural language processing to determine the correctness of the signed phrase. As seen in

Figure 2, the game presents the child with a scene on the right-hand side (lion above gray wall).
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Figure 2: CopyCat Game UI

The practical scale and impact of gesture technology on the deaf community currently

remains limited. Understanding how to further the CopyCat system will significantly widen

the impact of gesture technology on deaf children and their quality of life. Through the use of

our system at an early age, we expect to counteract the deficiency in short-term memory that

deaf children of hearing parents often face. This will help these children avoid continuous

language deprivation and therefore life-threatening consequences such as Language

Deprivation Syndrome. Furthermore, overcoming these challenges will allow deaf children to

participate more confidently in academics and limit the socioeconomic risk of inadequate

education.
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2 Literature Review

Language acquisition is an important contributor in forming short-term memory [5].

Unfortunately, 90-95% of deaf and hard of hearing children are raised in linguistically

impoverished homes with minimal language interaction [8]. This minimal language

interaction leads to problems with communication from an early age and decreases the child’s

short-term working memory. As a result, deaf children from hearing households face

immediate issues in school compared to their peers such as lower academic performance and

poorer reading ability [11]. Long term, delayed language acquisition will lead to Language

Deprivation Syndrome.

As research has linked early development of sign language as an effective method to

improve short-term memory, most of the past studies in interactive American Sign Language

(ASL) software focuses on the ability of students to comprehend language [13]. However, due

to a lack of repetition with feedback and the importance of the user generating language,

benefits remain marginal. Furthermore, the limited size of ASL datasets make the task

challenging. As a result, despite the advancements made in this field over the last few decades,

there are many difficult challenges yet to be addressed. Bragg et al. outlined the shortcomings

that public sign language datasets have that limit the power and generalizability of systems

trained on them [2]. Unlike speech recognition, which has been trained on corpora containing

millions of words, sign language corpora typically contain fewer than 100,000 articulated

signs. Larger datasets for sign language recognition are needed for generalization to unseen

scenarios and users, but these can be time-consuming and expensive to assimilate. Most sign

language datasets contain only individual signs though most real-world use cases of sign

language processing involve natural conversational with complete sentences and longer

utterances. Our dataset tries to address this challenge by collecting sentence data.
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Yin et al. showed translation of German Sign Language with a state-of-the-art

STMC-Transformer [17]. By doing so, they obtained a word error rate of 21% on the

PHOENIX14T dataset consisting of signed weather reports. However, Transformers often

require larger datasets than HMMs as they have more parameters to train and must learn the

grammar from scratch. By restricting the signed vocabulary to a limited set of signed phrases,

Bansal et al. on CopyCat showed that HMMs outperform Transformers on average by 17% on

ASL recognition of phrases with a predefined grammatical structure [1].

Furthermore, receptive language, expressive language, and sentence repetition are three

crucial measures of working memory. CopyCat is a game that has shown an increase of

approximately 70% in receptive language, 130% in expressive language, and 50% in sentence

repetition in two weeks [1]. Although both the recognition error and verification error of this

system were negligible, the system involved the use of expensive custom-built colored gloves

with embedded accelerometers in a kiosk to control position and lighting [4]. Furthermore, the

proper equipment required a custom setup that cost over $3,000, significantly limiting the

accessibility of the project and hence the benefits.

A future iteration of CopyCat then explored the potential of the Azure Kinect 3D depth

camera body tracking as a solution to minimize the equipment and the majority of the cost

required [7][18]. However, the results on the Kinect system averaged only 74% word and 36%

sentence accuracy with Hidden Markov Models (HMMs), creating a negative outcome on the

overall user experience [18]. Therefore, the scale and the impact of gesture technology on the

deaf community remained restricted.
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3 Materials and Methods

3.1 CopyCat Game

Subject Adjective Preposition Object

Monkey Black In Bed

Lion Grey Above Chair

Alligator Orange Below Wall

Snake Blue Wagon

White Flowers

Box

Table 1: CopyCat game vocabulary

The Adaptive CopyCat game consists of an 18 sign vocabulary set (Table 1) with a total of

58 different phrases. Sophisticated linguistic features in ASL like facial gestures are not

considered in the game to reduce overall complexity. Three-sign, four-sign, and five-sign

phrases each have their own level representing the difficulty in the game. Each phrase follows

a specific sign-based grammar:

[adjective1] subject preposition [adjective2] object

All levels include the subject, preposition, and object signs. Neither adjectives are used in

the three-sign level. One adjective is used in the four-sign level and both adjectives are used in

the five-sign level.
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3.2 Feature Extraction

Using a Microsoft Azure Kinect depth camera, each frame of the 4K RGBD video is

captured. A human pose estimator is then used to extract the features from each frame. While

we previously considered Google MediaPipe, Microsoft Azure Kinect SDK, and AlphaPose,

as seen in Figure 3, based on results from [1] that all three pose estimators perform with

relatively the same accuracy, we have decided to only consider Microsoft Azure Kinect SDK

moving forward. The Azure Kinect SDK v1.3.0 combines its depth readings with its 4K RGB

data to calculate the (x,y,z) coordinates of 32 joint positions [6]. Since the Azure Kinect SDK

returns three coordinates per joint position, this results in 96 features in total. In addition to

these raw features, we post-process pose recognition to generate additional features such as

delta features, relative features, and normalized features. Throughout the past years, the

CopyCat team has assembled a 4K RGBD dataset by collecting videos recorded using Azure

Kinect from 12 adults at Georgia Tech with little ASL experience, contributing a public pose

estimator feature dataset of appropriately 7000 videos.

Figure 3: AlphaPose (left), Azure Kinect (middle), and MediaPipe (right)

3.3 Hidden Markov Model

Selected features are then integrated with the appropriate recognition model to enable

training. We implement HMMs using the Hidden Markov Model Toolkit (HTK) with Kaldi to

enable HMM training on sequential 2D and 3D data.
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1: X = Features, Y = Label, T = TotalT imesteps
2: Initialize HMM Parameters θ = (A, B, π) randomly
3: α(X0) = P [Y0, X0] = P [Y0|X0]P [X0]
4: β(XT ) = 1
5: while i ≤ iterations do
6: for k = 0→ T do
7: α(Xk) = ∑

Xk−1 α(Xk−1)P (Xk|Xk−1)P (Yk|Xk)
8: end for
9: for k = N → 0 do

10: β(Xk) = ∑
Xk+1 β(Xk+1)P (Xk+1|Xk)P (Yk+1|Xk+1)

11: end for
12: η(Xk) = α(Xk)β(Xk)∑

Xk
α(Xk)β(Xk)

13: ϵ(Xk, Xk+1) = α(Xk)β(Xk+1)P [Xk+1|Xk]P [Yk+1|Xk+1]∑
Xk

α(Xk)β(Xk+1)P [Xk+1|Xk]P [Yk+1|Xk+1]

14: π∗
0 = η(X0)

15: A∗
ij =

∑
k

ϵ(Xk=j,Xk−1=i)∑
k

η(Xk−1=i)

16: B∗
ij =

∑
k

η(Xk=i)1Yk=j∑
k

η(Xk=i)
17: end while

Algorithm 1: Baum-Welch Re-estimation

1: create path matrix viterbi[N, T ]
2: for s = 1→ N do
3: viterbi[s, 1] = πs ∗ bs(ø1)
4: backp[s, 1] = 0
5: end for
6: for = 2→ T do
7: for s = 1→ N do
8: viterbi[s, t] = max viterbi[s′, t− 1]as′,sbs(øt)
9: backp[s, t] = argmax viterbi[s′, t− 1]as′,sbs(ot)

10: end for
11: end for
12: bestpathprop = max viterbi[s, T ]
13: bestpathpointer = argmax viterbi[s, T ]
14: bestpath = path starting at bestpathpointer, follows backp[] to states back in time

Algorithm 2: Viterbi Decoding
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HMMs are probabilistic models that try to understand Markov processes – events where

the current state depends only upon the previous state. HMMs model such processes by

learning transition probabilities between states and emission probabilities of different

observations at each state. The states are hidden (unobservable), hence the reason that HMMs

are “hidden”. Using a specialized case of the EM algorithm, the Baum-Welch re-estimation

algorithm (Algorithm 1) is used to train an HMM for each sign for roughly 200 iterations.

Every 25 iterations, the number of mixtures in the Gaussian mixture distribution is increased,

allowing for more complex observations to be made. Finally, the Viterbi Decoding algorithm

(Algorithm 2) is used to find the most likely sequence of hidden states and HMM models

based on the trained selected features of the pose estimator.

3.4 Adaptive CopyCat

The study improves the accuracy and recognition of the machine-learning backed system.

In order to achieve this improvement, we introduced a Progressive User Adaptive (PUA) model

(Algorithm 3). This adaptive model progressively personalizes the model on the user as he or

she plays the CopyCat game that advances in complexity from 3-sign phrases to 5-sign phrases.

PUA modeling adds the new user’s signed phrases that the system detected as correct in the

previous levels. When the user advances from the 3-sign level to the 4-sign level, the model

will retrain on the original dataset plus repetitions of all of the user’s correctly signed 3-sign

phrases, as determined by the user independent recognizer. When advancing to the 5-sign level,

repetitions of the user’s correctly signed 4-sign phrases are also added. Since the amount of new

data collected is significantly smaller than the amount of existing training data, data repetition

is used to increase the influence of new data on the training model. Experimental results have

indicated that a 20x repetition of each new record most effectively incorporates new data into

PUA models.
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1: X = Original Features Data-set
2: R← Number of phrase repetitions (20)
3: Yn = Labels of n-sign data in X, T = Total Time steps
4: Sn = System-detected correct n-sign words
5: level = next level the user will enter (3, 4, 5, etc...)
6: for n = 4→ level do
7: Perform Baum-Welch with parameters X , Yn−1
8: for i = 1→ R do
9: X ← (X, Sorig

n−1)
10: end for
11: end for

Algorithm 3: Progressive User Adaptive Model

To test the accuracy of PUA, we perform leave-one-signer-out testing. We emulate a

previously unseen user with the left-out user and perform the PUA procedure as described

above (starting with the user independent recognizer trained using the 11 other users’ data).

As a final test to avoid overfitting, we introduce a new participant six months after video

data from the first 12 users was collected. This user signed each phrase from our dataset four

times correctly and once incorrectly. This 13th user served as the novel user for our recognition

system and helped us evaluate the model with purposely incorrect signs. Even if the actual

signed phrase did not match the expected phrase, if the model predicted a match, the model

would still incorporate the data into the training for the future levels.
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4 Results and Discussions

4.1 HMMs vs Transformers

Recognition Model HMMs Average Transformers Average

AlphaPose 90.6 (71.9) 67.2 (51.1)

Kinect 90.5 (71.6) 75.7 (62.9)

MediaPipe 90.4 (71.7) 77.5 (65.9)

Table 2: User independent word (sentence) percent accuracy using HMMs and Transformers

Previous work from Bansal et al. has shown that HMMs are better suited for ASL

recognition for the CopyCat game compared to deep learning alternatives such as LSTMs and

Transformers [1]. HMMs perform better on time series and pattern recognition problems

along with low training data requirements. Due to the limited data available for ASL and the

grammatical phrase structure of CopyCat, HMMs achieve over 17% better word accuracy than

Transformers in the User Independent setting on 8 users (Table 2).

4.2 User Independent vs Adaptive HMMs

Recognition Model User Independent Progressive User Adaptive

3-sign 95.0 (87.0) NA

4-sign 95.3 (84.2) 96.7 (88.9)

5-sign 96.0 (84.3) 97.9 (92.0)

Table 3: User independent word (sentence) percent accuracy using User Independent and
Progressive User Adaptive model with HMMs
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After expanding the dataset from 8 users to 12 users, randomizing the training data order,

and improving the list of features selected, HMMs trained on user independent data for Kinect

achieve on average roughly 95% word accuracy and 85% sentence accuracy (Table 3).

However, these models do not achieve the 92% sentence accuracy of a human sign linguist, a

threshold CopyCat recognition aims to achieve in order to achieve the Wizard of Oz

experiment benefits (Figure 1).

Using HMMs trained on progressive user adaptive data for Kinect has shown significant

improvements (Table 3). For 4-sign phrases, the average sentence accuracy increased by 5.7%

absolute to 88.9%. Average sentence accuracy increased for the 5-sign phrases by 7.7%

absolute to 92.0%. While we are clearly not achieving 92% sentence accuracy with user

independent training, PUA eventually gets there over time, where we are able to achieve

human sign linguistic accuracy for 5-sign phrases. Note that PUA 3-sign uses the user

independent model as the user has not completed any level of CopyCat.

In the group’s original studies, When testing on our target population of 6-8 year-old Deaf

children of hearing parents, we were impressed by how persistent they were at playing the

game. When the game would obviously misclassify a phrase, one child signed "STUPID CAT.

LOOK AT ME!" and then repeated the phrase. We designed the game to declare a level

unfinished after four unsuccessful attempts at signing when given the correct phrase. Such an

occurrence would cause the game to reduce the length of the required phrase for the next

scene, while repeated successes would increase the length of the required phrase. Thus, while

there are implications for the recognizer to mis-verify a child’s signing, given the recognition

rates seen here, there is a good chance that the recognizer would accept a second or third

correct attempt by the child. This may avoid the child from becoming frustrated as the system

will eventually recognize their attempt as correct.
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3-sign UI Incorrectly Signed UI Correctly Signed

attempt 1 97.2 (105/108) 94.6 (105/111)

attempt 2 n/a 99.1 (110/111)

attempt 3 n/a 99.1 (110/111)

attempt 4 n/a 100 (111/111)

4-sign

attempt 1 92.2 (107/116) 86.0 (92/107)

attempt 2 n/a 96.3 (103/107)

attempt 3 n/a 99.1 (106/107)

attempt 4 n/a 100 (107/107)

5-sign

attempt 1 100 (108/108) 87.8 (97/108)

attempt 2 n/a 98.1 (106/108)

attempt 3 n/a 100 (108/108)

attempt 4 n/a 100 (108/108)

Table 4: User Independent (UI) percentage phrases correctly recognized as correct or incorrect
from the previously unseen 13th participant

Table 4 shows the results from our 13th participant, recruited six months after our initial

12. This participant signed the same phrase correctly four times in a row to emulate a player

making repeated attempts at having the recognizer approving their phrase. The user’s user

independent accuracies are quite good, suggesting that our recognizer is not overfitting due to

tuning of hyperparameters during cross validation. As can be seen on the rightmost column of

the table, the recognizer is highly likely to accept a phrase within two attempts.
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Before providing the four repeated phrases, the 13th participant was first prompted to sign

the phrase incorrectly, with only one sign in the phrase being incorrect. The system recognized

that this “incorrect” phrase was, in face, incorrect an average of 96.4% of the time. Both the

false positive rate and overall accuracy observed with the 13th participant are better than the

operational glove system deployed with the Georgia School for the Deaf. In future studies,

we plan for this participant to play Adaptive CopyCat live with the progressive user adaptive

algorithm.
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5 Future Work

There are many opportunities for building upon the current work.

5.1 Model Analysis

Figure 4: ELAN annotation tool for sign language

We have been working on analyzing our models and the features we are pulling from pose

estimators to improve performance. We have built upon ELAN, an annotation tool used widely

in the sign language community, to look into state and word boundaries, as well as features

such as log likelihoods (Figures 4 and 5). One use of this data is to understand which words

and phrases are confused the most. For example, the prepositions "in" and "above" are often

confused, so using the ELAN tool, we can figure out which of our model states are getting

confused. We can then train specialized classifiers for those confused words to drastically

improve performance. Furthermore, we are looking into ways that we can utilize information

theory to order phrases such that we can extract the most information about a user in a small

amount of phrases for progressive user adaptive.
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Figure 5: Custom tool for investigating log likelihood and boundaries

5.2 User Studies

We will also conduct a large-scale user study on deaf children to verify the educational

benefits of the new CopyCat game. The study will be designed to confirm education benefits,

ease of use of the system, and recognition accuracies in real life scenarios. We will be

connecting with deaf children at the Atlanta School of the Deaf for conducting this user study.

For conducting effectiveness studies on deaf children, we will integrate our final machine

learning model with our full-fledged PC game in a setting similar to the one used by Weaver et

al [14].
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5.3 Live Adaptive CopyCat

The 13th participant has played the complete CopyCat game using a user independent

model from the 12 existing users in the dataset. In doing so, we were able to test the accuracy

of the model in a simulated setting with especially incorrectly signed data as well. The next

step would be to have a similar participant play the complete CopyCat game using the

progressive user adaptive model. By incorporating the data of the user as he or she plays the

game, we can investigate the possible concerns of tuning the model towards the user’s signing.

Furthermore, we can investigate the effects of tuning the model on a phrase by phrase basis

and incorporating phrases that are better recognized by the model earlier on in the game.

5.4 CopyCat Game and Dataset

An obvious improvement that will most likely improve accuracy is increasing the size of

the dataset, expanding the training dataset. While this can be performed by recruiting

additional signers, expanding the breadth of the current dataset from 12 users, CopyCat can

also be extended past 5-sign phrases. Not only will this expansion allow for increased

complexity in the game, but one can also expect further sentence accuracy improvements

using the progressive user adaptive algorithm. Using insights from these results, we will move

on to our target population of deaf children. As the current system is trained on adults instead

of 6-8 year olds, we need to not only test the system with children for the education effect but

also for the recognition and verification accuracies. Expanding the dataset to include the target

population is essential for model generalization.
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6 Conclusion

The results we present above suggest that a game based on sign language recognition is

feasible. We show that Adaptive CopyCat successfully adapts to the addition of a new user

and has the ability to perform at human sign linguistic sentence accuracy over time.

Furthermore, we show that the user independent model does not suffer from overfitting on the

data. Results on the CopyCat children dataset from the older system using custom gloves and

accelerometers revealed that verification yielded higher accuracies compared to recognition.

We observe that with our new system on adult users using pose estimators, we are able to

achieve an accuracy over the 82% threshold obtained from verification on the older system.

This result is not only promising, but it also opens an avenue of incorporating verification into

our current game version to evaluate potential increase in the accuracy. In the near future, we

hope to evaluate Adaptive CopyCat with the 13th participant and test our current system with

deaf children by incorporating their videos into our current dataset.
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