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To build a sustainable space transportation system for human space exploration, the 

design and deployment of space infrastructure, such as in-situ resource utilization plants, in-

orbit propellant depots, and on-orbit servicing platforms, are critical. The design analysis and 

trade studies for these space infrastructure systems require the consideration of not only the 

design of the infrastructure elements themselves, but also their supporting systems (e.g., 

storage, power) and logistics transportation while exploring various architecture options (e.g., 

location, technology). This paper proposes a system-level space infrastructure and logistics 

design optimization framework to perform architecture trade studies. A new space-

infrastructure logistics optimization problem formulation is proposed that considers the 

internal interactions of infrastructure subsystems and their external synergistic effects with 

space logistics simultaneously. Because the full-size version of this proposed problem 

formulation can be computationally prohibitive, a new multifidelity optimization formulation 

is developed by varying the granularity of the commodity-type definition over the space 

logistics network; this multifidelity formulation can find an approximate solution to the full-

size problem computationally efficiently with little sacrifice in the solution quality. The 
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proposed problem formulation and method are applied to the design of in situ resource 

utilization systems in a multimission lunar exploration campaign to demonstrate their values. 

Nomenclature 

A = coefficient matrix for linear programming 

𝒜 = set of arcs 

𝑏 = constraint vector for linear programming 

𝒞𝑐  = continuous commodity set 

𝒞𝑑  = discrete commodity set 

𝐶𝑣 = spacecraft payload capacity 

𝑐 = cost coefficient 

𝑑 = mission demand, kg 

𝐹 = commodity transformation matrix 

𝐺 = aggregation matrix 

𝑔0 = standard gravity, m/s2 

𝐻 = concurrency constraint matrix 

𝐼𝑠𝑝 = specific impulse, s 

𝒥 = optimization objective 

𝒩 = set of nodes 

𝑃𝐼  = infrastructure power demand, kW 

𝑃𝑣 = spacecraft propellant capacity, kg 

𝑃0 = power system output power, kW 

𝑄𝐼  = infrastructure operating length per solar day, h 

𝑄𝑝 = power system working time per solar day, h 

𝑄𝑢 = commodity packing index subsets 

𝑅 = number of different types of commodities 

𝑆𝑘 = commodity index partition subsets 

𝑆𝑣 = spacecraft structure mass, kg 
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𝒯 = set of time steps 

𝒱 = set of spacecraft 

𝑊 = set of time windows 

𝓧 = variable vector for linear programming 

𝑥 = commodity variable 

𝛼 = reactor productivity, kg/h/kg plant 

𝛽 = consumption rate, kg/h/kg plant 

𝜀 = energy storage efficiency 

𝛾 = the specific mass of energy storage systems 

∆𝑡 = time of flight, day 

∆𝑉 = change of velocity, km/s 

𝜁 = commodity packing index set 

𝜙 = propellant mass fraction 

Subscripts 

𝑖 = node index 

𝑗 = node index 

𝑡 = time step index 

𝑣 = spacecraft index 

 

I. Introduction 

S interest grows in space exploration and space economy development, the design and deployment of space 

infrastructure systems become critical to support space resource utilization, on-orbit servicing, and interplanetary 

space transportation. Past space infrastructure design literature has analyzed the system performance of in-situ 

resource utilization (ISRU) systems, propellant depots, on-orbit servicing platforms, etc. For example, the technical 

and economic feasibility of commercial propellant production by ISRU systems has been examined and demonstrated 

by industry, government, and academic experts [1]. Multiple studies have focused on the chemical processes of ISRU 

reactor and system productivity, such as the hydrogen reduction reaction testbeds by NASA [2] and Lockheed Martin 

[3], the integrated carbothermic regolith reduction system by Orbitec Inc. and Kennedy Space Center [4], the 

A 
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integrated molten regolith electrolysis (MRE) reactor modeling method by Schreiner [5], and the Mars oxygen ISRU 

experiment by Meyen [6]. Besides ISRU, on-orbit servicing technologies have also been developed in recent years 

[7,8], its commercial potentials and operations have been analyzed in the literature [9-11]. However, all these 

referenced studies mainly analyzed the feasibility and performance of the space infrastructure elements, and did not 

take into account the complex logistics to deploy and support those infrastructure systems. 

On the other hand, multiple studies focused on space transportation analysis and considered space infrastructure 

design, such as ISRU systems, together with space transportation system design. United Launch Alliance proposed 

the Cislunar-1000 project to build a sustainable space economy by taking advantage of lunar water ISRU plants to 

produce oxygen and hydrogen [12]. A series of network-based space logistics optimization methods were proposed 

by Ishimatsu [13], Ho [14], and Chen [15] to solve mission planning, space infrastructure design, and spacecraft design 

problems concurrently. Their results showed the long-term benefits of ISRU systems and propellant depots to space 

exploration campaigns. However, in these traditional space logistics optimization methods, referred to as the prefixed 

space infrastructure optimization formulation in this paper, the space infrastructure was considered as a black box, 

and the subsystem interactions and mass ratios were determined before taking into account space logistics optimization 

[13-17]. They ignored the interaction between infrastructure subsystems and space transportation mission planning. 

 Due to the inadequate trade studies between space infrastructure design and space transportation planning, 

conventional prefixed space mission planning and infrastructure design have only explored a limited trade space. For 

example, considering the ISRU system as a black box model would miss the tradeoff between the frequency of 

logistics missions and its impact on ISRU storage system size. Namely, frequent transportation missions require 

smaller storage subsystems but higher operation cost and complexity; whereas infrequent transportation missions 

require larger storage subsystems, which can also lead to higher infrastructure deployment cost. The consideration of 

this tradeoff requires the modeling of ISRU infrastructure subsystems and its coupling with the logistics planning. 

Furthermore, prefixing the space infrastructure design for architecture design can also miss the synergistic effect of 

space infrastructure technologies and the combination of subsystems to achieve a hybrid system design, particularly 

when different infrastructure technologies have common supporting subsystems. An example is an ISRU plant based 

on the reverse water gas shift reaction (RWGS) and Sabatier reaction (SR). The RWGS process can be used 

concurrently with SR to produce sufficient oxygen so that the generated 𝑂2  and 𝐶𝐻4  can be used together as 

propellants optimally. (The oxygen/methane bipropellant has been widely considered as a propellant option to support 
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future robotic and human missions in conjunction with ISRU systems [18,19].) Because of the similar reactants and 

reaction environment, the RWGS process and the SR process can share the same acquisition subsystem (for 𝐶𝑂2), 

liquefication & storage subsystem (for 𝑂2), and power subsystem. Thus, the SR ISRU and the RWGS ISRU need to 

be designed together for optimal performance, and this design solution depends on the mission scenarios and the 

logistics planning (e.g., launch frequency, vehicle type/size, available resources from the ground or other sources). To 

resolve this challenge effectively, a general design optimization framework and its methods need to be developed to 

handle the synergistic effect of space infrastructure subsystems and the logistics system. 

To effectively evaluate the impacts of the space infrastructure design to space missions with higher fidelity (i.e., 

considering both system-level and subsystem-level tradeoffs), we propose an interdisciplinary space infrastructure 

optimization framework and its optimization methods, leveraging network-based space logistics modeling. The 

proposed framework enables an integrated architecture trade study for future space infrastructure, considering the 

coupling between the subsystems design and corresponding logistics planning.  

 Our proposed framework has four technical innovations. First, we propose an interdisciplinary space infrastructure 

optimization formulation that considers infrastructure subsystems’ internal interactions and their external synergistic 

effects with space logistics transportation simultaneously. This is a new problem in space logistics for high-fidelity 

space infrastructure trade studies. Second, since the full-size version of this proposed problem formulation can be 

computationally prohibitive for large-scale space infrastructure design problems, we develop a new multi-fidelity 

optimization formulation that can provide an approximate solution to the full-size formulation at a significantly 

reduced computational cost with little sacrifice in the solution quality. The idea behind this multi-fidelity formulation 

is to vary the granularity of the commodity type definition over the network graph; this technique is referred to as 

commodity packing based on its physical meaning. Third, in order to identify where and when to pack the commodities 

for the multi-fidelity optimization formulation, we develop a preprocessing algorithm for commodity packing. This 

method enables an automated implementation of the multi-fidelity formulation in the context of dynamic generalized 

multicommodity network flow. Fourth, we establish the relationship between the solutions of the multi-fidelity, full-

size, and traditional prefixed formulations. This relationship enables us to find the approximate solution of the 

computationally prohibitive full-size formulation with the knowledge about the worst possible approximation error.  

Our method will enable a unique tradeoff that could not be performed with traditional methods. The proposed 

framework can perform space infrastructure technology selection and system sizing for each subsystem considering 
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their interactions and logistics mission planning. For example, we can consider the tradeoff between the frequency of 

logistics missions and its impact on ISRU storage system size. Exploring this tradeoff considering both ISRU and 

logistics mission design concurrently can lead to an efficient system design compared with the traditional methods 

considering these two separately. In addition, our method can consider the optimal design of a hybrid infrastructure 

system with multiple technologies. For example, for ISRU infrastructure systems that have common reactants, reaction 

environments, or final products like the aforementioned SR/RWGS example, the proposed framework can combine 

multiple technologies into an optimally integrated ISRU architecture with shared subsystems. By enabling these new 

capabilities in space logistics optimization, the developed framework provides an important step forward in integrated 

space infrastructure design and trade studies for future large-scale human space exploration. The proposed 

optimization framework can also be used as an evaluation tool to analyze the long-term performance of spacecraft and 

space architectures. 

 The remainder of this paper is organized as follows. Section II first introduces the traditional prefixed optimization 

formulation for space infrastructure design, where space infrastructure is considered as a black box. Then, Sec. III 

discusses the full-size version of the proposed space infrastructure optimization problem formulation, taking into 

account space infrastructure subsystems tradeoffs together with space mission planning concurrently. In Sec. IV, we 

propose a multi-fidelity optimization formulation and its methods to resolve the computational challenge inherent in 

the full-size formulation. Section V demonstrates the proposed optimization formulations through a multi-mission 

human lunar exploration campaign case study. Finally, Sec. VI summarizes the conclusion of this paper and discusses 

future work. 

II. Traditional Method: Prefixed Space Infrastructure Optimization Formulation 

The network-based space logistics optimization formulation considers space missions as commodity network flow 

problems [13-15], where nodes represent planets or orbits and arcs represent trajectories. Vehicles, payloads, 

infrastructure, and crewmembers are all considered as commodities. An example of the Earth-Moon-Mars 

transportation network model is shown in Fig. 1. The inputs of this infrastructure optimization formulation are space 

mission demands and corresponding available infrastructure systems to be implemented (i.e., mainly representing 

ISRU systems and their supporting structures in this paper). Based on the mission demands and time window 

constraints, this formulation outputs selected infrastructure systems to be deployed, including system sizing, plant 
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deployment strategy, system operating mechanisms, and further resource logistics processes if mission demands occur 

at a location different from the infrastructure deployment spot. 

 

 

Fig. 1 An example of the Earth-Moon-Mars transportation network model. [17] 

 In this space infrastructure optimization problem, space logistics mission planning is the main goal for 

optimization. Fig. 1 shows an example of the Earth-Moon-Mars transportation network model. Space logistics 

optimization includes space transportation scheduling and space infrastructure deployment strategy optimization. The 

space infrastructure subsystem interactions are determined in advance before space logistics optimization. The 

optimizer of this formulation only finds the optimal total mass of the space infrastructure, where the mass ratios 

between subsystems are fixed. 

 Let us first define a time-expanded network graph by a set of arcs, 𝒜 = {𝒩,𝒯, 𝒱}, where 𝒩 is a set of nodes 

(index: 𝑖 , 𝑗), and 𝒯  is a set of time steps (index: 𝑡). We also need a set of available spacecraft 𝒱  (index: 𝑣) as 

transportation vehicles during space missions. There are two types of arcs in the network: 1) transportation arcs to 

connect different nodes at different time steps representing spaceflights in space transportation; 2) holdover arcs to 

connect the same nodes at different time steps representing operation activities after infrastructure deployment. Then, 

we define a commodity flow variable vector 𝒙𝑣𝑖𝑗𝑡 , representing the commodity flow from node 𝑖 to node 𝑗 at time 𝑡 

using spacecraft 𝑣. Note that this 𝒙𝑣𝑖𝑗𝑡  represents the mass right after departing node 𝑖, and thus it is often mentioned 

as an outflow in the literature. Each element of the commodity flow variable vector 𝒙𝑣𝑖𝑗𝑡  corresponds to one type of 
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commodity, and it can be either continuous or discrete (i.e., integer) depending on the corresponding commodity; the 

former commodity set (i.e., continuous commodity set) is defined as 𝒞𝑐, and the latter commodity set (i.e., discrete 

commodity set) is defined as 𝒞𝑑. For example, the number of spacecraft and crew members are integers while the 

mass of propellant and payload are continuous. Define a demand parameter 𝒅𝑖𝑡 , which is determined by mission 

scenarios. Mission demands are negative and mission supplies are positive. We also need to define a cost coefficient, 

𝒄𝑣𝑖𝑗𝑡 , for each commodity to measure the space mission cost. If there are 𝑅 types of commodities in the space mission, 

𝒙𝑣𝑖𝑗𝑡 , 𝒅𝑖𝑡 , and 𝒄𝑣𝑖𝑗𝑡  are all 𝑅 × 1 vectors.  

 Aside from the notations defined above, we also need to define the following parameters: 

1) ∆𝑡𝑖𝑗 = Time of flight along arc 𝑖 to 𝑗. 

2) 𝐹𝑣𝑖𝑗 = Commodity transformation matrix. 

3) 𝐻𝑣𝑖𝑗  = Concurrency constraint matrix. 

4) 𝑊𝑖𝑗 = Time windows of spaceflight along arc 𝑖 to 𝑗. 

 Then, the formulation of the prefixed space infrastructure optimization formulation can be written as follows. 

Minimize: 

𝒥 = ∑ 𝒄𝑣𝑖𝑗𝑡
𝑇𝒙𝑣𝑖𝑗𝑡(𝑣,𝑖,𝑗,𝑡)∈𝒜 (1a) 

Subject to: 

∑ 𝒙𝑣𝑖𝑗𝑡(𝑣,𝑗):(𝑣,𝑖,𝑗,𝑡)∈𝒜 − ∑ 𝐹𝑣𝑗𝑖𝒙𝑣𝑗𝑖(𝑡−∆𝑡𝑗𝑖)(𝑣,𝑗):(𝑣,𝑗,𝑖,𝑡)∈𝒜 ≤ 𝒅𝑖𝑡      ∀𝑖 ∈ 𝒩  ∀𝑡 ∈ 𝒯  (1b) 

𝐻𝑣𝑖𝑗𝒙𝑣𝑖𝑗𝑡 ≤ 𝟎𝑙×1   ∀(𝑣, 𝑖, 𝑗, 𝑡) ∈ 𝒜 (1c) 

{
𝒙𝑣𝑖𝑗𝑡 ≥ 𝟎𝑅×1     if 𝑡 ∈ 𝑊𝑖𝑗

𝒙𝑣𝑖𝑗𝑡 = 𝟎𝑅×1   otherwise
     ∀(𝑣, 𝑖, 𝑗, 𝑡) ∈ 𝒜 (1d) 

𝒙𝑣𝑖𝑗𝑡 = [

𝑥1

𝑥2

⋮
𝑥𝑅

]

𝑣𝑖𝑗𝑡

,    
𝑥𝑛 ∈ ℝ≥0  ∀𝑛 ∈ 𝒞𝑐

𝑥𝑛 ∈ ℤ≥0  ∀𝑛 ∈ 𝒞𝑑
   ∀(𝑣, 𝑖, 𝑗, 𝑡) ∈ 𝒜 

A. Objective Function 

 Equation (1a) is the objective function that minimizes the total mission cost throughout the whole space campaign. 

Different types of mission objectives can be implemented depending on the mission performance metric. 

B. Mass Balance Constraint 
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 Equation (1b) is the mass balance constraint that guarantees mission demands are always satisfied at node 𝑖. This 

constraint contains an inequality rather than equality to allow the possibility of dumping commodities out of the 

logistics system. 

 In this constraint, the second term 𝐹𝑣𝑗𝑖𝒙𝑣𝑗𝑖(𝑡−∆𝑡𝑗𝑖)
 represents the outcome of the commodity transformation process 

from node 𝑗 to node 𝑖 during spaceflights or mission operations. The transformation includes propellant burning that 

consumes propellant during spaceflights, crew consumptions that include food, water, and oxygen, and resource 

productions (e.g., propellant) by space infrastructure systems. The matrix 𝐹𝑣𝑖𝑗 is the transformation matrix. After the 

transformation process, the commodities flow into node 𝑖 as commodity inflows.  

 To illustrate the settings of the transformation matrix 𝐹𝑣𝑖𝑗, two examples are shown in the following. One example 

is about propellant burning and another one is about space infrastructure resource productions. First, define a 

commodity inflow variable as, 

𝒙𝑣𝑖𝑗𝑡
𝑖𝑛𝑓𝑙𝑜𝑤

= 𝐹𝑣𝑖𝑗𝒙𝑣𝑖𝑗𝑡 

For propellant burning process, define the commodity flow variables as, 

𝒙𝑣𝑖𝑗𝑡 = [

𝑥𝐶 :  cargo, kg

𝑥𝑟: propellant, kg

𝑥𝑆: spacecraft, #

]

𝑣𝑖𝑗𝑡

 

Then, we can express the impulsive propellant consumption as follows: 

[
𝑥𝐶

𝑥𝑟

𝑥𝑆

]

𝑣𝑖𝑗𝑡

𝑖𝑛𝑓𝑙𝑜𝑤

= [
1 0 0

−𝜙 1 − 𝜙 −𝜙𝑆𝑣

0 0 1
]

𝑣𝑖𝑗

[
𝑥𝐶

𝑥𝑟

𝑥𝑆

]

𝑣𝑖𝑗𝑡

(2) 

In Eq. (2), 𝑆𝑣 is the spacecraft structure mass; note that, 𝑥𝑆 is in the unit of the number of spacecraft and needs to be 

converted into the mass in kilograms. The propellant mass fraction 𝜙 is defined from the rocket equation, 𝜙 = 1 −

exp (−
∆𝑉

𝐼𝑠𝑝𝑔0
), where ∆𝑉 is the change of velocity for the spaceflight, 𝐼𝑠𝑝 is the specific impulse, and 𝑔0 is the standard 

gravity. 

 For space infrastructure resource productions, we use lunar water ISRU as an example. The water ISRU will first 

extract water from lunar regolith and then electrolyze water to generate 𝑂2  and 𝐻2 . Define the commodity flow 

variables as 
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𝒙𝑣𝑖𝑗𝑡 = [

𝑥𝑂2 , kg

𝑥𝐻2 , kg

𝑥𝐼𝑆𝑅𝑈, kg

]

𝑣𝑖𝑗𝑡

 

Then, we can express the ISRU production process for one hour for 𝑂2 and 𝐻2 as follows: 

[
𝑥𝑂2

𝑥𝐻2

𝑥𝐼𝑆𝑅𝑈

]

𝑣𝑖𝑗𝑡

𝑖𝑛𝑓𝑙𝑜𝑤

= [
1 0 𝛼𝐼𝑆𝑅𝑈

𝑂2

0 1 𝛼𝐼𝑆𝑅𝑈
𝐻2

0 0 1

]

𝑣𝑖𝑗

[
𝑥𝑂2

𝑥𝐻2

𝑥𝐼𝑆𝑅𝑈

]

𝑣𝑖𝑗𝑡

(3) 

In Eq. (3), there are three constraints. The first two constraints represent the ISRU production for 𝑂2 and 𝐻2 for one 

hour, where 𝛼 is the ISRU plant productivity, representing the amount of resource generation per hour per unit mass 

of the ISRU plant. The last constraint means the ISRU plant system mass does not change during the production 

process.  

C. Concurrency Constraint 

 Equation (1c) is the concurrency constraint denoting commodity flow bounds. In this constraint, 𝑙 is the number 

of concurrency constraints to be considered. To illustrate the settings of the concurrency constraint matrix 𝐻𝑣𝑖𝑗 , two 

examples are shown as follows. One example is the constraints from spacecraft propellant and payload capacities. 

Another example is the non-negativity of commodity variables. For spacecraft propellant and payload capacities, we 

define the commodity flow variables as, 

𝒙𝑣𝑖𝑗𝑡 = [

𝑥𝐶 :  cargo, kg

𝑥𝑟: propellant, kg

𝑥𝑆: spacecraft, #

]

𝑣𝑖𝑗𝑡

 

Then, we can express the spacecraft payload and propellant capacities as follows, 

[
1 0 −𝐶𝑣

0 1 −𝑃𝑣
]
𝑣𝑖𝑗

[
𝑥𝐶

𝑥𝑟

𝑥𝑆

]

𝑣𝑖𝑗𝑡

≤ [
0
0
] (4) 

where 𝐶𝑣 and 𝑃𝑣 are the payload and propellant capacities of spacecraft 𝑣, respectively. Note that, both 𝐶𝑣 and 𝑃𝑣 are 

spacecraft design parameters that also can be considered as design variables in the optimization, which will make the 

problem an integrated space mission planning and spacecraft design problem. In this scenario, the concurrency 

constraint has quadratic terms and the spacecraft design model may also be nonlinear. This nonlinear problem can be 

solved effectively using a piecewise-linear approximation method as shown in Ref. [15]. For this research, the 



11 

 

spacecraft design is not considered as part of the optimization. Thus, the values of 𝐶𝑣 and 𝑃𝑣 are both constants in the 

formulation. 

 For the non-negativity of commodity inflow variables, we have, 

𝒙𝑣𝑖𝑗𝑡
𝑖𝑛𝑓𝑙𝑜𝑤

≥ 𝟎𝑅×1 

which is equivalent to, 

−𝐹𝑣𝑖𝑗𝒙𝑣𝑖𝑗𝑡 ≤ 𝟎𝑅×1 

 In this constraint, the concurrency constraint matrix 𝐻𝑣𝑖𝑗  corresponds to the negative of the transformation 

constraint matrix, −𝐹𝑣𝑖𝑗. It guarantees the feasibility of commodity transformations during spaceflights or surface 

system operation. 

D. Time Window Constraint 

 Equation (1d) is the time window constraint on rocket launch and spaceflight. Only when the time windows are 

open, are spaceflights and mission operations permitted. Otherwise, the commodity flow variable is set to be zero.  

E. Limitations of the Traditional Formulation 

 In this traditional space infrastructure optimization formulation, the infrastructure subsystem designs are 

determined in advance. Space logistics optimization only identifies the optimal total size of the space infrastructure in 

space missions and cannot optimize the mass ratio between subsystems. It ignores the interaction between space 

infrastructure subsystems and space logistics transportation planning. This formulation is not able to perform sufficient 

trade studies for infrastructure technology selections and identify technology gaps. 

III. Full-Size Space Infrastructure Optimization Formulation 

 To increase the space infrastructure design fidelity and take into account the detailed interactions between space 

infrastructure subsystems and space logistics transportation, this section introduces a newly developed full-size space 

infrastructure optimization formulation that considers all infrastructure subsystems separately throughout the space 

campaign. 

 As shown in Fig. 2, there are two main components to be optimized in the full-size space infrastructure 

optimization formulation. The first component is the same as the prefixed space infrastructure optimization 

formulation, as shown on the right side of Fig. 2. It considers space transportation mission planning, space 
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infrastructure deployment strategy, and resource logistics after production. The second component is the space 

infrastructure trade studies, as shown in the left side of Fig. 2. It considers the internal tradeoffs among space 

infrastructure subsystems and their external interactions with space transportation to provide infrastructure subsystem 

sizing and technology selections. In this paper, we use ISRU systems as an example of multi-subsystem space 

infrastructure optimization, although the proposed method can be generally implemented in different types of space 

infrastructure design trade studies. There are six subsystems considered in the ISRU infrastructure model: reactor, 

excavator (for soil) or acquisition system (for Martian atmosphere), separator, hopper/feed/secondary subsystem, 

storage system, and power system. There can be multiple different reactors, excavators, etc. depending on the ISRU 

technologies. These subsystems are all considered as different commodities in space logistics to enable effective 

analysis of subsystem interactions.  

 

 

Fig. 2 An example of the full-size space infrastructure optimization formulation. 

 

 The formulation of the full-size space infrastructure optimization formulation is the same as the prefixed 

optimization formulation, as shown in Eqs. (1a)-(1d). However, the constraints are interpreted and implemented in a 

different way because each infrastructure subsystem is considered separately. In the following parts, we show the 
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additional relationships to be considered to enable system-level space infrastructure trade studies together with space 

logistics optimization. 

A. Objective Function 

 The objective function (i.e., Eq. (1a)) is exactly the same as it is in the prefixed optimization formulation. The only 

point to note is that a higher fidelity mission performance measurement model is needed in this formulation because 

each subsystem is considered independently. For example, if a cost model is implemented in the objective function, 

then the cost model in the full-size optimization formulation should include the detailed cost information for each 

subsystem and each technology. 

B. Mass Balance Constraint 

 In the mass balance constraint (i.e., Eq. (1b)), we need to take into account the ISRU resource production process 

from the subsystem-level. The same lunar water ISRU example is used to illustrate the differences in the setting of 

the transformation matrix 𝐹𝑣𝑖𝑗. There are multiple technology options to build a lunar water ISRU. In this example, 

we assume that the lunar water ISRU plant is mainly made up of two reactors: the soil/water extraction (SWE) reactor 

and the direct water electrolysis (DWE) reactor. The SWE reactor, 𝑥𝑟𝑒𝑎𝑐𝑡𝑜𝑟_𝑆𝑊𝐸, extracts water from lunar or Martian 

soil. The DWE reactor, 𝑥𝑟𝑒𝑎𝑐𝑡𝑜𝑟_𝐷𝑊𝐸, electrolyzes water produced by the SWE reactor to generate 𝑂2 and 𝐻2.  We 

can define the commodity flow variables as, 

𝒙𝑣𝑖𝑗𝑡 =

[
 
 
 
 
 

𝑥𝑂2 , kg

𝑥𝐻2 , kg

𝑥𝐻2𝑂, kg

𝑥𝑟𝑒𝑎𝑐𝑡𝑜𝑟_𝐷𝑊𝐸 , kg

𝑥𝑟𝑒𝑎𝑐𝑡𝑜𝑟_𝑆𝑊𝐸 , kg]
 
 
 
 
 

𝑣𝑖𝑗𝑡

 

Then, we can express the ISRU production process for one hour for 𝑂2, 𝐻2, and 𝐻2𝑂 as follows: 

[
 
 
 
 

𝑥𝑂2

𝑥𝐻2

𝑥𝐻2𝑂

𝑥𝑟𝑒𝑎𝑐𝑡𝑜𝑟_𝐷𝑊𝐸

𝑥𝑟𝑒𝑎𝑐𝑡𝑜𝑟_𝑆𝑊𝐸 ]
 
 
 
 

𝑣𝑖𝑗𝑡

𝑖𝑛𝑓𝑙𝑜𝑤

=

[
 
 
 
 
 1 0 0 𝛼𝐷𝑊𝐸

𝑂2 0

0 1 0 𝛼𝐷𝑊𝐸
𝐻2 0

0 0 1 −𝛽𝐷𝑊𝐸
𝐻2𝑂

𝛼𝑆𝑊𝐸
𝐻2𝑂

0 0 0 1 0
0 0 0 0 1 ]

 
 
 
 
 

𝑣𝑖𝑗

[
 
 
 
 

𝑥𝑂2

𝑥𝐻2

𝑥𝐻2𝑂

𝑥𝑟𝑒𝑎𝑐𝑡𝑜𝑟_𝐷𝑊𝐸

𝑥𝑟𝑒𝑎𝑐𝑡𝑜𝑟_𝑆𝑊𝐸 ]
 
 
 
 

𝑣𝑖𝑗𝑡

(5) 

In Eq. (5), there are five constraints in total. The first two constraints represent 𝑂2 and 𝐻2 generations by the DWE 

reactor for one hour, where 𝛼 is the reactor productivity. The third constraint illustrates 𝐻2𝑂 consumption by the DWE 

reactor and production by the SWE process for one hour, where 𝛽 denotes the consumption rate. Both 𝛼 and 𝛽 are 
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nonnegative values. Note that because of the mass balance of chemical reactions, we have 𝛼𝐷𝑊𝐸
𝑂2 + 𝛼𝐷𝑊𝐸

𝐻2 ≤ 𝛽𝐷𝑊𝐸
𝐻2𝑂

. 

The last two constraints show that the masses of the DWE reactor and the SWE reactor do not change during the 

resource production processes. 

C. Concurrency Constraint 

 In the concurrency constraint (i.e., Eq. (1c)), besides the spacecraft payload and propellant capacities considered 

during space transportation, the resource storage capacities for infrastructure storage systems, the power supply 

capacities for power generation systems, and the energy storage capacities for energy storage systems also need to be 

considered. Among these, the constraint format of resource storage capacities is the same as the constraints for 

spacecraft payload and propellant capacities, which are shown in Eq. (4).  

 In the following, we show two examples of the concurrency constraint in the full-size optimization formulation. 

One example is about space infrastructure power supply capacities and another is about energy storage capacities. For 

space infrastructure power supply capacities, we define the commodity flow variables as 

𝒙𝑣𝑖𝑗𝑡 =

[
 
 
 
 
𝑥𝐼1:  infrastructure system 1, kg

𝑥𝐼2:  infrastructure system 2, kg

𝑥𝐼3:  infrastructure system 3, kg

𝑥𝑃:  power generation system, kg]
 
 
 
 

𝑣𝑖𝑗𝑡

 

Then, we can express the power supply capacity constraint for infrastructure system design as follows, 

[𝑃𝐼1(1 +
𝑄𝐼1 − 𝑄𝑝

𝜀𝑄𝑝

) 𝑃𝐼2(1 +
𝑄𝐼2 − 𝑄𝑝

𝜀𝑄𝑝

) 𝑃𝐼3(1 +
𝑄𝐼3 − 𝑄𝑝

𝜀𝑄𝑝

) −𝑃0]
𝑣𝑖𝑗

[

𝑥𝐼1

𝑥𝐼2

𝑥𝐼3

𝑥𝑃

]

𝑣𝑖𝑗𝑡

≤ 0 (6) 

where 𝑃𝐼𝑖
, 𝑖 ∈ {1,2,3} is the infrastructure power demand of system 𝑖 (in kW/kg); 𝑄𝐼𝑖

, 𝑖 ∈ {1,2,3} is the infrastructure 

operating length per solar day, in the unit of hours; 𝑃0 is the power generation system output power per unit mass (in 

kW/kg); 𝑄𝑝 is the power system working time per solar day. If the power system is a fission surface power system 

(FSPS) or a radioisotope thermoelectric generator (RTG), it works continuously during the space mission, which 

means 𝑄𝑝 is equal to the length of a solar day. If the power system is a photovoltaic (PV) system, it only works during 

the daytime, which means 𝑄𝑝 is equal to the daytime length of a solar day at the destination. If the infrastructure 

system operating time is longer than the power system working time per solar day, which means 𝑄𝐼𝑖
> 𝑄𝑝, an energy 

storage system (e.g., battery or fuel cell) is necessary to support the infrastructure systems. There is an energy loss 
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during the power storage process in battery charging/discharging. Therefore, we define an energy storage efficiency 

parameter, 𝜀. 

 To identify the size of the energy storage system, a concurrency constraint for energy storage capacities is needed. 

Define the commodity flow variables as 

𝒙𝑣𝑖𝑗𝑡 =

[
 
 
 
 
 
𝑥𝐼1: infrastructure system 1, kg

𝑥𝐼2: infrastructure system 2, kg

𝑥𝐼3: infrastructure system 3, kg

𝑥𝑃: power generation system, kg

𝑥𝐸: energy storage system, kg ]
 
 
 
 
 

𝑣𝑖𝑗𝑡

 

Then, we can express the energy storage capacity constraint as follows 

[−𝑃𝐼1 −𝑃𝐼2 −𝑃𝐼3 𝑃0 −
𝛾

𝜀𝑄𝑝
]
𝑣𝑖𝑗

[
 
 
 
 
𝑥𝐼1

𝑥𝐼2

𝑥𝐼3

𝑥𝑃

𝑥𝐸 ]
 
 
 
 

𝑣𝑖𝑗𝑡

≤ 0 (7) 

where 𝛾 is the specific mass of the energy storage system, in the unit of kWh/kg. It shows the ability of energy storage 

per unit mass. 

D. Time Window Constraint 

 The time window constraint (i.e., Eq. (1d)) is the same as in the prefixed optimization formulation. Typically, the 

time windows for different space infrastructure subsystems are the same. 

E. Relationship with the Prefixed Formulation 

 It is easy to show that the solution from the prefixed formulation 𝒥prefixed is an upper bound of that from the full-

size formulation 𝒥full_size.  

𝒥full_size ≤ 𝒥prefixed 

This is because the only difference between the two formulations is that the prefixed formulation fixes the mass ratios 

of the infrastructure subsystems, whereas the full-size formulation allows the variation of those mass ratios. Thus, the 

prefixed formulation has an equal or smaller feasible design space than the full-size formulation, and thus provide an 

equal or larger solution.  

F. Limitations of the Full-Size Formulation 
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 The full-size space infrastructure optimization formulation considers all infrastructure subsystems as separated 

commodities during the entire space campaign, and this significantly increases the number of commodities in logistics 

optimization. Generally, as a mixed-integer linear programming formulation, which is an NP-hard problem, the 

computational time cost increases exponentially as the problem size increases. Studies showed that even for a short 

lunar exploration campaign (i.e., including three lunar missions), the concurrent optimization of space mission 

planning, spacecraft design, and space infrastructure design can make the network-based space logistics optimization 

formulation computationally prohibitive [15]. This caveat can make the full-size formulation computationally 

intractable for long-term space mission planning. In the next section, we will propose a new approximate optimization 

formulation that can achieve a significant computational cost saving with little sacrifice in the solution quality.  

IV. Multi-Fidelity Space Infrastructure Optimization Formulation 

 In response to the computational challenge of the full-size space infrastructure optimization formulation, we 

propose a new approximate optimization problem formulation. Our idea is to note the fact that the infrastructure 

subsystem design trade studies only exist at the destination nodes, where these subsystems are deployed; there may 

exist redundant commodity variables and constraints in transportation arcs that can be reduced. With this idea, we 

develop a mechanism to combine the infrastructure subsystem variables into fewer commodity variables during space 

transportation (“packing” process) and separate these packed commodities after delivery to the destination nodes 

(“unpacking” process). Namely, we vary the granularity of the commodity type definition over the network graph, 

resulting in a multi-fidelity space infrastructure optimization formulation. This formulation can significantly reduce 

the number of commodity variables and corresponding constraints in space logistics during space transportation and 

improve computational efficiency. 

 The multi-fidelity space infrastructure optimization leverages the theory of constraint and variable aggregations 

for a general mixed-integer linear programming formulation. For large and complex engineering problems, we often 

need to balance the accuracy of the model with the cost of computation. Constraint and variable aggregation methods 

have been explicitly or implicitly used in realistic problems, which are typically large and complex, to find surrogate 

models of the original formulations. Zipkin [20,21] performed thorough analyses on solution bounds for linear 

programming through constraint aggregation and variable aggregation, respectively, under certain assumptions about 

the problem, although their assumptions limit their methods’ applicability to our problem. In the multicommodity 

network flow context, Evans [22,23] developed the commodity aggregation for multicommodity capacitated 
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transportation problems to find the lower bound. More recently, Ho [24] also developed a formulation based on 

constraint aggregation and variable aggregation to enable an efficient way to reduce the size of the time-expanded 

network for the generalized multicommodity network flow. 

 In this section, we first discuss the general constraint and variable aggregations in linear programming. Then, we 

show how to perform a partial constraint and commodity aggregations, referred to as commodity packing based on its 

physical meaning, over particular space transportation arcs to enable a multi-fidelity optimization. We show that the 

solution of this multi-fidelity optimization formulation provides a lower bound of that of the full-size optimization 

formulation. Furthermore, a commodity packing preprocessing algorithm is also developed to enable an automatic 

decision on where and when to pack the commodities.  

A. Constraint Aggregation and Variable Packing 

The commodity variable packing is processed in two steps: constraint aggregation and variable packing. The first 

step, constraint aggregation, aggregates the constraints with designated packable commodities into shared constraints 

through an aggregation matrix. Then, the second step, variable packing, aggregates the packable commodities into 

shared package commodities. The transportation, transformation, and flow bounds of these commodities are 

considered together through the package commodities.  

1. Constraint Aggregation 

 Consider a general (full-size) linear programming formulation showed as follows. 

Formulation F1 (Full-Size) 

Minimize: 

𝒥 = 𝐶𝓧 (8a) 

Subject to: 

𝐴𝓧 ≤ 𝒃 (8b) 

where  

𝓧 = [

𝑥1

𝑥2

⋮
𝑥𝑛

] , 𝐶 = [𝑐1 𝑐2 … 𝑐𝑛 ], 𝐴 = [

𝑎1,1 𝑎1,2 … 𝑎1,𝑛

𝑎2,1 𝑎2,2 … 𝑎2,𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚,1 𝑎𝑚,2 … 𝑎𝑚,𝑛

] , 𝒃 = [

𝑏1

𝑏2

⋮
𝑏𝑚

] 

  We define an “aggregation matrix” 𝐺 and multiply both sides of the constraint Eq. (8b) by G. Then, we can obtain 

a new formulation as follows, 
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Formulation F2 (Constraint Aggregation) 

Minimize: 

𝒥 = 𝐶𝓧 (9a) 

Subject to: 

𝐺𝐴𝓧 ≤ 𝐺𝒃 (9b) 

where the aggregation matrix 𝐺 has a size 𝐾 × 𝑚, where 𝑚 is the number of rows in the 𝐴 matrix and 𝐾 is the number 

of constraints after aggregation (𝐾 ≤ 𝑚), and satisfies the following two conditions: 

 Condition 1: The aggregation matrix 𝐺 has exactly one nonzero entry per column, and that entry is positive. 

 Condition 2: The aggregation matrix 𝐺 has at least one nonzero entry per row, and those entries are all positive. 

 For these formulations, we show that a lower bound of the optimal objective of F1 can be found by solving F2 if 

both problems are feasible and bounded. 

 We first rewrite the constraint (9b) as, 

𝐺(𝐴𝓧 − 𝒃) ≤ 𝟎𝐾×1 

 The column indices of the positive entries in each row of the aggregation matrix 𝐺  define a partition of the 

corresponding constraints {1,…,m} into 𝐾 sets. Denote the partition as 𝜎 = {𝑆𝑘: 𝑘 = 1,… , 𝐾}, where 𝑆𝑘 is the set of 

constraint indices in the 𝑘-th set. Define 𝑚𝑘 = |𝑆𝑘|, which is the number of constraint indices in the 𝑘-th set. The 

partition satisfies 

⋃𝑆𝑘

𝐾

𝑘=1

= {1,… ,𝑚}  and  𝑆𝑘 ∩ 𝑆𝑘′ = ∅   ∀𝑘 ≠ 𝑘′ 

 Define 𝐺 =

[
 
 
 
𝒈1

𝑇

𝒈2
𝑇

⋮
𝒈𝐾

𝑇 ]
 
 
 
, where each row of the aggregation matrix is a 1 × 𝑚 weighting vector, 𝒈𝑘

𝑇, that satisfies 

{
𝒈𝑘[𝑗] > 0   𝑖𝑓 𝑗 ∈ 𝑆𝑘

𝒈𝑘[𝑗] = 0   𝑖𝑓 𝑗 ∉ 𝑆𝑘
     ∀𝑘 ∈ {1, … , 𝐾}  

 To aggregate and relax the constraints, we replace each subset of constraints 𝑆𝑘 by a single constraint through 

weighting vectors. As a result, we can write the k-th constraint after aggregation for F1 as, 

𝒈𝑘
𝑇(𝐴𝓧 − 𝒃) ≤ 0 
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This constraint aggregates 𝑚𝑘 number of constraints in F1 with indices {𝑗: 𝑗 ∈ 𝑆𝑘}. Because all non-zero entries in the 

weighting vectors are positive, these constraints are also relaxed. By applying the weighing vectors to F1, we can get 

a relaxed formulation, 

Minimize: 

𝒥 = 𝐶𝓧 (10a) 

Subject to: 

[
 
 
 
𝒈1

𝑇

𝒈2
𝑇

⋮
𝒈𝐾

𝑇 ]
 
 
 
(𝐴𝓧 − 𝒃) ≤ 𝟎𝐾×1 (10b) 

By solving the formulation (10a)-(10b), which is equivalent to F2, we can get a lower bound of F1’s solution. 

2. Variable Packing 

 After the constraint aggregation, we can perform variable packing to further improve computational efficiency by 

reducing the number of variables. The purpose of this step is to find a formulation equivalent to F2, but with fewer 

variables; this step corresponds to packing the commodities. Note that, in the following discussion, we only consider 

the aggregation of the continuous commodity flow variables for simplicity.  

 Consider a variable vector as follows, 

𝓧 = [

𝑥1

𝑥2

⋮
𝑥𝑛

] 

Assume that there exists a set of index set 𝑄 = {𝑄𝑢: 𝑢 = 1,… , 𝑈}, where each set 𝑄𝑢 includes the packable commodity 

variable indices to be packed into one package commodity 𝑥𝑢̃ = ∑ 𝑥𝑖𝑖∈𝑄𝑢
. This index set 𝑄 satisfies 

⋃𝑄𝑢

𝑈

𝑢=1

⊆ {1,… , 𝑛}  and  𝑄𝑢 ∩ 𝑄𝑢′ = ∅   ∀𝑢 ≠ 𝑢′ 

 The variable packing operation is defined as replacing the 𝑛  original variables 𝓧  into 𝑈  new variables 𝓧̃ 

following the conversion 𝑥𝑢̃ = ∑ 𝑥𝑖𝑖∈𝑄𝑢
.  

 In the following, we show that we can find an equivalent formulation after performing variable packing if 

coefficients in F2 satisfy the following two conditions: 

 Condition 3: For each index set 𝑄𝑢, there exists a constant 𝑐𝑢
′  such that 𝑐𝑖 = 𝑐𝑢

′  for all 𝑖 ∈ 𝑄𝑢; 
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 Condition 4: For each index set 𝑄𝑢, there exists a constant vector 𝑅𝑢
′ = [𝑟1

′, 𝑟2
′, … , 𝑟𝐾

′ ]𝑢
𝑇  such that ∑ 𝑔𝑘,𝑗𝑎𝑗,𝑖

𝑚
𝑗=1 =

𝑟𝑘
′  for all 𝑖 ∈ 𝑄𝑢 and for all 𝑘 ∈ {1, … , 𝐾}. 

 First, without loss of generality, we consider a case where the last 𝑛 − 𝑞 variables are to be packed into one 

package commodity. This corresponds to the case where 𝑄 = {𝑞 + 1,… , 𝑛} and 𝑈 = 1. Thus, the expected variable 

vector after packing is 

𝓧̃ = [

𝑥1

⋮
𝑥𝑞

𝑥̃

] 

where the package commodity variable 𝑥̃ = ∑ 𝑥𝑖
𝑛
𝑖=𝑞+1 . In the objective function of F2 (i.e., Eq. (9a)), we have, 

𝐶𝓧 = [𝑐1 𝑐2 … 𝑐𝑛 ] [

𝑥1

𝑥2

⋮
𝑥𝑛

] = [𝑐1 … 𝑐𝑞 𝑐𝑞+1 … 𝑐𝑛 ]

[
 
 
 
 
 

𝑥1

⋮
𝑥𝑞

𝑥𝑞+1

⋮
𝑥𝑛 ]

 
 
 
 
 

 

From the first condition, we know that 𝑐𝑖 = 𝑐′ for all 𝑖 ∈ {𝑞 + 1,… , 𝑛}. Therefore, we can get 

𝐶𝓧 = [𝑐1 … 𝑐𝑞 𝑐′ … 𝑐′ ]

[
 
 
 
 
 

𝑥1

⋮
𝑥𝑞

𝑥𝑞+1

⋮
𝑥𝑛 ]

 
 
 
 
 

= [𝑐1 … 𝑐𝑞 𝑐′ ]

[
 
 
 
 

𝑥1

⋮
𝑥𝑞

∑ 𝑥𝑖

𝑛

𝑖=𝑞+1 ]
 
 
 
 

= [𝑐1 … 𝑐𝑞 𝑐′ ] [

𝑥1

⋮
𝑥𝑞

𝑥̃

] = 𝐶̃𝓧̃ 

Similarly, in the constraint of F2 (i.e., Eq. (9b)), we have  

𝐺𝐴𝓧 =

[
 
 
 
 
 
 
 ∑ 𝑔1,𝑗𝑎𝑗,1

𝑚

𝑗=1
∑ 𝑔1,𝑗𝑎𝑗,2

𝑚

𝑗=1
… ∑ 𝑔1,𝑗𝑎𝑗,𝑛

𝑚

𝑗=1

∑ 𝑔2,𝑗𝑎𝑗,1

𝑚

𝑗=1
∑ 𝑔2,𝑗𝑎𝑗,2

𝑚

𝑗=1
… ∑ 𝑔2,𝑗𝑎𝑗,𝑛

𝑚

𝑗=1

⋮ ⋮ ⋱ ⋮

∑ 𝑔𝐾,𝑗𝑎𝑗,1

𝑚

𝑗=1
∑ 𝑔𝐾,𝑗𝑎𝑗,2

𝑚

𝑗=1
… ∑ 𝑔𝐾,𝑗𝑎𝑗,𝑛

𝑚

𝑗=1 ]
 
 
 
 
 
 
 

[

𝑥1

𝑥2

⋮
𝑥𝑛

] 

From the second condition, we have 𝑅′ = [𝑟1
′, 𝑟2

′, … , 𝑟𝐾
′ ] such that ∑ 𝑔𝑘,𝑗𝑎𝑗,𝑖

𝑚
𝑗=1 = 𝑟𝑘

′  for all 𝑖 ∈ {𝑞 + 1,… , 𝑛} and for 

all 𝑘 ∈ {1, … , 𝐾}. Therefore, we can get 

𝐺𝐴𝓧 =

[
 
 
 
 
 
 
 ∑ 𝑔1,𝑗𝑎𝑗,1

𝑚

𝑗=1
… ∑ 𝑔1,𝑗𝑎𝑗,𝑞

𝑚

𝑗=1
𝑟1

′

∑ 𝑔2,𝑗𝑎𝑗,1

𝑚

𝑗=1
… ∑ 𝑔2,𝑗𝑎𝑗,𝑞

𝑚

𝑗=1
𝑟2

′

⋮ ⋱ ⋮ ⋮

∑ 𝑔𝐾,𝑗𝑎𝑗,1

𝑚

𝑗=1
… ∑ 𝑔𝐾,𝑗𝑎𝑗,𝑞

𝑚

𝑗=1
𝑟𝐾

′

]
 
 
 
 
 
 
 

[

𝑥1

⋮
𝑥𝑞

𝑥̃

] = 𝐴̃𝓧̃ 
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By repeating this process, we can pack commodities into multiple package commodities. As a result, we achieve a 

new formulation. 

Formulation F3 (Variable Packing) 

Minimize: 

𝒥 = 𝐶̃𝓧̃ (11a) 

Subject to: 

𝐴̃𝓧̃ ≤ 𝐺𝒃 (11b) 

According to the above analysis, the formulation F3 is equivalent to F2.  

 In summary, we have shown how to find a lower-bound formulation through constraint aggregation and variable 

packing for general linear programming problems. It is necessary to first find the aggregation matrix 𝐺 that satisfies 

the two defining properties (i.e., conditions 1 and 2). Then, we need to identify the variables whose coefficients satisfy 

the two variable packing conditions (i.e., conditions 3 and 4). This sequence can be generalized to the commodity 

packing in the space logistics formulation and formulation F3 can be generalized to the multi-fidelity formulation. 

Thus, together with the prefixed formulation discussed before, we have the following relationship: 

𝒥multi_fidelity ≤ 𝒥full_size ≤ 𝒥prefixed 

Bounding the computationally prohibitive full-size formulation from both the upper and lower sides enables us to find 

the approximation solution of the computationally prohibitive full-size formulation with the knowledge about the 

worst possible approximation error. 

B. Preprocessing Algorithm for Automatic Commodity Packing in Space Logistics  

 Although the previous subsection showed an efficient way to pack the commodities in space logistics formulation 

under certain conditions, we still need a method to identify what commodities are able to be packed in each arc and 

then find the aggregation matrix to aggregate corresponding constraints so that all conditions are satisfied. Therefore, 

this subsection proposes a preprocessing algorithm to compile a multi-fidelity optimization formulation automatically 

for the full-size space infrastructure optimization problem. The consequent formulation performs constraint and 

variable aggregations in a subset of network arcs, which achieves a lower bound approximation of the original full-

size optimization formulation. 

 Considering a full-size space infrastructure optimization problem as shown in the formulation (1a)-(1d), we can 

identify the packable commodities leveraging the special structure of this formulation. In the mass balance constraints 
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(i.e., Eq. (1b)), each constraint is designated to guarantee the mass balance of one type of commodity. The commodity 

transformation matrix 𝐹  defines the interactions between commodities. To make the commodities packable, they 

should have the same transformation coefficients with respect to all other commodities. The concurrency constraints 

(i.e., Eq. (1c)) provide the commodity flow upper bound by considering the total weights of different commodities. 

For example, the total mass of crew, consumables, instruments, and infrastructure elements must be smaller or equal 

to the spacecraft total payload capacity; this constraint has a set of packable commodity weights. Therefore, the 

packable commodities should have the same weight coefficients in all concurrency constraints. After identifying the 

packable commodities, they can be packed directly in the concurrency constraints without an aggregation matrix. The 

time window constraints (i.e., Eq. (1d)) are also defined specifically for each type of commodity. However, by 

definition, the time window is always the same for different commodities in one specific arc. In summary, according 

to conditions 3 and 4 in Sec. IV.A.2, to pack the packable commodities in space transportation, the associated 

coefficients must satisfy the following three commodity packing conditions: 

1) For the objective function, Eq. (1a), the cost coefficients of packable commodities need to be equal; 

2) For the mass balance constraint, Eq. (1b), the transformation coefficients of packable commodities with 

respect to all other commodities need to be equal; 

3) For all concurrency constraints, Eq. (1c), the weight coefficients of packable commodities need to be equal. 

Based on the preceding commodity packing conditions, we can propose a preprocessing algorithm to automatically 

identify the packable commodities and aggregation matrices in the original full-size space infrastructure optimization 

problem. The pseudo code of the preprocessing is shown as follows. We assume there are 𝑅 types of commodities in 

the system. Note that, in this pseudo code, there is a sorting process after identifying packable commodity index sets. 

The reason for this step is to enable flexible packing decision; if the users prefer to generate fewer package 

commodities than the number of packable commodity index sets 𝑄 = {𝑄𝑢: 𝑢 = 1,… , 𝑈} for an arc (i.e., only N 

package commodities, where 𝑁 ≤ 𝑈), they can generate the N most impactful package commodities in the sorted list, 

where “most impactful” means it contains the most packable commodities. Fewer package commodities, which means 

fewer commodities are packed, leads to a tighter lower-bound of the optimization. 

To generate the aggregation matrix 𝐺 for the mass balance constraint and time window constraint, we first need to 

identify the packable commodity index set, denoted by 𝜁 as shown in the preprocessing pseudo code. If we assume 

that we would like to generate 𝑁 package commodities, then 𝑁 = |𝜁|. Each subset in 𝜁 represents the corresponding 
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packable commodities that will be packed into one package commodity. Suppose that 𝐿 types of commodities are 

packed into 𝑁 package commodities, then 𝐿 = ∑ |𝑆𝜏|𝑆𝜏∈𝜁̌ . Therefore, before the commodity packing, the number of 

variables over each arc is 𝑅, where each variable represents one type of commodity. After the commodity packing, 

the number of variables is 𝐾 = 𝑁 + 𝑅 − 𝐿, where the first 𝑁  variables represent the package commodities, they 

contain the information of 𝐿  types of commodities that are packed; the remaining 𝑅 − 𝐿  variables represent 

commodities that are not packed. Note that the mass balance constraints and the time window constraints are defined 

for each commodity independently. Therefore, before the commodity packing, the number of mass balance constraints 

or the time window constraints over each arc is also 𝑅; after the commodity packing, the number of these constraints 

becomes 𝐾 = 𝑁 + 𝑅 − 𝐿. 

Algorithm 1. Preprocessing for commodity packing pseudo code 

For ∀(𝑣, 𝑖, 𝑗, 𝑡) ∈ 𝒜: 

Step 1. For the cost matrix in the objective function, 𝒄𝑣𝑖𝑗𝑡: Let 𝜎1 = {𝑆𝑘: 𝑘 = 1,… , 𝑞} be a partition of 

the commodity indices {1,…, R} and define 𝑛𝑘 = |𝑆𝑘|. The partition satisfies 

𝒄𝑣𝑖𝑗𝑡[𝑙] = 𝒄𝑣𝑖𝑗𝑡 [𝑙
′
]    ∀𝑙, 𝑙′ ∈ 𝑆𝑘  ∀𝑘 

⋃𝑆𝑘

𝑞

𝑘=1

= {1,… ,𝑅}  and  𝑆𝑘 ∩ 𝑆
𝑘′ = ∅   ∀𝑘 ≠ 𝑘′

 

Step 2. For the transformation matrix in mass balance constraint, 𝐹𝑣𝑖𝑗: Let 𝜎2 = {𝑆𝑓: 𝑓 = 1,… , 𝑞′} be 

a partition of the commodity indices {1,…, R} and define 𝑛𝑓 = |𝑆𝑓|. The partition satisfies 

𝐹𝑣𝑖𝑗[𝑙, 𝑢] = 𝐹𝑣𝑖𝑗 [𝑙
′, 𝑢]    ∀𝑙, 𝑙′ ∈ 𝑆𝑓, ∀𝑢 ∈ {1,… , 𝑅}\{𝑙, 𝑙′},   ∀𝑓 

⋃ 𝑆𝑓

𝑞′

𝑓=1

= {1,… , 𝑅}  and  𝑆𝑓 ∩ 𝑆
𝑓′ = ∅   ∀𝑓 ≠ 𝑓′

 

Step 3. For the concurrency matrix in concurrency constraint, 𝐻𝑣𝑖𝑗: Let 𝜎3 = {𝑆ℎ: ℎ = 1,… , 𝑞′′} be a 

partition of the commodity indices {1,…, R} and define 𝑛ℎ = |𝑆ℎ|. The partition satisfies 

𝐻𝑣𝑖𝑗[: , 𝑙] = 𝐻𝑣𝑖𝑗 [: , 𝑙
′
]    ∀𝑙, 𝑙′ ∈ 𝑆ℎ  ∀ℎ 

⋃ 𝑆ℎ

𝑞′′

ℎ=1

= {1,… , 𝑅}  and  𝑆ℎ ∩ 𝑆
ℎ′ = ∅   ∀ℎ ≠ ℎ′

 

Step 4. Find all intersection sets  

𝜁 = {𝑆𝜏: 𝜏 = 1,… , 𝑈|𝑆𝜏 ≠ ∅ and 𝑆𝜏 = 𝑆𝑘 ∩ 𝑆𝑓 ∩ 𝑆ℎ , ∀𝑆𝑘 ∈ 𝜎1, ∀𝑆𝑓 ∈ 𝜎2, ∀𝑆ℎ ∈ 𝜎3} 

Step 5. Identify the packable commodities 

If 𝜁 = ∅: 

Step 5.1. There are no packable commodities in this arc. Screen the next arc: Go to Step 1.  
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Else: 

Step 5.2. Define the cardinality 𝑛𝜏 = |𝑆𝜏|. 

Step 5.3. Perform sorting in a descending order based on the cardinality for ∀𝑆𝜏 ∈ 𝜁 and get a new 

set 𝜁̃.  

Step 5.4. Based on the predefined preference, define the number of package commodities as 𝑁 (𝑁 ≤
𝑈), the packable commodity index set as 𝜁̌ = {𝑆𝜏: 𝜏 = 1,… ,𝑁|𝑆𝜏 ∈ 𝜁̃}. 

Step 6. Find the aggregation matrix for the mass balance constraint and time window constraint:  

Step 6.1. Get the number of commodities that will be packed: 𝐿 = ∑ |𝑆𝜏|𝑆𝜏∈𝜁̌ .  

Step 6.2. Get the number of variables after commodity packing: 𝐾 = 𝑁 + 𝑅 − 𝐿.  

Step 6.3. For this arc, define 𝐺 = [𝒈1
𝑇 𝒈2

𝑇 … 𝒈𝐾
𝑇 ]𝑇, where each row of the aggregation matrix 

is a 1 × 𝑅 weighting vector, 𝒈𝑘
𝑇, that satisfies 

For ∀𝑘 ∈ {1,… , 𝑁} (the first 𝑁 variables are package commodities): 

{
𝒈𝑘

[𝑗] = 1   𝑖𝑓 𝑗 ∈ 𝑆𝑘

𝒈𝑘[𝑗] = 0   𝑖𝑓 𝑗 ∉ 𝑆𝑘
     𝑆𝑘 ∈ 𝜁̌  

For ∀𝑘 ∈ {𝑁 + 1,… , 𝐾} (the remaining variables are for commodities that are not packed): 

{
𝒈𝑘

[𝑗] = 1   𝑖𝑓 𝑘 = 𝑁 + 𝑗 − 𝐿

𝒈𝑘[𝑗] = 0   𝑖𝑓 𝑘 ≠ 𝑁 + 𝑗 − 𝐿
 

Step 7. Screen the next arc: Go to Step 1. 

V. Case Study and Analysis 

This section evaluates the performances of the proposed space infrastructure optimization formulations with a case 

study on a multi-mission human lunar exploration campaign, considering ISRU system designs. The mission scenario, 

including mission demand, spacecraft design, and ISRU architecture models, is first introduced in Sec. V.A, and then 

Sec. V.B evaluates the performance of the formulations. Note that although this paper introduces the formulations in 

the order of the prefixed, full-size, multi-fidelity formulations, the later analysis considers the full-size optimization 

formulation as the baseline and compares the other two formulations against it; this is because the full-size 

optimization is the most accurate and computationally costly one, and we are interested in the solution quality and the 

computational cost of the prefixed formulation (i.e., the upper-bound formulation) and the multi-fidelity formulation 

(i.e., the lower-bound formulation).  

A. Mission Scenario 

A simple scenario is considered as a case study where all formulations (including the full-size formulation) can 

complete its computation within a reasonable time. We consider a cis-lunar transportation system with Earth, low-

Earth orbit (LEO), geosynchronous equatorial orbit (GEO), Earth-Moon Lagrangian point 1 (EML1), and the Moon. 
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The five-node transportation network model and the spaceflight Δ𝑉 values are shown in Fig. 3. Note that we do not 

consider the propellant cost from Earth to LEO (i.e., the Δ𝑉 is considered as zero); instead, Earth is assumed as the 

main supply node and the arc from Earth to LEO is convenient to calculate the space mission cost. Every year, 5 

astronauts fly to the Moon with habitat and equipment. These demands are considered as one type of general payload 

together with a crew cabin. The total mass of the crew cabin and lunar equipment is assumed as 30,000 kg, which is 

estimated based on the Apollo mission [25]. The astronauts stay on the lunar surface for 120 days and then come back 

with lunar samples and materials. The total mass of crew cabin and lunar samples is assumed as 5,000 kg and they are 

delivered back to the Earth at the end of the mission. For this mission design, the optimizer needs to decide whether 

it requires ISRU systems to support the transportation, whether the system needs a propellant depot, and where we 

should deploy the depot (i.e., LEO, GEO, or EML1) if needed. We assume that a spacecraft can serve as a propellant 

depot if it stays at a node during the mission [12]. The mission demands and supplies are summarized in Table 1. Note 

that, the mission demands and supplies are defined at the same time step for each flight to minimize the number of 

time steps assigned for the transportation. 

 

Fig. 3 Cis-lunar transportation network model. 

Table 1 Lunar exploration demands and supplies 

Payload Type Node Time, day Supply 

Go to the Moon 

ISRU, propellant & food, kg Earth All the time +∞ 

Crew cabin & equipment, kg Earth 240 +30,000 [25] 

Crew cabin & equipment, kg Moon 240 -30,000 [25] 

Back to Earth 

Crew cabin & lunar sample, kg Moon 360 +5,000 

Crew cabin & lunar sample, kg Earth 360 -5,000 

 

We need spacecraft to deliver payloads from Earth to the Moon. To simplify the analysis, the spacecraft design is 

not considered as part of the trade space in space logistics optimization. Instead, two types of spacecraft with fixed 



26 

 

design parameters are considered for space transportation. Spacecraft 1 is modeled based on the Advanced Cryogenic 

Evolved Stage (ACES) from United Launch Alliance [12]. It uses liquid hydrogen and liquid oxygen (LH2/LOX) as 

the propellant. The spacecraft structure mass is 5,917 kg and the propellant tank capacity is 68,040 kg [12]. Because 

of the implementation of long-duration storage technologies in ACES propellant tanks, the LH2/LOX propellant 

boiloff rate is considered as zero during space transportation. Spacecraft 2 is modeled based on the lunar surface access 

module (LSAM) descent stage pressure-fed design from the green propellants study. The design parameters are found 

in the SpaceNet database [26]. It uses liquid methane and liquid oxygen (LCH4/LOX) as the propellant. The spacecraft 

design assumptions are listed in Table 2. For simplicity, we assume that both spacecraft can be used for all trajectories 

in the transportation network, including lunar landing and ascending. Also, they are considered as single-stage 

transportation vehicles, but they can be combined to form a larger transportation vehicle.  

Table 2 Spacecraft design parameters. 

Parameter Assumed value 

Spacecraft 1 

Propellant type LH2/LOX 

Propellant capacity, kg 68,040 [12] 

Structure mass, kg 5,917 [12] 

Propellant 𝐼𝑠𝑝, s 420 

Propellant component mass ratio 𝑂2:𝐻2=5.5:1 

Spacecraft 2 

Propellant type LCH4/LOX 

Propellant capacity, kg 40,737 [26] 

Structure mass, kg 6,560 [26] 

Propellant 𝐼𝑠𝑝, s 350 

Propellant component mass ratio 𝑂2: 𝐶𝐻4=3.5:1 

 

 The ISRU infrastructure design model is another essential part of the space infrastructure optimization case study. 

For the lunar exploration campaign considered in this paper, the ISRU architecture design models are listed in Table 

3. These models are extrapolated from historical ISRU infrastructure design concept literature and prototypes by Chen 

et al. [27].  

 In Table 3, the reference product is used to size the ISRU subsystems. For reactors and excavators, the specific 

power and specific mass mean the power demand and the system mass needed to reach 1 kg/hr productivity of the 

reference product. For storage systems and power systems, the specific power and specific mass mean the necessary 

system size to store 1 kg resource, 1 kWh energy or to supply 1 kW power. The soil/water extraction process and the 

excavator are classified based on different soil types, soil @3% 𝐻2𝑂 and soil @8% 𝐻2𝑂. Note that the regolith water 
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concentration values assumed here are extrapolated from the literature relating to Martian surface soil [27]. They are 

used as example values only here. Because of the difference in lunar regolith composition, the hydrogen reduction 

process also has different productivity in different regions. Moreover, according to the ISRU infrastructure design 

prototype, we assume that rigid solar concentrators provide thermal energy to the HR and CR reactors [4]. They are 

considered as part of the reactors. Therefore, the nominal power demands of the HR and CR reactors are zero. In this 

case, we only consider ISRU systems for 𝑂2 and 𝐻2 generation during the mission. It is up to the optimizer’s choice 

whether to use Spacecraft 1 and leverage ISRU systems or to use Spacecraft 2 and deliver all necessary propellant 

from Earth. 

 Besides the ISRU infrastructure sizing models, mission operation management is also critical to be considered in 

space logistics optimization. It includes rocket launch frequency, ISRU system maintenance [14-15], power system 

working environment, degradation, and energy storage efficiencies [28-32]. The mission operation assumptions are 

listed in Table 4. The rocket launch interval determines the frequency of mission operation. We define that the mission 

operation time windows are open for a few time steps after each rocket launch opportunity. When the mission 

operation time windows are closed, space flights are not permitted. The ISRU maintenance rate means that every year, 

the mass of maintenance spare demand is equivalent to 10% of the ISRU system total mass [14-15]. 

 

Table 3 ISRU infrastructure design models. [27] 

System Chemistry 

reactions 

Reference 

product 

Specific power, 

kW 

Specific mass, 

kg 

Reactor 

Soil/Water extraction (SWE) 𝑆𝑜𝑖𝑙 → 𝐻2𝑂 𝐻2𝑂, kg/hr @3%: 13.7 

@8%: 7 

@3%: 357 

@8%: 195 

Direct water electrolysis (DWE) 2𝐻2𝑂 → 2𝐻2 + 𝑂2 𝑂2, kg/hr 5.83 83.3 

Molten regolith electrolysis (MRE) 𝑆𝑜𝑖𝑙 → 𝑂2 𝑂2, kg/hr 26.94 197.58 

Hydrogen reduction (HR) 𝑆𝑜𝑖𝑙 + 𝐻2 → 𝐻2𝑂 𝐻2𝑂, kg/hr 0 @equator: 228 

@pole: 482 

Carbothermal reduction (CR) 𝑆𝑜𝑖𝑙 + 2𝐶𝐻4 + 2𝐻2

→ 2𝐶𝐻4 + 2𝐻2𝑂 

𝐻2𝑂, kg/hr 0 520.5 

Soil extraction system 

Excavator for soil @3% 𝐻2𝑂 — — Soil, kg/hr 0.004 0.38 

Excavator for soil @8% 𝐻2𝑂 — — Soil, kg/hr 0.027 23 

Storage system 

𝑂2 storage — — 𝑂2, kg 0.0088 5.15 

𝐻2 storage — — 𝐻2, kg 0.0267 3.33 

𝐻2𝑂 storage — — 𝐻2𝑂, kg 0 40 

𝐶𝐻4 storage — — 𝐶𝐻4, kg 0.0073 1.67 

Power system 

Photovoltaic (PV) power system — — Power, kW — — 6.8 (@ 1 AU) 
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Energy storage system: battery — — Energy, kWh — — 4 

Energy storage system: fuel cell — — Energy, kWh — — 2 

Fission surface power system (FSPS) — — Power, kW — — 150 

Radioisotope power system (RPS) — — Power, kW — — 124 

 

Table 4 Mission operation parameters and assumptions. 

Parameter Assumed value 

Rocket launch interval, day 120 

ISRU maintenance, system mass/yr 10% [14-15] 

Solar irradiance (@ 1 AU), kW/m2 1.36 [28] 

PV radiation degradation, /sol 0.014% [29] 

Battery charging efficiency 95% [30] 

Fuel cell energy efficiency 60% [31] 

RPS degradation rate, /yr 1.9% [32] 

 

The problem is solved using the Gurobi 8.1 solver through Python on an i9-9900k, 3.6GHz platform with 32GB 

RAM. The detailed analysis and discussion of this human lunar exploration campaign case study are shown in the 

next section. 

B. Comparison of Optimization Formulations 

This section compares the solution and computational cost of the prefixed infrastructure optimization formulation 

(i.e., the upper-bound formulation), the full-size infrastructure optimization formulation (i.e., the baseline 

formulation), and the proposed multi-fidelity optimization formulation (i.e., the lower-bound formulation). We 

consider a lunar exploration campaign with multiple consecutive lunar missions, with a mission operation frequency 

of 120 days. The lunar landing area is in the equatorial region with lunar regolith @3% 𝐻2𝑂. The initial mass in low-

Earth orbit (IMLEO) is used as the mission cost metric. It is a widely used mission cost measurement in past space 

logistics optimization literature [13-15]. As a baseline mission scenario, the FSPS is selected as the stationary power 

supply system on the lunar surface. The PV power system and energy storage system are considered as candidate 

power sources in space. 

 By fixing the number of human lunar missions to three and changing other mission scenario parameters, we can 

evaluate the performance of three optimization formulations under different settings. The ISRU infrastructure design 

models shown in Table 3 are relatively conservative models. With the development of technology and material 

science, ISRU systems can have higher productivity and lower system structure mass. Table 5 compares the 

infrastructure optimization formulation performances with respect to ISRU productivity. It shows the results when the 
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ISRU productivities are 100%, 125%, and 150% of the original design models. The mission cost errors illustrate the 

mission cost difference of solutions with respect to the results of the baseline full-size optimization formulation.  

 In Table 5, we can find that multi-fidelity optimization can provide a very accurate approximation of the full-size 

formulation at a significant computational cost reduction. The computation time reduction was more than 60%, 

whereas the performance loss is within 2.5%. This is enabled by packing commodity variables and eliminating 

infrastructure subsystem tradeoffs during space flights. The (small) solution difference between the multi-fidelity and 

full-size formulations is caused by the inability of the multi-fidelity formulation to distinguish different commodity 

types when they are packed together; for example, when two commodities are packed and then unpacked later on, we 

lose the information about the original mass ratio between these two commodities, which can lead to an overoptimistic 

solution.  

 On the other hand, the upper-bound solutions provided by the prefixed optimization formulation is much larger 

than optimal solutions. The physical meaning of the prefixed infrastructure optimization is that it ignores the 

infrastructure subsystem trade studies and their interactions with space mission planning. It considers the infrastructure 

as an integrated system. We can still size the infrastructure; however, the mass ratios between infrastructure 

subsystems are fixed in advance before considering space logistics. Therefore, it can provide an upper-bound, feasible 

solution, which is significantly larger than the optimal solution. It is also the fastest method among three infrastructure 

optimization formulations because it has the least variables and constraints and explores the smallest design space. 

Table 5 Comparison of formulation performances with respect to ISRU productivity. 

ISRU 

productivity 

index 

Optimization 

formulation 

Mission cost 

(IMLEO), kg 

Mission 

cost errors 

Computation 

time, s 

Computation 

time reduction 

100% 

(default) 

Prefixed 

(Upper Bound)  
565,622.9 33.7% 110.9 -89.6% 

Full-size 

(Baseline) 
422,930.7 — — 1,062.3 — — 

Multi-fidelity  

(Lower Bound) 
414,393.7 -2.0% 92.5 -91.3% 

125% 

Prefixed 

(Upper Bound)  
528,563.7 33.6% 91.1 -92.0% 

Full-size 

(Baseline) 
395,422.6 — — 1,135.7 — — 

Multi-fidelity  

(Lower Bound) 
394,302.7 -0.3% 301.9 -73.4% 

150% 
Prefixed 

(Upper Bound)  
513,612.6 37.1% 25.7 -95.7% 
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Full-size 

(Baseline) 
374,732.9 — — 592.2 — — 

Multi-fidelity  

(Lower Bound) 
366,229.3 -2.3% 246.8 -58.3% 

 

We can vary the problem complexity by changing the number of human lunar missions or the rocket launch 

frequency. If we fix the ISRU productivity as normal and increase the number of human lunar missions from 3 to 4 

and 5, the mission planning results are shown in Table 6. It shows that the mission cost errors of the multi-fidelity 

optimization with respect to the full-size optimization are within 2%. Both the multi-fidelity optimization and the 

prefixed optimization formulations are significantly faster than the full-size optimization formulation (i.e., >90% 

computation time reduction). 

Table 6 Optimization formulation performance comparison. 

Number of 

human lunar 

missions 

Optimization 

formulation 

Mission cost 

(IMLEO), kg 

Mission 

cost errors 

Computation 

time, s 

Computation 

time reduction 

3 

(default) 

Prefixed 

(Upper Bound) 
565,622.9 33.7% 110.9 -89.6% 

Full-size 

(Baseline) 
422,930.7 — — 1,062.3 — — 

Multi-fidelity  

(Lower Bound) 
414,393.7 -2.0% 92.5 -91.3% 

4 

Prefixed 

(Upper Bound) 
671,716.3 31.3% 321.3 -96.7% 

Full-size 

(Baseline) 
511,476.6 — — 9,607.4 — — 

Multi-fidelity  

(Lower Bound) 
509,792.9 -0.3% 439.8 -95.4% 

5 

Prefixed 

(Upper Bound) 
774,626.1 29.7% 693.8 -98.4% 

Full-size 

(Baseline) 
597,300.8 — — 42,675.8 — — 

Multi-fidelity  

(Lower Bound) 
596,347.8 -0.2% 2,074. 1 -95.1% 

 

 

 We can also fix the number of human lunar missions to three and the ISRU productivity as normal, then change 

the launch frequency to evaluate its impact on ISRU infrastructure design, especially the storage system design. As 

there is a 120-day long human lunar exploration at the end of each year, the human lunar mission begins on day 240 

in each year. By varying the rocket launch frequency interval to 60, 120 (default), or 240 days, there are 3, 1 or 0 extra 

cargo mission opportunities before each human lunar mission. The formulation performance comparison under 

different launch frequencies is shown in Table 7.  
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 Table 7 shows that the performance of the multi-fidelity optimization formulation is stable. The mission cost errors 

are always within 2% compared with the optimal solutions from the full-size optimization formulation. If we observe 

the computation times in Table 6 and Table 7, we can analyze a general trend in the computational time saving by the 

multi-fidelity formulation. In Table 6, as the number of human lunar missions increases, the computation time 

reduction of the multi-fidelity formulation increases slightly from 91% to 95%. In Table 7, as the rocket launch 

opportunity interval decreases (i.e., from 240 to 60), the time steps considered in the optimization increase 

significantly, and the computation time reduction of the multi-fidelity formulation increases from 70% to more than 

95%. These observations show that the proposed multi-fidelity optimization formulation achieves a large 

computational time saving compared with the full-size formulation for complex space mission design problems. 

Table 7 Comparison of formulation performances with respect to the launch frequency. 

Launch 

frequency, day 

Optimization 

formulation 

Mission cost 

(IMLEO), kg 

Mission 

cost errors 

Computation 

time, s 

Computation 

time reduction 

240 

Prefixed 

(Upper Bound)  
697,800.9 65.0% 7.1 -94.8% 

Full-size 

(Baseline) 
422,930.7 — — 135.9 — — 

Multi-fidelity  

(Lower Bound) 
414,393.7 -2.0% 39.9 -70.6% 

120 

(default) 

Prefixed 

(Upper Bound)  
565,622.9 33.7% 110.9 -89.6% 

Full-size 

(Baseline) 
422,930.7 — — 1,062.3 — — 

Multi-fidelity  

(Lower Bound) 
414,393.7 -2.0% 92.5 -91.3% 

60 

Prefixed 

(Upper Bound)  
480,705.3 13.7% 604.9 -98.2% 

Full-size 

(Baseline) 
422,926.5 — — 33,383.0 — — 

Multi-fidelity  

(Lower Bound) 
414,388.1 -2.0% 1,581.9 -95.3% 

 

 Moreover, the results also show that the launch frequency and the sizing of infrastructure storage systems need to 

be considered concurrently to find the optimal infrastructure design. With a higher launch frequency, a smaller storage 

system is needed because resources produced by the infrastructure can be delivered to other destinations through 

spacecraft when mission time windows are open. Keeping this intuition in mind, the storage system design in the 

prefixed optimization formulation is pre-set to be able to store the exact amount of resources produced between two 

mission time windows. For example, if the launch frequency is 240 days, then the storage system in the prefixed 

optimization formulation is exactly able to store the resources produced in 240 days. In Table 7, the mission cost 
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results by the full-size and the multi-fidelity optimization formulations show that the launch frequency has limited 

influence on mission costs for this mission scenario. However, the mission cost from the prefixed optimization 

formulation decreases significantly as the launch frequency increases, which leads to a decrease in infrastructure 

storage system size. This result shows that this mission scenario may prefer small infrastructure storage systems.  

 To confirm this hypothesis, we conduct a sensitivity analysis on the ISRU storage system sizing under the default 

launch frequency (i.e., 120 days). The results are shown in Table 8. We find that as we decrease the storage system 

size, the mission costs obtained through the prefixed optimization formulation decrease dramatically until the storage 

system is too small to make the mission feasible. Note that our full-size formulation’s solution is still much better than 

any of the prefixed formulations tested here. This result shows that our proposed interdisciplinary space infrastructure 

optimization methods can optimize the ISRU storage size as well as any other ISRU subsystems by concurrently 

capturing the detailed interactions between each infrastructure subsystem and space transportation mission planning 

in an optimal way. The optimal subsystem designs cannot be achieved by considering space infrastructure design 

independently in advance and treating it as a black box in space logistics. 

Table 8 Sensitivity analysis of ISRU storage system sizing. 

Optimization 

formulation 

ISRU 

storage 

system size 

Mission cost 

(IMLEO), kg 

Mission 

cost errors 

Computation 

time, s 

Computation 

time reduction 

Prefixed 

(Upper Bound) 

100% 565,622.9 33.7% 110.9 -89.6% 

80% 524,412.9 24.0% 41.5 -96.1% 

60% 494,243.2 16.9% 37.2 -96.5% 

40% 467,241.3 10.5% 59.4 -94.4% 

20% 444,414.1 5.1% 151.2 -85.8% 

0% infeasible — — — — — — 

Full-size 

(Baseline) 
— — 422,930.7 — — 1,062.3 — — 

Multi-fidelity  

(Lower Bound) 
— — 414,393.7 -2.0% 92.5 -91.3% 

 

VI. Conclusion 

This paper proposes a system-level space infrastructure and logistics mission design optimization framework to 

perform architecture trade studies. A new space infrastructure logistics optimization problem formulation is proposed 

that considers infrastructure subsystems’ internal interactions and their external synergistic effects with space logistics 

simultaneously. A natural implementation of this formulation is referred to as the full-size formulation, which explores 

a larger trade space and thus provides the same or a better (i.e., lower-cost) solution than the traditional prefixed 
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formulation. However, the inherent limitation of this full-size formulation is its prohibitive computational cost for 

complex systems. In response to this challenge, another new multi-fidelity optimization formulation is developed by 

varying the granularity of the commodity type definition over the network graph. The developed multi-fidelity 

formulation can find an approximation lower-bound solution to the full-size problem computationally efficiently with 

little sacrifice in the solution quality. A multi-mission human lunar exploration campaign case study shows the 

consistent improvement of the multi-fidelity optimization formulation in computational efficiency. For the tested 

cases, the multi-fidelity optimization formulation found solutions that are within 2-3% of those of the full-size 

optimization formulation with a significant computational time reduction (>90% for the majority of the tested cases). 

The sensitivity analysis of launch frequency demonstrates the value of the proposed interdisciplinary infrastructure 

optimization method. 

Future research can include the consideration of uncertainties in space mission planning to evaluate the 

performance and technology reliability under stochastic mission scenarios. Further implementations can also be 

explored to consider technology trade studies for life support systems or scientific instruments in space logistics 

optimization. 
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