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SUMMARY

This work considers the application of motion primitives to path planning and obstacle

avoidance problems in which the system is subject to significant parametric and/or initial

condition uncertainty. In problems involving parametric uncertainty, optimal path planning

is achieved by minimizing the expected value of a cost function subject to probabilistic

(chance) constraints on vehicle-obstacle collisions. The Koopman operator provides an

efficient means to compute expected values for systems under parametric uncertainty. In

the context of motion planning, these include both the expected cost function and chance

constraints. A maneuver-based planning method is developed that leverages the Koop-

man operator to minimize an expected cost while satisfying user-imposed risk tolerances.

The method is illustrated in three separate examples using a Dubins car model subject to

parametric uncertainty in its dynamics or environment. Prediction of constraint violation

probability is compared with a Monte Carlo method to demonstrate the advantages of the

Koopman-based calculation.

Motion primitive planning under parametric uncertainty may be modeled as a chance-

constrained Markov Decision Process (CCMDP). One way to obtain single-query solutions

to CCMDPs is by searching the And/Or hypergraph representing the state-action space of

the system. The Risk-bounded AO* (RAO*) algorithm has been proposed as a solution

method for this problem, but it scales poorly to MDPs resulting from a motion primitive

discretization because it has no mechanism to prioritize expansion of AND nodes. An

induced heuristic for state-action pairs is described that can be rapidly computed by lever-

aging the properties of motion primitives; its value can be used to prioritize AND nodes for

more efficient search. The resulting algorithm is referred to as AO* with induced heuristic.

The hypergraph search is further accelerated by leveraging shared symmetry in constraints

and dynamics to move almost all computation necessary to enforce convex polytope con-

straints offline. The performance improvements are demonstrated with path planning prob-

xiv



lems involving a Dubins Car and a nonlinear aircraft model.

The key bottleneck for the path planning under uncertainty algorithms described herein

are the expected value computations. Computing an expected value requires integrating

over the uncertainty domain, which may be high dimensional. One way to accelerate such

calculations is through the use of a "sparse" numerical integration scheme. A method is

described for obtaining maximally sparse numerical integration schemes for use with hy-

pergraph search algorithms for path planning problems under parametric uncertainty. The

approach formulates a mixed-integer linear program that is tailored to the specific structure

of the hypergraph on which chance-constrained motion primitive planning problems are

solved. The optimization is solved offline, yielding a sparse integration scheme that can

then be used for a variety of planning tasks. Results demonstrate that the sparse schemes

maintain the estimation accuracy of the original formulation while requiring dramatically

less computation time.

AO* with the induced heuristic is compared and contrasted with sampling based Monte

Carlo Tree Search and a variant for chance constrained planning called Vulcan. It is shown

that AO* produces distinctly better solutions than the sampling based algorithms in many

situations, but that for some problems in which it is impractical the sampling based al-

gorithms may still be able to return a solution. Finally, the potential for the Generalized

Lazy Search approach to accelerate planning in conjunction with RAO*, AO*, MCTS, and

Vulcan is explored. Laziness proves strongly beneficial for RAO*, but in the tested sce-

nario remains inferior to AO* with the induced heuristic. Moreover, AO* with the induced

heuristic is found to not benefit from lazy collision checking; this is traced to the fact that

the induced heuristic is itself a lazy collision checking approach that could be described

as a novel specialization of the Generalized Lazy Search approach. MCTS and Vulcan are

found to experience small to moderate convergence improvements from the Generalized

Lazy Search approach in some settings, but in other settings laziness can lead to extreme

increases in the frequency of constraint violations.
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CHAPTER 1

INTRODUCTION

Path planning is one of the most fundamental problems in robotics. It is also a very broad

problem, encompassing in principle everything from playing chess to flying through a for-

est at speed. Kinodynamic motion planning is of particular practical importance, as it is

the specialization concerned with finding the control inputs necessary to steer to a goal

while respecting dynamics and satisfying imposed constraints. This is the level of detail

necessary to steer a robot (finding control inputs) through a crowded room without hitting

anyone (satisfying constraints) or assuming the robot can teleport (respecting dynamics).

The motion primitive framework, described in [1], is a popular approach to this problem

because it provides a way to guarantee the resulting trajectory respects the system dynam-

ics without needing to do online simulation [2, 3, 4, 5, 6, 7, 8]. It does this by leveraging

invariances in the dynamics of the system: If the trajectory followed by an automobile as

it turns left when it started facing north is rotated 90 degrees clockwise, this new trajectory

will exactly overlap the trajectory for a left turn that started out facing east . In other words,

the dynamics of the automobile are invariant to planar rotations (they are also invariant to

planar translations). Many dynamical systems of interest exhibit similar properties, which

can be codified mathematically as identifying a particular Lie group whose group action

commutes with the state flow of the differential equation describing the dynamics. This

equivalence of trajectories creates an opportunity for reuse of simulations. Offline, one can

compute a number of trajectories (called "maneuvers") corresponding to particular control

laws. Planning is then reduced to selecting a concatenation of trajectories that connect the

start and goal.

Motion primitive planning becomes significantly more complicated when considering

systems with parametric uncertainty. A key assumption in the formulation of motion prim-
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itive planning is that the state evolution from the beginning to the end of each maneuver

is, up to an offset in the cyclic coordinates, the same every time the maneuver is executed.

Under parametric uncertainty in the system dynamics, this may no longer be true; the state

after executing a maneuver will generally depend on the unknown parameters. Despite

this difficulty, several authors have proposed extensions to motion primitive planning to

address uncertainty. Schouwenaars et al. [9] proposed a robust motion primitive algorithm

that used Monte Carlo simulation to estimate the maximum deviation in state values that

could result from each maneuver. These deviations are then factored into a modified cost-

function to provide a "crude approximation of the expected value." A more recent robust

generalization by Majumdar and Tedrake [10] replaces the notion of a primitive with that

of a funnel. A funnel is a set combined with a controller where, if the vehicle begins inside

the entry region, it is guaranteed to remain in the funnel while the controller is executing.

The authors present a way to compute funnels that will exhibit the Lie group invariance

property by leveraging Sum-of-Squares optimization techniques.

While robust approaches are useful in many cases, they offer no mechanism to trade

probability of constraint violation for better system performance. In many cases, it is pos-

sible to obtain a better path (in terms of overall cost) if constraint violation is allowed

with non-zero probability. As an example, Thakur et al. [11] use motion primitives as

the actions in a Markov Decision Process, with massively parallel Graphics Processing

Unit (GPU) computation used to estimate transition probabilities. This approach computes

a probabilistically optimal path under uncertainty, but constraint violations are penalized

with additional cost. Despite this limited work, motion primitive planning under para-

metric uncertainty remains a highly under-explored area. Interestingly, no prior work (to

the authors’ knowledge) has investigated the possibility of chance-constrained planning

with motion primitives. In chance-constrained planning, the probability of constraint vio-

lation is computed and constrained to be less than some risk tolerance. The advantages of

the chance-constrained approach over robust techniques or cost-penalized approaches are

2



well-known [12, 13, 14, 15, 16]; including chance constraints permits preferences that can-

not be produced by any purely cost-penalized construction. This is a double-edged sword

as shown by the extensive exchange of letters on the utility and correctness of the chance

constrained formulation in the 1970s and 1980s [17, 18, 19, 20, 21, 22, 23, 24, 25]; one

must remain aware that the introduction of a chance constraint may well eliminate the cost

optimal solution even in a setting in which failure (or, more generally, constraint violation

whether terminal or not) is penalized "correctly." The chance-constrained formulation is

nevertheless strictly more expressive than the pure-penalty formulation, so provided the

computational penalties are not too onerous (indeed, some results in chapter 5 suggest

chance constraints can provide computational benefits) algorithms capable of handling this

formulation have great potential benefits.

Path planning under parametric uncertainty (equivalently, initial condition uncertainty)

requires some means of Uncertainty Quantification (UQ) to evolve the state Probability

Density Function (PDF) along the path, so that the expected value of the cost and constraint

violation probabilities may be calculated. A standard technique is Monte Carlo sampling,

used in [11, 16, 26]. It has the distinct advantage of applying to nonlinear systems, arbitrary

probability distributions, and unlimited simulation horizons, giving it wider applicability

than analytical or parametric techniques like those used in [13, 27, 28, 29]. From an imple-

mentation perspective, Monte Carlo methods also benefit greatly from massively parallel

computation on GPUs [11, 30]. However, Monte Carlo scales poorly to higher dimensions

and the underlying PDF must be estimated from the evolved samples. As discussed in [31],

a variety of techniques exist to alleviate this in special cases.

The Frobenius-Perron (FP) operator and its adjoint the Koopman operator form the

basis of alternative "explicit Uncertainty Quantification (UQ)" techniques for parametric

uncertainty that have been shown in [31, 32, 33, 34, 35] to scale better than Monte Carlo

while preserving much of the generality and parallelizability of the technique. In particular,

Meyers et al. [34] showed that the Koopman operator can be used to compute constraint

3



violation probabilities and expected costs more accurately than Monte Carlo at a given

number of samples, while providing tractable integration domains. Leonard et al. [35] used

GPUs and Lobachevsky spline integration to apply the Koopman approach in a probabilistic

airdrop optimization problem involving five dimensions of parameter uncertainty.

The Koopman operator provides an infinite dimensional linear encoding of the state

evolution of nonlinear dynamical systems. Existing work has shown that truncations of

basis function expansions of the operator provide an effective means of system lineariza-

tion that is amenable to discovery from system state data [36, 37, 38, 39, 40, 41]. This

provides an approximate continuous representation of the evolution of an observable of the

system state. When used for explicit uncertainty quantification, the Koopman operator is

instead obtained "exactly" (up to integration error) at a discrete set of selected points in

the state space via the method of characteristics [34]. Basis function expansion and data-

driven learning are avoided by relying on an existing (potentially black-box) model and by

sacrificing information about the evolution of the observable of the state of the system at

unaddressed points.

A framework for motion primitive planning under parametric uncertainty using the

Koopman operator is presented in chapter 2. The uncertainty space is discretized offline

and the state evolution along each primitive is computed at each point and stored. Online,

the probability of constraint violation for each stored trajectory is obtained and pulled back

to the parameter uncertainty domain (this is the action of the Koopman operator). A simple

expected value calculation provides the total constraint violation probability. Three path

planning examples are shown for a Dubins car model under parametric uncertainty, involv-

ing various types of chance constraints. The accuracy of the constraint violation probability

predictions is compared with Monte Carlo methods to demonstrate the computational ad-

vantages of the proposed approach.

Combining the Koopman operator with motion primitives permits construction of a

Chance-Constrained Markov Decision Process (CCMDP) with a discrete action set. The
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state of this CCMDP can be viewed as evolving on a graph, with a path obtained via graph

search. Each edge leaving a state in this graph (that is, each maneuver available at that

state) is associated with multiple exit states due to the parametric uncertainty affecting

the primitive evolution. Any of those states can result if the maneuver is executed, so

a complete plan must include paths to the goal from each of them. This type of search

graph is recognized as an AND/OR hypergraph, a graph-like structure where some edges

connect one vertex to many vertices (instead of all edges being one to one). AND/OR

hypergraphs have previously been used to study game tree evaluation [42, 43, 44], planning

problems with non-deterministic actions [45], partially-observable planning [46], and for

representing deformable objects in image segmentation learning [47].

A classic informed search algorithm for AND/OR hypergraphs is called AO* [48].

AO* uses a heuristic to prioritize its search, which results in a solution tree (instead of the

path that results from search on a regular graph). Bagchi and Mahanti prove in [49] that

AO* returns the lowest cost tree if the heuristic underestimates the true cost to go (i.e., the

heuristic is admissible). As an alternative, Mahanti and Bagchi present in [50] the CF and

CS algorithms which together produce optimal solutions for some inadmissible heuristics.

Nau et al. demonstrate that A* and AO* can be unified as special cases of a generalized

Branch and Bound formulation [51]. Chakrabarti et al. prove that AO* will yield the

optimal solution tree under a variety of additive rules for computing the tree cost even if

the heuristic "occasionally" overestimates, and present bounds on solution suboptimality

when it does occur [52]. Finally, Chakrabarti et al. prove that if one heuristic dominates

another, the worst-case set of nodes expanded by AO* using the dominating heuristic is not

larger than the worst-case set using the inferior heuristic. This is a weaker version of the

A* property that a dominating heuristic does not increase the actual set of expanded nodes.

One major limitation of AO* is that the solution graph must be acyclic, as it conducts a

back-propagation step that will not terminate if there are cycles [48]. The actual hypergraph

can in principle include cycles so long as the search never encounters them (in particular,
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the solution must be acyclic). Jimenez and Torras present an algorithm based on Mahanti

and Bagchi’s CF algorithm to handle graphs where the cycles are encountered during search

[53]. To handle the case where the solution itself is cyclic, Hansen and Zilberstein replace

the simple back-propagation step in AO* with either value or policy iteration to construct

the LAO* algorithm [54]. They demonstrate that many of the results of [52] hold for LAO*

as well as AO*, including the solution optimality result and the effects of heuristic accuracy

on node expansion.

Santana et al. introduced Risk-bounded AO* (RAO*) as a generalization of AO* for

Chance-Constrained Partially-Observable Markov Decision Process (CC-POMDP). In CC-

POMDPs, the belief state evolves on an AND/OR hypergraph if the action set is discrete

[55]. RAO* modifies AO* by pruning possible states that exhibit a risk of constraint vio-

lation in excess of the risk bound. Additional pruning is achieved in the partially observ-

able context by utilizing an admissible heuristic estimate of the risk in addition to the cost

heuristic. In [56] and [57] the RAO* algorithm was modified for use in a receding horizon

framework by limiting the maximum search depth. While originally proposed as a solution

technique for a Partially-Observable Markov Decision Process (POMDP), RAO* can of

course be applied to a fully observable Markov Decision Process (MDP).

The framework for chance-constrained planning from chapter 2 can be cast as a dis-

crete action (fully-observable) Markov Decision Process under uncertainty. And/Or graph

search techniques such as RAO* may be used to solve for single-query solutions to such

problems. However, the enormous branching factor resulting from the discretization of

the uncertainty space means that straightforward application of RAO* is impractical for

problems of realistic complexity. This weakness is addressed in chapter 3 and a solution

proposed. RAO*’s difficulty lies in the fact that AND nodes have no physical existence

in the CCMDP formulation; they represent the different actions available at a particular

state in the domain (itself represented by a particular OR node). As a result, defining an

(admissible) heuristic to meaningfully prioritize between AND nodes is non-trivial. RAO*
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sidesteps this issue by following the expansion of an OR node with the expansion of all its

AND node children. This is equivalent to implicitly assigning each AND node (each ac-

tion) the same heuristic value as the parent OR node (the state the action is executed from).

Generating the children of every action at a node (and thus, checking the path to each child

for constraint violations) will, in general, involve unnecessary work. For example, if the

goal is ahead of the current location, examining paths involved in turning around is likely

wasted effort. A more efficient search could be achieved by prioritizing the exploration of

promising actions. When all actions are motion primitives, the exit state of an action can

be computed in a single operation (skipping over the states that occur during execution).

Thus, one can compute the heuristic function on the exit states of a particular action in far

less time than would be needed to do full collision checking on that action. An induced

AND node heuristic can then be defined as the expected value of the cost to come to the exit

states plus the original heuristic at those states. The induced heuristic allows prioritizing

AND node expansions at the cost of some additional overhead (as this induced heuristic is

more expensive to compute than the original heuristic). Applying AO* using this heuristic

returns precisely the same solution as RAO* while (in practice) performing fewer checks

for constraint violations. In problems where constraint checking is costly the additional

overhead is greatly outweighed by reducing the number of constraint checks.

In addition, three modifications applicable to both variants are proposed to further re-

duce computational effort. The first (nearly trivial) modification, state merging, leverages

RAO*’s ability to handle solution graphs by combining similar states via state space dis-

cretization. This merging may produce a dramatic reduction in the number of nodes ex-

panded, but requires care in the presence of loops. The second modification – decaying

accuracy – applies the logic behind Variable Level-of-Detail planning [58] to sampling of

the uncertainty domain. Fewer samples are used when considering far future actions, re-

sulting in reduced accuracy in cost and risk evaluation. When periodic replanning will be

performed, a new plan (that uses higher resolution) will be made before poorly-resolved
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future actions are taken. The third modification, called presorting, leverages simultaneous

symmetry in both vehicle dynamics and constraints to presort realizations (the trajectory

of a maneuver for a particular value of the uncertain parameter) by how much they move

towards planar constraints. With this presorted database of maneuvers, the number of full

collision checks that must be performed online is reduced by checking single realizations

in a binary search pattern; once the realization that transitions from not colliding to col-

liding is found, no further checks need be performed on the remaining realizations. This

effectively moves much of the computation needed to check violations of convex polytopic

constraints offline to a preprocessing step. Numerical results are presented showcasing the

effectiveness of the induced heuristic and the algorithm modifications on a pair of Dubins

car examples and a scenario involving a 6DOF nonlinear aircraft model.

The key calculation underpinning the uncertain path planning problem, with or without

the presence of chance constraints, is the expected value. Preferences between policies are

expressed in terms of the expected cost or reward, while chance constraints (if present) in-

volve the expected value of indicator functions for the relevant constraints. Mathematically,

expected values are integrals over the uncertainty domain; this is why the dimension of the

uncertainty domain contributes to the "curse of dimensionality" in the uncertain setting. In

deterministic path planning problems the curse of dimensionality appears primarily due to

the dimension of the state space, which can be mitigated by careful discretization [59, 60]

or by seeking only single query solutions rather than a full policy [61, 62, 63]. Uncertainty

compounds the curse by introducing its counterpart from numerical integration: expecta-

tions are integrals over the uncertainty domain, so the dimension of the uncertainty domain

affects the difficulty of evaluating the expected costs and the risk. This can be mitigated by

using analytical bounds [27, 64] or parametric representations of the uncertainty [63, 65].

Approaches for addressing the curse of dimensionality in numerical integration are also ap-

plicable (see Bungartz and Griebel for a brief exposition [66]). One approach, widely used

in the path planning community, is to use a Monte Carlo integration scheme [11, 16, 67,
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26, 27, 68, 69, 70]. Monte Carlo methods for numerical integration have numerous advan-

tages including broad applicability, ease of implementation, and an O(
√
n) convergence

rate that is independent of the dimension of the problem. Variants of the Monte Carlo Tree

Search (MCTS) algorithm leverage this property. The effectiveness of classic MCTS, as

well as a variant capable of enforcing chance constraints called Vulcan [69], is studied for

the motion primitive path planning problem in chapter 5.

Another option for mitigating the dimensional effects in the expected value are numeri-

cal integration schemes based on "sparse grids". Such schemes use "carefully" placed sam-

ple points so that the dependence on dimension of the total number needed is reduced. An

early approach was devised by Smolyak, who developed a recursive procedure for building

a sparse high dimensional rule from univariate rules [71]. This approach has been used

to address problems from economics [72, 73] to uncertainty quantification [74, 75], PDEs

(Partial Differential Equations) [76], and stochastic differential equations [77]; modifica-

tions for purposes such as adaptive integration have also been developed [78]. However,

the Smolyak scheme produces non-positive weights in some cases (whereas with positive

weights convergence is guaranteed for continuous integrands [79]), so other approaches

have been proposed. Van den Bos et al. [75] develop a method to construct a sparse in-

tegration scheme from a dense scheme while preserving positivity and symmetry, though

they cannot guarantee that the resulting rule contains the fewest possible samples. This

suboptimality could be avoided by using optimization in the rule construction, as was done

in Xiao and Gimbutas [80], Ryu and Boyd [81], and Keshavarzzadeh et al. [82]. In chap-

ter 4, the problem of designing an integration scheme suitable for use in an AO*-based path

planner is addressed from the perspective taken in [75]: given a dense integration scheme

that exactly integrates a set of polynomials, remove nodes from the scheme and recompute

the weights such that the polynomials are still integrated exactly, the weights remain posi-

tive, and symmetry is preserved. The goal of the resulting rule is to significantly accelerate

the online computation of expected values in the AO*-based algorithm, as well as analo-
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gous algorithms that plan paths on hypergraphs. This is achieved by casting the problem of

removing nodes from the dense scheme as a Mixed Integer-Linear Program (MILP). Nu-

merical results show that the MILP approach produces smaller rules than the baseline van

den Bos approach, and that rules for hypergraph search obtained for systems with sufficient

symmetry provide dramatic benefits to the computational cost of path planning.

Monte Carlo approaches are also quite suitable to path planning under uncertainty.

MDPs under uncertainty are structurally similar to adversarial games. In the game per-

spective, instead of an environment that chooses randomly to make the outcome of actions

uncertain, there is an adversary which chooses according to some policy. In the zero-sum

case, the adversary acts to minimize your reward and so will always choose the worst pos-

sible outcome (for you). This is equivalent to constructing a robust plan from the MDP

point of view. Monte Carlo Tree Search (MCTS) is an algorithm introduced by Kocsis and

Szepesvari [83] that has had great success in the field of games, achieving state of the art

performance in Go [68, 84], Solitaire [85], and chess [84] among others tasks. It is thus

natural to apply it to MDPs under uncertainty. Particularly relevant is [69], which proposes

a variant of MCTS called Vulcan, which can enforce chance constraints. MCTS for path

planning under uncertainty and Vulcan are described in chapter 5, which then conducts a

comparison of these algorithms with AO* on tasks for the Dubins car model and a sim-

plified supersonic glide vehicle. It is shown that the solutions returned by AO*, which is

an optimal and complete algorithm, are higher quality than those obtained by the sampling

algorithms. In particular, the performance of Vulcan is found to degrade for tight chance

constraints. The strength of the sampling algorithms is in their anytime nature; they can

return good but not perfect quality solutions in relatively short amounts of time, even on

some tasks which prove intractable for AO*.

Of the two types of expected value path planning under uncertainty contends with,

it is the constraint indicator functions that are the most problematic. Cost functions are

generally cheap to evaluate and so make up a smaller fraction of the computational burden.
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In special cases constraint evaluation can be accelerated by techniques like the presorting

described in chapter 3, but fully general constraints are a serious burden. It is thus not ideal

that AO*, like A*, is an algorithm designed to minimize the number of vertex expansions

during a search for the shortest path. In practice it is evaluating an edge (i.e. checking a

possible realization of an action for collision) that is most expensive. In the graph search

setting this can be addressed via lazy collision checking approaches such as [86, 87, 88, 89,

90, 91], which avoid checking edges for collision until the algorithm is "confident" the edge

is in the true best path (what exactly "confident" means depends on the algorithm). Work by

Mandalika et. al [92] and Lim et al [93] has shown the effectiveness of a Generalized Lazy

Search (GLS) architecture that toggles between exploration and edge evaluation based on

a user-defined event function. In chapter 6, GLS is extended to hypergraphs (i.e. path

planning under uncertainty). Additionally, it is described how Vulcan can be modified

in order to work with GLS. Numerical experiments on the Dubins Car task show strong

benefits of GLS for RAO* using three different event functions, but the performance is

inferior to AO* with the induced heuristic on the same task. Furthermore, AO* is shown to

run slower if GLS is applied. The ineffectiveness of GLS with respect to AO* is shown to

be due to the fact that the induced heuristic is itself a lazy algorithm that could be expressed

as a particular event and selection rule for GLS. Application of GLS to MCTS and Vulcan

proves similarly disappointing. For extended planning times numerical results show small

improvements in solution quality, but the primary use case of these algorithms is for short

planning times and GLS proves unreliable in those cases. Scenarios are shown in which

short-planning time lazy MCTS and Vulcan outperform their non-lazy counterparts, but

other scenarios are identified in which the laziness causes egregious planning errors that

manifest as dramatic increases in collision rate. This unreliability makes it impossible to

recommend the use of GLS with short planning time MCTS or Vulcan.

Finally, chapter 7 summarizes the contributions of this work and describes a few possi-

ble future directions of research.
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CHAPTER 2

MOTION PRIMITIVES VIA THE KOOPMAN OPERATOR

In this chapter, the motion primitive formulation is extended to parametrically uncertain

systems. The Koopman operator is used to convert expected values to integrals over the un-

certainty domain, which can be readily approximated using numerical integration schemes.

The formal chance constrained path planning problem is described and its connection to

And/Or hypergraphs elucidated. Focusing on the Koopman vs Monte Carlo comparison,

a simple path planning algorithm and a double integrator "Dubins car"-like vehicle are in-

troduced. Two scenarios show the strength of the Koopman operator based approach for

computing expected values compared to Monte Carlo sampling. A third scenario is pre-

sented that demonstrates the utility of the Koopman operator approach for systems subject

to environmental, rather than dynamic, uncertainty.

2.1 Mathematical Background

Let D be a controlled dynamical system. Let the state be x ∈ X, and suppose that D is

subject to (vector valued) parametric uncertainty taking values in s ∈ S ⊆ Rm. Let the

control be u ∈ U and let µ be a (possibly closed loop) control law. Define ρµ(t, t0, x0, si) ∈

X as the state at time t on the trajectory originating at time t0 and state x0 generated by

the control law µ when the uncertain parameter is si. The Lie Group G is a symmetry

group of D if D is invariant to the action of G on X: ∀g ∈ G, ρµ(t, t0, g ◦ x0, si) =

g ◦ ρµ(t, t0, x0, si). This is equivalent to requiring that G be a symmetry group in the sense

of [1] for every member of the family of deterministic dynamical systems formed by D at

different values of the uncertain parameter. Note that this is only possible if the control

law itself respects the symmetry of the system (µ(g ◦ x) not necessarily equal to µ(x), but

g ◦ x + δtf(g ◦ x, µ(g ◦ x), s) must equal g ◦ (x + δtf(x, µ(x), s) for f the differential
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equation for D).

G divides X into equivalence classes with the relation x1 ∼= x2 ⇐⇒ ∃g ∈ G s.t. x1 =

g ◦ x2. These equivalence classes are related to the concept of a trim trajectory from [1].

For a deterministic system, a trim trajectory α is one where the control input is constant

and the state evolution is given by x(t) = exp(ξα(t − t0)) ◦ x0. ξα is an element of the

Lie algebra g of G, and ξα∆t ∈ G. Since every state in a trim is offset by an element

of G, any trim trajectory will remain within a single equivalence class. In an abuse of

terminology, these equivalence classes will also be called trims. The invariance property

of the system means that every state in a trim is "the same." An open loop control applied

at x1 in the trim will produce the same trajectory as produced at x2, offset by the action of

g12 ∈ G : x1 = g12 ◦ x2.

The generalized coordinates of X can be separated into cyclic and non-cyclic coordi-

nates. Cyclic coordinates are those on which the system Lagrangian does not depend; their

value thus has no effect on dynamics. Non-cyclic coordinates form the remaining set. A

symmetry group of D must act only on the cyclic coordinates. Thus, states in the same

trim differ only in their cyclic coordinates. Because symmetry must hold for every param-

eter value, the introduction of uncertainty to a system may result in a G acting on fewer

coordinates than if the system was deterministic. In this case, additional trims would be

required to capture the full behavior of the system. For example, if wind uncertainty with

non-zero mean is present, heading changes are not part of the symmetry and so trims would

be needed at each heading of interest.

2.1.1 Uncertain Maneuvers

An uncertain maneuver π is defined to be a particular (possibly closed-loop) control law, a

termination condition, and a "predecessor" trim. This control law can be applied to states in

the predecessor trim to produce state trajectories that will, in general, vary with the uncer-

tain parameter. A "realization" refers to an instance of the state trajectory for a particular
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parameter value. The cyclic coordinate part of these state trajectories can be computed for

any initial condition in the predecessor trim by recording the history of group displace-

ments for a single initial condition in the trim (different parameter values lead to different

histories):

gπ(t− t0, s) : ρπ(t, t0, x0, s) = gπ(t− t0, s) ◦ x0 + n(t, s) (2.1)

where n(t, s) is the offset in the non-cyclic coordinates. Thus, gπ for a specific parameter

value can be extracted from forward simulation of D under π’s control law. While the

cyclic coordinate history for a realization will depend on the initial state x0, the evolution

of the non-cyclic coordinates must be independent of x0. All x0’s in the trim have the

same non-cyclic values, and by definition cyclic values cannot affect the dynamics. As

a result, the same single simulation used to obtain the group displacement history for a

particular parameter value also provides the non-cyclic coordinate evolution n(t, s) for all

initial conditions in the trim. In the absence of this symmetry, a recorded trajectory would

be valid only from that single initial condition and so be of little use for path planning.

2.1.2 Expected Values and the Koopman Operator

In path planning, important quantities such as the expected cost and the probability of con-

straint violation can be viewed as the expected value of a function of the system state.

However, constraint indicator functions and costs with an integrated term are in fact func-

tions of the entire state trajectory rather than a particular time step. This is resolved by

augmenting the state vector with the integrated part, as shown below for a cost term. Con-

straint indicator functions can be handled similarly.

Let H(x0, t0, s) be a state trajectory, with

J(H(x0, t0, s)) =

∫ τf

0

d(t,H(x0, t0, s)(t))dt (2.2)

the integrated cost. τf is the duration of the trajectory. The state is augmented with the
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accumulated value of the integrand (symbol: D) and its dynamics defined:

Ḋ = d(t, x) (2.3)

Then, define a function z : A→ R (where A = X× R is the set of augmented states) that

extracts D. The expected cost is now the expected value of z, which is a function only of

the (augmented) state at a particular instant.

The expected value of a function of the state of a dynamical system subject to parameter

(equivalently, initial condition) uncertainty can be computed using the Koopman operator.

Continuing with generic z a function of the (possibly augmented) state, let P : S→ R+ be

the probability distribution over the uncertain parameter s.

E[z(ρµ(t, t0, x0, s))] =

∫
S
P (s)Kµ,tz(xf )ds (2.4)

where E[·] denotes the expected value and Kµ,t is the Koopman operator for time evolu-

tion t of the uncertain dynamical system obtained by applying the control law µ to D for

a duration t. The Koopman operator acts to map a function of the system state at some

future time to a function of the initial conditions and uncertain parameters, which allows

computing expected values using the known probability distribution over those same initial

conditions and uncertain parameters without needing to actually evolve the probability dis-

tribution through the dynamics. For a careful derivation of the Koopman operator pull-back

and analysis of its computational advantages over alternative techniques, see [34].

For the purposes of this work, it is enough to realize that the Koopman operator con-

verts an expectation over a function of the terminal state to an integral over the uncertainty

domain S. The integral in (Equation 2.4) is approximated by gridding S with n sample

points sj and computing z(xf ) for the trajectories corresponding to those samples:
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E[z(ρµ(t, t0, x0, s))] ≈
n∑

j=1

P (sj)z(ρµ(t, t0, x0, sj)∆s (2.5)

where ∆s is the integration voxel size. When µ is the control law of a maneuver, ρ can

be obtained for any initial condition using records of offline simulations as discussed in

subsection 2.1.1. As the locations of sj may be chosen freely (though they must be chosen

when the offline simulations are done), more sophisticated numerical integration schemes

may be used if appropriate. This ability may be particularly useful in higher-dimensional

problems; for further discussion of possible integration methodologies, see [34], [35], chap-

ter 4, and chapter 5. In particular, if Monte Carlo integration is used this is equivalent to

evaluating the expectation via the Monte Carlo method with uniform proposal distribu-

tion. Note the importance of offline access to the system dynamics (for computing motion

primitives, either via simulation or via hardware observations), offline access to the sup-

port of the probability distribution of the parameters (for selecting parameter samples and

recording their realizations), and online access to the actual probability distribution of the

parameters (for expectation evaluations at planning time).

2.2 The Chance-Constrained Uncertain Planning Problem

The single-query chance constrained planning problem under parameter uncertainty seeks

a control law that will drive the vehicle from an initial condition x0 to a goal state g while

violating independent constraints Ci with probability less than a fixed risk tolerance r and

minimizing the expectation of a cost function J . This optimization problem may be written

as,

argmin
µ∈M

E[J(ρµ(t, t0, x0, s))] s.t. (2.6)

1−
∏
i

(1− E [Ci (ρµ(t, t0, x0, s))]) ≤ r
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where M is the set of all control laws for D. Generalizations of this problem are possible,

such as permitting r to vary with time, imposing different risk tolerances for different

constraints rather than a single overall tolerance, or allowing tolerance to depend on the

cost as in [69].

Given a library of maneuvers, a piecewise continuous control law that drives the sys-

tem to the goal can be constructed by assigning maneuvers to the initial condition, to every

state reached by executing that maneuver, and to every state reached by those maneuvers,

etc., until all sequences of states eventually reach a terminal state. This assignment yields

a piecewise continuous control law made up of the control laws corresponding to the as-

signed maneuvers. By ensuring the maneuvers chosen are compatible (in the sense that

the terminal state of the preceding maneuver is on the same trim as the initial condition of

the following), the trajectory is guaranteed dynamically feasible! The assignment is also

a partial policy for the CCMDP whose actions are the maneuvers in the library. If every

maneuver leads to a finite set of states, the assignment with lowest expected cost can be

obtained via search on an AND/OR graph. Here, an OR node represents a system state

while AND nodes represent particular actions (in this case, maneuvers) that are available at

the state represented by their parent OR node. The use of a finite set of parameter samples

in obtaining the Koopman operator, as discussed in subsection 2.1.1, inherently results in

a finite set of exit states for every maneuver. Thus, choosing an edge from an OR node is

equivalent to assigning a maneuver, while the multiple edges leaving the AND node rep-

resent realizations of the maneuver for the sampled parameter values (and thus lead to OR

nodes representing different states the system could be in when the maneuver finishes). A

"path" on an AND/OR graph is actually itself a graph, consisting of a selection of an AND

node at the root OR node, followed by every OR child of the selected AND node, repeated

on down until every leaf node is a terminal state. The resulting piecewise continuous con-

trol law is a candidate solution to the optimization in (Equation 2.6). It will not in general

be the optimal solution, but it will be the best solution out of all control laws constructed
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from the maneuvers.

The cost-optimal path on an AND/OR graph can be obtained via the AO* algorithm

[48], which can in many ways be thought of as an extension of the classic A* algorithm to

AND/OR graphs. Like A*, it maintains a priority queue of vertices based on an admissible

estimate of the cost and searches in a best-vertex-first fashion in an effort to minimize the

number of expanded vertices. As derived by Chakrabarti et al, the theoretical efficiency

guarantees of AO* are weaker than those for A*, but provided the heuristic is admissible

AO* is still complete, sound, and optimal [52]. Pseudocode for AO* when specialized

to path planning (but without chance constraints) is presented in Procedure 1. Note that

AO* requires admissible estimates of the cost to go both from OR nodes (regular graph

vertices, representing points in the state space in our context) and AND nodes (representing

particular maneuvers executed at particular states). The requirement that the heuristic be

defined for actions is non-trivial, as will be discussed in greater detail in chapter 3.

2.3 Efficiency of Koopman versus Monte Carlo Methods

To study the effectiveness of the Koopman operator approach to uncertainty quantification

for motion primitives, a maneuver library was constructed for a Dubins car-like vehicle

subject to different forms of model or environmental parametric uncertainty. In the follow-

ing examples, the cost function J being minimized is the distance to the goal at the end of

a maneuver. The vehicle travels at constant speed v in the x, y plane, with state [x, y, θ, ω]T

and motion governed by the following differential equation:



ẋ

ẏ

θ̇

ω̇


=



v cos θ + wx

v sin θ + wy

ω

u


(2.7)
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Here, u is the control input, θ is the current heading, and ω is the angular velocity. The

parameters wx, wy represent the effects of wind. They are i.i.d. Gaussian random vari-

ables with mean 0 and standard deviation 0.2 m/s. This dynamical system is invariant to

the action of SE(2), the planar rotation and translation group, which is shown in [94] to

be a Lie group. A proof of this invariance under wind uncertainty is presented in Ap-

pendix A. A nominal velocity of v = 10 m/s is selected, and the control is bounded as

u ∈ [−1000 rad/s2, 1000 rad/s2] as in [10]. With winds set to 0, this system is identical

to the nominal system from that work, but different forms of uncertainty will be imposed

here. The states x, y, θ are the cyclic coordinates and ω is the only non-cyclic coordinate.

Maneuvers are constructed using direct collocation [95] to generate nominal trajectories

satisfying the system dynamics while satisfying control saturation limits. These trajectories

are shown in Figure 2.1 (top, in green). Maneuvers move the vehicle forward 2.25 meters

and left or right by up to 1 meter. Their predecessor trim contains all states with ω = 0.

Maneuvers will be referred to by the distance they move the vehicle left; the top maneuver

in Figure 2.1 is +1m. Figure 2.1 does not show the negative nominal maneuvers, nor the

short "recovery" maneuvers used to regulate ω −→ 0 if tracking errors cause rotational

velocity to accumulate. In the bottom of Figure 2.1, 121 realizations of the -1m maneuver

are shown. The nominal trajectories are tracked by a time-varying LQR controller with

identity cost matrices.

2.3.1 Expected State Planner

This portion of the work is focused on the effectiveness of the Koopman operator approach

for handling uncertainty, so a simple planning algorithm is used. A recursive depth-limited

search is proposed to select the next maneuver according to (Equation 2.6), while account-

ing for the possibility of a poorly chosen maneuver placing the vehicle in an inescapable

collision. The approach is outlined in Procedure 2 and Procedure 3. It declines to search

the And/Or graph that represents the true evolution of the states of the system; instead it
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Figure 2.1: Top: Nominal trajectories for 11 of the 21 maneuvers (negative maneuvers not
shown). Bottom: 121 realizations of the -1m maneuver under wind uncertainty, presented
from the initial condition x0 = [0.0, 0.0, 0.0, 0.0]T .

collapses the multiple exit states of each maneuver into the single expected exit state, which

evolves on a regular graph rather than an And/Or graph.

In Procedure 2, past_cp is the collision probability accumulated along the current se-

quence of primitives; thus, the initial call to choose sets this to 0. xobs is the state from

which the environment is observed while tobs is the time at which that observation takes

place; in the initial call these are equal to the current state x0 and time t0.

First, the set of maneuvers available in the current state is obtained. Procedure 3 is

called to compute the collision probability for each maneuver. The probability of a colli-

sion during the current maneuver is combined with the collision probability accumulated

over past maneuvers (past_cp) assuming that collision in any maneuver is independent of

collision in any other. Procedure 3 computes the expected state and time following the

execution of the maneuver and, if the new state is a goal state or outside the planning hori-

zon, the accumulated collision probability is returned to choose. Otherwise, Procedure 2
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Table 2.1: Absolute error (AE) in collision probability predicted by Koopman compared
to the mean absolute prediction error (MAE) across 20 executions of various Monte Carlo
approaches.

Task Path Thru Gap Mobile Obstacles
Maneuver (# samples) -0.1 +0.6 (# samples) +0.1 +0.0

AE from Koopman 121 1.328% 0.628% 360 0.212% 0.486%
121 2.849% 1.076% 360 0.728% 0.994%

MAE from Fair 200 1.876% 1.100% 2000 0.464% 0.418%
400 1.150% 0.501% 10,000 0.206% 0.235%
121 2.617% 1.000% 360 1.605% 2.184%

MAE from Uniform 200 2.325% 0.629% 2000 0.731% 0.585%
400 1.795% 0.543% 10,000 0.358% 0.386%

is called with the "current" state and time set to the expected state and time following the

maneuver under consideration. This recursion continues until the expected state leaves the

planning horizon or reaches the goal, at which point the accumulated collision probability

is returned. By including collision probability from maneuvers planned from the expected

exit state, the procedure generates a heuristic that discourages choosing maneuvers that are

safe now but leave the vehicle with no safe maneuvers later. Procedure 2 receives from its

call to Procedure 3 a heuristic value that describes how risky each maneuver is. From the

maneuvers with risk less than the tolerance, the maneuver with the lowest cost is selected;

if no maneuvers have acceptable risk, the least risky maneuver is chosen.

2.3.2 Path Through a Gap

In the first example, the vehicle chooses whether to travel around a wall or through a narrow

gap, while its motion is perturbed by a random but uniform wind field (see Figure 2.2).

The winds are randomized at each maneuver, but are held constant (at this randomized

value) throughout the execution of a maneuver. Winds for one maneuver are conditionally

independent of the winds during past or future maneuvers.

In this example, the obstacle is encountered during the first maneuver – therefore, the

planning horizon is only a single maneuver. Note, however, that when simulating vehicle
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Figure 2.2: The vehicle begins at x0 = [0.0, 3.0, 0.0, 0.0]T and seeks to navigate to
[4.5, 3.0, 0.0, 0.0]T . Ten runs at each tolerance are pictured for illustrative purposes. Red
Xs mark locations where a run terminated.

motion, a new path is planned after each maneuver is executed. Since the paths to the

goal tend to be two maneuvers long, this results in the possibility of different paths being

generated in each simulation, since a different realization of the wind occurs. This feedback

path planning has a greater effect in the second example shown in the next section.

Figure 2.2 shows 10 simulation runs with the risk tolerance r set to 1%, 10%, and 15%.

In order to achieve a 1% collision probability, the planner elects to go completely around

the wall. Note that, due to a limited number of maneuvers, the planner cannot achieve

exactly 1% collision probability; rather, it picks the best maneuver with <=1% chance

of collision. In this case, the selected maneuver is the +0.7m maneuver, which carries a

predicted collision probability of 0%. In 100,000 runs with randomized winds, 5 collisions

occur.

The appeal of explicitly chance-constrained planners is that, by changing a single phys-

ically meaningful tuning parameter (the risk tolerance), fundamentally different trajectories

can be obtained. Increasing the risk tolerance to 10% causes the planner to select the +0.6m

maneuver, which passes closer to the wall and has a predicted 2% chance of collision. From

100,000 runs, the actual risk is 2.6%. Increasing the risk tolerance further to 15% causes

the planner to navigate through the gap with the -0.1m maneuver. This path is shorter but

more dangerous than going around the wall. The predicted risk for this selected primitive

is 12% and the actual risk from 100,000 randomized simulations is 11.5%.
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The probability of collision during a maneuver can also be evaluated using a Monte

Carlo technique, similar to the methods used in in [11] and [16]. Trajectories are gener-

ated offline for randomly sampled wind conditions and stored; at the planning step, these

trajectories are shifted to start at the current state and checked for collision. Two proposal

distributions are considered: "fair sampling" in which values are drawn directly from the

wind distributions, and "uniform sampling" in which a uniform proposal distribution is

used (for further discussion of proposal distributions, see [16] and [26]). The top portion of

Table 2.1 compares the absolute error in collision probability predicted for the -0.1m and

+0.6m maneuvers using the Koopman operator with 121 samples to the average absolute

error from 20 executions of fair and uniform Monte Carlo sampling with 121, 200, and

400 samples. All random numbers are generated using the numpy 1.17.4 PCG64 imple-

mentation. As shown by the results in Table 1, on average both fair and uniform sampling

are less accurate than Koopman with 121 samples. Furthermore, 400 samples are needed

to reduce the average Monte Carlo error below that of Koopman with only 121 samples.

While the computational effort incurred by running the additional 379 samples required by

Monte Carlo to achieve similar accuracy is minimal for this simple system, for systems in

which the dynamics are expensive to simulate this difference can be significant.

2.3.3 Mobile Obstacles

The second example replaces wind uncertainty with obstacles that move randomly. During

each maneuver each obstacle moves in a random direction at a random speed between 0

and 2 m/s. Directions are independently and uniformly distributed and speeds are indepen-

dently drawn from N (1,0.2). Speeds and directions are constant during the maneuver, and

winds are set to 0.

The planner must predict the future locations of the obstacles. The uncertainty space is

sampled using 10 points in velocity and 36 points in direction, for a total of 360 samples per

obstacle. The planner heuristic assumes that a particular obstacle motion sample continues
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at the same direction and speed during all primitives in a given path.

Figure 2.3 shows example planner solutions with three obstacles for r = 10% and

r = 20%. The algorithm replans after each maneuver, so each run can result in a different

path. The blue circles show the obstacle locations at the final time while the black show

the locations at each time step (the upper left obstacle interfered with the 20% path only

after the vehicle was already past). At r = 10%, the path moves widely around the obstacle

field. One thousand runs result in 12 collisions. Increasing the planner’s tolerance to 20%

causes it to accept narrower clearance with respect to the first obstacle and to pass between

the second pair, leading to a shorter overall path. In 1,000 runs at 20% risk, there are 91

collisions. The plotted 10% and 20% runs use the same seed for comparison purposes.

The bottom part of Table 2.1 compares collision probability predictions via Koopman

and Monte Carlo for two maneuvers available at the initial state of the mobile obstacle task.

From one million runs, the true collision probability for the +0.1 maneuver is 5.239%; for

the +0.0 maneuver it is 6.913%. On the +0.1 maneuver, fair Monte Carlo needs 10,000

samples to match the accuracy of Koopman with only 360 samples. The +0.0 maneuver is

more forgiving; fair Monte Carlo needs only 2,000 samples to outperform Koopman with

360. Uniform sampling is less accurate than fair sampling at all tested sample counts.

2.3.4 Scylla and Charybdis

A third example showcases the flexibility of the Koopman operator approach by remov-

ing model uncertainty and replacing it with environmental uncertainty. In this example,

the wind components are set to 0 and uncertainty takes the form of two defined regions of

space in which there is a periodic chance, but not guarantee, of the vehicle being destroyed.

The larger region, dubbed "Charybdis," imposes a 40% chance of destruction every 0.25

seconds that the vehicle is inside the region. The smaller region, dubbed "Scylla," imposes

only a 2.5% chance of destruction, but this happens every 0.025 seconds. As additional

complexity, the first maneuver the vehicle makes will not enter either of the dangerous re-
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Figure 2.3: To achieve a < 10% risk of collision, the planner elects to swing wide around
the obstacle field. At 20% risk tolerance, it can pass between the obstacles and achieve a
shorter path.

gions. Note that, because the model is deterministic for this example, the planner’s heuristic

risk returned from Procedure 3 is exact.

Chance-constrained planning is a natural fit for tasks that are difficult to express in a

robust or deterministic context. The application of the expected state planner to this task is

straightforward, but robust and deterministic planning techniques cannot really tackle this

challenge. A "robust" solution to this sort of probabilistic obstacle would be to path around

the obstacle, completely ignoring its probabilistic nature. A deterministic planner could

either treat the probabilistic obstacles as hard obstacles and path around them, or ignore

the non-zero chance of destruction if the path goes through the obstacle and path through

them. None of these approaches make full use of the available probabilistic information,

while chance-constrained planning does.

Figure 2.4 shows 10 simulations of the expected state planner navigating with risk tol-

erances of r = 1%, r = 10% and r = 50%. The vehicle must travel completely around the

dangerous regions in order to achieve a destruction probability of less than 1%. Observe
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Figure 2.4: The vehicle begins at x0 = [0.0, 0.0, π/4, 0.0]T and seeks to navigate to
[6.5, 6.5, π/4, 0.0]T . Only the first ten runs at each tolerance are pictured. Red Xs mark
locations where a run terminated.

that the 0m maneuver is cost-optimal for the first maneuver, but would force the vehicle

to path through Scylla on its next maneuver. The future collision probability calculation

detects this, so the planner elects to divert right so that it can path completely around Scylla

with its next maneuver. Increasing the risk tolerance to 10% means a passage through

Scylla is acceptable. In 1000 runs, there are 93 deaths for a 9.3% destruction rate. Fi-

nally, if the planner is permitted a 50% risk tolerance, passing straight through Charybdis

is allowed. Forty percent of the runs are destroyed as soon as they enter Charybdis’ reach,

consistent with Charybdis’ 40% probability of kill.

2.4 Discussion

These computational results demonstrate the utility of the Koopman based maneuvers ap-

proach in terms of sample efficiency. On the tested problems, the Koopman approach was

more accurate with fewer samples than not merely "fair" Monte Carlo, but also Monte Carlo
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using a uniform proposal distribution. This proposal distribution is chosen because it results

in the same weighted sample behavior Koopman exploits. In fact, the samples/weights used

by the Koopman operator are possible, though naturally highly improbable, under uniform

importance sampling. An additional example showcases the flexibility of the Koopman ap-

proach by studying a scenario with purely environmental uncertainty. However, the planner

used for these problems is extremely simple and so addressing more interesting problems

will require a more sophisticated algorithm. Developing an efficient such algorithm is the

focus of the remainder of this thesis.
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Procedure 1 AO*(root)
1: Q← {}; insert root into Q with priority 0
2: while not complete(root) and Q is not empty do
3: N← pop lowest priority from Q s.t. N is on current best path
4: if N is OR then
5: for all ACTION in ACTIONS(N) do
6: H←heuristic(ACTION)
7: cost_to_go(ACTION)←H
8: insert ACTION into Q with priority H+cost_to_come(N)
9: else

10: for all CHILD in CHILDREN(N) do
11: H←heuristic(CHILD)
12: cost_to_go(CHILD)←H
13: if CHILD in goal region then
14: complete(CHILD)← TRUE
15: else
16: insert CHILD into Q with priority H+cost_to_come(CHILD)
17: U_Q←{N}
18: while U_Q is not empty do
19: N←pop from U_Q
20: if N is OR then
21: A’← argminA∈ACTIONS(N)cost_to_go(A)
22: best_action(N)←A’
23: cost_to_go(N)←cost_to_go(A’)
24: if all CHILDREN(N,A’) are complete then
25: complete(N)←True
26: else
27: cost_to_go(N)←

∑
C∈CHILDREN(N) P (N,C)[action_cost(N,C) +

cost_to_go(C)]
28: for all P in PARENTS(N) do
29: if N in CHILDREN(P,best_action(P)) then
30: append P to U_Q
31: return root
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Procedure 2 choose(past_cp, xobs, tobs, x0, t0)
1: Π← set of maneuvers compatible with x0
2: cp← {evaluate(past_cp, π, xobs, tobs, x0, t0) : π ∈ Π}
3: safe_maneuvers← {Π[i] : cp[i] < r }
4: if safe_maneuvers is empty then
5: safest_maneuver_id← argmin cp
6: best_maneuver← Π[safest_maneuver_id]
7: best_cp← cp[safest_maneuver_id]
8: else
9: costs← {

∑n
j=1 P (sj)J(Hπ(x0, t0, sj))∆s : π ∈ safe_maneuvers}

10: bmi← argmin costs
11: best_maneuver← safe_maneuvers[bmi]
12: best_cp← cp[index of best_maneuver in Π]
13: return best_cp, best_maneuver

Procedure 3 evaluate(past_cp, π, xobs, tobs, x0, t0)

1: cp← 1−
∏

i(1−
∑n

j=1 P (sj)Ci(Hπ(x0, t0, sj))∆s)
2: total_cp← 1− (1− past_cp) ∗ (1− cp)
3: xe ← ḡπ ◦ x0 + ȳπ
4: te ← t0 + τ̄π
5: if xe is a goal or xe /∈horizon(xobs) then
6: return total_cp
7: else
8: cp,_←choose(total_cp,xobs, tobs, xe, te)
9: return cp
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CHAPTER 3

OPTIMAL SEARCH ALGORITHMS

In chapter 2 the problem of obtaining a policy for a chance constrained path planning prob-

lem was linked to And/Or graph search. This chapter describes an existing algorithm for

conducting this search, known as RAO*. RAO* is found to handle problems with large

numbers of maneuvers poorly, so an action heuristic that leverages the properties of motion

primitives is devised. The search is further accelerated by converting the tree structure to a

graph (by rapidly detecting states that are close to each other), by using reduced numbers

of Koopman samples at higher search depth, and by exploiting shared symmetry in con-

straints and dynamics (when available). A much larger library of maneuvers for the Dubins

Car model from section 2.3 is presented and numerical results show AO* dramatically out-

performing RAO* on problems involving this library. For further evidence, a maneuver

library for the F-16 model in JSBSim [96] is introduced and RAO* is compared to AO* on

an F-16 task too.

3.1 Algorithmic Contributions

3.1.1 Induced Heuristic for AO*

RAO* is an informed forward search algorithm on AND/OR graphs developed for find-

ing partial policies for CC-POMDPs, first published in [55]. The primary advantage RAO*

offers over the generic "path-planning AO*" described in Procedure 1 is that it can enforce

chance-constraints. As emphasized previously, though, in conventional AO*, AND and

OR nodes are BOTH placed in the priority queue and are expanded in whatever order their

heuristic values indicate. When dealing with a state-space model where AND nodes are

actions, though, AND nodes effectively have the same heuristic value as their parent OR
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nodes. As a result, in RAO*, the algorithm expands a single OR node based on the or-

der maintained in a priority queue, then immediately expands all AND nodes descending

from the expanded OR node. This leads to the same order of expansions that "proper" AO*

would perform. A heuristic function that can distinguish between AND nodes, however, of-

fers potential performance improvements (the simulation results in section 3.2 demonstrate

an order of magnitude improvement in runtime). Uncertain motion primitives provide a

way to construct an "induced" heuristic for AND nodes from a generic heuristic function

defined on points in the state space:

h(ni) =
n∑

j=1

P (sj)∆s(action_cost(ni, nj) + cost_to_go(nj)) (3.1)

where h(ni) is the expected cost to go from AND node ni, action_cost(ni, nj) is the cost

to travel from the state at ni (which is the state corresponding to the OR node parent of

ni) to the state at OR node nj by following the action corresponding to node ni, and

cost_to_go(nj) is the estimated cost to go from OR node nj . The state space represen-

tation of nj is obtained via the group displacement history recorded for the realization:

state(nj) = gπi
(tf − t0, sj) ◦ state(ni). If nj is a goal, cost_to_go(nj) is assigned the

value of the penalty function (if any); if it is not a goal and has not yet been expanded,

cost_to_go(nj) is initialized with the problem specific heuristic evaluated at the state cor-

responding to nj . If state merging is active, nj may be an existing OR node; cost_to_go(nj)

would then have a value that was computed by a previous policy update (see Procedure 4,

line 26).

With the induced heuristic in equation (Equation 3.1) available, AND nodes can be

added to the priority queue as in AO* and the children of an expanded OR node will not

necessarily be immediately expanded. The algorithm, given in Procedure 4, is a straight-

forward modification of RAO* to use a proper AO*-like expansion order instead of the

special case of OR node followed by all child AND nodes.

Starting with the root node (an OR node), nodes are expanded in a best-first order. The
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current best node is the node with the lowest cost to come plus estimated cost to go, chosen

from nodes that are reachable from the root by following actions that are currently marked

as the best action. Once the next node has been selected, it is expanded.

An OR node has all its AND children generated, and these AND children have their

induced heuristic computed per equation (Equation 3.1). The AND children are initialized

with 0 risk of constraint violation and placed into the queue; the priority is the cost to come

to the parent OR node along the current best path plus the induced heuristic of the action.

An AND node has its OR children generated and their estimated cost to go is as de-

scribed for equation (Equation 3.1): if the OR node already exists, it has an estimate from

a previous policy update. If the OR node is in the goal region, the cost to go is the value of

the penalty function. Otherwise, it is the value of the problem heuristic. AND expansions

are where collision checking occurs; if a constraint is violated on the path to an OR child,

the risk of that OR child is set to 1 and the node is ALSO marked complete. Non goal

children with 0 risk are then inserted into the queue.

Expansion is followed by the RAO* policy update, presented here with the simplifica-

tions that result from restriction to full observability and the use of motion primitives to

represent actions. This is a backpropagating process (as discussed in [54], it is in fact a

very simple dynamic programming algorithm). Beginning with the node N just removed

from the queue, the expected cost to go to the goal is updated based on the children of N .

If N is an OR node, the best action at the node is the action with lowest cost to go

(obtained either from the induced heuristic or a previous policy update) that also satisfies

the risk tolerance. For completeness, if no such action is available the algorithm sets the

best action to the lowest risk action. The cost to go from the OR node is then the cost to

go through this best action, and the risk is similarly the risk through the best action. The

termination condition for AO* is that the root node is marked complete; this is tracked by

marking an OR node complete when all OR children of its best action have been marked

complete.
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If N is an AND node, the cost to go is computed as the expected value of the transition

cost to each child plus the cost to go at the child; this is yet another application of equation

(Equation 3.1). In a similar fashion, the Koopman operator may be used to estimate the

risk of constraint violation as the expected value of the risk at the child OR nodes. AND

nodes do not need to track completion and their outgoing edges are always all part of the

best path.

The policy update loop continues by collecting all the nodes which have edges leading

into N . Of the parents, nodes whose currently-marked best path lead to N are placed in a

first-in-first-out queue. The first entry in the queue is removed and updated as previously

discussed; this loop continues until the queue is empty (which happens when the root node

is updated). To minimize redundant calculations, if a node is added to this queue when it

is already present, the node is not replicated but is pushed to the end of the queue. This

repetition cannot happen if the search graph is a tree, but state merging (subsection 3.1.2)

results in a graph where this can occur.

Once the policy update has finished, the algorithm checks if the root node was marked

complete by the update step or if the priority queue is empty. In the first situation, an

optimal partial policy is recorded as the best action markings in the current tree descending

from the root. In the second situation, no assignment of maneuvers leads to the goal without

violating the risk tolerance and so no solution is returned.

A visualization of the algorithm is provided in steps 1-6 of Figure 3.1. In step 1, the

queue contains only the start state A. The start state is selected to be OR expanded. In

step 2, the two actions at A have been added to the queue; the dotted lines show that the

connections have not been checked for collision and the hollow circles denote that the child

states have not been added to the graph. The queue contains only the actions A1 and A2. In

step 3, action A1 is selected to be expanded, resulting in two new OR nodes B and C after

checking their connections for collision. The queue now contains action A2 and states B,C.

In step 4, state C is OR expanded. There are now three actions A2,C1,C2 and a single state
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B in the OR queue. In step 5, B is OR expanded, leaving a queue containing only actions

A2,C1,C2,B1,B2. In step 6 action B2 is expanded. This process would continue until the

root node is marked complete per the rules of the policy update step.

1. 2. 3.

4. 5. 6.

Figure 3.1: Visualization of AO* with the induced heuristic. OR nodes are labeled with
letters; AND nodes have the letter of the parent OR node followed by a number. A shaded

OR node has had the path to it fully collision checked. In step 1, the OR queue is
initialized with the root node (A). In step 2, A is OR expanded. In step 3, A’s action 1 is
AND expanded. In step 4, C is OR expanded. In step 5, B is OR expanded. In step 6, B

has action 2 AND expanded.

Contrast this with what would happen if RAO* were used. Figure 3.2 shows RAO*

search. In step 2, RAO* has already collision checked the paths to D and E; AO* never

checks those paths for collision.

Compared to RAO*, AO* with the induced heuristic reduces the total number of trajec-

tories that need to be checked for constraint violations (by reducing AND expansions), at

the cost of increased overhead in the form of the induced heuristic and (potentially) addi-

tional OR expansions. The major cost of both of these forms of overhead is in computing

the exit state of a maneuver. Thus, the induced heuristic technique is particularly well-

suited to motion primitive problems, where the exit state can be computed without needing

to compute the entire trajectory. If it were necessary to integrate the dynamics every time
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1. 2. 3.

Figure 3.2: Visualization of the RAO* algorithm. OR nodes are labeled with letters; AND
nodes have the letter of the parent OR node followed by a number. A shaded OR node has
had the path to it fully collision checked. In step 1, the queue is initialized with the root
node (A). In step 2, A has been OR expanded and had all its actions AND expanded. In
step 3, B has been OR expanded and had all its actions AND expanded.

a new exit state were desired, computing the exit state would not be much cheaper than

performing the constraint violation check. Similarly, if checking for constraint violations

can be performed quickly (such as through the use of the presorting technique described in

Figure 3.4), the benefit of the induced heuristic is reduced.

The ability of the induced heuristic to actually save collision checks compared to RAO*

depends on the characteristics of the maneuver library. In the extreme case, a library con-

taining only one maneuver at every state would offer no room for improvement on RAO*’s

performance. Under strong assumptions about the accuracy of the problem heuristic, how-

ever, AO* with the induced heuristic is guaranteed to outperform RAO*:

Theorem 1 (Efficiency with perfect heuristic) If the problem’s heuristic function always

returns the true cost to go from a state, AO* and RAO* both expand only OR nodes on the

true best path. With the induced heuristic, AO* expands only AND nodes on the true best

path, while RAO* expands all AND children of best path OR nodes.

Proof: With a perfect heuristic, RAO* always selects OR nodes from the best path

for expansion. RAO* will necessarily expand all AND children of the expanded OR nodes.

AO* will also only select best-path OR nodes for expansion.

However, the induced heuristic is constructed as the expected value of the problem

heuristic. For a perfect problem heuristic the induced heuristic returns the correct expected
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cost to go for a particular action. Thus, AO* with the induced heuristic will only expand

the best action at each OR node.

Simulation results in section 3.2 show that, in practice, the induced heuristic allows AO* to

conduct fewer AND expansions than RAO* and that this results in (significantly) reduced

runtime.

3.1.2 State Merging

Several modifications can be made to R/AO* to improve computational performance. The

most basic modification is to conduct the search on an AND/OR graph instead of an

AND/OR tree. The basic expand step does not consider the possibility of there being

multiple paths to a given state. Every child is assumed to be a unique state. However, both

RAO* and AO* are perfectly capable of handling a search hypergraph that is not a tree (as

long as there are no cycles). Failing to combine states that are actually the same results in

redundant expand and update calls.

State redundancy in the search process is not caused by a flaw in the search algorithms

themselves; rather, using motion primitives to construct the states lacks an inherent notion

of two states being the "same." The solution is to define a discretization interval in each

state dimension and record a unique identity for each state generated during the search.

When a state is generated, modular arithmetic can be used to determine if it falls within

the same hyper-rectangle as an existing state; if it does, instead of adding a new state, the

existing state is reused in the search algorithm. This eliminates the need to compute and

store an actual state discretization in memory, or to compute discretized state displacements

for every realization. The result is a decomposition of the state space into cells as shown in

Figure 3.3, but each occupied cell is associated with a continuous state that can be located

anywhere inside the cell. This is the approach taken by Hybrid A* [97]. Naturally, using

a coarser discretization reduces the size of the hypergraph and reduces algorithm runtime.

This is at the expense of accuracy as non-identical states get treated as identical.
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Figure 3.3: Schematic view of cell-based state merging. Two maneuvers (red and blue)
are shown; each maneuver has three realizations. Observe that the location states that are
merged need not be in the center of the cell.

3.1.3 Decaying Accuracy

The second algorithm modification, decaying accuracy, is applicable in online planning

scenarios. Online execution places stringent performance demands on planning algorithms

but offers a critical advantage over offline planning: the ability to change the plan based

on new information. The far-future components of a plan may never actually be executed;

instead, a new plan will be formed and followed. Yet, the number of OR nodes that must be

examined by the planner is between
∑

i

∏
j≤i nj (examine only nodes on the best path) and∑

i

∏
j≤imjnj (examine every node), for mj the number of maneuvers available at a state

at depth j and nj the number of samples at depth j. Both sums are dominated by nodes
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at high depth, yet the vehicle will not actually execute the portion of the plan made in this

region.

Significant runtime savings can be achieved by using fewer parameter samples when

j is large. This reduced sampling resolution means that the risk of collision with distant

obstacles will be computed with less accuracy; the accuracy of the cost estimate will also

be reduced. The argument for this technique is that neither of these effects is likely to create

major changes in the actions that should be taken in the near future, and by the time the

obstacles are no longer distant a new plan will be computed with higher resolution in the

regions those obstacles occupy. Varying the level of detail used in the planning algorithm

based on the search depth is inspired by the approach taken in [58], where after a user-

specified time horizon the planner stops checking for collisions between the vehicle and

certain hard-to-predict obstacles.

3.1.4 Presorting Realizations

The third algorithm modification applies in the specific case of planar inequality con-

straints. Planar inequality constraints are an important class of path planning constraints

representing objects like the ground and impassable walls. Other types of common planar

inequality constraints include structural or heating limits that cannot be exceeded. Planar

inequality constraints are also closely related to convex polytope obstacles, which can be

represented as conjunctions or disjunctions of planar inequalities. Planar inequality con-

straints can possess symmetry properties similar to those necessary for motion primitive

planning, offering an opportunity to accelerate collision checking when the relevant sym-

metry groups are related.

Consider a plane with normal vector n̂ passing through point p⃗. If the state x⃗ (which

may be a partial state if the plane only occupies a subset of the dimensions of the state

space) is required to stay on one side of the plane, the constraint can be written as ⟨n̂, x⃗ −
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p⃗⟩ ≥ 0 (inner product). With the introduction of a slack variable l, the inequality becomes:

⟨n̂, x⃗− p⃗⟩ = l (3.2)

l ≥ 0 (3.3)

For a trajectory, l is of course a function of time.

Theorem 2 Let Gp be a Lie group to which the dynamics are invariant. If ∀g ∈ Gp, ⟨n̂, g ◦

x⃗− p⃗⟩ = ⟨n̂, x⃗−g−1◦ p⃗⟩, the time in a trajectory at which l is smallest will be unchanged by

a group action. If this point is determined once, the minimum slack of any trajectory offset

from the original by a group action can be computed by a group action. Furthermore, the

ordering of system trajectories by their maximum decrease in slack is itself invariant to the

action of Gp.

Proof: Considering only cyclic coordinates, for a particular maneuver realization

beginning at initial condition x⃗0, the trajectory is given by Hπ(t, t0, x⃗0, sj) and the slack

can be computed as:

l0(t) = ⟨n̂, Hπ(t, t0, x⃗0, sj)− p⃗⟩ (3.4)

= ⟨n̂, Hπ(t, t0x⃗0, sj)⟩ − ⟨n̂, p⃗⟩ (3.5)

If the initial condition is changed to g ◦ x⃗0, then by group invariance the slack becomes:

lg(t) = ⟨n̂, g ◦Hπ(t, t0, x⃗0, sj)− p⃗⟩ (3.6)

= ⟨n̂, Hπ(t, t0, x⃗0, sj)− g−1 ◦ p⃗⟩ (3.7)

= ⟨n̂, Hπ(t, t0, x⃗0, sj)⟩ − ⟨n̂, g−1 ◦ p⃗⟩ (3.8)

= l0(t) + ⟨n̂, p⃗⟩ − ⟨n̂, g−1 ◦ p⃗⟩ (3.9)

= l0(t) + ⟨n̂, p⃗− g−1 ◦ p⃗⟩ (3.10)
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Thus, the group action causes a constant offset in the slack. Then, the t which minimizes lg

is the same as the t that minimizes l0. Additionally, it means that the change in slack over

the course of a realization is constant under group action. The ordering of realizations by

their maximum decrease in slack is thus invariant to the group action.

Using these properties, most of the computational effort of checking a maneuver realization

against a planar inequality can be done offline. To illustrate this, consider Figure 3.4. For

a particular inequality constraint, such as a line parallel to the one making up the diagonal

side of the triangle in Figure 3.4, the maximum decrease in slack is computed for every

realization of every maneuver in the library and the realizations are sorted by this value

(the decrease is invariant to group action, so it can be computed from an arbitrary initial

condition). When the inequality needs to be checked, a binary search is done comparing the

decrease in slack to the slack at the state the maneuver is to be executed from. The binary

search returns the realization with the smallest decrease in slack that causes it to violate the

constraint. All realizations whose slack decreases more than the result of the binary search

also violate the constraint, while all realizations whose slack decreases less than the result

are guaranteed not to violate it. Not only does this avoid checking every realization for

constraint violation, but it also simplifies the process since each realization that is checked

requires comparison of a single value instead of comparisons at (presumably numerous)

timesteps along the realization.

In practice, Gp will only be a subgroup of G. For example, dynamics are often invariant

to both translation and rotation, but a planar inequality will only be invariant to translations.

Dimensions of G that are not included in Gp will need to be sampled and a separate offline

sort done for each sample. This discretization creates the opportunity for error in collision

checking if the discretization is too coarse. Consider a 2D planar state with heading. Planar

inequalities in this domain are lines that should not be crossed (as in Figure 3.4). Shifting

the initial position in the plane is invariant as discussed, but rotating the initial heading is

not. A different sort order holds for every possible angle between the heading and the line.
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If a line with a relative angle not in the sort needs to be checked, the nearest matching angle

can be used, but this will be slightly inaccurate; some realizations may appear safe while

not actually being safe, or vice-versa.

The ability to rapidly check planar inequalities can be used to accelerate checking con-

vex polytopes too, since such obstacles are AND (stay outside) or OR (stay inside) combi-

nations of planar inequalities. In the case of requiring that the vehicle stay outside a convex

polytope, it is only possible to prove the constraint is not violated (by showing that the real-

ization stays outside at least one member plane). Proving violation would require showing

that all planes are violated at the same time instant, but the sorting-based planar inequality

check described here does not include any tracking of the time of closest approach for the

slack variable(s). Normal time-sliced collision checking must be conducted if the sorting-

based check indicates a collision could occur. Computational effort is still saved, though,

in situations where the sorting check proves a collision cannot occur. In Figure 3.4, realiza-

tions A and B are proven safe and do not need further checking, but C and D would need

to be checked to confirm that they actually enter the triangle.

Figure 3.4: Obstacle region in blue and four realizations of a maneuver. Realization A
is known from presorting to have the largest slack versus a line parallel to the black edge
(while D has the least slack). Once it is known that realization C is unsafe while B is safe,
realizations A and D do not need to be checked.
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3.2 Algorithm Efficiency

To demonstrate the effectiveness of the induced heuristic and to study the effects of the

three algorithm modifications, two dynamical systems are considered in several obstacle

environments. The first system is identical to the Dubins Car from section 2.3, though

a larger maneuver library and different tasks are considered. The second system is a 6-

degree-of-freedom autonomous aircraft and is chosen to demonstrate the scalability of the

maneuver-based planning approach to more complex systems. In particular, attention is

drawn to the fact that planning difficulty is only loosely related to the complexity of the

dynamics, as the equations of motion are not directly involved in planning.

All calculations were done using a 6 core Intel® Xeon® CPU E5-1650 v2 @ 3.50GHz,

though no parallelism was leveraged internal to any planner. The planners were imple-

mented in Python 3.6 using shared code to ensure comparable implementations. The

numpy 1.17.4 library with OpenBLAS (not Intel’s MKL) was used and, where possible,

accelerated by numba 0.46. In particular, the group action, the L2 norm, and the goal test

function were numba-compiled. Code is available on request.

3.2.1 Dubins Car Examples

Return to the Dubins Car model of (Equation 2.7). An expanded maneuver library is con-

sidered, with direct collocation [95] used to generate 51 maneuvers at each of 11 trim

conditions at evenly-spaced initial angular velocities in the interval [−.24,+.24] rad/s. The

uncertainty space is discretized using 7 points in each dimension, spanning ±3 standard

deviations. For each maneuver, the "nominal" realization (with wx = wy = 0) has ap-

proximately zero angular velocity at the end of the realization, and all other realizations

(with different values of wx and wy) have angular velocities at the end of the realization

that are contained within the ±0.24 rad/s interval. This results in a closed library without

resorting to the recovery maneuvers needed in section 2.3. The nominal trajectories of the
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Figure 3.5: Nominal trajectories for the Dubins Car maneuver library, shown for the zero
angular velocity trim.

zero angular velocity trim are shown in Figure 3.5.

Two planning tasks are considered. The first planning task, similar to the Path Through

Gap task considered earlier, asks for the vehicle to travel from the state [0.1, 3.0, 0.0, 0.0]T

to within 0.2 meters of the position (x, y) = (4.5, 3.0) m or to get farther than 4.5 m

downrange. It must do this while colliding with the walls in the environment no more than

20% of the time (r = 0.2), and should seek to minimize travel distance. The environment

for this planning task is depicted in Figure 3.6. All the obstacles in this environment are

convex polygons, and so presorting can be applied to accelerate collision checking. The

R× R× S1 × R state space is discretized using 0.05 m × 0.05 m × 0.05 rad × 0.05 rad/s

cubes for state merging, and decaying accuracy is not employed.

The second planning task is designed to require deeper search. The initial condition and

wall are unchanged from the first planning task, but the goal is moved to (x, y) = (7.0, 3.0)

m and another vertical wall (with a gap) is added at the x = 4 m position, with the gap at

a y = 2.5 m. In addition to the fixed resolution planners, AO* is run with presorting and a

43



Figure 3.6: Environment for the first planning task with nominal realization of the proba-
bilistically optimal solution shown.

decreasing number of samples: 81 at depth 1, 49 at depth 2, and 25 subsequently.

Figure 3.6 shows the nominal realization of the optimal path for the first planning task

(both algorithms find the same solution). Furthermore, Figs. Figure 3.8 and Figure 3.9

show all the maneuver realizations checked for collision by AO* and RAO*, respectively,

during the search process. In Figure 3.8, it can be seen that the search is highly focused,

with little effort expended on suboptimal maneuvers. This is in contrast to the results

in Figure 3.9, which show that RAO* has to consider every action at states chosen for

expansion. This results in effort spent on maneuvers that do not even travel towards the

goal.

Metrics describing the planning performance of RAO* and AO* (with and without pre-

sorting) are presented in Table 3.1 for both Car tasks and the F16 task. PAO* is AO* with

the induced heuristic and presorting, and PRAO* is the RAO* algorithm with presorting.

The Nodes column shows the number of OR nodes in the explicit AND/OR graph at the

end of the search. OR and AND are, respectively, the number of OR expansions and AND
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Figure 3.7: Environment for the second planning task, with a second vertical wall added to
the first environment.

Figure 3.8: Realizations Collision-Checked by AO* Algorithm for First Planning Task.
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Figure 3.9: Realizations Collision-Checked by RAO* Algorithm for First Planning Task.

expansions. Checks reports the number of edges checked for collisions.

As seen in Table 3.1, the induced heuristic makes AO* dramatically faster than RAO*

for all example tasks by reducing the number of AND expansions. Because the speed up

comes by reducing the number of AND expansions, presorting is much less helpful for AO*

than it is for RAO*. The effect of presorting is to make some AND expansions cheap (since

the primary cost of an AND expansion is the collision check), but AO* spends a smaller

fraction of its runtime doing AND expansions. There is simply less room for presorting

to help. The effect is particularly stark in the first Car task, where presorting reduces the

RAO* runtime by a factor of nearly 15 while having a negligible effect on the AO* runtime.

However, presorting is available only if obstacles are convex polytopes, while the induced

heuristic is defined for any scenario.

The Task 2 Decaying Accuracy row in Table 3.1 presents the results for AO* (with

presorting) using decaying accuracy with 81 samples for the first maneuver, 49 samples

for the second, and 25 for subsequent maneuvers for the second planning task. This is in

contrast to the non-decaying algorithms, which use 49 samples at all depths. Decaying
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Table 3.1: Planning Statistics for Each Example.

Runtime (s) Nodes Merged OR AND Checks
Car

Task 1
RAO* 129 35,354 27,122 25 1,275 62,475

PRAO* 8.88 35,352 27,124 25 1,275 1,077
AO* 6.41 1,381 41 25 29 1,421
PAO* 5.13 1,381 41 25 29 200
Task 2
RAO* 8,030 3,827,484 1,635,331 2,186 111,486 5,462,814

PRAO* 1,580 3,826,783 1,636,032 2,186 111,486 84,266
AO* 1,130 90,866 194,707 2,132 5,828 285,572
PAO* 857 90,866 194,707 2,132 5,828 43,577

Decaying 209 33,750 14,459 1,632 1,632 48,208
F16

Task 1
RAO* 43.3 60,342 4,999 60 540 65,340

PRAO* 11.8 61,377 5,053 61 549 10,110
AO* 21.3 24,094 833 206 206 24,926
PAO* 12.9 24,094 833 206 206 5,377

Decaying 11.0 10,792 618 185 185 11,409

accuracy AO* returns the same best action as regular AO*, but the estimated risk increases

from 12.5% to 18.3% and the estimated cost decreases from 7.3 m to 5.6 m.

These estimates were validated by simulating a closed loop planning process. The plan-

ner was executed to select the maneuver for the current state, then the controller for that

maneuver was executed. A pseudo-random number generator produced the actual value of

the wind parameters. Then, the planner was run again at the new location. This continued

until the goal was reached. This process was conducted 100 times with the fixed and decay-

ing accuracy AO* planners. The fixed accuracy planner experienced 17 collisions (slightly

off from the predicted risk of 12.5%), while the decaying accuracy planner resulted in 18

collisions (closely matching the predicted risk of 18.3%). By using higher resolution sam-

pling for the next maneuver taken (81 samples vs 49 for the fixed accuracy), the decaying

accuracy planner produced a more accurate risk estimate than the fixed accuracy planner

could while requiring less total computation.
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It is important to note that in the second Car task, AO* and RAO* actually produce

different optimal solutions to the problem (despite their theoretical equivalence). This is

because state merging as described in subsection 3.1.2 means that the actual graph searched

depends on the order of AND expansions. If two nodes are close enough to be merged, the

state that will be used after merging to represent both nodes depends on which of the nodes

was encountered first. Since AO* and RAO* do not in general perform expansions in

the same order, they may search slightly different graphs when merging is active. In Car

task 2, this effect is enough that RAO* and AO* select different actions at the root node.

Similarly, note that RAO* and PRAO* exhibit slightly different merging behavior due to

the finite accuracy of presorting. This results in the different number of merged nodes in

Table 3.1.

3.2.2 F-16 Example

The second example studies a system that is higher-dimensional and is designed to illus-

trate application of the induced heuristic to a practical system. For the purposes of this

work, the F-16 simulation model implemented in JSBSim is used [96]. This model is a

nonlinear 6Degrees of Freedom (DOF) flight dynamic model consisting of six kinematic

states (three for position, three for orientation) and six dynamic states (three body-frame

velocity components, three body-frame angular velocity components). The control vector

for this system is defined through the four aircraft control inputs: aileron, rudder, elevator,

and thrust. Note that the 6DOF dynamics are invariant to rotation and horizontal transla-

tions, although a standard atmosphere model is employed which means that atmospheric

pressure depends on altitude and thus the dynamics are not invariant to vertical transla-

tion. A motion primitive framework treating kinematic states x, y, and heading as cyclic

coordinates is appropriate, with Lie Group SE{2}.

The maneuver library for the F-16 is created using a closed-loop PID controller that

tracks time-based reference trajectories for altitude, pitch angle, roll angle, yaw angle, and
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speed. The library is created with nine kinds of maneuvers: change yaw rate to -2.9 deg/s,

change yaw rate to 0, change yaw rate to 2.9 deg/s, change pitch to -45 deg, change pitch to

0, change pitch to 45 deg, change speed to 200 m/s, change speed to 250 m/s, and change

speed to 300 m/s. Each maneuver is created starting from each of ten trim conditions that

together cover the pitch angles, yaw rates, and speeds that the F-16 can reach using the

available maneuvers. For example, the "change yaw rate to 2.9 deg/s" is created at ten

different trim conditions, each of which results from executing one of the other maneuvers

in the library. Therefore, the library contains a total of 90 maneuvers. Figure 3.10 shows a

visualization of all the maneuvers, where the different initial conditions for each maneuver

are the ten trim conditions.

To model uncertainty in the execution of each primitive, a set of realizations for each

maneuver is created by adding a constant perturbation to the controller’s pitch and yaw ref-

erence trajectories. These pitch and yaw perturbations are i.i.d. Gaussian random variables

with zero mean and standard deviation of 0.11 deg. In creating the uncertain realizations

for each maneuver, the uncertainty domain is sampled to ±5 standard deviations using 11

samples each for the pitch and yaw dimensions (121 samples). This type of uncertainty

in the realization of each maneuver may represent perturbed performance in execution of

the maneuver caused by winds, aerodynamic trims, and control biases that cannot be elim-

inated through closed-loop control.

The planning task for the F-16 involves traveling 5 km downrange in minimum time

while avoiding two altitude bands: 1,200m-1,375m from 3 km downrange and 1,800m-

2,200m from 2 km downrange. The risk tolerance is 10% (r = 0.1). The vehicle starts

at an altitude of 2,000m, necessitating a dive or climb to avoid the prohibited bands. The

initial forward speed is 250 m/s. The heuristic estimate used is the x−y distance to the goal,

divided by 320 m/s. This speed is chosen to be larger than any speed the vehicle will achieve

using the available maneuvers, and so the heuristic is guaranteed to be an underestimate of

the true time-to-goal. A state space discretization with 5 meters, 1 m/s, 0.01 rad, and 0.01
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Figure 3.10: Nominal trajectories for F-16 maneuver library.

rad/s resolution is used for the position, velocity, orientation, and angular velocity states,

respectively. Planning is conducted using both RAO* and AO* with and without presorting.

In addition, non-presorted AO* is employed with 121, 81, then 49 samples at subsequent

maneuver steps. A side view of the environment is provided in Figure 3.11, along with the

nominal realization of the optimal maneuver sequence produced by AO*.

Results for the five planners are presented in Table Table 3.1. The results are broadly

similar to the Dubins Car tasks – AO* does fewer AND expansions than RAO* and is

thus faster. However, in this case one of the limitations of AO* is evident. For a given

planning task it can perform (many) more OR expansions than RAO*. If OR expansions are

sufficiently faster than AND expansions, AO* is still faster than RAO*. On this particular

task, though, the presorted version of RAO* is actually slightly faster than the presorted

version of AO*. Since collision checking is a bigger fraction of the total runtime of RAO*,

presorting helps it more than it helps AO*. Of course, the induced heuristic is always

available, while presorting can only be used if the obstacles are convex polytopes.

The Decaying Accuracy row reports the behavior of the AO* planner (without presort)
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Figure 3.11: Side view of the environment for the F-16, with nominal realization of AO*’s
solution.

when it is allowed to use only 81 samples for the second maneuver and 49 samples for

the third (and subsequent) maneuvers (note that only depth 3 is actually reached during

planning for this particular task). It returns the same initial maneuver (pitch 45 deg down)

as the fixed-resolution planners, but does so with fewer expansions due to the reduced

branching factor. The estimated cost-to-go and risk do differ from the values computed

with the fixed resolution AO* variant – with fixed resolution the risk is estimated at 5.5%

and the cost at 20.085 sec, while with decaying accuracy the estimates are 8.4% and 20.102

sec.

As with the Dubins Car task, a closed loop planning process was run 100 times with

both decaying and fixed accuracy AO* planners. Under the fixed accuracy planner there

were 4 collisions, while the decaying accuracy planner experienced only 3. Both planners

were able to achieve the required level of safety (<10 collisions out of 100 trials).
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3.3 Discussion

The induced heuristic devised in subsection 3.1.1 generally provides dramatic speed-ups

over pure RAO*. Its sole shortcoming appears to be an increase in the necessary number

of OR expansions, which in cases of very cheap collision checking can result in slight

increases in runtime. Very cheap collision checking makes a setting "easy," though, so this

seems a small price to pay. More concerning is that, even with decaying accuracy reducing

the number of samples used for deep search, problems with a long planning horizon still

require large amounts of planning time. This is the so-called "curse of dimensionality"

in action; note that the worst-case complexity of R/AO* is O(mdnd) for m the number

of actions, n the number of Koopman samples, and d the search depth. The next two

chapters discuss techniques (sparse integration and Monte Carlo Tree Search, respectively)

that attempt to mitigate this problem.
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Procedure 4 AO*(root)
1: Q← {}; insert root into Q with priority 0
2: while not complete(root) and Q is not empty do
3: N← pop lowest priority from Q s.t. N is on current best path
4: if N is OR then
5: for all ACTION in ACTIONS(N) do
6: H←induced_heuristic(ACTION)
7: cost_to_go(ACTION)←H
8: risk(ACTION)←0
9: insert ACTION into Q with priority H+cost_to_come(N)

10: else
11: for all CHILD in CHILDREN(N) do
12: H←estimate(CHILD)
13: cost_to_go(CHILD)←H
14: risk(CHILD)←collision_check(N,CHILD)
15: if CHILD in goal region or risk(CHILD) is 1 then
16: complete(CHILD)← TRUE
17: else
18: insert CHILD into Q with priority H+cost_to_come(CHILD)
19: U_Q←{N}
20: while U_Q is not empty do
21: N←pop from U_Q
22: if N is OR then
23: A’← argminA∈ACTIONS(N)cost_to_go(A) s.t. risk(A)<risk_tol
24: if A’ is not NULL then
25: best_action(N)←A’
26: cost_to_go(N)←cost_to_go(A’)
27: risk(N)←risk(A’)
28: if all CHILDREN(N,A’) are complete then
29: complete(N)←True
30: else
31: best_action(N)← argminA∈ACTIONS(N)risk(A)
32: cost_to_go(N)←cost_to_go(best_action(N))
33: risk(N)←risk(best_action(N))
34: complete(N)←True
35: else
36: cost_to_go(N)←

∑
C∈CHILDREN(N) P (N,C)[action_cost(N,C) +

cost_to_go(C)]
37: risk(N)←

∑
C∈CHILDREN(N) P (N,C)risk(C)]

38: for all P in PARENTS(N) do
39: if N in CHILDREN(P,best_action(P)) then
40: append P to U_Q
41: return root
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CHAPTER 4

SPARSE INTEGRATION SCHEMES FOR MOTION-PRIMITIVE PATH

PLANNING

The expected value is the key calculation for path planning under uncertainty. The ex-

pected cost or reward of a policy determines if it is a good option or not; chance constraints

(if present) are computed as the expected value of the indicator function for the relevant

constraint.An expected value is computed as an integral over the uncertainty domain; this

is why the dimension of the uncertainty domain contributes to the "curse of dimensional-

ity" in the uncertain setting. This chapter makes the connection between high dimensional

integration and hypergraph search based path planning precise and describes a way to con-

struct an integration scheme (effectively, the placement and weighting of Koopman sample

points) that efficiently computes the high dimensional integrals that arise during hypergraph

search. The mixed integer linear programming approach to constructing such "sparse" in-

tegration schemes is applicable beyond this single use case, so it is compared directly with

an existing approach for constructing equivalent sparse schemes and shown to generate

rules with fewer sample points. The hypergraph specialized rules obtained from MILP are

applied to several Dubins car tasks and shown to provide dramatic speed-ups with minor

reductions in accuracy.
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4.1 Sparse Schemes via Mixed Integer-Linear Programming

Recall the single-query chance constrained planning problem under parametric uncertainty

(Equation 2.6):

argmin
µ∈M

E[J(ρµ(t, t0, x0, s))] s.t. (4.1)

1−
∏
i

(1− E [Ci (ρµ(t, t0, x0, s))]) ≤ r

Restricted to (partial) policies constructed from motion primitives, this can be written

as

argmin
π∈Π

Qπ(x0, π(x0)) s.t. (4.2)

Rπ(x0, π(x0)) ≤ r

In (Equation 4.2), π is a (partial) policy, Π is the set of all (partial) policies, x0 is the

initial state, and r is the risk tolerance. X is the set of states and A the set of actions, so

Qπ : X × A → R is the expected cost to go to the goal if a particular action is taken at

the state and policy π is followed thereafter. Rπ is the risk of constraint violation under the

same circumstances. Let S be a set of unknown parameters on which the state transition

function depends. Both Qπ and Rπ therefore involve expected values and can in fact be
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rewritten as iterated integrals over the uncertainty set S:

Qπ(x, a) = (4.3a)

=

∫
S
P (s1) [c(x, a, s1)

+ Qπ(xπ1 (s1), a
π
1 (s1))] ds1

=

∫
S
P (s1) {c(x, a, s1) (4.3b)

+

∫
S
P (s2) [c(x

π
1 (s1), a

π
1 (s1), s2)

+ Qπ(xπ2 (s1:2), π(x
π
2 (s1:2)))] ds2} ds1

=

∫
Sd

d∏
i=1

P (si)

[
d−1∑
j=0

c(xπj (s1:j), a
π
j (s1:j), sj+1)

+ p(xπd(s1:d))] dsd...ds1

where c(x, a, s) is the cost of executing action a from state x when the uncertain parameter

takes on value s. si is the value the uncertain parameter takes during execution of the

ith action (above we assumed this is drawn independently from the parameter probability

distribution P (s) for each action). xπj is the state after j actions from policy π (and so

depends on the sequence of uncertain parameter values s1:j). Similarly, aπj is the j + 1th

action taken under the policy (depending on s1:j). Finally, d is the maximum number of

actions taken and p(x) is the cost for terminating in state x. The nested integrals can

be pulled all the way to the front because everything outside the kth nested integral is

determined before the kth action is taken (and so does not depend on the kth parameter

value). In particular, in (Equation 4.3b) c(x, a, s1) and P (s1) do not depend on s2 and so

the integral over ds2 can be pulled to the front.
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Similarly, for the risk:

Rπ(x, a)= (4.4)

=

∫
S
P (s1)[C(x, a, s1) +Rπ(xπ1 (s1), a

π
1 (s1))]ds1

=

∫
Sd

d∏
i=1

P (si)
d−1∑
j=0

C(xπj (s1:j), a
π
j (s1:j), sj)dsd...ds1

Here, C(x, a, s) is an indicator function which is 1 if executing action a from state x with

parameter value s results in a constraint violation and 0 otherwise. The summation should

be thought of as ending early if a constraint violation is encountered, so that the sum is

always exactly 0 (if the full trajectory is safe) or 1 (if it is not).

(Equation 4.3a) and (Equation 4.4) show that the expected values necessary to eval-

uate a candidate partial policy can be viewed as high dimensional integrals of the form∫
Sd P (s⃗)f(s⃗)ds⃗, where P (s⃗) is known ahead of time (since it is the joint distribution de-

scribing the sequence of uncertain parameters). Such an integral can be approximated by

choosing sample points in the full product domain and taking an appropriately weighted

sum:

∫
Sd
P (s⃗)f(s⃗)ds⃗ ≈

n∑
i=1

wif(s⃗i) (4.5)

A rule for selecting the sample points s⃗i and assigning the weights wi is called a cubature

rule and the sample points are the cubature nodes or cubature points.

A "dense" cubature rule can be obtained by applying a single-dimensional quadrature

rule individually to the dimensions in the domain, then taking the Cartesian product of the

points as the cubature nodes. The cubature weights would simply be the product of the

quadrature weights. This is sometimes called the "product" or "tensor product" cubature

rule [79]; while it is simple to conceive and implement, it is not an efficient rule. One mea-

sure of the accuracy of a cubature rule is the highest degree of monomials it can exactly
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integrate [81]. From this perspective, the tensor product rule is highly redundant – it can

exactly integrate some, but not all, monomials of higher degree than the univariate rules

from which it was built [72]. Van Den Bos et al. identify this weakness of the tensor prod-

uct rule in [75] and propose a scheme to improve efficiency by effectively removing certain

cubature nodes. The scheme in [75] sets certain weights to 0 and appropriately adjusts

the remaining weights to maintain the ability to exactly integrate all monomials of a spec-

ified degree (while reducing the total number of cubature nodes). However, the approach

is suboptimal in that it does not guarantee that the resulting rule has the minimum possi-

ble number of retained nodes. Obtaining the minimal rule is a non-convex optimization

problem that may be defined as:

min
w⃗
∥w⃗∥0 s.t. (4.6)

Gw⃗ = m⃗

w⃗ ≥ 0

where w⃗ is the vector of weights of the cubature nodes and m⃗ is a vector of the exact inte-

grals of all monomials that should be integrated exactly. G is a special Vandermonde ma-

trix constructed from the locations of the cubature nodes and the desired set of monomials.

Each column of G corresponds to one of the cubature nodes, while each row corresponds

to one of the monomials. The (i, j) entry of G is the ith monomial evaluated at the jth

cubature node. Thus, the dot product of a row of G and w⃗ is the estimate of the integral

of that monomial. This problem is almost a Linear Program, but the objective function

(the 0-norm of the weight vector) is non-convex. The positivity of weights is technically

optional, but cubature rules with positive weights have desirable properties and so this is a

common restriction [98, 80, 75, 82].

Introducing binary indicator variables ai that are 1 if node ni is to be retained (and so
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weight wi ̸= 0) converts the problem into a Mixed Integer-Linear Program (MILP):

min
w⃗,⃗a

∑
i

ai s.t. (4.7)

Gw⃗ = m⃗

w⃗ ≥ 0

ai ≥ wi

ai ∈ {0, 1}

4.2 Technical Considerations

(Equation 4.7) can be used to "sparsify" a generic integration rule while maintaining a

prescribed level of polynomial exactness. However, the use case of chance-constrained

path planning via forward search creates complexities that impose additional requirements

on a sparse integration scheme.

In the planning problem considered here, the state space of the system is restricted to

evolving on an AND/OR hypergraph where OR choices correspond to choosing an action

to take and the AND outcomes are the outcomes of the action for sampled parameter values

of known probability (for additional details, see [99]). A state corresponds to a particular

cubature node based on the sequence of parameter values that led to it, and the child states

for an AND expansion are those whose parameter values are branches of the parent state’s

parameter sequence. Figure 4.1 shows a sample AND/OR search. Lettered vertices are

states (the OR nodes of the graph); vertices with both letters and numbers are the actions

(the AND nodes of the graph) available at the lettered state. The sequence in chevrons

above each state is the sequence of parameter values that led to that state (i.e., the point in

Sd, which specifies the relevant weight in the cubature scheme). Thus, the initial state A is

equivalent to a point in S0, while state H corresponds to a point in S2. If a tensor product

rule were used, the weight for H would be the probability of transitioning from A to B
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under action A1 multiplied by the probability of transitioning from B to H under action B2.

In a sparse rule, the weight may be different.

Forward search is incremental. Therefore, it is necessary to be able to compute values

such as the heuristic estimate of the cost or reward of action A1, which requires integrating

over only its immediate children (i.e., states B and C). This requires a cubature rule over S1.

However, to support a forward search involving up to d actions in sequence, a series of cu-

bature rules are required for S1, S2,...,Sd. To keep track of this, nodes, weights, etc. will be

sub-scripted both with the index of the rule they belong to (i.e. how many times the param-

eter is sampled, which is smaller than the dimension of the rule if S is multi-dimensional)

and their index in that particular rule. The rule for Sd is called the rule at depth d. It is not

enough to simply have a series of rules of appropriate dimension, though. These cubature

rules must have special structure to allow the rules of different dimension to operate to-

gether and to preserve the optimality guarantees of the search algorithm. These structural

requirements (and mechanisms for imposing them as MILP constraints) are described in

the following.

4.2.1 Required Properties of Cubature Rules

The first property required for the series of integration rules derived in this work is that the

higher dimensional rules be "branches" of the lower dimensional rules. This is similar to

the nesting property discussed in the numerical integration literature [100, 66, 75], but it

is not equivalent. Nesting refers to pairs of rules over the same integration domain, and

requires that the rule with more sample points (i.e., the more accurate rule) include all the

sample points of the smaller rule. This is useful for error estimation, as one can compare the

results of the two rules without requiring any additional function evaluations. Branching in-

stead refers to pairs of rules over different integration domains, and requires that the higher

dimensional rule only include points whose truncation is in the lower dimensional rule(s).

Let nd,i = ⟨s1, s2, ..., sd−1, sd⟩ be the ith cubature node in the rule at depth d > 1, where

60



Figure 4.1: ]
And/Or graph with parameter sequences (i.e. which cubature nodes correspond to the

state) showing in chevrons.

sj ∈ S is the parameter setting for that node for action # j. nd,i satisfies branching if and

only if ∃nd−1,k = ⟨s1, s2, ..., sd−1⟩ in the depth d− 1 rule. Then, nd,i is a branch of nd−1,k.

Let nodes(d) be the set of indices for all the cubature nodes in the rule at depth d. Given a

cubature node nd,i, branches(nd,i) = {l ∈ nodes(d+ 1) : nd+1,l is a branch of nd,i}.

As an example, consider a rule at depth 3 and let the uncertain parameter s ∈ S = {1, 2}

(so in this case dimension and depth are equal). The point ⟨1, 1, 2⟩ is only permitted in the

depth 3 rule if the point ⟨1, 1⟩ is included in the depth 2 rule. Including ⟨1, 1⟩ in the depth 2

rule means that the integrand is evaluated for the case where the parameter takes on 1 for the

first action and 1 for the second action. If ⟨1, 1, 2⟩ is included, the integrand will need to be

evaluated for the case where the parameter then takes on the value 2 at depth 3. Requiring

that ⟨1, 1⟩ be included in the depth 2 rule ensures that the distribution of vehicle states

under the current policy after ⟨1, 1⟩ is already available, so that computing the evolution

under ⟨1, 1, 2⟩ requires simulating only one layer of actions (with parameter value 2). If

branching were not required, the depth 3 rule might require a state distribution that can
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only be obtained by going back to the root and recomputing for a whole new sequence of

parameter values. In Figure 4.1, a failure to enforce branching might result in having to

evaluate state H without having evaluated state B. The branching constraint, which requires

that if a branch of node nd,i has non-zero weight so too must nd,i, can be imposed on the

indicator variables:

∀i ∈ nodes(d)∀j ∈ branches(nd,i)ad,i ≥ ad+1,j (4.8)

where am,n is the indicator for node n at depth m.

The second condition that must be enforced is that the sum of the weights of all the

branches of node nd,k must exceed the weight of that node:

wd,k≤
∑

j∈branches(nd,k)

wd+1,j (4.9)

where wd,k is the weight corresponding to node k in the depth d rule. If the heuristic h used

in the search algorithm is consistent (i.e. the heuristic evaluated at state A is never larger

than the heuristic evaluated at a neighboring state B plus the cost to go from A to B), then

∀j ∈branches(nd,k)

g(nd,k) + h(nd,k) ≤ g(nd+1,j) + h(nd+1,j) (4.10)

where g(n) is the cost to come to node n and h(n) is the heuristic evaluated at node n.

Combined, (Equation 4.9) and (Equation 4.10) imply that the contribution of a node to the

total cost is no larger than that of all its branches:

wd,k(g(nd,k) + h(nd,k)) (4.11)

≤
∑

j∈branches(nd,k)

wd+1,j(g(nd+1,j) + h(nd+1,j))
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Thus, since expanding a node during the search is equivalent to replacing the contribution

of a node with the estimated expected value of the contributions of all its children, this will

not decrease the estimated cost:

Ed=
∑

i∈nodes(d)

wd,i(g(nd,i) + h(nd,i)) (4.12)

≤
∑
i ̸=k

wd,i(g(nd,i) + h(nd,i))

+
∑

j∈branches(nd,k)

wd+1,j(g(nd+1,j) + h(nd+1,j))

(Equation 4.12) implies that the final estimate of the cost or risk of a policy is no smaller

than any of the estimates obtained while some paths haven’t been expanded all the way to a

terminal state. Forward search algorithms use this property to eliminate suboptimal policies

without full evaluation: once the current policy is completely evaluated, any policy with a

cost estimate larger than that of the current policy is definitely inferior and can be discarded.

Policy risk estimation can be handled as a cost estimate where the heuristic in use is simply

0; this is consistent (which implies it is also admissible) and thus the previous reasoning

applies. Then, one can simply discard a policy as soon as the risk estimate exceeds the risk

tolerance.

A third requirement must be enforced on the cubature rule for the optimization to ac-

tually return a set of rules with a minimal total number of nodes. A weight’s indicator

variable must only be 1 if the weight is non-zero, since this indicator is used to enforce the

branching constraint. In the single rule case of (Equation 4.7), this is guaranteed simply by

minimizing the sum of the indicator variables. The optimal solution will never include a

non-zero indicator for a zero weight. With multiple rules and constraints imposed that in-

volve weights and indicators belonging to different rules, however, it is possible to choose

to set an indicator to 1 even when the weight is zero. Doing so can "permit" zeroing out

weights (and thus indicators) in other rules, resulting in an overall decrease in the objective.

To prevent this, it is necessary to impose constraints equivalent to ai,j = 0 ⇐⇒ wi,j = 0,
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where ai,j is the indicator for weight j belonging to the rule at depth i. In the context of

mixed-integer linear programming, such a constraint may be approximated as:

ai,j ≤ wi,j + 1− ϵ (4.13)

where ϵ is a small constant. This means the indicator can only be non-zero if the weight

is larger than ϵ and so, in addition to the intended purpose, this constraint also prevents

solutions where any weight is between 0 and ϵ.

Finally, as noted above the weights are required to be positive. While this is common

practice when deriving cubature rules, it is particularly important here as the weights rep-

resent a probability distribution (which is necessarily positive). Moreover, positivity of the

weights ensures that an estimate that uses an admissible heuristic in place of the true cost-

to-go is still an underestimate. This preserves consistency and allows the search algorithm

to perform the pruning behavior described earlier.

4.2.2 Problem Modifications to Improve Numerical Performance

Imposing the conditions of Section subsection 4.2.1 for rules of depth 1, ..., d yields the

following mixed-integer linear program:

min
w⃗i ,⃗ai

∑
1≤i≤d

∑
ai,j∈a⃗i

ai,j s.t. ∀i (4.14)

Giw⃗i = m⃗i

∀j ∈ nodes(i) :
∑

k∈branches(ni,j)

wi+1,k ≥ wi,j

w⃗i ≥ 0

a⃗i ≥ w⃗i

w⃗i + 1− ϵ ≥ a⃗i

∀j ∈ nodes(i)∀k ∈ branches(ni,j) : ai,j ≥ ai+1,k

ai,j ∈ {0, 1}
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where for the rule at depth i w⃗i is the vector of weights, a⃗i is the vector of indicators, Gi

is the Vandermonde matrix, and m⃗i is the vector of exact monomial integrals. This is a

challenging optimization problem for several reasons. First, it involves a very large num-

ber of variables. Suppose a 10 dimension rule with compatible 2-dimensional (2D), 4D,

6D, and 8D rules is desired. This would be a depth 5 set of rules with a 2 dimensional

S. If the initial dense rules are obtained as the Cartesian product of a Gaussian quadrature

rule for degree 13 polynomials (7 points per dimension), the optimization problem involves∑5
i=1 7

2i = 288, 360, 149 weights and the same number of indicators. Second, if the poly-

nomial degree is large the range of values in the G matrices will be very large. This leads

to poor conditioning of the constraint matrix. Third, for high dimensional rules the optimal

weight values will be very small. This results in issues with numerical precision and is

particularly challenging when combined with the need to approximate a strict inequality

with an ϵ tolerance as in Equation 4.13.

The first challenge (the number of variables) can be mitigated by requiring that the in-

tegration scheme exhibit symmetry. As pointed out in [75], the weights in an integration

scheme are generally not unique. Instead, when integrating against some underlying prob-

ability distribution the weights should match the symmetries of the distribution. Thus, the

optimization can address each symmetric set of nodes as one unit, with a single weight,

single indicator, and a count specifying how many nodes are eliminated if this weight is set

to zero.

If sufficient forms of symmetry are available, this leads to a dramatic reduction in the

number of variables in the optimization. Consider once more a 10 dimensional scheme

with compatible 2D, 4D, 6D, and 8D rules built from a seven point 1D rule. If the un-

derlying 1D distribution is symmetric about its mean, the weights can be symmetric about

that value in every single dimension. In effect, only 4 points are used and the total num-

ber of unique weights is only
∑5

i=1 4
2i = 1, 118, 480. Additional symmetry can reduce

this further. If the order of the dimensions does not matter, then the weights for the points
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⟨1, 2⟩ and ⟨2, 1⟩ should be the same. This permutation symmetry further reduces the num-

ber of unique weights to only 20,348. Additionally, some of the monomials in the original

problem can exhibit symmetry and so their rows can be eliminated from the G matrix. If

mirror symmetry about the axes is imposed, then monomials containing odd powers in the

mirror symmetric axes will automatically integrate to 0 and can be dropped. If permuta-

tion symmetry is applied, only a single permutation of the exponents is necessary – e.g.,

xayb is redundant with xbya. Applying symmetry to (Equation 4.14) yields the following

optimization problem:

min
w̃i,ãi

∑
1≤i≤d

c⃗Ti ãi s.t. ∀i (4.15)

G̃iw̃i = m⃗i

w̃i ≥ 0

ãi ≥ w̃i

w̃i + 1− ϵ ≥ ãi

∀j ∈ symmetric(i) :∑
k∈branches(ni,j)

w̃i+1,k ≥ w̃i,j

ãi,j ∈ {0, 1}

∀k ∈ branches(ni,j) ãi,j ≥ ãi+1,k

where w̃i, ãi contain only the unique entries and c⃗i is a vector counting how many nodes

share that weight and indicator. w̃i,j and ãi,j are the weight and indicator respectively

for node j at depth i, so multiple j could point to the same value. symmetric(i) is the

set of indices of nodes at depth i containing only one index for each such set of nodes

with the same weight. G̃i is the modified Vandermonde matrix where rows for redundant

monomials have been removed and every column corresponding to a given unique weight

has been summed together. Column j of G̃i, g̃i,j , is computed from the columns gi,k of the
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original Vandermonde matrix Gi as:

g̃i,j =
∑

k∈SS(i,j)

gi,k (4.16)

where SS(i, j) is the jth symmetric set of nodes at depth i. Thus, ∀k ∈ SS(i, j), w̃i,k is

the jth entry in w̃i.

The condition number of the constraint matrix can be improved by independently scal-

ing each row of the G matrices (equivalent to premultiplying by a diagonal matrix M ). In

particular, dividing by the geometric mean of the maximum entry of the row and the small-

est positive entry proved effective in the tests described below. Recall that each column

corresponds to a different node, while each row is a different monomial. The first row of G

is generally all ones as it corresponds to the zero monomial, while later rows are the result

of very high dimensional monomials and so have very large values (or very small if the

node has entries <1). If magnitudes of the node points are all similar, much of the variation

in the entries occurs between rows rather than within them and can be canceled out by this

scaling.

The numerical difficulties associated with very small optimal weights can also be miti-

gated by scaling. The "true" weights can be multiplied by some (large) constant factor for

optimization purposes (this factor can be different for each depth) and the true values recov-

ered in post-processing. Dividing by the arithmetic mean of the minimum and maximum

weight in the original Cartesian product rule for a given depth proved effective in practice.

Applying both matrix and weight scalings affects the definition of several constraints as
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shown in (Equation 4.17).

min
x̃i,ãi

∑
1≤i≤d

c⃗Ti ãi s.t. ∀i (4.17)

MiG̃ix̃i = Mim⃗i/si

x̃i ≥ 0

ãi/si ≥ x̃i

x̃i + 1− ϵ ≥ ãi

∀j ∈ symmetric(i) :∑
k∈branches(ni,j)

si+1x̃i+1,k ≥ six̃i,j

ãi,j ∈ {0, 1}

∀k ∈ branches(ni,j) ãi,j ≥ ãi+1,k

Here, w has been replaced by x to indicate that it is not actually a weight but instead just

an optimization variable. Mi is the matrix applying scaling to the G matrices to help with

conditioning, while si is the weight scale factor for depth i (w̃i = six̃i). Note that the

scaling is not applied to the "strict" inequality – now wi may be between 0 and ϵ provided

that xi is not.

Finally, the optimization may be simplified due to the redundancy of some of the exact

integration constraints (certain rows of the G matrix) when combined with the branch sum

constraint (from (Equation 4.9)). Let the subscript l denote weights and nodes belonging to

a lower dimensional rule and h those of a higher dimensional rule. Letm(x) be a monomial

that evaluates the same on a node nl and any branch of that node nh (i.e., a monomial with

zero exponents in the dimensions appearing in h but not l, such as x2y0 for l = 1 and

68



h = 2). Then, the exact integration and sum constraints are collectively

∑
j∈nodes(l)

wl,jm(nl,j) = e (4.18)

∑
k∈nodes(h)

wh,km(nh,k) =
Vh
Vl
e (4.19)

wl,j ≤
∑

p∈branches(nl,j)

wh,p (4.20)

where e is the exact integral of m over the domain of the l rule, Vl is the sum of the weights

of the l rule, and Vh is the sum of the weights of the h rule. When dealing with probabilities,

Vl and Vh are both 1. Now, if all the nodes in the h rule are branches of nodes in the l rule,

∀nh,k∃nl,j : m(nh,k) = m(nl,j). So for expected value integrals, (Equation 4.19) can be

rewritten as:

∑
k∈nodes(h)

wh,km(nh,k) = (4.21)

=
∑

j∈nodes(l)

∑
k∈branches(nl,j)

wh,km(nl,j)

=
∑

j∈nodes(l)

wl,jm(nl,j)

This is satisfied if (Equation 4.20) is replaced with equality. Next, suppose ∃j : wl,j <∑
k∈branches(nl,j)

wh,k; then for that j
∑

k∈branches(nl,j)
wh,km(nl,j) > wl,jm(nl,j). However,

no j can satisfy
∑

k∈branches(nl,j)
wh,km(nl,j) < wl,jm(nl,j), so if the branched weight sum

is larger than the parent weight for some j (i.e., if (Equation 4.20) is not an equality),

(Equation 4.21) cannot be satisfied. Thus, if (Equation 4.18), (Equation 4.19), and the

branching constraint (Equation 4.8) are imposed, the constraint in (Equation 4.20) is redun-

dant. Alternatively, (Equation 4.20) (originally presented as (Equation 4.9)) can be made an

equality and (Equation 4.19) can be removed. The latter approach, which provides a means

to completely drop many low-dimensional monomials from the exact integration constraint

in the high depth rules, resulted in better numerical behavior in the tests described below
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and so is recommended.

4.3 Results

4.3.1 Effectiveness of MILP

van den Bos et al.’s approach cannot impose the properties of subsection 4.2.1, so it cannot

directly construct sparse schemes for chance constrained path planning. However, van den

Bos et al. provide a table of the number of nodes retained by their implementation for a

variety of dimensions D and degrees of polynomial exactness K (this is Table 1 in [75]).

It is not directly stated in the reference what one dimensional scheme was used to generate

this table; the present authors were able to replicate the reported numbers of retained nodes

for the Smolyak schemes by using a Gauss-Legendre rule of degree K (i.e. with K+1
2

points). The MILP of (Equation 4.7) can construct comparable sparse rules (for positive

weights).

The number of nodes retained by the van den Bos approach depends on the order in

which null vectors are processed, so the numbers presented in the reference were not ex-

actly replicated in general. Table 4.1 reports the smallest schemes obtained from three

ordering strategies: 1. prioritize the null vector with the smallest α (see van den Bos et

al. Algorithm 2) 2. prioritize the null vector that eliminates the most nodes (the greedy

strategy) 3. ordered based on singular value. For option 3, since the null vectors were ob-

tained as the complex conjugate of the right singular vectors corresponding to the smallest

singular values, it was possible to sort by corresponding singular value. Both increasing

and decreasing orders were tested. The selection criteria used (see step 9 of Algorithm 2 in

van den Bos et al.) was to choose the option with the most symmetric nodes. In the cases of

(D = 7, K = 7), (D = 7, K = 11), and (D = 10, K = 7) the present authors were unable

to replicate the results of [75]. In the remaining cases, the author’s implementation yielded

similar (often better) rules to those reported. The MILP approach resulted in universally

smaller rules, with the advantage increasing for higher dimensions.
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Table 4.1: Comparison of rule size for van den Bos and MILP.

D K van den Bos replication MILP
5 113 113 113
7 544 544 544

5 9 1313 1115 963
11 4096 4096 3776
13 6005 6133 4325
5 689 689 689

7 9 19717 18915 11105
13 158709 172217 85867
5 13461 13185 9088

10 9 1368449 1276193 767533
11 8284617 12165120 7351296
13 26598325 26441353 8809877

4.3.2 Path Planning Example

Recall the Dubins Car-like vehicle subject to wind uncertainty from (Equation 2.7):



ẋ

ẏ

θ̇

ω̇


=



v cos θ + wx

v sin θ + wy

ω

u


(4.22)

v is the constant (10 m/s in the examples below) airspeed, and u is the control input.

x, y are the position, θ is the heading, and ω the angular velocity. The winds wx, wy ∼

N(0, 0.2) × N(0, 0.2) m/s are assumed to hold constant for the duration of a maneuver,

and then are redrawn from the parameter distribution for the next maneuver. The expected

value of a function of the policy of length n (i.e., cost or risk) is thus an integral over

R2n with a Gaussian weighting function. Cubature schemes for dimension 2, 4, ..., 2n are

needed. This problem exhibits mirror symmetry across the axes and permutation symmetry

between any included dimensions. As the underlying PDF is Gaussian, the initial rule is

constructed from a 7 point Gauss-Hermite rule across each dimension. Table 4.2 shows,

for a polynomial degree of 10, the sizes of the dense and optimal rules, as well as the run-
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time needed to solve the MILP on a 6 core Intel® Xeon® CPU E5-1650 v2 @ 3.50GHz

using Gurobi 9.1.2. FeasibilityTol, OptimalityTol, and IntegralityTol were all set to 1e-9,

NumericFocus was set to 3, and IntegralityFocus was set to 1. An ϵ of 1e-9 was used.

Gurobi was accessed through the PICOS 2.2 interface. As shown in Table Table 4.2, the

number of nodes in the optimal sparse rule is significantly less than the dense rule at the

same dimension, and the degree of sparsity increases substantially as the dimension of the

problem increases. The presented times are for solving the MILP using Gurobi and do not

include setup or post-processing, which can be significant. Solution times are linear in the

number of nodes in the dense scheme.

For efficiency reasons, state merging as described in [99] is applied without modifica-

tion. This means that sometimes, a state will have a child whose realization sequence is

not an extension of the parent’s. This sacrifices exact polynomial integration in favor of the

significant performance benefits of state merging. Since it is rare for the cost or constraint

functions to truly be polynomial functions of the uncertain parameter, this is not considered

to be a major sacrifice.

Table 4.2: Number of Nodes in Dense and Optimal Sparse Cubature Rules and Solution
Time.

# actions Max dim Dense Optimal Time (s)
1 2 49 40 0.052
2 4 2, 450 505 0.10
3 6 1.201× 105 3, 182 0.53
4 8 5.885× 106 3.291× 104 4.0
5 10 2.884× 108 2.757× 105 4.4
6 12 1.413× 1010 3.119× 106 12
7 14 6.924× 1011 3.264× 107 270

Table 4.3 shows the solution times and search complexity measurements for a path

planning example with a goal position of 7m downrange, 3m crossrange and a risk tolerance

of 20%. The AND and OR columns are the numbers of AND/OR vertices expanded. This

task requires 4 actions to span the path from start to goal, necessitating an 8 dimensional

integral. The environment in shown in Figure 4.2. The planning problem was solved
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Figure 4.2: Test environment for the Dubins Car, with goal position marked.

using the AO* with induced heuristic from chapter 3, where either the dense or optimal

sparse rule was used by the planner for integration. The actual cost (distance traveled)

and risk of the returned policy is estimated by averaging the results of 1,000 Monte Carlo

simulations of the policy. As shown in Table 4.3, all the tested sparse rules provide dramatic

runtime improvements compared to the dense rule, but it is advantageous to use a sparse

rule designed for the maximum search depth that will occur in the actual problem. While a

rule obtained for maximum dimension 14 does involve constructing rules for 2D-12D, those

lower-dimensional rules are less sparse than would be obtained if the maximum dimension

were set lower. An unnecessarily deep rule thus results in increased runtime as shown

in Table 4.3. It is possible that using an excessively deep rule can improve accuracy, as

shown by the better risk estimates in Table Table 4.3. However, this is not guaranteed –

for instance, the deeper rules had slightly less accurate cost estimates in this scenario. The

risk was overall estimated less accurately than the cost because the constraint indicator

functions that appear in the risk integral are not smooth and so need very high degree
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polynomials to approximate accurately.

A final example illustrates the increasing runtime benefits of sparsity at greater search

depths. Two additional planning tasks were executed using AO* requiring 5 actions (10D)

and 6 actions (12D), respectively. The environment was the same as in Figure 4.2 with

the goal moved to 8 and 12 meters. Table 4.4 shows the performance of the dense rule

compared with that of the optimal sparse rule. In the 5-action case, the sparse rule enables

an 83% reduction in runtime and a 90% reduction in the number of states (vertices) con-

sidered by the planner compared to using the dense rule. Importantly, the 6-action task

is intractable using the dense rule due to memory requirements that exceeded the 64 GB

capacity of the computer, but using the optimal sparse rule a solution is obtained in less

than fifteen minutes.
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Table 4.3: AO* Planning Statistics for Environment Shown in Figure 4.2.

Scheme Time (s) Cost Estimate True Cost Risk Estimate True Risk Vertices Merged OR AND Collision Checks
Dense 233 7.107 7.087 8.601% 18.4% 52,097 14,348 850 1,356 265,776

8D Sparse 46.1 7.083 7.084 7.886% 18.5% 6,787 1,130 340 705 31,664
10D Sparse 51.1 7.079 7.084 8.242% 18.5% 7,822 1,231 352 698 36,208
12D Sparse 78.5 7.080 7.084 9.098% 18.5% 9,687 1,866 412 754 46,208

Table 4.4: Planning Statistics for Tasks of Increasing Search Depth.

Task Time (s) Cost Estimate True Cost Risk Estimate True Risk Vertices Merged OR AND Collision Checks
8m (10D)

Dense 551 8.081 8.061 8.601% 18.4% 80,137 43,736 1,646 2,528 495,488
Sparse 93 8.054 8.058 8.242% 18.5% 8,049 2,597 584 1,029 42,580

12m (12D)
Sparse 857 12.02 12.03 9.098% 18.5% 9,649 17,326 2,184 3,676 107,896
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4.4 Discussion

The MILP formulation for sparse scheme construction is notably general; in addition to

the specialized rules for path planning, it can construct generic sparse rules for particular

polynomial exactness and the resulting rules are smaller than with the existing van den

Bos approach (indeed, they are theoretically the sparsest possible such rules for a given

starting dense rule and required polynomials). The expressive power of MILP constraints,

as showcased by the path planning application, offers the potential for specialized rules in

other applications. For problems in which such schemes are practical, the numerical re-

sults shown the enormous benefits available. For path planning, though, the tractability of

sparse integration scheme construction is dependent on the symmetry described in subsec-

tion 4.2.2. For even deeper search, or for problems that lack sufficient symmetry, another

approach to mitigate the curse of dimensionality is needed. The next chapter turns to the

classic Monte Carlo technique and compares Monte Carlo Tree Search against AO* with

the induced heuristic.
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CHAPTER 5

MONTE CARLO ALGORITHMS

5.1 Monte Carlo Tree Search

MDPs under uncertainty are structurally similar to adversarial games; in the game per-

spective, instead of an environment that chooses randomly to make the outcome of actions

uncertain, there is an adversary which chooses according to some policy. In the zero-sum

case, the adversary acts to minimize your reward and so will always choose the worst pos-

sible outcome (for you). This is equivalent to constructing a robust plan from the MDP

point of view. Monte Carlo Tree Search (MCTS) is an algorithm introduced by Kocsis and

Szepesvari [83] that has had great success in the field of games, achieving state of the art

performance in Go [68, 84], Solitaire [85], and chess [84] among others tasks. It is thus nat-

ural to apply it to MDPs under uncertainty, as was done as early as [83]. A suitable planner

for non-chance constrained uncertain path planning with motion primitives can be obtained

by calling Procedure 5 repeatedly on the current state until a fixed time has elapsed. MCTS

generally takes a reward maximization perspective; to support the cost minimization ob-

jectives considered throughout this work, one can simply negate the running cost (typically

path length) and terminal penalty. Line 14 is the classical UCT algorithm for choosing an

action to sample in MCTS and the constant c =
√
2 unless otherwise noted. Line 6 offers

scope for heuristic information to contribute to the planner; in the results that follow, the

default policy selects the action whose nominal exit state has the smallest sum of cost to

come and heuristic cost to go to the goal. Furthermore, state construction in Line 18 can

benefit from the cell-based state merging of subsection 3.1.2.
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Procedure 5 MCTS Sample(history)
1: if history violates a constraint or history is terminal then
2: set history’s value to the terminal reward
3: add 1 to the history’s sample count
4: return
5: if history’s sample count is 0 then
6: set next action to that of the default policy for history
7: else if any actions available at history have never been sampled then
8: set next action to the first unsampled action
9: else

10: best_score= −∞
11: for all action available at history do
12: exploitation=estimated value of action at history
13: exploration=

√
log history’s sample count

sample count of action at history

14: score= exploitation + c ∗ exploration
15: if score>best_score then
16: set next action to action
17: set best_score to score
18: draw a parameter value from the proposal distribution and use this to get the child of

next action, constructing a new one if the parameter value has never been drawn before

19: call MCTS Sample on the newly constructed child
20: for all action available at history do
21: set sample count of action at history to the total number of children of action at

history (if a child was drawn multiple times, each one counts as a sample)
22: if action has been sampled at least once then
23: set estimated value of action at history to the average value of the children plus

the average value of the immediate reward for the action (if any)
24: else
25: set estimated value of action at history to −∞
26: set history’s sample count to the sum of the sample counts of all the actions
27: set history’s best action to the action with maximum estimated value
28: set history’s value to the value of the best action
29: return
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5.2 Vulcan

Procedure 6 Vulcan(start state s0)

1: set the estimated value of all actions Q̃(h, a), the sample counts Nh, and the action
sample counts Nh,a to 0

2: while run time ≤ limit do
3: call Sample on the start state s0
4: if Sample returned false then
5: return no solution
6: call Cleanup on the start state s0
7: return the estimate of the value of the best action at the start state and the estimated

policy

Vulcan is a modification of MCTS that can enforce chance constraints. It was proposed

by Ayton and Williams in [69]. Like MCTS, Vulcan requires an exploration-exploitation

tradeoff coefficient, which is set to
√
2 in the following. It also needs a default policy, which

is again selecting the action whose nominal exit state has the smallest heuristic cost to go

to the goal. State merging is impractical for Vulcan since nodes should only be combined

if they have the same sequence execution risk. Pseudocode (from [69]) is presented in

Procedure 6, Procedure 7, and Procedure 8 for convenience.

Vulcan supports a generalization of chance-constraints in which the upper limit on the

risk can be a concave non-decreasing function ∆ of the reward of the policy. Ayton and

Williams define the "sequence execution risk" of a state history from step t to step n, ht:n,

via Eqs. 8-10 in [69] as:

ser(ht:n) =
1−

∏n−1
i=t (1− r(si, ai))∏n−1

i=1 (1− ri(si, ai))
maxj NOT Cj(ht:n) (5.1)

where r(si, ai) is the probability of immediate constraint violation while executing action

ai from state si and the Cj are the constraint indicator functions. Thus, ser is automatically

0 for a state history that does violate a constraint. This construction is chosen so that the

following constraint, which is the one actually enforced by Vulcan in Line 2 of Procedure 7,
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Procedure 7 Sample(history h0:t)
1: if history has reached the search depth then
2: if history satisfies the risk bound then
3: increment history’s sample count Nh0:t

4: return SUCCESS
5: else
6: return false
7: while history has at least one safe action do
8: if history’s sample count is 0 then
9: set next action to that of the default policy for history

10: else if any safe actions available at history have never been sampled then
11: set next action to the first safe unsampled action
12: else
13: best_score= −∞
14: for all safe actions available at history do
15: exploitation=estimated value of action at history
16: exploration=

√
log history’s sample count

sample count of action at history

17: score= exploitation + c ∗ exploration
18: if score>best_score then
19: set next action to action
20: set best_score to score
21: draw a parameter value from the proposal distribution and use this to get the child

of next action, constructing a new one if the parameter value has never been drawn
before

22: call Sample on the newly constructed child
23: if Sample returned true then
24: set sample count of next action at history to the total number of children of next

action at history (if a child was drawn multiple times, each one counts as a sample)

25: if next action has been sampled at least once then
26: set estimated value of next action at history to the average value of the children

plus the average value of the immediate reward for next action (if any)
27: else
28: set estimated value of next action at history to −∞
29: set history’s sample count to the sum of the sample counts of all the safe actions
30: set history’s best action to the safe action with maximum estimated value
31: set history’s value to the value of the best action
32: return true
33: else
34: mark next action as unsafe
35: set history’s sample count to the sum of the sample counts of all the safe actions
36: return false
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Procedure 8 Cleanup(history h0:t)
1: if history’s sample count Nh0:t is 0 then
2: if history satisfies the risk bound then
3: return true
4: else
5: return false
6: if history has reached the search depth then
7: return true
8: while history has at least one safe action do
9: call Cleanup on all safe children of history’s best action

10: if all Cleanup calls returned true then
11: set sample count of history’s best action to the sum of the sample counts of its

child histories
12: set estimated value of history’s best action to the average value of the children

plus the average value of the immediate reward for next action (if any)
13: set history’s sample count to the sum of the sample counts of all the safe actions
14: set history’s value to the value of the best action
15: return true
16: else
17: mark next action as unsafe
18: set history’s best action to the safe action with maximum estimated value
19: return false

is a sufficient condition for satisfying the execution risk bound:

ser(h0:n) ≤ ∆(f(h0:n)) (5.2)

for appropriately chosen f . For all experiments reported here, the risk tolerance is set to be

a constant (which is necessarily non-decreasing). The f function chosen is from equation

20 in [69], which is identical for all children of a given action. Then, since all non-colliding

children of a state have the same sequence execution risk, (Equation 5.2), which relates

sequence execution risk, f , and ∆, will either be satisfied for all non-colliding children of

an action or none of them.
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5.3 Comparison with AO*

A great strength of MCTS and Vulcan is that they are "anytime" algorithms; on many

problems they can run for a short amount of time and achieve decent performance, with

solutions approaching the optimal solution as runtime is increased. By contrast, AO* must

run for whatever length of time is required for it to find the optimal solution. However, on

tasks where it is feasible to run AO* to completion, it generally provides better solutions

than MCTS and Vulcan.

5.3.1 Strengths of AO*

Figure 5.1: A field of Poisson distributed quadrilaterals

Consider the task shown in Figure 5.1. The system is once again the double integrator

vehicle of (Equation 2.7), using the maneuver library of section 3.2. The cost function is

the distance traveled plus the remaining distance to the goal. The risk tolerance was set to

20%. AO* leverages the 10 dimensional, degree 10 sparse grid from chapter 4 and returns

a policy in 54 seconds. In 100 executions of this policy, the average cost incurred is 7.9061
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meters (standard devation: 0.0047897 m) and there were no collisions. For the same risk

tolerance, Vulcan was allowed 60 seconds to plan and used a 7x7 uniform grid of samples

out to ±3 standard deviations. It incurs an 11.4% higher cost of 8.8086 meters (standard

deviation: 1.8983 m), and collides 8 times in 100 executions, despite being allowed to

replan for an additional 60 seconds after each maneuver is executed. If a higher resolution

set of samples is used for Vulcan (a 13x13 uniform grid), Vulcan performs even worse: the

average cost increases to 12.501 meters (standard deviation: 0.47434 m) and it crashes 99

times in 100 trials. The problem here is that, with so many different possible outcomes

for each action represented, 60 seconds is not enough time for Vulcan to consistently pass

multiple trajectories through any successor states. The total number of possible action

outcomes directly affects Vulcan’s "early" efficiency because of the need to compute the

immediate risk of constraint violation for an action as part of computing the sequence

execution risk. This requires checking every realization and so scales linearly with the size

of the uncertainty grid. As Vulcan loops, the same actions will get re-encountered and

this value does not need to be recomputed, but for short runtimes this amortization is not

available as each action occurs only a small number of times. In particular, with the 169

sample library and 60 seconds to plan, Vulcan is not even able to sample every action at the

root once. As a result, for excessively short runtimes such as this, Vulcan is forced to plan

with very incomplete information and can perform extremely poorly.

MCTS cannot enforce the chance-constraint and so is not, in general, directly compa-

rable to AO* on tasks involving chance constraints. However, in this example the chance

constraint is not "tight;" the AO* policy does not incur the maximum allowed risk. As

a result, AO* solving without the chance constraint returns exactly the same plan. It is

therefore reasonable to compare against MCTS, as well as against Vulcan, in this scenario.

Unlike Vulcan, MCTS achieves nearly identical performance to AO* even when using the

13x13 grid: the average cost incurred cost over 100 trials is 7.9059 meters (standard devia-

tion: 0.0047340 m) and no collisions occur. However, as with Vulcan this requires allowing
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MCTS to replan after executing each maneuver, while AO* returns a full policy that can

simply be executed. Note that if AO* is allowed to replan, it too achieves an average cost

of 7.9059 meters (and its standard deviation of 0.0045033 m is actually slightly smaller).

Figure 5.2: Obstacle field with three walls

AO* Vulcan
Risk Tol Duration Cost Risk Cost Risk

1% 178s 8.2449± 0.044004 7.3% 10.3308± 3.1898 35%
5% 231s 8.1923± 0.043442 36% 10.4767± 2.5706 51%
10% 254s 8.1843± 0.037406 38% 9.93301± 1.68356 68%

Table 5.1: Performance of Vulcan at varying risk tolerance when allowed the same planning
time as AO*.

AO* is particularly useful in scenarios where the chance constraint is tight. MCTS is

not directly applicable, and the performance of Vulcan tends to degrade for demanding risk

tolerances. Consider the task in Figure 5.2 and the statistics in Table 5.1. AO* planning was

conducted using the 10 dimensional degree 10 grid from chapter 4. As the risk tolerance

is decreased from 10% to 1% planning time decreases from 254 seconds to 178 seconds.

The reported Cost and Risk are obtained from 100 simulations of the AO* policy, or 100
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Risk Tol. Cost Std. Dev. Risk
1% 12.1175 0.11053 100%
5% 11.9634 0.76574 97%

10% 11.9291 0.84951 95%
20% 11.3367 1.5915 79%

Table 5.2: Vulcan with fixed planning time at varying risk tolerance

executions in which Vulcan (with the 13x13 uniform grid) is allowed at each stage the time

it took AO* to plan its complete policy (listed in Table 5.1). The average and standard

deviation costs are reported. In the case of 1% tolerance, the AO* results are for 1000

simulations for better accuracy on the collision rate (note the violation of the risk tolerance

due to 1. no replanning during execution 2. sacrificed accuracy at depth due to sparse

integration). Where AO*’s planning time improves for steady solution quality at tighter

risk tolerances, Vulcan misses the risk limit by larger and larger margins as the tolerance

tightens. Note that if AO* uses the dense scheme on the 1% tolerance task, planning time

increases to 670 seconds but only 1 in 100 trials collide (average cost: 8.2715, standard

deviation: 0.041842). Moreover, if AO* uses the sparse scheme for 1% tolerance but is

allowed to replan after each action, it does not collide at all in 100 trials (average cost:

8.2738, standard deviation: 0.040872).

To demonstrate that the degradation of Vulcan’s performance is not (entirely) due to

the reduced time it was allowed at tighter tolerances (justified by the fact that AO* needed

less time at these tolerances), Table 5.2 records the performance of Vulcan at various risk

tolerances, with a fixed per-action planning time of 20 seconds. Results are from 100 trials.

Tighter risk tolerances at fixed (short) planning time lead to increasing rates of collision .

5.3.2 Strengths of Monte Carlo algorithms

MCTS and Vulcan are therefore best used when the problem is "too hard" to solve for op-

timality with AO*. This is most readily achieved by problems where the goal is distant,

requiring deep search to complete a policy. While the sparse integration schemes of chap-
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Figure 5.3: Deep search in a grid environment. Crossing the red dotted line counts as
reaching the goal, but the cost is smaller if nearer to the goal point.

ter 4 help, for a sufficiently deep search problem the construction of the sparse scheme is

itself intractable . On such challenging problems, MCTS may still be able to obtain a "good

enough" solution with a relatively short amount of planning time. Figure 5.3 shows a task

where the Manhattan distance to reach the goal is 13.9 meters; to encourage MCTS to ac-

tually attempt to reach the goal rather than crashing early to avoid incurring running cost,

the cost function is set to be the distance traveled plus four times the remaining distance to

the goal. With only 20 seconds of planning time to choose each maneuver, and using the

13x13 uniform grid, MCTS achieves an average cost over 100 trials of 12.9516 (standard

deviation: 2.26434) and collides only once. Reaching the goal required 5 maneuvers in 49

trials, 6 maneuvers in 49 trials, and 8 maneuvers in one case (the last trial collided after

only one maneuver). Such depth would require a 16 dimensional sparse integration scheme,

which exceeds anything obtained in chapter 4. However, this task is also nearing the lim-

its of what MCTS can handle. Moving the goal position 3 meters downrange as shown

in Figure 5.4 notably degrades the performance of MCTS. Across 100 trials, again with
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Figure 5.4: This task requires deeper search than Figure 5.3. Crossing the red dotted line
counts as reaching the goal, but the cost is smaller if nearer to the goal point.

20 seconds of planning time per decision, it incurs an average cost of 17.5643 (standard

deviation: 4.31181) and collides 4 times. The average cost now exceeds the Manhattan

distance (16.9) and the number of crashes increased. The new task requires 6 maneuvers

only once, while 7 maneuvers were needed 90 times and 8 maneuvers were needed 5 times.

The remaining cases crash after 1, 3, or 5 maneuvers. Naturally, additional runtime could

be allocated to MCTS to improve performance.

5.3.3 Supersonic Glide Vehicle Scenario

Vulcan can be more effective than AO* on problems that are relatively shallow. To show

this, a new dynamical system is introduced in Equation 5.3; this is a very simple model of a

supersonic glide vehicle at constant altitude. In addition to a classical quadratic drag model

for speed v, the integrated heat load Q provides a (cyclic) state on which constraints could

be imposed. Appended to the state is a "load" value l computed as the current drag times

the current angular velocity ω, which provides additional interesting constraints. This is a
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function of non-cyclic states (velocities) and so is itself non-cyclic.



ẋ

ẏ
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=
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

(5.3)

x and y are the downrange and crossrange position in meters, ψ is the yaw/angle between

the velocity vector and the inertial x-axis. The non-cyclic coordinates are v and ω. At-

mosphere density ρ, drag coefficient Cd, vehicle mass m, yaw control effectiveness ceff,

yaw damping D, and friction coefficient Cf are all parameters that could be uncertain for

this model. Unlike the Dubins car and F16 models previously considered, this system has

constantly decreasing speed and so can never return to a trim condition after leaving it. In

fact, if Cd, ρ, and m are constant the speed can be obtained in closed form:

v(t) =
mv0

Cdρv0t+m
(5.4)

for v0 the initial speed and t the elapsed time.

Going forward, ρ = 1.225 kg
m3 ,m = 1000kg, andD = 101

s
, whileCd ∼ N(0.1, 0.01)m2,

ceff ∼ N(1, 0.1), and Cf ∼ N(0.3, 0.01)s. A maneuver library using proportional con-

trollers tracking angular velocity was constructed for trims with ω = 0rad/s at v = 50m/s

to v = 500m/s in increments of 50m/s, as well as a trim at v = 575m/s and v = 1000m/s.

Realizations of the 1000m/s maneuvers are shown in Figure 5.5 for five evenly spaced sam-

ples in ceff and Cd, three in Cf , out to ±3σ. Integration was done using a RK4 integrator

with a timestep of 1e-4 seconds, and states are recorded every hundredth of a second. Each
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realization thus contains 602 points.

Figure 5.5: Realizations of maneuvers for the supersonic glide model starting with 0 angu-
lar velocity and 1000 m/s forward speed.

Consider the task shown in Figure 5.6, with the additional non-visible constraints that

−6.5e4N
s
≤ l ≤ 6.5e4N

s
and Q ≤ 3.84e7J , with an initial speed of 1000m

s
. This task

requires up to three maneuvers to complete, and so involves 9-dimensional integrals. Ad-

ditionally, since the uncertain parameters are not interchangeable (as they are in the case of

wind uncertainty), there is less symmetry to use to construct sparse integration schemes. So

Vulcan competes directly with a dense integration scheme for this task and proves advanta-

geous. The incurred cost and risk of various planners, with and without chance constraints,

are reported in Table 5.3. Each column evaluates the trajectories as (planned using the cost

specified in the penalty column) using a different cost function to allow comparing the ef-

fects of cost function design on algorithm performance. The considered cost functions are

all of the form J = distance traveled + g(terminal state). 1x, 4x, and 20x set g as the rele-

vant constant times the distance between terminal state and goal state. The "4,1" penalty is

more sophisticated: if the terminal state is not in the goal region (i.e. the trajectory violated
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Figure 5.6: A three maneuver task for the supersonic glide vehicle

a constraint) the penalty is 4 times the remaining distance, but if the terminal state is in the

goal region the penalty is just the distance to the goal state. This penalty structure increases

the distinction between safe and unsafe trajectories. Results are reported for Vulcan and

MCTS with 40 seconds to plan each action, while AO*’s policy is computed offline and

executed. AO*’s library used 5 samples for ceff and Cd and 3 samples for Cf ; Vulcan and

MCTS use a higher resolution sampling of the uncertainty (7 samples each for ceff and Cd,

3 for Cf , 147 total). Due to the inflated costs involved in this problem, the exploration

coefficient was increased to c = 1000
√

(2) for both Vulcan and MCTS. AO* and MCTS

employed state merging with a hyper-rectangle size of 1 meter in x and y, 1m/s in v, 0.05

radians in ψ, 0.05 rad/s in ω, 1000J in Q, and 100N/s in l.

AO* with the 1.0x penalty and a 20% risk tolerance requires 640 seconds to find a

policy; when executed 100 times, this policy achieves an average cost of 8,654 meters

and collides 13 times. By contrast, Vulcan can use a higher resolution sampling of the

uncertainty and needs to plan for only 40 seconds per maneuver to get acceptable, though

distinctly suboptimal, performance. In 100 trials, Vulcan incurred an average cost of 9,240
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Table 5.3: Performance of planners with various cost structures on the glide vehicle task.
AO* 20% is AO* with a 20% risk tolerance, AO* No CC is AO* without a chance con-
straint. Costs were computed for all cost structures on the resulting trajectories, with stan-
dard deviations over 100 trials in parentheses.

Planner Penalty Risk 1x cost (4,1) cost 4x cost 20x cost
AO* 20% 1x 13% 8654 (816) 10367 (4238) 14215 (3085) 43870 (23019)

Vulcan 20% 1x 13% 9293 (1766) 11020 (4273) 16788 (6189) 56758 (34368)
AO* 20% 4,1 13% 8654 (816) 10367 (4238) 14215 (3085) 43870 (23019)

Vulcan 20% 4,1 13% 9630 (1982) 11526 (4608) 18134 (6963) 63491 (37652)
AO* No CC 4,1 13% 8654 (816) 10367 (4238) 14215 (3085) 43870 (23019)
AO* No CC 4x 13% 8654 (817) 10370 (4239) 14217 (3083) 43891 (23015)

MCTS 4,1 17% 8550 (929) 10781 (4564) 14453 (3224) 45932 (24487)
MCTS 20x 16% 8569 (916) 10746 (4561) 14461 (3214) 45883 (24470)

meters (standard deviation: 1,691 m) and also collided 13 times. Thus, provided cost

optimal performance is not critical, one could use Vulcan to get a plan much faster than

using AO*.

By contrast, MCTS requires a highly tailored cost function to achieve good performance

with only 40 seconds for planning (using c = 1000
√
2). If the terminal penalty is simply

four times the distance to the goal, MCTS returns plans with greater than 99% predicted

chance of collision (not shown in the table). If the penalty is increased to 20 times the

remaining distance, MCTS gets acceptable plans in 40 seconds and achieves over 100 trials

an average cost, in the inflated penalty it was asked to minimize, of 45,883 (inflated costs

are technically unit-less). 16 trajectories collide. Interestingly, if the same trajectories are

scored using the 1x penalty it turns out the score is actually smaller than AO* achieved even

seeking to minimize the 1x penalty . It is, however, colliding at a higher rate. Using a 20x

weight on the final distance to the goal is both extreme and unnecessary; MCTS benefits

in this case from a cost structure that better distinguishes between violating a constraint

while near the goal and actually reaching said goal. Replacing a terminal penalty that is

always some multiple of the remaining distance to the goal with one that uses a smaller

multiplier if the terminal state is in the goal region improves the performance of both AO*

and MCTS on this task. AO*, with no chance constraint and the 4,1 penalty, achieves an
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average cost of 10,367 over 100 trials, 13 of which collide. The performance of this policy

is identical to that obtained with a 20% chance constraint and the 1x penalty on all tested

metrics . This policy was obtained in 668 seconds, which is slightly slower than with the

chance constraint. With no chance constraint and a uniformly increased 4x penalty, the

policy took 807 seconds to compute and was very slightly inferior from a cost perspective.

If a 20% chance constraint is imposed on top of the 4,1 penalty, AO*’s results, total number

of nodes, merges, collision checks, AND expansions, and OR expansions are unchanged.

The primary effect of this goal aware penalty is thus reduce planning time to nearly match

that of AO* with the chance constraint . MCTS using the 4,1 incurs an average cost over

100 trials of 10,781 with only 40 seconds of planning time, though it does collide 17 times.

This is, as expected, inferior to the performance of the AO* policy. Note, however, that, if

these trajectories are evaluated using the 1x penalty, the incurred cost is 8,550 meters. This

is roughly the same as achieved with the 20x penalty and is superior to the cost incurred by

Vulcan when Vulcan is asked to minimize that very same penalty. Moreover, Vulcan itself

does NOT benefit from the 4,1 penalty; using that cost function causes Vulcan’s achieved

cost to go up in every tested metric .

5.4 Discussion

AO* is an optimal algorithm while MCTS and Vulcan are only asymptotically optimal.

Thus for problems on which it is possible to run AO* to completion, the policy it yields

will be better than could be obtained from MCTS or Vulcan (sometimes dramatically so).

Accordingly, the best use case for these algorithms appears to be situations where letting

AO* finish is not practical due to intractability or simply a need for very fast planner re-

sponse (and a willingness to accept low quality solutions). A standout case for AO* is when

chance constraints are present and extremely tight, as Vulcan appears to struggle with such

problems and pure MCTS cannot enforce chance constraints (though it may still give a

solution that respects them if the cost function is selected appropriately).
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Careful selection of the cost function proves to be important for the effectiveness of

MCTS, as one scenario shows that a cost function with insufficient importance on arriving

at the goal will lead the algorithm to intentionally crash into an obstacle even though the

optimal solution per AO* with the same cost structure (and no chance constraint) is to plan

around it. This scenario serves to highlight the utility of chance constraints despite the

concerns raised by Blau, Hogan, LaValle and others: AO* converges much faster when

a chance constraint is active than when it is not, and Vulcan proves less sensitive to the

precise definition of the cost than MCTS does. The case for chance constraints should

not be overstated, however; much of the performance benefit for AO* can be replicated

through a cost function that places extra penalty on constraint violation (and results in the

same optimal policy as using the chance constraint). In fact, when MCTS uses this cost

function it produces a better solution than Vulcan did with a chance constraint and the

unmodified cost. This last reinforces the point made in the introduction: chance constraints

are useful, but to leverage them it is necessary that the available planning algorithms not be

worse than for the pure penalty case. AO* may in fact work better with chance constraints

than without, but the same is not true for MCTS style algorithms. On multiple tasks where

both MCTS and Vulcan were used, MCTS returned significantly lower cost solutions than

Vulcan while still (admittedly coincidentally) respecting the chance constraint.
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CHAPTER 6

LAZY COLLISION CHECKING

6.1 Generalized Lazy Hypergraph Search

A large part of the runtime of all four algorithms (AO* with induced heuristic, RAO*,

MCTS, and Vulcan) is spent on checking realizations of actions to see if they violate a

constraint. The runtime expense of collision checking is well-known in the graph search

(i.e. deterministic path planning) setting, where it is commonly addressed via a "lazy"

collision checking approach: algorithms that delay enforcing constraints on an edge until

they are "confident" that edge is actually in the path. Lazy approaches came to prominence

applied to probabilistic roadmap techniques in [86]. Many variations of this idea have

been developed since, both for probabilistic roadmap algorithms [87, 88, 90, 91] and other

approaches [89, 90]. Mandalika et al. [92] and Lim et al. [93] demonstrate a generalized

lazy search architecture that captures numerous lazy approaches as special cases. This

architecture conducts search (without constraint enforcement) until an "event" toggle is

tripped (ex. "found a path to the goal" or "encountered a vertex with lower heuristic value

than any seen before"). It then executes a selection rule to pick some edges in the current

best path to enforce the constraints on (ex. first unchecked edge in the path), then toggles

Figure 6.1: The Generalized Lazy Search architecture from Mandalika et al. It was devised
for graph search but the idea applies to hypergraphs as well.
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back to searching. This architecture is shown in Figure 6.1: in a), the search algorithm

executes as if it searched an obstacle free environment. This continues until b), where

an event function is suddenly satisfied. In c), a selector function chooses edges to check

for collisions. This loops until d), where the search algorithm returns a path all the way

to the goal that has been entirely collision checked. The Generalized Lazy Search (GLS)

architecture can be extended to hypergraph search in order to improve the computational

performance of the previously discussed algorithms. To this end, the "meta-algorithm"

of Procedure 9 applies the approach of Generalized Lazy Search to structured hypergraph

search (like AO*) and to MCTS.

Procedure 9 Generalized Lazy Hypergraph Search
1: while not done do
2: while search not finished and event not true do
3: one step of the Hypergraph search
4: if search proved there is no solution then
5: done=true
6: if search finished and policy fully collision checked then
7: done=true
8: else
9: edges=chosen from policy according to selection rule

10: Check edges for collision
11: use hypergraph search’s policy update to propagate the consequences of new col-

lision detections

Lines 2-3 are simply an interleaving of the execution of the underlying search algorithm

with checking the event toggle; this loop exits if the search algorithm says it is done or if

the event is tripped. The search may terminate because it proved there can be no solution

(Lines 4-5), or because it has found what it believes to be the best solution. Lines 6-7 handle

the situation where the search terminated without an impossibility proof. If the search is

AO* or RAO*, then the current policy is the best possible solution for the modified MDP

where no collisions can occur in edges that have not yet been collision checked. Vulcan (or,

in general, MCTS) is an asymptotically convergent algorithm and so it only stops based on

a runtime constraint. Regardless, if the search algorithm thinks it has a solution and all the
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edges included in the candidate have been collision checked, then this candidate is in fact

the true solution and should be returned. If this fails, then either the search was interrupted

by the event toggle or the candidate is not fully collision checked and so cannot be trusted.

So in Line 9, unchecked edges are selected for evaluation (which happens in line 10). Line

11 then uses the policy update process of the underlying search algorithm to propagate the

consequences of this collision checking. In the case of Vulcan, Procedure 9 also needs to

call Cleanup (Procedure 8) on the starting state before returning its final answer (and it does

NOT need to call Cleanup after each step of the Hypergraph search).

While Procedure 9 can be applied directly to AO*, RAO*, and MCTS, the original pre-

sentation of Vulcan lacks a policy update process that can serve in Line 11. The difficulty

is that Vulcan uses the sequence execution risk to decide if an action is permitted w.r.t. the

chance constraint. Recall the definition of ser from section 5.2:

ser(ht:n) =
1−

∏n−1
i (1− r(si, ai))∏n−1

i (1− r(si, ai))
1C(ht:n) (6.1)

ht:n is the sequence of states and actions under consideration, r(si, ai) is the probability of

immediate constraint violation when executing the ith action in the history at the ith state

in the history, and 1C is an indicator function that is 1 if the sequence of states doesn’t

violate the constraint and 0 otherwise. When doing a lazy search, r will initially be thought

to be zero; the delayed edge evaluation can change this value and increase ser for all states

that are below the updated edge in the search tree. Thus, for lazy search a special forward-

backward policy update is needed that first propagates the changes in ser forward to the

leaves of the tree, then propagates any changes in legal or best actions back to the root.

The forward process is presented in Procedure 11 and the full policy update (which calls

the forward process) in Procedure 12. Both algorithms conduct an action update process,

which is factored out and presented as Procedure 10.

Three events and one selector for the Generalized Lazy Hypergraph Search are im-
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Procedure 10 Action Update for Vulcan (history, actions)
1: for all actions passed in to this procedure do
2: set the sample count of the action to the sum of the child sample counts
3: set the value of the action to the average of the child values
4: set history’s sample count to the sum of the sample counts for each safe action
5: set history’s best action largest valued safe action
6: set history’s value to the value of the current best action

Procedure 11 Forward Update for Vulcan (history)
1: if history violates a constraint then
2: set history’s value to the terminal reward
3: return true
4: if history is not the root then
5: set history’s cumulative safety to the parent’s cumulative safety*(1-risk of action at

parent)
6: set ser to (1-history’s cumulative safety)/history’s cumulative safety
7: if history is terminal then
8: set history’s value to the terminal reward
9: return history’s ser≤ risk bounding function

10: while history has any safe actions do
11: if all non-colliding children of current best action satisfy the risk bound then
12: for all children of current best action do
13: call Forward Update on the child history
14: if all Forward Updates returned true then
15: call Action Update on the current best action
16: return true
17: mark current best action as unsafe
18: set history’s best action largest valued safe action
19: return false

plemented. The first event ("shortest path" from [92]) fires only if the underlying search

finishes, and so is only useful for R/AO* (MCTS variants are never "done" searching since

they are asymptotic algorithms). The second event is a "heuristic progress" event, which

fires if the planner places a state into the policy that has a smaller heuristically estimated

cost to go (equivalently, larger reward) than for any state whose incident edge has been

collision checked. As one of the strengths of MCTS is that it does not need a heuristic, this

event is less useful here. The final implemented event, "constant depth," fires if the cur-

rent policy has at least a set number of unevaluated edges. The only implemented selector
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Procedure 12 Policy Update for Vulcan (history)
1: call Forward Update on history
2: if Forward Update returned false then
3: mark the action leading to history unsafe in every parent
4: return
5: if history is not the root then
6: Q=First-In-First-Out queue where re-adding any entry pushes it to the end
7: put all safe actions at history into Q
8: while Q is not empty do
9: get a history h and a set of actions {ai} from Q

10: call Action Update on h, {ai}
11: if Action Update changed the value of h then
12: for all parents of h do
13: Q adds all actions at the parent that lead to h

chooses the unchecked edges belonging to the first action in the policy that has unchecked

edges (the "forward selector" from [92]).

6.1.1 Lazy R/AO*

Table 6.1 collects performance data for R/AO* on the first Dubins Car task from chapter 3

(see Figure 3.6). RAO* benefits dramatically from lazy collision checking yet remains

inferior to regular AO* in terms of runtime. Regular AO* performs the same number

of collision checks as lazy RAO* with the constant depth event if the depth is set to the

number of uncertainty samples used for a single action: the constant depth event is roughly

equivalent to using the induced heuristic to run AO*. RAO* with shortest path or heuristic

progress events does fewer collision checks than regular AO*, but is still slower due to the

extra search effort from laziness.

In contrast, the data shows that AO* does not benefit from lazy collision checking with

any of the three implemented events. The shortest path and heuristic progress events do

slightly reduce the number of collision checks but force many extra AND and OR node

expansions. As a result, the total runtime increases. This suggests that for the current test

problem, the induced heuristic strikes an effective balance between minimizing collision

checks and search effort (represented by the number of AND and OR expansions). The
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underlying heuristic (the Euclidean distance to the goal) is fairly accurate in this environ-

ment as there are not terribly many obstacles and the vehicle is initially headed towards

the goal; laziness might perform better relative to the induced heuristic on a task where the

heuristic is less accurate. When using the induced heuristic, AO* conducts exclusively OR

expansions (which do not check constraints) until such time as there is an AND node on

the best path with estimated cost (using the induced heuristic) smaller than the estimated

cost of any of the OR nodes on the best path. This is a permissible event function for GLS

. AO* then conducts an AND expansion (i.e. checks for collisions and updates the policy)

of just that AND node before returning to OR expansions. This is a selection rule . The

induced heuristic itself could be implemented as an instance of the GLS approach (for hy-

pergraphs). This helps to explain the limited benefits of further lazy collision checking:

a (comparatively sophisticated) lazy scheme is already in place to reduce the number of

collision checks. While the induced heuristic does not appear to be quite as edge efficient

as some of the other possibilities, it is dramatically more vertex efficient. In a scenario with

sufficiently computationally expensive collision checks a runtime improvement might be

observed, but the effect would be at best incremental. In the observed problems, the total

reduction in collision check count via laziness applied on top of the induced heuristic is

merely 10%.

Table 6.1: Effects of three events (SP=shortest path, HP=heuristic progress, CD=constant
depth) on performance of R/AO* on a two obstacle search task.

Dur(s) Nodes Checks AND OR
RAO* 76 35,354 124,950 1,275 25

SP RAO* 31 112,594 2,646 5,814 114
HP RAO* 25 91,209 2,646 4,539 89
CD RAO* 10 38,641 2,842 1,428 28

AO* 6 1,381 2,842 29 25
SP/HP AO* 20 4,614 2,548 96 112
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6.1.2 Lazy Vulcan

For Vulcan, the Heuristic Progress and Shortest Path events are not strictly applicable, so

the focus is on the constant depth event. For relatively long permitted runtimes, laziness

can improve the quality of the solution Vulcan returns. Vulcan was tested with and without

laziness on the second task from chapter 3 (see Figure 3.7), using the same 51 maneuver

library but with a 9x9 uniform grid across ±3σ for uncertainty sampling. Accordingly,

the constant depth event fired when there were 81 unchecked edges. The risk tolerance was

20%. The predicted cost and risk presented in Table 6.2 were obtained from 36 independent

runs of the algorithm with a 180 second allowed runtime, which was sufficient for Vulcan

to stabilize its choice of initial action. The actual cost and risk are average and standard

deviation values from 1000 "closed loop" trials: the algorithm was run for 180 seconds,

the action chosen for the current state was executed, and then the algorithm was run again

(repeating until a constraint violation or goal region was reached). Laziness resulted in a

plan predicted to be lower cost but higher risk, and in practice the plan was cheaper but

risky (using almost the entire risk budget). Interestingly, the predictions were less accurate

for lazy Vulcan (despite the improved average performance); this is consistent with the

greater variation in achieved cost for the lazy variant.

Table 6.2: Performance information for Vulcan with and without the use of the constant
depth event Generalized Lazy Search Architecture.

Lazy Predicted Cost Actual Cost Cost Error Predicted Risk Actual Risk
No 7.113± 0.006088 7.123± 0.04046 0.198% 7.472%± 5.569% 6.7%
Yes 6.941± 0.01513 7.057± 0.09218 1.65% 12.62%± 1.905% 19.6%

The variability (perhaps "volatility" is a better word) of the actual performance of Lazy

Vulcan shown here is consistent with one limitation of laziness for Vulcan: with short run-

times (i.e. when used for online, suboptimal planning), laziness can cause serious planning

errors. The issue is that, when the available runtime is small, Lazy Vulcan may not have

time to "repair" a plan that has been discovered to have obstacles making it unsafe. Fig-
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ure 6.2, Figure 6.3, and Figure 6.4 show three environments in which lazy collision check-

ing with short (in all cases, 20 seconds) allowed planning time leads to severely degraded

performance. The plots show the obstacle layout as well as the trajectories considered by

(a sample run of) Vulcan while planning the first maneuver. In all cases, the 51 maneuver

library with a 13x13 uniform grid across ±3σ was used; the constant depth event fired

when 169 edges were unchecked. In the first scenario, Vulcan is able to achieve a 13/100

collision rate while lazy Vulcan crashes 28/100 times. The second example is more chal-

lenging; regular Vulcan violates the constraint 33/100 times while Lazy Vulcan crashes

45/100 times. In the grid environment, Vulcan collides 37/100 times while Lazy Vulcan

does so in 77/100 trials .

a). b).

Figure 6.2: This field consists of Poisson distributed quadrilaterals. The goal is to travel 6
meters downrange, with a cost penalty equal to the final distance to the red star. With a risk
tolerance of 20% and 20 seconds to plan, regular Vulcan accepts the low risk-low reward
option of traveling below the obstacle forest, but Lazy Vulcan tries to fly through the forest
and violates the risk tolerance.

a). b).

Figure 6.3: This field consists of more densely Poisson distributed quadrilaterals. The goal
is to travel 8 meters downrange, with a cost penalty equal to the final distance to the red
star. With a risk tolerance of 20% and 20 seconds to plan, regular Vulcan on average finds
a safer plan than Lazy Vulcan does.
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a). b).

Figure 6.4: In this regular grid, Lazy Vulcan initially thinks it can fly straight towards the
goal. When the lazy collision checking finds the box in the way, there is no longer time to
plan something safer.

When using Vulcan with short runtimes, the policy will in general be suboptimal (as

the algorithm is only asymptotically convergent). So in any situation where this is appro-

priate, solution cost-optimality is not a major concern. The primary effect of lazy collision

checking for Vulcan is to improve solution cost-optimality, which as shown above comes at

the cost of unexpectedly high risk plans. Trading a little bit of time or fuel savings for the

occasional wildly irresponsible plan seems a poor decision, so laziness is not recommended

for use with Vulcan at short runtimes.

6.1.3 Lazy MCTS

As with Vulcan, the Heuristic Progress and Shortest Path events are not applicable to

MCTS. The effects of laziness on MCTS broadly mirror the effects on Vulcan (unsurpris-

ing, since Vulcan is simply a variant). For extended planning times, laziness can provide

an incremental improvement in terms of cost at the expense of reduced predictive accuracy.

MCTS was run for 180 seconds with and without laziness on the same task as Vulcan (Fig-

ure 3.7, with 51 maneuvers, a 9x9 uniform grid of samples, and a cost function equal to

the distance traveled plus 1.3 times the remaining distance to the goal). The performance

is recorded in Table 6.3, which shows the same pattern as Table 6.2: improved average

case cost on execution, in exchange for increased error in predicting said cost. MCTS also

collides less often when laziness is used.
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Table 6.3: Performance information for MCTS with and without the use of the constant
depth event Generalized Lazy Search Architecture. The event fires when there are 81
unchecked edges in the current best path estimate. Average and standard deviation val-
ues were obtained from 100 trials.

Lazy Predicted Cost Actual Cost Cost Error Predicted Risk Actual Risk
No 7.234± 0.01088 7.227± 0.08494 0.0969% 2.852%± 1.182% 1%
Yes 7.198± 0.003747 7.184± 0.02635 0.195% 1.576± 0.5468% 0%

Figure 6.5: The top row shows the edges checked during search by MCTS on three of the
thirty random fields; the bottom row shows the edges checked by Lazy MCTS on the same.

However, as previously discussed the primary use case for MCTS is using short plan-

ning times to get "good enough" solutions. To study the utility of laziness in this applica-

tion, a set of thirty Poisson distributed obstacle fields were generated. The collision checks

done by a single execution of MCTS and Lazy MCTS for three of those fields are presented

in Figure 6.5; the same initial and goal positions are used for every task. The algorithms

perform roughly the same on the middle task, while MCTS is better on the left column and

Lazy MCTS is better on the right column. MCTS is allotted 20 seconds of planning time

per decision and seeks to minimize a cost defined as the distance traveled plus three times

the distance to the goal position. The double integrator model is used for dynamics and

the library is the same as for the previous set of examples. In 20 of the 30 cases, laziness
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Figure 6.6: Change in cost by introducing laziness versus change in rate of collision.

resulted in increased numbers of collisions; Figure 6.6 plots the change in average cost over

100 trials against the change in the number of collisions. All of the cases where laziness

reduced the number of collisions resulted in reduced costs; two cases where collisions in-

creased also reduced costs. In the remaining 18 cases, laziness resulted in more constraint

violations and increased average cost incurred. Moreover, the improvements offered by

laziness when they did occur were usually small; only 2 of the 12 cases where cost im-

proved yielded an improvement greater than 10% of the non-lazy cost (and only 4 exceed

5%). It appears that laziness will only rarely have a large effect on the quality of the policy

obtained for short runtimes, and when it does have a large effect the effect may be quite

negative: consider that in 10 of 30 scenarios, the number of collisions increased by 27 or

more in 100 trials. From an end-user perspective this is very undesireable behavior; minor

improvements in solution cost (when one has already accepted sub-optimal solutions by

deciding to use an anytime algorithm) are not worth the risk of extreme underperformance

as occurs in the case where laziness increases the average cost from 9.34 to 12.81 and the

collision rate from 5% to 74% .
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6.2 Discussion

The GLS architecture proves to be something of a disappointment; it is clearly beneficial

to RAO*, but the established events and selectors prove inferior to the specialized induced

heuristic. The induced heuristic itself lazily enforces constraints, as the exit states of ma-

neuvers are computed when the OR node is expanded but the collisions are not checked

until the AND node is expanded. As a result, AO* with the induced heuristic does not

benefit from further lazy collision checking wrapped around it. For the sampling based al-

gorithms, laziness provides minor benefits in terms of solution quality at extended planning

time. The primary use case for these algorithms, though, is for short planning times, where

laziness proves unreliable. In numerous tested scenarios, using lazy collision checking on

MCTS or Vulcan with only a short planning time leads to unacceptably elevated rates of

constraint violation, possibly in exchange for improvements in the average incurred cost.

Short planning times necessarily mean the user is willing to accept suboptimal solutions

from their planner, so using a variant that poses a risk of extreme constraint violation rates

in exchange for slightly less suboptimal solutions seems unreasonable.
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CHAPTER 7

CONCLUSION

7.1 Contributions

This work has extended the motion primitive framework developed by Frazzoli et al. [1]

to systems with parametric uncertainty by leveraging an explicit uncertainty quantification

technique based on the Koopman operator [101]. For the problem of path planning under

parametric uncertainty with chance constraints, these uncertain motion primitives result in a

Chance-Constrained Markov Decision Process. Experimental results demonstrate two key

advantages of this approach over previous motion primitive techniques for uncertain sys-

tems. First, in contrast to both robust and deterministic approaches, the chance-constrained

formulation allows path optimization to be smoothly traded for collision risk. Secondly,

compared to Monte Carlo-based schemes, the explicit Koopman operator approach allows

the planner to accurately quantify risk with a small number of samples, reducing computa-

tional effort to achieve a given level of accuracy.

By restricting the action set of the problem to the set of uncertain maneuvers, the

CCMDP obtained via the uncertain motion primitive formulation can be solved as a search

problem on an And/Or tree [99]. Chance constraints can be incorporated in this setting by

algorithms such as RAO* [55], but results have shown that this algorithm scales poorly to

problems with large numbers of actions (as is desireable in the uncertain motion primitive

setting). Accordingly, this work presented a heuristic on actions for And/Or search (dubbed

the "induced" heuristic) that leverages the computational advantages of motion primitives

and the Koopman operator to accelerate the hypergraph search. AO* with the induced

heuristic risks performing more OR expansions than RAO* in exchange for generally re-

ducing the number of AND expansions. In the motion primitive context, OR expansions

106



are cheap as the final state of a given maneuver realization can be computed immediately

from the group displacement history. AND expansions remain expensive due to the need

for collision checking, though, so the ability of the induced heuristic to reduce the number

of those expansions means it is generally faster, often much faster, than RAO*. Addition-

ally, techniques were developed to accelerate search by efficiently converting the search

tree into a search graph, by using decaying numbers of parameter samples as the time hori-

zon increases, and by exploiting simultaneous symmetry in dynamics and constraints to

offline computation necessary for planar and convex polytopic constraints.

The key calculation involved in chance constrained path planning is the expected value.

In addition to the need to compute expected costs for the objective function, the probability

of violating a constraint is itself an expected value of an indicator function. Expected values

are integrals whose integration domain is the uncertainty set and so such calculations can

benefit from techniques from numerical integration. chapter 4 describes a process using

mixed integer-linear programming to construct sparse integration schemes tailored to the

problem of search on a hypergraph. Prior work has shown that sparse schemes can be con-

structed by downsampling dense schemes [75]; using mixed integer-linear programming

to do so ensures that the resulting schemes are as sparse as possible, while also enforcing

technical requirements necessary for compatibility with hypergraph search. The naive ap-

proach to constructing a MILP for this results in a poorly conditioned problem involving

enormous numbers of variables; leveraging the inherent symmetry of many integration do-

mains as described in [75] helps ensure the MILP is tractable. Additional improvements

in tractability are obtained through scaling tricks. Once rendered tractable, the MILP is an

improvement on the suboptimal algorithm presented by [75], as it yields maximally sparse

rules. Optimal sparse schemes obtained via MILP are shown to provide dramatic runtime

reductions for chance constrained path planning.

In addition to deterministic sparse integration schemes, high dimensional integration

can be tackled via Monte Carlo methods. Accordingly, chapter 5 provides a comparative
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analysis of AO* and two Monte Carlo Tree Search methods: conventional MCTS, as well

as Vulcan, which is capable of enforcing chance constraints. AO*, which is both optimal

and complete, yields the best possible policy for a given task. Thus, on tasks where it is

practical to wait for AO* to finish, it is preferred over MCTS or Vulcan which would yield

inferior solutions. AO* is particularly useful in problems with demanding risk tolerances,

as Vulcan’s performance tends to degrade in these settings while AO*’s may actually bene-

fit. AO*’s planning time can be reduced by making the risk tolerance more stringent. This

occurs because tightening the risk tolerance reduces the set of feasible policies; as a result,

AO* can discard suboptimal policies sooner. The recommended use case for MCTS or Vul-

can is situations where the AO* solution time is excessive. These algorithms can provide

a guaranteed update rate and in many situations can offer a moderate quality solution very

quickly, even when the optimal solution is difficult to compute (and so AO* is impractical).

Of the two types of expected value calculation, the cost component is in general quite

tractable as the integrand is usually cheap to evaluate. The motion primitive formulation

is particularly helpful here, as any components of the cost function that respect the sym-

metry of the dynamics (such as a distance traveled component in many settings) can be

computed offline and stored just like the displacements. Thus, the constraint evaluations

are a major driver of the computational cost of not only AO*, but also MCTS and Vulcan

as well. In specialized settings the presorting technique described in chapter 3 helps, but

for general constraints it is not applicable. This work presented a lazy collision checking

(or, more generally, lazy constraint evaluation) paradigm based on the work of Mandalika

et al. [92] and applied it to RAO*, AO*, MCTS, and Vulcan on a variety of tasks. Lazy

collision checking proved beneficial to RAO* but was outperformed by AO* using the in-

duced heuristic. This is a result of the fact that the induced heuristic can itself be viewed

as a lazy collision checking approach. For extended planning times lazy collision check-

ing was found to offer small benefits for Vulcan and MCTS, but in the recommended use

case of problems with short planning times it proved unreliable. While some problems saw
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improved performance due to laziness, others saw dramatic increases in collision rates.

7.2 Future Directions

This work has shown that for problems of large scale and (especially) high dimensional

uncertainty, AO* is not practical as an online planning algorithm. However, using MCTS

or Vulcan directly on such problems can lead to poor quality solutions. Future work should

look to marry the quality of AO* solutions with the anytime nature of MCTS-style algo-

rithms. One possible approach would be to use AO* offline to produce a coarse policy

using low resolution sampling of the uncertainty and then use this policy as the default

policy for an MCTS algorithm. This would tend to improve the quality of the samples and

could thus improve solution quality.

In the realm of chance constraints, while Vulcan represents a workable solution to the

challenge of enforcing chance constraints in an MCTS style algorithm, it attempts to guar-

antee constraint satisfaction despite probabilistically approximating an optimal solution.

There may be benefit in accepting a degree of approximation error in not just cost optimal-

ity but also constraint satisfaction. This might alleviate a trend observed in chapter 5, where

pure penalty MCTS returns lower cost solutions than Vulcan at fixed planning times; the

need to enforce the chance constraint reduces the convergence rate of Vulcan below what

MCTS "should" be capable of.

Finally, this work has assumed access to the "true" distribution of the uncertain parame-

ters. It is straightforward to extend the AND/OR search approach to handle partial observ-

ability, which would allow the system to update its parameter distribution online (see, for

example, RAO* in [55]). However, this is computationally challenging as it increases the

dimension of the uncertainty domain to also include the dimension of the observation do-

main. If actions and observations are sufficiently decoupled, one could potentially dispense

with the full partial observability formulation and simply allow an estimator to update the

parameter distribution during closed loop planning; provided the support of the param-

109



eter distribution does not change, the same realizations can be used (just with different

weights/probabilities during the sum).
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APPENDIX A

INVARIANCE OF DUBINS CAR MODEL TO ACTION OF SE{2}

Proof:

g◦ρµ(t, t0, x0, s) = ρµ(t, t0, g◦x0, s) ⇐⇒ g◦[x0+f(x0, µ(t), s)dt] = g◦x0+f(g◦x0, µ(t), s)dt

(A.1)

for f the controlled derivative of the system. In the case of the Dubins Car model given in

equation (Equation 2.7) and with G = SE{2}:

x0 =



x

y

θ

ω


, s =

wx

wy

 , g =

cos(ϕ) − sin(ϕ) p

sin(ϕ) cos(ϕ) q

0 0 1

 , µ(t) = u, f(x0, µ(t), s) =



v cos(θ) + wx

v sin(θ) + wy

ω

u


(A.2)

which yields:

g ◦ x0 =



cos(ϕ)x− sin(ϕ)y + p

sin(ϕ)x+ cos(ϕ)y + q

θ + ϕ

ω


⇒ f(g ◦ x0, µ(t), s) =



v cos(θ + ϕ) + wx

v sin(θ + ϕ) + wy

ω

u


(A.3)
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Then

g ◦ [x0 + f(x0, µ(t), s)dt] (A.4)

=



cos(ϕ)[x+ v cos(θ)dt+ wxdt]− sin(ϕ)[y + v sin(θ)dt+ wydt] + p

sin(ϕ)[x+ v cos(θ)dt+ wxdt] + cos(ϕ)[y + v sin(θ)dt+ wydt] + q

θ + ϕ+ ωdt

ω + udt


(A.5)

=



cos(ϕ)x− sin(ϕ)y + p+ [v cos(θ + ϕ) + cos(ϕ)wx − sin(ϕ)wy]dt

sin(ϕ)x+ cos(ϕ)y + q + [v sin(θ + ϕ) + sin(ϕ)wx + cos(ϕ)wy]dt

θ + ϕ+ ωdt

ω + udt


(A.6)

Whereas the right hand side becomes:

g ◦ x0 + f(g ◦ x0, µ(t), s)dt =



cos(ϕ)x− sin(ϕ)y + p+ [v cos(θ + ϕ) + wx]dt

sin(ϕ)x+ cos(ϕ)y + q + [v sin(θ + ϕ) + wy]dt

θ + ϕ+ ωdt

ω + udt


(A.7)

The difference is only that the wind has been rotated along with the trajectory on the LHS.

So the dynamics are invariant as long as the wind probability distribution is rotationally

symmetric.
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