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SUMMARY

Reinforcement learning is a framework for solving sequential decision-making prob-

lems without requiring the environmental model, and is viewed as a promising approach

to achieve artificial intelligence. However, there is a huge gap between the empirical suc-

cesses and the theoretical understanding of reinforcement learning. In this thesis, we make

an effort to bridging such gap.

More formally, this thesis focuses on designing data-efficient reinforcement learning

algorithms and establishing their finite-sample guarantees. Specifically, we aim at answer-

ing the following question: suppose we carry out some reinforcement learning algorithm

with finite amount of samples (or with finite number of iterations), then what can we say

about the performance of the output of the algorithm? The more detailed motivation and

the research background are presented in Chapter 1.

Part I: Stochastic Approximation. The main body of this thesis is divided into three

parts. In the first part of the thesis, we focus on studying the stochastic approximation

method. Stochastic approximation is the major workhorse for large-scale optimization and

machine learning, and is widely used in reinforcement learning for both algorithm design

and algorithm analysis. Therefore, understanding the behavior of SA algorithms is of fun-

damental interest to the analysis of RL algorithms.

In Chapter 2 and Chapter 3, we consider Markovian stochastic approximation under a

contractive operator and under a strongly pseudo-monotone operator, and establish their

finite-sample guarantees. These two results on stochastic approximation are used in later

parts of the thesis to study reinforcement learning algorithms with a tabular representa-

tion and with linear function approximation. The main technique we use to analyze those

stochastic approximation algorithms is the Lyapunov-drift method. Specifically, we con-

struct novel Lyapunov functions (e.g., generalized Moreau envelope in the case of stochas-

tic approximation under a contraction assumption) to capture the dynamics of the corre-
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sponding stochastic approximation algorithms, and control the discretization error and the

stochastic error. This enables us to derive the one-step drift inequality, which can be re-

peatedly used to establish the finite-sample bounds.

In Chapter 4, we switch our focus from finite-sample analysis to asymptotic analysis,

and characterize the stationary distribution of the centered-scaled iterates of several popu-

lar stochastic approximation algorithms. Specifically, we show that for stochastic gradient

descent, linear stochastic approximation, and contractive stochastic approximation, the sta-

tionary distribution of the centered iterates (after proper scaling) is a Gaussian distribution

with mean zero and a covariance matrix being the unique solution of an appropriate Lya-

punov equation. For stochastic approximation beyond these three types, we numerically

demonstrate that the stationary distribution may not be Gaussian in general. The main

technique we used for such asymptotic analysis is also Lyapunov method, where the char-

acteristic function was used as the test function.

Part II: Reinforcement Learning with a Tabular Representation. In the second

part of this thesis, we focus on reinforcement learning with a tabular representation. The

preliminaries of reinforcement learning are presented in Chapter 5.

In Chapter 6 and Chapter 7, we consider the TD-learning algorithm for solving the

policy evaluation problem, which refers to the problem of estimating the performance of a

given policy. Solving the policy evaluation problem is an important intermediate step in the

popular actor-critic framework for ultimately finding an optimal policy. More specifically,

we consider on-policy TD-learning algorithms such as n-step TD and TD(λ) in Chapter 6.

By establishing finite-sample guarantees of n-step TD and TD(λ) as explicit functions of

the parameters n and λ, we provide theoretical insight into the open problem about the

efficiency of bootstrapping, which is about how to choose the parameters n and λ so that

n-step TD and TD(λ) achieve their best performance.

In Chapter 7, we study the problem of policy evaluation using off-policy sampling,

where the policy used to collect samples and the policy whose value function we aim at
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estimating is different. We provide finite-sample analysis of a generic off-policy multi-step

TD-learning algorithm, which subsumes several popular existing algorithms such asQπ(λ),

Tree-Backup(λ), Retrace(λ), and V -trace as its special cases. In addition, our finite-sample

bounds demonstrate a trade-off between the variance (which arises due to the product of

the importance sampling ratios) and the bias in the limit point (which arises due to various

modifications to the importance sampling ratios). Understanding such bias-variance trade-

off is at the heart of off-policy learning.

In Chapter 8, we consider the Q-learning algorithm for directly finding an optimal

policy and present its finite-sample guarantees. The finite-sample bounds imply an Õ(ϵ−2)

sample complexity, which is known to be optimal up to a logarithmic factor. In addition, our

finite-sample bounds also capture the dependence on other importance parameters of the

reinforcement learning problem, such as the size of the state-action space and the effective

horizon.

Part III: Reinforcement Learning with Linear Function Approximation. In the last

part of this thesis, to overcome the curse of dimensionality in reinforcement learning, we

consider reinforcement learning with linear function approximation. Specifically, we focus

on the off-policy setting, where the deadly triad is present, and can result in instability of

reinforcement learning algorithms.

In Chapter 9, we consider off-policy TD-learning with linear function approximation,

where the deadly triad appears. We design a single time-scale off-policy TD-learning us-

ing generalized importance sampling ratios and multi-step bootstrapping, and establish its

finite-sample guarantees. The algorithm is provably convergent in the presence of the

deadly triad, and does not suffer from the high variance in existing off-policy learning

algorithms.

The TD-learning algorithm proposed in Chapter 9 is later used in Chapter 10 to solve the

policy evaluation sub-problem in the general policy-based framework with various policy

update rules, including approximate policy iteration and natural policy gradient. By only
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exploiting the contraction property and the monotonicity property of the Bellman operator,

we establish an overall Õ(ϵ−2) sample complexity for a wide class of policy-based methods

using off-policy sampling and linear function approximation.

In Chapter 11, we focus on Q-learning with linear function approximation (where the

deadly triad naturally appears), and establish its finite-sample bounds under an assumption

on the discount factor of the problem. In particular, we show that when the discount factor

is sufficiently small, the deadly triad challenge can be overcome.

In Chapter 12, we further remove the restriction on the discount factor by designing a

convergent variant of Q-learning with linear function approximation using target network

and truncation. This is the first variant of Q-learning with linear function approximation

that uses a single trajectory of Markovian samples, and is provably stable without requir-

ing strong assumptions. In addition, the algorithm achieves the optimal O(ϵ−2) sample

complexity (which matches with Q-learning in the tabular setting) up to a function approx-

imation error.
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CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1 Introduction

Reinforcement learning (RL) is a paradigm where an agent learns to accomplish tasks by

interacting with the environment, similar to how humans learn [1]. RL is therefore viewed

as a promising approach to achieve artificial intelligence, as evidenced by the remarkable

successes in solving many practical problems such as the game of Go [2], robotics [3],

autonomous-driving [4], healthcare [5], and very recently, controlling the nuclear fusion

plasma [6].

Despite the empirical successes, theoretically RL algorithms are in general not well-

understood. A typical example is Q-learning with function approximation, which although

achieves remarkable performance in practical applications [7], is theoretically known to

diverge in general [8]. The focus of this thesis is on developing data-efficient RL algorithms

with provable finite-sample guarantees. More formally, let {xk} be the iterates generated

by some iterative RL algorithm. The goal is to study the decay of difference between xk

and x∗ (which is the desired limit point) as a function of the number of iterations k. Such

results not only provide theoretical insights into RL algorithms, but also can be used as

guidelines for both practical algorithm implementation and new algorithm design.

RL has three major ingredients, viz., Markov decision process (MDP), stochastic ap-

proximation (SA), and function approximation . The RL problem is usually modeled as an

MDP. However, the environmental model of the MDP (e.g. transition probabilities, reward

function, etc) is unknown to the agent. In each time step, the agent is at some state, and can

take an action to determine the next state, as well as the stage-wise rewards, in a stochastic

manner. The goal is to find an optimal policy of choosing actions so that its corresponding
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long-term reward is maximized.

It turns out that solving the RL problem is equivalent to solving a system of equations

known as the Bellman equation [9], which leads to several popular iterative algorithms,

including but not limited to value iteration, policy iteration, and policy gradient. However,

since the environmental model is unknown in RL, one needs to work with iterative algo-

rithms in the presence of noise. This leads to the SA method [10]. In fact, most of the RL

algorithms can be modeled by SA algorithms for solving some suitable target equations.

Beyond RL, SA algorithms are used widely in other aspects of machine learning and op-

timization, with the popular stochastic gradient descent (SGD) being a typical example.

Therefore, studying the behavior of general SA algorithms is of fundamental interest.

A major challenge of RL in implementation is that most of the classical algorithms are

not tractable when facing large state and action spaces. To overcome this difficulty, RL

algorithms are incorporated with function approximation, where the main idea is to restrict

the searching space to a pre-defined subset, thereby reducing the complexity of the problem.

Although this idea has led to many empirical successes, function approximation is one the

infamous “deadly triad” [1] (the other two are off-policy learning and bootstrapping), which

can result in divergence [8]. This motivates us to design algorithms that have provable

convergence bounds when facing the “deadly triad”.

1.2 Overview of Main Contributions

In this section we present a high-level overview of the main contributions.

1.2.1 Stochastic Approximation

As we mentioned earlier, RL algorithms in their nature are stochastic iterative algorithms

for solving various Bellman equations. Due to the special sampling procedure in RL, the

algorithms usually involve Markovian noise. In Part I of this thesis, we focus on studying

Markovian SA algorithms. The results serve as the major theoretical workhorse for our
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Figure 1.1: Summary of My Work

analysis of RL algorithms in Part II and Part III.

In Chapter 2 and Chapter 3, we focus on finite-sample analysis of Markovian SA algo-

rithms. To provide a unified framework, we develop a Lyapunov approach, which involves

two major challenges. One is the contruction of a valid Lyapunov function to capture the

dynamics of the corresponding SA algorithm, and the other is to handle the stochastic error

due to the Markovian noise.

In Chapter 2, we consider SA algorithms under contractive operators, where we con-

struct a novel Lyapunov function called the generalized Moreau envelope. Previously, the

lack of a Lyapunov function for studying contractive SA algorithms imposes major diffi-

culties in the analysis [11, Section 4.3]. We overcome this challenge by constructing the

generalized Moreau envelope, which serves as a valid Lyapunov function for SA algo-

rithms under arbitrary norm contraction. In Chapter 3, we consider SA algorithms involv-

ing strongly pseudo-monotone operators, where the Euclidean norm-square function serves

as a valid Lyapunov function.

To handle the Markovian noise for both contractive SA algorithms and SA algorithms
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under strongly pseudo-monotone operators, we use a conditioning argument together with

the fast mixing of Markov chains. Such conditioning argument was first used in [11] for

studying the asymptotic convergence of linear SA algorithms with Markovian noise. Later,

it was used more explicitly in [12] for deriving finite-sample bounds of linear SA algo-

rithms. In this thesis, we extend this technique to studying nonlinear Markovian SA algo-

rithms, whose analysis is fundamentally more challenging.

Beyond finite-sample analysis, we also provide asymptotic analysis of SA algorithms

in terms of the stationary distribution of the centered-scaled iterates in Chapter 4. Specif-

ically, we show that for SGD, linear SA, and contractive SA, the corresponding stationary

distribution is a Gaussian distribution with mean zero and a covariance matrix being the

unique solution of an appropriate Lyapunov equation. We also adopt a Lyapunov approach

here to establish the results, where the characteristic function serves as a test function. For

more general SA algorithms, we show numerically that unlike central limit theorem type

of results, the stationary distribution need not be Gaussian in general.

1.2.2 Reinforcement Learning with a Tabular Representation

In the second part of this thesis, we provide finite-sample guarantees of various tabular RL

algorithms including on-policy TD-learning algorithms such as n-step TD and TD(λ), off-

policy TD-learning algorithms such as Qπ(λ) [13], Tree-Backup(λ) (henceforth denoted

by TB(λ)) [14], Retrace(λ) [15], and Q-trace [16], etc, and off-policy control algorithms

such as Q-learning [17].

On-Policy TD-Learning: For various on-policy bootstrapped TD-learning algorithms

such as n-step TD and TD(λ), there is key problem about the efficiency of bootstrapping

[18], which refers to the question about how to choose the parameters n (or λ) so that n-step

TD (or TD(λ)) achieves its optimal performance. By establishing finite-sample bounds of

n-step TD (and TD(λ)) as an explicit function of n (and λ), we provide theoretical insights

into the efficiency of bootstrapping. For example, the optimal choice of n in n-step TD is
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roughly of the size O(1/ log(1/γ)), where γ is the discount factor of the RL problem.

Off-Policy TD-Learning: When the policy used to collect samples is different than the

policy whose value function we want to estimate, the corresponding TD-learning algorithm

is called off-policy TD-learning. Off-policy learning is sometimes preferred in practice due

to both practical reasons and theoretical reasons. However, it is more difficult to analyze

compared to on-policy learning algorithms. By identifying a generalized Bellman operator

in off-policy TD-learning and investigating its contraction properties, we provide finite-

sample guarantees for a variety class of multi-step off-policy TD-learning algorithms and

compare their performance analytically. In addition, our results explicitly capture the trade-

offs between the high variance (due to importance sampling ratios) and the bias in the limit

point, which is a fundamental problem in off-policy TD-learning algorithms.

Q-Learning: Since Q-learning is the most well-known value-based RL algorithm, its

behavior is of fundamental interest to the community. Our finite-sample bounds imply

an Õ
(

(|S||A|)3
(1−γ)5ϵ2

)
sample complexity to achieve E[∥Qk − Q∗∥∞] ≤ ϵ, where ϵ is a given

accuracy. This is the state-of-the-art mean-square sample complexity of Q-learning.

1.2.3 Reinforcement Learning with Linear Function Approximation

In the last part of the thesis, we consider RL with linear function approximation. In real-

ity, RL algorithms usually face computational challenges when the size of the state-action

space is large. This motivates the use of function approximation. However, when function

approximation is used together with off-policy sampling, the infamous deadly triad [1] usu-

ally appears and the corresponding RL algorithm can diverge [8]. In Part III of this thesis,

we design convergent RL algorithms in the presence of the deadly triad and establish their

finite-sample guarantees.

Off-Policy TD-Learning with Linear Function Approximation: In Chapter 9, to over-

come the deadly triad in TD-learning, we propose a generic single time-scale algorithm of

multi-step TD-learning with generalized importance sampling ratios, including two specific
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algorithms: the λ-averaged Q-trace algorithm and the two-sided Q-trace algorithm. We es-

tablish their finite-sample convergence guarantees, characterize the limit points as solutions

to generalized multi-step projected Bellman equations (PBEs), and provide performance

bounds on the limit points in terms of the error compared to the true value functions.

Policy-Based Algorithms under Off-policy Sampling and Linear Function Approxima-

tion: In Chapter 10, we consider a general policy-based framework where the policy eval-

uation problem is solved with our proposed off-policy TD-learning algorithm (presented in

Chapter 9), and the policy improvement uses various policy update rules, including approx-

imate policy iteration and natural policy gradient. We provide a unified approach to show

that the overall sample complexity for all these algorithms is Õ(ϵ−2), which matches with

the sample complexity of value-based RL algorithms such as Q-learning. Importantly, to

establish the results, we only exploit the contraction property and the monotonicity prop-

erty of the Bellman operators.

Q-Learning with Linear Function Approximation: Q-learning with function approxi-

mation is one of the most empirically successful while theoretically mysterious RL algo-

rithms, and was identified in [18] as one of the most important theoretical open problems

in the RL community. Even in the basic linear function approximation setting, there are

well-known divergent examples [8].

In Chapter 11, we provide sufficient conditions under which Q-learning with linear

function approximation provably converges. In Chapter 12, we further propose a stable

design for Q-learning with linear function approximation using target network and trunca-

tion, and establish its Õ(ϵ−2) sample complexity up to a function approximation error. This

is the first variant of Q-learning with linear function approximation that uses a single tra-

jectory of Markovian samples, and is provably stable without requiring strong assumptions

or modifying the problem parameters.
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Part I

Stochastic Approximation
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CHAPTER 2

STOCHASTIC APPROXIMATION UNDER A CONTRACTIVE OPERATOR

2.1 Introduction

Solving optimization or machine learning problems usually reduces to solving root-finding

problems. For example, minimizing a convex objective function is equivalent to finding the

zeros of its gradient operator. Similarly in RL, finding an optimal policy essentially boils

down to solving the Bellman equation.

To solve systems of equations, we usually resort to iterative algorithms. As we will

see in the second part of this thesis, at the heart of RL is the problem of iteratively solving

the Bellman equation using noisy samples, i.e. solving a fixed-point equation of the form

F̄ (x) = x. Here, F̄ (·) is a contractive operator with respect to a suitable norm, where

we only have access to samples from noisy versions of the operator. Such fixed-point

equations, more broadly, are solved through the framework of SA algorithms [10], with

several RL algorithms such as Q-learning and TD-learning being examples there-of. This

chapter focuses on understanding the evolution of such a noisy fixed-point iteration through

the lens of SA, and providing finite-sample convergence results.

More formally, motivated by applications in RL, we consider an SA algorithm of the

following form.

Algorithm 1 SA under a Contractive Operator

1: Input: Integer k′, and initialization x0 ∈ Rd

2: for k = 0, 1, · · · , k′ − 1 do
3: xk+1 = xk + αk (F (xk, Yk)− xk + wk)
4: end for
5: Output: xk′

Here in Algorithm 1, {αk} is a sequence of stepsizes, {Yk} is a Markov chain with

a finite state-space Y and a unique stationary distribution µY , F : Rd × Y 7→ Rd is a

8



nonlinear operator, and {wk} is a random process representing the additive extraneous

noise. Let F̄ (·) = EY∼µY
[F (·, Y )], and we assume that F̄ (·) is a contraction mapping with

respect to some arbitrary norm, denoted by ∥ · ∥c. By rewriting the main update equation

of Algorithm 1 as

xk+1 − xk = αk(F̄ (xk)− xk)︸ ︷︷ ︸
Expected Update

+αk(F (xk, Yk)− F̄ (xk))︸ ︷︷ ︸
Markovian Noise

+ αkwk︸ ︷︷ ︸
Martingale Difference Noise

, (2.1)

we see that Algorithm 1 is a stochastic variant of the fixed-point iteration (with stepsizes)

xk+1 = (1 − αk)xk + αkF̄ (xk), and hence is an SA algorithm for solving the fixed-point

equation

F̄ (x) = x. (2.2)

Our goal is to characterize the behavior of the quantity E[∥xk − x∗∥2c ] as a function of k,

where x∗ is the unique solution to Equation 2.2.

To derive finite-sample bounds, two conditions are pertinent: (1) the norm in which the

operator F̄ (·) contracts, and (2) the properties of the effective noise, i.e.,Nk := F (xk, Yk)−

F̄ (xk) + wk in the case of Equation 2.1. In prior literature, if the conditional second mo-

ment of the noise {Nk} is uniformly bounded by a constant, then the norm with respect to

which F̄ (·) being a contraction becomes irrelevant, and it is possible to derive finite-sample

convergence guarantees [19, 20, 21, 22]. When the second moment of the noise is not uni-

formly bounded, then finite-sample bounds can be derived in the case where the norm for

contraction of F̄ (·) is the Euclidean norm [11, 23]. However, in many RL problems, the

contraction of F̄ (·) occurs with respect to a different norm (e.g. the ℓ∞-norm [17] or a

weighted variant [24]). Further, due to the Markovian sampling in RL, conditioned on the

past, the second moment of the norm of the noise scales affinely with the current iterate,

and in general, no uniform bound exists.

An important practical application of this setting with ℓ∞-norm contraction and un-
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bounded noise is the well-known V -trace algorithm for solving the policy evaluation prob-

lem using off-policy TD-learning [1]. Its variants form the basis of today’s distributed RL

platforms like IMPALA [25] and TorchBeast [26] for multi-agent training. It has been used

at scale in the recent Deepmind City Navigation Project “Street Learn” [27]. Therefore,

deriving finite-sample convergence results for SA under contraction of F̄ (·) with respect to

general norms, and handling unbounded noise are of fundamental interest. In this chapter,

we answer the following general question in the affirmative:

Can we provide finite-sample convergence guarantees for the SA algorithm when the

norm of contraction of F̄ (·) is arbitrary, and the second moment of the effective noise

conditioned on the past scales affinely with respect to the squared-norm of the current

iterate?

To the best of our knowledge, except under special conditions on the norm for contrac-

tion of F̄ (·) and/or strong assumptions on the noise, such finite-sample error bounds have

not been established.

2.1.1 Main Contributions

We establish finite-sample guarantees (with various choices of stepsizes) of Algorithm 1.

Specifically, we show that when using constant stepsize αk ≡ α, the convergence rate

is geometric, with asymptotic accuracy approximately O(α log(1/α)). When using di-

minishing stepsizes of the form α/(k + h)ξ (where ξ ∈ (0, 1]), the convergence rate is

O(log(k)/kξ), provided that α and h are appropriately chosen. In addition, our bound also

involves a (possibly dimension-dependent) constant that is determined by the contraction

norm. In the special case of ℓ∞-norm contraction, we show that such constant scales only

logarithmically in terms of the dimension of the iterates, and is not improvable in general.

The key idea is to study the drift of a carefully constructed potential/Lyapunov func-

tion. We obtain such a potential function by smoothing the norm-squared function, and the

resulting valid Lyapunov function is called the generalized Moreau envelope.
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2.1.2 Related Literature

The SA method, originally proposed in [10], is an iterative method for solving root-finding

problems with incomplete information. Early literature focus on asymptotic convergence

of SA algorithms [28]. In particular, for SA under a contractive operator, its asymptotic

convergence was established in [24, 29] using a supermnartingale convergence approach,

and in [28, 30, 31] using an ODE approach. Specifically, given certain assumptions, it was

shown in [32, 33] that the SA algorithm converges almost surely as long as the correspond-

ing ODE is stable. The ODE approach was extended to more general cases in [34, 35,

36], where the ODE lacks stability, or has multiple equilibrium points. The convergence of

various SA algorithms such as SA with Markovian noise and multiple time-scale SA was

studied in [37, 36] and [38, 39] respectively. While the results presented were very general,

they study SA algorithms in the asymptotic regime. In this part of the thesis, we perform

finite-sample analysis, which is different in flavor and provides stronger finite-sample con-

vergence guarantees.

For linear SA algorithms, finite-sample mean-square bounds were established for both

i.i.d. sampling and Markovian sampling in [40, 12]. Concentration results were established

in [41, 42]. For non-linear SA algorithms, finite-sample bounds in general are only derived

for special forms of SA algorithms, such as SGD [23, 43, 44], and Q-learning. We will

present a thorough literature review on Q-learning in the second part of this thesis. More-

over, unlike i.i.d. sampling, in the case of Markovian sampling, an artificial projection

(onto a ball) is introduced in the algorithm to ensure that the iterates are bounded [45].

2.1.3 Summary of Our Techniques

We now give a more detailed description of the techniques we use. To provide intuition,

assume for now that the norm with respect to which F̄ (·) being a contraction is the ℓp-norm

for some p ∈ [2,∞). Consider the ODE associated with the SA: ẋ(t) = F̄ (x(t)) − x(t).

It is shown in [33, chapter 10] that the function W (x) = ∥x− x∗∥p satisfies d
dt
W (x(t)) ≤
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−κW (x(t)) for some κ > 0, which implies the solution x(t) of the ODE converges to its

equilibrium point x∗ geometrically fast. The term κ corresponds to a negative drift.

In order to obtain finite-sample bounds, in this chapter we study the SA directly, and

not the ODE. Then, the Lyapunov function W (x) cannot be directly used to analyze the

SA algorithm due to the discretization error and stochastic error. However, suppose we

can find a function M(x) that gives negative drift, and is L – smooth, where L > 0 is the

smoothness parameter. Then, we have a handle to deal with the discretization error and the

error caused by the noise to obtain:

E[M(xk+1 − x∗)] ≤ (1−O(αk) + o(αk))E[M(xk − x∗)] + o(αk), (2.3)

which implies a contraction in E[M(xk+1 − x∗)]. Therefore, a finite-sample error bound

can be obtained by recursively applying the previous inequality. The key point is that

M(x)’s smoothness and its negative drift with respect to the ODE produces a contraction

(1 − O(αk) + o(αk)) for {xk}. Based on the above analysis, we see that the Lyapunov

function for the SA in the case of ℓp-norm contraction should be M(x) = 1
2
∥x − x∗∥2p,

which is known to be smooth [46].

However, in the case where the contraction norm ∥ · ∥c is arbitrary, since the function

f(x) = 1
2
∥x − x∗∥2c is not necessarily smooth, the key difficulty is to construct a smooth

Lyapunov function. An important special case is when ∥·∥c = ∥·∥∞, which is applicable to

many RL algorithms. We provide a solution to this where we construct a smoothed convex

envelopeM(x) called the generalized Moreau envelope that is smooth with respect to some

norm ∥ · ∥s, and it is a tight approximation to f(x), which essentially guarantees that it is

a Lyapunov function for the ODE with a negative drift. This lets us prove a convergence

result akin to the case when f(x) is smooth.
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2.2 Assumptions

In this section, we formally state our assumptions for studying Algorithm 1.

Assumption 2.2.1 (Contraction Mapping). The operator F̄ (·) is a contraction mapping

with respect to some arbitrary norm ∥ · ∥c, i.e., there exists β ∈ (0, 1) such that

∥F̄ (x1)− F̄ (x2)∥c ≤ β∥x1 − x2∥c, ∀ x1, x2 ∈ Rd.

Under Assumption 2.2.1, Equation 2.2 has a unique solution [47], which we have de-

noted by x∗.

Assumption 2.2.2 (Lipschitz continuity). There exist A1, B1 > 0 such that

(1) ∥F (x1, y)− F (x2, y)∥c ≤ A1∥x1 − x2∥c for any x1, x2 ∈ Rd and y ∈ Y ,

(2) ∥F (0, y)∥c ≤ B1 for any y ∈ Y .

Let P ∈ R|Y|×|Y| be the transition probability matrice of the Markov chain {Yk}, and

let ∥ · ∥TV be the total variation distance between probability distributions.

Assumption 2.2.3 (Uniform Ergodicity). The Markov chain M = {Yk} has a unique

stationary distribution µY , and there exist C > 0 and σ ∈ (0, 1) such that

max
y∈Y

∥P k(y, ·)− µY (·)∥TV ≤ Cσk, ∀ k ≥ 0.

Remark. Since the state-space Y of the Markov chain {Yk} is finite, Assumption 2.2.3 is

satisfied when {Yk} is irreducible and aperiodic [48].

Under Assumption 2.2.3, we next introduce the notion of Markov chain mixing.

Definition 2.2.1. For any δ > 0, the mixing time tδ(M) of the Markov chain M = {Yk}

with precision δ is defined by

tδ(M) = min

{
k ≥ 0 : max

y∈Y
∥P k(y, ·)− µY (·)∥TV ≤ δ

}
.
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For simplicity of notation, in this chapter of the thesis, we will just write tδ for tδ(M).

Note that Assumption 2.2.3 implies tδ ≤ log(C/σ)+log(1/δ)
log(1/σ)

for any δ > 0, which further

implies that limδ→0 δtδ = 0. This property is important in our analysis for controlling the

Markovian noise {Yk} in Algorithm 1.

Let Fk be the Sigma-algebra generated by {(xi, Yi, wi)}0≤i≤k−1 ∪ {xk}.

Assumption 2.2.4 (Additive Martingale Difference Noise). There exist A2, B2 > 0 such

that

(1) E[wk | Fk] = 0 for all k ≥ 0,

(2) ∥wk∥c ≤ A2∥xk∥c +B2 for all k ≥ 0.

Assumption 2.2.4 states that {wk} is a martingale difference sequence with respect to

the filtration Fk, and can grow at most affinely with respect to the iterate xk.

Finally, we specify the requirements for choosing the stepsize sequence {αk}. We will

consider using stepsizes of the form αk =
α

(k+h)ξ
, where α, h > 0 and ξ ∈ [0, 1].

Condition 2.2.1. (1) Constant Stepsize. When ξ = 0, there exists a threshold ᾱ ∈ (0, 1)

such that we need to choose α ∈ (0, ᾱ). (2) Linear Stepsize. When ξ = 1, for each α > 0,

there exists a threshold h̄ > 0 such that we need to choose h ∈ [h̄,∞). (3) Polynomial

Stepsize. For any ξ ∈ (0, 1) and α > 0, there exists a threshold h̄ > 0 such that we need to

choose h ∈ [h̄,∞).

The existence of the thresholds ᾱ and h̄ is verified in Subsection 2.6.3.

The asymptotic convergence of {xk} under similar assumptions has been established in

the literature. In particular, an approach based on studying the ODE

ẋ(t) = F̄ (x(t))− x(t) (2.4)

was used in [31, 33], where it was shown that xk converges to x∗ almost surely under some

stability assumptions of the ODE. The focus of this chapter is to establish the finite-sample
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bounds for Algorithm 1. We do this by studying the drift of a smooth potential/Lyapunov

function [12, 49]. While we do not explicitly use the ODE approach, the potential function

we are going to construct in Section 2.3 is inspired by the Lyapunov function used to study

the ODE.

2.3 The Generalized Moreau Envelope as A Smooth Lyapunov Function

In this section, we construct a novel Lyapunov function through the generalized Moreau

envelope, and investigate its properties. In particular, the smoothness and an approximation

property of the Lyapunov function we specify here are used in the next subsection to show

the desired recursive contractive bound of Algorithm 1 (i.e., Equation 2.3).

To construct such a Lyapunov function, the following definitions are needed. In this the-

sis, ⟨x, y⟩ = x⊤y represents the standard dot product, while ∥ · ∥ in the following definition

can be any arbitrary norm instead of just being the Euclidean norm ∥x∥2 = ⟨x, x⟩1/2.

Definition 2.3.1. Let g : Rd → R be a convex differentiable function. Then g(·) is said to

be L – smooth with respect to some norm ∥ · ∥ if and only if

g(y) ≤ g(x) + ⟨∇g(x), y − x⟩+ L

2
∥x− y∥2, ∀ x, y ∈ Rd.

Definition 2.3.2 (generalized Moreau envelope). Let h1 : Rd 7→ R be a closed and convex

function, and let h2 : Rd 7→ R be a convex and L – smooth function. For any θ > 0, the

generalized Moreau envelope of h1(·) with respect to h2(·) is defined by

M θ,h2

h1
(x) = min

u∈Rd

{
h1(u) +

1

θ
h2(x− u)

}
.

The standard Moreau envelope was previously used in [50, 51] to study convex opti-

mization problems. As an aside, we note that for any two functions h1, h2 : Rd 7→ R, the

function defined by (h1□h2)(x) := infu∈Rd{h1(u) + h2(x− u)} is called the infimal con-
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volution of h1(·) and h2(·) [46]. Therefore, the generalized Moreau envelope in Definition

2.3.2 can be written as M θ,h2

h1
(x) = (h1□

h2

θ
)(x).

Let f(x) = 1
2
∥x∥2c , where ∥ · ∥c is given in Assumption 2.2.1. Let ∥ · ∥s be an arbitrary

norm in Rd such that g(x) := 1
2
∥x∥2s is L – smooth with respect to the same norm ∥ · ∥s in

its definition. For example, ∥·∥s can be the ℓp-norm for any p ∈ [2,∞) [46, Example 5.11].

Due to the norm equivalence in Rd [52], there exist ℓcs ∈ (0, 1] and ucs ∈ [1,∞) that depend

only on the dimension d and universal constants, such that ℓcs∥ · ∥s ≤ ∥ · ∥c ≤ ucs∥ · ∥s.

Construction of the Lyapunov Function. With a suitable choice of θ, we will use the

generalized Moreau envelope of f(·) with respect to g(·), i.e., M θ,g
f (·) as our Lyapunov

function to analyze the behavior of Algorithm 1. The following proposition states that

M θ,g
f (·) is a smooth approximation of the norm-squared function f(·).

Proposition 2.3.1. The function M θ,g
f (·) has the following properties.

(1) M θ,g
f (·) is convex, and L

θ
-smooth with respect to ∥ · ∥s.

(2) There exists a norm ∥ · ∥m such that M θ,g
f (x) = 1

2
∥x∥2m.

(3) It holds that ℓcm∥ · ∥m ≤ ∥ · ∥c ≤ ucm∥ · ∥m, where ℓcm = (1 + θℓ2cs)
1/2 and

ucm = (1 + θu2cs)
1/2.

Proposition 2.3.1 (1) is restated from [46], and we include it here for completeness.

This, together with Proposition 2.3.1 (3) implies that M θ,g
f (·) is a smooth approximation

of the norm-squared function f(·). Intuitively, suppose that the f(·) itself is smooth, then

f(·) can be directly used as a Lyapunov function to study Algorithm 1. However, for an

arbitrary contraction norm ∥ · ∥c, the function f(·) is not necessarily smooth. One typical

example is when ∥ · ∥c = ∥ · ∥∞. In this case, we use the generalized Moreau envelope to

construct M θ,g
f (·) as a smooth approximation of f(·). Proposition 2.3.1 (2) states that the

generalized Moreau envelope itself is also a norm-squared function.
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2.4 Recursive Contractive Bounds for the Generalized Moreau Envelope

In this section, using the smooth approximation property of the generalized Moreau enve-

lope M θ,g
f (·), we establish the desired one-step contractive inequality of M θ,g

f (xk − x∗).

Let φ1 = 1+θu2
cs

1+θℓ2cs
, φ2 = 1 − βφ

1/2
1 , and φ3 = 114L(1+θu2

cs)
θℓ2cs

. The tunable parameter θ is

chosen such that φ2 > 0, which is always possible since limθ→0 φ1 = 1 and β ∈ (0, 1). Let

tk be the mixing time of the Markov chain {Yk} with precision αk (see Definition 2.2.1).

For simplicity of notation, denote αi,j =
∑j

k=i αk for any i ≤ j and α̂k = αkαk−tk,k−1 for

all k ≥ tk.

Proposition 2.4.1. The following inequality holds for all k ≥ tk:

E[M θ,g
f (xk+1 − x∗)]≤

(
1− 2φ2αk + φ3A

2α̂k

)
E[M θ,g

f (xk − x∗)] +
φ3α̂k

2u2cm
(A∥x∗∥c +B)2,

(2.5)

where A = A1 + A2 + 1 and B = B1 +B2.

Since limδ→0 δtδ = 0 under Assumption 2.2.3, we have limk→∞ αk−tk,k−1 = 0 when

{αk} satisfies Condition 2.2.1. Therefore, Equation 2.5 is in the form of the desired one-

step contractive inequality (cf. Equation 2.3), which can then be repeatedly used to estab-

lish finite-sample guarantees of Algorithm 1.

2.5 Finite-Sample Convergence Guarantees

In light of Proposition 2.4.1, to establish finite-sample bounds of Algorithm 1, we repeat-

edly use Equation 2.5 and evaluate the final expression for using different stepsizes {αk}.

Let c1 = (∥x0 − x∗∥c + ∥x0∥c + B/A)2, and c2 = (A∥x∗∥c + B)2. Define K =

min{k ≥ 0 : k ≥ tk}, which is well-defined under Assumption 2.2.3. We now present the

finite-sample guarantees of Algorithm 1.
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Theorem 2.5.1. Consider {xk} of Algorithm 1. Suppose that Assumptions 2.2.1, 2.2.2,

2.2.3 and 2.2.4 are satisfied, and {αk} satisfies Condition 2.2.1. Then we have the following

results.

(1) When k ∈ [0, K − 1], we have ∥xk − x∗∥2c ≤ c1 almost surely.

(2) When k ≥ K, we have the following finite-sample guarantees.

(a) When {αk} satisfies Condition 2.2.1 (1), we have:

E[∥xk − x∗∥2c ] ≤ φ1c1(1− φ2α)
k−tα +

φ3c2
φ2

αtα.

(b) When {αk} satisfies Condition 2.2.1 (2), we have:

(i) when α < 1/φ2:

E[∥xk − x∗∥2c ] ≤ φ1c1

(
K + h

k + h

)φ2α

+
8α2φ3c2
1− φ2α

tk
(k + h)φ2α

,

(ii) when α = 1/φ2:

E[∥xk − x∗∥2c ] ≤ φ1c1
K + h

k + h
+ 8α2φ3c2

tk log(k + h)

k + h
,

(iii) when α > 1/φ2:

E[∥xk − x∗∥2c ] ≤ φ1c1

(
K + h

k + h

)φ2α

+
8eα2φ3c2
φ2α− 1

tk
k + h

.

(c) When {αk} satisfies Condition 2.2.1 (3), we have:

E[∥xk − x∗∥2c ] ≤ φ1c1e
−φ2α

1−ξ ((k+h)1−ξ−(K+h)1−ξ) +
4φ3c2α

φ2

tk
(k + h)ξ

.

Remark. Recall that tδ ≤ log(C/σ)+log(1/δ)
log(1/σ)

under Assumption 2.2.3. Therefore, we have

tk ≤ ξ log(k+h)+log(C/(ασ))
log(1/σ)

, which introduces an additional logarithmic factor in the bound.
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In all cases of Theorem 2.5.1, we state the results as a combination of two terms. The

first term is usually viewed as the “bias”, and it involves the error in the initial estimate x0

(through the constant c1), and the geometric decay term (for constant stepsize case). The

second term is usually understood as the “variance”, and hence involves the constant c2,

which represents the noise variance at x∗. This form of convergence bounds is qualitatively

similar to that of SGD type of algorithms presented in [23, 43]. However, compared to [23,

43], Algorithm 1 does not involve the gradient of any function, and has Markovian noise

{Yk}. Together they impose fundamental challenges in analyzing Algorithm 1.

From Theorem 2.5.1, we see that constant stepsize is very efficient in driving the bias

the zero, but cannot eliminate the variance even asymptotically. This suggests using di-

minishing stepsizes to eliminate the variance. When using linear stepsize αk = α
k+h

, the

convergence bounds crucially depend on the value of α. In order to balance the bias and the

variance terms to achieve the optimal convergence rate, we need to choose α > 1/φ2, and

the resulting optimal convergence rate is roughly O(log(k)/k). When using polynomial

stepsize, although the convergence rate is the sub-optimal O(log(k)/kξ), it is more robust

in the sense that it does not depend on α.

Switching focus, we now revisit the constants {φi}1≤i≤3 in Theorem 2.5.1, which as

mentioned earlier, depend only on the contraction norm ∥ · ∥c and the contraction factor β.

In the following lemma, we consider two cases where ∥ · ∥c = ∥ · ∥2 and ∥ · ∥c = ∥ · ∥∞.

Both of them will be useful when we study convergence bounds of RL algorithms.

Corollary 2.5.1. The following bounds hold regarding the constants {φi}1≤i≤3.

(1) When ∥ · ∥c = ∥ · ∥2, we have φ1 ≤ 1, φ2 ≥ 1− β, and φ3 ≤ 228.

(2) When ∥ · ∥c = ∥ · ∥∞, we have φ1 ≤ 3, φ2 ≥ 1−β
2

, and φ3 ≤ 456e log(d)
1−β

.

Note that when compared to ∥ · ∥2-contraction, where the constant φ3 is bounded by a

numerical constant, the upper bound for φ3 has an additional log(d)
1−β

factor under the ∥ · ∥∞-

contraction. In general, we cannot hope to improve the dimension dependence beyond
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log(d). To see this, consider the trivial case where F (·, ·) is identically equal to zero,

and {wk} is an i.i.d. sequence of standard normal random vectors. Algorithm 1 becomes

xk+1 = xk + αk(−xk + wk), which can be viewed as an SA algorithm for solving the

trivial equation x = 0, or an SGD algorithm for minimizing a quadratic objective J(x) =

1
2
∥x∥22. When αk = 1

k+1
, the iterate xk is simply the running averages of {wk}, i.e., xk =

1
k

∑k−1
i=0 wi for all k ≥ 1, which implies xk ∼ 1√

k
N (0, Id). It follows that E[∥xk∥2∞] =

O( log(d)
k

) [53]. Thus in this setting, our resulting finite-sample bounds under ℓ∞-norm

contraction are order-wise tight both in terms of the convergence rate and the dimensional

dependence.

2.6 Proof of All Theoretical Results

In this section, we present the proofs of Proposition 2.3.1, Proposition 2.4.1 and Theo-

rem 2.5.1. The proofs of all technical lemmas used here are provided in Section 2.7.

2.6.1 Proof of Proposition 2.3.1

(1) The convexity of M θ,g
f (x) follows from Theorem 2.19 of [46]. Since f(·) is proper,

closed, and convex, and g(·) is L – smooth with respect to ∥ · ∥s, we have by [46, Theorem

5.30 (a)] that M θ,g
f (x) = (f□g

θ
)(x) is L

θ
– smooth with respect to ∥ · ∥s.

(2) It is clear from the definition of M θ,g
f (x) that it is non-negative and is equal to zero

if and only if x = 0. Now for any c ∈ R, we have

M θ,g
f (cx) = min

u

{
1

2
∥u∥2c +

1

2θ
∥cx− u∥2s

}
= min

v

{
1

2
∥cv∥2c +

1

2θ
∥cx− cv∥2s

}
(change of variable u = cv)

= |c|2M θ,g
f (x).

Thus,
√
M θ,g

f (cx) = |c|
√
M θ,g

f (x). It remains to show the triangle inequality.
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For any x1, x1 ∈ Rd, let

u1 ∈ arg min
u∈Rd

{
1

2
∥u∥2c +

1

2θ
∥x1 − u∥2s

}
,

u2 ∈ arg min
u∈Rd

{
1

2
∥u∥2c +

1

2θ
∥x2 − u∥2s

}
.

Then we have

M θ,g
f (x1 + x2)

= min
u

{
1

2
∥u∥2c +

1

2θ
∥x1 + x2 − u∥2s

}
≤ 1

2
∥u1 + u2∥2c +

1

2θ
∥x1 + x2 − u1 − u2∥2s (choose u = u1 + u2)

≤ 1

2
(∥u1∥c + ∥u2∥c)2 +

1

2θ
(∥x1 − u1∥s + ∥x2 − u2∥s)2

=M θ,g
f (x1) +M θ,g

f (x2) + ∥u1∥c∥u2∥c +
1

θ
∥x1 − u1∥s∥x2 − u2∥s

≤M θ,g
f (x1) +M θ,g

f (x2) + 2

√
1

2
∥u1∥2c +

1

2θ
∥x1 − u1∥2s

√
1

2
∥u2∥2c +

1

2θ
∥x2 − u2∥2s

=M θ,g
f (x1) +M θ,g

f (x2) + 2
√
M θ,g

f (x1)M
θ,g
f (x2).

It follows that
√
M θ,g

f (x1 + x2) ≤
√
M θ,g

f (x1) +
√
M θ,g

f (x2) for any x1, x2 ∈ Rd. There-

fore, M θ,g
f (·) is a norm-square function and we can writeM θ,g

f (x) = 1
2
∥x∥2m for some norm

∥ · ∥m.

(3) We first derive the upper bound. By definition of M θ,g
f (x), we have

M θ,g
f (x) = min

u∈Rd

{
1

2
∥u∥2c +

1

2θ
∥x− u∥2s

}
≥ min

u∈Rd

{
1

2
∥u∥2c +

1

2θu2cs
∥x− u∥2c

}
(∥ · ∥c ≤ ucs∥ · ∥s)

≥ min
u∈Rd

{
1

2
∥u∥2c +

1

2θu2cs
(∥x∥c − ∥u∥c)2

}
(triangle inequality)

= min
y∈R

{
1

2
y2 +

1

2θu2cs
(∥x∥c − y)2

}
(change of variable: y = ∥u∥2c)
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= min
y∈R

{(
1

2
+

1

2θu2cs

)
y2 − 1

θu2cs
∥x∥cy +

1

2θu2cs
∥x∥2c

}
=

1

2
∥x∥2c

1

θu2cs + 1
(minimum of a quadratic function)

=
1

θu2cs + 1
f(x).

It follows that f(x) ≤ (1 + θu2cs)M
θ,g
f (x) for all x, which implies ∥·∥c ≤ (1+θu2cs)

1/2∥·∥m.

Next we show the lower bound. Similarly, by definition we have for any x ∈ Rd that

M θ,g
f (x) = min

u∈Rd

{
1

2
∥u∥2c +

1

2θ
∥x− u∥2s

}
≤ min

α∈(0,1)

{
1

2
∥αx∥2c +

1

2θ
∥x− αx∥2s

}
(restrict u = αx for α ∈ (0, 1))

≤ 1

2
∥x∥2c min

α∈(0,1)

{
α2 +

(1− α)2

θℓ2cs

}
(ℓcs∥ · ∥s ≤ ∥ · ∥c)

=
1

1 + θℓ2cs

1

2
∥x∥2c (minimum of the quadratic function)

=
1

1 + θℓ2cs
f(x).

It follows that f(x) ≥ (1 + θℓ2cs)M
θ,g
f (x) for all x, which implies ∥·∥c ≥ (1+θℓ2cs)

1/2∥·∥m.

2.6.2 Proof of Proposition 2.4.1

Before proving Proposition 2.4.1, we first explicitly state the requirement for choosing the

stepsize sequence {αk}.

Condition 2.6.1. The sequence {αk} is non-increasing and satisfies

αk−tk,k−1 ≤ min

(
φ2

φ3A2
,
1

4A

)

for all k ≥ tk.

Condition 2.6.1 boils down to Condition 2.2.1 when the expression of the stepsize is

explicitly specified.

22



Using Proposition 2.3.1 (1) and the update equation of Algorithm 1, we have for any

k ≥ 0 that

M θ,g
f (xk+1 − x∗) ≤M θ,g

f (xk − x∗) + ⟨∇M θ,g
f (xk − x∗), xk+1 − xk⟩+

L

2θ
∥xk+1 − xk∥2s

=M θ,g
f (xk − x∗) + αk⟨∇M θ,g

f (xk − x∗), F (xk, Yk)− xk + wk⟩

+
Lα2

k

2θ
∥F (xk, Yk)− xk + wk∥2s

=M θ,g
f (xk − x∗) + αk⟨∇M θ,g

f (xk − x∗), F̄ (xk)− xk⟩︸ ︷︷ ︸
T1: Expected update

+ αk⟨∇M θ,g
f (xk − x∗), wk⟩︸ ︷︷ ︸

T2: Error due to Martingale difference noise wk

+ αk⟨∇M θ,g
f (xk − x∗), F (xk, Yk)− F̄ (xk)⟩︸ ︷︷ ︸
T3: Error due to Markovian noise Yk

+
Lα2

k

2θ
∥F (xk, Yk)− xk + wk∥2s︸ ︷︷ ︸

T4: Error due to discretization and noises

. (2.6)

The term T1 represents the expected update of Algorithm 1, and is bounded in the following

lemma.

Lemma 2.6.1. The following inequality holds for all k ≥ 0:

T1 ≤ −2

(
1− β

ucm
ℓcm

)
αkM

θ,g
f (xk − x∗).

As we have seen in Lemma 2.6.1, the term T1 provides us the desired negative drift,

i.e., the −O(αk) term in the target one-step contractive inequality (cf. Equation 2.3). What

remains to do is to control all the error terms T2 to T4 in Equation 2.6.

We begin with the term T2. Since {wk} is a martingale difference sequence with respect

to the filtration Fk (cf. Assumption 2.2.4), while xk is measurable with respect to Fk, we

23



have by the tower property of conditional expectation that

E[T2] = E[E[T2 | Fk]] = αkE[⟨∇M θ,g
f (xk − x∗),E[wk | Fk]]⟩ = 0.

Next we analyze the error term T3, which is due to the Markovian noise {Yk}. We first

decompose T3 in the following way:

T3 = αk⟨∇M θ,g
f (xk − x∗), F (xk, Yk)− F̄ (xk)⟩

= αk ⟨∇M θ,g
f (xk − x∗)−∇M θ,g

f (xk−tk − x∗), F (xk, Yk)− F̄ (xk)⟩︸ ︷︷ ︸
T31

+ αk ⟨∇M θ,g
f (xk−tk − x∗), F (xk, Yk)− F (xk−tk , Yk) + F̄ (xk−tk)− F̄ (xk)⟩︸ ︷︷ ︸

T32

+ αk ⟨∇M θ,g
f (xk−tk − x∗), F (xk−tk , Yk)− F̄ (xk−tk)⟩︸ ︷︷ ︸

T33

. (2.7)

To proceed, we need the following lemma, which allows us to control the difference

between xk1 and xk2 when |k1 − k2| is relatively small.

Lemma 2.6.2. Given non-negative integers k1 ≤ k2 satisfying αk1,k2−1 ≤ 1
4A

, we have for

all k ∈ [k1, k2]:

(1) ∥xk − xk1∥c ≤ 2αk1,k2−1(A∥xk1∥c +B),

(2) ∥xk − xk1∥c ≤ 4αk1,k2−1(A∥xk2∥c +B).

Using the assumption that αk1,k2−1 ≤ 1
4A

in the resulting inequality of Lemma 2.6.2,

we have the following corollary, which will also be frequently used in our analysis.

Corollary 2.6.1. Under same conditions given in Lemma 2.6.2, we have for all k ∈ [k1, k2]

that ∥xk − xk1∥c ≤ max(∥xk1∥c, ∥xk2∥c) + B
A

.

Recall that we require αk−tk,k−1 ≤ 1
4A

for all k ≥ tk in Condition 2.6.1. Therefore,

Lemma 2.6.2 and Corollary 2.6.1 are applicable when k1 = k − tk and k2 = k − 1 for any

k ≥ tk.
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Now we are ready to control the terms T31, T32, and T33 in the following lemma. The

terms T31 and T32 are controlled mainly by constantly applying Lemma 2.6.2 and the Lips-

chitz property of the operator F (·) (cf. Assumptions 2.2.2). Bounding the term T33 requires

using the geometric mixing of the Markov chain {Yk} (cf. Assumption 2.2.3).

Lemma 2.6.3. The following inequalities hold for all k ≥ tk:

(1) T31 ≤
16LA2u2

cmαk−tk,k−1

θℓ2cs
M θ,g

f (xk − x∗) +
8Lαk−tk,k−1

θℓ2cs
(A∥x∗∥c +B)2,

(2) T32 ≤
64LA2u2

cmαk−tk,k−1

θℓ2cs
M θ,g

f (xk − x∗) +
32Lαk−tk,k−1

θℓ2cs
(A∥x∗∥c +B)2,

(3) E[T33] ≤ 32LA2u2
cmαk

θℓ2cs
E[M θ,g

f (xk − x∗)] + 16Lαk

θℓ2cs
(A∥x∗∥c +B)2.

Now that Lemma 2.6.3 provides upper bounds on the terms T31, T32, and T33, using

them in Equation 2.7 and we have the following result.

Lemma 2.6.4. The following inequality holds for all k ≥ tk:

E[T3] ≤
112LA2u2cmαkαk−tk,k−1

θℓ2cs
E[M θ,g

f (xk − x∗)] +
56Lαkαk−tk,k−1

θℓ2cs
(A∥x∗∥c +B)2.

Lastly, we bound the error term T4 in the following lemma.

Lemma 2.6.5. It holds for any k ≥ 0 that

T4 ≤
2LA2u2cmα

2
k

θℓ2cs
M θ,g

f (xk − x∗) +
Lα2

k

θℓ2cs
(A∥x∗∥c +B)2.

Now we have control on all the error terms T1 to T4. Using them in Equation 2.6, and

we have for all k ≥ tk:

E[M θ,g
f (xk+1 − x∗)]

≤
(
1− 2φ2αk +

114LA2u2cmαkαk−tk,k−1

θℓ2cs

)
E[M θ,g

f (xk − x∗)]

+
57Lαkαk−tk,k−1

θℓ2cs
(A∥x∗∥c +B)2
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=
(
1− 2φ2αk + φ3A

2αkαk−tk,k−1

)
E[M θ,g

f (xk − x∗)] +
φ3c2αkαk−tk,k−1

2u2cm
.

This proves Proposition 2.4.1.

2.6.3 Proof of Theorem 2.5.1

Note that Proposition 2.4.1 provides the one-step contractive inequality. We next repeatedly

use Proposition 2.4.1 to derive finite-sample convergence bounds of Algorithm 1. Since

αk−tk,k−1 ≤ φ2/(φ3A
2) for all k ≥ K (cf. Condition 2.6.1), we have by Proposition 2.4.1

that

E[M θ,g
f (xk+1 − x∗)] ≤ (1− φ2αk)E[M θ,g

f (xk − x∗)] +
c2φ3αkαk−tk,k−1

2u2cm

for all k ≥ K. Recursively using the previous inequality and we have for any k ≥ K:

E[∥xk − x∗∥2c ]

≤ 2u2cmE[M
θ,g
f (xk − x∗)] (Proposition 2.3.1 (3))

≤ 2u2cmE[M
θ,g
f (xK − x∗)]

k−1∏
j=K

(1− φ2αj) + c2φ3

k−1∑
i=K

αiαi−ti,i−1

k−1∏
j=i+1

(1− φ2αj)

≤ u2cm
ℓ2cm

E[∥xK − x∗∥2c ]
k−1∏
j=K

(1− φ2αj) + c2φ3

k−1∑
i=K

αiαi−ti,i−1

k−1∏
j=i+1

(1− φ2αj)

(Proposition 2.3.1 (3))

= φ1E[∥xK − x∗∥2c ]
k−1∏
j=K

(1− φ2αj) + φ3c2

k−1∑
i=K

αiαi−ti,i−1

k−1∏
j=i+1

(1− φ2αj).

According to Condition 2.6.1, we also have α0,k−1 ≤ 1/(4A) for any k ∈ [0, K]. Using

Corollary 2.6.1 one more time and we have for any k ∈ [0, K] that

E[∥xk − x∗∥2c ] ≤ E[(∥xk − x0∥c + ∥x0 − x∗∥c)2]
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≤
(
∥x0 − x∗∥c + ∥x0∥c +

B

A

)2

= c1.

This proves Theorem 2.5.1 (1). Since the previous inequality implies E[∥xK − x∗∥2c ] ≤ c1,

we obtain for all k ≥ K:

E[∥xk − x∗∥2c ] ≤ φ1c1

k−1∏
j=K

(1− φ2αj) + φ3c2

k−1∑
i=K

αiαi−ti,i−1

k−1∏
j=i+1

(1− φ2αj). (2.8)

To proceed and prove Theorem 2.5.1 (2), we next evaluate the RHS of the previous inequal-

ity when the stepsize sequence {αk} is explicitly chosen.

Constant Stepsize. Consider using constant stepsize αk ≡ α. It is clear that Condition

2.6.1 is satisfied when αtα ≤ min( φ2

φ3A2 ,
1
4A
). We first verify that there exists a threshold ᾱ

such that αtα ≤ min( φ2

φ3A2 ,
1
4A
) for all α ∈ (0, ᾱ).

Note that we have by definition of tα and Assumption 2.2.3 that

tα ≤ min
{
k ≥ 0 : Cσk ≤ α

}
= min

{
k ≥ 0 : k ≥ log(1/α) + log(C)

log(1/σ)

}
≤ log(1/α) + log(C/σ)

log(1/σ)
.

It follows that limα→0 αtα = 0. Hence there exists ᾱ ∈ (0, 1) such that Condition 2.6.1

is satisfied for all α ∈ (0, ᾱ), which is stated in Condition 2.2.1 (1). We next evaluate

Equation 2.8. When αk ≡ α, we have for all k ≥ tα:

E[∥xk − x∗∥2c ] ≤ φ1c1

k−1∏
j=tα

(1− φ2αj) + φ3c2

k−1∑
i=tα

αiαi−ti,i−1

k−1∏
j=i+1

(1− φ2αj)

= φ1c1(1− φ2α)
k−tα + φ3c2

k−1∑
i=tα

α2tα(1− φ2α)
k−i−1
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≤ φ1c1(1− φ2α)
k−tα +

φ3c2
φ2

αtα.

This proves Theorem 2.5.1 (2) (a).

Linearly Diminishing stepsize. Consider using linearly diminishing stepsizes of the

form αk = α
k+h

. We first verify that for any α > 0, there exists a threshold h̄ such that

Condition 2.6.1 is satisfied for all h ≥ h̄. We begin by comparing αk−tk with αk. Using

Assumption 2.2.3 and we have

tk ≤
log(k + h) + log(C/(σα))

log(1/σ)
.

It follows that

αk

αk−tk

= 1− tk
k + h

→ 1 as (k + h) → ∞.

Therefore, there exists h̄1 > 0 such that αk−tk ≤ 2αk holds for any k ≥ tk when h ≥ h̄1.

Now consider the requirement stated in Condition 2.6.1. Using the fact that {αk} is non-

increasing, we have

αk−tk,k−1 ≤ tkαk−tk ≤ 2αktk → 0 as (k + h) → ∞.

Hence there exists h̄2 > 0 such that αk−tk,k−1 ≤ min( φ2

φ3A2 ,
1
4A
) holds for any k ≥ tk when

h ≥ h̄2. Now choosing h̄ = max(h̄1, h̄2), Condition 2.6.1 is satisfied. This is stated in

Condition 2.2.1 (2). Furthermore, by construction we have αk−tk ≤ 2αk for any k ≥ tk.

We next evaluate the RHS of Equation 2.8 in the following lemma.
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Lemma 2.6.6. The following inequality holds for all k ≥ K:

E[∥xk − x∗∥2c ] ≤



φ1c1

(
K + h

k + h

)φ2α

+
8φ3c2α

2

1− φ2α

tk
(k + h)φ2α

, α <
1

φ2

,

φ1c1
K + h

k + h
+ 8φ3c2α

2 tk log(k + h)

k + h
, α =

1

φ2

,

φ1c1

(
K + h

k + h

)φ2α

+
8eφ3c2α

2

φ2α− 1

tk
k + h

, α >
1

φ2

.

This proves Theorem 2.5.1 (2) (b).

Polynomially Diminishing stepsize. Finally we consider using polynomially dimin-

ishing stepsize of the form αk = α
(k+h)ξ

, where ξ ∈ (0, 1) and α, h > 0. Using the same

line of proof, one can show that for any ξ ∈ (0, 1) and α > 0, there exists h̄ > 0 such

that Condition 2.6.1 is satisfied for all h ≥ h̄. Furthermore, we assume without loss of

generality that αk−tk ≤ 2αk for all k ≥ tk and h̄ ≥ [2ξ/(φ2α)]
1/(1−ξ). We next evaluate the

RHS of Equation 2.8 in the following lemma.

Lemma 2.6.7. The following inequality hold for all k ≥ K:

E[∥xk − x∗∥2c ] ≤ φ1c1 exp

[
− φ2α

1− ξ

(
(k + h)1−ξ − (K + h)1−ξ

)]
+

4φ3c2α

φ2

tk
(k + h)ξ

.

This proves Theorem 2.5.1 (2) (c).

2.7 Proof of All Technical Lemmas

In this section, we present the proofs of all technical lemmas used to establish our main

theoretical results in Section 2.6.
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2.7.1 Proof of Lemma 2.6.1

Using the fact that F̄ (x∗) = x∗, we have

⟨∇M θ,g
f (xk − x∗), F̄ (xk)− xk⟩

= ⟨∇M θ,g
f (xk − x∗), F̄ (xk)− F̄ (x∗)⟩︸ ︷︷ ︸

T1,1

−⟨∇M θ,g
f (xk − x∗), xk − x∗⟩︸ ︷︷ ︸

T1,2

. (2.9)

For the gradient of M θ,g
f (x), since M θ,g

f (x) = 1
2
∥x∥2m, we have by the chain rule of subd-

ifferential calculus [46, Theorem 3.47] that ∇M θ,g
f (x) = ∥x∥mvx, where vx ∈ ∂∥x∥m is a

subgradient of the function ∥x∥m at x. In fact, from the equation ∇M θ,g
f (x) = ∥x∥mvx, we

see that vx is unique (i.e., vx = ∇∥x∥m) for all x ̸= 0.

Now consider the term T1,1. Using Hölder’s inequality, we have

T1,1 = ∥xk − x∗∥m⟨vxk−x∗ , F̄ (xk)− F̄ (x∗)⟩

≤ ∥xk − x∗∥m∥vxk−x∗∥∗m∥F̄ (xk)− F̄ (x∗)∥m, (2.10)

where ∥ · ∥∗m is the dual norm of ∥ · ∥m. To further control T1,1, the following result is

needed.

Lemma 2.7.1 ([54]). Let h : D → R be a convex function. Then h is L – Lipschitz over D

with respect to some norm ∥ · ∥ if and only if for all w ∈ D and z ∈ ∂h(w) we have that

∥z∥∗ ≤ L, where ∥ · ∥∗ is the dual norm of ∥ · ∥.

Since ∥x∥m as a function of x is 1 – Lipschitz with respect to ∥ · ∥m, we have by

Lemma 2.7.1 that ∥vxk−x∗∥∗m ≤ 1. For the term ∥F̄ (xk)− F̄ (x∗)∥m in Equation 2.10, using

Proposition 2.3.1 (3) and the contraction of F̄ (·) with respect to ∥ · ∥c, we have

1

2
∥F̄ (xk)− F̄ (x∗)∥2m =M θ,g

f (F̄ (xk)− F̄ (x∗))

≤ 1

1 + θℓ2cs
f(F̄ (xk)− F̄ (x∗)) (Proposition 2.3.1 (3))

30



≤ β2

1 + θℓ2cs
f(xk − x∗) (Assumption 2.2.1)

≤ β21 + θu2cs
1 + θℓ2cs

M θ,g
f (xk − x∗) (Proposition 2.3.1 (3))

=
β2

2

1 + θu2cs
1 + θℓ2cs

∥xk − x∗∥2m

=
β2

2

u2cm
ℓ2cm

∥xk − x∗∥2m,

which implies

∥F̄ (xk)− F̄ (x∗)∥m ≤ β
ucm
ℓcm

∥xk − x∗∥m.

Substituting the upper bounds we obtained for ∥vxk−x∗∥∗m and ∥F̄ (xk) − F̄ (x∗)∥m into

Equation 2.10, we have

T1,1 ≤ ∥xk − x∗∥m∥vxk−x∗∥∗m∥F̄ (xk)− F̄ (x∗)∥m

≤ β
ucm
ℓcm

∥xk − x∗∥2m

= 2β
ucm
ℓcm

M θ,g
f (xk − x∗).

Now consider the term T1,2 in Equation 2.9. Since the norm ∥ · ∥m is a convex function of

x, we have by definition of convexity that ∥0∥m − ∥xk − x∗∥m ≥ ⟨vxk−x∗ ,−(xk − x∗)⟩.

Therefore, we have

T1,2 = ∥xk − x∗∥m⟨vxk−x∗ , xk − x∗⟩ ≥ ∥xk − x∗∥2m = 2M θ,g
f (xk − x∗).

Combining the bounds on T1,1 and T1,2 and we obtain

T1 = αk(T1,1 − T1,2) ≤ −2

(
1− β

ucm
ℓcm

)
αkM

θ,g
f (xk − x∗).
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2.7.2 Proof of Lemma 2.6.2

We first show that under Assumption 2.2.2, the size of ∥F (x, y)∥c and ∥F̄ (x)∥c can grow

at most affinely in terms of ∥x∥c. Using triangle inequality, we have

∥F (x, y)∥c − ∥F (0, y)∥c ≤ ∥F (x, y)− F (0, y)∥c ≤ A1∥x∥c, ∀ x ∈ Rd, y ∈ Y ,

where the last inequality follows from Assumption 2.2.2. It follows that

∥F (x, y)∥c ≤ A1∥x∥c + ∥F (0, y)∥c ≤ A1∥x∥c +B1.

Furthermore, we have by Jensen’s inequality and the convexity of norms that

∥F̄ (x)∥c = ∥EY∼µY
[F (x, Y )]∥c ≤ EY∼µY

[∥F (x, Y )∥c] ≤ A1∥x∥c +B1.

The previous two inequalities will be frequently used in the derivation here after. Now we

proceed to prove Lemma 2.6.2.

For any k ∈ [k1, k2 − 1], using triangle inequality, we have

∥xk+1∥c − ∥xk∥c ≤ ∥xk+1 − xk∥c

= αk∥F (xk, Yk)− xk + wk∥c

≤ αk(∥F (xk, Yk)∥c + ∥xk∥c + ∥wk∥c)

≤ αk(A1∥xk∥c +B1 + ∥xk∥c + A2∥xk∥c +B2).

(Assumptions 2.2.2 and 2.2.4)

≤ αk((A1 + A2 + 1)∥xk∥c +B1 +B2)

= αk(A∥xk∥c +B). (2.11)
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Note that the previous inequality is equivalent to

∥xk+1∥c +
B

A
≤ (1 + Aαk)

(
∥xk∥c +

B

A

)
,

which implies for all k ∈ [k1, k2]:

∥xk∥c ≤
k−1∏
j=k1

(1 + Aαj)

(
∥xk1∥c +

B

A

)
− B

A
.

Using the fact that 1 + x ≤ ex ≤ 1 + 2x for all x ∈ [0, 1/2], we have when αk1,k2−1 ≤ 1
4A

:

k−1∏
j=k1

(1 + Aαj) ≤ exp (Aαk1,k−1) ≤ 1 + 2Aαk1,k−1.

It follows that for all k ∈ [k1, k2]:

∥xk∥c ≤ (1 + 2Aαk1,k−1)∥xk1∥c + 2Bαk1,k−1.

Using the previous inequality in Equation 2.11 and we have for any k ∈ [k1, k2 − 1]:

∥xk+1 − xk∥c ≤ αk(A∥xk∥c +B)

≤ αkA(1 + 2Aαk1,k−1)∥xk1∥c + 2αkABαk1,k−1

≤ 2αk(A∥xk1∥c +B). (αk1,k−1 ≤ 1
4A

)

Hence, we have for any k ∈ [k1, k2]:

∥xk − xk1∥c ≤
k−1∑
j=k1

∥xj+1 − xj∥c ≤ 2
k−1∑
j=k1

αj(A∥xk1∥c +B) = 2αk1,k−1(A∥xk1∥c +B).
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Since αk1,k−1 ≤ αk1,k2−1 when k ∈ [k1, k2], we obtain the first claimed inequality:

∥xk − xk1∥c ≤ 2αk1,k2−1(A∥xk1∥c +B), ∀ k ∈ [k1, k2].

Now for the second claimed inequality, since

∥xk2 − xk1∥c ≤ 2αk1,k2−1(A∥xk1∥c +B)

≤ 2αk1,k2−1(A∥xk1 − xk2∥c + A∥xk2∥c +B)

≤ 1

2
∥xk2 − xk1∥c + 2αk1,k2−1(A∥xk2∥c +B),

we have ∥xk2 − xk1∥c ≤ 4αk1,k2−1(A∥xk2∥c +B). Therefore, we have for any k ∈ [k1, k2]:

∥xk − xk1∥c ≤ 2αk1,k2−1(A∥xk1∥c +B)

≤ 2αk1,k2−1(A∥xk1 − xk2∥c + A∥xk2∥c +B)

≤ 2αk1,k2−1(4Aαk1,k2−1(A∥xk2∥c +B) + A∥xk2∥c +B)

≤ 4αk1,k2−1(A∥xk2∥c +B), (αk1,k2−1 ≤ 1
4A

)

which is the second claimed inequality.

2.7.3 Proof of Lemma 2.6.3

(1) For the term T31, using Hölder’s inequality and we have

T31 = ⟨∇M θ,g
f (xk − x∗)−∇M θ,g

f (xk−tk − x∗), F (xk, Yk)− F̄ (xk)⟩

≤ ∥∇M θ,g
f (xk − x∗)−∇M θ,g

f (xk−tk − x∗)∥∗s∥F (xk, Yk)− F̄ (xk)∥s

≤ 1

ℓcs
∥∇M θ,g

f (xk − x∗)−∇M θ,g
f (xk−tk − x∗)∥∗s∥F (xk, Yk)− F̄ (xk)∥c,

(ℓcs∥ · ∥s ≤ ∥ · ∥c)
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where ∥ · ∥∗s denotes the dual norm of ∥ · ∥s. We first control the term ∥∇M θ,g
f (xk − x∗)−

∇M θ,g
f (xk−tk − x∗)∥∗s. Recall that an equivalent definition of a convex function h(x) been

L – smooth with respect to some norm ∥ · ∥ is that

∥∇h(x1)−∇h(x2)∥∗ ≤ L∥x1 − x2∥, ∀ x1, x2,

where ∥ · ∥∗ is the dual norm of ∥ · ∥ [46]. Therefore, since M θ,g
f (x) is L

θ
-smooth with

respect to ∥ · ∥s, we have

∥∇M θ,g
f (xk − x∗)−∇M θ,g

f (xk−tk − x∗)∥∗s

≤ L

θ
∥xk − xk−tk∥s

≤ L

θℓcs
∥xk − xk−tk∥c

≤ 4Lαk−tk,k−1

θℓcs
(A∥xk − x∗∥c + A∥x∗∥c +B), (2.12)

where the last line follows from Lemma 2.6.2 and triangle inequality.

We next control the term ∥F (xk, Yk) − F̄ (xk)∥c. Using Assumptions 2.2.1, 2.2.2, and

the fact that F̄ (x∗) = x∗, we have

∥F (xk, Yk)− F̄ (xk)∥c = ∥F (xk, Yk)− F̄ (xk) + F̄ (x∗)− x∗∥c

≤ ∥F (xk, Yk)∥c + ∥F̄ (xk)− F̄ (x∗)∥c + ∥x∗∥c

≤ A1∥xk∥c +B1 + ∥xk − x∗∥c + ∥x∗∥c

≤ (A1 + 1)∥xk − x∗∥c + (A1 + 1)∥x∗∥c +B1

≤ A∥xk − x∗∥c + A∥x∗∥c +B.

It follows that

T31 ≤
1

ℓcs
∥∇M θ,g

f (xk − x∗)−∇M θ,g
f (xk−tk − x∗)∥∗s∥F (xk, Yk)− F̄ (xk)∥c
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≤ 4Lαk−tk,k−1

θℓ2cs
(A∥xk − x∗∥c + A∥x∗∥c +B)2

≤ 8Lαk−tk,k−1

θℓ2cs
A2∥xk − x∗∥2c +

8Lαk−tk,k−1

θℓ2cs
(A∥x∗∥c +B)2 (a+ b)2 ≤ 2(a2 + b2)

≤ 16LA2u2cmαk−tk,k−1

θℓ2cs
M θ,g

f (xk − x∗) +
8Lαk−tk,k−1

θℓ2cs
(A∥x∗∥c +B)2.

(2) Consider the term T32. Using Hölder’s inequality and we have

T32 = ⟨∇M θ,g
f (xk−tk − x∗), F (xk, Yk)− F (xk−tk , Yk) + F̄ (xk−tk)− F̄ (xk)⟩

≤ ∥∇M θ,g
f (xk−tk − x∗)∥∗s∥F (xk, Yk)− F (xk−tk , Yk) + F̄ (xk−tk)− F̄ (xk)∥s

(Hölder’s inequality)

≤ 1

ℓcs
∥∇M θ,g

f (xk−tk − x∗)∥∗s∥F (xk, Yk)− F (xk−tk , Yk) + F̄ (xk−tk)− F̄ (xk)∥c.

For the term ∥∇M θ,g
f (xk−tk − x∗)∥∗s, we have

∥∇M θ,g
f (xk−tk − x∗)∥∗s = ∥∇M θ,g

f (xk−tk − x∗)−∇M θ,g
f (x∗ − x∗)∥∗s

≤ L

θ
∥xk−tk − x∗∥s (equivalent definition of smoothness)

≤ L

θℓcs
∥xk−tk − x∗∥c

≤ L

θℓcs
(∥xk−tk − xk∥c + ∥xk − x∗∥c)

≤ 2L

θℓcs

(
∥xk − x∗∥c + ∥x∗∥c +

B

A

)
, (2.13)

where the last line follow from Corollary 2.6.1.

For the term ∥F (xk, Yk) − F (xk−tk , Yk) + F̄ (xk−tk) − F̄ (xk)∥c, using Assumptions

2.2.1 and 2.2.2 and we obtain

∥F (xk, Yk)− F (xk−tk , Yk) + F̄ (xk−tk)− F̄ (xk)∥c

≤ ∥F (xk, Yk)− F (xk−tk , Yk)∥c + ∥F̄ (xk−tk)− F̄ (xk)∥c

≤ 2A1∥xk − xk−tk∥c
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≤ 2A∥xk − xk−tk∥c

≤ 8Aαk−tk,k−1(A∥xk − x∗∥c + A∥x∗∥c +B),

where in the last line we used Lemma 2.6.2. It follows that

T32 ≤
1

ℓcs
∥∇M θ,g

f (xk−tk − x∗)∥∗s∥F (xk, Yk)− F (xk−tk , Yk) + F̄ (xk−tk)− F̄ (xk)∥c

≤ 16Lαk−tk,k−1

θℓ2cs
(A∥xk − x∗∥c + A∥x∗∥c +B)2

≤ 32LA2αk−tk,k−1

θℓ2cs
∥xk − x∗∥2c +

32Lαk−tk,k−1

θℓ2cs
(A∥x∗∥c +B)2

≤ 64LA2u2cmαk−tk,k−1

θℓ2cs
M θ,g

f (xk − x∗) +
32Lαk−tk,k−1

θℓ2cs
(A∥x∗∥c +B)2.

(3) Consider the term T33. We first take expectation conditioning on xk−tk and Yk−tk to

obtain

E[T33 | xk−tk , Yk−tk ]

= ⟨∇M θ,g
f (xk−tk − x∗),E[F (xk−tk , Yk) | xk−tk , Yk−tk ]− F̄ (xk−tk)⟩

≤ ∥∇M θ,g
f (xk−tk − x∗)∥∗s∥E[F (xk−tk , Yk) | xk−tk , Yk−tk ]− F̄ (xk−tk)∥s

≤ 1

ℓcs
∥∇M θ,g

f (xk−tk − x∗)∥∗s∥E[F (xk−tk , Yk) | xk−tk , Yk−tk ]− F̄ (xk−tk)∥c.

For the term ∥∇M θ,g
f (xk−tk − x∗)∥∗s, we have from Equation 2.13 that

∥∇M θ,g
f (xk−tk − x∗)∥∗s ≤

2L

θℓcs

(
∥xk − x∗∥c + ∥x∗∥c +

B

A

)
.

For the term ∥E[F (xk−tk , Yk) | xk−tk , Yk−tk ]− F̄ (xk−tk)∥c, using the geometric mixing of

the Markov chain {Yk} (cf. Assumption 2.2.3), we have

∥E[F (xk−tk , Yk) | xk−tk , Yk−tk ]− F̄ (xk−tk)∥c

= ∥E[F (xk−tk , Yk) | xk−tk , Yk−tk ]− EY∼µY
[F (xk−tk , Y )]∥c
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=

∥∥∥∥∥∑
y∈Y

(
P tk
Y (Yk−tk , y)− µY (y)

)
F (xk−tk , y)

∥∥∥∥∥
c

≤
∑
y∈Y

∣∣P tk
Y (Yk−tk , y)− µY (y)

∣∣ ∥F (xk−tk , y)∥c

≤ 2max
y0∈Y

∥P tk
Y (y0, ·)− µY (·)∥TV(A1∥xk−tk∥c +B1)

≤ 2Cσtk(A1∥xk − xk−tk∥c + A1∥xk∥c +B1) (Assumption 2.2.3)

≤ 2αk(A1(∥xk∥c +B/A) + A1∥xk∥c +B1) (Definition of tk and Corollary 2.6.1)

≤ 4αk(A∥xk − x∗∥c + A∥x∗∥c +B).

It follows that

E[T33 | xk−tk , Yk−tk ]

≤ 1

ℓcs
∥∇M θ,g

f (xk−tk − x∗)∥∗s∥E[F (xk−tk , Yk) | xk−tk , Yk−tk ]− F̄ (xk−tk)∥c

≤ 8Lαk

θℓ2cs
(A∥xk − x∗∥c + A∥x∗∥c +B)2

≤ 16Lαk

θℓ2cs
A2∥xk − x∗∥2c +

16Lαk

θℓ2cs
(A∥x∗∥c +B)2

≤ 32LA2u2cmαk

θℓ2cs
M θ,g

f (xk − x∗) +
16Lαk

θℓ2cs
(A∥x∗∥c +B)2.

Taking the total expectation on both sides of the previous inequality gives the desired result.

2.7.4 Proof of Lemma 2.6.5

Using Proposition 2.3.1 (2), Assumption 2.2.2, and Assumption 2.2.4, we have

T4 =
Lα2

k

2θ
∥F (xk, Yk)− xk + wk∥2s

≤ Lα2
k

2θℓ2cs
∥F (xk, Yk)− xk + wk∥2c (Proposition 2.3.1 (3))

≤ Lα2
k

2θℓ2cs
(∥F (xk, Yk)∥c + ∥xk∥c + ∥wk∥c)2
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≤ Lα2
k

2θℓ2cs
(A∥xk∥c +B)2 (Assumptions 2.2.4 and 2.2.2)

≤ Lα2
k

2θℓ2cs
(A∥xk − x∗∥c + A∥x∗∥c +B)2

≤ Lα2
k

θℓ2cs
A2∥xk − x∗∥2c +

Lα2
k

θℓ2cs
(A∥x∗∥c +B)2

≤ 2LA2u2cmα
2
k

θℓ2cs
M θ,g

f (xk − x∗) +
Lα2

k

θℓ2cs
(A∥x∗∥c +B)2.

2.7.5 Proof of Lemma 2.6.6

We first simplify the RHS of Equation 2.8 using αk = α
k+h

. Since we have chosen h such

that αk−tk,k−1 ≤ 2αk for any k ≥ tk, Equation 2.8 implies

E[∥xk − x∗∥2c ] ≤ φ1c1

k−1∏
j=K

(1− φ2αj) + φ3c2

k−1∑
i=K

αiαi−ti,i−1

k−1∏
j=i+1

(1− φ2αj)

≤ φ1c1

k−1∏
j=K

(1− φ2αj) + 2φ3c2

k−1∑
i=K

α2
i ti

k−1∏
j=i+1

(1− φ2αj)

= φ1c1

k−1∏
j=K

(
1− φ2α

j + h

)
︸ ︷︷ ︸

E1

+2φ3c2tk

k−1∑
i=K

α2

(i+ h)2

k−1∏
j=i+1

(
1− φ2α

j + h

)
︸ ︷︷ ︸

E2

(2.14)

For the term E1, we have

E1 ≤ exp

(
−φ2α

k−1∑
j=K

1

j + h

)
≤ exp

(
−φ2α

∫ k

K

1

x+ h
dx

)
=

(
K + h

k + h

)φ2α

.

Now consider the term E2. Similarly we have

E2 =
k−1∑
i=K

α2

(i+ h)2

k−1∏
j=i+1

(
1− φ2α

j + h

)

≤
k−1∑
i=K

α2

(i+ h)2

(
i+ 1 + h

k + h

)φ2α
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≤ 4α2

(k + h)φ2α

k−1∑
i=K

1

(i+ 1 + h)2−φ2α

≤



4α2

1− φ2α

1

(k + h)φ2α
, φ2α ∈ (0, 1),

4α2 log(k + h)

k + h
, φ2α = 1,

4eα2

φ2α− 1

1

k + h
, φ2α ∈ (1,∞).

The result then follows from using the upper bounds we obtained for the terms E1 and E2

in Equation 2.14.

2.7.6 Proof of Lemma 2.6.7

When αk =
α

(k+h)ξ
, similarly we have from Equation 2.8 that

E[∥xk − x∗∥2c ] ≤ φ1c1

k−1∏
j=K

(
1− φ2α

(j + h)ξ

)
︸ ︷︷ ︸

E1

+2φ3c2tk

k−1∑
i=K

α2

(i+ h)2ξ

k−1∏
j=i+1

(
1− φ2α

(j + h)ξ

)
︸ ︷︷ ︸

E2

(2.15)

The term E1 can be controlled in the following way:

E1 =
k−1∏
j=K

(
1− φ2α

(j + h)ξ

)

≤ exp

(
−φ2α

k−1∑
j=K

1

(j + h)ξ

)

≤ exp

(
−φ2α

∫ k

K

1

(x+ h)ξ
dx

)
= exp

[
− φ2α

1− ξ

(
(k + h)1−ξ − (K + h)1−ξ

)]
.

As for the term E2, we will show by induction that E2 ≤ 2α
φ2

1
(k+h)ξ

for all k ≥ 0.
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Consider a sequence {uk}k≥0 (with u0 = 0) defined by

uk+1 =

(
1− φ2

α

(k + h)ξ

)
uk +

α2

(k + h)2ξ
, ∀ k ≥ 0.

It can be easily verified that uk = E2. Since u0 = 0 ≤ 2α
φ2

1
hξ , we have the base case. Now

suppose uk ≤ 2α
φ2

1
(k+h)ξ

for some k > 0. Consider uk+1, and we have

2α

φ2

1

(k + 1 + h)ξ
− uk+1 =

2α

φ2

1

(k + 1 + h)ξ
−
(
1− φ2

α

(k + h)ξ

)
uk +

α2

(k + h)2ξ

≥2α

φ2

1

(k + 1 + h)ξ
−
(
1− φ2α

(k + h)ξ

)
2α

φ2

1

(k + h)ξ
− α2

(k + h)2ξ

=
2α

φ2

[
1

(k + 1 + h)ξ
− 1

(k + h)ξ
+
φ2α

2

1

(k + h)2ξ

]
=
2α

φ2

1

(k + h)2ξ

[
φ2α

2
− (k + h)ξ

(
1−

(
k + h

k + 1 + h

)ξ
)]

.

Note that

(
k + h

k + 1 + h

)ξ

=

[(
1 +

1

k + h

)k+h
]− ξ

k+h

≥ exp

(
− ξ

k + h

)
≥ 1− ξ

k + h
,

where we used (1 + 1
x
)x < e for all x > 0 and ex ≥ 1 + x for all x ∈ R. Therefore, we

obtain

2α

φ2

1

(k + 1 + h)ξ
− uk+1 ≥

2α

φ2

1

(k + h)2ξ

[
φ2α

2
− (k + h)ξ

(
1−

(
k + h

k + 1 + h

)ξ
)]

≥ 2α

φ2

1

(k + h)2ξ

[
φ2α

2
− ξ

(k + h)1−ξ

]
≥ 0,

where the last line follows from h ≥ h̄ ≥ [2ξ/(φ2α)]
1/(1−ξ). The induction is now com-

plete, and we have E2 ≤ 2α
φ2

1
(k+h)ξ

for all k ≥ 0. Using the upper bounds we obtained for

the terms E1 and E2 in Equation 2.15 and we have the desired result.
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2.7.7 Proof of Corollary 2.5.1

(1) When ∥ · ∥c = ∥ · ∥2, we choose θ = 1 and g(x) = 1
2
∥x∥22. It follows that L = 1 and

ucs = ℓcs = 1. Therefore, we have φ1 = 1, φ2 = 1− β, and φ3 = 228.

(2) Recall the definition of {φi}1≤i≤3 in the beginning of Section 2.4. When ∥ · ∥c = ∥ · ∥∞,

we choose θ =
(

1+β
2β

)2
− 1 and g(x) = 1

2
∥x∥2p with p = 2 log(d), where d is the di-

mension of the iterates {xk}. It follows that L = p − 1 ≤ 2 log(d) [46], ucs = 1, and

ℓcs = 1/d1/p = 1/
√
e. Therefore, we have

φ1 =
1 + θu2cs
1 + θℓ2cs

=
1 + θ

1 + θ/
√
e
≤

√
e ≤ 3,

φ2 = 1− βφ
1/2
1 ≥ 1− β

1 + β

2β
=

1− β

2
,

φ3 =
114L(1 + θu2cs)

θℓ2cs
≤ 228e log(d)(1 + θ)

θ
≤ 456e log(d)

1− β
.

2.8 Conclusion and Future Work

In this chapter, we have established finite-sample bounds for Markovian SA algorithms

involving contraction operators with respect arbitrary norms. We prove this result using

a novel Lyapunov function. Such a a smooth Lyapunov function is constructed using the

generalized Moreau envelope, which involves the infimal convolution with respect to the

square of some other suitable norm.

Beyond mean-square bounds, sometimes high probability (concentration) bounds are

more preferred for practical applications, which is our immediate future direction of this

line of work.
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CHAPTER 3

STOCHASTIC APPROXIMATION UNDER A STRONGLY

PSEUDO-MONOTONE OPERATOR

In the previous chapter we studied Markovian SA algorithms under contractive operators.

In this chapter, we consider a different Markovian SA algorithm, where instead of having

contractive operators, we have strongly pseudo-monotone operators. The results in this

chapter will be used to design and analyze convergent RL algorithms in the presence of the

deadly triad in Part III.

3.1 Problem Setting

Consider the problem of solving for x∗ ∈ Rd in the equation

Ḡ(x) = EµY
[G(x, Y )] = 0, (3.1)

where Y ∈ Y is a random vector with distribution µY , and G : Rd × Y 7→ Rd is a general

nonlinear operator. Similarly as in Chapter 2, we assume the set Y is finite.

When the distribution µY is unknown, Equation 3.1 cannot be solved analytically.

Therefore, we consider solving the equation using the SA method presented in the fol-

lowing. Here in Algorithm 2, {Yk} is a uniformly ergodic Markov chain with stationary

distribution µY , {wk} represents the additive martingale difference noise that possibly de-

pends on {xk}, and {αk} is the stepsize sequence.

We next state our assumptions to study Algorithm 2. Before that, the following defini-

tion is needed. Recall that we use ∥ · ∥2 for the ℓ2-norm for vectors.

Definition 3.1.1. An operator F : Rd 7→ Rd is said to be strongly pseudo-monotone with
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Algorithm 2 SA under a Strongly Pseudo-Monotone Operator

1: Input: Integer k′, and initialization x0 ∈ Rd

2: for k = 0, 1, · · · , k′ − 1 do
3: xk+1 = xk + αk(G(xk, Yk) + wk)
4: end for
5: Output: xk′

respect to x̄ ∈ Rd if there exists c0 > 0 such that

(x− x̄)⊤(F (x)− F (x̄)) ≥ c0∥x− x̄∥22, ∀ x ∈ Rd.

Remark. Recall that an operator F : Rd 7→ Rd being strongly monotone if and only if there

exists c′0 > 0 such that (x−y)⊤(F (x)−F (y)) ≥ c′0∥x−y∥22 for all x, y ∈ Rd. Therefore, an

operator being strongly monotone implies it being strongly pseudo-monotone with respect

to any point.

Assumption 3.1.1. The target equation Ḡ(x) = 0 has a unique solution, which we denote

by x∗. In addition, the operator −Ḡ(·) is strongly pseudo-monotone with respect to x∗, i.e.,

there exists κ > 0 such that

(x− x∗)⊤(Ḡ(x)− Ḡ(x∗)) ≤ −κ∥x− x∗∥22, ∀ x ∈ Rd.

In the SGD setting (i.e., G(x, y) = −∇J(x) + y for some cost function J(·)), As-

sumption 3.1.1 is satisfied when the objective function J(·) is strongly convex. Moreover,

Assumption 3.1.1 can be viewed as an exponential dissipativeness property of the following

ODE

ẋ(t) = Ḡ(x(t)), (3.2)

which is the ODE associated with Algorithm 2 [31]. In fact, this assumption guarantees

that x∗ is the unique exponentially stable equilibrium point of the ODE. To see this, let
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W (x) = ∥x− x∗∥22 be a candidate Lyapunov function. Then we have by Assumption 3.1.1

that

d

dt
W (x(t)) = 2(x(t)− x∗)⊤ẋ(t) ≤ −2κW (x(t)), (3.3)

which implies that W (x(t)) ≤ W (x(0))e−2κt for all t ≥ 0. The parameter κ is called the

negative drift, and we see that the larger κ is, the faster x(t) converges.

Assumption 3.1.2. The following statements hold.

(1) Lipchitz Continuity. There exists constant L1 > 0 such that

(a) ∥G(x1, y)−G(x2, y)∥ ≤ L1∥x1 − x2∥ for all x1, x2 ∈ Rd and y ∈ Y ,

(b) ∥G(0, y)∥ ≤ L1 for all y ∈ Y .

(2) Uniform Ergodicity. The Markov chain {Yk} is uniformly geometrically ergodic with

unique stationary distribution µY .

(3) Additive Martingale Difference Noise. The random process {wk} satisfies

(a) E[wk | Fk] = 0 for all k ≥ 0, where Fk be the Sigma-algebra generated by

{xi, Yi, wi}0≤i≤k−1 ∪ {xk},

(b) ∥wk∥2 ≤ L2(∥xk∥2 + 1) for all k ≥ 0, where L2 > 0 is a constant.

Assumption 3.1.2 is analogous to Assumptions 2.2.2, 2.2.3, and 2.2.4 given in Chap-

ter 2. Specifically, Assumption 3.1.2 (1) states that the operator G(x, y) is L1-Lipschitz

continuous with respect to x uniformly in y. In the special case where G(x, y) is a lin-

ear function of x as considered in [40, 12], i.e., G(x, y) = A(y)x + b(y), Assumption

3.1.2 (1) is automatically satisfied. Assumption 3.1.2 (2) is made to control the Marko-

vian noise in Algorithm 2, and implies that there exist C ≥ 1 and σ ∈ (0, 1) such that

maxy∈Y ∥P k
Y (y, ·) − µY (·)∥TV ≤ Cσk for all k ≥ 0. Using the definition of mixing

time (cf. Definition 2.2.1), Assumption 3.1.2 (2) implies tδ ≤ L3(log(1/δ) + 1), where
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L3 = log(C/σ)
log(1/σ)

. Assumption 3.1.2 (3) states that {wk} is a martingale difference sequence,

and ∥wk∥2 at most scales affinely with respect to the latest iterate ∥xk∥2.

Finally we state the requirement for choosing the stepsize sequence. Recall that we

denote tk = tαk
and αi,j =

∑j
k=i αk. Let L = L1 + L2, and assume without loss of

generality that L ≥ 1.

Condition 3.1.1. The stepsize sequence {αk} satisfies the following conditions:

(1) {αk} is non-increasing and α0 ∈ (0, 1),

(2) it holds that αk−tk,k−1 <
κ

130L2 for all k ≥ tk.

The reason we impose Condition 3.1.1 on the stepsize sequence is the following. Recall

that a key step in deriving the convergence rate of the ODE given in Equation 3.2 is to es-

tablish the negative drift (cf. Equation 3.3). Similarly, when deriving finite-sample bounds

for Algorithm 2, there will also be a negative drift term. In addition, there are error terms

that arise because of the discretization and the stochastic noise. Using small stepsize helps

suppressing these error terms and hence ensures that the negative drift is the dominant term

in our analysis.

Suppose we use constant stepsize, i.e., αk = α for all k ≥ 0. Since in this case we

have αk−tk,k−1 = αtα, and limα→0 αtα = 0, Condition 3.1.1 is satisfied when α is small

enough. In addition to constant stepsize, when using polynomially diminishing stepsizes

of the form αk = α/(k + h)ξ, Condition 3.1.1 is satisfied for any α > 0 and ξ ∈ (0, 1],

provided that h is appropriately chosen.

3.2 Finite-Sample Convergence Guarantees

In this section, we present the finite-sample bounds of Algorithm 2.

Theorem 3.2.1. Consider {xk} of Algorithm 2. Suppose that Assumptions 3.1.1 and 3.1.2

are satisfied, and {αk} satisfies Condition 3.1.1. Let K = min{k : k ≥ tk}. Then we have
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for all k ≥ K:

E[∥xk − x∗∥22] ≤ c1

k−1∏
j=K

(1− καj) + c2

k−1∑
i=K

α̂i

k−1∏
j=i+1

(1− καj), (3.4)

where c1 = (∥x0∥2 + ∥x0 − x∗∥2 + 1)2, c2 = 130L2(∥x∗∥2 + 1)2, and α̂i = αiαi−ti,i−1.

Remark. Although the parameter K is defined as K = min{k : k ≥ tk}, we indeed have

K = tK . To see this, suppose that K > tK . Since both K and tK are integers, we must

have K − 1 ≥ tK ≥ tK−1, where the second inequality follows from the fact that tk = tαk

is an increasing function of k. This contradict to the definition of K and hence we have

K = tK .

On the RHS of Equation 3.4, the first term represents the bias due to the initial guess

x0, and the second term captures the variance due to the noise. After establishing the finite-

sample bounds of Algorithm 2 in its general form, we next consider using stepsizes of the

form αk =
α

(k+h)ξ
and see more explicitly the corresponding convergence rates.

Corollary 3.2.1. We have the following finite-sample guarantees.

(1) Constant Stepsize. When ξ = 0 and α is chosen such that αtα ≤ κ
130L2 , we have

E[∥xk − x∗∥22] ≤ c1(1− κα)k−tα + c2
αtα
κ
, ∀ k ≥ tα.

(2) Linearly Diminishing Stepsizes. When ξ = 1 and α > 1/κ, we have for all k ≥ K:

E[∥xk − x∗∥22] ≤ c1

(
K + h

k + h

)κα

+
8ec2α

2L3

κα− 1

[
log
(
k+h
α

)
+ 1
]

k + h
.

(3) Polynomialy Diminishing Stepsizes. When ξ ∈ (0, 1) and α > 0, assume without loss

of generality that K ≥ [2ξ/(κα)]1/(1−ξ), then we have for all k ≥ K:

E[∥xk − x∗∥22] ≤ c1e
− κα

1−ξ((k+h)1−ξ−(K+h)1−ξ) +
4c2αL3

κ

[log
(
k+h
α

)
+ 1]

(k + h)ξ
.
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Corollary 3.2.1 is qualitatively similar to Theorem 2.5.1 in Chapter 2. Specifically,

using constant stepsize results in constant variance and geometric decaying bias, and using

diminishing stepsizes results in both decaying variance and decaying bias (albeit at a slower

decay rate).

Unlike almost sure convergence, where the usual requirement for stepsizes are
∑∞

k=0 αk =

∞ and
∑∞

k=0 α
2
k < ∞ (which corresponds to ξ ∈ (1/2, 1] in our case), we have conver-

gence in the mean-square sense for all ξ ∈ (0, 1]. The same phenomenon has been observed

in [40], where they study linear SA and nonlinear SA with martingale difference noise.

3.3 Proof of All Theoretical Results

In this section, we present the proofs of Theorem 3.2.1 and Corollary 3.2.1.

3.3.1 Proof of Theorem 3.2.1

We prove Theorem 3.2.1 using a Lyapunov approach with W (x) = ∥x − x∗∥22 being the

Lyapunov function. Using the update equation of Algorithm 2 and we have for all k ≥ 0

that

∥xk+1 − x∗∥22 − ∥xk − x∗∥22 = 2(xk − x∗)⊤(xk+1 − xk) + ∥xk+1 − xk∥22

= 2αk(xk − x∗)⊤Ḡ(xk)︸ ︷︷ ︸
T1

+2αk(xk − x∗)⊤wk︸ ︷︷ ︸
T2

+ 2αk(xk − x∗)⊤(G(xk, Yk)− Ḡ(xk))︸ ︷︷ ︸
T3

+ α2
k∥G(xk, Yk) + wk∥22]︸ ︷︷ ︸

T4

. (3.5)

The term T1 corresponds to the negative drift of the ODE given in Equation 3.2, and we
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have by Assumption 3.1.1 that

T1 ≤ −2καk∥xk − x∗∥22.

The term T2 corresponds to the error due to martingale difference noise {wk}. Using

the tower property of conditional expectation and we have T2 = 0.

The term T3 corresponds to the error due to the Markovian noise {Yk}, and the term

T4 arises mainly because of the error due to discretization. We next control the terms T3

and T4 in the following sequence of lemmas. Their proofs are identical to that of Lemmas

2.6.2, 2.6.4 and 2.6.5 in Chapter 2 and hence is omitted.

Lemma 3.3.1. For any k1 < k2 satisfying αk1,k2−1 ≤ 1
4L

, the following two inequalities

hold:

(1) ∥xk2 − xk1∥2 ≤ 2Lαk1,k2−1(∥xk1∥2 + 1),

(2) ∥xk2 − xk1∥2 ≤ 4Lαk1,k2−1(∥xk2∥2 + 1).

Lemma 3.3.2. The following inequality holds for all k such that αk−tk,k−1 ≤ 1
4L

(where we

recall that αk−tk,k−1 =
∑k−1

i=k−tk
αi):

E[T3] ≤ 128L2αkαk−tk,k−1

[
E[∥xk − x∗∥22] + (∥x∗∥2 + 1)2

]
.

Lemma 3.3.3. The following inequality holds for all k ≥ tk:

T4 ≤ 2L2α2
k

[
∥xk − x∗∥22 + (∥x∗∥2 + 1)2

]
.

Substituting the upper bounds we obtained for the terms T1 to T4 into Equation 3.5, we

have the following recursive bound.
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Lemma 3.3.4. It holds for all k satisfying αk−tk,k−1 ≤ 1
4L

that:

E[∥xk+1 − x∗∥22] ≤ (1− 2καk + 130L2α̂k)E[∥xk − x∗∥22] + 130L2α̂k(∥x∗∥2 + 1)2,

(3.6)

where we recall that α̂k = αkαk−tk,k−1.

In view of Equation 3.6, as long as the drift term dominates the error terms, i.e.,

2καk > 130L2α̂k, we can repeatedly use Equation 3.6 to derive finite-sample error bounds

of Algorithm 2. In particular, when Condition 3.1.1 is satisfied and k ≥ K (see Theo-

rem 3.2.1 for the definition of K), we have by Equation 3.6 that

E[∥xk+1 − x∗∥22] ≤ (1− καk)E[∥xk − x∗∥22] + c2α̂k,

where c2 is defined in Theorem 3.2.1. Repeatedly using the preceding inequality starting

from K, we obtain

E[∥xk − x∗∥22] ≤ E[∥xK − x∗∥22]
k−1∏
j=K

(1− καj) + c2

k−1∑
i=K

α̂i

k−1∏
j=i+1

(1− καj).

To bound E[∥xK − x∗∥22], we use Lemma 3.3.1 and αK−tK ,K−1 = α0,K−1 ≤ 1
4L

to obtain

E[∥xK − x∗∥22] ≤ E[(∥xK − x0∥2 + ∥x∗ − x0∥2)2] ≤ c1.

This completes the proof.

3.3.2 Proof of Corollary 3.2.1

The result is obtained by evaluating the RHS of Equation 3.4 when the stepsize sequence

{αk} is explicitly chosen. The proof is identical to that of Theorem 2.5.1 after Equation 2.8,

and hence is omitted.
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3.4 Conclusion

In this chapter we have established finite-sample convergence guarantees for Markovian SA

algorithms under strongly pseudo-monotone operators. Specifically, we have shown that

the optimal convergence rate is O(1/k) with appropriately chosen diminishing stepsizes.

The rate matches with the results in Chapter 2 for contractive SA, and that of SGD with a

smooth and strongly convex objective.

The results in this chapter will be frequently used in Part III of the thesis to study RL

with linear function approximation.
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CHAPTER 4

STATIONARY BEHAVIOR OF STOCHASTIC APPROXIMATION

ALGORITHMS

In the previous two chapters, we have characterized the finite-sample behavior of SA al-

gorithms under contractive operators and under strongly pseudo-monotone operators. In

particular, we have shown that using constant stepsize leads to geometric convergence (in

the mean-square sense) to a ball centered at the desired limit point, and using diminishing

stepsize leads to asymptotic convergence at a polynomial rate. In this chapter, we switch

our focus to the asymptotic region of constant stepsize SA algorithms, and characterize the

stationary distribution of properly scaled iterates as the constant stepsize goes to zero.

4.1 Introduction

As we have shown in the previous two chapters, theoretically, to achieve asymptotic conver-

gence, we should use diminishing stepsizes with proper decay rate [28, 11, 33]. However,

constant stepsize SA algorithms are preferred in practice due to their faster convergence.

In that case, instead of converging asymptotically to the desired solution, the iterates of

constant stepsize SA algorithms have a stationary distribution. Although such weak con-

vergence to a stationary distribution was established in the literature [55], it is not possible

to fully characterize the limiting distribution. The reason is that, when constant stepsize is

used, the distribution of the noise sequence within the SA algorithm plays an important role

in the stationary distribution of the iterates. Since the distribution of the noise is in general

unknown, the stationary distribution cannot be analytically characterized. In this chapter,

building upon the works on stationary distribution of constant stepsize SA algorithms, we

aim at understanding the limiting behavior of the properly scaled stationary distribution as

the constant stepsize goes to zero.
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More formally, with initialization X(α)
0 ∈ Rd, consider the SA algorithm

X
(α)
k+1 = X

(α)
k + α

(
F (X

(α)
k ) + wk

)
, (4.1)

where F : Rd 7→ Rd is a general nonlinear operator, α is the constant stepsize, and {wk} is

the noise sequence. Observe that Equation 4.1 can be viewed as an iterative algorithm for

solving the equation F (x) = 0 in the presence of noise [10]. A typical example is when

F (x) = −c∇f(x) (where c > 0 is a constant) for some objective function f(·). In this case

Equation 4.1 becomes the popular SGD algorithm for minimizing f(·) [23, 43]. Another

example lies in the context of RL, where F (x) = T (x) − x, and T (·) is the Bellman

operator [1]. In this case, Equation 4.1 is closely related popular RL algorithms such as

TD-learning [56] and Q-learning [17].

Under some mild conditions on the operator F (·), it was shown in the literature that the

sequence {X(α)
k } converges weakly to some random variable X(α) [57, 58, 55, 59]. How-

ever, for a fixed α, it is not possible to fully characterize the distribution of X(α) because it

depends on the distribution of the noise sequence {wk}, which is usually unknown. In this

chapter, we further consider letting α go to zero, and study the distribution of a properly

centered and scaled iterate. Specifically, let Y (α)
k := (X

(α)
k − x∗)/g(α), where x∗ is the

solution of F (x) = 0 (provided that it exists and is unique), and g : R 7→ R is a properly

chosen scaling function1. When k goes to infinity, we expect that Y (α)
k converges weakly to

some random variable Y (α). Then we let α go to zero, and our goal is to further character-

ize the weak limit of Y (α). Notice that proper scaling of the iterates is essential for raveling

its fine grade behavior because otherwise the limiting distribution of the un-scaled iterates

will converge to a singleton as the stepsize α goes to zero, which is analogous to the almost

sure convergence results for using diminishing stepsizes in SA algorithms [10].

To summarize, we want to find a suitable scaling function g(·) and to characterize

the following two-step weak convergence of the centered scaled iterate Y (α)
k = (X

(α)
k −

1The scaling function is unique up to a numerical factor
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x∗)/g(α):

Y
(α)
k

k→∞
=⇒ Y (α) α→0

=⇒ Y, (4.2)

where we use the notation ⇒ for weak convergence (or convergence in distribution).

4.1.1 Main Contributions

In this subsection, we present the main contributions of this chapter.

Characterizing the Distribution of Y . We propose a general framework for charac-

terizing the distribution of Y in the following 3 cases: (1) SGD with a smooth and strongly

convex objective, (2) linear SA with a Hurwitz matrix, and (3) SA involving a contractive

operator. In particular, we show that in all three cases above the correct scaling function is

g(α) =
√
α, and the distribution of Y is Gaussian with mean zero and covariance matrix

being the unique solution of an appropriate Lyapunov equation. Our proof is to use the

characteristic function as a test function to obtain an implicit equation of the distribution of

Y , and then show that the desired Gaussian distribution solves the implicit equation.

Determining the Suitable Scaling Function. For more general SA algorithms, we

show empirically that the scaling function need not be g(α) =
√
α and the distribution

of Y need not be Gaussian. Inspired by this observation, we propose a method to find

the the correct scaling function for general SA algorithms. In particular, our results indi-

cate that the scaling function g(α) should be chosen such that (1) limα→0
α

g(α)
= 0 and

limk→∞ g(α) = 0, and (2) the function F̃ (·) defined by F̃ (y) = limα→0
g(α)F (yg(α)+x∗)

α
is

non-trivial in the sense that it is not identically zero or infinity. Our proposed condition is

verified in numerical experiments. Moreover, we make an insightful connection between

the choice of the scaling function g(α) and the Euler-Maruyama discretization scheme for

approximating stochastic differential equations (SDEs) – Langevin diffusion [60].
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4.1.2 An Illustrative Example

We next provide an example to illustrate the problem we are going to study. Consider

Equation 4.1. Suppose that F (x) = −x is a scalar-valued function, and {wk} is a sequence

of i.i.d. standard normal random variables. We make such noise assumption here only

for ease of exposition, and it will be relaxed in later sections of this chapter. In this case,

Equation 4.1 becomes

X
(α)
k+1 = (1− α)X

(α)
k + αwk. (4.3)

This algorithm has the following two interpretations: (1) it can be viewed as the SGD

algorithm for minimizing the quadratic objective function f(x) = x2/2, which has a unique

minimizer at x∗ = 0, and (2) it can also be viewed as an SA algorithm for solving the fixed-

point equation T (x) = x with T (x) being identically equal to zero, therefore x∗ = 0 is the

unique fixed-point.

Let Y (α)
k = X

(α)
k /

√
α be the centered scaled iterate. To obtain an update equation for

Y
(α)
k , dividing both sides of Equation 4.3 by

√
α and we obtain for all k ≥ 0:

Y
(α)
k = (1− α)Y

(α)
k−1 +

√
αwk−1

= (1− α)2Y
(α)
k−2 + (1− α)

√
αwk−2 +

√
αwk−1

= · · ·

= (1− α)kY
(α)
0 +

k−1∑
i=0

(1− α)k−1−i
√
αwi.

Since Y (α)
k is a linear combination of mutually independent Gaussian random variables,

Y
(α)
k itself is also a Gaussian random variable. Therefore, the distribution of Y (α)

k is

uniquely determined by its mean and variance. Using the fact that {wk} is an i.i.d. se-
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quence of standard normal random variables, we have

E[Y (α)
k ] = (1− α)kY

(α)
0 +

k−1∑
i=0

(1− α)k−1−i
√
αE[wi] = (1− α)kY

(α)
0 ,

and

V[Y (α)
k ] = V

[
(1− α)kY

(α)
0 +

k−1∑
i=0

(1− α)k−1−i
√
αwi

]

= α

k−1∑
i=0

(1− α)2i

=
1

2− α

(
1− (1− α)2k

)
,

where V(·) represents the variance of a random variable. It follows that limk→∞ E[Y (α)
k ] =

0 and limk→∞V[Y (α)
k ] = 1

2−α
. Therefore, the sequence Y (α)

k converges weakly to a random

variable Y (α), whose distribution is N (0, 1
2−α

). In this case, we are able to analytically

characterize the distribution of Y (α) for a fixed α because of the simplicity of Equation 4.3

and the noise sequence {wk} being i.i.d. standard normal. For Equation 4.1 with limited

information on the noise sequence {wk}, it is in general not possible to fully characterize

the distribution of Y (α).

Now that we have characterized the first weak convergence in Equation 4.2, consider

the second weak convergence. Note that we have already shown Y (α) ∼ N (0, 1
2−α

). As

α goes to zero, we have that Y (α) converges weakly to a random variable Y , whose dis-

tribution is N (0, 1
2
). As opposed to the first weak convergence in Equation 4.2, where the

distribution of Y (α) in general cannot be fully characterized, we are able to characterize (in

later sections) the distribution of Y for more general SA algorithms under more general

noise assumptions. Intuitively, the reason is that as the constant stepsize decreases, the ef-

fect of the entire distribution of the noise {wk} on the distribution of Y α is weakened. This

is analogous to central limit theorem type of results.

To summarize, we have shown in the special case of Equation 4.3 that the correct scaling
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function is g(α) =
√
α, and the distribution of the limiting random variable Y is a Gaussian

distribution with mean zero and variance 1/
√
2. In later sections, we extend this result to

more general SA algorithms with weaker noise assumptions.

4.1.3 Related Literature

Since proposed in [10], SA has been popular for solving large scale optimization problems

[43, 23]. Although in principle it requires using diminishing stepsizes to achieve asymp-

totic convergence, constant stepsize is preferred in practice [61]. Although there are many

existing papers studying SA algorithms with both constant and diminishing stepsizes [62,

63, 64, 65, 66, 67, 68, 12], the focus of this chapter is fundamentally different from them.

In particular, we are interested in the stationary distribution of the centered scaled iterate

(scaled by some function of the constant stepsize), while most of the existing papers study

the convergence or convergence rate of the original iterates, and do not study the stationary

distribution.

Constant Stepsize SGD. In contrast to the success in machine learning practice, there

is little discussion about the stationary distribution of constant stepsize SGD. Among ex-

isting literature [57, 58, 55], [57] introduced Markov chain theory in the study of constant

stepsize SGD algorithm under the strong convexity assumption. They utilized the property

that the sequence of iterates is an homogeneous Markov chain to provide an explicit asymp-

totic expansion of the moments of the averaged SGD iterates. [55] generalized the results

in [57] to the setting where the objective function is neither strongly convex nor smooth but

satisfies a dissipativity assumption. Under the dissipativity assumption, the authors of [57]

established an asymptotic normality result for the constant stepsize SGD algorithm. [58]

studied the asymptotic behavior of constant stepsize SGD with a nonconvex, nonsmooth,

but locally Lipchitz objective function. It was shown that in a small stepsize regime, the

interpolated trajectory of the algorithm converges in probability towards the solutions of

the differential inclusion ẋ = ∂F (x) and the invariant distribution of the corresponding
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Markov chain converges weakly to the set of invariant distributions of the differential in-

clusion.

The work mentioned before establish the existence of the stationary distribution for

constant stepsize SGD type of algorithms. However, it is in general not possible to fully

characterize such stationary distribution unless the update rule and the noise sequence are

extremely simple (see Subsection 4.1.2). Therefore, we propose studying the limit of such

stationary distribution as the constant stepsize goes to zero. Since the SGD iterates will

converge to a singleton as the constant stepsize goes to zero, without proper scaling, it

is not possible to provide meaningful results regarding the distribution of iterates. Hence

none of the previously mentioned work can be applied to study the limiting behavior of

SA algorithms in our setting. A concurrent work [59] studied the constant stepsize SA

algorithms on a Riemannian manifold and established the limiting distribution of the
√
α

scaled iterate (cf. [59, Theorem 7]). However, for general SA algorithms, the scaling

function need not be g(α) =
√
α and the corresponding distribution need not be Gaussian.

In this case, a proper method to determine the correct scaling function is of vital importance.

Diminishing Stepsize SA. A set of closely related literature is on studying the asymp-

totic normality of SA algorithms using diminishing stepsizes, in particular O(1/k) stepsize

[69, 70, 71, 72]. Note that in order to have a meaningful distribution, O(
√
k) scaling of the

iterates is also required. This type of results can be viewed as an extension of the central

limit theorem (which considers only the average of random variables) to the more general

SA setting. In contrast, we study constant stepsize SA, which is more preferable in prac-

tice due to its fast convergence. In addition, since we have a two-step weak convergence

(see Equation 4.2), the analysis is fundamentally different. Moreover, for general SA al-

gorithms, we are the first to demonstrate that the scaling function need not be
√
α, and the

limiting stationary distribution need not be Gaussian, see Section 4.3.

Diffusion Approximation of SGD. Another set of related literature is on the diffusion

approximation of SGD [73, 74, 75, 76, 77], where the authors aim to approximate the
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trajectory of SGD by a diffusion process which solves the corresponding SDE. Notice that

they also study the scaled version of the diffusion limit of SGD. However, different from

our approach, their scale is in temporal domain and cannot be applied to our research.

Heavy Traffic Analysis in Stochastic Networks. The Markov chain perspective of

studying SGD iterates when the constant stepsize goes to zero [57] is qualitatively related

to the heavy traffic analysis for stochastic networks [78]. It has been studied in the literature

using fluid and diffusion limits [79, 80, 81, 82, 83, 84], where the interchange of limit is

usually problematic [78]. An alternative approach in studying stochastic networks is based

on a Lyapunov drift argument introduced by [78] and further generalized by [85, 86, 87, 88,

89]. We adopt similar techniques in quantifying the limiting distribution of the scaled SGD

iterates. Notice that in stochastic networks, people mainly focus on finite (or countable)

state-space Markov chains. However, when it comes to the SA iterates, the state-space is

continuous and thus more challenging.

4.2 Characterizing the Asymptotic Stationary Distribution

Through out this section, we make the following assumption regarding the noise {wk}.

Assumption 4.2.1. The noise sequence {wk} is independent and identically distributed

with mean zero and a positive definite covariance matrix Σ ∈ Rd×d.

Note that Assumption 4.2.1 is much weaker than the assumption used in Subsection 4.1.2,

where the noise is assumed to obey the standard normal distribution. That being said, ex-

tending our results to the more general noise setting (e.g. martingale difference noise, and

Markovian noise, etc) is one of our future directions.
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4.2.1 SGD for Minimizing a Smooth and Strongly Convex Objective

Suppose that F (x) = −∇f(x), where f(·) is an objective function. Then Equation 4.1

becomes

X
(α)
k+1 = X

(α)
k + α

(
−∇f(X(α)

k ) + wk

)
, (4.4)

which is the well-known SGD algorithm for minimizing f(·).

To characterize the asymptotic behavior of Equation 4.4, we make the following as-

sumption.

Assumption 4.2.2. The objective function f : Rd 7→ R is twice differentiable, and is both

L – smooth and σ – strongly convex.

Assumption 4.2.2 implies that

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥x− y∥22, (L – smooth)

and f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ σ

2
∥x− y∥22 (σ-convex)

for all x, y ∈ Rd. In addition, the function f(x) has a unique minimizer (or F (x) = 0 has

a unique solution), which we have denoted by x∗. To proceed, let Y (α)
k = (X

(α)
k − x∗)/

√
α

be the centered scaled iterate. We first derive the corresponding update equation of Y (α)
k in

following:

Y
(α)
k+1 = Y

(α)
k −

√
α∇f

(√
αY

(α)
k + x∗

)
+
√
αwk, (4.5)

which is obtained by subtracting x∗ from both sides of Equation 4.4 and then dividing by
√
α.

We next characterize the two-step weak convergence (cf. Equation 4.2) of {Y (α)
k } in

the following theorem. Let Hf ∈ Rd×d be the Hessian matrix of the objective function f(·)
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evaluated at x∗, which is well-defined because f(·) is twice differentiable.

Theorem 4.2.1. Consider the iterates {Y (α)
k } generated by Equation 4.5. Suppose that

Assumptions 4.2.1 and 4.2.2 are satisfied, then the following statements hold.

(1) There exists a threshold ᾱ > 0 such that for all α ∈ (0, ᾱ), the sequence of random

variables {Y (α)
k } converges weakly to some random variable Y (α), which satisfies

E[∥Y (α)∥22] <∞.

(2) For any positive sequence {αk} satisfying αk ∈ (0, ᾱ) for all k ≥ 0 and limk→∞ αk =

0, the sequence {Y (αk)} converges weakly to a random variable Y , which satisfies

the following equation

E
[(
t⊤Σt+ 2it⊤HfY

)
eit

⊤Y
]
= 0, ∀ t ∈ Rd, (4.6)

where i is the imaginary unit. In addition, suppose that Equation 4.6 has a unique

solution (in terms of the distribution of Y ), then the distribution of Y is the multivari-

ate normal distribution with mean zero and covariance matrix ΣY being the unique

solution of the Lyapunov equation

HfΣY + ΣYH
⊤
f = Σ. (4.7)

Remark. To establish Theorem 4.2.1 (2), we require Equation 4.6 to have a unique solution

in terms of the distribution of Y . Such uniqueness assumption will be discussed and relaxed

to some extent in Subsection 4.2.4.

Since Σ is positive definite, and Hf is also positive definite under strong convexity, it

is well established in the literature that the Lyapunov equation HfΣY + ΣYH
⊤
f = Σ has a

unique solution [90]. One way of writing the solution ΣY is given by

ΣY =

∫ ∞

0

e−HfuΣe−H⊤
f udu.
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See [91] for an alternative approach of solving Lyapunov equations using Kronecker prod-

uct.

To better understand Theorem 4.2.1, consider the scalar setting where f(x) = x2/2 and

Σ = 1. In this case we have Hf = 1 and hence ΣY = 1/2 by the Lyapunov equation (cf.

Equation 4.7). As a result, the distribution of the limiting random variable Y is a Gaussian

distribution with mean zero and variance 1/2. This agrees with the illustrative example

presented in Subsection 4.1.2.

From Theorem 4.2.1, we see that the distribution of Y only depends on the Hessian of

f(·) at x∗. This makes intuitive sense because we are studying the asymptotic behavior of

Equation 4.4, and only the properties of f(·) around x∗ should play a role in characterizing

the stationary distribution.

4.2.2 Linear Stochastic Approximation

Suppose that F (x) = Ax+ b, where A ∈ Rd×d and b ∈ Rd. Then Equation 4.1 becomes

X
(α)
k+1 = X

(α)
k + α

(
AX

(α)
k + b+ wk

)
, (4.8)

which aims at iteratively solving the linear system of equations Ax + b = 0. Note that

since the matrix A is not necessarily symmetric, F (x) = Ax + b need not be the gradient

of any objective function. Such linear SA algorithms arise in many realistic applications.

One typical example is TD-learning (with linear function approximation) for solving the

policy evaluation problem in RL, where the goal is to solve a linear Bellman equation. See

[11, 92, 12, 40] for more details about TD-learning as a linear SA algorithm.

To study the asymptotic behavior of Equation 4.8, we make the following assumption

regarding the matrix A.

Assumption 4.2.3. The matrix A is Hurwitz., i.e., all eigenvalues of A have strict negative

real parts.
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Remark. Since A being Hurwitz implies A being non-singular, Assumption 4.2.3 ensures

that the target equation Ax+ b = 0 has a unique solution, which we have denoted by x∗.

Assumption 4.2.3 is standard in studying linear SA algorithms. In particular, it was

shown in the literature that under Assumption 4.2.3 and some mild conditions on the noise

{wk}, Equation 4.8 converges in the mean square sense to a neighborhood around x∗ [12].

To study the asymptotic distribution, for a fixed stepsize α, we define the centered

scaled iterate Y (α)
k by Y (α)

k = (X
(α)
k − x∗)/

√
α for all k ≥ 0. To find the corresponding

update equation for Y (α)
k , we first subtract x∗ from both sides of Equation 4.8 to obtain

X
(α)
k+1 − x∗ = X

(α)
k − x∗ + α

(
A(X

(α)
k − x∗) + wk

)
,

where we used Ax∗ + b = 0. Then we divide both sides of the previous inequality by
√
α

to obtain:

Y
(α)
k+1 = (I + αA)Y

(α)
k +

√
αwk. (4.9)

The full characterization of the two-step weak convergence (cf. Equation 4.2) of the ran-

dom process {Y (α)
k } is captured by the following theorem.

Theorem 4.2.2. Consider the iterates {Y (α)
k } generated by Equation 4.9. Suppose that

Assumptions 4.2.1 and 4.2.3 are satisfied, then the following statements hold.

(1) There exists a threshold ᾱ′ > 0 such that for all α ∈ (0, ᾱ′), the sequence of random

variables {Y (α)
k } converges weakly to some random variable Y (α), which satisfies

E[∥Y (α)∥22] <∞.

(2) For any positive sequence {αk} satisfying αk ∈ (0, ᾱ′) for all k ≥ 0 and limk→∞ αk =

0, the sequence of random variables {Y (αk)} converges weakly to a random variable
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Y , which satisfies the following equation

E
[(
t⊤Σt− 2it⊤AY

)
eit

⊤Y
]
= 0, ∀ t ∈ Rd. (4.10)

In addition, suppose that Equation 4.10 has a unique solution in terms of the distri-

bution of Y , then Y obeys the multivariate normal distribution with mean zero and

covariance matrix being the unique solution ΣY of the Lyapunov equation.

AΣY + ΣYA
⊤ + Σ = 0. (4.11)

Since the matrix A is Hurwitz, and the matrix Σ is positive definite, the existence and

uniqueness of a positive definition solution to the Lyapunov equation (cf. Equation 4.11)

are guaranteed [91].

Lyapunov equations were used extensively in the stability analysis of ODEs. For ex-

ample, the ODE associated with Equation 4.8 is given by ẋ(t) = Ax(t) + b [33], and the

function W (x) = (x − x∗)⊤ΣY (x − x∗) is a valid Lyapunov function for showing the

global geometric stability of this ODE [91]. Interestingly, according to Theorem 4.2.2, the

solution ΣY also plays an important role in characterizing the limit distribution of centered

scaled iterates of linear SA algorithm (cf. Equation 4.8), which can viewed as a discrete

and stochastic counterpart of the ODE ẋ(t) = Ax(t) + b.

4.2.3 Stochastic Approximation under Contraction Assumption

Suppose that F (x) = T (x)− x, where T : Rd ×Rd is a general nonlinear operator. In this

case, Equation 4.1 becomes

X
(α)
k+1 = X

(α)
k + α

(
T
(
X

(α)
k

)
−X

(α)
k + wk

)
, (4.12)

64



which can be interpreted as an SA algorithm for finding the fixed-point of the operator

T (·). These type of algorithms arise in the context of RL. Specifically, many popular RL

algorithms such as Q-learning [17] and TD-learning [56] are SA algorithms for solving

fixed-point equations (i.e., Bellman equations), where the fixed-point operators (i.e., Bell-

man operators) are contraction mappings. Therefore, our result is closely related to those

RL algorithms. In fact, one of our immediate future directions is to actually extend our

study to constant-stepsize RL algorithms and provide theoretical insights about their sta-

tionary distributions.

To proceed and study Equation 4.12, we need the following definition.

Definition 4.2.1. Let νi, 1 ≤ i ≤ d be positive real numbers. Then the weighted ℓ2-norm

∥ · ∥ν with weights {νi}1≤i≤d is defined by ∥x∥ν = (
∑d

i=1 νix
2
i )

1/2 for all x ∈ Rd.

Next, we state our assumption regarding the operator T (·).

Assumption 4.2.4. The operator T (·) is continuously differentiable, and there exists β ∈

(0, 1) such that ∥T (x1) − T (x2)∥µ ≤ β∥x1 − x2∥µ for any x1, x2 ∈ Rd, where ∥ · ∥µ is

some weighted ℓ2-norm with weights {µi}1≤i≤d.

Assumption 4.2.4 essentially states that the operator T (·) is a contraction mapping with

respect to the weighted ℓ2-norm ∥ · ∥µ. By Banach fixed-point theorem [47], the operator

T (·) has a unique fixed-point x∗.

To proceed, we derive the update equation of the centered scaled iterate Y (α)
k = (X

(α)
k −

x∗)/
√
α in the following:

Y
(α)
k+1 = Y

(α)
k +

√
α
(
T
(√

αY
(α)
k + x∗

)
−
(√

αY
(α)
k + x∗

))
+
√
αwk. (4.13)

To characterize the distribution of the limiting random vector Y (cf. Equation 4.2), let

J ∈ Rd×d be the Jacobian matrix of the operator T (·) evaluated at x∗, which is well defined

because T (·) is continuously differentiable. We first show that all eigenvalues of the matrix
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J are contained in the open unit ball of the complex plane. This result is important for us

to later describe the covariance matrix of the limiting random vector Y .

Lemma 4.2.1. The spectral radius r(J) := max1≤i≤d |λi(J)| of the matrix J is strictly less

than 1.

Proof of Lemma 4.2.1. We first show that r(J) ≤ ∥J∥ for any induced matrix norm ∥ · ∥.

Let (λi, vi) be an eigenvalue-eigenvector pair of the matrix J . Then we have ∥Jvi∥ =

∥λivi∥ = |λi|∥vi∥, which implies

∥J∥ := max
x ̸=0

∥Jx∥
∥x∥

≥ ∥Jvi∥
∥vi∥

= |λi|.

Since the previous inequality holds for any eigenvalue λi of the matrix J , we have r(J) ≤

∥J∥. The rest of the proof follows by showing ∥J∥µ ≤ β under the contraction assumption,

which can be found on standard analysis textbooks.

The next theorem characterizes the distribution of the two-step limiting random vector

Y of the centered scaled iterates {Y (α)
k } of Equation 4.12.

Theorem 4.2.3. Consider the iterates {Y (α)
k } generated by Equation 4.13. Suppose that

Assumptions 4.2.1 and 4.2.4 are satisfied, then the following statements hold.

(1) There exists a threshold ᾱ′′ > 0 such that for all α ∈ (0, ᾱ′′), the sequence of random

variables {Y (α)
k } converges weakly to some random variable Y (α), which satisfies

E[∥Y (α)∥22] <∞.

(2) For any positive sequence {αk} satisfying αk ∈ (0, ᾱ′′) for all k ≥ 0 and limk→∞ αk =

0, the sequence of random variables {Y (αk)} converges weakly to a random variable

Y , which satisfies the following equation

E
[(
t⊤Σt− 2it⊤(J − I)Y

)
eit

⊤Y
]
= 0, ∀ t ∈ Rd. (4.14)
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In addition, suppose that Equation 4.14 has a unique solution, then Y obeys a multi-

variate normal distribution with mean zero and covariance matrix being the unique

solution of the Lyapunov equation (J − I)ΣY + ΣY (J − I)⊤ + Σ = 0.

Under the contraction assumption, the spectral radius of the Jacobian matrix J is strictly

less than one (cf. Lemma 4.2.1). Therefore, all eigenvalues of the matrix J − I belong to

the open-left half of the complex plane. As a result, the matrix J − I is Hurwitz and hence

the Lyapunov equation (J − I)ΣY + ΣY (J − I)⊤ + Σ = 0 has a unique positive definite

solution ΣY [91].

4.2.4 The Uniqueness Assumption

In Theorem 4.2.1, Theorem 4.2.2, and Theorem 4.2.3, after obtaining the implicit equations

(i.e., Equation 4.6, Equation 4.10, and Equation 4.14), to conclude that the distribution of Y

is Gaussian, we need to assume that the equation has a unique solution. In this subsection,

we show that such uniqueness assumption can be relaxed to some extend.

Uni-Dimensional Setting

Suppose that we are in the uni-dimensional setting, i.e., d = 1. Then Equation 4.6, Equa-

tion 4.10, and Equation 4.14 all reduce to an equation of the following form: E[(at +

2biY )eitY ] = 0 for all t ∈ R, where a and b are positive constants. Let ϕY (t) = E[eitY ]

be the characteristic function of the random variable Y . Then we can rewrite the previous

equation as

atϕY (t) + 2b
dϕY (t)

dt
= 0, (4.15)
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where the interchange of integral and differentiation is justified [93]. Now Equation 4.15

is an ODE, which has solutions of the form

ϕY (t) = C exp
(
− a

4b
t2
)
,

where C is a constant. Since ϕY (t) as a characteristic function, hence satisfies ϕY (0) = 1,

we have C = 1. It follows that ϕY (t) = exp(− a
4b
t2), which is the characteristic function

for a Gaussian random variable with mean zero and covariance
√
a/(2b).

Based on the previous analysis, the uniqueness assumption about Equation 4.6, Equa-

tion 4.10, and Equation 4.14 can be removed in the uni-dimensional setting.

Multi-Dimensional Setting

Moving to the multi-dimensional setting, consider Equation 4.6 of Theorem 4.2.1 as a rep-

resentative example. To reproduce Theorem 4.2.1 (2) without imposing the uniqueness

assumption, we consider the setting where (1) the Hessian matrix Hf of the objective func-

tion f(·) evaluated at x∗ is the identity matrix, and (2) the covariance matrix of the noise

wk is also an identity matrix. Extending the result to the more general setting where Hf

and Σ can be any positive definite matrices is a future research direction.

Similarly let ϕY (t) = E[eit⊤Y ] be the characteristic function of the random vector Y .

Then in this case Equation 4.6 becomes t⊤tϕY (t) + 2t⊤∇ϕY (t) = 0, which is equivalently

to

0 = t⊤t+ 2t⊤
∇ϕY (t)

ϕY (t)

= t⊤t+ 2t⊤∇ψY (t), (4.16)

where ψY (t) := log(ϕY (t)). To solve the partial differential equation (PDE) (i.e., Equa-

tion 4.24), we will first convert the PDE from Cartesian coordinates to spherical coordi-
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nates, which then becomes directly solvable.

The d-dimensional spherical coordinate system consists of a radial coordinate ρ, and

d − 1 angular coordinates {θi}1≤i≤d−1. The relation between the Cartesian coordinates

(t1, · · · , td) and the spherical coordinates (ρ, θ1, · · · , θd−1) is given by

t1 = ρsin(θ1)sin(θ2) · · · sin(θd−2)sin(θd−1),

t2 = ρcos(θ1)sin(θ2) · · · sin(θd−2)sin(θd−1),

t3 = ρcos(θ2)sin(θ3) · · · sin(θd−2)sin(θd−1),

...

td−1 = ρcos(θd−2)sin(θd−1),

td = ρcos(θd−1),

where θ1 ∈ [0, 2π) and θi ∈ [0, π] for all i = 2, 3, · · · , d − 1. To proceed, we first

compute the Jacobian matrix Jd of the transformation based on the formula presented in

[94]. Specifically, we have

Jd =
∂(t1, t2, · · · , td)

∂(ρ, θ1, θ2, · · · , θd−1)

=



t1
ρ

t1cot(θ1) t1cot(θ2) · · · t1cot(θd−2) t1cot(θd−1)

t2
ρ

−t2tan(θ1) t2cot(θ2) · · · t2cot(θd−2) t2cot(θd−1)

· · · · · · · · · · · · · · · · · ·
td−1

ρ
0 0 · · · −td−1tan(θd−2) td−1cot(θd−1)

td
ρ

0 0 · · · 0 −tdtan(θd−1)


.

Using the spherical coordinate system, Equation 4.24 can written as

ρ2 + 2t⊤J−1
d ∇ψY (ρ, θ1, · · · , θd−1).
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which by direct computation simplifies to

ρ+ 2
∂ψY (ρ, θ1, · · · , θd−1)

∂ρ
= 0.

This implies that ψY (ρ, θ1, · · · , θd−1) = −ρ2

4
+ C(θ1, · · · , θd−1). Using the initial condi-

tion that ψY (0, θ1, · · · , θd−1) = log(ϕY (0)) = log(1) = 0 for any θ1, · · · , θd−1, we see

that C(θ1, · · · , θd−1) = 0 and hence ϕY (ρ, θ1, · · · , θd−1) = ρ2

4
. Therefore, we have that

ψY (t) = − t⊤t
4

, which implies ϕY (t) = exp(− t⊤t
4
). It follows that the distribution of Y

is the multinormal distribution with mean zero and covariance matrix being Id/
√
2. This

agrees with Theorem 4.2.1 (2) when Hf = Σ = I , but the uniqueness assumption is not

required to establish the result.

4.3 Identifying the Suitable Scaling Function for More General Stochastic Approxi-

mation Algorithms

In the previous section, we have shown that for several particular SA algorithms (e.g. SGD,

linear SA, and contractive SA), the scaling function is g(α) =
√
α and distribution of

the limiting random variable Y is a Gaussian distribution. In this section, we consider

more general SA algorithms. We first show impirically in the following subsection that in

general the scaling function need not be g(α) =
√
α, and the distribution of Y need not be

Gaussian.

4.3.1 Numerical Experiments

Suppose that Equation 4.1 is the SGD algorithm for minimizing the scalar objective f(x) =

x4/4. That is:

X
(α)
k+1 = X

(α)
k + α

(
−(X

(α)
k )3 + wk

)
. (4.17)
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Note that f(·) in this case is neither smooth nor strongly convex. It is clear that the

unique minimizer of f(·) is zero. Let the centered scaled iterate Y
(α)
k be defined by

Y
(α)
k = X

(α)
k /g(α). We next use numerical simulation to show that the correct scaling

function in this case should be g(α) = α1/4 instead of g(α) =
√
α.

Figure 4.1: Estimated Density Functions When Choosing g(α) = α1/2

Figure 4.2: Estimated Density Functions When Choosing g(α) = α1/4

In Figure 11.1 and Figure 11.2, we plot the empirical density function of Y (α) for

different α. For the right scaling function, we expect the density function to converge

71



Figure 4.3: log(pY (y)) as a Function of y4

as α decreases, while for the wrong scaling function, we expect the density function to

change drastically for order-wise different α. As we see, it is clear that g(α) =
√
α is not

suitable in this case, and g(α) = α1/4 seems to be the right scaling.

To further verify this result, we plot the logarithmic empirical density function as a

function of y4 in Figure 11.3. We observe linear growth in Figure 11.3. This indicates that

the density function pY (y) is proportional to eβy4 , where β is some numerical constant.

Therefore, numerical experiments suggest that the distribution of Y is not Gaussian but

super Gaussian in this problem.

4.3.2 A Method to Determine the Suitable Scaling Function

Inspired by the numerical simulations provided in the previous section, we here provide a

method to determine the correct scaling function for general SA algorithms.

To gain intuition, we consider the centered scaled iterates Y (α)
k = X

(α)
k /α1/4 for Equa-

tion 4.17. The update equation of Y (α)
k is given by

Y
(α)
k+1 = Y

(α)
k − α3/2(Y

(α)
k )3 + α3/4wk.

Notably, the factor in terms of the stepsize α in front of the term (Y
(α)
k )3 is α3/2, which is
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equal to the square of the factor α3/4 in front of the noise term wk.

Now for the general SA algorithm presented in Equation 4.1, by rewriting Equation 4.1

in terms of the centered scaled iterate Y (α)
k = (X

(α)
k − x∗)/g(α), we have

Y
(α)
k+1 = Y

(α)
k +

(
α

g(α)

)2
g(α)F (Y

(α)
k g(α) + x∗)

α
+

α

g(α)
wk. (4.18)

In view of the previous equation and the empirical observations in the previous section,

we see that we need to choose a scaling function g(α) such that the following condition is

satisfied.

Condition 4.3.1. The scaling function g(·) should be chosen such that

(1) limα→0
α

g(α)
= 0 and limα→0 g(α) = 0

(2) The function F̃ : Rd 7→ Rd defined by F̃ (y) = limα→0
g(α)F (yg(α)+x∗)

α
is a nontrivial

function in the sense that F̃ (·) is not identically equal to zero or infinity.

We next verify the choice of scaling functions in Section Section 4.2 using our proposed

Condition 4.3.1. For SGD with a smooth and strong convex objective, since

σ∥x− x∗∥2 ≤ ∥∇f(x)−∇f(x∗)∥2 = ∥∇f(x)∥2 ≤ L∥x− x∗∥2, ∀ x ∈ Rd,

we have

σ
g(α)2

α
∥y∥2 ≤

∥∥∥∥g(α)∇f(g(α)y + x∗)

α

∥∥∥∥
2

≤ L
g(α)2

α
∥y∥2.

In view of the previous inequality and Condition 4.3.1, it is clear that the only possible

choice of g(α) is g(α) =
√
α.

For linear SA algorithms studied in Subsection 4.2.2, since

g(α)[A(g(α)y + x∗) + b]

α
=
g(α)2

α
Ay,
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to satisfy Condition 4.3.1, we need to choose g(α) =
√
α.

As for contractive SA algorithms studied in Subsection 4.2.3, using the contraction

property and we have

(1− γ)∥x− x∗∥µ ≤ ∥T (x)− x∥µ = ∥T (x)− T (x∗)− (x− x∗)∥µ ≤ (1 + γ)∥x− x∗∥µ.

It follows that

g(α)2

α
(1− γ)∥y∥µ ≤

∥∥∥∥g(α)[T (g(α)y + x∗)− (g(α)y + x∗)]

α

∥∥∥∥
µ

≤ g(α)2

α
(1 + γ)∥y∥µ.

Since all norms are “equivalent” in finite dimensional space, the previous inequality implies

that we must choose g(α) =
√
α.

To further verify the correctness of the scaling function suggested by Condition 4.3.1,

consider the SGD algorithm

X
(α)
k+1 = X

(α)
k + α(−∇f(X(α)

k ) + wk)

with the following two choices of objective functions: (1) f(x) = ex
2 , and (2) f(x) =

x4

4
+ sin2(x)

2
. Note that in these two cases the function f(·) is not smooth and strongly

convex.

Case 1. In the first case where f(x) = ex
2 , since

∥∥∥∥g(α)F (yg(α))α

∥∥∥∥
2

=
g(α)2

α
2|y|e(yg(α))2 ,

when choosing g(α) =
√
α, we have F̃ (y) = limα→0

g(α)2

α
2ye(yg(α))

2
= 2y. This suggests

that the distribution of the limiting random variable Y has a density function proportional

to eβ′x2 , where β′ is a numerical constant.

One interesting insight of this example is the following. Observe that we have dex
2

dx
=
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∑∞
k=1(2k)x

2k−1 by Taylor series. The function F̃ (·) in this example is exactly the dominant

term that appears in the Taylor series.

We next verify this choice of g(α) and the distribution of Y (α) for small enough α using

numerical simulation in the following.

Figure 4.4: Estimated Density Functions When Choosing g(α) = α1/2

Figure 4.5: log(pY (y)) as a Function of y2

We see from Figure 11.4 that with the scaling function g(α) =
√
α, the empirical

density function of the random variable Y (α) seems to converge. Figure 4.5 further justifies

this result by showing that the density function pY (y) of the distribution of Y in this case
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is proportional to eβ′x2 , where β′ is a numerical constant.

Case 2. Consider case where f(x) = x4

4
+ sin2(x)

2
. Observe that

∥∥∥∥g(α)F (yg(α))α

∥∥∥∥
2

=
g(α)

α
|y3g(α)3 + sin(yg(α))cos(yg(α))|.

Since limx→0
sin(x)

x
= 1, the only possible choice of the scaling function g(α) to satisfy

Condition 4.3.1 (2) is g(α) =
√
α. In this case, we have F̃ (y) = limα→0

1√
α
y3α3/2 +

sin(y
√
α)cos(y

√
α) = y by L’Hôpital’s rule. Since x4 is dominated by sin2(x) as x

approaches x∗ (which is 0), the scaling function and the function F̃ (·) are determined only

by the dominant term.

Similarly, we verify this choice of scaling function via numerical experiments. In Fig-

ure 4.6 and Figure 4.7, we plot the empirical density function of the random variable Y (α)

for different stepsize α, and see if the density function converges as α goes to zero. The

results suggest that g(α) = α1/2 seems to be the correct scaling. To further verify this

result, we plot the logarithmic function of the empirical density of Y (α) as a function of

y2 and observe straight lines. Therefore, the distribution of Y (α) is proportional to eβ′′x2 ,

where β′′ is a numerical constants.

Figure 4.6: Estimated Density Functions When Choosing g(α) = α1/2
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Figure 4.7: Estimated Density Functions When Choosing g(α) = α1/4

Figure 4.8: log(pY (y)) as a Function of y2

4.3.3 Connection to Euler-Maruyama Discretization Scheme for Approximating SDE

The choice of the scaling function suggested by Condition 4.3.1 has an insightful connec-

tion to the Euler-Maruyama discretization scheme for approximate the solution of an SDE,

as elaborated below. Let (Bt)t≥0 be a Brownian motion. Consider the following SDE:

dXt = F (Xt)dt+ dBt (4.19)
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with initial condition X0. The Euler-Maruyama discretization {X̂k} to the solution (Xt) of

SDE (cf. Equation 4.19) is defined as follows. Let ∆t be the discretization accuracy. Set

X̂0 = X0, and recursively define X̂k according to

X̂k+1 = X̂k +∆tF (X̂k) + (B(k+1)∆t −Bk∆t).

Since (Bt)t≥0 is a Brownian motion, we have (B(k+1)∆t − Bk∆t) ∼ N (0,∆t). Therefore,

by letting {Zk} be an i.i.d. sequence of standard normal random variables, we can rewrite

the previous equation as

X̂k+1 = X̂k +∆tF (X̂k) +
√
∆tZk. (4.20)

The approximation property of the Euler-Maruyama discretization to its corresponding

SDE has been studied in the literature, see [95]. Specifically, it was shown that under some

mild conditions on F (·), the Euler-Maruyama scheme is known to have the first-order accu-

racy of the SDE. As a consequence, intuitively, when (Xt)t≥0 has a stationary distribution

µ, the limiting distribution µ∆t of {X̂k} as a function of the discretization accuracy ∆t

should converge weakly to µ as ∆t tends to zero. If we view the discretization accuracy

∆t as the stepsize in Equation 4.20. In order for µ∆t to converge to some nontrivial distri-

bution µ as ∆t tends to zero, it is important to notice that the scaling factor of the noise Zk

in terms of ∆t must be order-wise equal to the square root of the scaling factor of F (X̂k).

This observation coincides with Equation 4.18 in the previous section, which eventually

leads to our Condition 4.3.1.

4.4 Proof of All Theoretical Results

In this section, we present the proofs of Theorem 4.2.1, Theorem 4.2.2 and Theorem 4.2.3.

We begin with Theorem 4.2.1.

High Level Idea. Before going into details, we first highlight the main ideas for the
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proof. Theorem 4.2.1 (1) follows from existing results in the literature, in particular, [55,

Proposition 2.1]. As for Theorem 4.2.1 (2), consider any positive sequence {αk} such that

limk→∞ αk = 0. Since the family of random variables {Y (αk)} is tight (which is implied

by Theorem 4.2.1 (1)), there is a weakly convergent subsequence {Y αkℓ}. We further

show that the weak limit Y of the subsequence {Y (αkℓ
)} solves Equation 4.6. In this case,

under the assumption that Eq. (Equation 4.6) has a unique solution, the random variable

Y is a Gaussian random variable with mean zero, and covariance matrix ΣY being the

unique solution of the Lyapunov equation HfΣY + ΣYH
⊤
f = Σ. Since for every sequence

{Y (αk)}, there is a weakly convergent subsequence {Y (αkℓ
)} with a common weak limit, the

sequence of random variables {Y (αk)} also converges weakly to the same random variable

Y .

4.4.1 Proof of Theorem 4.2.1 (1)

To prove the result, we will apply [55, Proposition 2.1]. For completeness, we first state

[55, Proposition 2.1] (using our notation) in the following.

Proposition 4.4.1. Consider {X(α)
k } generated by Equation 4.4. Suppose that

(a) There exists L′ > 0 such that ∥∇f(x)∥2 ≤ L′(1 + ∥x∥2) for any x ∈ Rd.

(b) There exist ℓ1, ℓ2 > 0 such that ⟨x,∇f(x)⟩ ≥ ℓ1∥x∥22 − ℓ2 for all x ∈ Rd.

(c) The noise sequence {wk} is an i.i.d. sequence satisfying E[wk] = 0 and E1/2[∥wk∥22] ≤

L′′(1 + ∥xk∥2) for all k ≥ 0, where L′′ > 0 is a constant.

Then, when the constant stepsize α <
ℓ1−

√
max(ℓ21−(3L′2+L′′),0)

3L′2+L′′2 , the following statements

hold.

(1) The iterates {X(α)
k } admit a unique stationary distribution πα, which depends on the

choice of α. In addition, let X(α) ∼ πα, then we have E[∥X(α)∥22] <∞.

79



(2) For a test function ϕ : Rd 7→ R satisfying |ϕ(x)| ≤ Lϕ(1 + ∥x∥2) for all x ∈ Rd and

some Lϕ > 0, and for any initialization X(α)
0 ∈ Rd of the SGD algorithm given in

Equation 4.4, there exists ρ ∈ (0, 1) and κ (both depending on α) such that we have

|E[ϕ(X(α)
k )]− πα(ϕ)| ≤ κρk(1 + ∥X(α)

0 ∥22), where πα(ϕ) = E[ϕ(X(α))].

Note that Proposition 4.4.1 (2) implies that {X(α)
k } converges weakly to X(α). To apply

Proposition 4.4.1, we next verify the assumptions.

(a) Since the objective function f(·) is assumed to be L – smooth, we have for any

x ∈ Rd that ∥∇f(x)−∇f(0)∥2 ≤ L∥x∥2, which implies

∥∇f(x)∥2 ≤ ∥∇f(0)∥2 + L∥x∥2 ≤ max(∥∇f(0)∥2, L)︸ ︷︷ ︸
L′

(∥x∥2 + 1).

(b) Since the objective function is assumed to be σ – strongly convex, we have for any

x ∈ Rd:

f(0)− f(x) ≥ ⟨∇f(x),−x⟩+ σ

2
∥x∥22,

which implies that

⟨∇f(x), x⟩ ≥ σ

2
∥x∥22 + f(x)− f(0) ≥ σ

2︸︷︷︸
ℓ1

∥x∥22 + f(x∗)− f(0)− 1︸ ︷︷ ︸
ℓ2

.

(c) This is immediately implied by Assumption 4.2.1, with L′′ = Trace(Σ)1/2.

Now apply Proposition 4.4.1, when the stepsize α satisfies α < σ
2(3L′2+Trace(Σ))

:= ᾱ, the

SGD iterates {X(α)
k } converge weakly to some random variable X(α), which is distributed

according to the unique stationary distribution πα. In addition, we have E[∥X(α)∥22] < ∞.

Since Y (α)
k is the centered scaled variant of X(α)

k , the sequence {Y (α)
k } converges weakly

to some random variable Y (α) and E[∥Y (α)∥22] <∞.
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4.4.2 Proof of Theorem 4.2.1 (2)

Following the road map described in the beginning of this section, we present and prove a

sequence of lemmas in the following. Together they imply the desired result.

Lemma 4.4.1. The family of random variables {Y (α)}0<α≤ᾱ is tight.

Proof of Lemma 4.4.1. We first show that there exists an absolute constant C > 0 such that

E[∥Y (α)∥2] ≤ C for any α ∈ (0, α0]. Using the update equation (cf. Equation 4.1), we

have

Y
(α)
k+1 = Y

(α)
k +

α

g(α)

(
−∇f(Y (α)

k g(α) + x∗) + wk

)
= Y

(α)
k −

√
α∇f(

√
αY

(α)
k + x∗) +

√
αwk

The existence and uniqueness of a stationary distribution Y (α) is proved in Part (1) of this

theorem. We next show that the family of random variables {Y (α)}0≤α≤ᾱ is tight. Using

the equation

Y (α) D
= Y (α) −

√
α∇f(

√
αY (α) + x∗) +

√
αw,

and we have

E[∥Y (α)∥22] = E[∥Y (α)∥22] + αE
[∥∥∇f(√αY (α) + x∗)

∥∥2
2

]
+ αTrace(Σ)

− 2
√
αE
[
Y (α)⊤∇f(

√
αY (α) + x∗)

]
.

By smoothness, we have

∥∥∇f(√αY (α) + x∗)
∥∥2
2
≤ L2α∥Y (α)∥22.
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By strong convexity, we have

Y (α)⊤∇f(
√
αY (α) + x∗) =

1√
α
(
√
αY (α) + x∗ − x∗)⊤

(
∇f(

√
αY (α) + x∗)−∇f(x∗)

)
≥ σ

√
α∥Y (α)∥22.

Therefore, we obtain

0 ≤ L2α2E[∥Y (α)∥22] + αTrace(Σ)− 2σαE[∥Y (α)∥22].

When α ∈ (0, ᾱ) ⊆ (0, σ
L2 ), we have from the previous inequality that

E[∥Y (α)∥22] ≤
Trace(Σ)
2σ − L2α

≤ Trace(Σ)
σ

. (4.21)

Hence, for any α ∈ (0, ᾱ), let M =
√

Trace(Σ)/σα, then we have

P(∥Y (α)∥ > M) ≤ E[∥Y (α)∥2]
M2

≤ Trace(Σ)
σM2

= α.

It follows that the family of random variables {Y (α)}0<α≤α0 is tight.

Lemma 4.4.2. Let {αk} be a positive sequence of real numbers such that αk ∈ (0, ᾱ)

for all k and limk→∞ αk = 0. Suppose that {Y (αk)} converges weakly to some random

variable Y . Then Y verifies the following equation

E
[
t⊤Σt

2
eit

⊤Y

]
= −E

[
exp(it⊤Y )it⊤HfY

]
. (4.22)

Proof of Lemma 4.4.2. For any k ≥ 0, we have

Y (αk) D
= Y (αk) −

√
αk∇f(

√
αkY

(αk) + x∗) +
√
αkw,
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which implies for any t ∈ Rd:

E
[
eit

⊤Y (αk)
]
= E

[
exp

(
it⊤Y (αk)

)
exp

(
−
√
αkit

⊤∇f(
√
αkY

(αk) + x∗)
)]

E
[
e
√
αkit

⊤w
]

(4.23)

Using Taylor’s theorem and we have

exp
(
−
√
αkit

⊤∇f(
√
αkY

(αk) + x∗)
)

= 1−
√
αkit

⊤∇f(
√
αkY

(αk) + x∗) +O
(
αk∥t∥2∥∇f(

√
αkY

(αk) + x∗∥2
)
.

Using Theorem 3.3.20 from [96] and we have

E
[
e
√
αkit

⊤Y (αk)
]
= 1− αkt

⊤Σt

2
+ o(αk∥t∥2).

Substituting the previous two inequalities into Equation 4.23 and we have

E
[
eit

⊤Y (αk)
]

= E
[
exp(it⊤Y (αk)) exp(−

√
αkit

⊤∇f(
√
αkY

(αk) + x∗))
]
E[e

√
αkit

⊤w]

=

(
1− αkt

⊤Σt

2

)
× E[exp(it⊤Y (αk))(1−

√
αkit

⊤∇f(
√
αkY

(αk) + x∗)

+O
(
αk∥t∥2∥∇f(

√
αkY

(αk) + x∗∥2
)
]

+ E
[
exp(it⊤Y (αk)) exp(−

√
αkit

⊤∇f(
√
αkY

(αk) + x∗))
]
o(αk∥t∥2)

= E
[
eit

⊤Y (αk)
]
− E

[
αkt

⊤Σt

2
eit

⊤Y (αk)

]
− E

[
exp(it⊤Y (αk))

√
αkit

⊤∇f(
√
αkY

(αk) + x∗)
]

+ E
[
αkt

⊤Σt

2
exp(it⊤Y (αk))

√
αkit

⊤∇f(
√
αkY

(αk) + x∗)

]
+ E

[
eit

⊤Y (αk)O
(
αk∥t∥2∥∇f(

√
αkY

(αk) + x∗∥2
)]

− E
[
αkt

⊤Σt

2
eit

⊤Y (αk)O
(
αk∥t∥2∥∇f(

√
αkY

(αk) + x∗∥2
)]

+ E
[
exp(it⊤Y (αk)) exp(−

√
αkit

⊤∇f(
√
αkY

(αk) + x∗))
]
o(αk∥t∥2).
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Simplify the above equality and we obtain

E
[
t⊤Σt

2
eit

⊤Y (αk)

]
︸ ︷︷ ︸

T1

= − E
[
exp(it⊤Y (αk))

it⊤∇f(√αkY
(αk) + x∗)

√
αk

]
︸ ︷︷ ︸

T2

+ E
[
t⊤Σt

2
exp(it⊤Y (αk))

√
αkit

⊤∇f(
√
αkY

(αk) + x∗)

]
︸ ︷︷ ︸

T3

+ E
[
eit

⊤Y (αk)O
(
∥t∥2∥∇f(

√
αkY

(αk) + x∗∥2
)]

︸ ︷︷ ︸
T4

− E
[
t⊤Σt

2
eit

⊤Y (αk)O
(
αk∥t∥2∥∇f(

√
αkY

(αk) + x∗∥2
)]

︸ ︷︷ ︸
T5

+ E
[
exp(it⊤Y (αk)) exp(−

√
αkit

⊤∇f(
√
αkY

(αk) + x∗))
] o(αk∥t∥2)

αk︸ ︷︷ ︸
T6

.

We next let k go to infinity on both sides of the previous inequality and evaluate the limit

of the terms {Ti}1≤i≤6.

Since {Y (αk)} converges weakly to some random variable Y , we have by continuity

theorem (Theorem 3.3.17 in [96]) that

lim
k→∞

E
[
t⊤Σt

2
eit

⊤Y (αk)

]
=
t⊤Σt

2
E
[
eit

⊤Y
]
.

For the term T6, we have by bounded convergence theorem that limαk→0 T6 = 0. To

evaluate the terms T2 to T5, the following definition and a result from [97] is needed.

Definition 4.4.1. A sequence of random variables {Xn} is called asymptotically uniformly

integrable if limM→∞ lim supn→∞ E[|Xn|I{|Xn| > M}] = 0.

Theorem 4.4.1 (Theorem 2.20 in [97]). Let f : Rd 7→ R be measurable and continuous at
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every point in a set C. Let Xn ⇒ X , where X takes its values in C. Then E[f(Xn)] →

E[f(X)] if and only if the sequence of random variables f(Xn) is asymptotically uniformly

integrable.

Now consider the term T2. Observe that

E
[ ∣∣∣∣exp(it⊤Y (αk))

it⊤∇f(√αkY
(αk) + x∗)

√
αk

∣∣∣∣×
I
{∣∣∣∣exp(it⊤Y (αk))

it⊤∇f(√αkY
(αk) + x∗)

√
αk

∣∣∣∣ > M

}]
≤ 1

M
E
[ ∣∣∣∣exp(it⊤Y (αk))

it⊤∇f(√αkY
(αk) + x∗)

√
αk

∣∣∣∣2×
I
{∣∣∣∣exp(it⊤Y (αk))

it⊤∇f(√αkY
(αk) + x∗)

√
αk

∣∣∣∣ > M

}]
≤ 1

αkM
E
[ ∣∣t⊤∇f(√αkY

(αk) + x∗)
∣∣2×

I
{∣∣∣∣exp(it⊤Y (αk))

it⊤∇f(√αkY
(αk) + x∗)

√
αk

∣∣∣∣ > M

}]
≤ ∥t∥2

αkM
E
[
∥∇f(

√
αkY

(αk) + x∗)∥2
]

(Cauchy Schwarz inequality)

≤ L∥t∥2

M
E
[
∥Y (αk)∥2

]
(Definition of smoothness)

≤ LTrace(Σ)∥t∥2

σM
, (Eq. Equation 4.21)

which goes to zero as M → ∞. Therefore, we have by Theorem 4.4.1 that

lim
k→∞

T2 = E
[
exp(it⊤Y )it⊤HfY

]
.

Using the same line of analysis, we have limk→∞ T3 = limk→∞ T4 = limk→∞ T5 = 0. It

follows that

E
[
t⊤Σt

2
eit

⊤Y

]
= −E

[
exp(it⊤Y )it⊤HfY

]
.

Rearranging terms and we obtain the desired equation.
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Lemma 4.4.3. Suppose that Equation 4.6 admits a unique solution. Then the random vari-

able Y given in Lemma 4.4.2 obeys the Gaussian distribution with mean zero, and covari-

ance matrix ΣY being the unique solution of the Lyapunov equation HfΣY +ΣYH
⊤
f = Σ.

Proof of Lemma 4.4.3. It is enough to verify that the multinormal distribution with mean

zero and covariance matrix being the unique solution to the Lyapunov equation H⊤
f ΣY +

ΣYHf = Σ solves Equation 4.6. The proof is given in the following:

E
[
(2it⊤HfY + t⊤Σt)eit

⊤Y
]

= C

∫
Rd

(2it⊤Hfy + t⊤Σt)eit
⊤ye−

1
2
y⊤Σ−1

Y ydy (C = 1√
(2π)ddet(ΣY )

)

= Ce−
1
2
t⊤ΣY t

∫
Rd

(2it⊤Hfy + t⊤Σt)e−
1
2
(y−iΣY t)⊤Σ−1

Y (y−iΣY t)dy

= Ce−
1
2
t⊤ΣY t

∫
Rd

(2it⊤Hf (z + iΣY t) + t⊤Σt)e−
1
2
z⊤Σ−1

Y zdz (change of variable)

= Ce−
1
2
t⊤ΣY t

∫
Rd

(−2t⊤HfΣY t+ t⊤Σt)e−
1
2
z⊤Σ−1

Y zdz

= Ce−
1
2
t⊤ΣY t

∫
Rd

(−t⊤(HfΣY + ΣYH
⊤
f )t+ t⊤Σt)e−

1
2
z⊤Σ−1

Y zdz

= Ce−
1
2
t⊤ΣY t

∫
Rd

(−t⊤Σt+ t⊤Σt)e−
1
2
z⊤Σαzdz (The Lyapunov equation)

= 0.

Now that we have proved Theorem 4.2.1, we next provide the proofs of Theorem 4.2.2

and Theorem 4.2.3 below. First of all, linear SA can be reformulated as contractive SA

and hence we only need to prove Theorem 4.2.3. To see this, note that the target equation

Ax + b = 0 in linear SA is equivalent to (ηA + I)x + ηb = x for any positive constant η.

Define T (x) = (ηA + I)x + ηb. When A is Hurwitz, one can easily show that T (·) is a

contractive operator with respect to some weighted ℓ2-norm when η is small enough. Since

the proof of Theorem 4.2.3 is entirely similar to that of Theorem 4.2.1, we omit the details

and only highlight the major steps.
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The first step is to show that for a fixed stepsize α, the centered scaled iterate {Y α
k }

converges weakly to a random variable Y (α), which satisfies E[∥Y (α)∥22] < ∞ (i.e., Part

(1) of Theorem 4.2.3). This can be proved by either following the same steps of proving

Proposition 2.1 of [55], or directly applying Theorem 1.1 in [98].

To prove Part (2) of Theorem 4.2.3, we again establish a sequence of lemmas analogous

to Lemmas 4.4.1, 4.4.2, and 4.4.3. The major difference is that, instead of repeatedly using

the strong convexity and smoothness property in SGD, we utilize the contraction property

of the operator T (·) for contractive SA. Specifically, we have the following three lemmas,

which together immediately give Theorem 4.2.3.

Lemma 4.4.4. The family of random variables {Y (α)}0<α≤ᾱ′′ is tight.

Proof of Lemma 4.4.4. Following from the same steps of proving Lemma 4.4.1, we have

E[∥Y (α)∥2µ] = E[∥Y (α)∥2µ] + αE
[∥∥T (

√
αY (α) + x∗)− (

√
αY (α) + x∗)

∥∥2
µ

]
+ αE[∥w∥2µ]

+ 2
√
αE
[
Y (α)⊤D(T (

√
αY (α) + x∗)− (

√
αY (α) + x∗))

]
,

where D = diag(µ). To proceed, observe that we have for any x ∈ Rd:

∥T (x+ x∗)− (x+ x∗)∥µ = ∥T (x+ x∗)− T (x∗) + x∗ − (x+ x∗)∥µ

= ∥T (x+ x∗)− T (x∗)∥µ + ∥x∗ − (x+ x∗)∥µ

≤ (γ + 1)∥x∥µ

and

x⊤D(T (x+ x∗)− (x+ x∗)) = x⊤D(T (x+ x∗)− x∗)− x⊤Dx

≤ (γ − 1)∥x∥2µ.
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It follows that

0 ≤ α2(γ + 1)2E
[
∥Y (α)∥2µ

]
+ αE[∥w∥2µ]− 2α(1− γ)E

[
∥Y (α)∥2µ

]
,

which implies E[∥Y (α)∥2µ] ≤
E[∥w∥2µ]
1−γ

for all α small enough. The rest of the proof follows

by applying the Markov inequality, which is the same as in the proof of Lemma 4.4.1.

Lemma 4.4.5. Let {αk} be a positive sequence of real numbers such that αk ∈ (0, ᾱ′′)

for all k and limk→∞ αk = 0. Suppose that {Y (αk)} converges weakly to some random

variable Y . Then Y verifies the following equation

E
[(
t⊤Σt− 2it⊤(J − I)Y

)
eit

⊤Y
]
= 0, ∀ t ∈ Rd. (4.24)

Proof of Lemma 4.4.5. Following from the same steps of proving Lemma 4.4.2, we have

E
[
t⊤Σt

2
eit

⊤Y (αk)

]
= E

[
exp(it⊤Y (αk))

it⊤(T (
√
αkY

(αk) + x∗)− (
√
αkY

(αk) + x∗))
√
αk

]
+

6∑
j=3

N ′
j,

where {Nj}3≤j≤6 correspond to {Tj}3≤j≤6 in the proof of Lemma 4.4.2. Using the tight-

ness property established in Lemma 4.4.4 and Theorem 4.4.1, letting k go to infinity and

we have from the previous inequality that

E
[(
t⊤Σt− 2it⊤(J − I)Y

)
eit

⊤Y
]
= 0, ∀ t ∈ Rd.

Lemma 4.4.6. Suppose that Equation 4.24 admits a unique solution. Then the random

variable Y given in Lemma 4.4.5 obeys the Gaussian distribution with mean zero, and

covariance matrix ΣY being the unique solution of the Lyapunov equation (J − I)ΣY +
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ΣY (J − I)⊤ + Σ = 0.

Proof of Lemma 4.4.6. The proof is identical to that of Lemma 4.4.3, where we verify that

the desired Gaussian distribution solves Equation 4.24 by using the Lyapunov equation.

4.5 Conclusion and Future Work

In this chapter, we characterize the asymptotic stationary distribution of properly centered

scaled iterate of SA algorithms. In particular, we show that for (1) SGD with smooth and

strongly convex objective, (2) linear SA, and (3) contractive SA, the scaling function is

g(α) =
√
α and the corresponding stationary distributions are Gaussian distributions with

mean zero and covariance matrices being solutions of appropriate Lyapunov equations.

For SA beyond these cases, we empirical show that the stationary distribution need not

be Gaussian, and provide a heuristic method to determine the suitable scaling function.

Theoretically studying more general SA algorithms is an immediate future direction of this

work.

One benefit from characterizing the stationary distribution of the centered scaled iter-

ates is that we can use this result as a guideline to design stochastic approximation algo-

rithms with improved performance. For example, a possible future direction is to inves-

tigate how to modify SA algorithms so that the limiting random variable Y has a smaller

covariance matrix. This is related to various variance-reduction techniques in SA. Another

possible future direction is to characterize the convergence rate of Y (α) to Y as the constant

stepsize α goes to zero using Stein’s method. This in conjunction with full characterization

of the distribution of Y will enable us to study the distribution of Y (α) in the non-asymptotic

regime.
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Part II

RL with a Tabular Representation

90



CHAPTER 5

PRELIMINARIES

From now on, we will dive into RL. The RL problem is usually modeled as an MDP.

However, unlike MDP, the environmental model (e.g. transition probabilities and the re-

ward function) is unknown in RL. As a result, typical algorithms for solving MDPs such

as value iteration and policy iteration are not implementable in RL because carrying out

those algorithms requires using the environmental model, which is unknown. To overcome

this difficulty, RL agent implements data-driven stochastic iterative algorithms, i.e., SA

algorithms.

At a high level, RL algorithms can be divided into two categories: value-based algo-

rithms and policy-based algorithms. In value-based algorithms, the agent aims at learning

the optimal value function (or state-action value function), which is then used to compute

an optimal policy via the Bellman optimality equation. Typical examples of value-based

algorithms are Q-learning, and its on-policy variant SARSA.

Unlike value-based algorithms, policy-based algorithms directly work with policies. In

each iteration, the agent first perform policy evaluation to estimate the value function of the

current policy iterate, which is then used to update the policy via either approximate policy

iteration or policy gradient.

In Part II of the thesis, we focus on value-based RL algorithms with a tabular repre-

sentation. Specifically, we consider various on-policy TD-learning algorithms (e.g. n-step

TD and TD(λ)), various off-policy TD-learning (Qπ(λ), Retrace(λ), and Q-trace, etc., and

Q-learning, and establish their finite-sample guarantees. The major theoretical workhorse

used here is the results on Markovian SA under contractive operators presented in Chap-

ter 2.
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5.1 Problem Formulation

In this thesis, we consider modeling the RL problem as an infinite horizon discounted

MDP defined by M = (S,A,P ,R, γ), where S is a finite state-space, A is a finite action-

space, P = {Pa ∈ R|S|×|S| | a ∈ A} is a set of action-dependent transition probability

matrices, R : S × A 7→ [−1, 1] is a reward function, and γ ∈ (0, 1) is a discount factor.

The transition probabilities and the reward function together are called the environmental

model of the MDP. Importantly, in RL, the environmental model is unknown to the agent.

At each time step k ≥ 0, the agent is at a certain state of the environment, denoted by

Sk, and selects an action Ak according to some chosen policy π, where π is a (possibly

stochastic) mapping from the state-space to the action-space. Then the agent moves to a

new state Sk+1 based on the underlying transition probabilities, i.e., Sk+1 ∼ PAk
(Sk, ·),

and receives a one-stage reward R(Sk, Ak). This process is then repeated, and the goal is

to find an optimal policy of selecting actions to maximize the long-term reward.

The performance of a policy π is captured by its value function V π : S 7→ R, which is

defined by

V π(s) = Eπ

[
∞∑
k=0

γkR(Sk, Ak)

∣∣∣∣∣ S0 = s

]
, ∀ s ∈ S,

where we use Eπ[ · ] to indicate that the actions are selected according to the policy π.

Since we work with MDPs with finite state-action spaces, V π can equivalently be viewed

as a vector in R|S|. With the value function defined above, the goal of RL is to find an

optimal policy π∗ such that its associated value function, denoted by V ∗, is maximized

uniformly across the states, i.e.,

V ∗(s) ≥ V π(s), ∀ s ∈ S, ∀ π.

For discounted MDPs, an optimal policy always exists [9].
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In the rest of this chapter, we will present various value-based RL algorithms and es-

tablish their finite-sample guarantees. The idea is to reformulate the RL algorithm in the

form of a Markovian SA algorithm under a contractive operator (i.e., Algorithm 1) and then

apply Theorem 2.5.1.

5.2 Illustration via Q-Learning

To illustrate the recipe of applying our SA results to RL algorithms, we use the popular

Q-learning algorithm as an example. The Q-learning algorithm is a recursive approach for

finding the optimal policy corresponding to an MDP (see Chapter 8 for details). At time

step k, the algorithm updates a vector (of dimension state-space size × action-space size)

Qk, which is an estimate of the optimalQ-functionQ∗, using noisy samples collected along

a single sample trajectory. After a sufficient number of iterations, the vector Qk is a close

approximation ofQ∗, which (after some straightforward computations) delivers the optimal

policy for the MDP. Concretely, let {(Sk, Ak)} be a sample trajectory of state-action pairs

collected by applying some behavior policy to the underlying MDP model. The Q-learning

algorithm performs a scalar update of a (vector-valued) iterate Qk according to

Qk+1(s, a) = Qk(s, a) + αk

(
R(Sk, Ak) + γmax

a′∈A
Qk(Sk+1, a

′)−Qk(Sk, Ak)

)
(5.1)

when (s, a) = (Sk, Ak), and Qk+1(s, a) = Qk(s, a) otherwise.

At a high-level, this recursion approximates the fixed-point of the Bellman equation

through samples along a single trajectory. There are, however, two sources of noise in this

approximation: (1) asynchronous update where only one of the components in the vector

Qk is updated (component corresponding to the state-action pair (Sk, Ak) encountered at

time k), and other components in the vector Qk are left unchanged, and (2) stochastic noise

due to the expectation in the Bellman operator being replaced by a single sample estimate,

i.e., R(Sk, Ak) + γmaxa′∈AQk(Sk+1, a
′), at time step k. For simplicity of notation, we
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denote Γ1(Q, s, a, s
′) = R(s, a) + γmaxa′∈AQ(s

′, a′)−Q(s, a).

To apply our SA results, the first step is to reformulate asynchronous Q-learning in

the form of Algorithm 1 by introducing an operator F (·, ·) and a Markov chain {Yk} that

captures asynchronous updates along a trajectory. Let F : R|S||A|×S×A×S 7→ R|S||A| be

an operator defined by [F (Q, s0, a0, s1)](s, a) = 1{(s0,a0)=(s,a)}Γ1(Q, s0, a0, s1) + Q(s, a)

for all (s, a). Then the Q-learning algorithm given in Equation 5.1 can be rewritten as:

Qk+1 = Qk + αk (F (Qk, Sk, Ak, Sk+1)−Qk) , (5.2)

which is in the form of Algorithm 1 with xk replaced byQk,wk = 0, and Yk = (Sk, Ak, Sk+1).

The key takeaway is that in Equation 5.2, the various noise terms (both due to performing

asynchronous update and due to samples replacing an expectation in the Bellman equa-

tion) are encoded through introducing the operator F (·) and the associated evolution of the

Markovian noise {Yk}.

With the SA reformulation, to apply our SA results, we need to establish the con-

traction property of the operator F̄ (·) := E[F (·, Sk, Ak, Sk+1)] associated with the Q-

learning algorithm, where the expectation is taken with respect to the stationary distribu-

tion of the Markov chain {(Sk, Ak, Sk+1)}. Under mild conditions, we show that F̄ (Q) =

NH(Q) + (I − N)Q. Here H(·) is the Bellman optimality operator for the Q-function

[11]. The matrix N is a diagonal matrix with {p(s, a)}(s,a)∈S×A sitting on its diagonal,

where p(s, a) is the stationary visitation probability of the state-action pair (s, a).

An important insight about the operator F̄ (·) is that it can be viewed as an asynchronous

variant of the Bellman operator H(·). To see this, consider a state-action pair (s, a). The

value of [F̄ (Q)](s, a) can be interpreted as the expectation of a random variable, which

takes [H(Q)](s, a) with probability p(s, a), and takes Q(s, a) with probability 1− p(s, a).

This precisely captures the asynchronous update in the Q-learning algorithm in that, at

steady-state, Qk(s, a) is updated with probability p(s, a), and remains unchanged other-
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wise. Moreover, since it is well-known that H(·) is a contraction mapping with respect to

∥ · ∥∞, we also show that F̄ (·) is a contraction mapping with respect to ∥ · ∥∞, with the

optimal Q-function being its unique fixed-point.

The SA reformulation together with contraction property enables us to apply our SA

results to get the finite-sample bounds and the sample complexity guarantees ofQ-learning.

BeyondQ-learning, TD-learning variants such as off-policy V -trace, n-step TD, and TD(λ)

can all be modeled by Markovian SA algorithms involving a contraction mapping (possibly

with respect to different norm), and Markovian noise. Therefore, our SA results provide a

unified recipe for the finite-sample analysis of value-based RL algorithms.
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CHAPTER 6

ON-POLICY PREDICTION: THE EFFICIENCY OF BOOTSTRAPPING

6.1 Introduction

Although the ultimate goal of RL is to find an optimal policy, there is usually a small goal,

which is to estimate the value function of a given policy. This is called the prediction

problem, or the policy evaluation problem. Solving the prediction problem is important for

several reasons. First of all, suppose we are given a policy. Before implementing the policy

in practice, we need to have an estimate on how good (or how safe) the policy is. More

importantly, solving the prediction problem is usually an intermediate step to eventually

find an optimal policy. For example, the popular actor-critic algorithm iteratively performs

policy evaluation and policy improvement to solve the RL problem.

Formally, the prediction problem refers to the problem of estimating the value function

V π (or state-action value function Qπ) of a given policy π, which we call the target policy.

The most popular approach to solve the policy evaluation problem is TD-learning. To

motivate the TD-learning algorithm, we next introduce the Bellman equation for V π. Let

T π : R|S| 7→ R|S| be the Bellman operator (associated with policy π) defined by

[T π(V )](s) = Eπ [R(Sk, Ak) + γV (Sk+1) | Sk = s] , ∀ s ∈ S.

Then it was shown in the literature that V π uniquely solves the following fixed-point equa-

tion:

V π = T π(V π). (6.1)

Therefore, to find V π, it is enough to solve Equation 6.1. Since T π(·) is known to be a con-
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traction mapping (with respect to the ℓ∞-norm), with contraction factor γ, Equation 6.1 can

be efficiently solved with the fixed-point iteration Vk+1 = T π(Vk). However, since com-

puting T π(Vk) requires using the underlying transition probability matrices of the MDP,

we are not able to carry out such fixed-point iteration algorithm in the RL setting.

The TD-learning algorithm is designed to solve Equation 6.1 using the SA method, In

addition to vanilla TD-learning, there are other variants of TD-learning algorithms such

as n-step TD and TD(λ). The n-step TD-learning algorithm is designed to solve the n-

step Bellman equation V π = (T π)n(V π), and the TD(λ) algorithm is designed to solve

the λ-discounted Bellman equation V π = (1 − λ)
∑∞

n=1 λ
n−1(T π)n(V π). Both of the

above variants of the Bellman equation are equivalent to the original Bellman equation (cf.

Equation 6.1) in the sense that they all have V π as their unique solution. However, the

induced SA algorithms (i.e., n-step TD and TD(λ)) are different.

In n-step TD and TD(λ), there is an important open problem, which is called the effi-

ciency of bootstrapping [18]. Formally, it refers to the problem about how to choose the

tunable parameters n and λ so that n-step TD and TD(λ) achieve their optimal perfor-

mance. In the rest of this chapter, we will establish finite-sample guarantees of both n-step

TD and TD(λ), and provide theoretical insights into the problem about the efficiency of

bootstrapping.

6.2 Finite-Sample Analysis of n-Step TD

In this section, we present the n-step TD-learning algorithm for solving the prediction

problem, and establish its finite-sample guarantees.

6.2.1 The n-Step TD-Learning Algorithm

We begin by presenting the n-step TD-learning algorithm in the following.

Observe that in Algorithm 3, the policy used to collect samples (called behavior policy,

or sampling policy) is the target policy π. This is called on-policy sampling. When the
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Algorithm 3 n-Step TD-Learning

1: Input: Integer K, initialization V0 ∈ R|S|, and a trajectory of samples
{(Sk, Ak)}0≤k≤K+n−1 collected under the target policy π

2: for k = 0, 1, · · · , K − 1 do
3: Vk+1(Sk) = Vk(Sk) + αk(

∑k+n−1
i=k γi−kR(Si, Ai) + γnVk(Sk+n)− Vk(Sk))

4: end for
5: Output: VK

behavior policy is different than the target policy, the corresponding algorithm is called

off-policy learning. We will study off-policy variants of TD-learning in Chapter 7.

In view of Algorithm 3, n-step TD-learning performs asynchronous update in the sense

that only a single entry of the vector-valued iterate Vk is updated in each time step. More-

over, the update can be viewed as a sample estimate of the difference between the LHS and

the RHS of the n-step Bellman equation.

An important idea in n-step TD is to use the parameter n to adjust the bootstrapping

effect. When n = 0, Algorithm 3 is the standard 1-step TD update, which corresponds to

extreme bootstrapping. When n = ∞, Algorithm 3 is the Monte Carlo method for estimat-

ing V π, which corresponds to no bootstrapping. A long-standing question in RL is about

the efficiency of bootstrapping, i.e., the choice of n that leads to the optimal performance

of Algorithm 3 [1].

In the following subsections, we will establish finite-sample convergence bounds of the

n-step TD-learning algorithm. By evaluating the resulting sample complexity bound as a

function of n, we provide theoretical insights into the bias-variance trade-off in terms of

n, as well as an estimate of the optimal value of n. To proceed, we make the following

assumption about the target policy π.

Assumption 6.2.1. The Markov chain MS = {Sk} induced by the target policy π is

irreducible and aperiodic.

Since we are using on-policy sampling in n-step TD, the target policy must enable the

agent to sufficiently explore the state-space. Assumption 6.2.1 ensures this property, and
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also implies that {Sk} has a unique stationary distribution (denoted by κS ∈ ∆|S|), and the

geometric mixing property [48].

6.2.2 Properties of the n-Step TD-Learning Algorithm

Our plan is to reformulate n-step TD as a Markovian SA algorithm of the form Algorithm 1,

and then apply Theorem 2.5.1 to establish the finite-sample bounds.

We begin with the reformulation. Let a sequence {Yk} be defined by

Yk = (Sk, Ak, ..., Sk+n−1, Ak+n−1, Sk+n), ∀ k ≥ 0.

It is clear that {Yk} is a Markov chain, whose state-space is denoted by Y and is finite.

Define an operator F : R|S| × Y 7→ R|S| by

[F (V, y)](s) = [F (V, s0, a0, ..., sn)](s)

= 1{s0=s}

(
n−1∑
i=0

γiR(si, ai) + γnV (sn)− V (s0)

)
+ V (s), ∀ s ∈ S.

Then the update equation of n-step TD (i.e., line 3 of Algorithm 3) can be equivalently

written by

Vk+1 = Vk + αk(F (Vk, Yk)− Vk), (6.2)

which is in the form of Algorithm 1 with wk ≡ 0. We next establish the properties of the n-

step TD algorithm in the following proposition, which enables us to apply Theorem 2.5.1.

Let KS ∈ R|S|×|S| be a diagonal matrix with diagonal entries {κS(s)}s∈S , and let KS,min =

mins∈S κS(s).

Proposition 6.2.1. Under Assumption 6.2.1, the n-step TD-learning algorithm has the fol-

lowing properties.
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(1) The operator F (·, ·) satisfies:

(a) ∥F (V1, y)− F (V2, y)∥2 ≤ 2∥V1 − V2∥2 for all V1, V2 ∈ R|S| and y ∈ Y .

(b) ∥F (0, y)∥2 ≤ 1
1−γ

for all y ∈ Y .

(2) The Markov chain {Yk} has a unique stationary distribution, denoted by µY . More-

over, there exist C > 0 and σ ∈ (0, 1) such that

maxy∈Y∥P k+n
π (y, ·)− µY (·)∥TV ≤ Cσk, ∀ k ≥ 0.

(3) Define an operator F̄ : R|S| 7→ R|S| by F̄ (V ) = EY∼µY
[F (V, Y )] for all V ∈ R|S|.

Then

(a) F̄ (·) is explicitly given by

F̄ (V ) =

[
I −KS

n−1∑
i=0

(γPπ)
i(I − γPπ)

]
V +KS

n−1∑
i=0

(γPπ)
iRπ,

where Rπ ∈ R|S| is defined by Rπ(s) =
∑

a∈A π(a|s)R(s, a) for all s ∈ S.

(b) F̄ (·) is a contraction mapping with respect to the ℓp-norm ∥ · ∥p for any p ∈

[1,∞], with a common contraction factor β := 1−KS,min(1− γn).

(c) F̄ (·) has a unique fixed-point V π.

From Proposition 6.2.1, we see that the asynchronous Bellman operator F̄ (·) associated

with the on-policy n-step TD-learning algorithm is a β-contraction with respect to ∥ · ∥p

for any p ∈ [1,∞]. In particular, this implies that F̄ (·) is a contraction with respect to the

standard Euclidean norm ∥ · ∥2. This is the property we are going to exploit in establishing

the finite-sample bounds of n-step TD in the next subsection.

To intuitively understand the ∥ · ∥2-contraction property, recall a “less known” property

from [92, 11] that the n-step Bellman operator T n
π (·) is a contraction operator with respect
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to the weighted ℓ2-norm ∥ · ∥κS
, with weights being the stationary distribution κS . Similar

to Q-learning, the asynchronous Bellman operator F̄ (·) is a convex combination of the

identity operator and the n-step Bellman operator T n
π (·), using the stationary distribution

κS as weights. Therefore, due to this “normalization”, the asynchronous Bellman operator

is a contraction mapping with respect to the unweighted ℓ2-norm.

6.2.3 Finite-Sample Bounds of n-Step TD

In this subsection, we use the ∥ · ∥2-contraction property from Proposition 6.2.1 to derive

finite-sample convergence bounds of Algorithm 3. Define

tδ = min

{
k ≥ 0 : max

s∈S
∥P k

π (s, ·)− κS(·)∥TV ≤ δ

}

as the mixing time of the Markov chain {Sk} (under policy π) with precision δ. For sim-

plicity, we here only present the case for using constant stepsize.

Theorem 6.2.1. Consider {Vk} of Algorithm 3. Suppose that Assumption 6.2.1 is satisfied,

and αk ≡ α with α chosen such that α(tα + n) ≤ ĉ0(1 − β) (where ĉ0 is a numerical

constant). Then we have for all k ≥ tα + n:

E[∥Vk − V π∥22] ≤ ĉ1 (1− (1− β)α)k−(tα+n) + ĉ2
α(tα + n)

(1− γ)2(1− β)
,

where ĉ1 = (∥V0 − V π∥2 + ∥V0∥2 + 4)2 and ĉ2 = 228(4(1− γ)∥V π∥2 + 1)2.

To analyze the impact of the parameter n, we begin by rewriting the convergence

bounds in Theorem 6.2.1 focusing only on n-dependent terms. Using the explicit ex-

pression of the contraction factor β, in the k-th iteration, the bias term is of the size

(1 − Θ(1 − γn))k. Since the mixing time tα of the original Markov chain {Sk} does

not depend on n, the variance term is of the size O(n/(1 − γn)). Now we can clearly see

that as n increases, the bias goes down while the variance goes up, thereby demonstrating
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a bias-variance trade-off in the n-step TD-learning algorithm.

To formally characterize how the parameters of the n-step TD algorithm impact its

convergence rate and to compute an estimate of the optimal choice of n, we next derive the

sample complexity of n-step TD based on Theorem 6.2.1.

Corollary 6.2.1. In order to make E][∥Vk − V π∥2] ≤ ϵ, the number of samples required

for the n-step TD-learning algorithm is of the size

O
(
log2(1/ϵ)

ϵ2

)
︸ ︷︷ ︸

Accuracy

Õ
(

1

(1− γ)2

)
︸ ︷︷ ︸

Effective horizon

Õ
(

n

(1− γn)2

)
︸ ︷︷ ︸

Parameter n

Õ(K−2
S,min)︸ ︷︷ ︸

Quality of exploration

Õ(|S|1/2)

Note that we used ∥V π∥2 ≤ |S|1/2/(1− γ) in deriving the sample complexity.

In light of the dependence on the parameter n, which is Õ(n(1 − γn)−2), the optimal

choice of n can be estimated by minimizing the function n(1 − γn)−2 over all positive

integers. By doing that, we obtain the following estimate:

noptimal ∼ min (1, ⌊1/ log(1/γ)⌉) ,

where ⌊x⌉ stands for the integer closest to x. This result implies that when the discount

factor γ is small (specifically γ ≤ 1/e), there is not much improvement in using multi-

step TD-learning over using single step TD-learning, and when the discount factor is large,

using n-step TD-learning with n ∼ ⌊1/ log(1/γ)⌉ has provable improvement.

6.2.4 Related Literature

The concept of using multi-step returns instead of only one-step return was introduced in

[99]. See [1, Chapter 7] for more details about n-step TD. The asymptotic convergence of

n-step TD can be established using the general stochastic approximation algorithm under

contraction assumption [11]. Regarding the choice of n, it was observed in empirical ex-

periments that n-step TD (with a suitable choice of n) usually outperforms both 1-step TD
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and Monte Carlo method [100, 1]. However, theoretical understanding to this phenomenon

is not well established in the literature. We derive finite-sample convergence bounds of

the n-step TD-learning algorithm as an explicit function of n. This requires us to compute

the exact expression of the contraction factor β of the asynchronous Bellman operator (cf.

Proposition 6.2.1 (3)), and the mixing time (cf. Proposition 6.2.1 (2)).

6.3 Proof of All Theoretical Results in Section 6.2

6.3.1 Proof of Proposition 6.2.1

(1) (a) For any V1, V2 ∈ R|S| and y ∈ Y , we have

∥F (V1, y)− F (V2, y)∥2

=

(∑
s∈S

[
1{s0=s} (γ

n(V1(sn)− V2(sn))− (V1(s0)− V2(s0)))

+ V1(s)− V2(s)
]2)1/2

≤

(∑
s∈S

[1{s0=s}(γ
n + 1)∥V1 − V2∥2]2

)1/2

+ ∥V1 − V2∥2 (triangle inequality)

≤ 3∥V1 − V2∥2.

(1) (b) For any y ∈ Y , we have

∥F (0, y)∥22 =
∑
s∈S

(
1{s0=s}

n−1∑
i=0

γiR(si, ai)

)2

≤
∑
s∈S

1{s0=s}

(
n−1∑
i=0

γi

)2

≤ 1

(1− γ)2
.

It follows that ∥F (0, y)∥2 ≤ 1
1−γ

.
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(2) Since the Markov chain {Sk} induced by the target policy π is irreducible and ape-

riodic, there exists C > 0 and σ ∈ (0, 1) such that maxs∈S ∥P k
π (s, ·)−∥S(·)∥TV ≤ Cσk for

all k ≥ 0 [48]. Now consider the Markov chain {Yk}. We have for all k ≥ 0:

max
y∈Y

∥∥P k+n+1
π (y, ·)− µY (·)

∥∥
TV

=
1

2
max

s0,a0,...,sn,an

∑
s′0,a

′
0,...,s

′
n,a

′
n

∣∣∣∣∣∑
s

Pan(sn, s)P
k
π (s, s

′
0)− κS(s

′
0)

∣∣∣∣∣×
π(a′0|s′0)

n−1∏
i=0

Pa′i
(s′i, s

′
i+1)π(a

′
i+1|s′i+1)

(Pa is the transition probability matrix of the MDP under action a)

≤ 1

2
max
sn,an

∑
s′0

∣∣∣∣∣∑
s

Pan(sn, s)P
k
π (s, s

′
0)− κS(s

′
0)

∣∣∣∣∣
=

1

2
max
sn,an

∑
s

Pan(sn, s)
∑
s′0

∣∣P k
π (s, s

′
0)− κS(s

′
0)
∣∣

≤ 1

2
max

s

∑
s′0

∣∣P k
π (s, s

′
0)− κS(s

′
0)
∣∣

= max
s∈S

∥∥P k
π (s, ·)− κS(·)

∥∥
TV

≤ Cσk.

(3) (a) Since the n-step Bellman operator is explicitly given by

(T π)n(V ) =

[
n−1∑
i=0

(γPπ)
i(I − γPπ)

]
V +

n−1∑
i=0

(γPπ)
iRπ

for any V ∈ R|S|, we have

F̄ (V ) =

[
I −KS

n−1∑
i=0

(γPπ)
i(I − γPπ)

]
V +KS

n−1∑
i=0

(γPπ)
iRπ.
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(3) (b) For any V1, V2 ∈ R|S| and p ≥ 1, we have

∥F̄ (V1)− F̄ (V2)∥p =

∥∥∥∥∥
[
I −KS

n−1∑
i=0

(γPπ)
i(I − γPπ)

]
(V1 − V2)

∥∥∥∥∥
p

≤

∥∥∥∥∥I −KS

n−1∑
i=0

(γPπ)
i(I − γPπ)

∥∥∥∥∥
p

∥V1 − V2∥p.

For simplicity of notation, we denote G = I −KS

∑n−1
i=0 (γPπ)

i(I − γPπ). Since

G = I −KS

n−1∑
i=0

(γPπ)
i(I − γPπ)

= I −KS

n−1∑
i=0

(γPπ)
i +KS

n−1∑
i=0

(γPπ)
i+1

= I −KS −KS

n−1∑
i=1

(γPπ)
i +KS

n∑
i=1

(γPπ)
i

= I −KS +KS(γPπ)
n,

we see that the matrix G has non-negative entries. Therefore, we have

∥G∥∞ = ∥G1∥∞ =

∥∥∥∥∥1− κS

n−1∑
i=0

γi(1− γ)

∥∥∥∥∥
∞

= 1−KS,min(1− γn).

Moreover, using the fact that κS is the stationary distribution of Pπ (i.e., κ⊤SPπ = κ⊤S ), we

have

∥G∥1 = ∥1⊤G∥∞ =

∥∥∥∥∥1⊤ − κ⊤S

n−1∑
i=0

γi(1− γ)

∥∥∥∥∥
∞

= 1−KS,min(1− γn).

To proceed, we need the following lemma.

Lemma 6.3.1. Let G ∈ Rd×d be a matrix with non-negative entries. Then we have for all
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p ∈ [1,∞]:

∥G∥p ≤ ∥G∥1/p1 ∥G∥1−1/p
∞ .

Proof of Lemma 6.3.1. The result clearly holds when p = 1 or p = ∞. Now consider

p ∈ (1,∞). Using the definition of induced matrix norm, we have for any x ̸= 0:

∥Gx∥pp =
d∑

i=1

(
d∑

j=1

Gijxj

)p

=
d∑

i=1

[G1]pi

(
d∑

j=1

Gij

[G1]i
xj

)p

≤
d∑

i=1

[G1]p−1
i

d∑
j=1

Gijx
p
j (Jensen’s inequality)

≤ ∥G∥p−1
∞

d∑
j=1

xpj

d∑
i=1

Gij

= ∥G∥p−1
∞

d∑
j=1

xpj [1
⊤G]j

≤ ∥G∥p−1
∞ ∥G∥1∥x∥pp.

It follows that ∥G∥p ≤ ∥G∥1/p1 ∥G∥1−1/p
∞ .

Using Lemma 6.3.1 and we have

∥G∥p ≤ ∥G∥1/p1 ∥G∥1−1/p
∞ ≤ 1−KS,min(1− γn) = β.

Therefore, we have ∥F̄ (V1)− F̄ (V2)∥2 ≤ β∥V1 − V2∥2. Hence the operator F̄ (·) is a con-

traction mapping with respect to ∥ · ∥2, with contraction factor β.

(3) (c) The result follows by observing that F̄ (V π) = V π and F̄ (·) being a contraction

mapping (hence has a unique fixed point).
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6.3.2 Proof of Theorem 6.2.1

We will apply Theorem 2.5.1 and Corollary 2.5.1 (1) to the n-step TD algorithm. We begin

by identifying the constants:

A = A1 + A2 + 1 = 4, B = B1 +B2 =
1

1− γ
, φ1 ≤ 1, φ2 ≥ 1− β, φ3 ≤ 228

c1 ≤ (∥V0 − V π∥2 + ∥V0∥2 + 4)2, c2 =
1

(1− γ)2
(4(1− γ)∥V π∥2 + 1)2.

Now apply Theorem 2.5.1 (2) (a). When αk = α for all k ≥ 0, where α is chosen such that

α(tα + n) ≤ φ2

φ3A2
=

1− β

3648
,

we have for all k ≥ tα + n:

E[∥Vk − V π∥22] ≤ φ1c1(1− φ2α)
k−(α(tα+n)) +

φ3c2
φ2

αtα(MY )

≤ (∥V0 − V π∥2 + ∥V0∥2 + 4)2(1− (1− β)α)k−(α(tα+n))

+
228

1− β

1

(1− γ)2
(4(1− γ)∥V π∥2 + 1)2α(tα + n)

= ĉ1(1− (1− β)α)k−(α(tα+n)) + ĉ2
α(tα + n)

(1− β)(1− γ)2
,

where ĉ1 = (∥V0 − V π∥2 + ∥V0∥2 + 4)2 and ĉ2 = 228(4(1− γ)∥V π∥2 + 1)2.

6.4 Finite-Sample Analysis of TD(λ)

In this section, we consider the on-policy TD(λ) algorithm, which effectively uses a con-

vex combination of all the multi-step temporal differences at each update. We begin by

describing the TD(λ) algorithm for estimating the value function V π of a policy π.

The sequence {zk} is called the eligibility trace [11, 1], which according to line 3 of

Algorithm 4 can be expressed as zk(s) =
∑k

i=0(γλ)
k−i

1{Si=s} for all s ∈ S.

107



Algorithm 4 The TD(λ) Algorithm

1: Input: Integer K, initialization V0 ∈ R|S|, z−1 = 0, and a trajectory of samples
{(Sk, Ak)}0≤k≤K−1 collected under the target policy π

2: for k = 0, 1, · · · , K − 1 do
3: zk(s) = (γλ)zk−1(s) + 1{Sk=s} for all s ∈ S
4: Vk+1(Sk) = Vk(Sk) + αkzk(s)(R(Sk, Ak) + γVk(Sk+1)− Vk(Sk))
5: end for
6: Output: VK

A key idea in the TD(λ) algorithm is to use the parameter λ to adjust the bootstrapping

effect. When λ = 0, Algorithm 4 becomes the standard TD(0) update (or 1-step TD), which

is pure bootstrapping. Another extreme case is when λ = 1. This corresponds to using pure

Monte Carlo method. Theoretical understanding of the efficiency of bootstrapping is a core

problem in RL [18].

In the following subsection, we establish finite-sample convergence bounds of the TD(λ)

algorithm. By evaluating the resulting bound as a function of λ, we provide theoretical in-

sights into the bias-variance trade-off in choosing λ. Similar to n-step TD, we make the

following assumption.

Assumption 6.4.1. The Markov chain {Sk} induced by the target policy π is irreducible

and aperiodic.

As a result of Assumption 6.4.1, the Markov chain {Sk} has a unique stationary distri-

bution, denoted by κS ∈ ∆|S|, and the geometric mixing property [48].

6.4.1 Properties of the TD(λ) Algorithm

Unlike the n-step TD-learning algorithm, the TD(λ) algorithm cannot be viewed as a di-

rect variant of the SA algorithm presented in Chapter 2. This is because of the geometric

averaging induced by the eligibility trace in TD(λ), which creates dependencies over the

entire past trajectory. We overcome this difficulty by using an additional truncation argu-

ment, and separately handle the residual error due to truncation. For ease of exposition, we

consider only using constant stepsize in the TD(λ) algorithm, i.e., αk = α for all k ≥ 0.
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For any k ≥ 0, let Yk = (S0, ..., Sk, Ak, Sk+1) (which takes value in Yk := Sk+2 ×A),

and define a time-varying operator Fk : R|S| × Yk 7→ R|S| by

[Fk(V, y)](s) = [Fk(V, s0, ..., sk, ak, sk+1)](s)

= (R(sk, ak) + γVk(sk+1)− Vk(sk))
k∑

i=0

(γλ)k−i
1{si=s} + V (s)

for all s ∈ S. Note that the sequence {Yk} is not a Markov chain since it has a time-varying

state-space. Using the notation of {Yk} and Fk(·, ·), we can rewrite the update equation of

the TD(λ) algorithm by

Vk+1 = Vk + α (Fk(Vk, Yk)− Vk) . (6.3)

Although Equation 6.3 is similar to the update equation of the contractive Markovian SA

algorithm presented in Chapter 2, since the sequence {Yk} is not a Markov chain and the

operator Fk(·, ·) is time-varying, Theorem 2.5.1 is not directly applicable.

To overcome this difficulty, let us take a careful look at the operator Fk(·, ·). Although

Fk(Vk, Yk) depends on the whole trajectory of states visited before (through the eligibility

trace zk(s) =
∑k

i=0(γλ)
k−i

1{Si=s}), due to the geometric factor (γλ)k−i, the states visited

during the early stage of the iteration are not important. Inspired by this observation, we

define the truncated sequence {Y τ
k } of {Yk} by Y τ

k = (Sk−τ , ..., Sk, Ak, Sk+1) for all k ≥ τ ,

where τ is a fixed non-negative integer. Note that the random process {Y τ
k } is now a

Markov chain, whose state-space is denoted by Yτ and is finite. Similarly, we define the

truncated operator F τ
k : R|S| × Yτ 7→ R|S| of Fk(·, ·) by

[F τ
k (V, y

τ )](s) = [F τ
k (V, sk−τ , · · · , sk, ak, sk+1)](s)

= (R(sk, ak) + γVk(sk+1)− Vk(sk))
k∑

i=k−τ

(γλ)k−i
1{si=s} + V (s)
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for all s ∈ S . Using the above notation, we can further rewrite the update equation of

Algorithm 4 by

Vk+1 = Vk + α (F τ
k (Vk, Y

τ
k )− Vk) + α (Fk(Vk, Yk)− F τ

k (Vk, Y
τ
k ))︸ ︷︷ ︸

The Error Term

. (6.4)

Now, we argue that when the truncation level τ is large enough, the last term on the RHS

of the previous equation is negligible compared to the other two terms. In fact, we have the

following result.

Lemma 6.4.1. For all k ≥ 0 and τ ∈ [0, k], denote y = (s0, ..., sk, ak, sk+1) and yτ =

(sk−τ , ..., sk, ak, sk+1). Then the following inequality holds for all V ∈ R|S|:

∥F τ
k (V, yτ )− Fk(V, y)∥2 ≤

(γλ)τ+1

1− γλ
(1 + 2∥V ∥2).

Lemma 6.4.1 indicates that the error term in Equation 6.4 is indeed geometrically small.

Suppose we ignore that error term. Then the update equation becomes Vk+1 ≈ Vk +

αk(F
τ
k (Vk, Y

τ
k ) − Vk). Since the random process MY = {Y τ

k } is a Markov chain, once

we establish the required properties for the truncated operator F τ
k (·, ·), our SA results in

Chapter 2 become applicable.

From now on, we will choose τ = min{k ≥ 0 : (γλ)k+1 ≤ α} ≤ log(1/α)
log(1/(γλ))

, where α is

the constant stepsize we use. This implies that the error term in Equation 6.4 is of the size

O(α2). Under this choice of τ , we next investigate the properties of the operator F τ
k (·, ·)

and the random process {Y τ
k } in the following proposition. Recall that KS ∈ R|S|×|S| is a

diagonal matrix with diagonal entries {κS(s)}s∈S , and KS,min = mins∈S κS(s).

Proposition 6.4.1. Suppose that Assumption 6.2.1 is satisfied. Then we have the following

results.

(1) For any k ≥ τ , the operator F τ
k (·, ·) satisfies

(a) ∥F τ
k (V1, y)−F τ

k (V2, y)∥2 ≤ 3
1−γλ

∥V1−V2∥2 for any V1, V2 ∈ R|S| and y ∈ Yτ ,
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(b) ∥F τ
k (0, y)∥2 ≤ 1

1−γλ
for any y ∈ Yτ .

(2) The Markov chain {Y τ
k }k≥τ has a unique stationary distribution, denoted by µY .

Moreover, there exist C > 0 and σ ∈ (0, 1) such that

max
y∈Yτ

∥P k+τ+1
π (y, ·)− µY (·)∥TV ≤ Cσk, ∀ k ≥ 0.

(3) For any k ≥ τ , define the expected operator F̄ τ
k : R|S| 7→ R|S| by F̄ τ

k (V ) =

EY∼µY
[F τ

k (V, Y )]. Then

(a) F̄ τ
k (·) is explicitly given by

F̄ τ
k (V ) =

(
I −KS

τ∑
i=0

(γλPπ)
i(I − γPπ)

)
V +KS

τ∑
i=0

(γλPπ)
iRπ.

(b) F̄ τ
k (·) is a contraction mapping with respect to ∥ · ∥p for any p ∈ [1,∞], with a

common contraction factor

β = 1−KS,min
(1− γ)(1− (γλ)τ+1)

1− γλ
.

(c) F̄ τ
k (·) has a unique fixed-point V π.

Similar to n-step TD, the truncated asynchronous Bellman operator F̄ τ
k (·) associated

with the TD(λ) algorithm is a contraction with respect to the ℓp-norm ∥ · ∥p for any 1 ≤

p ≤ ∞, with a common contraction factor β. This enables us to use Theorem 2.5.1 along

with Corollary 2.5.1 (1).

6.4.2 Finite-Sample Bounds of TD(λ)

We now present the finite-sample convergence bounds of the TD(λ) algorithm for using

constant stepsize, where we exploit only the ∥ · ∥2-contraction property from Proposition

6.4.1.
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Theorem 6.4.1. Consider {Vk} of Algorithm 4. Suppose that Assumption 6.4.1 is satisfied

and αk ≡ α with α chosen such that α(tα + 2τ + 1) ≤ c̃0(1− β)(1− γλ)2 (where c̃0 is a

numerical constant). Then the following inequality holds for all k ≥ tα + 2τ + 1:

E[∥Vk − V π∥22] ≤ c̃1 (1− (1− β)α)k−(tα+2τ+1) + c̃2
α (tα + τ + 1)

(1− γλ)2(1− β)
,

where c̃1 = (∥V0 − V π∥2 + ∥V0∥2 + 1)2 and c̃2 = 114(4∥V π∥2 + 1)2.

Remark. Under Assumption 6.4.1, the mixing time tα is at most an affine function of

log(1/α), and does not depend on the parameter λ.

The convergence rate of TD(λ) is similar to that of n-step TD. We here focus on the

impact of the parameter λ. We begin by rewriting both the bias term and the variance

term in the resulting convergence bound of Theorem 6.4.1 focusing only on λ-dependent

terms. Then, the bias term is of the size (1 − Θ(1/(1 − γλ)))k while the variance term is

between Θ(1/(1 − γλ) log(1/(γλ))) and Θ(1/(1 − γλ)). Now observe that the bias term

is in favor of large λ (i.e., less bootstrapping, more Monte Carlo) while the variance term

is in favor of small λ (i.e., more bootstrapping, less Monte Carlo). This observation agrees

with empirical results in the literature [1, 101]. Therefore, we demonstrate a bias-variance

trade-off in choosing λ, thereby providing theoretical insights into the open problem of the

efficiency of bootstrapping in RL [18].

6.4.3 Related Literature on TD(λ)

The idea of using λ-return and eligibility traces was introduced and developed in [99, 29].

See [1, Chapter 12] for more details. The convergence of TD(λ) was established in [102].

Regarding the parameter λ, empirical observations indicate that a properly chosen inter-

mediate value of λ usually outperforms both TD(0) and TD(1) [100]. Theoretical justifica-

tion of this observation is, to some extend, provided in [101], where they study a variant of

the TD(λ) algorithm called phased TD. The TD(λ) algorithm is often used along with func-
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tion approximation in practice. The asymptotic convergence of TD(λ) with linear function

approximation was established in [92]. More recently, [40, 12] established the finite-sample

bounds of TD(λ) with linear function approximation by modeling the algorithm as a linear

stochastic approximation with Markovian noise. The result of [40] indicates that TD(λ)

in general outperforms TD(0). However, [40] does not provide explicit trade-offs between

the convergence bias and variance in choosing λ. Similarly, [12] does not have an explicit

bound, and thus do not study bias-variance trade-off, which is what we did in this paper.

To achieve that, we need to carefully characterize the contraction factor β of the truncated

Bellman operator F̄ τ
k (·), as well as the mixing time of the truncated Markov chain {Y τ

k }.

6.5 Proof of All Theoretical Results in Section 6.4

6.5.1 Proof of Lemma 6.4.1

The following lemma is useful when proving Lemma 6.4.1 and Proposition 6.4.1.

Lemma 6.5.1. Let I be a finite set. For any k ≥ 0, define two sequences {it}0≤t≤k and

{at}0≤t≤k be such that it ∈ I and at ≥ 0 for all t = 0, 1, ..., k. Let x ∈ R|I| be defined by

xi =
∑k

t=0 at1{it=i} for all i ∈ I. Then we have

∥x∥2 ≤
k∑

t=0

at.

Proof of Lemma 6.5.1. Using the definition of ∥ · ∥2, we have

∥x∥22 =
∑
i∈I

(
k∑

t=0

at1{it=i}

)2

=
∑
i∈I

k∑
t=0

k∑
ℓ=0

ataℓ1{it=i,iℓ=i}

=
k∑

t=0

k∑
ℓ=0

ataℓ
∑
i∈I

1{it=i,iℓ=i}
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≤
k∑

t=0

k∑
ℓ=0

ataℓ

=

(
k∑

t=0

at

)2

.

The result follows by taking square root on both sides of the previous inequality.

We now proceed to prove Lemma 6.4.1. For any V ∈ R|S| and (s0, ..., sk, ak, sk+1), we

have by definition of the operators F τ
k (·, ·) and Fk(·, ·) that

∥F τ
k (V, sk−τ , ..., sk, ak, sk+1)− Fk(V, s0, ..., sk, ak, sk+1)∥22

=
∑
s∈S

[
(R(sk, ak) + γV (sk+1)− V (sk))

k−τ−1∑
i=0

(γλ)k−i
1{si=s}

]2

≤ (1 + 2∥V ∥2)2
∑
s∈S

[
k−τ−1∑
i=0

(γλ)k−i
1{si=s}

]2

=
(γλ)2(τ+1)

(1− γλ)2
(1 + 2∥V ∥2)2. (Lemma 6.5.1)

The result follows by taking the square root on both sides of the previous inequality.

6.5.2 Proof of Proposition 6.4.1

(1) (a) For any V1, V2 ∈ R|S| and y ∈ Yτ , we have by triangle inequality that

∥F τ
k (V1, y)− F τ

k (V2, y)∥2

≤ ∥V1 − V2∥2

+

∑
s∈S

[
(γ(V1(sk+1)− V2(sk+1))− (V1(sk)− V2(sk)))

k∑
i=k−τ

(γλ)k−i
1{si=s}

]21/2

≤ ∥V1 − V2∥2 + 2∥V1 − V2∥2

∑
s∈S

[
k∑

i=k−τ

(γλ)k−i
1{si=s}

]21/2

≤ ∥V1 − V2∥2 +
2

1− γλ
∥V1 − V2∥2 (Lemma 6.5.1)
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≤ 3

1− γλ
∥V1 − V2∥2.

(1) (b) Similarly, for any y ∈ Yτ , we have

∥F τ
k (0, y)∥22 =

∑
s∈S

[
R(sk, ak)

k∑
i=k−τ

(γλ)k−i
1{si=s}

]2

≤
∑
s∈S

[
k∑

i=k−τ

(γλ)k−i
1{si=s}

]2
(R(s, a) ∈ [0, 1] for all (s, a))

≤ 1

(1− γλ)2
. (Lemma 6.5.1)

It follows that ∥F τ
k (0, y)∥2 ≤ 1

1−γλ
.

(2) The proof is identical to that of Proposition 6.2.1 (2).

(3) (a) For any V ∈ R|S| and s ∈ S, we have

EY∼µY
[[F τ

k (V, Y )](s)]

= EY∼µY

[
(R(Sk, Ak) + γV (Sk+1)− V (Sk))

k∑
i=k−τ

(γλ)k−i
1{Si=s}

]
+ V (s)

= EY∼µY

[
k∑

i=k−τ

(γλ)k−i
1{Si=s}E [(R(Sk, Ak) + γV (Sk+1)− V (Sk)) | Sk, Sk−1, ..., S0]

]

+ V (s)

= EY∼µY

[
k∑

i=k−τ

(γλ)k−i
1{Si=s}(Rπ(Sk) + γ[PπV ](Sk)− V (Sk))

]
+ V (s)

=
k∑

i=k−τ

(γλ)k−i
∑
s0∈S

κS(s0)P
i
π(s0, s)

∑
s′∈S

P k−i
π (s, s′)(Rπ(s

′) + γ[PπV ](s′)− V (s′))

+ V (s)

= κS(s)
k∑

i=k−τ

(γλ)k−i
∑
s′∈S

P k−i
π (s, s′)(Rπ(s

′) + γ[PπV ](s′)− V (s′)) + V (s)
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= κS(s)
k∑

i=k−τ

(γλ)k−i[P k−i
π (Rπ + γPπV − V )](s) + V (s).

It follows that

F̄ τ
k (V ) = KS

k∑
i=k−τ

(γλPπ)
k−i(Rπ + γPπV − V ) + V

= KS

τ∑
i=0

(γλPπ)
i(Rπ + γPπV − V ) + V

=

[
I −KS

τ∑
i=0

(γλPπ)
i(I − γPπ)

]
V +KS

τ∑
i=0

(γλPπ)
iRπ.

(3) (b) For any V1, V2 ∈ R|S| and p ∈ [1,∞], we have

∥F̄ τ
k (V1)− F̄ τ

k (V2)∥p =

∥∥∥∥∥
[
I −KS

τ∑
i=0

(γλPπ)
i(I − γPπ)

]
(V1 − V2)

∥∥∥∥∥
p

≤

∥∥∥∥∥I −KS

τ∑
i=0

(γλPπ)
i(I − γPπ)

∥∥∥∥∥
p

∥V1 − V2∥p.

Denote Gλ,τ = I − KS

∑τ
i=0(γλPπ)

i(I − γPπ). It remains to provide an upper bound on

∥Gλ,τ∥p. Since

Gλ,τ = I −KS

τ∑
i=0

(γλPπ)
i +KS

τ∑
i=0

(γλPπ)
iγPπ

= I −KS −KS

τ∑
i=1

(γλPπ)
i +KS

τ∑
i=0

(γλPπ)
iγPπ

= I −KS −KS

τ−1∑
i=0

(γλPπ)
i+1 +KS

τ∑
i=0

(γλPπ)
iγPπ

= I −KS +KS

τ−1∑
i=0

(γλPπ)
iγPπ(1− λ) +KS(γλPπ)

τγPπ,

the matrix Gλ,τ has non-negative entries. Therefore, we have

∥Gλ,τ∥∞ = ∥Gλ,τ1∥∞
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=

∥∥∥∥1− κS
(1− γ)(1− (γλ)τ+1)

1− γλ

∥∥∥∥
∞

= 1−KS,min
(1− γ)(1− (γλ)τ+1)

1− γλ

and

∥Gλ,τ∥1 = ∥1⊤Gλ,τ∥∞

=

∥∥∥∥1⊤ − κ⊤S
(1− γ)(1− (γλ)τ+1)

1− γλ

∥∥∥∥
∞

= 1−KS,min
(1− γ)(1− (γλ)τ+1)

1− γλ
.

It then follows from Lemma 6.3.1 that

∥Gλ,τ∥p ≤ ∥Gλ,τ∥1/p1 ∥Gλ,τ∥1−1/p
∞ ≤ 1−KS,min

(1− γ)(1− (γλ)τ+1)

1− γλ
.

Hence the operator F τ
k (·, ·) is a contraction with respect to ∥ · ∥p for any p ∈ [1,∞], with a

common contraction factor β = 1−KS,min
(1−γ)(1−(γλ)τ+1)

1−γλ
.

(3) (c) It is enough to show that V π is a fixed-point of F̄ τ
k (·), the uniqueness follows from

F̄ τ
k (·) being a contraction. Using the Bellman equation Rπ + γPπV

π − V π = 0, we have

F̄ τ
k (V

π) = KS

τ∑
i=0

(γλPπ)
i(Rπ + γPπV

π − V π) + V π = V π.

6.5.3 Proof of Theorem 6.4.1

We will exploit the ∥·∥2-contraction property of the operator F̄ τ
k (·) provided in Proposition

6.4.1. LetM(x) = ∥x∥22 be our Lyapunov function. Using the update equation Equation 6.4
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and we have for all k ≥ 0:

∥Vk+1 − V π∥22 = ∥Vk − V π∥22 + 2α(Vk − V π)⊤
(
F̄ τ
k (Vk)− Vk

)︸ ︷︷ ︸
T ′
1

+ 2α(Vk − V π)⊤
(
F τ
k (Vk, Y

τ
k )− F̄ τ

k (Vk)
)︸ ︷︷ ︸

T ′
2

+α2∥F τ
k (Vk, Y

τ
k )− Vk∥22︸ ︷︷ ︸

T ′
3

+ α2∥Fk(Vk, Yk)− F τ
k (Vk, Y

τ
k )∥22︸ ︷︷ ︸

T ′
4

+ 2α(Vk − V π)⊤ (Fk(Vk, Yk)− F τ
k (Vk, Y

τ
k ))︸ ︷︷ ︸

T ′
5

+ 2α (F τ
k (Vk, Y

τ
k )− Vk)

⊤ (Fk(Vk, Yk)− F τ
k (Vk, Y

τ
k ))︸ ︷︷ ︸

T ′
6

. (6.5)

The terms T ′
1, T

′
2, and T ′

3 correspond to the terms T1, T3, and T4 in Equation 2.6, and hence

can be controlled in the exact same way as provided in Lemmas 2.6.1, 2.6.4, and 2.6.5.

The upper bounds of T ′
1, T

′
2, and T ′

3 are summarized in the following lemma, whose proof

is omitted.

Lemma 6.5.2. The following inequalities hold:

(1) T ′
1 ≤ −2α(1− β)∥Vk − V π∥22 for any k ≥ τ .

(2) E[T ′
2] ≤

662α2(tα+τ)
(1−γλ)2

∥Vk − V π∥22 +
102α2(tα+τ)

(1−γλ)2
(4∥V π∥2 + 1)2 for all k ≥ 2τ + tα.

(3) T ′
3 ≤ 32α2

(1−γλ)2
∥Vk − V π∥22 + 2α2

(1−γλ)2
(4∥V π∥2 + 1)2 for all k ≥ τ .

As for the terms T ′
4, T

′
5, and T ′

6, we can easily use Lemma 6.5.3 along with the Cauchy-

Schwarz inequality to bound them, which gives the following result.

Lemma 6.5.3. The following inequalities hold:

(1) T ′
4 ≤ 8α2

(1−γλ)2
∥Vk − V π∥22 + 2α2

(1−γλ)2
(4∥V π∥2 + 1)2 for all k ≥ τ .

(2) T ′
5 ≤ 16α2

(1−γλ)
∥Vk − V π∥22 + 4α2

(1−γλ)
(4∥V π∥2 + 1)2 for all k ≥ τ .
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(3) T ′
6 ≤ 64α2

(1−γλ)2
∥Vk − V π∥22 + 4α2

(1−γλ)2
(4∥V π∥2 + 1)2 for all k ≥ τ .

Proof of Lemma 6.5.3. (1) For all k ≥ τ , we have

T ′
4 = α2∥Fk(Vk, Yk)− F τ

k (Vk, Y
τ
k )∥22

≤ α2(γλ)2(τ+1)

(1− γλ)2
(2∥Vk∥2 + 1)2 (Lemma 6.4.1)

≤ α4

(1− γλ)2
(2∥Vk − V π∥2 + 2∥V π∥2 + 1)2

≤ 8α2

(1− γλ)2
∥Vk − V π∥22 +

2α2

(1− γλ)2
(4∥V π∥2 + 1)2.

(2) For all k ≥ τ , we have

T ′
5 = 2α(Vk − V π)⊤ (Fk(Vk, Yk)− F τ

k (Vk, Y
τ
k ))

≤ 2α∥Vk − V π∥2∥Fk(Vk, Yk)− F τ
k (Vk, Y

τ
k )∥2

≤ 2α(γλ)τ+1

(1− γλ)
∥Vk − V π∥2(2∥Vk∥2 + 1) (Proposition 6.4.1 (1))

≤ 2α(γλ)τ+1

(1− γλ)
(2∥Vk − V π∥2 + 2∥V π∥2 + 1)2

≤ 16α(γλ)τ+1

(1− γλ)
∥Vk − V π∥22 +

4α(γλ)τ+1

(1− γλ)
(4∥V π∥2 + 1)2

≤ 16α2

(1− γλ)
∥Vk − V π∥22 +

4α2

(1− γλ)
(4∥V π∥2 + 1)2, . (The choice of τ )

(3) For all k ≥ τ , we have

T ′
6 = 2α (F τ

k (Vk, Y
τ
k )− Vk)

⊤ (Fk(Vk, Yk)− F τ
k (Vk, Y

τ
k ))

≤ 2α∥F τ
k (Vk, Y

τ
k )− Vk∥2∥Fk(Vk, Yk)− F τ

k (Vk, Y
τ
k )∥2

≤ 2α(γλ)τ+1

1− γλ

(
3

1− γλ
∥Vk∥2 +

1

1− γλ
+ ∥Vk∥2

)
(2∥Vk∥2 + 1)

≤ 2α(γλ)τ+1

(1− γλ)2
(4∥Vk∥2 + 1)(2∥Vk∥2 + 1)

≤ 2α(γλ)τ+1

(1− γλ)2
(4∥Vk − V π∥2 + 4∥V π∥2 + 1)2
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≤ 64α(γλ)τ+1

(1− γλ)2
∥Vk − V π∥22 +

4α(γλ)τ+1

(1− γλ)2
(4∥V π∥2 + 1)2

≤ 64α2

(1− γλ)2
∥Vk − V π∥22 +

4α2

(1− γλ)2
(4∥V π∥2 + 1)2. (The choice of τ )

The rest of the proof is to use the upper bounds we derived for the terms T ′
1 to T ′

6

in Equation 6.5 to obtain the one-step contractive inequality. Repeatedly using such one-

step inequality and we get the finite-sample bounds stated in Theorem 6.4.1. This part is

identical to the proof of Theorem 2.5.1.

6.6 Conclusion and Future Work

In this chapter, we present finite-sample guarantees of two popular families of TD-learning

algorithms, namely the n-step TD and the TD(λ). Moreover, the finite-sample guarantees

shed light on the open problem about the efficiency of bootstrapping, which is about how to

pick the parameters n and λ so that n-step TD and TD(λ) achieve their best performance.

However, the bias-variance trade-off we demonstrate (or the estimated optimal choice

of n in n-step TD) may not be accurate since we only have upper bounds. To complete

the story, in addition to upper bounds, we also need lower bounds (hopefully of the same

order). Deriving lower bounds of n-step TD and TD(λ) is a future direction of this line of

work.
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CHAPTER 7

OFF-POLICY PREDICTION: THE BIAS-VARIANCE TRADE-OFF

7.1 Introduction

In TD-learning, a key ingredient is the policy used to collect samples (called the behavior

policy). Ideally, we want to generate samples from the target policy whose value function

we want to estimate, and this is called on-policy sampling. However, in many cases such

on-policy sampling is not possible due to practical reasons [103, 104], and hence we need

to work with historical data that is generated by a possibly different policy (i.e., off-policy

sampling).

Off-policy learning is inevitable in high-stakes applications such as healthcare [105],

education [106], robotics [107] and clinical trials [108, 104]. The agent there may not have

direct access to the environment in order to perform online sampling, and one has to work

with limited historical data that is collected under a fixed behavior policy. Moreover, off-

policy sampling enables off-line learning by decoupling data collection from learning, and

is observed to extract the maximum possible utility out of limited available data [109].

Although off-policy sampling is more practical than on-policy sampling, it is more

challenging to analyze and is known to have high variance [110], which is a fundamental

difficulty in off-policy learning. To overcome this difficulty, many variants of off-policy

TD-learning algorithms have been proposed in the literature, such as Qπ(λ) [13], TB(λ))

[14], Retrace(λ) [15], and Q-trace [16], etc.

7.1.1 Main Contributions

In this chapter, we establish finite-sample bounds of a general n-step off-policy TD-learning

algorithm that also subsumes several algorithms presented in the literature. The key step is
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to show that such algorithm can be modeled as a Markovian SA algorithm for solving a gen-

eralized Bellman equation. We present sufficient conditions under which the generalized

Bellman operator is contractive with respect to a weighted ℓp-norm for every p ∈ [1,∞),

with a uniform contraction factor for all p. Our result shows that the sample complexity

scales as Õ(ϵ−2), where ϵ is the required accuracy. It also involves a factor that depends

on the problem parameters, in particular, the generalized importance sampling ratios, and

explicitly demonstrates the bias-variance trade-off.

Our result immediately gives finite-sample guarantees for variants of multi-step off-

policy TD-learning algorithms including Qπ(λ), TB(λ), Retrace(λ), and Q-trace. For

Qπ(λ), TB(λ), and Retrace(λ), we establish the first-known results in the literature, while

for Q-trace, we improve the best known results in [16] in terms of the dependency on the

size of the state-action space. The weighted ℓp-norm contraction property with a uniform

contraction factor for all p ∈ [1,∞) is crucial for us to establish the improved sample com-

plexity. Based on the finite-sample bounds, we show that all four algorithms overcome the

high variance issue in vanilla off-policy TD-learning, but their convergence rates are all

affected to varying degrees.

7.1.2 Generalized Bellman Operator and Stochastic Approximation

In this subsection, we illustrate the interpretation of off-policy multi-step TD-learning as an

SA algorithm for solving a generalized Bellman equation. Consider the policy evaluation

problem of estimating the state-action value function Qπ of a given policy π. In the sim-

plest setting where TD(0) with on-policy sampling is employed, it is well known that the

algorithm is an SA algorithm for solving the Bellman equation Q = Hπ(Q), where Hπ(·)

is the Bellman operator defined by [Hπ(Q)](s, a) = R(s, a) + γE[maxa′∈AQ(Sk+1, a
′) |

Sk = s, Ak = a] for all (s, a). The generalized Bellman operator B(·) we consider in this
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paper is defined by:

B(Q) = T (H(Q)−Q) +Q, (7.1)

where T (·) and H(·) are two auxiliary operators. In the special case where T (·) = I(·)

and H(·) = Hπ(·), the generalized Bellman operator B(·) reduces to the regular Bellman

operator Hπ(·). Note that any fixed point of H(·) is also a fixed point of B(·), as long

as T (·) is such that T (0) = 0. Thus, the operator H(·) controls the fixed-point of the

generalized Bellman operator B(·), and as we will see later, the operator T (·) can be used

to control its contraction properties.

To further understand the operator B(·), we demonstrate in the following that both on-

policy n-step TD and TD(λ) can be viewed as SA algorithms for solving the generalized

Bellman equation B(Q) = Q, with different auxiliary operators T (·) and H(·). On-policy

n-step TD is designed to solve the n-step Bellman equation Q = (Hπ)n(Q), which can

be explicitly written as Q =
∑n−1

i=0 (γPπ)
iR + (γPπ)

nQ. Here R is the reward vector, γ is

the discount factor, and Pπ is the transition probability matrix under policy π. By reverse

telescoping, the n-step Bellman equation is equivalent to

Q =
n−1∑
i=0

(γPπ)
i(R + γPπQ−Q) +Q = T (Hπ(Q)−Q) +Q,

where T (Q) =
∑n−1

i=0 (γPπ)
iQ. Similarly, one can formulate the TD(λ) Bellman equation

in the form of B(Q) = Q, where T (Q) = (1 − λ)
∑∞

i=0 λ
i
∑i−1

j=0(γPπ)
iQ and H(·) =

Hπ(·).

In these examples, the operator T (·) determines the contraction factor of B(·) by con-

trolling the degree of bootstrapping. In this work, we show that in addition to on-policy

TD-learning, variants of off-policy TD-learning with multi-step bootstrapping and gener-

alized importance sampling ratios can also be interpreted as SA algorithms for solving the

generalized Bellman equation. Moreover, under some mild conditions, we show that the
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generalized Bellman operator B(·) is a contraction mapping with respect to some weighted

ℓp-norm for any p ∈ [1,∞), with a common contraction factor. This enables us to establish

finite-sample bounds of general multi-step off-policy TD-like algorithms.

7.1.3 Related Literature

The TD-learning method was first proposed in [56] for solving the policy evaluation prob-

lem. Since then, there is an increasing interest in theoretically understanding TD-learning

and its variants.

On-Policy TD-Learning. The most basic TD-learning method is the TD(0) algorithm

[56]. Later it was extended to using multi-step bootstrapping (i.e., the n-step TD-learning

algorithm [99, 111, 112]), and using eligibility trace (i.e., the TD(λ) algorithm [56, 113]).

The asymptotic convergence of TD-learning was established in [24, 29, 114]. As for finite-

sample analysis, a unified Lyapunov approach is presented in [115]. To overcome the curse

of dimensionality in RL, TD-learning is usually incorporated with function approximation

in practice. In the basic setting where a linear parametric architecture is used, the asymp-

totic convergence of TD-learning was established in [92], and finite-sample bounds in [40,

12, 116, 41]. Very recently, the convergence and finite-sample guarantee of TD-learning

with neural network approximation were studied in [117, 118].

Off-Policy TD-Learning. In the off-policy setting, since the samples are not necessar-

ily generated by the target policy, usually importance sampling ratios (or “generalized”

importance sampling ratios) are introduced in the TD-learning algorithm. The resulting

algorithms are Qπ(λ) [14], TB(λ) [13], Retrace(λ) [15], and Q-trace [16] (which is an

extension of V -trace [25]), etc. The asymptotic convergence of these algorithms has been

established in the papers in which they were proposed. To the best of our knowledge,

finite-sample guarantees are established only for Q-trace and V -trace [16, 119, 115]. In the

function approximation setting, TD-learning with off-policy sampling and function approx-

imation is a typical example of the deadly triad [1], and can be unstable [1, 8]. To achieve
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convergence, one needs to significantly modify the original TD-learning algorithm, result-

ing in two time-scale algorithms such as GTD [120], TDC [121], and emphatic TD [122],

etc.

7.2 Finite-Sample Analysis

In this section, we present our unified framework for finite-sample analysis of off-policy

TD-learning algorithms using generalized importance sampling ratios and multi-step boot-

strapping.

7.2.1 A Generic Model for Multi-Step Off-Policy TD-Learning

Algorithm 5 presents our generic algorithm model. Due to off-policy sampling, the two

functions c, ρ : S × A 7→ R+ are introduced in Algorithm 5 to serve as generalized im-

portance sampling ratios in order to account for the discrepancy between the target policy

π and the behavior policy πb. We denote cmax = maxs,a c(s, a) and ρmax = maxs,a ρ(s, a).

We next show how Algorithm 5 captures variants of off-policy TD-learning algorithms in

the literature by using different generalized importance sampling ratios c(·, ·) and ρ(·, ·).

Algorithm 5 A Generic Algorithm for Multi-Step Off-Policy TD-Learning

1: Input: K, {αk},Q0, π, πb, generalized importance sampling ratios c, ρ : S×A 7→ R+,
and sample trajectory {(Sk, Ak)}0≤k≤K+n collected under the behavior policy πb.

2: for k = 0, 1, · · · , K − 1 do
3: αk(s, a) = αkI{(s, a) = (Sk, Ak)} for all (s, a)
4: ∆(Si, Ai, Si+1, Ai+1, Qk) = R(Si, Ai)+γρ(Si+1, Ai+1)Qk(Si+1, Ai+1)−Qk(Si, Ai)

for all i ∈ {k, k + 1, ..., k + n− 1}.
5: Qk+1(s, a) = Qk(s, a)+αk(s, a)

∑k+n−1
i=k γi−k

∏i
j=k+1 c(Sj, Aj)∆(Si, Ai, Si+1, Ai+1, Qk)

for all (s, a)
6: end for
7: Output: QK

Vanilla IS. When c(s, a) = ρ(s, a) = π(a|s)/πb(a|s) for all (s, a), Algorithm 5 is

the standard off-policy TD-learning with importance sampling [14]. We will refer to this

algorithm as Vanilla IS. Although Vanilla IS was shown to converge to Qπ [14], since the
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product of importance sampling ratios
∏i

j=k+1
π(Aj |Sj)

πb(Aj |Sj)
is not controlled in any way, it

suffers the most from high variance.

The Qπ(λ) Algorithm. When c(s, a) = λ and ρ(s, a) = π(a|s)/πb(a|s), Algorithm 5

is the Qπ(λ) algorithm [13]. The Qπ(λ) algorithm overcomes the high variance issue in

Vanilla IS by introducing the parameter λ. However, the algorithm converges only when λ

is sufficiently small [15].

The TB(λ) Algorithm. When c(s, a) = λπ(a|s) and ρ(s, a) = π(a|s)/πb(a|s), we

have the TB(λ) algorithm [14]. The TB(λ) algorithm also overcomes the high variance

issue in Vanilla IS and is guaranteed to converge to Qπ without needing any strong as-

sumptions. However, as discussed in [15], the TB(λ) algorithm lacks sample efficiency as

it does not effectively use the multi-step return.

The Retrace(λ) Algorithm. When c(s, a) = λmin(1, π(a|s)/πb(a|s)) and ρ(s, a) =

π(a|s)/πb(a|s), we have the Retrace(λ) algorithm, which overcomes the high variance and

converges to Qπ. The convergence rate of Retrace(λ) is empirically observed to be better

than TB(λ) in [15].

The Q-trace Algorithm. When we choose c(s, a) = min(c̄, π(a|s)/πb(a|s)) and

ρ(s, a) = min(ρ̄, π(a|s)/πb(a|s)), where ρ̄ ≥ c̄, Algorithm 5 is the Q-trace algorithm

[16]. The Q-trace algorithm is an analog of the V -trace algorithm [25] in that Q-trace

estimates the Q-function instead of the V -function. The two truncation levels c̄ and ρ̄ in

these algorithms separately control the variance and the asymptotic bias in the algorithm

respectively. Note that due to the truncation level ρ̄, the algorithm no longer converges to

Qπ, but to a biased limit point, denoted by Qπ,ρ [16].

From now on, we focus on studying Algorithm 5. We make the following assumption

about the behavior policy πb, which is fairly standard in off-policy TD-learning.

Assumption 7.2.1. The behavior policy πb satisfies πb(a|s) > 0 for all (s, a). In addition,

the Markov chain {Sk} induced by the behavior policy πb is irreducible and aperiodic.

Irreducibility and aperiodicity together imply that the Markov chain {Sk} has a unique
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stationary distribution, which we denote by κS ∈ ∆|S|. Moreover, the Markov chain {Sk}

mixes geometrically fast in that there existC > 0 and σ ∈ (0, 1) such that maxs∈S ∥P k
πb
(s, ·)−

κS(·)∥TV ≤ Cσk for all k ≥ 0, where ∥ · ∥TV is the total variation distance [48]. Let

κSA ∈ ∆|S||A| be such that κSA(s, a) = κS(s)πb(a|s) for all (s, a). Note that κSA ∈ ∆|S||A|

is the stationary distribution of the Markov chain {(Sk, Ak)} under the behavior policy πb.

Let KS = diag(κS) ∈ R|S|×|S|, and let KSA = diag(κSA) ∈ R|S||A|×|S||A|. Denote the min-

imal (maximal) diagonal entries of KS and KSA by KS,min (KS,max) and KSA,min (KS,max)

respectively.

7.2.2 Identifying the Generalized Bellman Operator

In this subsection, we identify the generalized Bellman equation which Algorithm 5 is try-

ing to solve, and also the corresponding generalized Bellman operator and its asynchronous

variant. Let Tc,Hρ : R|S||A| 7→ R|S||A| be two operators defined by

[Tc(Q)](s, a) =
n−1∑
i=0

γiEπb
[

i∏
j=1

c(Sj, Aj)Q(Si, Ai) | S0 = s, A0 = a], and

[Hρ(Q)](s, a) = R(s, a) + γEπb
[ρ(Sk+1, Ak+1)Q(Sk+1, Ak+1) | Sk = s, Ak = a]

for all (s, a). Note that the operator Tc(·) depends on the generalized importance sampling

ratio c(·, ·), while the operator Hρ(·) depends on the generalized importance sampling ratio

ρ(·, ·).

With Tc(·) and Hρ(·) defined above, Algorithm 5 can be viewed as an asynchronous

SA algorithm for solving the generalized Bellman equation Bc,ρ(Q) = Q, where the gen-

eralized Bellman operator Bc,ρ(·) is defined by Bc,ρ(Q) = Tc(Hρ(Q) − Q) + Q. Since

Algorithm 5 performs asynchronous update, we further define the asynchronous variant

B̃c,ρ(·) of the generalized Bellman operator Bc,ρ(·) by

B̃c,ρ(Q) := KSABc,ρ(Q) + (I −KSA)Q = KSATc(Hρ(Q)−Q) +Q. (7.2)

127



Each component of the asynchronous generalized Bellman operator B̃c,ρ(·) can be thought

of as a convex combination with identity, where the weights are the stationary probabilities

of visiting state-action pairs. This captures the fact that when performing asynchronous

update, the corresponding component is updated only when the state-action pair is visited.

It is clear from its definition that B̃c,ρ(·) has the same fixed-points as Bc,ρ(·) (provided that

they exist).

Under some mild conditions on the generalized importance sampling ratios c(·, ·) and

ρ(·, ·), we will show in the next section that both the asynchronous generalized Bellman op-

erator B̃c,ρ(·) and the operator Hρ(·) are contraction mappings. Therefore, since Tc(0) = 0,

the operators Hρ(·), Bc,ρ(·), B̃c,ρ(·) all share the same unique fixed-point. Since the fixed-

point of the operator Hρ(·) depends only on the generalized importance sampling ratio

ρ(·, ·), but not on c(·, ·), we can flexibly choose c(·, ·) to control the variance while main-

taining the fixed-point of the operator B̃c,ρ(·). As we will see later, this is the key property

used in designing variants of variance reduced n-step off-policy TD-learning algorithms

such as Qπ(λ), TB(λ), and Retrace(λ).

7.2.3 Establishing the Contraction Property

In this subsection, we study the fixed-point and the contraction property of the asyn-

chronous generalized Bellman operator B̃c,ρ(·). We begin by introducing some notation.

Let Dc, Dρ ∈ R|S||A|×|S||A| be two diagonal matrices such that Dc((s, a), (s, a)) =∑
a′∈A πb(a

′|s)c(s, a′) and Dρ((s, a), (s, a)) =
∑

a′∈A πb(a
′|s)ρ(s, a′) for all (s, a). We

denote Dc,min (Dc,max) and Dρ,min (Dρ,max) as the minimal (maximal) diagonal entries of

the matrices Dc and Dρ respectively.

In view of the definition of B̃c,ρ(·) in Equation 7.2, any fixed-point of Hρ(·) must also be

a fixed-point of B̃c,ρ(·). We first study the fixed point of Hρ(·) by establishing its contraction

property.

Proposition 7.2.1. Suppose that Dρ,max < 1/γ. Then the operator Hρ(·) is a contraction
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mapping with respect to the ℓ∞-norm, with contraction factor γDρ,max. In this case, the

fixed-point Qπ,ρ of Hρ(·) satisfies the following two inequalities:

(1) ∥Qπ −Qπ,ρ∥∞ ≤ γmaxs∈S
∑

a∈A |π(a|s)−πb(a|s)ρ(s,a)|
(1−γ)(1−γDρ,max)

,

(2) ∥Qπ,ρ∥∞ ≤ 1
1−γDρ,max

.

Observe from Proposition 7.2.1 (1) that when ρ(s, a) = π(a|s)/πb(a|s), which is the

case for Qπ(λ), TB(λ), and Retrace(λ), the unique fixed-point Qπ,ρ is exactly the target

value function Qπ. This agrees with the definition of the operator Hρ(·) in that it reduces

to the regular Bellman operator Hπ(·) when ρ(s, a) = π(a|s)/πb(a|s) for all (s, a). If

ρ(s, a) ̸= π(a|s)/πb(a|s) for some (s, a), then in general the fixed-point of Hρ(·) is dif-

ferent from Qπ. In that case, Proposition 7.2.1 provides an error bound on the difference

between the potentially biased limit Qπ,ρ and Qπ. Such error bound will be useful for us

to study the Q-trace algorithm in Section 7.3. Proposition 7.2.1 (2) can be viewed as an

analog to the inequality that ∥Qπ∥∞ ≤ 1/(1−γ) for any policy π. Since Hρ(·) is no longer

the Bellman operator Hπ(·), the corresponding upper bound on the size of its fixed-point

Qπ,ρ also changes.

Note that Proposition 7.2.1 guarantees the existence and uniqueness of the fixed-point

of the operator Hρ(·), hence also ensures the existence of fixed-points of the asynchronous

generalized Bellman operator B̃c,ρ(·). To further guarantee the uniqueness of the fixed-point

of B̃c,ρ(·), we establish its contraction property. We begin with the following definition.

Definition 7.2.1. Let {µi}1≤i≤d be such that µi > 0 for all i. Then for any x ∈ Rd, the

weighted ℓp-norm (p ∈ [1,∞)) of xwith weights {µi} is defined by ∥x∥µ,p = (
∑

i µi|xi|p)1/p

for any x ∈ Rd.

We next establish the contraction property of the operator B̃c,ρ(·) in the following theo-

rem. Let ω = KSA,minf(γDc,min)(1− γDρ,max), where the function f : R 7→ R is defined

by f(x) = n when x = 1, and f(x) = 1−xn

1−x
when x ̸= 1.
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Theorem 7.2.1. Suppose c(s, a) ≤ ρ(s, a) for all (s, a) and Dρ,max < 1/γ. Then we have

the following results:

(1) For any θ ∈ (0, 1), there exists a weight vector µ ∈ ∆|S||A| satisfying µ(s, a) ≥
ω(1−θ)

(1−θω)|S||A| for all (s, a) such that the operator B̃c,ρ(·) is a contraction mapping with

respect to ∥ · ∥µ,p for any p ∈ [1,∞), with contraction factor γc = (1− ω)1−1/p(1−

θω)1/p,

(2) The operator B̃c,ρ(·) is a contraction mapping with respect to ∥·∥∞, with contraction

factor γc = 1− ω.

Consider Theorem 7.2.1 (1). Observe that we can further upper bound γc = (1 −

ω)1−1/p(1−θω)1/p by 1−θω, which is independent of p and is the uniform contraction factor

we are going to use. Theorem 7.2.1 (2) can be viewed as an extension of Theorem 7.2.1

(1) because limp→∞ ∥x∥µ,p = ∥x∥∞ for any x ∈ Rd and weight vector µ, and limp→∞(1−

ω)1−1/p(1− θω)1/p = 1− ω.

Theorem 7.2.1 is the key result for our finite-sample analysis. The weighted ℓp-norm

(especially the weighted ℓ2-norm) contraction property we established for the operator

B̃c,ρ(·) has a far-reaching impact even beyond the finite-sample analysis of tabular RL in

this paper. Specifically, recall that the key property used for establishing the convergence

and finite-sample bound of on-policy TD-learning with linear function approximation in

the seminal work [92] is that the corresponding Bellman operator is a contraction mapping

not only with respect to the ℓ∞-norm, but also with respect to a weighted ℓ2-norm. We

establish the same property in the off-policy setting, and hence lay down the foundation for

extending our results to the function approximation setting.

7.2.4 Finite-Sample Convergence Guarantees

In light of Theorem 7.2.1, Algorithm 5 is a Markovian SA algorithm for solving a fixed-

point equation B̃c,ρ(Q) = Q, where the fixed-point operator B̃c,ρ(·) is a contraction map-
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ping. Therefore, to establish the finite-sample bounds, we use a Lyapunov drift argument

where we choose W (Q) = ∥Q − Qπ,ρ∥2µ,p as the Lyapunov function. This leads to a

finite-sample bound on E[∥Qk − Qπ,ρ∥2µ,p]. However, since µ is unknown, to make the

finite-sample bound independent of µ, we use the lower bound on the components of µ

provided in Theorem 7.2.1, and also tune the parameters p and θ to obtain a finite-sample

bound on E[∥Qk −Qπ,ρ∥2∞]. The fact that we have a uniform contraction factor 1− θω (cf.

Theorem 7.2.1) plays an important role in such tuning process.

To present the results, we need to introduce more notation. For any δ > 0, define

tδ as the mixing time of the Markov chain {Sk} (induced by πb) with precision δ, i.e.,

tδ = min{k ≥ 0 : maxs∈S ∥P k
πb
(s, ·) − κS(·)∥TV ≤ δ}. Under Assumption 7.2.1, one

can easily verify that tδ ≤ L(log(1/δ) + 1) for some constant L > 0, which depends

only on C and δ. Let τδ,n = tδ + n + 1. The parameters c1, c2 and c3 used in stating

the following theorem are numerical constants, and will be explicitly given in Section 7.4

where we present its proof. For ease of exposition, we here only present the finite-sample

bound for using constant stepsize.

Theorem 7.2.2. Consider {Qk} of Algorithm 5. Suppose that (1) Assumptions 7.2.1 is

satisfied, (2) c(s, a) ≤ ρ(s, a) for all (s, a) and Dρ,max < 1/γ, and (3) the constant stepsize

α is chosen such that ατα,n ≤ c1ω
log(2|S||A|/ω)f(γcmax)2(γρmax+1)2

. Then we have for all k ≥ τα,n:

E[∥Qk −Qπ,ρ∥2∞] ≤ ζ1

(
1− ωα

2

)k−τα,n

+ ζ2
f(γcmax)

2(γρmax + 1)2 log(2|S||A|/ω)
ω

ατα,n,

(7.3)

where ζ1 = c2(∥Q0 −Qπ,ρ∥∞ + ∥Q0∥∞ + 1)2, and ζ2 = c3(3∥Qπ,ρ∥∞ + 1)2.

Theorem 7.2.2 enables one to design a wide class of off-policy TD variants with prov-

able finite-sample guarantees by choosing appropriate generalized importance sampling

ratios c(·, ·) and ρ(·, ·). The first term on the RHS of Equation 7.3 is usually called the bias

in SA literature [23], and it goes to zero at a geometric rate. The second term on the RHS
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of Equation 7.3 stands for the variance in the iterates, and it is a constant proportional to

ατα,n. To see more explicitly the bias-variance trade-off, we derive the sample complexity

of Algorithm 5 in the following.

Corollary 7.2.1. For an accuracy ϵ > 0, to obtain E[∥Qk − Qπ,ρ∥∞] ≤ ϵ, the sample

complexity is

O
(
log2(1/ϵ)

ϵ2

)
︸ ︷︷ ︸

T1

Õ
(

1

ω2

)
︸ ︷︷ ︸

T2

Õ
(
nf(γcmax)

2(γρmax + 1)2

(1− γDρ,max)2

)
︸ ︷︷ ︸

T3

. (7.4)

In Corollary 7.2.1, the Õ(ϵ−2) dependence on the accuracy is the same as n-step TD-

learning in the on-policy setting (cf. Chapter 6), and is in general not improvable. The

term T2 can be equivalently written as Õ(1/(1−Contraction factor)2), hence capturing the

impact from the contraction factor. This agrees with our intuition that smaller contraction

factor leads to better sample complexity. The term T3 arises because of the variance term on

the RHS of Equation 7.3. The linear dependence on n is due to using n-step bootstrapping.

By optimizing the sample complexity in terms of n, we have noptimal ∼ 1/ log(1/(γDc,min)).

This is analogous to the optimal n in the on-policy setting, which is 1/ log(1/γ) in Chap-

ter 6. The additional Dc,min factor arises because of using off-policy learning. The rest

of parameters in T3 are determined by the choice of the generalized importance sampling

ratios c(·, ·) and ρ(·, ·). It is clear that smaller cmax and ρmax lead to smaller variance.

As we will see later, this is the reason for the variance reduction of various off-policy

TD-learning algorithms in the literature. In light of the previous analysis, the bias-variance

trade-off in general off-policy multi-step TD-learning Algorithm 5 is intuitively of the form

Õ
(

Variance
(1− Contraction factor)2

)
.
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7.3 Application to Various Off-Policy TD-Learning Algorithms

In this section, we apply Theorem 7.2.2 to various off-policy n-step TD-learning algo-

rithms in the literature. We begin by introducing some notation. Let πmax (πmin) and πb,max

(πb,min) be the maximal (minimal) entry of the target policy π and the behavior policy

πb respectively. Let rmax = maxs,a(π(a|s)/πb(a|s)) (rmin = mins,a(π(a|s)/πb(a|s))) be

the maximum (minimum) ratio between π and πb. We will overload the notation of ζ1

and ζ2 from Theorem 7.2.2. Note that Qπ,ρ = Qπ in Qπ(λ), TB(λ), and Retrace(λ), but

Qπ,ρ ̸= Qπ in Q-trace.

7.3.1 Finite-Sample Analysis of Vanilla IS

We first present the sample complexity bound of the Vanilla IS algorithm, where c(s, a) =

ρ(s, a) = π(a|s)/πb(a|s) for all (s, a).

Theorem 7.3.1. Consider Algorithm 5 with Vanilla IS update, where we note that cmax =

ρmax = rmax, Dc = Dρ = I , and ω = KSA,min(1 − γn). Suppose that Assumption 7.2.1 is

satisfied. Then, to achieve ϵ-accuracy, the sample complexity is

O

(
log2(1/ϵ)

ϵ2

)
Õ
(

1

ω2

)
Õ
(
n((γrmax)

n + 1)2

(1− γ)2

)
.

In the special case where π = πb (i.e., on-policy n-step TD), the sample complexity

bound reduces to Õ
(

n log2(1/ϵ)

ϵ2K2
SA,min(1−γn)2(1−γ)2

)
, which is comparable to the results in Chap-

ter 6. In the off-policy setting, note that the factor ((γrmax)
n + 1)2 appears in the sample

complexity. When γrmax > 1 (which can usually happen), the sample complexity bound

involves an exponential factor (γrmax)
n. The reason is that the product of importance

sampling ratios c(·, ·) are not at all controlled by any means in Vanilla IS. Therefore, the

variance can be very large. On the other hand, since the importance sampling ratios are

not modified, Vanilla IS effectively uses the full n-step return. As a result, the parameter
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ω = KSA,min(1 − γn) within Vanilla IS is the largest (best) among all the algorithms we

study.

7.3.2 Finite-Sample Analysis of Qπ(λ)

In this subsection, we present the sample complexity of theQπ(λ) algorithm, where c(s, a) =

λ and ρ(s, a) = π(a|s)/πb(a|s) for all (s, a).

Theorem 7.3.2. Consider Algorithm 5 with Qπ(λ) update, where we note that cmax = λ,

ρmax = rmax, Dc = λI , Dρ = I , and w = KSA,minf(γλ)(1− γ). Suppose that Assumption

7.2.1 is satisfied, and λ ≤ rmin. Then, to achieve ϵ-accuracy, the sample complexity is

O

(
log2(1/ϵ)

ϵ2

)
Õ
(

1

ω2

)
Õ
(
nf(γλ)2(γrmax + 1)2

(1− γ)2

)
.

To see how Qπ(λ) overcomes the high variance issue in Vanilla IS, observe that since

γλ ≤ γrmin ≤ γ < 1, we have f 2(γλ) ≤ 1/(1 − γλ)2. Therefore, by replacing

c(s, a) = π(a|s)/πb(a|s) in Vanilla IS with a properly chosen constant λ, Qπ(λ) algo-

rithm successfully avoids an exponential large factor in the sample complexity. However,

choosing a small λ to control the variance has a side effect on the contraction factor. In-

tuitively, when λ is small, Qπ(λ) does not effectively use the n-step return. Hence the

parameter ω in Qπ(λ) is less (worse) than the one in Vanilla IS.

7.3.3 Finite-Sample Analysis of TB(λ)

In this subsection, we present the sample complexity of the TB(λ) algorithm, where c(s, a) =

λπ(a|s) and ρ(s, a) = π(a|s)/πb(a|s) for all (s, a).

Theorem 7.3.3. Consider Algorithm 5 with TB(λ) update. Note that cmax = λπmax, ρmax =

rmax, Dc(s, a) = λ
∑

a πb(a|s)π(a|s), Dρ(s, a) = 1, and ω = KSA,minf(γDc,min)(1 − γ).

Suppose that Assumption 7.2.1 is satisfied, and λ ≤ 1/πb,max. Then, to achieve ϵ-accuracy,
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the sample complexity is

O

(
log2(1/ϵ)

ϵ2

)
Õ

(
1

ω2

)
Õ
(
nf(γλπmax)

2(γrmax + 1)2

(1− γ)2

)
.

Suppose we further choose λ < 1/(γπmax), the TB(λ) algorithm also overcomes the

high variance issue in Vanilla IS because f(γλπmax) ≤ 1/(1 − γλπmax), which does not

involve any exponential large factor. When compared to Qπ(λ), an advantage of TB(λ) is

that the constraint on λ is much relaxed. However, the same side effect on the contraction

factor is also present here. To see this, since Dc,min = λmins,a

∑
a πb(a|s)π(a|s) ≤ 1, the

TB(λ) algorithm does not effectively use the n-step return, hence the parameter ω in TB(λ)

is less (worse) than the one in Vanilla IS.

7.3.4 Finite-Sample Analysis of Retrace(λ)

In this subsection, we present the sample complexity of the Retrace(λ) algorithm, where

c(s, a) = λmin(1, π(a|s)/πb(a|s)) and ρ(s, a) = π(a|s)/πb(a|s) for all (s, a).

Theorem 7.3.4. Consider Algorithm 5 with Retrace(λ) update. Note that cmax = λ, ρmax =

rmax,Dc(s, a) = λ
∑

a min(πb(a|s), π(a|s)),Dρ(s, a) = 1, and ω = KSA,minf(γDc,min)(1−

γ). Suppose that Assumption 7.2.1 is satisfied, and λ ≤ 1. Then, to achieve ϵ-accuracy, the

sample complexity is

O

(
log2(1/ϵ)

ϵ2

)
Õ
(

1

ω2

)
Õ
(
nf(γλ)2(γrmax + 1)2

(1− γ)2

)
.

The Retrace(λ) algorithm overcomes the high variance issue in Vanilla IS by truncating

the importance sampling ratio at 1, which prevents an exponential large factor in the vari-

ance term. In addition, it does not require choosing λ to be extremely small as required in

Qπ(λ). As for the compromise in the contraction factor, note that min(1, π(a|s)/πb(a|s)) ≥

π(a|s), which implies thatDc(s, a) (and henceDc,min) is larger in the Retrace(λ) algorithm

than the TB(λ) algorithm. As a result, Retrace(λ) does not truncate the n-step return as
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heavy as TB(λ), and hence the parameter ω is larger (better) in Retrace(λ) than in TB(λ).

7.3.5 Finite-Sample Analysis of Q-Trace

Lastly, we present the sample complexity of theQ-trace algorithm, where we have c(s, a) =

min(c̄, π(a|s)/πb(a|s)) and ρ(s, a) = min(ρ̄, π(a|s)/πb(a|s)) for all (s, a).

Theorem 7.3.5. Consider Algorithm 5 with Q-trace update, where we note that cmax = c̄,

ρmax = ρ̄, Dc(s, a) =
∑

a min(c̄πb(a|s), π(a|s)), Dρ(s, a) =
∑

amin(ρ̄πb(a|s), π(a|s)),

and ω = KSA,minf(γDc,min)(1−γDρ,max). Suppose that Assumption 7.2.1 is satisfied, and

c̄ ≤ ρ̄. Then, to achieve ϵ-accuracy, the sample complexity is

O

(
log2(1/ϵ)

ϵ2

)
Õ
(

1

ω2

)
Õ
(
nf(γc̄)2(γρ̄+ 1)2

(1− γDρ,max)2

)
.

To avoid an exponential large variance, in view of the term f(γc̄) in our bound, we

need to choose c̄ ≤ 1/γ. The major difference between Q-trace and Retrace(λ) is that the

importance sampling ratio ρ(·, ·) inside the temporal difference (line 4 of Algorithm 5) also

involves a truncation. As shown in Subsection 7.2.3, due to introducing the truncation level

ρ̄, the algorithm converges to a biased limit Qπ,ρ instead of Qπ. Such truncation bias can be

controlled using Proposition 7.2.1. These observations agree with the results [16], where

the finite-sample bounds of Q-trace were first established.

Compared to [16], we have an improved sample complexity. Specifically, the result

in [16] implies a sample complexity of Õ( log
2(1/ϵ)nf(γc̄)2(γρ̄+1)2

ϵ2ω3(1−γDρ,max)2
), which has an additional

factor of ω−1. Since ω−1 ∝ K−1
SA,min ≥ |S||A|, our result improves the dependency on

the size of the state-action space by a factor of at least |S||A| compared to [16]. Similarly,

since the V -trace algorithm [25] is an analog of theQ-trace algorithm, we can also improve

the sample complexity for V -trace in [115].

In addition to analyzing existing algorithms, observe that our results, especially The-

orem 7.2.2, provide sufficient conditions under which Algorithm 5 has provable finite-
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sample guarantees, and hence enable us to design new algorithms. As an example, in light

of the Retrace(λ) algorithm and theQ-trace algorithm, one can take advantage of both algo-

rithms to let c(s, a) = λc min(c̄, π(a|s)/πb(a|s)) and ρ(s, a) = λρ min(ρ̄, π(a|s)/πb(a|s)),

where λc, λρ, c̄, and ρ̄ are tunable parameters. As long as λcc̄ ≤ λρρ̄ < 1/γ, Theorem 7.2.2

is applicable and hence finite-sample convergence is guaranteed. To avoid an exponentially

large variance, we choose λcc̄ ≤ 1/γ so that there are no exponentially large terms in the

term T3 of sample complexity bound. After that, we can tune the rest of the parameters to

further optimize the performance of the algorithm.

Sample Complexity Comparison. Now that we have derived the sample complexity

bounds of various off-policy n-step TD-learning algorithms, we summarize them in the

following table. For ease of exposition, we omit the common factor log2(1/ϵ)/(ϵ2K2
SA,min)

when presenting the sample complexity, and use a ∧ b (a ∨ b) to denote the minimum

(maximum) of two real numbers a and b.

Table 7.1: Summary of the Sample Complexity Bounds

Algorithm c(s, a) ρ(s, a) Requirements Sample Complexity

Vanilla IS π(a|s)
πb(a|s)

π(a|s)
πb(a|s)

None Õ
(

(γrmax)n+1)2

(1−γn)2(1−γ)2

)
Qπ(λ) λ π(a|s)

πb(a|s)
λ ≤ rmin Õ

(
(γrmax+1)2

(1−γ)4

)
TB(λ) λπ(a|s) π(a|s)

πb(a|s)
λ < 1

(πb,max∨γπmax)
Õ
(

f(γλπmax)2(γrmax+1)2

f(γDc,min)2(1−γ)4

)
Retrace(λ) λ[1 ∧ π(a|s)

πb(a|s)
] π(a|s)

πb(a|s)
λ ≤ 1 Õ

(
f(γλ)2(γrmax+1)2

f(γDc,min)2(1−γ)4

)
Q-trace c̄ ∧ π(a|s)

πb(a|s)
ρ̄ ∧ π(a|s)

πb(a|s)
c̄ ≤ ρ̄, c̄ < 1

γ
Õ
(

f(γc̄)2(γρ̄+1)2

f(γDc,min)2(1−γDρ,max)4

)

In view of Table 1, when rmax < 1/γ, which indicates that the target policy π and the

behavior policy πb are relatively close to each other, Vanilla IS has the best performance

since it has the best contraction factor, and the cumulative product of the generalized impor-

tance sampling ratios does not result in exponentially large variance. When rmax > 1/γ,

then Vanilla IS can potentially have exponentially large variance, while other four algo-

rithms do not. In this case, among Qπ(λ), TB(λ), and Retrace(λ), Qπ(λ) has the best

137



sample complexity bound. However, we need to point out that the requirement λ ≤ rmin

for Qπ(λ) is most restrictive, and the algorithm can easily diverge when this requirement

is not satisfied, as evidenced by the numerical experiments presented in [15]. As for the

Q-trace algorithm, although rigorously speaking it is not directly comparable with the other

algorithms as it converges to a biased limit point, it is clear that using truncated importance

sampling ratio for ρ(·, ·) can further reduce the sample complexity.

We want to mention that our comparison is based on the upper bounds we derived for

the sample complexity, which may not be tight. To complete the story, one should also

derive lower bounds on the sample complexity, which is an interesting future direction.

Nevertheless, our comparison provides insight into the behavior of off-policy n-step TD-

learning algorithms.

7.4 Proof of All Theoretical Results

7.4.1 Proof of Theorem 7.2.1

We begin by explicitly computing the asynchronous generalized Bellman operator B̃c,ρ(·).

Let πc and πρ be two policies defined by πc(a|s) = πb(a|s)c(s,a)
Dc((s,a),(s,a))

and πρ(a|s) = πb(a|s)ρ(s,a)
Dρ((s,a),(s,a))

for all (s, a). Let R ∈ R|S||A| be the reward vector defined by R(s, a) = R(s, a) for all

(s, a). For any policy π′, let Pπ′ be the transition probability matrix of the Markov chain

{(Sk, Ak)} under π′, i.e., Pπ′((s, a), (s′, a′)) = Pa(s, s
′)π′(a′|s′) for all state-action pairs

(s, a) and (s′, a′).

Proposition 7.4.1. The operator B̃c,ρ(·) is explicitly given by B̃c,ρ(Q) = AQ + b, where

A = I −KSA

∑n−1
i=0 (γPπcDc)

i(I − γPπρDρ) and b = KSA

∑n−1
i=0 (γPπcDc)

iR.

In light of Proposition 7.4.1, to prove Theorem 7.2.1, it is enough to study the matrix

A. To proceed, we require the following definition.

Definition 7.4.1. Given β ∈ [0, 1], a matrix M ∈ Rd×d is called a substochastic matrix

with modulus β if and only if Mij ≥ 0 for all i, j and
∑

j Mij ≤ 1− β for all i.
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Remark. Note that for any non-negative matrix M , we have ∥M∥∞ = maxi
∑

j Mij .

Therefore, a matrix M being a substochastic matrix with modulus β automatically implies

that ∥M∥∞ ≤ 1− β.

We next show in the following two propositions that (1) the matrix A given in Proposi-

tion 7.4.1 is a substochastic matrix with modulus ω, and (2) for any substochastic matrixM

with a positive modulus, there exist weights {µi} such that the induced matrix norm ∥M∥µ,p

is strictly less than 1. These two results together immediately imply Theorem 7.2.1.

Proposition 7.4.2. Suppose that c(s, a) ≤ ρ(s, a) for all (s, a) and Dρ,max < 1/γ. Then

the matrix A given in Proposition 7.4.1 is a substochastic matrix with modulus ω.

The condition c(s, a) ≤ ρ(s, a) ensures that the matrix A is non-negative, and the

conditionDρ,max < 1/γ ensures that the each row of the matrixA sums up to at most 1−ω.

Together they imply the substochasticity of A. The modulus ω is an important parameter

for our finite-sample analysis. In view of Theorem 7.2.1, we see that large modulus gives

smaller (or better) contraction factor of B̃c,ρ(·).

Proposition 7.4.3. For any substochastic matrix M ∈ Rd×d with a positive modulus β ∈

(0, 1), for any θ ∈ (0, 1), there exists a weight vector µ ∈ ∆d satisfying µi ≥ β(1−θ)
(1−θβ)d

for

all i such that ∥M∥µ,p ≤ (1 − β)1−1/p(1 − θβ)1/p for any p ∈ [1,∞). Furthermore, if M

is irreducible 1, then we can choose θ = 1.

The result of Proposition 7.4.3 further implies ∥M∥µ,p ≤ 1− θβ, which is independent

of the choice of p. This implies that B̃c,ρ(·) is a uniform contraction mapping with respect

to ∥ · ∥µ,p for all p ≥ 1. In general, for different p and p′, an operator being a ∥ · ∥p-norm

contraction does not imply being a ∥ · ∥p′-norm contraction. The reason that we have such

a strong uniform contractive result is that the operator B̃c,ρ(·) has a linear structure, and

involves a substochastic matrix.
1A non-negative matrix is irreducible if and only if its associated graph is strongly connected [123].
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Note that Proposition 7.4.3 introduces the tunable parameter θ. It is clear that large θ

gives better contraction factor of B̃c,ρ(·) but worse lower bound on the entries of the weight

vector µ. In general, when M is not irreducible, we cannot hope to choose a weight vector

µ ∈ ∆d with positive components and obtain ∥M∥µ,p ≤ 1 − ω. To see this, consider

the example where M = (1 − ω)[0,0, · · · ,1], which is clearly a substochastic matrix

with modulus ω, but is not an irreducible matrix. For any weight vector µ ∈ ∆d, we have

∥M∥µ,p = (1−ω)maxx∈Rd:∥x∥µ,p=1 |xd| = (1−ω)/µ1/p
d > 1−ω. However, by choosing µd

close to unity, we can get ∥M∥µ,p arbitrarily close to 1− ω. This is analogous to choosing

θ close to one in Proposition 7.4.3.

7.4.2 Proof of Proposition 7.2.1

For any Q1, Q2 ∈ R|S||A|, and state-action pairs (s, a), using the definition of Hρ(·) and we

have

|[Hρ(Q1)](s, a)− [Hρ(Q2)](s, a)|

= γ

∣∣∣∣∣∑
s′∈A

Pa(s, s
′)
∑
a′∈A

πb(a
′|s′)ρ(s′, a′)(Q1(s

′, a′)−Q2(s
′, a′))

∣∣∣∣∣
≤ γ

∑
s′∈A

Pa(s, s
′)
∑
a′∈A

πb(a
′|s′)ρ(s′, a′)|Q1(s

′, a′)−Q2(s
′, a′)|

≤ γ∥Q1 −Q2∥∞
∑
s′∈A

Pa(s, s
′)
∑
a′∈A

πb(a
′|s′)ρ(s′, a′)

≤ γ
∑
s′∈A

Pa(s, s
′)Dρ,max∥Q1 −Q2∥∞

= γDρ,max∥Q1 −Q2∥∞.

It follows that ∥Hρ(Q1)−Hρ(Q2)∥∞ ≤ γDρ,max∥Q1−Q2∥∞. SinceDρ,max < 1/γ, the op-

erator Hρ(·) is a contraction mapping with respect to ∥·∥∞, with contraction factor γDρ,max.

(1) We now derive the upper bound on ∥Qπ − Qπ,ρ∥∞. Since Qπ = Hπ(Q
π) and Qπ,ρ =
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Hρ(Q
π,ρ), we have

|Qπ(s, a)−Qπ,ρ(s, a)|

= |[Hπ(Q
π)](s, a)− [Hρ(Q

π,ρ)](s, a)|

= |[Hπ(Q
π)](s, a)− [Hρ(Q

π)](s, a) + [Hρ(Q
π)](s, a)− [Hρ(Q

π,ρ)](s, a)|

≤ |[Hπ(Q
π)](s, a)− [Hρ(Q

π)](s, a)|+ |[Hρ(Q
π)](s, a)− [Hρ(Q

π,ρ)](s, a)|

= γ

∣∣∣∣∣∑
s′∈S

Pa(s, s
′)
∑
a′∈A

(π(a′|s′)− πb(a
′|s′)ρ(s′, a′))Qπ(s′, a′)

∣∣∣∣∣+ γDρ,max∥Qπ −Qπ,ρ∥∞

≤ γ

1− γ

∑
s′∈S

Pa(s, s
′)
∑
a′∈A

|π(a′|s′)− πb(a
′|s′)ρ(s′, a′)|+ γDρ,max∥Qπ −Qπ,ρ∥∞ (∗)

≤ γ

1− γ
max
s∈S

∑
a∈A

|π(a|s)− πb(a|s)ρ(s, a)|+ γDρ,max∥Qπ −Qπ,ρ∥∞,

where in Eq. (∗) we used the inequality |Qπ(s, a)| ≤
∑∞

k=0 γ
k = 1

1−γ
for all (s, a). There-

fore, we have

∥Qπ −Qπρ∥∞ ≤ γ

1− γ
max
s∈S

∑
a∈A

|π(a|s)− πb(a|s)ρ(s, a)|+ γDρ,max∥Qπ −Qπ,ρ∥∞.

Rearranging terms and we obtain the desired result.

(2) To prove the upper bound on ∥Qπ,ρ∥∞, we begin with the fixed-point equation

Qπ,ρ = Hρ(Q
π,ρ) = R + γPπρDρQ

π,ρ, (7.5)

where we recall the definition of Dρ and πρ in Section 7.2. Equation 7.5 is equivalent to

Qπ,ρ = (I − γPπρDρ)
−1R. Therefore, we have

∥Qπ,ρ∥∞ = ∥(I − γPπρDρ)
−1R∥∞ ≤ ∥(I − γPπρDρ)

−1∥∞∥R∥∞ ≤ 1

1− γDρ,max

.
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7.4.3 Proof of Proposition 7.4.1

Recall the definition of B̃c,ρ(·) in Equation 7.2:

B̃c,ρ(Q) = KSA(Bc,ρ(Q)−Q) +Q = KSATc(Hρ(Q)−Q) +Q.

We first explicitly compute the operators Tc(·) and Hρ(·). For the operator Hρ(·), we have

from its definition that

[Hρ(Q)](s, a) = R(s, a) + γEπb
[ρ(Sk+1, Ak+1)Q(Sk+1, Ak+1) | Sk = s, Ak = a]

= R(s, a) + γ
∑
s′

Pa(s, s
′)
∑
a′

πb(a
′|s′)ρ(s′, a′)Q(s′, a′)

= R(s, a) + γ
∑
s′

Pa(s, s
′)
∑
a′

πb(a
′|s′)ρ(s′, a′)
Dρ(s′, a′)

Dρ(s
′, a′)Q(s′, a′)

= R(s, a) + γ
∑
s′,a′

Pa(s, s
′)πρ(a

′|s′)Dρ(s
′, a′)Q(s′, a′)

= [R + PπρDρQ](s, a).

Note that Pπρ ∈ R|S||A|×|S||A| here is the transition probability matrix of the Markov chain

{(Sk, Ak)} under πρ, i.e., Pπρ((s, a), (s
′, a′)) = Pa(s, s

′)πρ(a
′|s′) for any (s, a) and (s′, a′).

Hence we have

Hρ(Q) = R + PπρDρQ.

As for the operator Tc(·), similarly using the Markov property and the tower property

of conditional expectation, we have Tc(Q) =
∑n−1

i=0 (γPπcDc)
iQ. It follows that

B̃c,ρ(Q) = KSATc(Hρ(Q)−Q) +Q

= KSA

n−1∑
i=0

(γPπcDc)
i(R + γPπρDρQ−Q) +Q
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=

[
I −KSA

n−1∑
i=0

(γPπcDc)
i(I − γPπρDρ)

]
︸ ︷︷ ︸

A

Q+KSA

n−1∑
i=0

(γPπcDc)
iR︸ ︷︷ ︸

b

.

7.4.4 Proof of Proposition 7.4.2

Consider the matrix A given in Proposition 7.4.1. To show that A is a substochastic matrix

with a positive modulus, we first show that A is non-negative. Observe that

A = I −KSA

n−1∑
i=0

(γPπcDc)
i +KSA

n−1∑
i=0

(γPπcDc)
iγPπρDρ

= (I −KSA)−KSA

n−1∑
i=1

(γPπcDc)
i +KSA

n−1∑
i=0

(γPπcDc)
iγPπρDρ

= (I −KSA)−KSA

n−2∑
i=0

(γPπcDc)
i+1 +KSA

n−1∑
i=0

(γPπcDc)
iγPπρDρ

= (I −KSA) +KSA

n−2∑
i=0

(γPπcDc)
iγ(PπρDρ − PπcDc) +KSA(γPπcDc)

n−1γPπρDρ.

(7.6)

It remains to show that the matrix PπρDρ − PπcDc has non-negative entries. For any (s, a)

and (s′, a′), since c(s′, a′) ≤ ρ(s′, a′) for all (s′, a′), we have

[PπρDρ − PπcDc]((s, a), (s
′, a′)) = Pa(s, s

′)πb(a
′|s′)(ρ(s′, a′)− c(s′, a′)) ≥ 0.

We next show that A1 ≤ (1 − ω)1, where 1 ∈ Rd is the all one vector. Since A is

non-negative and Dρ,max < 1/γ for all (s, a), we have

KSA

n−1∑
i=0

(γPπcDc)
i(I − γPπρDρ)1 ≥ KSA

n−1∑
i=0

(γPπcDc)
i(I − γPπρDρ,max)1

= (1− γDρ,max)KSA

n−1∑
i=0

(γPπcDc)
i1
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≥ KSA,min

n−1∑
i=0

(γDc,min)
i(1− γDρ,max)1

= KSA,minf(γDc,min)(1− γDρ,max)1.

It follows that

A1 =

[
I −KSA

n−1∑
i=0

(γPπcDc)
i(I − γPπρDρ)

]
1

≤ [1−KSA,minf(γDc,min)(1− γDρ,max)]1.

This implies that A is a substochastic matrix with modulus ω = KSA,minf(γDc,min)(1 −

γDρ,max).

7.4.5 Proof of Proposition 7.4.3

Consider a substochastic matrix M ∈ Rd×d with modulus β ∈ (0, 1). For any θ ∈ (0, 1),

let

M ′ =
M

1− θβ
+
β(1− θ)

1− θβ

E

d
,

where E is the all one matrix. It is clear that M ′ > 0. Moreover, since

M ′1 ≤ 1− β

1− θβ
1+

β(1− θ)

1− θβ
1 = 1,

the matrix M ′ is a substochastic matrix with modulus 0, there exists a stochastic matrix

M ′′ such that M ′′ ≥ M ′ > 0. Since M ′′ has strictly positive entries, the Markov chain as-

sociated with the stochastic matrix M ′′ is irreducible and aperiodic, hence admits a unique

stationary distribution µ ∈ ∆d. In the special case where M itself is irreducible, we are

allowed to choose θ = 1 in the preceding construction process, and the resulting stochastic

matrix M ′′ is also guaranteed to be irreducible, and hence has a unique stationary distribu-
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tion µ. Since µ⊤ = µ⊤M ′′, we have

µ⊤ = µ⊤M ′′ ≥ µ⊤M ′ ≥ µ⊤β(1− θ)

1− θβ

E

d
=

β(1− θ)

(1− θβ)d
1⊤.

This proves the lower bound on the entries of µ.

Now using µ as the weight vector and we have for any p ∈ [1,∞) and x ∈ Rd:

∥Mx∥pµ,p =
∑
i

µi

∣∣∣∣∣∑
j

Mijxj

∣∣∣∣∣
p

=
∑
i

µi

(∑
ℓ

Miℓ

)p ∣∣∣∣∣∑
j

Mij∑
ℓMiℓ

xj

∣∣∣∣∣
p

≤
∑
i

µi

(∑
ℓ

Miℓ

)p−1∑
j

Mij|xj|p (Jensen’s inequality)

≤ (1− β)p−1
∑
i

µi

∑
j

Mij|xj|p

≤ (1− β)p−1(1− θβ)
∑
i

µi

∑
j

M ′
ij|xj|p (definition of M ′)

≤ (1− β)p−1(1− θβ)
∑
i

µi

∑
j

M ′′
ij|xj|p (definition of M ′′)

= (1− β)p−1(1− θβ)
∑
j

|xj|p
∑
i

µiM
′′
ij (change of summation order)

= (1− β)p−1(1− θβ)
∑
j

µj|xj|p (µ⊤M ′′ = µ⊤)

= (1− β)p−1(1− θβ)∥x∥pµ,p.

It follows that ∥Mx∥µ,p ≤ (1− ω)1−1/p(1− θβ)1/p∥x∥µ,p for any x ∈ Rd and p ∈ [1,∞).

Using the definition of induced matrix norm immediately gives the result.

7.4.6 Proof of Theorem 7.2.2

We first state a more general result in the following, which implies Theorem 7.2.2.

Theorem 7.4.1. Consider the iterates {Qk} generated by Algorithm 5. Suppose that As-
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sumption 7.2.1 is satisfied, and c(s, a) ≤ ρ(s, a) for all (s, a) and Dρ,max < 1/γ. Then

for any θ ∈ (0, 1), there exists a weighted ℓp-norm with weights µ ∈ ∆|S||A| satisfying

µmin ≥ ω(1−θ)
(1−θω)|S||A| such that the following inequality holds when the constant stepsize α is

chosen such that ατα,n ≤ θµ
2/p
minω

2052pf(γcmax)2(γρmax+1)2
:

E[∥Qk −Qπ,ρ∥2µ,p] ≤ ζ̃1(1− θωα)k−τα,n + ζ̃2
pf(γcmax)

2(γρmax + 1)2

µ
2/p
minω

ατα,n,

where ζ̃1 = (∥Q0 −Qπ,ρ∥µ,p + ∥Q0∥µ,p + 1)2, and ζ̃2 = 228(3∥Qπ,ρ∥µ,p + 1)2.

By using the inequality that µ1/p
min∥·∥p ≤ ∥·∥µ,p (where ∥·∥p is the unweighted ℓp-norm),

Theorem 7.4.1 implies the following finite-sample bound on E[∥Qk −Qπ,ρ∥p].

Corollary 7.4.1. Under same assumptions as Theorem 7.2.1, we have for all k ≥ τα,n:

E[∥Qk −Qπ,ρ∥2p] ≤
ζ̃1

µ
2/p
min

(1− θωα)k−τα,n +
ζ̃2

µ
2/p
min

pf(γcmax)
2(γρmax + 1)2

µ
2/p
minω

ατα,n,

To proceed and prove Theorem 7.2.2, observe that for any p ≥ 1 we have

E[∥Qk −Qπ,ρ∥2∞] ≤ E[∥Qk −Qπ,ρ∥2p]

≤ ζ̃1

µ
2/p
min

(1− θωα)k−τα,n +
ζ̃2pf(γcmax)

2(γρmax + 1)2

µ
4/p
minω

ατα,n.

Let θ = 1/2 and p = 4 log(1/µmin). Then we have

1

µ
2/p
min

= µ
− 1

2 log(1/µmin)

min = µ
1

2 log(µmin)

min =
√
e ≤ 2, and

p

µ
4/p
min

≤ 4e log(1/µmin) ≤ 4e log

(
2|S||A|
ω

)
. (Using the lower bound on µmin)

It follows that when ατα,n ≤ ω
32832 log(2|S||A|/ω)f(γcmax)2(γρmax+1)2

, we have for all k ≥ τα,n:

E[∥Qk −Qπ,ρ∥2∞] ≤ 2ζ̃1

(
1− ωα

2

)k−τα,n
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+ 4eζ̃2
f(γcmax)

2(γρmax + 1)2 log(2|S||A|/ω)
ω

ατα,n

= ζ1

(
1− ωα

2

)k−τα,n

+ ζ2
f(γcmax)

2(γρmax + 1)2 log(2|S||A|/ω)
ω

ατα,n,

where in the last line we used 2ζ̃1 ≤ ζ1 = 2(∥Q0 − Qπ,ρ∥∞ + ∥Q0∥∞ + 1)2, and 4eζ̃2 ≤

ζ2 = 912e(3∥Qπ,ρ∥∞ + 1)2. This proves Theorem 7.2.2.

7.4.7 Proof of Theorem 7.4.1

To prove Theorem 7.4.1, we apply Theorem 2.5.1, which studies general SA under con-

traction assumption. We begin by rewriting Algorithm 5 using simplified notation. Let

Yk = (Sk, Ak, · · · , Sk+n, Ak+n)

for all k ≥ 0, which is clearly a Markov chain, with finite state-space denoted by Y . Note

that under Assumption 7.2.1 the Markov chain {Yk} has a unique stationary distribution

κY ∈ ∆|Y|. Define an operator F : R|S||A| × Y 7→ R|S||A| by

[F (Q, y)](s, a) = [F (Q, s0, a0, ..., sn, an)](s, a)

= I{(s0,a0)=(s,a)}

n−1∑
i=0

γi
i∏

j=1

c(sj, aj)

× (R(si, ai) + γρ(si+1, ai+1)Q(si+1, ai+1)−Q(si, ai))

+Q(s, a).

Then the update equation of Algorithm 5 can be equivalently written by Qk+1 = Qk +

α(F (Qk, Yk) − Qk). We next establish in the following proposition the properties of the

operators F (·, ·) and the Markov chain {Yk}.

Proposition 7.4.4. The following statements hold.
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(1) The operator F (·, ·) satisfies for any Q1, Q2 and y:

(a) ∥F (Q1, y)− F (Q2, y)∥µ,p ≤ 2

µ
1/p
min

f(γcmax)(γρmax + 1)∥Q1 −Q2∥µ,p,

(b) ∥F (0, y)∥µ,p ≤ f(γcmax).

(2) For any k ≥ 0 and n ≥ 0, we have maxy∈Y ∥P k+n+1
πb

(y, ·)− κY (·)∥TV ≤ Cσk.

(3) For any Q, we have EY∼κY
[F (Q, Y )] = B̃c,ρ(Q).

We next present how to apply Theorem 2.5.1 to obtain the results. We begin by restating

Theorem 2.5.1 in the case of weighted ℓp-norm contraction with weights {µi}1≤i≤d. Using

the notation in Chapter 2, we choose the smoothing norm ∥ · ∥s to be the same norm as the

contraction norm: ∥ · ∥µ,p.

Theorem 7.4.2. Consider the SA algorithm

xk+1 = xk + α(F (xk, Yk)− xk). (7.7)

Suppose that

(1) The random process {Yk} is a Markov chain (denoted by MCY ) with finite state-

space Y . In addition, {Yk} has a unique stationary distribution κY , and there exist

C1 > 0 and σ1 ∈ (0, 1) such that maxy∈Y ∥P k(y, ·)−κY (·)∥TV ≤ C1σ
k
1 for all k ≥ 0.

(2) The operator F : Rd × Y 7→ Rd satisfies for any x1, x2 ∈ Rd and y ∈ Y

(a) ∥F (x1, y)− F (x2, y)∥µ,p ≤ a1∥x1 − x2∥µ,p, where a1 > 0 is a constant,

(b) ∥F (0, y)∥µ,p ≤ b1, where b1 > 0 is a constant.

(3) The expected operator F̄ : Rd 7→ Rd defined by F̄ (x) = EY∼κY
[F (x, Y )] satisfies

F̄ (x∗) = x∗, and is a contraction mapping with respect to ∥ · ∥µ,p, with contraction

factor γc ∈ (0, 1).
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(4) The constant stepsize α is chosen such that αtα(MCY ) ≤ 1−γc
228p(a1+1)2

.

Then we have for all k ≥ tα(MCY ) that

E[∥xk − x∗∥2µ,p] ≤ c̃1(1− (1− γc)α)
k−tα(MCY ) +

228pc̃2
(1− γc)

αtα(MCY ),

where c̃1 = (∥x0 − x∗∥µ,p + ∥x0∥µ,p + b1/(a1 + 1))2 and c̃2 = ((a1 + 1)∥x∗∥µ,p + b1)
2.

Proposition 7.4.4 in conjunction with Theorem 7.2.1 imply that the requirements for

applying Theorem 7.4.2 are satisfied. For any θ ∈ (0, 1), when the constant stepsize α is

chosen such that ατα,n ≤ θµ
2/p
minω

2052pf(γcmax)2(γρmax+1)2
, we have for any k ≥ τα,n:

E[∥Qk −Qπ,ρ∥2µ,p] ≤ ζ̃1(1− θωα)k−τα,n + ζ̃2
pf(γcmax)

2(γρmax + 1)2

µ
2/p
minω

ατα,n,

where ζ̃1 = (∥Q0 −Qπ,ρ∥µ,p + ∥Q0∥µ,p + 1)2, and ζ̃2 = 228(3∥Qπ,ρ∥µ,p + 1)2.

7.4.8 Proof of Proposition 7.4.4

(1) For any Q1, Q2 ∈ R|S||A| and y = (s0, a0, · · · , sn, an) ∈ Y , we have

∥F (Q1, s0, a0, ..., sn, an)− F (Q2, s0, a0, ..., sn, an)∥µ,p

≤

[∑
s,a

µ(s, a)

(
I{(s,a)=(s0,a0)}

n−1∑
i=0

(γcmax)
i(γρmax + 1)∥Q1 −Q2∥∞

)p]1/p
+ ∥Q1 −Q2∥µ,p (triangle inequality)

= f(γcmax)(γρmax + 1)∥Q1 −Q2∥∞ + ∥Q1 −Q2∥µ,p.

≤ 2

µ
1/p
min

f(γcmax)(γρmax + 1)∥Q1 −Q2∥µ,p.

Similarly, for any y = (s0, a0, · · · , sn, an) ∈ Y , we have

∥F (0, s0, a0, ..., sn, an)∥µ,p ≤

[∑
s,a

µ(s, a)I{(s,a)=(s0,a0)}

(
n−1∑
i=0

(γcmax)
i

)p]1/p
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≤ f(γcmax).

(2) Under Assumption 7.2.1, it is clear that {Yk} has a unique stationary distribution, which

we have denoted by κY , and is given by

κY (s0, a0, ..., sn, an) = κS(s0)

(
n−1∏
i=0

π(ai|si)Pai(si, si+1)

)
π(an|sn).

Now use the definition of total variation distance, and we have for any y = (s0, a0, ..., sn, an)

and k ≥ 0:

∥P k+n+1((s0, a0, ..., sn, an), ·)− κY (·)∥TV

=
1

2

∑
s′0,a

′
0,...,s

′
n,a

′
n

∣∣∣∣∣∑
s

Pan(sn, s)P
k
πb
(s, s′0)− κS(s

′
0)

∣∣∣∣∣
(

n−1∏
i=0

π(a′i|s′i)Pa′i
(s′i, s

′
i+1)

)
π(a′n|s′n)

=
1

2

∑
s′0

∣∣∣∣∣∑
s

Pan(sn, s)P
k
πb
(s, s′0)− κS(s

′
0)

∣∣∣∣∣
≤ 1

2

∑
s′0

∑
s

Pan(sn, s)
∣∣P k

πb
(s, s′0)− κS(s

′
0)
∣∣

=
1

2

∑
s

Pan(sn, s)
∑
s′0

∣∣P k
πb
(s, s′0)− κS(s

′
0)
∣∣

≤ 1

2

∑
s

Pan(sn, s)max
s′

∑
s′0

∣∣P k
πb
(s′, s′0)− κS(s

′
0)
∣∣

= max
s∈S

∥P k
πb
(s, ·)− κS(·)∥TV

≤ Cσk.

(3) It is clear that EY∼κY
[F (Q, Y )] = KSATc(Hρ(Q) − Q) + Q, which by definition is

equal to B̃c,ρ(Q).
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7.4.9 Proof of Theorem 7.3.1

Since Vanilla IS is a special case of Algorithm 5, one can directly apply Theorem 7.2.2 to

obtain the finite-sample bound. However, there is one special property of Vanilla IS we can

exploit to obtain a tighter finite-sample bound. In particular, consider Proposition 7.4.4 (1)

(a). In the case of Vanilla IS, the corresponding Lispchitz constant is 2

µ
1/p
min

f(γrmax)(γrmax+

1). We next show that due to c(s, a) = ρ(s, a) in Vanilla IS, we can use telescoping to

improve the Lipschitz constant. Specifically, in Vanilla IS, for any Q ∈ R|S||A|, y ∈ Y , and

(s, a), we have

[F (Q, y)](s, a)

= I{(s0,a0)=(s,a)}

n−1∑
i=0

γi
i∏

j=1

c(sj, aj)(R(si, ai) + γc(si+1, ai+1)Q(si+1, ai+1)−Q(si, ai))

+Q(s, a)

= I{(s0,a0)=(s,a)}

n−1∑
i=0

γi
i∏

j=1

c(sj, aj)R(si, ai)

+ I{(s0,a0)=(s,a)}

n−1∑
i=0

γi+1

i+1∏
j=1

c(sj, aj)Q(si+1, ai+1)

− I{(s0,a0)=(s,a)}

n−1∑
i=0

γi
i∏

j=1

c(sj, aj)Q(si, ai) +Q(s, a)

= I{(s0,a0)=(s,a)}

n−1∑
i=0

γi
i∏

j=1

c(sj, aj)R(si, ai) + I{(s0,a0)=(s,a)}

n∑
i=1

γi
i∏

j=1

c(sj, aj)Q(si, ai)

− I{(s0,a0)=(s,a)}

n−1∑
i=0

γi
i∏

j=1

c(sj, aj)Q(si, ai) +Q(s, a)

= I{(s0,a0)=(s,a)}

n−1∑
i=0

γi
i∏

j=1

c(sj, aj)R(si, ai) + I{(s0,a0)=(s,a)}γ
n

n∏
j=1

c(sj, aj)Q(sn, an)

+ (1− I{(s0,a0)=(s,a)})Q(s, a).
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Therefore, we have for any Q1, Q2 ∈ R|S||A|, and y ∈ Y:

∥F (Q1, y)− F (Q2, y)∥µ,p

≤

[∑
s,a

µ(s, a)

∣∣∣∣∣I{(s0,a0)=(s,a)}γ
n

n∏
j=1

c(sj, aj)(Q1(sn, an)−Q2(sn, an))

∣∣∣∣∣
p]1/p

+ ∥Q1 −Q2∥µ,p

≤

[∑
s,a

µ(s, a) |(γrmax)
n∥Q1 −Q2∥∞|p

]1/p
+ ∥Q1 −Q2∥µ,p

≤ (γrmax)
n∥Q1 −Q2∥∞ + ∥Q1 −Q2∥µ,p

≤ (γrmax)
n + 1

µ
1/p
min

∥Q1 −Q2∥µ,p.

Using this improved Lipschitz constant and we obtain Theorem 7.3.1, where the rest of the

proof is identical to that of Theorem 7.2.2.

7.4.10 Proof of Theorem 7.3.2 to Theorem 7.3.5

The results are obtained by directly applying Theorem 7.2.2.

7.5 Conclusion

In this chapter, we establish finite-sample guarantees of general n-step off-policy TD-

learning algorithms. The key in our approach is to identify a generalized Bellman op-

erator and establish its contraction property with respect to a weighted ℓp-norm for each

p ∈ [1,∞), with a uniform contraction factor. Our results are used to derive finite-sample

guarantees of variants of n-step off-policy TD-learning algorithms in the literature. Specif-

ically, for Qπ(λ), TB(λ), and Retrace(λ), we provide the first-known results, and for Q-

trace, we improve the result in [16]. The finite-sample bounds we establish also provide

insights about the trade-offs between the bias in the limit and the variance in the stochastic

iterates.
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CHAPTER 8

OFF-POLICY CONTROL: Q-LEARNING

8.1 Introduction

The Q-learning algorithm is the most popular value-based RL algorithms in the literature.

Specifically, a variant of Q-learning known as the Deep Q-Network was used at scale in

solving practical problems, such as Atari games [7], robotics [124], and healthcare [125],

etc.

Unlike TD-learning, which is for policy evaluation, and must be used in an actor-critic

framework to find an optimal policy, Q-learning is for directly finding an optimal policy

through finding the optimal Q-function. To motivate Q-learning, we first define the state-

action value function (aka. the Q-function) in the following. Let Qπ : S × A 7→ R be

defined by

Qπ(s, a) = Eπ

[
∞∑
k=0

γkR(Sk, Ak)

∣∣∣∣∣ Sk = s, Ak = a

]
, ∀ (s, a) ∈ S ×A.

Similar to the V -function, Qπ can be viewed as a vector in R|S||A|. Denote Q∗ as the Q-

function associated with an optimal policy π∗. Note that all optimal policies share the same

optimal Q-function. The motivation of the Q-learning algorithm is based on the following

result [11, 1]:

π∗ is an optimal policy ⇐⇒ {a | π∗(a|s) > 0} ⊆ argmax
a∈A

Q∗(s, a), ∀ (s, a). (8.1)

Note that argmaxa∈AQ
∗(s, a) should be understood as a set since the maximum action

may not be unique. Equation 8.1 states that the optimal policy is supported on the set of

actions that maximize the optimal Q-function. Therefore, knowing the optimal Q-function
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alone is enough to compute an optimal policy.

To find the optimal Q-function, we next introduce the Bellman optimality equation.

The optimal Q-function Q∗, uniquely solves the following system of equations:

Q∗(s, a) = R(Sk, Ak) + γE
[
max
a′∈A

Q∗(Sk+1, a
′)

∣∣∣∣ Sk = s, Ak = a

]
, ∀ (s, a) ∈ S ×A.

(8.2)

For simplicity of notation, let H : R|S||A| 7→ R|S||A| be the Bellman optimality operator

defined by

[H(Q)](s, a) = R(s, a) + γE
[
max
a′∈A

Q(Sk+1, a
′)

∣∣∣∣ Sk = s, Ak = a

]

for all Q ∈ R|S||A| and (s, a) ∈ S ×A. Then Equation 8.2 can be written compactly as

Q∗ = H(Q∗), (8.3)

which is the fixed-point equation of the Bellman optimality operator H(·). Since the opera-

tor H(·) is a contraction mapping with respect to the ℓ∞-norm ∥·∥∞, with contraction factor

being the discount factor γ [9], Equation 8.3 can be efficiently solved using the fixed-point

iteration:

Qk+1 = H(Qk), ∀ k ≥ 0. (8.4)

which is also known as the value iteration algorithm, and converges toQ∗ geometrically fast

[47]. However, to carry out such fixed-point iteration, we need to compute the expectation

within the definition of the Bellman optimality operator H(·), which is not possible since

the environmental model is unknown in RL.

To overcome this challenge, [17] proposes the Q-learning algorithm, which can be
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viewed as a stochastic variant of Equation 8.4. Other variants of Q-function estimation

algorithms includes SARSA [126], fitted Q-iteration [127], and zap Q-learning [128], etc.

8.1.1 Related Literature

The Q-learning algorithm [17] is perhaps one of the most well-known algorithms in RL

literature. The asymptotic convergence of Q-learning was established in [24, 29, 31], and

asymptotic convergence rate in [129, 128]. Beyond asymptotic behavior, finite-sample

analysis of Q-learning was also thoroughly studied in the literature. The results are sum-

marized in Table 8.1. Note that there is a different perspective about Q-learning in terms

of regret bound [130], which is fundamentally different to the setting of this work.

From Table 8.1, we see that for synchronous Q-learning, the state-of-the-art mean

square bound goes to [132, 119], and is Õ( |S||A|
(1−γ)5ϵ2

). For synchronous Q-learning, [131]

establishes the state-of-the-art concentration bound with only a 1/(1 − γ)4 factor in the

sample complexity.

In this thesis, we consider the asynchronous Q-learning algorithm, which is fundamen-

tally different from synchronous Q-learning in terms of the update rule and the sample

collecting process, and is more challenging to analyze. The state-of-the-art mean square

bound of asynchronous Q-learning goes to [20] and concentration bound goes to [134]. It

is clear that our result advances the results in [20] by a factor of at least |S||A|. To com-

pare our result with the results in [134], we need to first translate concentration bound to

mean square bound using the formula E[X] =
∫∞
0

P(X > x)dx (which holds for any non-

negative random variable X), and then perform the comparison. By using this translation

technique for [134], the concentration bound in [134] does not imply our results. Even if

we conjecture a stronger concentration bound based on the results in [134] and integrate

that bound, the resulting mean square bound is no better than ours. See [16, Appendix B.5]

for a detailed discussion.
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Table 8.1: Summary of the Results about Q-Learning

Algorithm Reference
Sample

Complexity
Guarantees

Synchronous
Q-learning

[21] 2
1

1−γ
|S||A|

(1−γ)4ϵ2
concentration (tail)

bound
[131] |S||A|

(1−γ)4ϵ2

[19] |S|2|A|2
(1−γ)5ϵ2

mean square bound
[132] |S||A|

(1−γ)5ϵ2

[119] |S||A|
(1−γ)5ϵ2

Asynchronous
Q-learning

[21] t
1

1−γ
cover

(1−γ)4ϵ2 concentration (tail)
bound[133] tmix

K2
SA,min(1−γ)5ϵ2

[134] tcover
(1−γ)5ϵ2

[20] t3cover|S||A|
(1−γ)5ϵ2 mean square bound

This work 1
K3

SA,min(1−γ)5ϵ2

In Table 8.1, all the polylogarithmic factors are ignored. The parameter tmix = t1/4 stands for the mixing
time of the underlying Markov chain {(Sk, Ak)} generated by the behavior policy πb. The parameter tcover

roughly represents the amount of time needed to visit all state-action pairs at least once. The parameter
KSA,min is the minimal entry of the stationary distribution on S ×A. Note that we have tcover ≥ |S||A| and
KSA,min ≤ 1/(|S||A|). Note that high probability (tail) bounds and mean square bounds are not directly
comparable. See [16] for more details.

8.2 Finite-Sample Analysis

In this section, we formally present theQ-learning algorithm, reformulate it as a Markovian

SA algorithm under a contractive operator, and apply Theorem 2.5.1 from Chapter 2 to

establish the finite-sample bound and the sample complexity of Q-learning.

8.2.1 The Q-Learning Algorithm

We first present the Q-learning algorithm in the following.

Several remarks are in order. First of all, for ease of exposition, we use a fixed behavior
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Algorithm 6 Q-Learning

1: Input: Integer K, initialization Q0 ∈ R|S||A|, and behavior policy πb
2: for k = 0, 1, · · · , K − 1 do
3: Sample Ak ∼ πb(·|Sk), observe Sk+1 ∼ PAk

(Sk, ·)
4: Qk+1(Sk, Ak) = Qk(Sk, Ak) + αk(R(Sk, Ak) + γmaxa′∈AQk(Sk+1, a

′) −
Qk(Sk, Ak))

5: end for
6: Output: QK

policy πb to present the Q-learning algorithm. In practice, the behavior policy can be time-

varying. For example, it can be the ϵ-greedy policy, or the ϵ-softmax policy with respect to

the current Q-function estimate. The asymptotic convergence of Q-learning is guaranteed

as long as the behavior policy ensures sufficient exploration [24].

Similar to TD-learning, Q-learning performs the so-called asynchronous update, and

the amount of update is equal to the difference between the LHS and the RHS of the Bell-

man optimality equation (cf. Equation 8.2), after replacing the expectation by sample esti-

mate.

To establish the finite-sample bounds of the Q-learning algorithm, we make the follow-

ing assumption.

Assumption 8.2.1. The behavior policy πb satisfies πb(a|s) > 0 for all (s, a), and the

Markov chain MS = {Sk} induced by πb is irreducible and aperiodic.

The requirement that πb(a|s) > 0 for all (s, a) is necessary even for the asymptotic

convergence of Q-learning [24]. The irreducibility and aperiodicity assumption is also

standard in related work [92, 135]. Since we work with finite-state MDPs, Assumption

8.2.1 implies that MS has a unique stationary distribution, denoted by κS ∈ ∆|S|, and MS

mixes at a geometric rate [48].

8.2.2 Reformulation through Markovian SA

In this section, we formally remodeling the Q-learning algorithm as a Markovian SA algo-

rithm in the form of Equation 4.12. Let Yk = (Sk, Ak, Sk+1) for all k ≥ 0. Note that the
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random process MY = {Yk} is also a Markov chain, whose state-space is given by

Y = {(s, a, s′) | s ∈ S, πb(a|s) > 0, Pa(s, s
′) > 0} ,

and is finite. Define an operator F : R|S||A| × Y 7→ R|S||A| by

[F (Q, y)](s, a) = [F (Q, s0, a0, s1)](s, a)

= 1{(s0,a0)=(s,a)}(R(s0, a0) + γmax
a′∈A

Q(s1, a
′)−Q(s0, a0)) +Q(s, a)

for all (s, a). Then the update equation of the Q-learning algorithm (i.e., Algorithm 6 line

4) can be written by

Qk+1 = Qk + αk (F (Qk, Yk)−Qk) ,

which is in the same form of Equation 4.12 with wk being identically equal to zero. Next,

we establish the properties of the operator F (·, ·) and the Markov chain {Yk} in the fol-

lowing proposition, which guarantees that Assumptions 2.2.2 – 2.2.3 are satisfied in the

context of Q-learning.

Let KSA ∈ R|S||A|×|S||A| be the diagonal matrix with {κS(s)πb(a|s)}(s,a)∈S×A sitting

on its diagonal. Let KSA,min = min(s,a) κS(s)πb(a|s), which is positive under Assumption

8.2.1.

Proposition 8.2.1. Suppose that Assumption 8.2.1 is satisfied, Then we have the following

results.

(1) The operator F (·, ·) satisfies

(a) ∥F (Q1, y)−F (Q2, y)∥∞ ≤ 2∥Q1 −Q2∥∞ for all Q1, Q2 ∈ R|S||A| and y ∈ Y ,

(b) ∥F (0, y)∥∞ ≤ 1 for all y ∈ Y .

(2) The Markov chain MY = {Yk} has a unique stationary distribution µY , and there
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exist C > 0 and σ ∈ (0, 1) such that

max
y∈Y

∥P k+1
πb

(y, ·)− µY (·)∥TV ≤ Cσk, ∀ k ≥ 0.

(3) Define an operator F̄ : R|S||A| 7→ R|S||A| by F̄ (Q) = EY∼µY
[F (Q, Y )]. Then

(a) F̄ (·) is explicitly given by F̄ (Q) = KSAH(Q)+ (I−KSA)Q, where H(·) is the

Bellman optimality operator.

(b) F̄ (·) is a contraction mapping with respect to ∥ · ∥∞, with contraction factor

β := 1−KSA,min(1− γ).

(c) F̄ (·) has a unique fixed-point Q∗.

As we see, the (s, a)-th entry of the asynchronous Bellman operator F̄ (Q) is given by

κS(s)πb(a|s)[H(Q)](s, a) + (1− κS(s)πb(a|s))Q(s, a),

which captures the nature of performing asynchronous update as illustrated in Chapter 5.

8.2.3 Finite-Sample Guarantees

Proposition 8.2.1 enables us to apply Theorem Theorem 2.5.1 to the Q-learning algorithm.

For ease of exposition, we only present the result of using constant stepsize. Define

tδ = min

{
k ≥ 0 : max

s∈S
∥P k

πb
(s, ·)− κS(·)∥TV ≤ δ

}

as the mixing time of the Markov chain {Sk} with precision δ.

Theorem 8.2.1. Consider {Qk} of Algorithm 6. Suppose that Assumption 8.2.1 is satisfied,

and αk = α for all k ≥ 0, where α is chosen such that α(tα + 1) ≤ cQ,0
(1−β)2

log(|S||A|) (where
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cQ,0 is a numerical constant). Then we have for all k ≥ tα:

E[∥Qk −Q∗∥2∞] ≤ cQ,1

(
1− (1− β)α

2

)k−tα

+ cQ,2
log(|S||A|)
(1− β)2

α(tα + 1),

where cQ,1 = 3(∥Q0 −Q∗∥∞ + ∥Q0∥∞ + 1)2 and cQ,2 = 912e(3∥Q∗∥∞ + 1)2.

Remark. Using Proposition 8.2.1 (2), we see that tα produces an additional log(1/α) factor

in the bound.

We view the first term on the RHS of the convergence bound as the the bias, and the

second term as the variance. Since we are using constant stepsize, the bias term goes to

zero geometrically fast while the variance is of the size O(α log(1/α)).

Based on Theorem 8.2.1, we next derive the sample complexity of Q-learning.

Corollary 8.2.1. In order to make E[∥Qk − Q∗∥∞] ≤ ϵ, where ϵ > 0 is a given accuracy,

the total number of samples required is of the size

O
(
log2(1/ϵ)

ϵ2

)
︸ ︷︷ ︸

Accuracy

Õ
(

1

(1− γ)5

)
︸ ︷︷ ︸

Effective horizon

Õ(K−3
SA,min)︸ ︷︷ ︸

Quality of exploration

.

Remark. We upper bound ∥Q∗∥∞ by 1/(1− γ) in deriving the sample complexity result.

From Corollary 8.2.1, we see that the dependence on the accuracy ϵ is O(ϵ−2 log2(1/ϵ)),

and the dependence on the effective horizon is Õ((1−γ)−5). These two results match with

known results in the literature [20]. The parameter KSA,min = mins,a κS(s)πb(a|s) captures

the quality of exploration of the behavior policy πb. Since KSA,min ≥ 1/|S||A|, we see that

the best possible dependence on the size of the state-action space is Õ(|S|3|A|3).
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8.3 Proof of All Theoretical Results

8.3.1 Proof of Proposition 8.2.1

(1) For any Q1, Q2 ∈ R|S||A| and y ∈ Y , we have

∥F (Q1, y)− F (Q2, y)∥∞ ≤ max
(s,a)

∣∣∣∣γ1{(s0,a0)=(s,a)}(max
a1∈A

Q1(s1, a1)−max
a2∈A

Q2(s1, a2))

∣∣∣∣
+max

s,a

∣∣1{(s0,a0 )̸=(s,a)}(Q1(s0, a0)−Q2(s0, a0))
∣∣

≤ 2∥Q1 −Q2∥∞.

Similarly, for any y ∈ Y , we have

∥F (0, y)∥∞ = max
(s,a)

∣∣1{(s0,a0)=(s,a)}R(s0, a0)
∣∣ ≤ 1.

(2) It is clear from Assumption 8.2.1 that {Yk} has a unique stationary distribution, which

we have denoted by µY . Moreover, we have µ(s, a, s′) = κS(s)πb(a|s)Pa(s, s
′) for any

(s, a, s′) ∈ Y . Consider the second claim. Using the definition of total variation distance,

we have for all k ≥ 0:

max
y∈Y

∥P k+1
πb

(y, ·)− µY (·)∥TV

=
1

2
max

(s0,a0,s1)∈Y

∑
s,a,s′

|P k+1
πb

((s0, a0, s1), (s, a, s
′))− κS(s)πb(a|s)Pa(s, s

′)|

=
1

2
max
s1∈S

∑
s,a,s′

|P k
πb
(s1, s)πb(a|s)Pa(s, s

′)− κS(s)πb(a|s)Pa(s, s
′)|

=
1

2
max
s1∈S

∑
s

|P k
πb
(s1, s)− κS(s)|

= max
s∈S

∥P k
πb
(s, ·)− κS(·)∥TV

≤ Cσk,
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where C > 0 and σ ∈ (0, 1) are constants. Note that the last line of the previous inequality

follows from Assumption 8.2.1.

(3) (a) Using the Markov property, we have for any Q ∈ R|S||A| and (s, a):

ESk∼κS
[[F (Q,Sk, Ak, Sk+1)](s, a)]

= ESk∼κS

[
1{(Sk,Ak)=(s,a)}

(
R(Sk, Ak) + γmax

a′∈A
Q(Sk+1, a

′)−Q(Sk, Ak)

)
+Q(s, a)

]
= ESk∼κS

[
1{(Sk,Ak)=(s,a)}

(
R(Sk, Ak) + γmax

a′∈A
Q(Sk+1, a

′)

)
+ (1− 1{(Sk,Ak)=(s,a)})Q(Sk, Ak)

]
= κS(s)πb(a|s)[H(Q)](s, a) + (1− κS(s)πb(a|s))Q(s, a),

where H(·) is the Bellman optimality operator. Now use the definition of the matrix KSA

and we have F̄ (Q) = KSAH(Q) + (I −KSA)Q.

(3) (b) Since it is well-known that the Bellman optimality operator H(·) is a γ-contraction

with respect to ∥ · ∥∞, we have for any Q1, Q2 ∈ R|S||A|:

∥F̄ (Q1)− F̄ (Q2)∥∞

= ∥N(H(Q1)−H(Q2)) + (I −N)(Q1 −Q2)∥∞

= max
(s,a)

|κS(s)πb(a|s)([H(Q1)](s, a)− [H(Q2)](s, a))

+ (1− κS(s)πb(a|s))(Q1(s, a)−Q2(s, a))|

≤ max
(s,a)

[
κS(s)πb(a|s)|[H(Q1)](s, a)− [H(Q2)](s, a)|

+ (1− κS(s)πb(a|s))|Q1(s, a)−Q2(s, a)|
]

≤ max
(s,a)

[κS(s)πb(a|s)∥H(Q1)−H(Q2)∥∞ + (1− κS(s)πb(a|s))∥Q1 −Q2∥∞]
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≤ max
(s,a)

[κS(s)πb(a|s)γ∥Q1 −Q2∥∞ + (1− κS(s)πb(a|s))∥Q1 −Q2∥∞]

= ∥Q1 −Q2∥∞ max
(s,a)

(1− (1− γ)κS(s)πb(a|s))

= (1−KSA,min(1− γ))∥Q1 −Q2∥∞.

Therefore, the operator F̄ (·) is a contraction mapping with respect to ∥ · ∥∞, with contrac-

tion factor β = 1−KSA,min(1− γ).

(3) (c) It is enough to show that Q∗ is a fixed-point of F̄ (·), the uniqueness part follows

from F̄ (·) being a contraction [47]. Using the fact that H(Q∗) = Q∗, we have

F̄ (Q∗) = KSAH(Q∗) + (I −KSA)Q
∗ = KSAQ

∗ + (I −KSA)Q
∗ = Q∗.

8.3.2 Proof of Theorem 8.2.1

We prove Theorem 8.2.1 using Theorem 2.5.1 for general Markovian SA under a contrac-

tion operator. Since the contraction norm is ∥ · ∥∞, Corollary 2.5.1 (2) is applicable. To

apply Theorem 2.5.1, we first identify the corresponding constants using Proposition 8.2.1

in the following:

A = A1 + A2 + 1 = 3, B = B1 +B2 = 1, φ1 ≤ 3, φ2 ≥
1− β

2
,

φ3 ≤
456e log(|S||A|)

1− β
, c1 ≤ (∥Q0 −Q∗∥∞ + ∥Q0∥∞ + 1)2, c2 = (3∥Q∗∥∞ + 1)2.

Now we apply Theorem Theorem 2.5.1 (2) (a). When αk ≡ α with α chosen such that

αtα ≤ φ2

φ3A2

(1− β)2

8208e log(|S||A|)
.
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we have for all k ≥ tα:

E[∥Qk −Q∗∥2∞] ≤ φ1c1

(
1− 1− β

2
α

)k−tα

+
φ3c2
φ2

αtα(MY )

≤ 3(∥Q0 −Q∗∥∞ + ∥Q0∥∞ + 1)2
(
1− 1− β

2
α

)k−tα

+
912e log(|S||A|)

(1− β)2
(3∥Q∗∥∞ + 1)2αtα

= cQ,1

(
1− 1− β

2
α

)k−tα

+ cQ,2
log(|S||A|)
(1− β)2

αtα,

where cQ,1 = 3(∥Q0 −Q∗∥∞ + ∥Q0∥∞ + 1)2 and cQ,2 = 912e(3∥Q∗∥∞ + 1)2.

8.4 Conclusion and Future Work

In this chapter, we have established the finite-sample mean-square bounds of theQ-learning

algorithm, which implies an Õ( 1
ϵ2(1−γ)5

) sample complexity. Our approach is to formulate

Q-learning as a Markovian SA algorithm under an ℓ∞-norm contraction operator, which is

called the asynchronous Bellman operator. The finite-sample bounds then follow from our

SA results in Chapter 2.

Empirically, numerical simulations presented in [132] suggest that the dependence on

the effective horizon is 1/(1 − γ)4, implying that there is a gap between theory and ex-

periment. The 1/(1 − γ)4 dependence was later established theoretically for synchronous

Q-learning in [131]. Establishing the 1/(1 − γ)4 dependence for the more practical asyn-

chronous Q-learning is an immediate future direction of this line of work.
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Part III

RL with Linear Function Approximation
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In Part II, we provide a unified approach for finite-sample analysis of tabular RL al-

gorithms. However, tabular RL algorithms become computationally intractable when the

size of the state-action space is large. This motivates the use of function approximation.

The idea here is to approximate the desired quantity (e.g. Q-function, V -function, etc.)

from a pre-specified function class, thereby artificially reducing the complexity of the prob-

lem. For example, the popular Deep Q-Network is designed to approximate the optimal

Q-function using deep neural net. Since most of the realistic RL problems have huge state-

action spaces, function approximation is of vital importance for the successes of RL.

Theoretically, a major challenge for studying RL with function approximation is the

deadly triad, which refers to bootstrapping, off-policy sampling, and function approxima-

tion. In particular, it was observed in the literature that when the deadly triad appears, RL

algorithms can diverge. In this part of the thesis, we are going to consider RL with lin-

ear function approximation, and design algorithms with provable convergence and finite-

sample guarantees in the presence of the deadly triad.

We first consider TD-learning in Chapter 9 and design a convergent algorithm under

off-policy sampling and linear function approximation, where we exploit the advantage of

using multi-step return. Such TD-learning algorithm was later used in Chapter 10 to study

general policy-based methods, where we establish the O(ϵ−2) sample complexity. In Chap-

ter 11, we switch our focus toQ-learning with linear function approximation, and show that

the algorithm provably converges and establish the finite-sample bounds when the discount

factor of the problem is small. Later in Chapter 12, by modifying the original Q-learning

algorithm using target network and truncation, we successfully remove the restriction on

the discount factor for achieving convergence.
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CHAPTER 9

OFF-POLICY TD-LEARNING WITH LINEAR FUNCTION APPROXIMATION

9.1 Introduction

Recall the TD-learning algorithms we studied in Chapter 6 and Chapter 7. An important

feature there is that TD-learning performs asynchronous update, where only a single entry

of the vector-valued iterate is updated in each time step. Therefore, we require at least

|S| (or |S||A|) amount of samples to update each entry of Vk (or Qk if we are estimating

Qπ) once. In practical applications, the state-action space of the RL problems is usually

extremely large. Therefore tabular TD-learning becomes computationally intractable.

To overcome the curse of dimensionality, in this chapter, we consider TD-learning (for

evaluatingQπ of some target policy π) using linear function approximation, and we employ

off-policy sampling. However, when TD-learning is used along with off-policy sampling

and linear function approximation, the deadly triad appears and the algorithm can be unsta-

ble. In addition, the product of the importance sampling ratios in off-policy learning may

cause high variance in the stochastic iterates.

We propose a generic framework of TD-learning algorithms (including two specific

algorithms: the λ-averaged Q-trace and the two-sided Q-trace), which provably converge

in the presence of the deadly triad, and do not suffer from the high variance issue in off-

policy learning (albeit at a cost of a bias in the limit point).

9.1.1 Related Literature

The TD-learning method is used to solve the policy evaluation sub-problem, and is usu-

ally used in policy-based methods to ultimately find an optimal policy. The asymptotic

convergence of TD-learning was established in [24, 102, 136]. Finite-sample analysis of
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variants of TD-learning algorithms using on-policy sampling was performed in [16], and

using off-policy sampling was performed in [137, 138].

In the function approximation setting, TD-learning with linear function approximation

was studied in [92, 139, 12, 40] when using on-policy sampling. In the off-policy linear

function approximation setting, due to the presence of the deadly triad, TD-learning algo-

rithms can diverge [1]. Variants of TD-learning algorithms such as TDC [121], GTD [140],

emphathic TD [122], and n-step TD (with a large enough n) [141] were used to resolve the

divergence issue, and the finite-sample bounds were studied in [142, 143, 141]. Note that

TDC, GTD, and emphathic TD are two time-scale algorithms, while n-step TD is single

time-scale, it suffers from a high variance due to the cumulative product of the importance

sampling ratios.

9.1.2 Problem Setting

In linear function approximation, we choose a set of basis vectors ϕi ∈ R|S||A|, 1 ≤ i ≤ d.

Let Φ ∈ R|S||A|×d be a matrix defined by Φ = [ϕ1, · · · , ϕd]. Then, the goal is to find

from the linear sub-space Q = {Q̃w = Φw | w ∈ Rd} the “best” approximation of the

Q-function Qπ, where w ∈ Rd is the weight vector.

Let ϕ(s, a) = [ϕ1(s, a), ϕ2(s, a), · · · , ϕd(s, a)]
⊤ ∈ Rd be the feature vector associated

with the pair (s, a). Throughout this chapter, we impose the following assumption on the

basis vectors.

Assumption 9.1.1. The matrix Φ has full column-rank, and satisfies ∥Φ∥∞ ≤ 1.

Assumption 9.1.1 is indeed without loss of generality since we can disregard dependent

basis vectors, and performing feature normalization does not change the approximation

power of the function class.
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9.2 Algorithm Design

We present in Algorithm 7 a generic TD-learning algorithm using off-policy sampling and

linear function approximation.

Algorithm 7 A Generic Multi-Step Off-Policy TD-Learning with Linear Function Approx-
imation

1: Input: Integer K, bootstrapping parameter n, stepsize sequence {αk}, initialization
w0, target policy π, behavior policy πb, generalized importance sampling ratios c, ρ :
S × A 7→ R+, and a single trajectory of samples {(Sk, Ak)}0≤k≤K+n−1 generated by
the behavior policy πb.

2: for k = 0, 1, · · · , K − 1 do
3: ∆i(wk) = R(Si, Ai)+γρ(Si+1, Ai+1)ϕ(Si+1, Ai+1)

⊤wk−ϕ(Si, Ai)
⊤wk, i ∈ {k, k+

1, · · · , k + n− 1}
4: wk+1 = wk + αkϕ(Sk, Ak)

∑k+n−1
i=k γi−k

∏i
j=k+1 c(Sj, Aj)∆i(wk)

5: end for
6: Output: wK

In Algorithm 7, the choice of the generalized importance sampling ratios c(·, ·) and

ρ(·, ·) is of vital importance. We next present two specific choices, resulting in two novel

algorithms called λ-averaged Q-trace and two-sided Q-trace.

The λ-Averaged Q-Trace Algorithm. Let λ ∈ R|S| be a vector-valued tunable pa-

rameter satisfying λ ∈ [0,1]. Then the generalized importance sampling ratios are chosen

as c(s, a) = ρ(s, a) = λ(s) π(a|s)
πb(a|s)

+ 1 − λ(s) for all (s, a). Observe that when λ = 1,

we have c(s, a) = ρ(s, a) = π(a|s)
πb(a|s)

, and Algorithm 7 reduces to the convergent multi-step

off-policy TD-learning algorithm presented in [141], which however suffers from an ex-

ponential large variance due to the cumulative product of the importance sampling ratios.

On the other hand, when λ = 0, we have c(s, a) = ρ(s, a) = 1, and hence the product of

the generalized importance sampling ratios is deterministically equal to one, resulting in

no variance at all. However, in this case, we are essentially performing policy evaluation of

the behavior policy πb instead of the target policy π, hence there will be a bias in the limit

of Algorithm 7. More generally, when λ ∈ (0,1), there is a trade-off between the variance

and the bias in the limit point. Such trade-off will be studied quantitatively in Section 9.4.
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The Two-Sided Q-Trace Algorithm. To introduce the algorithm, we first define the

two-sided truncation function. Given upper and lower truncation levels a, b ∈ R, define

ga,b : R 7→ R by ga,b(x) = a when x < a, ga,b(x) = x when a ≤ x ≤ b, and ga,b(x) = b

when x > b. Let ℓ, u ∈ R|S| be two vector-valued tunable parameters satisfying 0 ≤ ℓ ≤

1 ≤ u. Then, for the two-sided Q-trace algorithm, the generalized importance sampling

ratios are chosen as c(s, a) = ρ(s, a) = gℓ(s),u(s) (π(a|s)/πb(a|s)) for all (s, a). The idea

of truncating the importance sampling ratios from above was already employed in existing

algorithms such as Retrace(λ) [15], V -trace [25], and Q-trace [137], and is used to control

the high variance in off-policy learning. However, none of them were shown to converge

in the function approximation setting. Introducing the lower truncation level is crucial to

ensure the convergence of the two-sided Q-trace algorithm in the presence of the deadly

triad. This will be illustrated in detail in Section 9.4.

9.3 The Generalized PBE

We next theoretically analyze Algorithm 7. Specifically, in this section, we formulate Al-

gorithm 7 as an SA algorithm for solving a generalized PBE and study its properties. We

begin by stating our assumption.

Assumption 9.3.1. The behavior policy πb satisfies πb(a|s) > 0 for all (s, a), and induces

an irreducible and aperiodic Markov chain {Sk}.

Assumption 9.3.1 implies that the Markov chain {Sk} induced by πb has a unique sta-

tionary distribution κS ∈ ∆|S|. Moreover, there exist C ≥ 1 and σ ∈ (0, 1) such that

maxs∈S ∥P k
πb
(s, ·)− κS(·)∥TV ≤ Cσk for all k ≥ 0, where Pπb

is the transition probability

matrix of the Markov chain {Sk} under πb [48].

For simplicity, denote ci,j =
∏j

k=i c(Sk, Ak). The target equation Algorithm 7 aims at

170



solving is:

ES0∼κS

[
ϕ(S0, A0)

n−1∑
i=0

γic1,i∆i(w)

]
= 0, (9.1)

where Ai ∼ πb(·|Si) and Si+1 ∼ PAi
(Si, ·). The following lemma formulates Equation 9.1

in the form of a generalized PBE. To present the lemma, we first introduce some notation.

Let KSA ∈ R|S||A|×|S||A| be a diagonal matrix with diagonal entries {κS(s)πb(a|s)}(s,a)∈S×A,

and let KSA,min be the minimal diagonal entry. Let ∥ · ∥KSA
be the weighted ℓ2-norm

with weights {κS(s)πb(a|s)}(s,a)∈S×A, and denote ProjQ as the projection operator onto

the linear sub-space Q with respect to ∥ · ∥KSA
. Let Tc,Hρ : R|S||A| 7→ R|S||A| be two

operators defined by [Tc(Q)](s, a) =
∑n−1

i=0 Eπb
[γic1,iQ(Si, Ai) | S0 = s, A0 = a] and

[Hρ(Q)](s, a) = R(s, a) + γEπb
[ρ(Sk+1, Ak+1)Q(Sk+1, Ak+1) | Sk = s, Ak = a] for any

Q ∈ R|S||A| and state-action pair (s, a).

Lemma 9.3.1. Equation 9.1 is equivalent to

Φw = ProjQBc,ρ(Φw), (9.2)

where Bc,ρ(·) is the generalized Bellman operator defined by Bc,ρ(Q) = Tc(Hρ(Q)−Q)+Q.

The generalized Bellman operator Bc,ρ(·) was previously introduced in Chapter 7 to

study off-policy TD-learning algorithms in the tabular setting (i.e., Φ = ISA), where the

contraction property of Bc,ρ(·) was shown. However, Bc,ρ(·) alone being a contraction is not

enough to guarantee the convergence of Algorithm 7 because of function approximation,

which introduces an additional projection operator ProjQ. What we truly need is that (1)

the composed operator ProjQBc,ρ(·) is a contraction mapping, and (2) the solution wπ
c,ρ of

Equation 9.2 is such that Φwπ
c,ρ is an approximation of the Q-function Qπ. We next provide

sufficient conditions on the choices of the generalized importance sampling ratios c(·, ·) and

ρ(·, ·), and the bootstrapping parameter n so that the above two requirements are satisfied.
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Let Dc, Dρ ∈ R|S||A|×|S||A| be two diagonal matrices such that Dc((s, a), (s, a)) =∑
a′∈A πb(a

′|s)c(s, a′) and Dρ((s, a), (s, a)) =
∑

a′∈A πb(a
′|s)ρ(s, a′) for all (s, a). Let

Dc,max and Dρ,max (Dc,min and Dρ,min) be the maximam (minimum) diagonal entries of the

matrices Dc and Dρ respectively.

Condition 9.3.1. The generalized importance sampling ratios c(·, ·) and ρ(·, ·) satisfy (1)

c(s, a) ≤ ρ(s, a), ∀ (s, a), (2) Dρ,max < 1/γ, and (3) γ(Dρ,max−Dc,min)

(1−γDc,min)
√

KSA,min
< 1.

Condition 9.3.1 (1) and (2) were introduced in Chapter 7, and were used to show the

contraction property of the operator Bc,ρ(·). In particular, it was shown that the generalized

Bellman operator Bc,ρ(·) is a contraction mapping with respect to ∥ · ∥∞, with contraction

factor γ̃(n) = 1 − fn(γDc,min)(1 − γDρ,max), where fn : R 7→ R is defined by fn(x) =∑n−1
i=0 x

i for any x. It is clear that γ̃(n) ∈ (0, 1), and is a decreasing function of n.

As illustrated earlier, Bc,ρ(·) being a contraction mapping is not sufficient to guarantee

the stability of Algorithm 7. We require the composed operator ProjQBc,ρ(·) to be con-

traction mapping with appropriate choice of n. This is guaranteed by Condition 9.3.1 (3).

To see this, first note that we have the following lemma, which is obtained by using the

contraction property of Bc,ρ(·) and the “equivalence” between norms in finite-dimensional

spaces.

Lemma 9.3.2. Under Condition 9.3.1, it holds for any Q1, Q2 ∈ R|S||A| that

∥ProjQBc,ρ(Q1)− ProjQBc,ρ(Q2)∥KSA
≤ γ̃(n)√

KSA,min

∥Q1 −Q2∥KSA
.

In view of Lemma 9.3.2, the composed operator ProjQBc,ρ(·) is a contraction mapping

as long as limn→∞ γ̃(n)/
√

KSA,min < 1, which after straightforward algebra is equivalent

to Condition 9.3.1 (3).

To satisfy Condition 9.3.1 (3), intuitively we should make Dρ,max and Dc,min arbitrarily

close to each other. It is not clear if this is possible for existing off-policy TD-learning

algorithms such as Retrace(λ) [15], Qπ(λ) [13], V -trace [25], and Q-trace. That is the
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reason why none of them were shown to converge in the function approximation setting.

In contrast, consider the λ-averaged Q-trace algorithm. Both Dc and Dρ are identity ma-

trices (which implies Dρ,max = Dc,min = 1), hence Condition 9.3.1 (3) is always satisfied.

Similarly, in the two-sided Q-trace algorithm, for any choice of the upper truncation level

u ≥ 1, we can always choose the lower truncation level 0 ≤ ℓ ≤ 1 appropriately to satisfy

Condition 9.3.1 (3). Specifically, for any s ∈ S and u(s) ≥ 1, choosing ℓ(s) ≤ 1 such

that
∑

a∈A πb(a|s)gℓ(s),u(s)(π(a|s)/πb(a|s)) = 1 satisfies Condition 9.3.1 (3). Therefore,

compared to V -trace, Retrace(λ), and Q-trace, where the importance sampling ratios were

only truncated above, the primary reason for introducing the lower truncation level is to sat-

isfy Condition 9.3.1 (3), thereby ensuring convergence of the resulting two-sided Q-trace

algorithm.

In the next lemma, we show that under Condition 9.3.1, with properly chosen n, the

composed operator ProjQBc,ρ(·) is a contraction mapping, which ensures that Equation 9.2

has a unique solution, denoted by wπ
c,ρ. Moreover, we provide performance guarantees on

the solution wπ
c,ρ in terms of an upper bound on the difference between Qπ and Φwπ

c,ρ. Let

Qπ
c,ρ be the solution of generalized Bellman equation Q = Bc,ρ(Q), which is guaranteed to

exist and is unique since Bc,ρ(·) itself is a contraction mapping under Condition 9.3.1 (1)

and (2) [138].

Lemma 9.3.3. Under Condition 9.3.1, suppose that the parameter n is chosen such that

γc := γ̃(n)/
√
KSA,min < 1. Then the composed operator ProjQBc,ρ(·) is a γc-contraction

mapping with respect to ∥ · ∥KSA
. In this case, the unique solution wπ

c,ρ of the generalized

PBE (cf. Equation 9.2) satisfies

∥Qπ − Φwπ
c,ρ∥KSA

≤ 1√
1− γ2c

∥Qπ
c,ρ − ProjQQ

π
c,ρ∥KSA

+
γmaxs∈S

∑
a∈A |π(a|s)− πb(a|s)ρ(s, a)|

(1− γ)(1− γDρ,max)
. (9.3)

The first term on the RHS of Equation 9.3 captures the error due to function approxima-
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tion, which is in the same spirit to Theorem 1 (4) of the seminal paper [92], and vanishes in

the tabular setting. The second term on the RHS of Equation 9.3 arises because of the use of

generalized importance sampling ratios, which is introduced to overcome the high variance

in off-policy learning. Note that the second term vanishes when ρ(s, a) = π(a|s)/πb(a|s)

for all (s, a), which corresponds to choosing λ = 1 in λ-averaged Q-trace and choosing

ℓ(s) ≤ mins,a π(a|s)/πb(a|s) and u(s) ≥ maxs,a π(a|s)/πb(a|s) for all s in two-sided

Q-trace. However, in these cases, the cumulative product of importance sampling ratios

leads to a high variance in Algorithm 7. The trade-off between the variance and the bias in

wπ
c,ρ (i.e., second term on the RHS of Equation 9.3) will be elaborated in detail in the next

section.

9.4 Finite-Sample Analysis

With the contraction property of the generalized PBE established, the almost sure conver-

gence of Algorithm 7 under mild conditions directly follows from standard SA results in

the literature [11, 33]. In this section, we take a step further and perform finite-sample

analysis of Algorithm 7. For ease of exposition, we here only present the finite-sample

bounds of λ-averaged Q-trace and two-sided Q-trace, where c(·, ·) and ρ(·, ·) are explicitly

specified.

For any δ > 0, let tδ = min{k ≥ 0 : maxs∈S ∥P k
πb
(s, ·)− κS(·)∥TV ≤ δ} be the mixing

time of the Markov chain {Sk} under πb with precision δ. Note that Assumption 9.3.1

implies that tδ = O(log(1/δ)). Let λmin be the mininum eigenvalue of the positive definite

matrix Φ⊤KSAΦ. Let L = 1 + (γρmax)
n, where ρmax = maxs,a ρ(s, a).

We next present finite-sample guarantees of the λ-averaged Q-trace algorithm when

using constant stepsize (i.e., αk ≡ α). The results for using diminishing stepsizes are

trivial extensions.

Theorem 9.4.1. Consider {wk} of the λ-averaged Q-trace Algorithm. Suppose that (1)

Assumptions 9.1.1 and 9.3.1 are satisfied, (2) λ ∈ [0,1], (3) the parameter n is chosen such
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that γc := γn/
√

KSA,min < 1, and (4) the stepsize α is chosen such that α(tα + n + 1) ≤
(1−γc)λmin

130L2 . Then, we have for all k ≥ tα + n+ 1 that

E[∥wk − wπ
c,ρ∥22] ≤ c1(1− (1− γc)λminα)

k−(tα+n+1) + c2
αL2(tα + n+ 1)

(1− γc)λmin

, (9.4)

where c1 = (∥w0∥2 + ∥w0 − wπ
c,ρ∥2 + 1)2 and c2 = 130(∥wπ

c,ρ∥2 + 1)2. Moreover, we have

∥Qπ − Φwπ
c,ρ∥KSA

≤ 1√
1− γ2c

∥Qπ
c,ρ − ProjQQ

π
c,ρ∥KSA

+
γmaxs∈S(1− λ(s))∥π(·|s)− πb(·|s)∥1

(1− γ)2
. (9.5)

Using the common terminology in SA literature, we call the first term on the RHS of

Equation 9.4 convergence bias, and the second term variance. When constant stepsize is

used, the convergence bias goes to zero at a geometric rate while the variance is a constant

roughly proportional to αtα. Since limα→0 αtα = 0 under Assumption 9.3.1, the variance

can be made arbitrarily small by using small α.

The parameter L = 1 + (γρmax)
n plays an important role in the finite-sample bound.

In fact, L appears quadratically in the variance term of Equation 9.4, and captures the

impact of the cumulative product of the importance sampling ratios. To overcome the high

variance in off-policy learning (i.e., to make sure that the parameter L = 1 + (γρmax)
n

does not grow exponentially fast with respect to n), we choose λ ∈ R|S| such that ρmax =

maxs λ(s)(maxa π(a|s)/πb(a|s) − 1) + 1 ≤ 1/γ. However, as long as λ ̸= 1, the limit

point of the λ-averaged Q-trace algorithm involves an additional bias term (i.e., the second

term on the RHS of Equation 9.5) that does not vanish even in the tabular setting.

In light of the discussion above, it is clear that there is a trade-off between the variance

(cf. second term on the RHS of Equation 9.4) and the bias in the limit point (cf. the second

term on the RHS of Equation 9.3) in choosing the parameter λ. Specifically, large λ leads

to large ρmax and hence large L and large variance, but in this case the second term on the
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RHS of Equation 9.3 is smaller, implying that we have a smaller bias in the limit point.

Next, we present the finite-sample bounds of the two-sided Q-trace algorithm.

Theorem 9.4.2. Consider {wk} of the two-sided Q-trace Algorithm. Suppose that (1)

Assumptions 9.1.1 and 9.3.1 are satisfied, (2) the upper and lower truncation levels ℓ, u ∈

R|S| are chosen such that
∑

a∈A πb(a|s)gℓ(s),u(s)(π(a|s)/πb(a|s)) = 1 for all s, (3) the

parameter n is chosen such that γc := γn/
√

KSA,min < 1, and (4) the stepsize α is chosen

such that α(tα + n+ 1) ≤ (1−γc)λmin

130L2 . Then, we have for all k ≥ tα + n+ 1 that

E[∥wk − wπ
c,ρ∥22] ≤ c1(1− (1− γc)λminα)

k−(tα+n+1) + c2
αL2(tα + n+ 1)

(1− γc)λmin

, (9.6)

where c1 = (∥w0∥2 + ∥w0 − wπ
c,ρ∥2 + 1)2 and c2 = 130(∥wπ

c,ρ∥2 + 1)2. Moreover, we have

∥Qπ − Φwπ
c,ρ∥KSA

≤ 1√
1− γ2c

∥Qπ
c,ρ − Φwπ

c,ρ∥KSA

+
γmaxs∈S

∑
a∈A(uπ,πb

(s, a)− ℓπ,πb
(s, a))

(1− γ)2
, (9.7)

where uπ,πb
(s, a) = max(π(a|s)−πb(a|s)u(s), 0) and ℓπ,πb

(s, a) = min(π(a|s)−πb(a|s)ℓ(s), 0)

for all (s, a).

The finite-sample bound of the two-sided Q-trace algorithm is qualitatively similar to

that of the λ-averagedQ-trace algorithm. To overcome the high variance issue in off-policy

learning, we choose the upper truncation level such that γu(s) ≤ 1 for all s, which ensures

that the parameter L = 1 + (γρmax)
n ≤ 1 + (γmaxs u(s))

n does not grow exponentially

with respect to n. Then we choose the lower truncation level accordingly to satisfy re-

quirement (2) stated in Theorem 9.4.2. However, as long as there exists s ∈ S such that

u(s) < maxs,a π(a|s)/πb(a|s) or ℓ(s) > mins,a π(a|s)/πb(a|s), the second term on the

RHS of Equation 9.7 is in general non-zero, hence adding an additional bias term to the

limit point even in the tabular setting. As a result, the trade-off between the variance and

the bias in the limit point is also present in the two-sided Q-trace algorithm.
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In view of Theorem 9.4.1 and Theorem 9.4.2, one limitation of this work is that the

choice of n to make γc < 1 depends on the unknown parameter KSA,min of the problem. In

practice, one can start with a specific choice of n and then gradually tune n to achieve the

convergence of the λ-averaged Q-trace algorithm or the two-sided Q-trace algorithm.

9.5 Proof Sketch of Theorem 9.4.1 and Theorem 9.4.2

Instead of proving Theorem 9.4.1 and Theorem 9.4.2, we will state and prove finite-sample

bounds for Algorithm 7 with c(·, ·) and ρ(·, ·) satisfying Condition 9.3.1, which subsumes

Theorem 9.4.1 and Theorem 9.4.2 as its special cases. In this more general setup where we

do not have c(·, ·) = ρ(·, ·), we define the constant parameter L as

L =


(1 + (γρmax)

n), c(·, ·) = ρ(·, ·),

(1 + γρmax)fn(γcmax), c(·, ·) ̸= ρ(·, ·),
(9.8)

where cmax = maxs,a c(s, a) and ρmax = maxs,a ρ(s, a).

Theorem 9.5.1. Consider {wk} of Algorithm Algorithm 7. Suppose that (1) Assumptions

9.1.1 and 9.3.1 are satisfied, (2) the generalized importance sampling ratios satisfy Condi-

tion 9.3.1, (3) the parameter n is chosen such that γc := γ̃(n)/
√
KSA,min < 1, and (4) the

constant stepsize α is chosen such that α(tα + n + 1) ≤ (1−γc)λmin

130L2 . Then, we have for all

k ≥ tα + n+ 1:

E[∥wk − wπ
c,ρ∥22] ≤ c1(1− (1− γc)λminα)

k−(tα+n+1) + c2L
2α(tα + n+ 1)

(1− γc)λmin

,

where c1 = (∥w0∥2 + ∥w0 − wπ
c,ρ∥2 + 1)2 and c2 = 130(∥wπ

c,ρ∥2 + 1)2.

To prove Theorem 9.5.1, we first rewrite Algorithm 7 as an SA algorithm. Let {Xk}

be a finite-state Markov chain defined by Xk = (Sk, Ak, ..., Sk+n, Ak+n) for any k ≥ 0.

Denote the state-space of {Xk} by X . It is clear that under Assumption 9.3.1, the Markov
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chain {Xk} also admits a unique stationary distribution, which we denote by ν ∈ ∆|X |. Let

F : Rd×X 7→ Rd be an operator defined by F (w, x) = ϕ(s0, a0)
∑n−1

i=0 γ
ic1,i∆i(w) for any

w ∈ Rd and x = (s0, a0, ..., sn, an) ∈ X . Let F̄ : Rd 7→ Rd be the “expected” operator of

F (·, ·) defined by F̄ (w) = EX∼ν [F (w,X)]. Using the notation above, the update equation

(line 4) of Algorithm 7 can be compactly written as

wk+1 = wk + αkF (wk, Xk), (9.9)

which is an SA algorithm for solving the equation F̄ (w) = 0 with Markovian noise. Note

that F̄ (w) = 0 is equivalent to the generalized PBE (cf. Lemma 9.3.1). We next establish

the properties of the operators F (·, ·), F̄ (·), and the Markov chain {Xk} in the following

proposition, which enables us to use our SA results in Chapter 3 to derive finite-sample

bounds of Algorithm 7.

Proposition 9.5.1. The following statements hold.

(1) ∥F (w1, x) − F (w2, x)∥2 ≤ L∥w1 − w2∥2 for any w1, w2 ∈ Rd and x ∈ X , and

∥F (0, x)∥2 ≤ fn(γcmax) for any x ∈ X ,

(2) maxx∈X
∥∥P k+n+1

X (x, ·)− ν(·)
∥∥

TV ≤ Cσk for all k ≥ 0, where PX is the transition

probability matrix of the Markov chain {Xk} under policy πb,

(3) (w − wπ
c,ρ)

⊤F̄ (w) ≤ −(1− γc)λmin∥w − wπ
c,ρ∥22 for any w ∈ Rd.

Proposition 9.5.1 (1) establishes the Lipschitz continuity of the operator F (·, ·), Propo-

sition 9.5.1 (2) establishes the geometric mixing of the auxiliary Markov chain {Xk}, and

Proposition 9.5.1 (3) essentially guarantees that the ODE ẋ(t) = F̄ (x(t)) associated with

SA algorithm (Equation 9.9) is globally geometrically stable. The rest of the proof follows

by applying Theorem 3.2.1 to Algorithm 7.
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9.6 Proof of All Theoretical Results

9.6.1 Proof of Lemma 9.3.1

We begin by introducing some notation. Let πc and πρ be two policies defined by

πc(a|s) =
πb(a|s)c(s, a)∑

a′∈A πb(a
′|s)c(s, a′)

, and πρ(a|s) =
πb(a|s)ρ(s, a)∑

a′∈A πb(a
′|s)ρ(s, a′)

, ∀ (s, a).

Let Pπc and Pπρ be the transition probability matrices of the Markov chain {Sk} induced by

the policies πc and πρ, respectively. Then, Equation 9.1 can be compactly written in vector

form as

Φ⊤KSA

n−1∑
i=0

(γPπcDc)
i(R + γPπρDρΦw − Φw) = 0,

where R ∈ R|S||A| is defined by R(s, a) = R(s, a) for all (s, a). Observe that the above

equation is further equivalent to

Φ(Φ⊤KSAΦ)
−1Φ⊤KSA

n−1∑
i=0

(γPπcDc)
i(R + γPπρDρΦw − Φw) = 0. (9.10)

To see this, since the matrix Φ has full column-rank, and the matrix Φ⊤KSAΦ is positive

definite and hence invertible, we have x = 0 if and only if Φ(Φ⊤KSAΦ)
−1x = 0.

To rewrite Equation 9.10 in the desired form of the generalized PBE (cf. Equation 9.2),

we use the following three observations.

(1) The projection operator ProjQ(·) is explicitly given by

ProjQ(·) = Φ(Φ⊤KSAΦ)
−1Φ⊤KSA(·),

(2) The operator Tc(·) is explicitly given by Tc(·) =
∑n−1

i=0 (γPπcDc)
i(·),

(3) The operator Hρ(·) is explicitly given by Hρ(·) = R + γPπρDρ(·).
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Therefore, Equation 9.10 is equivalent to

ProjQ[Tc(Hρ(Φw)− Φw)] = 0. (9.11)

Finally, adding and subtracting Φw on both sides of the previous inequality and we obtain

the desired generalized PBE:

Φw = ProjQ[Tc(Hρ(Φw)− Φw)] + Φw

= ProjQ[Tc(Hρ(Φw)− Φw) + Φw]

= ProjQBc,ρ(Φw),

where the second equality follows from (1) Φw ∈ Q and (2) ProjQ(·) is a linear operator.

9.6.2 Proof of Lemma 9.3.2

For any Q1, Q2 ∈ R|S||A|, we have

∥ProjQBc,ρ(Q1)− ProjQBc,ρ(Q2)∥KSA
≤ ∥Bc,ρ(Q1)− Bc,ρ(Q2)∥KSA

≤ ∥Bc,ρ(Q1)− Bc,ρ(Q2)∥∞ (∥ · ∥KSA
≤ ∥ · ∥∞)

≤ γ̃(n)∥Q1 −Q2∥∞

≤ γ̃(n)√
KSA,min

∥Q1 −Q2∥KSA
,

(∥ · ∥∞ ≤ 1√
KSA,min

∥ · ∥KSA
)

where the first inequality follows from ProjQ being non-expansive with respect to ∥ · ∥KSA
,

and the third inequality follows from Bc,ρ(·) being a γ̃(n)-contraction operator with respect

to ∥ · ∥∞ [138] 1.

1In Chapter 7, we work with an asynchronous variant of the generalized Bellman operator, which is shown
to be a contraction mapping with respect to ∥ · ∥∞ with contraction factor 1 − KSA,minfn(γDc,min)(1 −
γDρ,max). In this paper we work with the synchronous generalized Bellman operator Bc,ρ(·). In this case,
one can easily verify that the corresponding contraction factor can be obtained by simply dropping the factor
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9.6.3 Proof of Lemma 9.3.3

We first show that under Condition 9.3.1 (3), we have limn→∞ γ̃(n)/
√
KSA,min < 1. Using

the explicit expression of γ̃(n), we have

lim
n→∞

γ̃(n)√
KSA,min

= lim
n→∞

1− fn(γDc,min)(1− γDρ,max)√
KSA,min

= lim
n→∞

1− 1−(γDc,min)
n

1−γDc,min
(1− γDρ,max)√

KSA,min

(fn(x) =
∑n−1

i=0 x
i and γDc,min < 1)

=
γ(Dρ,max −Dc,min)

(1− γDc,min)
√
KSA,min

< 1. (Condition 9.3.1 (3))

Therefore, when n is chosen such that γc =
γ̃(n)√
KSA,min

< 1, we have by Lemma 9.3.2 that

∥ProjQBc,ρ(Q1)− ProjQ ≤ γc∥Q1 −Q2∥KSA
, ∀ Q1, Q2 ∈ R|S||A|.

It follows that the composed operator ProjQBc,ρ(·) is a contraction mapping with respect to

∥ · ∥KSA
, with contraction factor γc.

Next consider the difference between Qπ and Φwπ
c,ρ. First of all, we have by triangle

inequality that

∥Qπ − Φwπ
c,ρ∥KSA

= ∥Qπ −Qπ
c,ρ +Qπ

c,ρ − Φwπ
c,ρ∥KSA

≤ ∥Qπ −Qπ
c,ρ∥KSA

+ ∥Qπ
c,ρ − Φwπ

c,ρ∥KSA
. (9.12)

We next bound each term on the RHS of the previous inequality. For the first term, it was

KSA,min.
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already established in Proposition 2.1 of [138] that

∥Qπ −Qπ
c,ρ∥KSA

≤ ∥Qπ −Qπ
c,ρ∥∞ ≤

γmaxs∈S
∑

a∈A |π(a|s)− πb(a|s)ρ(s, a)|
(1− γ)(1− γDρ,max)

. (9.13)

Now consider the second term on the RHS of Equation 9.12. First note that

∥Qπ
c,ρ − Φwπ

c,ρ∥2KSA
= ∥Qπ

c,ρ − ProjQQ
π
c,ρ + ProjQQ

π
c,ρ − Φwπ

c,ρ∥2KSA

= ∥Qπ
c,ρ − ProjQQ

π
c,ρ∥2KSA

+ ∥ProjQQ
π
c,ρ − Φwπ

c,ρ∥2KSA
(∗)

= ∥Qπ
c,ρ − ProjQQ

π
c,ρ∥2KSA

+ ∥ProjQBc,ρ(Q
π
c,ρ)− ProjQBc,ρ(Φw

π
c,ρ)∥2KSA

≤ ∥Qπ
c,ρ − ProjQQ

π
c,ρ∥2KSA

+ γ2c∥Qπ
c,ρ − Φwπ

c,ρ∥2KSA
,

where Eq. (∗) follows from the Babylonian–Pythagorean theorem (i.e., Qπ
c,ρ−ProjQQ

π
c,ρ ⊥

Q and ProjQQ
π
c,ρ − Φwπ

c,ρ ∈ Q). Rearrange the previous inequality and we have

∥Qπ
c,ρ − Φwπ

c,ρ∥KSA
≤ 1√

1− γ2c
∥Qπ

c,ρ − ProjQQ
π
c,ρ∥KSA

. (9.14)

Substituting Equation 9.13 and Equation 9.14 into the RHS of Equation 9.12 and we finally

obtain

∥Qπ − Φwπ
c,ρ∥KSA

≤
γmaxs∈S

∑
a∈A |π(a|s)− πb(a|s)ρ(s, a)|

(1− γ)(1− γDρ,max)

+
1√

1− γ2c
∥Qπ

c,ρ − ProjQQ
π
c,ρ∥KSA

.
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9.6.4 Proof of Proposition 9.5.1

(1) (a) We first rewrite the operator F (·, ·) in the following equivalent way. For any w ∈ Rd

and x = (s0, a0, ..., sn, an) ∈ X , we have

F (w, x) = ϕ(s0, a0)
n−1∑
i=0

γi
i∏

j=1

c(sj, aj)×

(R(si, ai) + γρ(si+1, ai+1)ϕ(si+1, ai+1)
⊤w − ϕ(si, ai)

⊤w)

= ϕ(s0, a0)
n−1∑
i=0

γi
i∏

j=1

c(sj, aj)R(si, ai)− ϕ(s0, a0)
n−1∑
i=0

γi
i∏

j=1

c(sj, aj)ϕ(si, ai)
⊤w

+ ϕ(s0, a0)
n−1∑
i=0

γi+1

i∏
j=1

c(sj, aj)ρ(si+1, ai+1)ϕ(si+1, ai+1)
⊤w

= ϕ(s0, a0)
n−1∑
i=0

γi
i∏

j=1

c(sj, aj)R(si, ai)− ϕ(s0, a0)
n−1∑
i=0

γi
i∏

j=1

c(sj, aj)ϕ(si, ai)
⊤w

+ ϕ(s0, a0)
n∑

i=1

γi
i−1∏
j=1

c(sj, aj)ρ(si, ai)ϕ(si, ai)
⊤w

= ϕ(s0, a0)
n−1∑
i=0

γi
i∏

j=1

c(sj, aj)R(si, ai)− ϕ(s0, a0)ϕ(s0, a0)
⊤w

+ ϕ(s0, a0)
n−1∑
i=1

γi
i−1∏
j=1

c(sj, aj)(ρ(si, ai)− c(si, ai))ϕ(si, ai)
⊤w

+ ϕ(s0, a0)γ
n

n−1∏
j=1

c(sj, aj)ρ(sn, an)ϕ(sn, an)
⊤w.

We now proceed and show the Lipschitz property.

For any w1, w2 ∈ Rd and x = (s0, a0, ..., sn, an) ∈ X , using the fact that ∥ϕ(s, a)∥2 ≤

∥ϕ(s, a)∥1 ≤ ∥Φ∥∞ ≤ 1, we have

∥F (w1, x)− F (w2, x)∥2

≤ ∥ϕ(s0, a0)ϕ(s0, a0)⊤(w1 − w2)∥2

+

∥∥∥∥∥ϕ(s0, a0)
n−1∑
i=1

γi
i−1∏
j=1

c(sj, aj)(ρ(si, ai)− c(si, ai))ϕ(si, ai)
⊤(w1 − w2)

∥∥∥∥∥
2
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+

∥∥∥∥∥ϕ(s0, a0)γn
n−1∏
j=1

c(sj, aj)ρ(sn, an)ϕ(sn, an)
⊤(w1 − w2)

∥∥∥∥∥
2

≤ ∥w1 − w2∥2 +
n−1∑
i=1

γici−1
maxmax

s,a
|ρ(s, a)− c(s, a)|∥w1 − w2∥2

+ γncn−1
maxρmax∥w1 − w2∥2

=

(
1 + γmax

s,a
|ρ(s, a)− c(s, a)|1− (γcmax)

n−1

1− γcmax

+ γncn−1
maxρmax

)
∥w1 − w2∥2

≤


(1 + (γρmax)

n)∥w1 − w2∥2, c(·, ·) = ρ(·, ·)

(1 + γρmax)fn(γcmax)∥w1 − w2∥2, c(·, ·) ̸= ρ(·, ·).

(1) (b) For any x = (s0, a0, ..., sn, an) ∈ X , we have

∥F (w,0)∥2 =

∥∥∥∥∥ϕ(s0, a0)
n−1∑
i=0

γi
i∏

j=1

c(sj, aj)R(si, ai)

∥∥∥∥∥
2

≤
n−1∑
i=0

γicimax ≤ fn(γcmax).

(2) It is clear that the stationary distribution ν of the Markov chain {Xk} is given by

ν(s0, a0, ..., sn, an) = κS(s0)

(
n−1∏
i=0

πb(ai|si)Pai(si, si+1)

)
πb(an|sn)

for all (s0, a0, ..., sn, an) ∈ X . Moreover, for any x = (s0, a0, ..., sn, an) ∈ X , we have for

any k ≥ 0 that

∥∥P k+n+1
πb

(x, ·)− ν(·)
∥∥

TV
=

1

2

∑
s′0,a

′
0,··· ,s′n,a′n

∣∣∣∣∣∑
s

Pan(sn, s)P
k
πb
(s, s′0)− κS(s

′
0)

∣∣∣∣∣×[
n−1∏
i=0

πb(a
′
i | s′i)Pa′i

(s′i, s
′
i+1)

]
πb(a

′
n | s′n)

=
1

2

∑
s′0

∣∣∣∣∣∑
s

Pan(sn, s)P
k
πb
(s, s′0)− κS(s

′
0)

∣∣∣∣∣
≤ 1

2

∑
s

Pan(sn, s)
∑
s′0

∣∣P k
πb
(s, s′0)− κS(s

′
0)
∣∣

≤ max
s∈S

∥P k
πb
(s, ·)− κS(·)∥TV
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≤ Cσk.

Therefore, we have maxx∈X
∥∥P k+n+1

πb
(x, ·)− ν(·)

∥∥
TV

≤ Cσk for all k ≥ 0.

(3) Using the fact that Bc,ρ(·) is a linear operator, we have for any w ∈ Rd that

(w − wπ
c,ρ)

⊤F̄ (w)

= (w − wπ
c,ρ)

⊤Φ⊤KSA (Bc,ρ(Φw)− Φw)

= (w − wπ
c,ρ)

⊤Φ⊤KSA

(
Bc,ρ(Φw)− Bc,ρ(Φw

π
c,ρ)
)
− (w − wπ

c,ρ)
⊤Φ⊤KSAΦ(w − wπ

c,ρ)

= (w − wπ
c,ρ)

⊤Φ⊤KSAΦ(Φ
⊤KSAΦ)

−1Φ⊤KSABc,ρ(Φ(w − wπ
c,ρ))

− (w − wπ
c,ρ)

⊤Φ⊤KSAΦ(w − wπ
c,ρ)

= (w − wπ
c,ρ)

⊤Φ⊤KSAΦ(Φ
⊤KSAΦ)

−1Φ⊤KSABc,ρ(Φ(w − wπ
c,ρ))

− (w − wπ
c,ρ)

⊤Φ⊤KSAΦ(w − wπ
c,ρ)

≤ ∥Φ(w − wπ
c,ρ)∥KSA

∥Φ(Φ⊤KSAΦ)
−1Φ⊤KSABc,ρ(Φ(w − wπ

c,ρ))∥KSA

− ∥Φ(w − wπ
c,ρ)∥2KSA

= ∥Φ(w − wπ
c,ρ)∥KSA

∥ProjQBc,ρ(Φ(w − wπ
c,ρ))∥KSA

− ∥Φ(w − wπ
c,ρ)∥2KSA

≤ γc∥Φ(w − wπ
c,ρ)∥KSA

∥Φ(w − wπ
c,ρ)∥KSA

− ∥Φ(w − wπ
c,ρ)∥2KSA

= − (1− γc)∥Φ(w − wπ
c,ρ)∥2KSA

≤ − (1− γc)λmin∥w − wπ
c,ρ∥22

9.6.5 Proof of Theorem 9.4.1

The finite-sample bound (i.e., Equation 9.4) follows directly from Theorem 9.5.1. To show

the performance bound (cf. Equation 9.5) on the limit point wπ
c,ρ, we apply Lemma 9.3.3 to

the λ-averagedQ-trace algorithm. Note that when c(s, a) = ρ(s, a) = λ(s) π(a|s)
πb(a|s)

+1−λ(s)
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for all (s, a), we have for any s ∈ S that

∑
a∈A

|π(a|s)− πb(a|s)ρ(s, a)| = (1− λ(s))
∑
a∈A

|π(a|s)− πb(a|s)|

= (1− λ(s))∥π(·|s)− πb(·|s)∥1.

This proves the result.

9.6.6 Proof of Theorem 9.4.2

The finite-sample bound (i.e., Equation 9.6) follows directly from Theorem 9.5.1. To show

the performance bound (cf. Equation 9.7) on the limit point wπ
c,ρ, we apply Lemma 9.3.3 to

the two-sidedQ-trace algorithm. Note that when c(s, a) = ρ(s, a) = gℓ(s),u(s)(π(a|s)/πb(a|s))

for all (s, a), we have

∑
a∈A

|π(a|s)− πb(a|s)ρ(s, a)| =
∑
a∈A

|(π(a|s)− πb(a|s)ℓ(s))I{π(a|s) < ℓ(s)πb(a|s)}

+ (π(a|s)− πb(a|s)u(s))I{π(a|s) > u(s)πb(a|s)}|

≤
∑
a∈A

|(π(a|s)− πb(a|s)ℓ(s))I{π(a|s) < ℓ(s)πb(a|s)}|

+
∑
a∈A

|(π(a|s)− πb(a|s)u(s))I{π(a|s) > u(s)πb(a|s)}|

=
∑
a∈A

max(π(a|s)− πb(a|s)u(s), 0)

−
∑
a∈A

min(π(a|s)− πb(a|s)ℓ(s), 0)

=
∑
a∈A

(uπ,πb
(s, a)− ℓπ,πb

(s, a)).

This proves the result.
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9.7 Conclusion and Future Work

In this chapter, we focus on TD-learning with off-policy sampling and linear function ap-

proximation, and designed a convergent multi-step TD-learning algorithm. To overcome

the high variance issue in off-policy learning, we propose using generalized importance

sampling ratios. However, the variance reduction is achieved at a cost of an asymptotic

bias. Therefore, a potential future direction of this line of work is to investigate whether

variance reduction is possible without introducing bias.
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CHAPTER 10

POLICY-BASED METHODS UNDER OFF-POLICY SAMPLING AND LINEAR

FUNCTION APPROXIMATION

10.1 Introduction

So far we have been focusing on value-based RL algorithms, such as TD-learning for policy

evaluation and Q-learning for control. In this chapter, we switch our focus to policy-based

methods.

Unlike value-based methods, policy-based methods directly work with the policies, and

in general consist of two phases: namely policy evaluation and policy improvement. Typ-

ical policy-based methods are approximate policy iteration and various actor-critic (AC)

algorithms. Approximate policy iteration updates the policy by performing the argmax

operator to the latest Q-function estimate, while AC updates the policy using gradient as-

cent with preconditioning. Specifically, an identity pre-conditioner corresponds to regular

AC, while a pre-conditioning with fisher information results in natural actor-critic (NAC)

[144]. As for policy evaluation, it usually uses the TD-learning method and its variants,

such as TD(0), n-step TD [56], TD(λ), or Monte Carlo method.

While at a high level, all policy-based methods iteratively perform policy evaluation and

policy improvement, the actual implementation, however, has many variants. For example,

policy-based algorithms can be implemented in a two-loop manner or a two time-scale

manner. Depending on the sample collection procedure, there are on-policy learning and

off-policy learning [145]. Also, policy-based algorithms can be incorporated with function

approximation to overcome the curse of dimensionality in RL.

In this chapter, we focus on policy-based methods under off-policy sampling and linear

function approximation, where the policy evaluation sub-problem is solved with the TD-
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learning algorithm studied in Chapter 9.

10.1.1 Main Contributions

We propose a general policy-based framework that uses linear function approximation and

off-policy sampling. The framework subsumes popular existing algorithms such as approx-

imate policy iteration and NAC as its special cases. We establish an overall Õ(ϵ−2) sam-

ple complexity of the general policy-based method up to a function approximation error.

This is the first time that Õ(ϵ−2) sample complexity is established in the off-policy linear

function approximation setting. Importantly, our results do not require strong exploration

assumptions as in existing literature.

10.1.2 Related Literature

Approximate Policy Iteration. In the MDP setting (i.e., known environmental model),

policy iteration is a popular method for finding an optimal policy [9], and is known to

find an optimal policy in finitely many steps. In the RL setting, policy iteration becomes

approximate policy iteration due to the possible error in solving the policy evaluation sub-

problem. See [155] for a survey about approximate policy iteration and its variants.

On-Policy AC. Several variants of AC were proposed in [156, 157, 158, 144, 159]. In

the tabular setting, [160, 33, 157] studied the asymptotic convergence of AC algorithm.

Furthermore, [146, 152] characterize the asymptotic convergence of on-policy AC under

function approximation. Recently, there has been a flurry of work studying the finite-

sample convergence of AC and NAC [161]. [162, 163, 137] perform the finite sample

analysis of NAC under tabular setting, and [164, 148, 149, 165, 147, 166, 167, 168, 169]

establish the finite-sample bounds of AC in function approximation setting. To the best of

our knowledge, the best sample complexity bound of AC algorithms is provided in [163],

where the authors characterize an Õ(ϵ−2) sample complexity. However, [163] only studies

tabular RL in the on-policy setting.
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Table 10.1: Sample Complexity Bounds of the AC-Type Algorithms Using Function Ap-
proximation

Algorithm
Sampling
Procedure

References
Sample

Complexity 1,2

Single
Trajectory

Actor
Critic

On-Policy

[146] Asymptotic ✓

[147] Õ(ϵ−6) ✗

[148, 149] Õ(ϵ−4) ✗

Off-Policy [150, 151] Asymptotic ✓

Natural
Actor
Critic

On-Policy

[152] Asymptotic ✓

[147] Õ(ϵ−14) ✗

[153] Õ(ϵ−6) ✗

Off-Policy
[154] Õ(ϵ−4) ✗

This work Õ(ϵ−3) ✓

1 In this table, for the AC (respectively NAC) algorithms, sample complexity is the
number of samples needed to find a policy π such that E[∥∇V π(µ)∥2] ≤ ϵ+ Ebias

(respectively E[V ∗(µ)− V π(µ)] ≤ ϵ+ Ebias), where Ebias is a non-vanishing error due to
the function approximation.
2 Here Õ(·) ignores all the logarithmic terms.

Off-policy AC. Off-policy AC, was first proposed in [145]. After that, there has been

numerous extensions to that work such as DPG [170], DDPG [171], ACER [172], TD3

[173], IMPALA [25], ACE [174], etc. The asymptotic convergence of off-policy AC was

established for Gradient-AC in [150], and for AC with emphasis in [151]. The first finite-

sample bound of off-policy NAC was established in [175]. However, in [175] only tabular

setting was studied. In the function approximation setting, [154] provided the finite sample

analysis of a doubly robust off-policy AC. [176] also provided a convergence bound for

off-policy AC, however their convergence bound does not involve a bound for the critic.

A detailed comparison between our results and the related literature on off-policy AC-type

algorithms with function approximation is presented in Table 10.1.

190



10.2 Policy Update Rules

We begin by presenting a generic policy-based algorithm in the following, where the pol-

icy evaluation sub-problem is solved with Algorithm 7. For simplicity of notation, for a

given target policy π, behavior policy πb, constant stepsize α, initialization w0, and samples

{(Sk, Ak)}0≤k≤K+n−1, we denote the output of Algorithm 7 after K iterations by

w = ALG(w0, π, πb, α,K, {(Sk, Ak)}0≤k≤K+n−1).

Algorithm 8 A Generic Policy-Based Algorithm

1: Input: Integers T , K, initial policy π0, sample trajectory {(St, At)}0≤t≤T (K+n) col-
lected under the behavior policy πb.

2: for t = 0, 1, . . . , T − 1 do
3: dataset = {(Sk, Ak)}t(K+n)≤k≤(t+1)(K+n)−1

4: wt = ALG(0, πt, πb, α,K, dataset)
5: πt+1 = G(Φwt, πt)
6: end for
7: Output: πT

Although Algorithm 8 is presented with a fixed behavior policy πb, our results can be

easily generalized to the case where the behavior policy is updated across t. The only

requirement on the behavior policy is that it should enable the agent to sufficiently explore

the state-action space. In Algorithm 8 line 5, the function G(·, ·) represents the policy

update rule, which takes the current policy iterate πt and the Q-function estimate Φwt as

inputs. Many existing policy update rules fit into this framework, as elaborated below.

1/β1-Greedy Update. Let β1 ∈ [1,∞] be a tunable parameter. For any t ≥ 0 and

state-action pair (s, a), we update the policy by

πt+1(a|s) =


1

β1|A|
, a ̸= argmax

a′∈A
ϕ(s, a′)⊤wt

1

β1|A|
+ 1− 1

β1
, a = argmax

a′∈A
ϕ(s, a′)⊤wt.
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In this chapter, whenever the argmax is not unique, we break tie arbitrarily. More gener-

ally, we allow the tunable parameter β1 to be time-dependent (i.e., β1 is a function of the

iteration index t) and/or state-dependent (i.e., β1 is a function of the state s).

β2-Softmax Update. Let β2 > 0 be a tunable parameter, which is allowed to be time

varying and state-dependent. Then the policy is updated by

πt+1(a|s) =
exp(β2ϕ(s, a)

⊤wt)∑
a′∈A exp(β2ϕ(s, a′)⊤wt)

, ∀ (s, a).

In 1/β1-greedy update or β2-softmax update, there is no need to parametrize the policy

because it is uniquely determined by the estimate of the Q-function, which already uses

linear function approximation.

At a first glance of Algorithm 8 line 5, it seems that we need to work with |S||A|-

dimensional objects to update the policy at each state-action pair, which contradicts to

the motivation of using function approximation. However, there is an equivalent way of

implementing Algorithm 8 without explicitly executing line 5. To see this, first note that

the target policy πt in each iteration is only used in the policy evaluation step (Algorithm 8

line 4). To view of our policy evaluation algorithm (cf. Algorithm 7), we only need to

compute the policy value of πt at state-action pairs that are visited by the sample trajectory

{(Sk, Ak)}.

When using 1/β1-greedy update or β2-softmax update, Algorithm 8 subsumes the pop-

ular value-based method SARSA [11] as its special case. To see this, suppose that we

are in the on-policy setting (i.e., π = πb), and the inner-loop iteration number K is set

to 1. Then Algorithm 8 corresponds to SARSA with 1/β1-greedy exploration policy or

Boltzmann exploration policy. However, we need to point out that our result does NOT

imply finite-sample bounds for SARSA since we need a relatively large K to provide a

sufficiently accurate estimate of the value function before using it in policy improvement.

β3-NPG Update. Unlike 1/β1-greedy update or β2-softmax update, where we need
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only the estimate of the Q-function to perform to update, in NPG, to update the policy, we

need both the current policy and the estimate of its Q-function. Therefore, to keep track of

the policy, in this case we also need to parametrize the policy using softmax parametrization

and compatible linear function approximation. Specifically, with parameter θ ∈ Rd, the

policy π associated with parameter θ is given by πθ(a|s) = exp(ϕ(s,a)⊤θ)∑
a′∈A exp(ϕ(s,a′)⊤θ)

.

Let β3 > 0 be a tunable parameter, which is allowed to be time varying. Then NPG

updates the parameter θt of the policy according to the formula

θt+1 = θt + β3wt. (10.1)

See [177] for more details about this update rule. Denote πt as πθt for simplicity of notation.

Then the update equation can be equivalently written in terms of the policy update (and also

in the form of Algorithm 8 line 5) as

πt+1(a|s) =
πt(a|s) exp(β3ϕ(s, a)⊤wt)∑

a′∈A πt(a
′|s) exp(β3ϕ(s, a′)⊤wt)

, ∀ (s, a).

This enables us to use the previous equation for our analysis of NPG while using Equa-

tion 10.1 for the implementation of Algorithm 8.

10.2.1 Finite-Sample Analysis

In this section, we present the finite-sample guarantees of Algorithm 8. For ease of exposi-

tion, we implement line 4 of Algorithm 8 with the λ-averaged Q-trace algorithm. The re-

sults for using either two-sidedQ-trace algorithm or Algorithm 7 with more general choices

of c(·, ·) and ρ(·, ·) (as long as Condition 9.3.1 is satisfied) are straightforward extensions.

As for the policy improvement (cf. line 5 of Algorithm 8), we use either 1/β1-greedy pol-

icy update, or β2-softmax policy update, or β3-NPG policy update, with the corresponding

parameters satisfying the following condition. Denote at,s = argmaxa′∈A ϕ(s, a
′)⊤wt.

Condition 10.2.1. Let β > 0 be a tunable parameter. (1) The parameter β1 is time-varying
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and state-dependent, and is chosen such that β1(t, s) ≥ 2γ
β
maxa∈A |ϕ(s, a)⊤wt| for all s

and t. (2) The parameter β2 is chosen such that β2 ≥ γ
β
log(|A|). (3) The parameter β3 is

time-varying, and is chosen such that β3(t) ≥ γ
β
log(1/mins∈S πt(at,s|s)) for all t.

Theorem 10.2.1. Consider πt of Algorithm 8. Suppose that the assumptions for applying

Theorem Theorem 9.4.1 are satisfied, and the choices of β1, β2, and β3 satisfy Condition

10.2.1. Then we have for any T ≥ 0:

E[∥Q∗ −QπT ∥∞] ≤ 2γEapprox

(1− γ)2︸ ︷︷ ︸
N1

+
2γ2Ebias

(1− γ)4︸ ︷︷ ︸
N2

+ γT∥Q∗ −Qπ0∥∞︸ ︷︷ ︸
N3: Convergence bias in the actor

+ 6c̃(1− (1− γc)λminα)
1
2
[K−(tα+n+1)]︸ ︷︷ ︸

N4: Convergence bias in the critic

+ 70Lc̃
[α(tα + n+ 1)]1/2
√
1− γc

√
λmin︸ ︷︷ ︸

N5: Critic variance

+
2γβ

(1− γ)2︸ ︷︷ ︸
N6

, (10.2)

where

c̃ =
γ√

λmin

√
1− γc(1− γ)3

,

Eapprox = sup
π

∥Qπ
c,ρ − Φwπ

c,ρ∥∞,

Ebias = max
0≤t≤T

max
s∈S

(1− λ(s))∥πt(·|s)− πb(·|s)∥1.

Notably on the LHS, our finite-sample guarantees are stated for the last policy iterate

πT , while in many existing literature it was stated for the best policy among {πt}0≤t≤T

[177].

The Terms N1 and N2. The term N1 represents the function approximation bias, and

is present in all existing literature that study policy-based methods under function approx-

imation [177]. Note that N1 = 0 when we use a complete basis. The term N2 repre-

sents the bias introduced to the algorithm by using generalized importance sampling ratios

194



c(·, ·) and ρ(·, ·). Note that we have N2 = 0 when c(s, a) = ρ(s, a) = π(a|s)/πb(a|s),

which corresponds to using λ = 1 in the λ-averaged Q-trace algorithm, and using u(s) ≥

maxs,a π(a|s)/πb(a|s) and ℓ(s) ≤ mins,a π(a|s)/πb(a|s) for all s in the two-sided Q-trace

algorithm. However, this choice of λ (or u and ℓ) might lead to a high variance. In particu-

lar, the parameter L within the term N5 could be large.

The terms N3 and N4. The term N3 represents the convergence bias in the actor, and

goes to zero geometrically fast as the outer loop iteration number T goes to infinity. Such

geometric convergence is the main reason why we obtain improved sample complexity of

β3-NPG compared to [141], where the convergence rate of the actor is O(1/T ). The term

N4 represents the convergence bias in the critic, and goes to zero geometrically fast as the

inner loop iteration number K goes to infinity.

The terms N5 and N6. The term N5 represents the variance in the critic, and is

proportional to
√
αtα = O(

√
α log(1/α)). Therefore, N5 can be made arbitrarily small by

using small enough stepsize α. The term N6 captures the error introduced to the algorithm

by the policy update rule G(·, ·). To elaborate, consider the following example. Suppose

that the underlying MDP model has a unique optimal policy, and suppose we use 1/β1-

greedy update (with a fixed β1) in Algorithm 8 line 5. Then as long as β1 is finite, we can

never truly find the optimal policy π∗ because of the deterministic nature of π∗. As a result,

the difference between Q∗ and Qπt will always be above some threshold, which depends

on the choice of β1, and is captured by N6. Observe that N6 can be made arbitrarily small

by using small enough β.

Based on Theorem 10.2.1, we next derive the sample complexity of Algorithm 8. To

enable fair comparison with existing literature, we choose λ = 1 to eliminate the error due

to using generalized importance sampling ratios. Note that λ = 1 implies Ebias = 0 (and

hence N2 = 0) in Theorem 10.2.1.

Corollary 10.2.1. For a given accuracy level ϵ > 0, to achieve E[∥Q∗−QπT ∥∞] ≤ ϵ+N1,
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the number of samples (e.g. the integer TK) required is of the size

O
(
log3(1/ϵ)

ϵ2

)
Õ
(

L2n

(1− γ)7(1− γc)3λ3min

)
.

Notably, we obtain Õ(ϵ−2) sample complexity for policy-based methods, which matches

with the sample complexity of value-based algorithms such asQ-learning [134]. In the case

of β3-NPG update, to our knowledge, [178, 163] establishes the Õ(ϵ−2) sample complexity

of on-policy NAC under regularization, and [141] establishes the Õ(ϵ−3) sample complex-

ity of a variant of off-policy NAC (where the infamous deadly triad is present). We improve

the sample complexity in [141] by a factor of ϵ−1, and we do not use regularization.

In addition to the dependence on ϵ, the dependence on 1/(1 − γ) (which is usually

called the effective horizon) is also improved by a factor of 1/(1− γ) compared to existing

work [177, 141]. The bootstrapping parameter n appears linearly in our sample complexity

bound. This matches with the results for n-step TD-learning in the on-policy tabular setting

[16].

10.3 Proof Sketch of Theorem 10.2.1

We first introduce some notation. Let H : R|S||A| 7→ R|S||A| be the Bellman optimality

operator defined by [H(Q)](s, a) = R(s, a) + γE[maxa′∈AQ(Sk+1, a
′) | Sk = s, Ak = a]

for all (s, a), and let Hπ : R|S||A| 7→ R|S||A| be the Bellman operator associated with policy

π defined by [Hπ(Q)](s, a) = R(s, a) + γEπ[Q(Sk+1, Ak+1) | Sk = s, Ak = a] for all

(s, a).

The key to prove Theorem 10.2.1 is the following proposition.

Proposition 10.3.1. Consider {πT} of Algorithm 8. The following inequality holds for any

T ≥ 0:

E[∥Q∗ −QπT ∥∞] ≤ γT∥Q∗ −Qπ0∥∞ A1
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+
2γ

1− γ

T−1∑
i=0

γT−1−iE[∥Qπi − Φwi∥∞] A2

+
2γ

1− γ

T−1∑
i=0

γT−1−iE[∥Hπi+1
(Φwi)−H(Φwi)∥∞]. A3

In light of Proposition 10.3.1, to proceed and establish finite-sample bound of Algo-

rithm 8, it remains to control the terms A2 and A3 when the policy evaluation algorithm

and the policy update rule are specified. Specifically, we control A2 by using Theorem

Theorem 9.4.1, and control A3 by using Condition 10.2.1 on the parameters β1, β2, and β3

for various policy update rules. See the next section for more details.

Before we present the key steps to prove Proposition 10.3.1, consider a special case of

tabular RL, and choosing c(s, a) = ρ(s, a) = π(a|s)
πb(a|s)

in Algorithm 7. Note that the term

A2 vanishes. Since the term A3 can be made arbitrarily small by using large enough β,

Proposition 10.3.1 implies geometric convergence for NPG. The geometric convergence

of NPG was previously established in [178, 163] under regularization, and in [179] in the

asymptotic region. We do not require regularization to establish the result, and our result

holds for all T ≥ 0.

Next we present the proof sketch of Proposition 10.3.1. In most of the existing lit-

erature, for policy-based type of algorithms, the analysis is usually based on the mirror

descent analysis in optimization [43], where the KL-divergence was chosen as a poten-

tial/Lyapunov function, and the performance difference lemma was extensively used [177,

178]. To establish Proposition 10.3.1, we use a completely different approach, where we

only exploit the contraction and the monotonicity of the Bellman operators Hπ(·) and H(·).

Such proof technique was inspired by [11] Section 6.2. However, only asymptotic error

bound of approximate policy iteration was established in [11], while we establish finite-

sample bounds for various policy update rules. Proposition 10.3.1 builds on the following

two lemmas.
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Lemma 10.3.1. It holds for all t ≥ 0 that

max
s,a

(Qπt(s, a)−Qπt+1(s, a)) ≤
2γ∥Qπt − Φwt∥∞ + ∥Hπt+1(Φwt)−H(Φwt)∥∞

1− γ
.

Lemma 10.3.2. It holds for all t ≥ 0 that

∥Q∗ −Qπt+1∥∞ ≤ γ∥Q∗ −Qπt∥∞ +
2γ∥Qπt − Φwt∥∞ + ∥Hπt+1(Φwt)−H(Φwt)∥∞

1− γ
.

Proposition 10.3.1 then follows by repeatedly using Lemma 10.3.2 and then taking

expectation on both sides of the resulting inequality.

10.4 Proof of All Theoretical Results

10.4.1 Proof of Theorem 10.2.1

We begin with the result of Proposition 10.3.1:

E[∥Q∗ −QπT ∥∞] ≤ γT∥Q∗ −Qπ0∥∞ +
2γ

1− γ

T−1∑
i=0

γT−1−iE[∥Qπi − Φwi∥∞]︸ ︷︷ ︸
A2

+
2γ

1− γ

T−1∑
i=0

γT−1−iE[∥Hπi+1
(Φwi)−H(Φwi)∥∞]︸ ︷︷ ︸

A3

. (10.3)

The Term A2

To control the term A2, using triangle inequality and we have for any 0 ≤ i ≤ T − 1:

E[∥Qπi − Φwi∥∞] ≤ E[∥Qπi − Φwπi
c,ρ + Φwπi

c,ρ − Φwi∥∞]

≤ E[∥Qπi − Φwπi
c,ρ∥∞] + E[∥Φ(wπi

c,ρ − wi)∥∞]

≤ E[∥Qπi − Φwπi
c,ρ∥∞] + ∥Φ∥∞E[∥wπi

c,ρ − wi∥∞]
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≤ E[∥Qπi − Φwπi
c,ρ∥∞] + E[∥wπi

c,ρ − wi∥∞]

≤ E[∥Qπi
c,ρ − Φwπi

c,ρ∥∞] + E[∥Qπi
c,ρ −Qπi∥∞] + E[∥wπi

c,ρ − wi∥∞]

(∥Φ∥∞ ≤ 1)

≤ Eapprox +
γ

(1− γ)2
max
s∈S

(1− λ(s))∥πi(·|s)− πb(·|s)∥1

+ E[∥wπi
c,ρ − wi∥∞] (10.4)

≤ Eapprox +
γ

(1− γ)2
Ebias + E[∥wπi

c,ρ − wi∥∞]. (10.5)

It remains to control E[∥wπi
c,ρ − wi∥∞]. For any 0 ≤ i ≤ T − 1, we have by Theorem 9.4.1

that

E[∥wπi
c,ρ − wi∥∞] ≤ E[∥wπi

c,ρ − wi∥2]

≤ (E[∥wπi
c,ρ − wi∥22])1/2 (Jensen’s Inequality)

≤ c1,i(1− (1− γc)λminα)
1
2
[K−(tα+n+1)] + c2,i

[α(tα + n+ 1)]1/2
√
1− γc

√
λmin

,

where the last line follows from
√
a+ b ≤

√
a+

√
b for any a, b ≥ 0, and c1,i = ∥wπi

c,ρ∥2+1

and c2,i = 11.5L(∥wπi
c,ρ∥2 + 1). To further control the constants c1,i and c2,i, note that we

have for any policy π that

∥wπ
c,ρ∥2 ≤

1√
λmin

∥Φwπ
c,ρ∥KSA

≤ 1√
λmin

(
∥Qπ

c,ρ∥KSA
+

1√
1− γ2c (1− γ)

)

≤ 1√
λmin

(
1

1− γ
+

1√
1− γ2c (1− γ)

)

≤ 2√
λmin(1− γ)

√
1− γc

.

Therefore we have c1,i ≤ 3√
λmin(1−γ)

√
1−γc

and c2,i ≤ 35L√
λmin(1−γ)

√
1−γc

for any 0 ≤ i ≤ T−1.

Substituting the upper bound we obtained for E[∥wπi
c,ρ − wi∥∞] into Equation 10.5 and we
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have for any 0 ≤ i ≤ T − 1:

E[∥Qπi − Φwi∥∞] ≤ Eapprox +
γ

(1− γ)2
Ebias

+
3√

λmin(1− γ)
√
1− γc

(1− (1− γc)λminα)
1
2
[K−(tα+n+1)]

+
35L[α(tα + n+ 1)]1/2

(1− γ)(1− γc)λmin

.

Finally, using the previous inequality and we obtain the following bound on the term A2:

A2 =
2γ

1− γ

T−1∑
i=0

γT−1−iE[∥Qπi − Φwi∥∞]

≤
2γEapprox

(1− γ)2
+

2γ2Ebias

(1− γ)4
+ 6c̃(1− (1− γc)λminα)

1
2
[K−(tα+n+1)]

+
70c̃L[α(tα + n+ 1)]1/2√

λmin

√
1− γc

,

where c̃ = γ√
λmin

√
1−γc(1−γ)3

.

The Term A3

Now consider the term A3, whose upper bound depends on which policy update rule we

use.

1/β1-Greedy Update For simplicity of notation, denote Qt = Φwt. Then we have for

any 0 ≤ t ≤ T − 1 and state-action pair (s, a) that

0 ≤ [H(Qt)](s, a)− [Hπt+1(Qt)](s, a)

=

[
R(s, a) + γ

∑
s′∈S

Pa(s, s
′)Qt(s

′, at,s′)

]
(Recall that at,s′ = argmaxa′∈AQt(s

′, a′))

−
{
R(s, a) + γ

∑
s′∈S

Pa(s, s
′)

[(
1− 1

β1(t, s′)
+

1

|A|β1(t, s′)

)
Qt(s

′, at,s′)

+
∑

a′ ̸=at,s′

1

|A|β1(t, s′)
Qt(s

′, a′)

]}
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= γ
∑
s′

Pa(s, s
′)

( 1

β1(t, s′)
− 1

|A|β1(t, s′)

)
Qt(s

′, at,s′)−
∑

a′ ̸=at,s′

1

|A|β1(t, s′)
Qt(s

′, a′)


≤ γ

∑
s′

Pa(s, s
′)

2

β1(t, s′)
max
a′∈A

|Qt(s
′, a′)|

≤ β,

where the last line follows from β1(t, s) ≥ 2γ
β
maxa∈A |Qt(s, a)| for all s ∈ S (cf. Condi-

tion 10.2.1). Therefore, we have

A3 ≤
2γ

1− γ

T−1∑
i=0

γT−1−iβ ≤ 2γβ

(1− γ)2
.

β2-Softmax Update The following lemma is needed for us to control the term A3.

Lemma 10.4.1. For any x ∈ Rd and y ∈ ∆d satisfying yi > 0 for all i, denote imax =

argmax1≤i≤d xi, then the following inequality holds for any β > 0:

max
1≤i≤d

xi −
∑d

i=1 xiyie
βxi∑d

j=1 yje
βxj

≤ 1

β
log

(
1

yimax

)
.

Proof of Lemma 10.4.1. For any β > 0, consider the function hβ : Rd 7→ R defined by

hβ(x) =
1

β
log

(
d∑

i=1

yie
βxi

)
.

Assume without loss of generality that imax = 1. Then it is clear that hβ(x) ≤ x1. On the

other hand, we have

x1 ≤
1

β
log

(
d∑

i=1

yi
y1
eβxi

)
= hβ(x) +

1

β
log

(
1

y1

)
. (10.6)

Since it is well-known that hβ(x) is a convex differentiable function, we have for any

201



x ∈ Rd that hβ(0)− hβ(x) ≥ ⟨∇hβ(x),−x⟩, which implies

⟨∇hβ(x), x⟩ =
∑d

i=1 xiyie
βxi∑d

j=1 yje
βxj

≥ hβ(x)− hβ(0) = hβ(x). (10.7)

Using Equation 10.6 and Equation 10.7 and we finally obtain

max
1≤i≤d

xi −
∑d

i=1 xiyie
βxi∑d

j=1 yje
βxj

≤ x1 − hβ(x) ≤
1

β
log

(
1

y1

)
.

We now proceed to control the term A3 when using the β2-softmax update. For any

0 ≤ t ≤ T − 1 and state-action pair (s, a), we have

0 ≤ [H(Qt)](s, a)− [Hπt+1(Qt)](s, a)

= γ
∑
s′

Pa(s, s
′)

(
max
a′∈A

Qt(s
′, a′)−

∑
a′∈A

exp(β2Qt(s
′, a′))∑

a′′∈A exp(β2Qt(s′, a′′)
Qt(s

′, a′)

)

= γ
∑
s′

Pa(s, s
′)

(
max
a′∈A

Qt(s
′, a′)−

∑
a′∈A

exp(β2Qt(s
′, a′))/|A|∑

a′′∈A exp(β2Qt(s′, a′′)/|A|
Qt(s

′, a′)

)

≤ γ

β2
log(|A|) (Lemma 10.4.1)

≤ β,

where the last line follows from β2 ≥ γ
β
log(|A|). Therefore, we have

A3 ≤
2γ

1− γ

T−1∑
i=0

γT−1−iβ ≤ 2γβ

(1− γ)2
.

β3-NPG Update Recall that β3-NPG updates the policy according to

πt+1(a|s) =
πt(a|s) exp(β3(t)Qt(s, a))∑

a′∈A πt(a
′|s) exp(β3(t)Qt(s, a′))

, ∀ (s, a).
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Therefore, for any 0 ≤ t ≤ T − 1 and state-action pair (s, a), we have

0 ≤ [H(Qt)](s, a)− [Hπt+1(Qt)](s, a)

= γ
∑
s′

Pa(s, s
′)

(
max
a′∈A

Qt(s
′, a′)−

∑
a′∈A

πt(a
′|s′) exp(β3(t)Qt(s

′, a′))∑
a′′∈A πt(a

′′|s′) exp(β3(t)Qt(s′, a′′)
Qt(s

′, a′)

)

≤ γ

β3(t)
log

(
1

πt(at,s′|s′)

)
≤ β,

where the last line follows from β3(t) ≥ γ
β
log(1/mins∈S πt(at,s|s)). Therefore, we have

A3 ≤
2γ

1− γ

T−1∑
i=0

γT−1−iβ ≤ 2γβ

(1− γ)2
.

10.4.2 Putting Together

Using the upper bounds we obtained for the terms A2 and A3 in Equation 10.3 and we have

for any K ≥ tα + n+ 1 and T ≥ 0 that

E[∥Q∗ −QπT ∥∞] ≤ γT∥Q∗ −Qπ0∥∞ +
2γEapprox

(1− γ)2
+

2γ2Ebias

(1− γ)4

+ 6c̃(1− (1− γc)λminα)
1
2
[K−(tα+n+1)]

+
70c̃L[α(tα + n+ 1)]1/2√

λmin

√
1− γc

+
2γβ

(1− γ)2
,

where c̃ = γ√
λmin

√
1−γc(1−γ)3

.

10.4.3 Proof of Lemma 10.3.1

For simplicity of notation, denote δt = maxs,a(Q
πt(s, a)−Qπt+1(s, a)). Then we have by

definition of δt that Qπt+1 ≥ Qπt − δt1. Using the monotonicity of the Bellman operator
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[11, Lemma 2.1 and Lemma 2.2] and we have

Qπt+1 = Hπt+1(Q
πt+1) ≥ Hπt+1(Q

πt − δt1) = Hπt+1(Q
πt)− γδt1.

It follows that

Qπt −Qπt+1

≤ Qπt −Hπt+1(Q
πt) + γδt1

= Qπt −Hπt+1(Q
πt) +Hπt+1(Qt)−Hπt+1(Qt) +H(Qt)−H(Qt) + γδt1

≤ Hπt(Q
πt)−Hπt(Qt)−Hπt+1(Q

πt) +Hπt+1(Qt)−Hπt+1(Qt) +H(Qt) + γδt1

≤ 2γ∥Qπt −Qt∥∞1+ ∥Hπt+1(Qt)−H(Qt)∥∞1+ γδt1.

Therefore, we have

δt ≤ 2γ∥Qπt −Qt∥∞ + ∥Hπt+1(Qt)−H(Qt)∥∞ + γδt,

which implies

δt ≤
2γ∥Qπt −Qt∥∞ + ∥Hπt+1(Qt)−H(Qt)∥∞

1− γ
.

10.4.4 Proof of Lemma 10.3.2

For simplicity of notation, denote ζt = maxs,a(Q
∗(s, a) − Qπt(s, a)) = ∥Q∗ − Qπt∥∞.

Then we have by definition of ζt that Qπt ≥ Q∗ − ζt1. Using the monotonicity of the

Bellman operator and we have

Qπt+1 = Hπt+1(Q
πt+1)

≥ Hπt+1(Q
πt −max

s,a
(Qπt(s, a)−Qπt+1(s, a))1)
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= Hπt+1(Q
πt)− γmax

s,a
(Qπt(s, a)−Qπt+1(s, a))1

≥ Hπt+1(Q
πt)−

2γ2∥Qπt −Qt∥∞ + γ∥Hπt+1(Qt)−H(Qt)∥∞
1− γ

1, (10.8)

where the last line follows from Lemma 10.3.1. We next control Hπt+1(Q
πt) from below

in the following. Again by monotonicity of the Bellman operator we have

Hπt+1(Q
πt) ≥ Hπt+1(Qt − ∥Qt −Qπt∥∞1)

= Hπt+1(Qt)− γ∥Qt −Qπt∥∞1

= Hπt+1(Qt)−H(Qt) +H(Qt)− γ∥Qt −Qπt∥∞1

≥ Hπt+1(Qt)−H(Qt) +H(Qπt − ∥Qt −Qπt∥∞1)− γ∥Qt −Qπt∥∞1

= Hπt+1(Qt)−H(Qt) +H(Qπt)− 2γ∥Qt −Qπt∥∞1

≥ Hπt+1(Qt)−H(Qt) +H(Q∗ − ζt1)− 2γ∥Qt −Qπt∥∞1

= Hπt+1(Qt)−H(Qt) +H(Q∗)− γζt1− 2γ∥Qt −Qπt∥∞1

≥ −∥Hπt+1(Qt)−H(Qt)∥∞1+Q∗ − γζt1− 2γ∥Qt −Qπt∥∞1.

Using the previous inequality in Equation 10.8 and we have

Qπt+1 −Q∗ ≥ −γζt1−
2γ∥Qπt −Qt∥∞ + ∥Hπt+1(Qt)−H(Qt)∥∞

1− γ
1,

which implies

ζt+1 ≤ γζt +
2γ∥Qπt −Qt∥∞ + ∥Hπt+1(Qt)−H(Qt)∥∞

1− γ
.

10.5 Conclusion and Future Work

In this chapter, we focus on general policy-based methods under off-policy sampling and

linear function approximation, and establish an Õ(ϵ−2) sample complexity, which matches
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with the sample complexity of value-based algorithms such as Q-learning. Note that our

generic algorithm is a two-loop algorithm, while in practical applications, two time-scale

algorithms are more preferred. However, analyzing two time-scale algorithms is funda-

mentally more challenging, and the state-of-the-art sample complexity there is worse than

that of two-loop type of algorithms. Studying two time-scale AC algorithms and getting

improved sample complexity are interesting future directions.
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CHAPTER 11

Q-LEARNING WITH LINEAR FUNCTION APPROXIMATION

11.1 Introduction

Recall from Chapter 8 that the goal of Q-learning is to learn the optimal Q-function Q∗,

and once Q∗ is obtained, we can immediately find an optimal policy by computing π∗(s) ∈

argmaxa′∈AQ
∗(s, a′) for all s ∈ S. While Q-learning provably converges, due to the fact

that Q-learning performs asynchronous update, it lacks computational tractability when

the size of the state-action space is large. In this chapter, to overcome the aforementioned

computational challenge, we consider Q-learning with linear function approximation.

We begin by describing the linear parametric architecture. Let ϕi ∈ R|S||A|, i =

1, 2, ..., d, be a set of basis vectors, and denote ϕ(s, a) = (ϕ1(s, a), · · · , ϕd(s, a)) ∈ Rd

for all (s, a), which can be viewed as the feature associated with state-action pair (s, a).

We assume without loss of generality that the basis vectors {ϕi}1≤i≤d are linearly inde-

pendent, and are normalized so that ∥ϕ(s, a)∥2 ≤ 1 for all (s, a). Let the feature matrix

Φ ∈ R|S||A|×d be defined by

Φ =


| |

ϕ1 ... ϕd

| |

 =


— ϕ(s1, a1)

⊤ —

... ... ...

— ϕ(s|S|, a|A|)
⊤ —

 .

Using the feature matrix Φ, the linear sub-space spanned by {ϕi}1≤i≤d can be compactly

written as W = {Qθ ∈ R|S||A| | Qθ = Φθ, θ ∈ Rd}. The goal of Q-learning with linear

function approximation is to design a stable algorithm that provably finds an approximation

of the optimal Q-function Q∗ from the linear sub-space W .
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11.2 Classical Semi-Gradient Q-Learning with Linear Function Approximation

In this section, we present the classical Q-learning algorithm under linear function approx-

imation [11], and provide its finite-sample bounds.

11.2.1 The Algorithm

We begin with the semi-gradient Q-learning algorithm presented in the following.

Algorithm 9 Classical Semi-Gradient Q-Learning with Linear Function Approximation

1: Input: Integer K, initialization θ0 ∈ Rd, and behavior policy πb
2: for k = 0, 1, · · · , K − 1 do
3: Sample Ak ∼ πb(·|Sk), observe Sk+1 ∼ PAk

(Sk, ·)
4: θk+1 = θk + αkϕ(Sk, Ak)(R(Sk, Ak) + γmaxa′∈A ϕ(Sk+1, a

′)⊤θk − ϕ(Sk, Ak)
⊤θk)

5: end for
6: Output: θK

The reason that Algorithm 9 is called semi-gradient Q-learning is that it can be inter-

preted as a one step stochastic semi-gradient descent for minimizing the projected Bellman

error. See [11] for more details.

Alternatively, Algorithm 9 can be viewed as an SA algorithm for solving the equation

EκS ,πb

[
ϕ(S,A)(R(S,A) + γmax

a′∈A
ϕ(S ′, a′)⊤θ − ϕ(S,A)⊤θ)

]
= 0, (11.1)

where κS stands for the stationary distribution of the Markov chain {Sk} under policy

πb (provided that it exists and is unique). Under some mild conditions, Equation 11.1

is equivalent to a so-called projected Bellman equation [180]. In the special case where

the feature matrix Φ is an identity matrix, Algorithm 9 reduces to the tabular Q-learning

algorithm, and Equation 11.1 becomes the regular Bellman equation for Q∗.

In general, Equation 11.1 may not necessarily admit a solution [181], and the iteration

in Algorithm 9 may diverge [8]. However, it was shown in [180] that under an assumption

on the behavior policy πb, θk converges to the solution of Equation 11.1, denoted by θ∗,
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almost surely. In this chapter, we work with a similar condition, and focus on establishing

the finite-sample bounds of Algorithm 9. We begin by stating our assumptions.

Assumption 11.2.1. The behavior policy πb satisfies πb(a|s) > 0 for all (s, a), and the

Markov chain {Sk} induced by πb is irreducible and aperiodic.

Assumption 11.2.1 essentially requires that the behavior policy πb has enough ex-

ploration, and is standard in studying off-policy value-based RL algorithms [92, 135].

Under Assumption 11.2.1, the Markov chain {Sk} has a unique stationary distribution,

which we have denoted by κS . In addition, since the state-space S is finite, the Markov

chain {Sk} mixes geometrically fast in that there exist C ≥ 1 and σ ∈ (0, 1) such that

maxs∈S ∥P k
πb
(s, ·)− κS(·)∥TV ≤ Cσk for all k ≥ 0 [48].

Assumption 11.2.2. The target equation (cf. Equation 11.1) has a unique solution θ∗, and

there exists κ > 0 such that the following inequality holds for all θ ∈ Rd:

γ2EκS
[max
a∈A

Qθ(S, a)
2]− EκS ,πb

[Qθ(S,A)
2] ≤ −κ∥θ∥22. (11.2)

We make Assumption 11.2.2 and especially Equation 11.2 to ensure the stability of

Algorithm 9, which is in the same spirit to the conditions proposed in [180]. A detailed

discussion about this assumption and comparison to related conditions are presented in

Subsection 11.2.3.

11.2.2 Finite-Sample Guarantees

To establish the finite-sample guarantees of Algorithm 9 using our SA results, we begin

by modeling Algorithm 9 in the form of the SA algorithm presented in Chapter 3 (cf.

Algorithm 2).

Define Yk = (Sk, Ak, Sk+1) for all k ≥ 0. It is clear that {Yk} is also a Markov chain

with finite state-space Y = {(s, a, s′) | s ∈ S, πb(a|s) > 0, Pa(s, s
′) > 0}. Moreover,
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under Assumption 11.2.1, the Markov chain {Yk} also has a unique stationary distribu-

tion, which we denote by µY , and is given by µY (s, a, s
′) = κS(s)πb(a|s)Pa(s, s

′) for all

(s, a, s′) ∈ Y . Define an operator F : Rd × Y 7→ Rd by

F (θ, y) = F (θ, s, a, s′) = ϕ(s, a)

(
R(s, a) + γmax

a′∈A
ϕ(s′, a′)⊤θ − ϕ(s, a)⊤θ

)
(11.3)

for all θ and y = (s, a, s′) ∈ Y . Then the update equation of Algorithm 9 can be written

in the same form as Algorithm 2 with the additive noise wk being identically equal to zero.

Let F̄ (θ) = EµY
[F (θ, Y )]. We see that F̄ (θ) = 0 is exactly the targeting equation (cf.

Equation 11.1).

To apply Theorem Theorem 3.2.1, we first show in the following proposition that As-

sumptions 3.1.1 and 3.1.2 are satisfied in the context of Q-learning with linear function

approximation.

Proposition 11.2.1. Suppose that Assumptions 11.2.1 and 11.2.2 are satisfied, then we

have the following results.

(1) The Markov chain {Yk} has a unique stationary distribution µY . In addition, we

have maxy∈Y ∥P k+1
πb

(y, ·)− µY (·)∥TV ≤ Cσk for all k ≥ 0.

(2) The operator F (·, ·) satisfies

(a) ∥F (θ1, y)− F (θ2, y)∥2 ≤ 3∥θ1 − θ2∥2 for all θ1, θ2 ∈ Rd and y ∈ Y .

(b) ∥F (0, y)∥2 ≤ 3 for all y ∈ Y .

(3) The equation F̄ (θ) = 0 has a unique solution θ∗, and we have

(θ − θ∗)⊤(F̄ (θ)− F̄ (θ∗)) ≤ −κ
2
∥θ − θ∗∥22, ∀ θ ∈ Rd.

Similarly as in previous chapters, given precision δ > 0, we define tδ as the mixing

time of the Markov chain {Yk} with precision δ > 0. Observe that Proposition 11.2.1 (1)
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implies that there exists a constant L1 = log(C/σ)
log(1/σ)

such that tδ ≤ L1(log(1/δ) + 1) for any

δ > 0.

We next use Theorem Theorem 3.2.1 to establish the finite-sample bounds of Algo-

rithm 9. Let c1 = (∥θ0∥2 + ∥θ0 − θ∗∥2 + 1)2 and c2 = 1170(∥θ∗∥2 + 1)2. The following

theorem is a direct implication of Theorem Theorem 3.2.1, hence we omit its proof.

Theorem 11.2.1. Consider {θk} of Algorithm 9. Suppose that Assumptions 11.2.1 and

11.2.2 are satisfied, Then we have the following results.

(1) When αk ≡ α with α chosen such that αtα ≤ κ
2340

, we have for all k ≥ tα:

E[∥θk − θ∗∥22] ≤ c1

(
1− κα

2

)k−tα
+ 2c2

αtα
κ
.

(2) When αk = α/(k + h), where α > 2/κ and h is appropriatly chosen, there exists

K ′ > 0 such that we have for all k ≥ K ′:

E[∥θk − θ∗∥22] ≤ c1

(
K ′ + h

k + h

)κα
2

+
16ec2α

2L1

κα− 2

[
log
(
k+h
α

)
+ 1
]

k + h
.

(3) When αk = α/(k + h)ξ, where ξ ∈ (0, 1), α > 0, and h is appropriatly chosen, there

exists K ′ ≥ [4ξ/(κα)]1/(1−ξ) such that we have for all k ≥ K ′:

E[∥θk − θ∗∥22] ≤ c1e
− κα

2(1−ξ)((k+h)1−ξ−(K′+h)1−ξ) +
8c2αL1

κ

[log
(
k+h
α

)
+ 1]

(k + h)ξ
.

Theorem 11.2.1 (1) is qualitatively similar to Corollary 3.2.1 (1) in that the iterates of

Q-learning converge exponentially fast to a ball centered at θ∗, and the size of the ball is

proportional to αtα. This agrees with results in [12, 40], where the popular TD-learning

with linear function approximation algorithm was studied. Theorem 11.2.1 (2) suggests

that for properly chosen diminishing stepsizes, the optimal convergence rate is roughly

O(log(k)/k). The log(k) factor is a consequence of performing Markovian sampling of

{(Sk, Ak)}.
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11.2.3 Discussion

In this subsection, we take a closer look at Assumption 11.2.2 and especially Equation 11.2,

which is made for the stability of the Q-learning with linear function approximation algo-

rithm. First note that Equation 11.2 is equivalent to

γ2EκS
[max
a∈A

Qθ(S, a)
2] < EκS ,πb

[Qθ(S,A)
2] (11.4)

for all nonzero θ. The direction Equation 11.2 implying Equation 11.4 is trivial. As for the

other direction, let

κ = − max
θ:∥θ∥2=1

{γ2EκS
[max
a∈A

Qθ(S, a)
2]− EκS ,πb

[Qθ(S,A)
2]}.

By Weierstrass extreme value theorem [182], κ is well-defined and strictly positive because

it is the maximum of a continuous function over a compact set. This immediately gives

Equation 11.2.

Similar assumptions on the behavior policy were also proposed in [180, 183]. Although

the exact form of the conditions are different, they all follow the same spirit. That is, with a

chosen Lyapunov function, the condition should enable us to show that the corresponding

ODE

θ̇(t) = F̄ (θ(t)) (11.5)

of the Q-learning algorithm (cf. Algorithm 9) is globally asymptotically stable (GAS). We

next briefly compare our condition to those proposed in [180, 183]. The condition in [180]

(i.e., their Eq. (7)) implies

2γ2EκS
[(max

a∈A
Qθ(S, a))

2] < EκS ,πb
[Qθ(S,A)

2] (11.6)
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for all nonzero θ 1. The RHS is the same for both Equation 11.6 and Equation 11.4. On

the LHS, Equation 11.6 has an additional factor of 2, and the square is outside the max

operator. Although they are similar, our condition and the condition proposed in [180] do

not imply each other. As for the condition proposed in [183], while it is not clear if it is less

restrictive than ours, it is shown that the condition in [183] implies the condition in [180]

under more restrictive assumptions. However, [183] assumes i.i.d. sampling, and studies

only the asymptotic convergence rather than finite-sample error bounds.

We next analyze how the discount factor, the basis vectors {ϕi}, and the behavior policy

πb impact Equation 11.4. In terms of the dependence on the discount factor, it is clear that

Equation 11.4 is easier to satisfy for smaller discount factor. This agrees with our numerical

simulations provided in the next subsection. Utility of smaller discount factors in RL was

also noted in [184], albeit in a completely different context of generalization. To see the

impact of the basis vectors and the behavior policy, consider the following two examples.

Uni-Dimension Case. Suppose that d = 1. That is, there is only one basis vector ϕ1,

and the weight θ is a scalar. Equation 11.4 reduces to

γ2EκS
[max
a∈A

ϕ(S, a)2] < EκS ,πb
[ϕ(S,A)2]. (11.7)

Define

h+ = EκS ,πb
[γϕ(S,A)max

a′∈A
ϕ(S ′, a′)− ϕ(S,A)2],

h− = EκS ,πb
[γϕ(S,A)min

a′∈A
ϕ(S ′, a′)− ϕ(S,A)2],

and rπ = EκS ,πb
[ϕ(S,A)R(S,A)]. Then we have the following result.

Proposition 11.2.2. Equation 11.7 implies h+ < 0 and h− < 0, and the following state-

ments regarding the relation between the stability of ODE (cf. Equation 11.5) and the sign

1The factor of 2 appears to be missing in [180].
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of h+ and h− hold:

ODE (cf. Equation 11.5) is GAS ⇐⇒


h+ < 0, h− < 0, when rπ = 0,

h+ < 0, h− ≤ 0, when rπ > 0,

h+ ≤ 0, h− < 0, when rπ < 0.

Proposition 11.2.2 implies that Equation 11.7 is “almost necessary” for the GAS of the

ODE given in Equation 11.5. Moreover, it is clear from Equation 11.7 that when d = 1,

there always exists a behavior policy πb such that Equation 11.7 is satisfied. For example,

πb(s) ∈ argmaxa∈A ϕ(s, a)
2 is a feasible behavior policy.

Full-Dimension Case. Suppose that d = |S||A|, i.e., there is no dimension reduction at

all. We want to emphasize that this is not equivalent to the tabular Q-learning. Even when

Φ is a full-rank square matrix, theQ-learning with linear function approximation algorithm

does not coincide with the tabular Q-learning algorithm. In fact, the divergence counter-

example provided in [8] belongs to this setting. We show in the following proposition that,

in the full-dimension case, Equation 11.4 is feasible in terms of the behavior policy πb only

when the discount factor γ is sufficiently small.

Proposition 11.2.3. When d = |S||A| and γ2 ≥ 1/|A|, Equation 11.4 is infeasible for any

behavior policy πb.

We now compare the results for the two extreme cases, i.e., d = 1 and d = |S||A|.

We see that in the uni-dimensional case, Equation 11.4 implies a condition which is almost

sufficient and necessary for the GAS of the equilibrium θ∗ to ODE given in Equation 11.5.

Moreover, there always exists a behavior policy πb satisfying Equation 11.4. However, in

the full-dimensional case, Equation 11.4 is infeasible in terms of the behavior policy πb

when γ2 ≥ 1/|A|, which can usually happen in practice.
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11.2.4 Numerical Simulations

In this subsection, we present numerical experiments to demonstrate the sufficiency of

Equation 11.4, as well as the resulting convergence rates of the Q-learning with linear

function approximation algorithm.

We begin by verifying the sufficiency of Equation 11.2. Let

ω(π) = min
{θ:∥θ∥2=1}

EκS ,πb
[Qθ(S,A)

2]

EκS
[maxa∈AQθ(S, a)2]

. (11.8)

Then Equation 11.2 is equivalent to ω(π) > γ2. One way to compute ω(π) is presented in

Subsection 11.3.4.

In our simulation, we consider the divergent example of Q-learning with linear func-

tion approximation introduced in [8], which is an MDP with 7 states and 2 actions. To

demonstrate the effectiveness of Equation 11.2 for the stability of Q-learning, in our first

set of simulations, the reward function is set to zero. Since the reward function is identi-

cally zero, Q∗ is zero, implying θ∗ is zero. We choose the behavior policy π which takes

each action with equal probability. In this case, we have ω(π) ≈ 0.5, giving the threshold

for γ to satisfy Equation 11.2 being ω(π)1/2 ≈ 0.7. In our simulation, we choose constant

stepsize α = 0.01, discount factor γ ∈ {0.7, 0.9, 0.97}, and plot ∥θk∥2 as a function of the

number of iterations k in Figure 11.1. Here, θk converges when γ = 0.7, 0.9, but diverges

when γ = 0.97. This demonstrates that Equation 11.2 is sufficient but not necessary for

convergence. This also shows that when Equation 11.2 is satisfied, the counter-example

from [8] converges.

To show the exponential convergence rate for using constant stepsize, we consider the

convergence of θk when γ = 0.7 given in Figure 11.2, where we plot logE[∥θk∥22] as a

function of the number of iterations k. In this case, θk seems to converge geometrically,

which agrees with Theorem 11.2.1 (1).

We next numerically verify the convergence rates of Q-learning with linear function
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Figure 11.1: Convergence of Q-Learning with Linear Function Approximation for Differ-
ent Discount Factor γ

Figure 11.2: Exponentially Fast Convergence of Q-Learning with Linear Function Ap-
proximation for γ = 0.7

approximation for using diminishing stepsizes αk = α/(k + h)ξ. We use the same MDP

model and behavior policy. The only difference is that the reward is no longer set to zero,

but is sampled independently from a uniform distribution on (0, 1) for all state-action pairs.

The constant κ given in Equation 11.2 is estimated by numerical optimization, and the

discount factor γ is set to be 0.7 to ensure convergence. In Figure 11.3, we plot E[∥θk−θ∗∥22]

as a function of k for ξ ∈ {0.4, 0.6, 0.8, 1}. In the case where ξ = 1, the constant coefficient

α is chosen such that κα ≥ 2 in order to achieve the optimal convergence rate. We see that

the iterates converge for all ξ ∈ (0, 1]. Moreover, the larger the value of ξ is, the faster θk

converges.

216



Figure 11.3: Convergence for Diminishing Stepsizes

Figure 11.4: Asymptotic Convergence Rate for Diminishing Stepsizes

To further verify the convergence rates, we plot logE[∥θk − θ∗∥22] as a function of log k

in Figure 11.4 and look at its asymptotic behavior. We see that the slope is approximately

−ξ, which agrees with Theorem 11.2.1 (3).

11.3 Proof of All Theoretical Results

11.3.1 Proof of Proposition 11.2.1

(1) Under Assumption 11.2.2, it is easy to verify that the Markov chain {Yk} admits a

unique stationary distribution, which we have denoted by µY . In view of the definition of

Yk, it is clear that µY (s, a, s
′) = κS(s)π(a|s)Pa(s, s

′) for all (s, a, s′). Therefore, for any
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y = (s, a, s′) ∈ Y , we have by definition of the total variation distance that

∥P k+1
πb

(y, ·)− µY (·)∥TV =
1

2

∑
y0∈Y

∣∣P k+1
πb

(y, y0)− µY (y0)
∣∣

=
1

2

∑
(s0,a0,s1)∈Y

∣∣P k
πb
(s′, s0)− κS(s0)

∣∣ π(a0|s0)Pa0(s0, s1)

=
1

2

∑
(s0,a0,s1)∈Y

∣∣P k
πb
(s′, s0)− κS(s0)

∣∣
≤ ∥P k

πb
(s0, ·)− κS(·)∥TV

≤ Cσk

for all k ≥ 0. It follows that maxy∈Y ∥P k+1
πb

(y, ·)− µY (·)∥TV ≤ Cσk for all k ≥ 0.

(2) Using Cauchy-Schwarz inequality, and our assumption that ∥ϕ(s, a)∥1 ≤ 1 for all state-

action pairs, we have for any θ1, θ2 and y = (s, a, s′) that

∥F (θ1, y)− F (θ2, y)∥2

= ∥ϕ(s, a)(R(s, a) + γmax
a1∈A

ϕ(s′, a1)
⊤θ1 − ϕ(s, a)⊤θ1)

− ϕ(s, a)(R(s, a) + γmax
a2∈A

ϕ(s′, a2)
⊤θ2 − ϕ(s, a)⊤θ2)∥2

≤ γ∥ϕ(s, a)(max
a1∈A

ϕ(s′, a1)
⊤θ1 −max

a2∈A
ϕ(s′, a2)

⊤θ2)∥2

+ ∥ϕ(s, a)ϕ(s, a)⊤(θ1 − θ2)∥2

≤ γ|max
a1∈A

ϕ(s′, a1)
⊤θ1 −max

a2∈A
ϕ(s′, a2)

⊤θ2|+ ∥θ1 − θ2∥2.

Since

|max
a1∈A

ϕ(s′, a1)
⊤θ1 −max

a2∈A
ϕ(s′, a1)

⊤θ2| ≤ max
a′∈A

|ϕ(s′, a′)⊤(θ1 − θ2)| (11.9)

≤ max
a′∈A

∥ϕ(s′, a′)∥∥θ1 − θ2∥2
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≤ ∥θ1 − θ2∥2,

we have for any θ1, θ2 and y:

∥F (θ1, y)− F (θ2, y)∥2 ≤ (γ + 1)∥θ1 − θ2∥2 ≤ 2∥θ1 − θ2∥2.

Moreover, we have

∥F (0, y)∥2 = ∥ϕ(s, a)R(s, a)∥2 ≤ 2

for any y = (s, a, s′) ∈ Y .

(3) Using the fact that F̄ (θ∗) = 0, we have

(θ − θ∗)⊤(F̄ (θ)− F̄ (θ∗))

= γ(θ − θ∗)⊤EκS
[ϕ(S,A)(max

a1∈A
ϕ(S ′, a1)

⊤θ −max
a2∈A

ϕ(S ′, a2)
⊤θ∗)]

− EκS ,πb
[(ϕ(S,A)⊤(θ − θ∗))2]

≤ γEκS ,πb
[|ϕ(S,A)⊤(θ − θ∗)|max

a′∈A
|ϕ(S ′, a′)⊤(θ − θ∗)|]

− EκS ,πb
[(ϕ(S,A)⊤(θ − θ∗))2] (11.10)

≤ γ
√

EκS ,πb
[(ϕ(S,A)⊤(θ − θ∗))2]

√
EκS

[max
a∈A

(ϕ(S, a)⊤(θ − θ∗))2]

− EκS ,πb
[(ϕ(S,A)⊤(θ − θ∗))2]. (11.11)

Equation 11.10 follows from Equation 11.9. Equation 11.11 follows from the fact that

when S ∼ κS , we have S ′ ∼ κS . For simplicity of notation, denote

A =
√
EκS ,πb

[(ϕ(S,A)⊤(θ − θ∗))2], and B =
√

EκS
[max
a∈A

(ϕ(S, a)⊤(θ − θ∗))2].
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Since Assumption 11.2.2 gives γ2B2 − A2 ≤ −κ∥θ − θ∗∥2, we have

(θ − θ∗)⊤(F̄ (θ)− F̄ (θ∗)) ≤ γ2B2 − A2

γB/A+ 1
≤ −κ

2
∥θ − θ∗∥2.

11.3.2 Proof of Proposition 11.2.2

We first show that Equation 11.7 implies h+ < 0, and h− < 0. Note that Jensen’s inequality

implies

EκS
[max
a′∈A

ϕ(S, a′)2] = EκS

{
max

[
(max
a′∈A

ϕ(S, a′))2, (min
a′∈A

ϕ(S, a′))2
]}

≥ max

{
EκS

[(max
a′∈A

ϕ(S, a′))2],EκS
[(min
a′∈A

ϕ(S, a′))2]

}
. (11.12)

Thus, using Equation 11.7, we have

h+ = EκS ,πb
[γϕ(S,A)max

a′∈A
ϕ(S ′, a′)]− EκS

[ϕ(S,A)2]

= EκS ,πb
[γϕ(S,A)max

a′∈A
ϕ(S ′, a′)]−

√
EκS ,πb

[ϕ(S,A)2]EκS
[ϕ(S,A)2]

< EκS ,πb
[γϕ(S,A)max

a′∈A
ϕ(S ′, a′)]− γ

√
EκS ,πb

[max
a′∈A

ϕ(S, a′)2]EκS
[ϕ(S,A)2]

≤ 0,

where the last inequality follows from Cauchy-Schwarz inquality and the fact that S ′ and

S are equal in distribution if S ∼ κS . Similarly, we also have h− < 0.

We next prove the equivalence stated in Proposition 11.2.2. By definition of h+ and h−,

in uni-dimensional case, the ODE given in Equation 11.5 can be equivalently written as

θ̇(t) =


h+θ(t) + rπ, θ(t) ≥ 0,

h−θ(t) + rπ, θ(t) < 0.
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In the case where rπ = 0, it is easy to see that the ODE is globally asymptotically stable if

and only if h+, h− < 0. Now we assume without loss of generality that rπ > 0. The proof

for the other case is entirely similar.

Sufficiency: We first note that θ∗ = −rπ/h+ > 0. Let W (θ) = 1
2
(θ − θ∗)2 be a

candidate Lyapunov function. It is clear that W (θ) ≥ 0 for all θ ∈ R, and W (θ) = 0 if and

only if θ = θ∗. Moreover, we have

Ẇ (θ(t)) = (θ(t)− θ∗)θ̇(t)

=


h+(θ(t)− θ∗)2, θ(t) ≥ 0

(θ(t)− θ∗)(h−θ(t)− h+θ∗), θ(t) < 0.

It is clear that Ẇ (θ(t)) < 0 when θ(t) ∈ [0, θ∗)∪(θ∗,∞). For θ(t) < 0, since θ(t)−θ∗ < 0,

h+θ∗ = −rπ < 0, and h−θ(t) ≥ 0, we must also have Ẇ (θ(t)) < 0. Therefore, the

time derivative of the Lyapunov function W (θ) along the trajectory of the ODE is strictly

negative when θ(t) ̸= θ∗. It then follows from the Lyapunov stability theorem [91, 90] that

θ∗ is globally asymptotically stable.

Necessity: We prove by contradiction. Suppose that the equilibrium point θ∗ is globally

asymptotically stable, but h+ ≥ 0 or h− > 0. Suppose that h+ ≥ 0. When θ(0) >

max(0, θ∗), we have θ̇(t) = h+θ(t) + rπ ≥ rπ > 0. It follows that θ(t) > θ(0) > θ∗ for all

t ≥ 0, which contradict to the fact that θ∗ is a globally asymptotically stable equilibrium

point. Suppose that h− > 0. When θ(0) < min(θ∗,−(1 + rπ)/h
−), we have θ̇(t) =

h−θ(t) + rπ ≤ −1 < 0. It follows that θ(t) < θ(0) < θ∗ for all t ≥ 0, which also

contradict to the fact θ∗ being globally asymptotically stable.
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11.3.3 Proof of Proposition 11.2.3

When d = |S||A|, the feature matrix Φ is a square matrix. Define

Θs,a = span ({ϕ(s′, a′)|(s′, a′) ∈ S ×A, (s′, a′) ̸= (s, a)})⊥ .

Note that Θs,a exists for all state-action pairs since Φ is full rank. Now for a given state-

action pair (s, a), let θ ̸= 0 be in Θs,a, Equation 11.4 implies

γ2κS(s)(ϕ(s, a)
⊤θ)2 < κS(s)π(a|s)(ϕ(s, a)⊤θ)2,

which further gives γ2 < π(a|s). Therefore, by running (s, a) though all state-action pairs,

we have γ2 < min(s,a)∈S×A π(a|s) ≤ 1
|A| . Thus, if γ2 ≥ 1/|A|, there is no behavior policy

π that satisfies Equation 11.4.

11.3.4 Computing ω(π)

We here present one way to compute ω(π) for an MDP with a chosen policy π when the

underlying model is known. Before that, the following definitions are needed.

Definition 11.3.1. Let D ∈ R|S||A|×|S||A| be a diagonal matrix with diagonal entries being

{κS(s)πb(a|s)}(s,a)∈S×A, and let Σ = Φ⊤DΦ ∈ Rd×d, where Φ ∈ R|S||A|×d is the feature

matrix.

Definition 11.3.2. Let B = An ⊆ Rn be the set of all deterministic policies.

Definition 11.3.3. Let H ∈ Rn×n be a diagonal matrix with diagonal entries {κS(s)}s∈S ,

and let Σb = Φ⊤
b HΦb ∈ Rd×d, where Φb ∈ Rn×d (b ∈ B) is defined by:

Φb =


— ϕ(s1, b)

⊤ —

... ... ...

— ϕ(sn, b)
⊤ —

 .
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We now compute ω(π) given in the following lemma. Let λmax(·) return the largest

eigenvalue of a positive semi-definite matrix

Lemma 11.3.1. ω(π) = minb∈B
[
1/λmax(Σ

−1/2ΣbΣ
−1/2)

]
.

Proof of Lemma 11.3.1: Recall our definition for ω(π):

ω(π) = min
θ ̸=0

∑
s∈S κS(s)

∑
a∈A π(a|s)(ϕ(s, a)⊤θ)2∑

s∈S κS(s)maxa∈A(ϕ(s, a)⊤θ)2
· (11.13)

Let f(θ) be the numerator. Then we have

f(θ) =
∑
s∈S

κS(s)
∑
a∈A

π(a|s)(ϕ(s, a)⊤θ)2

= θ⊤Φ⊤DΦθ = θ⊤Σθ.

Since the diagonal entries of D are all positive, and Φ is full column rank, the matrix Σ

is symmetric and positive definite. To represent the denominator of Equation 11.13 in a

similar form, let

g(θ, b) =
∑
s

κS(s)(ϕ(s, b)
⊤θ)2

= θ⊤Φ⊤
b HΦbθ = θ⊤Σbθ,

where b ∈ B. Since the columns of Φb can be dependent, the matrix Σb is in general

only symmetric and positive semi-definite. Using the definition of f(θ) and g(θ, b), we can

rewrite ω(π) as

ω(π) = min
θ ̸=0

f(θ)

maxb∈B g(θ, b)

= min
θ ̸=0

min
b∈B

f(θ)

g(θ, b)

= min
b∈B

min
θ ̸=0

f(θ)

g(θ, b)
.
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Now since Σ is positive definite, Σ1/2 and Σ−1/2 are both well-defined and positive definite,

we have

min
θ ̸=0

f(θ)

g(θ, b)
=

[
max
θ ̸=0

g(θ, b)

f(θ)

]−1

=

[
max
θ ̸=0

θ⊤Σµ,bθ

θ⊤Σµ,πθ

]−1

=

(max
x ̸=0

∥Σ1/2
µ,bΣ

−1/2
µ,π x∥2

∥x∥2

)2
−1

=
1

λmax(Σ
−1/2
µ,π Σµ,bΣ

−1/2
µ,π )

.

It follows that

ω(π) = min
b∈B

[1/λmax(Σ
−1/2ΣbΣ

−1/2)].
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CHAPTER 12

TARGET NETWORK AND TRUNCATION OVERCOME THE DEADLY TRIAD

IN Q-LEARNING

12.1 Introduction

In the previous chapter, we studied the classical semi-gradient Q-learning algorithm un-

der linear function approximation, and established its finite-sample guarantees. However,

there are several limitations with the results. A major limitation is that we require 11.2.2

(which is highly restrictive) to establish the finite-sample bounds. In addition, there is no

characterization on where the limit point is relative to the optimal Q-function. Since classi-

cal Q-learning with linear function approximation has divergent counter-examples [8], the

divergence issue is not because of the artifact of proof. This motivates us to design new

variants of Q-learning under linear function approximation.

While theoretically unclear, it was empirically evident from [7] that the following three

ingredients: experience replay, target network, and truncation together overcome the di-

vergence ofQ-learning with function approximation. In this chapter, we show theoretically

that target network together with truncation is sufficient to provably stabilize Q-learning.

12.1.1 Main Contributions

The main contributions of this chapter are summarized in the following.

• Finite-Sample Guarantees. We establish finite-sample guarantees of the output of

Q-learning with target network and truncation to the optimal Q-function Q∗ up to a

function approximation error. This is the first variant of Q-learning with linear func-

tion approximation that is provably stable (without needing strong assumptions), and

uses a single trajectory of Markovian samples. The result implies an Õ(ϵ−2) sample
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complexity, which matches with the sample complexity of Q-learning in the tabular

setting, and is known to be optimal up to a logarithmic factor. The function approxi-

mation error in our finite-sample bound well captures the approximation power of the

chosen function class. In the special case of tabular setting, or assuming the function

class is closed under Bellman operator, our result implies asymptotic convergence in

the mean-square sense to the optimal Q-function Q∗.

• Broad Applicability. In existing literature, to stabilize Q-learning with linear func-

tion approximation, one usually requires strong assumptions on the underlying MDP

and/or the approximating function class. Those assumptions include but not limited

to the function class being complete with respect to the Bellman operator, the MDP

being linear (or close to linear), and a so-called strong negative drift assumption, etc.

In this work, we do not require any of those assumptions. Specifically, our result

holds as long as the policy used to collect samples enables the agent to sufficiently

explore the state-action space, which is to some extent a necessary requirement to

find an optimal policy in RL.

12.2 Related Literature

When using function approximation, the infamous deadly triad (i.e., function approxima-

tion, off-policy sampling, and bootstrapping) [1] appears in Q-learning, and the algorithm

can be unstable even when linear function approximation is used. This is evident from

the divergent MDP example constructed in [8]. Over the past 20 years, there are many

attempts to stabilize Q-learning with linear function approximation, which are summarised

in the following.

Strong Negative Drift Assumption. The asymptotic convergence of Q-learning with

linear function approximation was established in [180] under a “negative drift” assump-

tion. Under similar assumptions, the finite-sample analysis of Q-learning, as well as its

on-policy variant SARSA, was performed in [49, 185, 183, 186] for using linear function
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approximation, and in [187, 118] for using neural network approximation. However, such

negative drift assumption is highly artificial, highly restrictive, and is impossible to sat-

isfy unless the discount factor of the MDP is extremely small (see Chapter 11). In this

chapter, we do not require such negative drift assumption or any of its variants to stabilize

Q-learning with linear function approximation.

Modifying the Problem Discount Factor. Very recently, new convergent variants of

Q-learning with linear function approximation were proposed in [188, 189], where target

network was used in the algorithm. However, as we will see later in Section Subsec-

tion 12.5.3, target network alone is not sufficient to break the deadly triad. The reason

that [188, 189] achieve convergence of Q-learning is by implicitly modifying the discount

factor. In fact, the problem they are effectively solving is no longer the original MDP, but

an MDP with a much smaller discount factor, which is the reason why their algorithms do

not converge to the optimal Q-function Q∗ in the tabular setting. In this chapter we do

not modify the original problem parameters to achieve stability, and in the special case of

tabular RL, our algorithm converges to Q∗.

The Greedy-GQ Algorithm. A two time-scale variant of Q-learning with linear func-

tion approximation, known as Greedy-GQ, was proposed in [190]. The algorithm is de-

signed based on minimizing the projected Bellman error using stochastic gradient descent.

Although the Greedy-GQ algorithm is stable without needing the negative drift assumption,

since the Bellman error is in general non-convex, Greedy-GQ algorithm can only guaran-

tee convergence to stationary points. As a result, there are no performance guarantees on

how well the limit point approximates the optimal Q-function Q∗. Although finite-sample

bounds for Greedy-GQ were recently established in [191, 192, 193], due to the lack of

global optimality, the finite-sample bounds were only on the gradient of the Bellman error

rather than the distance to Q∗. In this work we provide finite-sample guarantees of our

algorithm to the optimal Q-function Q∗ (up to a function approximation error).

Fitted Q-Iteration and Its Variants. Fitted Q-iteration is proposed in [127] as an of-

227



fline variant of Q-learning. The finite-sample guarantees of fitted Q-iteration (or more gen-

erally fitted value iteration) were established in [194, 195]. More recently, [196] proposes a

variant of batch RL algorithms called BVFT, where the authors establish an Õ(ϵ−4) sample

complexity under the realizability assumption. Notably, [194, 195] employed truncation

technique to ensure the boundedness of the function approximation class. Such trunca-

tion technique dates back to [197]. We use the same truncation technique in this paper.

In the special case of linear function approximation, Q-learning with target network can

be viewed as an approximate way of implementing the fitted Q-iteration, where stochastic

gradient descent was used as a way of performing such fitting. Compared to [194, 195],

the main difference of this work is that our algorithm is implemented in an online manner,

and is driven by a single trajectory of Markovian samples.

Another variant of fitted Q-iteration targeting finite horizon MDPs was proposed in

[198] using a distribution shift checking oracle. However, [198] requires the approximating

function class to contain the optimal Q-function, and only polynomial sample complexity,

i.e., Õ(ϵ−n) for some positive integer n, was established. In this work, we do not require

Q∗ to be within our chosen function class, and our algorithm achieves the optimal Õ(ϵ−2)

sample complexity.

Linear MDP Model. In the special case that the MDP has linear (or approximately

linear) transition dynamics and linear reward, convergent variants ofQ-learning with linear

function approximation were designed and analyzed in [199, 200, 201, 202, 203, 204]. In

this work, we do not assume the underlying MDP is linear.

Other Work. [205] studies Q-learning with function approximation for deterministic

MDPs. The Deep Q-Network was studied in [206]. See Appendix Subsection 12.7.2 for a

more detailed discussion about the Deep Q-Network.
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12.3 A Stable Algorithm Design

In this section, we present the algorithm of Q-learning with linear function approximation

using target network and truncation. Before that, we introduce the truncation operator ⌈·⌉

in the following. For any vector x, let ⌈x⌉ be the resulting vector of x component-wisely

truncated from both above and below at r = 1/(1 − γ), i.e., for each component ⌈x⌉i of

⌈x⌉, we have ⌈x⌉i = r if xi > r, ⌈x⌉i = xi if xi ∈ [−r, r], and ⌈x⌉i = −r if xi < −r. As

will become clear later, the reason that we pick the truncation level r to be 1/(1−γ) is that

∥Qπ∥∞ ≤ 1/(1− γ) for any policy π.

Algorithm 10 Q-Learning with Linear Function Approximation: Target Network and
Truncation

1: Input: Integers T , K, initializations θt,0 = 0 for all t = 0, 1, ..., T − 1 and θ̂0 = 0,
behavior policy πb

2: for t = 0, 1, · · · , T − 1 do
3: for k = 0, 1, · · · , K − 1 do
4: Sample Ak ∼ πb(·|Sk), Sk+1 ∼ PAk

(Sk, ·)
5: θt,k+1 = θt,k + αkϕ(Sk, Ak)(R(Sk, Ak) + γmaxa′∈A⌈ϕ(Sk+1, a

′)⊤θ̂t⌉ −
ϕ(Sk, Ak)

⊤θt,k)
6: end for
7: θ̂t+1 = θt,K
8: S0 = SK

9: end for
10: Output: θ̂T

Several remarks are in order. First of all, Algorithm 10 is simple, easy to implement,

and can be generalized to using arbitrary parametric function approximation in a straight-

forward manner (see Subsection 12.7.2). Second, in addition to {θt,k}, we introduce {θ̂t} as

the target network parameter, which is fixed in the inner loop where we update θt,k, and is

synchronized to the last iterate θt,K in the outer loop. Target network was first introduced in

[7] for the design of the celebrated Deep Q-Network. Finally, before using the Q-function

estimate associated with the target network in the inner-loop, we first truncate it at level r

(see line 5 of Algorithm 10).

Note that the location where we impose the truncation operator is different from that
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in the Deep Q-Network [7], where instead of only truncating ϕ(Sk+1, a
′)⊤θ̂t, truncation

is performed for the entire temporal difference R(Sk, Ak) + γmaxa′∈A ϕ(Sk+1, a
′)⊤θ̂t −

ϕ(Sk, Ak)
⊤θt,k. Similar truncation technique has been employed in [195, 130]. The reason

that target network and truncation together ensure the stability of Q-learning with linear

function approximation will be illustrated in detail in Section 12.5.

On the practical side, Algorithm 10 uses a single trajectory of Markovian samples gen-

erated by the behavior policy πb (see line 4 and line 8 of Algorithm 10). Therefore, the

agent does not have to constantly reset the system. Our result can be easily generalized to

the case where one uses time-varying behavior policy (i.e., the behavior policy is updated

across the iterations of the target network) as long as it ensures sufficient exploration. For

example, one can use the ϵ-greedy policy or the Boltzmann exploration policy (aka. soft-

max policy) with respect to the Q-function estimate associated with the target network Qθ̂t

as the behavior policy.

12.4 Finite-Sample Guarantees

To present the finite-sample guarantees of Algorithm 10, we first formally state our as-

sumption about the behavior policy πb and introduce necessary notation.

Assumption 12.4.1. The behavior policy πb satisfies πb(a|s) > 0 for all (s, a), and induces

an irreducible and aperiodic Markov chain {Sk}.

This assumption ensures that the behavior policy sufficient explores the state-action

space, and is commonly imposed for value-based RL algorithms in the literature [92]. Note

that Assumption 12.4.1 implies that the Markov chain {Sk} admits a unique stationary

distribution, denoted by κS ∈ ∆|S|, and mixes at a geometric rate [48]. As a result, letting

tδ = min{k ≥ 0 : maxs∈S ∥P k
πb
(s, ·)− κS(·)∥TV ≤ δ} be the mixing time of the Markov

chain {Sk} (induced by πb) with precision δ > 0, then under Assumption 12.4.1 we have

tδ = O(log(1/δ)).
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Under Assumption 12.4.1, the Markov chain {(Sk, Ak)} also has a unique stationary

distribution. Let D ∈ R|S||A|×|S||A| be a diagonal matrix with the unique stationary dis-

tribution of {(Sk, Ak)} on its diagonal, i.e., D((s, a), (s, a)) = κS(s)πb(a|s) for all (s, a).

Moreover, let a norm ∥·∥D be defined by ∥x∥D = (x⊤Dx)1/2. Denote λmin as the minimum

eigenvalue of the positive definite matrix Φ⊤DΦ.

Let Eapprox := supQ:∥Q∥∞≤r ∥⌈ProjWH(Q)⌉ − H(Q)∥∞, which captures the approxi-

mation power of the chosen function class. Denote Q̂t = ⌈Φθ̂t⌉, which is the truncated

Q-function estimate associated with the target network θ̂t.

We next present the finite-sample bounds. For ease of exposition, we only present the

case where we use constant stepsize in the inner-loop of Algorithm 10, i.e., αk ≡ α. The

results for using various diminishing stepsizes are straightforward extensions.

Theorem 12.4.1. Consider θ̂T of Algorithm 10. Suppose that Assumption 12.4.1 is satis-

fied, the constant stepsize α is chosen such that α ≤ λmin(1−γ)2

130
, and K ≥ tα + 1. Then we

have for any T ≥ 0 that

E[∥Q̂T −Q∗∥∞] ≤ γT∥Q̂0 −Q∗∥∞︸ ︷︷ ︸
E1: Error due to fixed-point iteration

+
2(1− λminα)

K−tα−1
2

λ
1/2
min(1− γ)2︸ ︷︷ ︸

E2: Bias in the inner-loop

+
24
√
α(tα + 1)

λmin(1− γ)2︸ ︷︷ ︸
E3: Variance in the inner-loop

+
Eapprox

1− γ
.︸ ︷︷ ︸

E4: Function approximation error

(12.1)

As a result, to obtain E[∥Q̂T − Q∗∥∞] ≤ ϵ + Eapprox

1−γ
for a given accuracy ϵ, the sample

complexity is

O
(
log2(1/ϵ)

ϵ2

)
Õ
(

1

(1− γ)4

)
.

Remark. While commonly used in existing literature studying RL with function approxi-

mation, it was argued in [175] that sample complexity is strictly speaking not well-defined

when the asymptotic error is non-zero. Here we present the “sample complexity” in the
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same sense as in existing literature to enable a fair comparison.

Theorem 12.4.1 is by far the strongest result of Q-learning with linear function approx-

imation in the literature in that it achieves the optimal Õ(ϵ−2) sample complexity without

needing strong assumptions, and meets all the requirements described in the beginning of

this chapter.

In our finite-sample bound, the term E1 goes to zero geometrically fast as T goes to

infinity. In fact, the term E1 captures the error due to fixed-point iteration. That is, if we

had a complete basis (hence no function approximation error), and were able to perform

value iteration to solve the Bellman equation Q∗ = H(Q∗) (hence no stochastic error), E1

is the only error term.

The terms E2 and E3 represent the bias and variance in the inner-loop of Algorithm 10.

Since the target network parameter θ̂t is fixed in the inner-loop, the update equation in

Algorithm 10 line 5 can be viewed as a linear stochastic approximation algorithm under

Markovian noise. When using constant stepsize, the bias goes to zero geometrically fast

as K goes to infinity but the variance is a constant proportional to
√
αtα. Since geometric

mixing implies tα = O(log(1/α)), the term
√
αtα can be made arbitrarily small by using

small enough constant stepsize. This agrees with existing literature studying linear stochas-

tic approximation [12]. When using diminishing stepsizes with a suitable decay rate, one

can easily show using 3.2.1 that both E1 and E2 go to zero at a rate of O(1/
√
K), therefore

the resulting sample complexity is the same as when using constant stepsize.

The term E4 captures the error due to using function approximation. Recall that we

define Eapprox = supQ:∥Q∥∞≤r ∥⌈ProjWH(Q)⌉ − H(Q)∥∞. Therefore to make the func-

tion approximation error small, one only needs to approximate the functions that are one-

step reachable under the Bellman operator. In addition, using truncation also helps reduc-

ing the function approximation error to some extend since ∥⌈ProjWH(Q)⌉ − H(Q)∥∞ ≤

∥ProjWH(Q)−H(Q)∥∞ for any Q such that ∥Q∥∞ ≤ r. The 1/(1− γ) factor in E4 also

appears in TD-learning with linear function approximation [92], where it was shown to be
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not removable in general. Observe that E4 vanishes (and hence we have convergence to

Q∗) when (1) we are in the tabular setting, or (2) we use a complete basis (i.e., Φ being an

invertible matrix), or (3) under the completeness assumption in existing literature, which

requires H(Q) ∈ W whenever Q ∈ W . In existing work [188, 189], the algorithm does

not converge to Q∗ even in the tabular setting (see Section 12.2).

12.5 The reason that Target Network and Truncation Stabilize Q-Learning

In the previous section, we presented the algorithm and the finite-sample guarantees. In

this section, we elaborate in detail why target network and truncation together are enough

to stabilize Q-learning.

Summary. We start with the classical semi-gradientQ-learning with linear function ap-

proximation algorithm in Subsection 12.5.1, which unfortunately is not necessarily stable,

as evidenced by the divergent counter-example constructed in [8]. In Subsection 12.5.2,

We show that by adding target network to Q-learning, the resulting algorithm successfully

overcomes the divergence in the MDP example in [8]. However, beyond the example in

[8], target network alone is not sufficient to break the deadly triad. In fact, we show in

Subsection 12.5.3 that Q-learning with target network diverges for another MDP example

constructed in [49]. In Subsection 12.5.4, we propose the last ingredient needed to achieve

a stable algorithm design: truncation, which leads to Algorithm 10. By truncating at the

right place in theQ-learning with target network algorithm, the resulting algorithm is prov-

ably stable and achieves the optimal Õ(ϵ−2) sample complexity. The reason that truncation

successfully stabilizes Q-learning is due to an insightful observation regarding the relation

between truncation and projection.

12.5.1 Classical Semi-Gradient Q-Learning

We begin with the classical semi-gradient Q-learning with linear function approximation

algorithm [11, 1], which we have studied in detail in the previous chapter. With a trajectory
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of samples {(Sk, Ak)} collected under the behavior policy πb and an arbitrary initializa-

tion θ0, the semi-gradient Q-learning algorithm updates the parameter θk according to the

following formula:

θk+1 = θk + αkϕ(Sk, Ak)

(
R(Sk, Ak) + γmax

a′∈A
ϕ(Sk+1, a

′)⊤θk − ϕ(Sk, Ak)
⊤θk

)
.

(12.2)

Unfortunately, Equation 12.2 does not necessarily converge, as evidenced by the divergent

example provided in [8]. The MDP example contructed in [8] has 7 states and 2 actions.

To perform linear function approximation, 14 linearly independent basis vectors are cho-

sen. The important thing to notice about this example is that the number of basis vectors

is equal to the size of the state-action space, i.e., d = |S||A|. Hence rather than doing

function approximation, we are essentially doing a change of basis. Surprisingly even in

this setting, Equation 12.2 diverges. Due to the divergence nature, [180, 49, 183] impose

strong negative drift assumptions to ensure its stability.

By viewing Equation 12.2 as a stochastic approximation algorithm, the target equation

it is trying to solve is ESk∼κS ,Ak∼πb(·|Sk)[ϕ(Sk, Ak)(R(Sk, Ak)+γmaxa′∈A ϕ(Sk+1, a
′)⊤θ−

ϕ(Sk, Ak)
⊤θ)] = 0. The previous equation can be written compactly using the Bellman

optimality operator H(·) and the diagonal matrix D as

Φ⊤D(H(Φθ)− Φθ) = 0, (12.3)

and is further equivalent to the fixed-point equation

θ = HΦ(θ), (12.4)

where the operator HΦ : Rd 7→ Rd is defined by HΦ(θ) = (Φ⊤DΦ)−1Φ⊤DH(Φθ). Equa-

tion 12.4 is closely related to the so-called projected Bellman equation. To see this, since
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Φ is assumed to have linearly independent columns, Equation 12.4 is equivalent to

Φθ = Φ(Φ⊤DΦ)−1Φ⊤DH(Φθ) = ProjWH(Φθ), (12.5)

where ProjW denotes the projection operator onto the linear subspace W (which is

spanned by the columns of Φ) with respect to the weighted ℓ2-norm ∥ · ∥D.

We next show that in the complete basis setting, i.e., d = |S||A|, which covers the

Baird’s counter-example as a special case, the operator HΦ(·) is in fact a contraction map-

ping with θ∗ = Φ−1Q∗ being its unique fixed-point. This implies that the design of the

classical semi-gradient Q-learning algorithm (cf. Equation 12.2) is flawed because if it

were designed as a stochastic approximation algorithm which is in effect performing fixed-

point iteration to solve Equation 12.4, it would converge [24]. Instead, it was designed

as a stochastic approximation algorithm based on Equation 12.3. While Equation 12.3 is

equivalent to Equation 12.4, their corresponding stochastic approximation algorithms have

different behavior in terms of their convergence or divergence.

To show the contraction property of HΦ(·), first observe that in the complete basis

setting we have HΦ(θ) = (Φ⊤DΦ)−1Φ⊤DH(Φθ) = Φ−1H(Φθ). Let ∥ · ∥Φ,∞ be a norm on

Rd defined by ∥θ∥Φ,∞ = ∥Φθ∥∞ (the fact that it is indeed a norm can be easily verified).

Then we have

∥HΦ(θ1)−HΦ(θ2)∥Φ,∞ = ∥H(Φθ1)−H(Φθ2)∥∞ ≤ γ∥Φ(θ1 − θ2)∥∞ = γ∥θ1 − θ2∥Φ,∞

for all θ1, θ2 ∈ Rd, where the inequality follows from the Bellman optimality operator H(·)

being an ℓ∞-norm contraction mapping. It follows that the operator HΦ(·) is a contraction

mapping with respect to ∥ · ∥Φ,∞. Moreover, since HΦ(θ
∗) = Φ−1H(Φθ∗) = Φ−1H(Q∗) =

Φ−1Q∗ = θ∗, the point θ∗ is the unique fixed-point of the operator HΦ(·). The previous

analysis suggests that we should aim at designing Q-learning with linear function approx-

imation algorithm as a fixed-point iteration (implemented in a stochastic manner due to
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sampling in RL) to solve Equation 12.4. The resulting algorithm would at least converge

for the Baird’s MDP example.

12.5.2 Introducing Target Network

We begin with the following fixed-point iteration for solving Equation 12.4:

θk+1 = (Φ⊤DΦ)−1Φ⊤DH(Φθk), (12.6)

where we write HΦ(·) explicitly in terms of Φ, D, and H(·). Equation 12.6 is what we

would like to perform if we had complete information about the dynamics of the underlying

MDP. The question is that if there is a stochastic variant of such fixed-point iteration that

can be actually implemented in the RL setting where the transition probabilities and the

stationary distribution are unknown. The answer is Q-learning with target network.

Algorithm 11 Q-Learning with Linear Function Approximation: Target Network and No
Truncation

1: Input: Integers T , K, initializations θt,0 = 0 for all t = 0, 1, ..., T − 1 and θ̂0 = 0,
behavior policy πb

2: for t = 0, 1, · · · , T − 1 do
3: for k = 0, 1, · · · , K − 1 do
4: Sample Ak ∼ πb(·|Sk), Sk+1 ∼ PAk

(Sk, ·)
5: θt,k+1 = θt,k + αkϕ(Sk, Ak)(R(Sk, Ak) + γmaxa′∈A ϕ(Sk+1, a

′)⊤θ̂t −
ϕ(Sk, Ak)

⊤θt,k)
6: end for
7: θ̂t+1 = θt,K
8: S0 = SK

9: end for
10: Output: θ̂T

We next elaborate on why Algorithm 11 can be viewed as a stochastic variant of the

fixed-point iteration given in Equation 12.6. Consider the update equation (line 5) in the

inner-loop of Algorithm 11. Since the target network is fixed in the inner-loop, the update

equation in terms of θt,k is in fact a linear stochastic approximation algorithm for solving
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the following linear system of equations:

−Φ⊤DΦθ + Φ⊤DH(Φθ̂t) = 0. (12.7)

Since the matrix −Φ⊤DΦ is negative definite, the asymptotic convergence of the inner-loop

update follows from standard results in the literature [11]. Therefore, when the stepsize

sequence {αk} is appropriately chosen and K is large, we expect θt,K to approximate the

solution of Equation 12.7, i.e., θt,K ≈ (Φ⊤DΦ)−1Φ⊤DH(Φθ̂t). Now in view of line 7 of

Algorithm 11, the target network θ̂t+1 is synchronized to θt,K . Therefore Q-learning with

target network is in effect performing a stochastic variant of the fixed-point iteration in

Equation 12.6.

Note that on an aside,Q-learning with target network can be viewed as an online version

of fitted Q-iteration. To see this, recall that in the linear function approximation setting,

fitted Q-iteration updates the corresponding parameter {θ̃t} iteratively according to

θ̃t+1 = argminθ̃∈Rd

1

|N |
∑

(s,a,s′)∈N

(
ϕ(s, a)⊤θ̃ −R(s, a)− γmax

a′∈A
ϕ(s′, a′)⊤θ̃t

)2

, (12.8)

where N = {(s, a, s′)} is a batch dataset generated in an i.i.d. manner as follows: s ∼ µ(·),

a ∼ πb(·|s), and s′ ∼ Pa(s, ·). Observe that Equation 12.8 is an empirical version of

θ̃t+1 = argminθ̃∈Rd∥Φθ̃ −H(Φθ̃t)∥2D. (12.9)

In light of Equation 12.9, the inner-loop of Algorithm Algorithm 11 can be viewed as a

stochastic gradient descent algorithm for solving the optimization problem in Equation 12.9

with a single trajectory of Markovian samples.

Revisiting Baird’s counter-example (where d = |S||A|), recall that the fixed-point it-

eration (cf. Equation 12.6) reduces to θk+1 = Φ−1H(Φθk) = HΦ(θk). Since the operator

HΦ(·) is a contraction mapping as shown in Subsection 12.5.1, the fixed-point iteration
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in Equation 12.6 provably converges. As a result, Q-learning with target network as a

stochastic variant of the fixed-point iteration in Equation 12.6 also converges.

Proposition 12.5.1. Consider Algorithm 11. Suppose that Assumption 12.4.1 is satisfied,

the feature matrix Φ is a square matrix (i.e., d = |S||A|), αk ≡ α ≤ λmin(1−γ)2

130
, and

K ≥ tα + 1. Then the sample complexity to achieve E[∥Φθ̂T −Q∗∥∞] < ϵ is Õ(ϵ−2).

To further verify the stability, we conduct numerical simulations for the MDP example

constructed in [8]. As we see, while classical semi-gradient Q-learning with linear func-

tion approximation diverges in Figure 12.1 (which agrees with [8]), Q-learning with target

network converges as shown in Figure 12.2.

Figure 12.1: Classical Semi-Gradient Q-Learning

Figure 12.2: Q-Learning with Target Network

238



12.5.3 Insufficiency of Target Network

The reason that Q-learning with target network overcomes the divergence for Baird’s MDP

example is essentially that the projected Bellman operator reduces to the regular Bellman

operator (which is a contraction mapping) when we have a complete basis. However,

this is not the case in general. In the projected Bellman equation (cf. Equation 12.5), the

Bellman operator H(·) is a contraction mapping with respect to the ℓ∞-norm ∥·∥∞, and the

projection operator ProjW is a non-expansive mapping with respect to the projection norm,

in this case the weighted ℓ2-norm ∥·∥D. Due to the norm mismatch, the composed operator

ProjWH(·) in general is not a contraction mapping with respect to any norm. This is the

fundamental reason for the divergence of Q-learning with linear function approximation,

and introducing target network alone does not overcome this issue, as evidenced by the

following MDP example.

Example 12.5.1. Consider an MDP with state-space S = {s1, s2} and action-space A =

{a1, a2}. Regardless of the present state, taking action a1 results in state s1 with proba-

bility 1, and taking action a2 results in state s2 with probability 1. The reward function

is defined as R(s1, a1) = 1, R(s1, a2) = R(s2, a1) = 2, and R(s2, a2) = 4. We con-

struct the approximating linear sub-space with a single basis vector, which is given by

Φ = [ϕ(s1, a1), ϕ(s1, a2), ϕ(s2, a1), ϕ(s2, a2)]
⊤ = [1, 2, 2, 4]⊤. The behavior policy is to

take each action with equal probability. In this example, after straightforward calculation,

we have the following result.

Lemma 12.5.1. Equation 12.4 is explicitly given by θ = 1 + 9γ
10
θ + 3γθ

10
(I{θ≥0} − I{θ<0}).

When the discount factor γ is in the interval (5/6, 1), for any positive initialization

θ0 > 0, it is clear that performing fixed-point iteration to solve Equation 12.4 in this exam-

ple leads to divergence. SinceQ-learning with target network is a stochastic variant of such

fixed-point iteration, it also diverges. Numerical simulations demonstrate that performing
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either classical semi-gradient Q-learning (cf. Figure 12.3) or Q-learning with target net-

work (cf. Figure 12.4) leads to divergence for the MDP in Example 12.5.1.

Figure 12.3: Classical Semi-Gradient Q-Learning

Figure 12.4: Q-Learning with Target Network

12.5.4 Truncation to the Rescue

The key idea that we use to further overcome the divergence of Q-learning with target

network is truncation. Recall from the previous section thatQ-learning with target network

is trying to perform a stochastic variant of the fixed-point iteration in Equation 12.6, which

can be equivalently written as

Q̃t+1 = ProjWH(Q̃t), (12.10)
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where we use Q̃t to denote the Q-function estimate associated with the target network θ̂t,

i.e., Q̃t = Φθ̂t. To motivate the truncation technique, we next analyze the update given in

Equation 12.10, whose behavior in terms of stability aligns with the behavior ofQ-learning

with target network, as explained in the previous section. First note that Equation 12.10 is

equivalent to

Q̃t+1 −Q∗ = H(Q̃t)−H(Q∗) + ProjWH(Q̃t)−H(Q̃t).

A simple calculation using triangle inequality, the contraction property of H(·), and tele-

scoping yields the following error bound of the iterative algorithm in Equation 12.10:

∥Q̃t+1 −Q∗∥∞ ≤ γt+1∥Q̃0 −Q∗∥∞ +
t∑

i=0

γt−i ∥ProjWH(Q̃i)−H(Q̃i)∥∞︸ ︷︷ ︸
Ai

.

The problem with the previous analysis is that the term Ai (which captures the error due

to using linear function approximation) is not necessarily bounded unless using a complete

basis or knowing in prior that {Q̃t} is always contained in a bounded set. The possibility

that such function approximation error can be unbounded is an alternative explanation to

the divergence of Q-learning with linear function approximation. This is true for arbitrary

function approximation (including neural network) as well since it is in general not possible

to uniformly approximate unbounded functions.

Suppose we are able to somehow control the size of the estimate Q̃t so that it is always

contained in a bounded set. Then the term Ai is guaranteed to be finite, and well captures

the approximation power of the chosen function class. To achieve the boundedness of the

associated Q-function estimate Q̃t of the target network, tracing back to Algorithm 11, a

natural approach is to first project Φθ̂t onto the ℓ∞-norm ballBr := {Q ∈ R|S||A| | ∥Q∥∞ ≤

r} before using it as the target Q-function in the inner-loop, resulting in Algorithm 12

presented in the following.

In line 8 of Algorithm 12, the operator ΠBr stands for the projection onto the ℓ∞-norm
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Algorithm 12 Impractical Q-Learning with Linear Function Approximation: Target Net-
work and Projection

1: Input: Integers T , K, initializations θt,0 = 0 for all t = 0, 1, ..., T − 1 and θ̂0 = 0,
behavior policy πb

2: for t = 0, 1, · · · , T − 1 do
3: for k = 0, 1, · · · , K − 1 do
4: Sample Ak ∼ πb(·|Sk), Sk+1 ∼ PAk

(Sk, ·)
5: θt,k+1 = θt,k + αkϕ(Sk, Ak)(R(Sk, Ak) + γmaxa′∈A Q̃t(Sk+1, a

′) −
ϕ(Sk, Ak)

⊤θt,k)
6: end for
7: θ̂t+1 = θt,K
8: Q̃t+1 = ΠBrΦθ̂t+1

9: S0 = SK

10: end for
11: Output: θ̂T

ball Br with respect to some suitable norm ∥ · ∥. The specific norm ∥ · ∥ chosen to perform

the projection turns out to be irrelevant as result of a key observation between truncation

and projection.

Algorithm 12 although stabilizes the Q-function estimate Q̃t, it is not implementable in

practice. To see this, recall that the whole point of using linear function approximation is

to avoid working with |S||A| dimensional objects. However, to implement Algorithm 12

line 8, one has to first compute Φθ̂t+1 ∈ R|S||A|, and then project it onto Br. Therefore, the

last difficulty we need to overcome to achieve a stable algorithm design is to find a way to

implement Algorithm 12 without working with |S||A| dimensional objects. The solution

relies on the following observation.

Lemma 12.5.2. For any x ∈ R|S||A| and any weighted ℓp-norm ∥ · ∥ (the weights can be

arbitrary and p ∈ [1,∞]), we have ⌈x⌉ ∈ argminy∈Br ∥x− y∥.

Remark. Note that argminy∈Br ∥x− y∥ is in general a set because the projection may not

be unique. As an example, observe that any point in the set {(x, 1) | x ∈ [−1, 1]} is a

projection of the point (0, 2) onto the ℓ∞-norm unit ball {(x, y) | x, y ∈ [−1, 1]} with

respect to the ℓ∞-norm.
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Lemma 12.5.2 states that for any x ∈ R|S||A|, if we simply truncate x at r, the resulting

vector must belong to the projection set of x onto the ℓ∞-norm ball with radius r, for a

wide class of projection norms. This seemingly simple but important result enables us to

replace projection ΠBr(·) by truncation ⌈·⌉ in line 8 of Algorithm 12:

Q̃t+1 = ΠBrΦθ̂t+1 −→ Q̃t+1 = ⌈Φθ̂t+1⌉.

Unlike projection, truncation is a component-wise operation. Hence Q̃t+1 = ⌈Φθ̂t+1⌉ is

equivalent to Q̃t+1(s, a) = ⌈ϕ(s, a)⊤θ̂t+1⌉ for all (s, a).

The last issue is that we need to perform truncation for all state-action pairs (s, a),

which as illustrated earlier, violates the purpose of doing function approximation. How-

ever, observe that the target network is used in line 5 of Algorithm 12, where only the

components of Q̃t visited by the sample trajectory is needed to perform the update. In light

of this observation, instead of truncating ϕ(s, a)⊤θ̂t for all (s, a), we only need to truncate

ϕ(Sk+1, a
′)⊤θ̂t in Algorithm 12 line 5, which leads to our stable design of Q-learning with

linear function approximation in Algorithm 10. The following proposition shows that target

network and truncation together stabilized Q-learning with linear function approximation,

and serves as a middle step to prove Theorem 12.4.1.

Proposition 12.5.2. The following inequality holds:

E[∥Q̂T −Q∗∥∞] ≤ γT∥Q̂0 −Q∗∥∞ +
Eapprox

1− γ

+
T−1∑
i=0

γT−i−1E[∥Q̂i+1 − ⌈ProjWH(Q̂i)⌉∥∞]. (12.11)

Because of truncation, the error due to using function approximation is bounded, and

is captured by Eapprox. This is crucial to prevent the divergence of Q-learning with linear

function approximation. The last term in Equation 12.11 captures the error in the inner-loop

of Algorithm 10, and eventually contribute to the terms E2 and E3 in Equation 12.1.
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Similar truncation technique was previously used in [195] to achieve a stable design

of fitted Q-iteration. [195] studies fitted Q-iteration for general (possibly nonlinear) func-

tion approximation, where truncation is used to ensure the boundedness of the function

approximation class.

Revisiting Example 12.5.1, where either semi-gradient Q-learning or Q-learning with

target network diverges, Algorithm 10 converges as demonstrated in Figure 12.5. More-

over, observe that Algorithm 10 seems to converge to a positive scalar, which we denote by

θ∗. As a result, the policy π induced greedily from Φθ∗ is to always take action a2. It can be

easily verified that π is indeed the optimal policy. This is an interesting observation since

the optimal Q-function Q∗ in this case does not belong to the linear sub-space W (which

is spanned by a single basis vector (1, 2, 2, 4)⊤). Nevertheless performing Algorithm 10

converges and the induced policy is optimal. Figure 12.6 shows that Algorithm 10 also

converges for the Baird’s MDP example.

Figure 12.5: Algorithm 10 for Baird’s MDP Example
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Figure 12.6: Algorithm 10 for Example 12.5.1

12.6 Proof of All Theoretical Results

12.6.1 Proof of Theorem 12.4.1

Analysis of the Outer-Loop (Proof of Proposition 12.5.2)

Recall that we denote Q̂t = ⌈Φθ̂t⌉. Using the fact that Q∗ = H(Q∗), we have for any t ≥ 0

that

Q̂t −Q∗ = Q̂t −H(Q∗)

= H(Q̂t−1)−H(Q∗) + Q̂t − ⌈ProjWH(Q̂t−1)⌉

+ ⌈ProjWH(Q̂t−1)⌉ − H(Q̂t−1).

It follows that

∥Q̂t −Q∗∥∞ ≤ ∥H(Q̂t−1)−H(Q∗)∥∞ + ∥Q̂t − ⌈ProjWH(Q̂t−1)⌉∥∞

+ ∥⌈ProjWH(Q̂t−1)⌉ − H(Q̂t−1)∥∞

≤ γ∥Q̂t−1 −Q∗∥∞ + ∥Q̂t − ⌈ProjWH(Q̂t−1)⌉∥∞ + Eapprox,
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where the last line follows from H(·) being a γ-contraction mapping with respect to ∥ · ∥∞,

and the definition of Eapprox.

Repeatedly using the previous inequality and then taking expectation on both sides of

the resulting inequality, and we have for any T ≥ 0:

E[∥Q̂T −Q∗∥∞] ≤ γT∥Q̂0 −Q∗∥∞ +
T−1∑
i=0

γT−i−1E[∥Q̂i+1 − ⌈ProjWH(Q̂i)⌉∥∞] +
Eapprox

1− γ
.

(12.12)

This proves Proposition 12.5.2. The remaining task is to control E[∥Q̂i+1−⌈ProjWH(Q̂i)⌉∥∞]

for any i = 0, ..., T−1. First of all, since Q̂t = ⌈Φθ̂t⌉ = ⌈Φθt−1,K⌉ and ∥⌈Q1⌉−⌈Q2⌉∥∞ ≤

∥Q1 −Q2∥∞ for any Q1, Q2 ∈ R|S||A|, we have

E[∥Q̂i+1 − ⌈ProjWH(Q̂i)⌉∥∞] ≤ E[∥Φθi,K − ProjWH(Q̂i)∥∞].

To further bound the RHS of the previous inequality, we need to analyze the inner-loop of

Algorithm 10, which is done in the next section.

Analysis of the Inner-Loop

We begin by presenting the inner-loop of Algorithm 10.

Algorithm 13 Inner-Loop of Algorithm 10

1: Input: Integer K, initialization θ0 = 0, target network θ̂, behavior policy πb

2: for k = 0, 1, · · · , K − 1 do

3: Sample Ak ∼ πb(·|Sk), Sk+1 ∼ PAk
(Sk, ·)

4: θk+1 = θk +αkϕ(Sk, Ak)(R(Sk, Ak)+ γmaxa′∈A⌈ϕ(Sk+1, a
′)⊤θ̂⌉−ϕ(Sk, Ak)

⊤θk)

5: end for

6: Output: θK

In view of the main update equation, Algorithm 13 is a Markovian linear stochastic
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approximation algorithm for solving the following linear system of equations:

−Φ⊤DΦθ + Φ⊤DH(Φθ̂) = 0.

Since the matrix −Φ⊤DΦ is negative definite, the finite-sample guarantees follow from

standard results in the literature [12, 49]. Specifically, we will apply Corollary 3.2.1 to

establish the result.

To apply Corollary 3.2.1, we first rewrite the update equation in line 4 of Algorithm 13

in the form of the SA algorithm given in Algorithm 2. Then we verify that Assumptions

3.1.1 and 3.1.2 are satisfied.

• Reformulation. For any k ≥ 0, let Yk = (Sk, Ak, Sk+1), which is clearly a Markov

chain with state-space given by Y = {y = (s, a, s′) | s ∈ S, πb(a|s) > 0, Pa(s, s
′) >

0}. Define the function F : Rd × Y 7→ Rd by

F (θ, s, a, s′) = ϕ(s, a)

(
R(s, a) + γmax

a′∈A
⌈ϕ(s′, a′)⊤θ̂⌉ − ϕ(s, a)⊤θ

)

for any θ ∈ Rd and y = (s, a, s′) ∈ Y . Then the update equation of Algorithm 13

can be equivalently written as

θk+1 = θk + αF (θk, Yk).

• Verification of Assumption 3.1.2 (1). For any x1, x2 ∈ Rd and y = (s, a, s′) ∈ Y , we

have

∥F (θ1, y)− F (θ2, y)∥2 = ∥ϕ(s, a)ϕ(s, a)⊤(θ1 − θ2)∥2

≤ ∥ϕ(s, a)∥22∥θ1 − θ2∥2

≤ ∥θ1 − θ2∥2. (∥ϕ(s, a)∥2 ≤ ∥ϕ(s, a)∥1 ≤ 1 for all (s, a))
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Similarly, we have for any y = (s, a, s′) ∈ Y that

∥F (0, y)∥2 =
∥∥∥∥ϕ(s, a)(R(s, a) + γmax

a′∈A
⌈ϕ(s′, a′)⊤θ̂⌉

)∥∥∥∥
2

≤
(
1 +

γ

1− γ

)
∥ϕ(s, a)∥2

≤ 1

1− γ
.

• Verification of Assumption 3.1.2 (2). Under Assumption 12.4.1, the Markov chain

{Yk} has a unique stationary distribution ν, which is given by

ν(s, a, s′) = µ(s)π(a|s)Pa(s, s
′)

for all (s, a, s′) ∈ Y . In addition, we have for any y = (s, a, s′) ∈ Y that

∥P k
πb
(y, ·)− ν(·)∥TV =

1

2

∑
(s0,a0,s1)∈Y

∣∣P k−1
πb

(s′, s0)− µ(s0)
∣∣ π(a0|s0)Pa0(s0, s1)

≤ 1

2

∑
s0∈S

∣∣P k−1
πb

(s′, s0)− µ(s0)
∣∣

≤ max
s∈S

∥P k−1
πb

(s, ·)− µ(·)∥TV

≤ Cσk−1.

• Verification of Assumption 3.1.1: By definition of F (·, ·), we have

F̄ (θ) = −Φ⊤DΦθ + Φ⊤DH(⌈Φθ̂⌉),

where we recall that D ∈ R|S||A|×|S||A| is a diagonal matrix with diagonal entries

{µ(s)πb(a|s)}(s,a)∈S×A. Since Φ has linearly independent columns, the matrix Φ⊤DΦ

is invertible. Solving F̄ (θ) = 0 and we obtain θ∗ = (Φ⊤DΦ)−1Φ⊤DH(⌈Φθ̂⌉). Fur-

thermore, note that the matrix Φ⊤DΦ is positive definite, whose smallest eigenvalue
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is denoted by λmin. Therefore we have for any θ ∈ Rd:

(θ − θ∗)⊤F̄ (θ) = (θ − θ∗)⊤(F̄ (θ)− F̄ (θ∗))

= −(θ − θ∗)⊤Φ⊤DΦ(θ − θ∗)

≤ −λmin∥θ − θ∗∥22.

Now that Assumptions 3.1.1 and 3.1.2 are satisfied, Corollary 3.2.1 and we obtain for

any k ≥ tα + 1:

E[∥θk − θ∗∥22] ≤ (∥θ∗∥2 + 1)2(1− λminα)
k−tα−1

+
130

(1− γ)2
((1− γ)∥θ∗∥2 + 1)2

α(tα + 1)

λmin

, (12.13)

where we used θ0 = 0 in Algorithm 13. The last step is to provide an upper bound on

∥θ∗∥2. Note that

∥θ∗∥2 =
1

λ
1/2
min

λ
1/2
min∥θ∗∥2

≤ 1

λ
1/2
min

∥Φθ∗∥D

=
1

λ
1/2
min

∥Φ(Φ⊤DΦ)−1Φ⊤DH(⌈Φθ̂⌉)∥D (F̄ (θ∗) = 0)

=
1

λ
1/2
min

∥ProjWH(⌈Φθ̂⌉)∥D

≤ 1

λ
1/2
min

∥H(⌈Φθ̂⌉)∥D (ProjW(·) is non-expansive with respect to ∥ · ∥D)

≤ 1

λ
1/2
min(1− γ)

∥1∥D (− 1
1−γ

1 ≤ H(⌈Q⌉) ≤ 1
1−γ

1 for any Q ∈ R|S||A|)

=
1

λ
1/2
min(1− γ)

.

Substituting the previous upper bound we obtained for ∥θ∗∥2 into Equation 12.13 and we
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finally have for all k ≥ tα + 1:

E[∥θk − θ∗∥22] ≤
4

λmin(1− γ)2
(1− λminα)

k−tα−1 +
520

λ2min(1− γ)2
α(tα + 1). (12.14)

Putting Together

We next combine the analysis of the outer-loop and the inner-loop to establish the overall

finite-sample bounds of Algorithm 10. Denote θ∗t = (Φ⊤DΦ)−1Φ⊤DH(Q̂t). Note that

we have Φθ∗t = ProjWH(Q̂t). Using the fact that ∥ · ∥∞ ≤ ∥ · ∥2 and we obtain for any

0 ≤ i ≤ T :

E[∥Φθi,K − ProjWH(Q̂i)∥∞] = E[∥Φ(θi,K − θ∗i )∥∞]

≤ E[∥Φ∥∞∥θi,K − θ∗i ∥∞]

≤ E[∥θi,K − θ∗i ∥∞] (∥ϕ(s, a)∥1 ≤ 1 for all (s, a))

≤ E[∥θi,K − θ∗i ∥2]

≤
(
E[∥θi,K − θ∗i ∥22]

)1/2 (Jensen’s inequality)

≤
(

4

λmin(1− γ)2
(1− λminα)

K−tα−1 +
520

λ2min(1− γ)2
α(tα + 1)

)1/2

(Equation 12.14)

≤ 2

λ
1/2
min(1− γ)

(1− λminα)
K−tα−1

2 +
24

λmin(1− γ)

√
α(tα + 1),

where the last line follows from
√
a+ b ≤

√
a+

√
b for any a, b ≥ 0.

Substituting the previous inequality into Equation 12.12, and we obtain the overall

finite-sample guarantees of Algorithm 10:

E[∥Q̂T −Q∗∥∞] ≤ γT∥Q̂0 −Q∗∥∞ +
2

λ
1/2
min(1− γ)2

(1− λminα)
K−tα−1

2

+
24

λmin(1− γ)2

√
α(tα + 1) +

Eapprox

1− γ
.

In view of the finite-sample guarantee, to obtain E[∥Q̂T − Q∗∥∞] ≤ ϵ +
Eapprox

1−γ
for a
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given accuracy ϵ, the number of sample required is of the size

O
(
ϵ−2 log2(1/ϵ)

)
Õ
(

1

(1− γ)4

)
.

12.6.2 Proof of Proposition 12.5.1

The proof is identical to that of Theorem 12.4.1, and hence is omitted.

12.6.3 Proof of Proposition 12.5.2

See the analysis of the outer loop in Subsection 12.6.1.

12.6.4 Proof of Lemma 12.5.1

We first compute the transition probability matrix of the Markov chain {Sk} under πb.

Since

Pa1 =

1 0

1 0

 and Pa2 =

0 1

0 1

 ,
and π(a|s) = 1/2 for any a ∈ {a1, a2} and s ∈ {s1, s2}, we have Pπb

= 1
2
I2. As a

result, the unique stationary distribution µ of the Markov chain {Sk} under πb is given by

µ = (1/2, 1/2). Therefore, the matrix D ∈ R|S||A|×|S||A| (defined before Theorem 12.4.1)

is given by D = 1
4
I4. We next compute Equation 12.4 in this example. First of all, by

definition of the Bellman operator we have for any θ ∈ R that

[H(Φθ)](s1, a1) = R(s1, a1) + γE[max
a′∈A

ϕ(Sk+1, a
′)θ | Sk = s1, Ak = a1]

= R(s1, a1) + γmax
a′∈A

ϕ(s1, a
′)θ

=


1 + 2γθ, θ ≥ 0,

1 + γθ, θ < 0.
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Similarly, we also have

[H(Φθ)](s1, a2) =


2 + 4γθ, θ ≥ 0,

2 + 2γθ, θ < 0.

[H(Φθ)](s2, a1) =


2 + 2γθ, θ ≥ 0,

2 + γθ, θ < 0.

[H(Φθ)](s2, a2) =


4 + 4γθ, θ ≥ 0,

4 + 2γθ, θ < 0.

Therefore, Equation 12.4 in the case of Example 12.5.1 is explicitly given by

θ = (Φ⊤DΦ)−1Φ⊤DH(Φθ)

=



1

25

[
1 2 2 4

]


1 + 2γθ

2 + 4γθ

2 + 2γθ

4 + 4γθ


, θ ≥ 0

1

25

[
1 2 2 4

]


1 + γθ

2 + 2γθ

2 + γθ

4 + 2γθ


, θ < 0

=


1 +

6

5
γθ, θ ≥ 0,

1 +
3

4
γθ, θ < 0,

= 1 +
9

10
γθ +

3

10
γθ(I{θ≥0} − I{θ<0}).
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12.6.5 Proof of Lemma 12.5.2

Let {ν(s, a)}(s,a)∈S×A be any positive weights, and denote the weighted ℓp-norm with

weights {ν(s, a)}(s,a)∈S×A by ∥ · ∥ν,p. For any x ∈ R|S||A|, we have

min
y∈Br

∥x− y∥ν,p = min
y∈Br

(∑
s,a

ν(s, a)|x(s, a)− y(s, a)|p
)1/p

=

(∑
s,a

ν(s, a) min
−r≤y(s,a)≤r

|x(s, a)− y(s, a)|p
)1/p

=

(∑
s,a

ν(s, a)|x(s, a)− ⌈x(s, a)⌉|p
)1/p

= ∥x− ⌈x⌉∥ν,p.

Therefore, we have ⌈x⌉ ∈ argminy∈Br ∥x− y∥ν,p.

12.7 Conclusion and Future Work

The work presented in this chapter makes fundamental contributions towards one of the

most important open problems in RL: the behavior ofQ-learning with function approxima-

tion. In particular, we design a stable Q-learning with linear function approximation using

target network and truncation, which achieves the optimal Õ(ϵ−2) sample complexity up to

a function approximation error. Furthermore, the establishment of our results do not require

strong assumptions (e.g. linear MDP, strong negative drift assumption, sufficiently small

discount factor γ, etc.) as in related literature. There are two immediate future directions

in this line of work. One is to improve the function approximation error, and the second

is to extend the results of this work to using neural network approximation, i.e., the Deep

Q-Network. The detailed plan is provided in the following.
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12.7.1 Establishing the Asymptotic Convergence and Improving the Error Due to Function

Approximation

Although Theorem 12.4.1 establishes the mean-square error bound of Q-learning with lin-

ear function approximation, due to the function approximation error, the bound does not

imply asymptotic convergence. In light of our discussion in Section 12.5, suppose Algo-

rithm 10 indeed converges (as K,T → ∞ and α → 0) . The corresponding Q-function

estimate of the output, i.e., Q̂T = ⌈Φθ̂T ⌉, can only converge to the solution of the truncated

projected Bellman equation:

Q = ⌈ProjWH(Q)⌉. (12.15)

Unlike the projected Bellman equation (cf. Equation 12.5), which may not have a solution

in general (see Example 12.5.1), since the truncated projected Bellman operator maps a

compact set Br to itself, Equation 12.15 must have at least one solution according to the

Brouwer fixed-point theorem. However, whether the solution to Equation 12.15 is unique

or not is unclear. Therefore, it is also unclear if performing fixed-point iteration to solve

Equation 12.15, or its stochastic variant (i.e., Algorithm 10) can actually leads to asymp-

totic convergence. Further investigating the truncated projected Bellman equation to show

asymptotic convergence is one of our immediate future directions.

Suppose we were able to show the asymptotic convergence of Algorithm 10 to the

unique solution of the truncated projected Bellman equation presented in Equation 12.15,

denoted by Q̄. Then, instead of establishing finite-sample bound of the form

E[∥Q̂T −Q∗∥∞] ≤ E1 + E2 + E3︸ ︷︷ ︸
go to zero as K,T → ∞ and α → 0

+ E4,︸︷︷︸
Function approximation error

(12.16)

which is in fact what we did in this work, we would seek to establish the finite-sample

bound of E[∥Q̂T − Q̄∥∞], and separately characterize the difference between Q∗ and Q̄.
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This is in the same spirit of the seminal work [92], which studies the TD-learning with

linear function approximation algorithm for policy evaluation. There are two advantages

of this alternative approach. One is that the sample complexity of Q̂T converging to Q̄ is

well-defined once we establish finite-sample convergence of E[∥Q̂T − Q̄∥∞] to zero, while

the sample complexity of convergence bounds of the form given Equation 12.16 is strictly

speaking not well-defined because of the additive constant E4, and may lead to erroneous

result, as illustrated in [175] Appendix C. Second, this approach would enable us to reduce

the function approximation error by removing the sup operator in Eapprox, i.e., from the

current supQ:∥Q∥∞≤r ∥⌈ProjWH(Q)⌉ − H(Q)∥∞ to ∥⌈ProjWH(Q̄)⌉ − H(Q̄)∥∞.

Although the lack of asymptotic convergence is a major limitation of this work, we want

to point out that such limitation is present in almost all related literature on both value-space

and policy-space methods whenever function approximation is used. To our knowledge,

the only exception is [92] (as well as its follow-up work), where asymptotic convergence

was established for TD-learning, and the limit was characterized as the unique solution of

the projected Bellman equation. Other literature studying RL with function approximation

either do not have asymptotic convergence [153], or have asymptotic convergence without

knowing where the limit is [190].

12.7.2 The Deep Q Network

The ultimate goal of this line of work is to provide theoretical understanding to the cele-

brated Deep Q-Network. We first present the extension of our Algorithm 10 to the setting

where we use arbitrary function approximation (cf. Algorithm 14). Let F = {fθ : S×A 7→

R | θ ∈ Rd} be a parametric function class (with parameter θ). For example, F can be

the set of functions representable by a certain neural network, and θ is the corresponding

weight vector.

While the algorithm easily extends, the theoretical results do not. In particular, there

are two major challenges.
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Algorithm 14 Q-Learning with Arbitrary Function Approximation

1: Input: Integers T , K, initialization θ0,0 = θ̂0 = 0
2: for t = 0, 1, · · · , T − 1 do
3: for k = 0, 1, · · · , K − 1 do
4: Sample Ak ∼ πb(·|Sk), observe Sk+1 ∼ PAk

(Sk, ·)
5: θt,k+1 = θt,k + αk∇fθt,k(Sk, Ak)(R(Sk, Ak) + γmaxa′∈A⌈fθ̂t(Sk+1, a

′)⌉ −
fθt,k(Sk, Ak))

6: end for
7: θ̂t+1 = θt,K
8: S0 = SK

9: end for
10: Output: θ̂T

(1) With recent advances in deep learning [207], it is possible to explicitly characterize

the function approximation error Eapprox as a function of the hyper-parameters of the

chosen neural network, such as the width, the number of layers, and the Hölder

continuity parameter, etc.

(2) A more significant challenge is about the convergence of the inner-loop of Algo-

rithm 14. Recall that in the linear function approximation setting, the inner loop (line

5 of Algorithm 10) can be viewed as a one-step Markovian stochastic approximation

for solving the linear system of equations −Φ⊤DΦθ + Φ⊤DH(⌈Φθ̂t⌉) = 0, or a

one-step Markovian stochastic gradient descent for minimizing a quadratic objective

∥Φθ − H(⌈Φθ̂t⌉)∥2D in terms of θ. In this case, convergence to the global optimal

of the inner-loop iterates is well established in the literature. Now consider using

arbitrary function approximation in Algorithm 14. Although the inner-loop (line 5)

is still performing a one-step Markovian stochastic gradient descent for minimizing

∥fθ − H(⌈fθ̂t⌉)∥
2
D in terms of θ, since the objective is now in general non-convex,

the convergence to global optimal remains as a major theoretical open problem in the

deep learning community.

Although the Deep Q-Network was previously studied in [206], their results rely on

the following two assumptions: (1) the function approximation space is closed under the
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Bellman operator, and (2) there exists an oracle that returns the global optimal of non-

convex optimization problems. Under these two assumptions, both challenges described

earlier are no longer present.

Once we explicitly characterize the function approximation error Eapprox, and show

global convergence of the inner-loop, substituting the result into our analysis framework

and we would be able to obtain finite-sample guarantees of Deep Q-Network, thereby

achieving the ultimate goal of this line of research.

257



REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[2] D. Silver et al., “Mastering the game of go with deep neural networks and tree
search,” nature, vol. 529, no. 7587, p. 484, 2016.

[3] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A sur-
vey,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–
1274, 2013.

[4] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous
driving: Common practices and emerging technologies,” IEEE Access, vol. 8, pp. 58 443–
58 469, 2020.

[5] O. Gottesman et al., “Guidelines for reinforcement learning in healthcare,” Nature
medicine, vol. 25, no. 1, pp. 16–18, 2019.

[6] J. Degrave et al., “Magnetic control of tokamak plasmas through deep reinforce-
ment learning,” Nature, vol. 602, no. 7897, pp. 414–419, 2022.

[7] V. Mnih et al., “Human-level control through deep reinforcement learning,” nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[8] L. Baird, “Residual algorithms: Reinforcement learning with function approxima-
tion,” in Machine Learning Proceedings 1995, Elsevier, 1995, pp. 30–37.

[9] M. L. Puterman, Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2014.

[10] H. Robbins and S. Monro, “A stochastic approximation method,” The Annals of
Mathematical Statistics, pp. 400–407, 1951.

[11] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming. Athena Scien-
tific, 1996.

[12] R. Srikant and L. Ying, “Finite-Time Error Bounds For Linear Stochastic Approx-
imation and TD Learning,” in Conference on Learning Theory, 2019, pp. 2803–
2830.

[13] A. Harutyunyan, M. G. Bellemare, T. Stepleton, and R. Munos, “Q(λ) with Off-
Policy Corrections,” in International Conference on Algorithmic Learning Theory,
Springer, 2016, pp. 305–320.

258



[14] D. Precup, R. S. Sutton, and S. P. Singh, “Eligibility Traces for Off-Policy Policy
Evaluation,” in Proceedings of the Seventeenth International Conference on Ma-
chine Learning, 2000, pp. 759–766.

[15] R. Munos, T. Stepleton, A. Harutyunyan, and M. G. Bellemare, “Safe and efficient
off-policy reinforcement learning,” in Proceedings of the 30th International Con-
ference on Neural Information Processing Systems, 2016, pp. 1054–1062.

[16] Z. Chen, S. T. Maguluri, S. Shakkottai, and K. Shanmugam, “A Lyapunov The-
ory for Finite-Sample Guarantees of Asynchronous Q-Learning and TD-Learning
Variants,” Preprint arXiv:2102.01567, 2021.

[17] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–
292, 1992.

[18] R. S. Sutton, “Open Theoretical Questions in Reinforcement Learning,” in Euro-
pean Conference on Computational Learning Theory, Springer, 1999, pp. 11–17.

[19] C. L. Beck and R. Srikant, “Error bounds for constant step-size Q-learning,” Sys-
tems & control letters, vol. 61, no. 12, pp. 1203–1208, 2012.

[20] ——, “Improved upper bounds on the expected error in constant step-sizeQ-learning,”
in 2013 American Control Conference, IEEE, 2013, pp. 1926–1931.

[21] E. Even-Dar and Y. Mansour, “Learning rates for Q-learning,” Journal of Machine
Learning Research, vol. 5, no. Dec, pp. 1–25, 2003.

[22] A. Dvoretzky, “On stochastic approximation,” in Proceedings of the Third Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1: Contributions
to the Theory of Statistics, Berkeley, Calif.: University of California Press, 1956,
pp. 39–55.

[23] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale ma-
chine learning,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018.

[24] J. N. Tsitsiklis, “Asynchronous stochastic approximation andQ-learning,” Machine
learning, vol. 16, no. 3, pp. 185–202, 1994.

[25] L. Espeholt et al., “IMPALA: Scalable distributed deep-rl with importance weighted
actor-learner architectures,” in International Conference on Machine Learning, 2018,
pp. 1407–1416.
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