The 26" International Conference on Auditory Display (ICAD 2021)

June 25-28 2021, Virtual Conference

AUDITORY GRAPHS FROM DENOISING REAL IMAGES USING FULLY SYMMETRIC
CONVOLUTIONAL NEURAL NETWORKS

Rodrigo F. Cddiz

Music Institute, Faculty of Arts
Department of Electrical Engineering
School of Engineering
Pontificia Universidad Catolica de Chile
Santiago, Chile
rcadiz@uc.cl

Max Guzmdn

Department of Electrical Engineering
School of Engineering
Pontificia Universidad Catolica de Chile
Santiago, Chile
maguzmanb@uc.cl

ABSTRACT

Auditory graphs are a very useful way to deliver numerical infor-
mation to visually impaired users. Several tools have been pro-
posed for chart data sonification, including audible spreadsheets,
custom interfaces, interactive tools and automatic models. In the
case of the latter, most of these models are aimed towards the ex-
traction of contextual information and not many solutions have
been proposed for the generation of an auditory graph directly
from the pixels of an image by the automatic extraction of the un-
derlying data. These kind of tools can dramatically augment the
availability and usability of auditory graphs for the visually im-
paired community. We propose a deep learning-based approach
for the generation of an automatic sonification of an image con-
taining a bar or a line chart using only pixel information. In par-
ticular, we took a denoising approach to this problem, based on
a fully symmetric convolutional neural network architecture. Our
results show that this approach works as a basis for the automatic
sonification of charts directly from the information contained in
the pixels of an image.

1. INTRODUCTION

One of the most common ways for presenting numerical informa-
tion is through graphs and charts. Since graphs and charts are typ-
ically contained inside digital or printed images, these figures are
commonly the only publicly available representation of the origi-
nal data [1]. In addition, main internet search engines nowadays

This work is licensed under Creative Commons Attribution Non

Commercial 4.0 International License. The full terms of the License are
available at http://creativecommons.org/licenses/by-nc/4.0/

https://doi.org/10.21785/icad2021.028 241

Lothar Droppelmann

Department of Computer Science
School of Engineering
Pontificia Universidad Catolica de Chile
Santiago, Chile
ldroppelmann@uc.cl

Cristian Tejos

Department of Electrical Engineering
School of Engineering
Pontificia Universidad Catolica de Chile
Santiago, Chile
ctejos@uc.cl

include figures in their results and scientific charts are abundant
not only on the web, but also embedded in all kind of digital doc-
uments [2]. A sighted person can easily understand the charac-
teristics of the numerical information contained in a chart image
inside a web page or document, but for visual impaired people,
this is a significant problem, as they have no means for accessing
the underlying data.

The sonification of chart data, in the form of auditory graphs,
has been shown to be of great aid for visually impaired people
in the understanding of numerical data [3] [4] [5]. In this paper,
we focus our work in extracting the relative values of bars or the
overall shape of a curve, which would allow a visually impaired
user to effectively estimate the relation between bar elements or
the temporal evolution of a curve in a chart.

This article is structured as follows. In section 2 we review
previous work devoted to chart data extraction from images. In
section 3 we discuss the most important details of our denoising-
based approach. In section 4 we present the network architecture,
datasets, training procedures, post-processing stages and sonifica-
tion schemes. In section 5 we present the results of our approach
and finally, in section 6 we reflect on our main findings and provide
future lines of development for our approach.

2. PREVIOUS WORK

There have been several attempts to design systems that can au-
tomatically infer chart types from an image or extract contextual
information. Traditional approaches are based on machine learn-
ing. In [6], a new heterogeneous feature extractor, denominated
the heterogeneity index, is able to accurately classify charts, based
on the detection of micro-structural features linked to the simi-
larity of the chroma effects present in the images. In [7] a web
miner that searches for SVG-based images on the web, based on


https://doi.org/10.21785/icad2021.028

The 26" International Conference on Auditory Display (ICAD 2021)

a random forest classifier, automatically classifies them by type
(bars, lines, pies). In [8], the authors used a support vector ma-
chine algorithm to classify into ten different chart categories. In
[9], shape descriptors were used in combination with a multiple-
instance learning approach to classify charts. In [10], the authors
analyzed the color distribution of the chart images in conjunction
with a pattern matching approach based on edges for the classifi-
cation into five chart types.

In recent times, there is increasing evidence in favor of using
deep networks for this task as an alternative to traditional machine
learning. In [1], the authors investigated how to automatically
recover information from chart images using both a text analy-
sis pipeline that identifies text elements present in the image and
classifies their role in the chart, and a convolutional neural net-
work that classifies the chart type (bars, points, lines, or areas).
In [11], the authors used an improved version of LeNet convolu-
tional neural network to classify images into eleven different types.
In [12], a combination of convolutional neural networks and deep
belief networks, allowed to achieve better scalability and stabil-
ity according to the authors. In [13], the authors evaluated popu-
lar convolutional neural network architectures for automatic chart
classification and found out that they outperformed methods based
on conventional approaches such as support vector machines, ran-
dom forest or nearest neighbor approaches. In [14], a deep learning
based chart classifier achieved an accuracy of over 99%.

Previous works suggest that the task of automatic classifica-
tion or extraction of contextual information from images of charts
has been already addressed. However, there are only a few works
specifically devoted to extracting the data itself [15]. We found a
few works closely related to our approach. Scatteract [16] is a sys-
tem based on a deep learning object detection model, which can
automatically extract data from scatter plots, with a focus on plots
with linear scales. This model is used to detect points, tick marks
and tick values. It can also find the affine transformation between
pixel coordinates and chart coordinates. In [17], the authors de-
veloped a system that can extract and recognize data fields in bar
charts and infer the numerical data they contain. This is achieved
by the multiplication of each bar’s height in pixels by the y-scale-
to-pixel ratio. This approach does not work for logarithmic val-
ues. In [14], the authors used the Otsu thresholding algorithm to
detect the height of bars in bar charts. In [18], a region-based con-
volutional neural network is able to extract numerical data from
pie charts. Even though these works are similar in spirit to ours,
there are significant differences: our method is aimed towards real-
world internet images, it does not rely on specialized or custom-
designed descriptors, it is scalable, and it is based on denoising, as
we will detail now.

3. A DENOISING APPROACH TO AUDITORY GRAPHS

We adopted a denoising approach for the automatic generation of
auditory graphs, to facilitate the direct sonification of images con-
taining charts. In this article, we will focus on single line and bar
charts, already classified as such. Let’s suppose we have access to
very clean binary images, such as the ones displayed in the right
column of figure 1. Then the problem of estimating a data stream
from those images is a relatively straight forward computer vision
problem. Of course, this approach is not suitable for lines contain-
ing multiple lines or stacked bars.

For example, in the case of the line graph of figure 1 (b) we
could simply navigate through each column of the image and esti-

242

June 25-28 2021, Virtual Conference

0s08a -
o7ren

os4g7

05204~

0390~

02617

01323+

00030 57|

01264

02558 -

03851 - .| Something
0s1as \ Maximum

08438 Random Point), |
07m2- .
o 02 o404

¥ label

0606 088 101
Xabel

(a) Source line chart (b) Target line chart

‘engor |eader dhider boys manifests prisaner

oL 1 III‘|||||I||I|

P
FEFE b“’e{“ & EEEE

(c) Source bar chart (d) Target bar chart

Figure 1: The objective of our denoising process is to take bar or
line images, e.g. (a) and (c) and transform them into clean images
(b) and (d), respectively. This is achieved by considering as noise
all elements that are not part of bars or lines, such as grid lines,
labels and tick marks.

mate the position of the upper non white pixel for each column in
order to obtain a data series. For the chart of figure 1 (d) we can
do a similar procedure and infer each bar’s width from the number
of non white pixels across the bottom row of the image.

The problem is much more difficult when working with real-
world images, e.g. figure 1 (a) and (c). As seen, both images
contain a significant amount of elements that can hinder a simple
approach as that described above. Real-world chart images contain
bounding boxes, tick marks, text, titles, legends and labels that can
occlude the pixels that carry the actual data contained in the chart.
In our approach, all these elements are considered to be noise and
our goal is to get rid of that noise, by a denoising process.

Our denoising approach consist of four steps (Figure 2). We
consider a pre-classified image containing a line or bar chart as the
input to our system. As we previously stated, we do not include
a classification stage in our work. The first step is to scaled the
image down to a 256 x 256 size. As we are concerned with the
shape of lines and height and width of bars, all color information
must be removed at this stage. Second, we apply a fully symmetric
convolutional neural network, specifically designed for denoising
[19], that blurs out all noisy elements that are not necessary. Once
we have attenuated all the noise, we apply a binary threshold. The
binary image, dependent on the particular threshold that is applied,
can generate isolated pixels or disconnected elements that can be
removed or joined by means of morphological filters (erosion, di-
lation and closing) [20]. At the end of the denoising process, we
obtain a binary image that is much easier to convert into a data
stream ready to be used for further sonification, as described in
section 4.5.



The 26" International Conference on Auditory Display (ICAD 2021)

Image in

Y

Image out

Denoising process

L T T T T Ty e R T N N T R T T T T R T -

June 25-28 2021, Virtual Conference

Chart data
sonification

Scaling and

FSCN: Fully

gravecale symmetric Threshold Morphological

=t : H 3 : .

conversion convolutional binarization filtering
network

L L N T T I N T T T S N T N R T T R N T e N T N N T T T T N T T T N

T .

Figure 2: Our approach consists in a denoising process where all elements that are not a part of a bar or a line are removed. First, an input
image is scaled down to a 256 x 256 size and all color information is removed. Second, we apply a fully symmetric convolutional neural
network that blurs out all elements that are not necessary. Third, a binary threshold is applied. Fourth, all isolated pixels are removed and
disconnected elements are merged by morphological filters. Finally, we obtain a binary image that is much easier to convert into a data

stream ready to be used for further sonification.

4. METHODS

4.1. Network architecture

For the denoising task, we decided to implement a variation of the
network architecture proposed in [19]. The architecture of the net-
work (Table 1) consists of eight pairs of symmetric convolutional
and deconvolutional layers, each of the same size (256 x 256) as
the original image, with 64 channels each. Conv2D refers to a
convolutional layer while Conv2DTr denotes a transposed convo-
lutional layer, also known as a deconvolution. The left column
displays layers, the middle one the shape of each layer and the
right column the number of parameters of each layer. The size of
the filter for each layer was 3 x 3 and all of them contained a ReLU
activation function.

This  architecture  allows learning  convolutional-
deconvolutional mappings from the original chart images to
the binary segmented ones without reference to image priors,
and with better results than state-of-the-art denoising algorithms.
According to [19]: “the convolutional layers act as feature
extractor to encode primary components of the image contents
while eliminating corruptions, and the deconvolutional layers
then decode the image abstractions to recover the image content
details”. In our case, corruptions refer to unwanted items such as
grids lines, tick marks, text and legends.

4.2. Training

For training, we used an Adam optimizer with a mean-squared
error loss and trained in batches of 16 images. We chose this op-
timizer as it is very computationally efficient and works well with
large datasets with little memory requirements [21]. We found
the minimum loss by early stopping with a patience factor of 10,
meaning that if the loss did not improve after 10 epochs, the train-
ing halts and we keep the loss and state of the network from 10

243

[ Layer | Shape | Parameters |
INPUT (256, 256, 1) 0
Conv2D (256, 256, 64) | 640
Conv2DTr | (256, 256, 64) | 36928
Conv2D (256, 256, 64) | 36928
Conv2DTr | (256, 256, 64) | 36928
Conv2D (256, 256, 64) | 36928
Conv2DTr | (256, 256, 64) | 36928
Conv2D (256, 256, 64) | 36928
Conv2DTr | (256, 256, 64) | 36928
Conv2D (256, 256, 64) | 36928
Conv2DTr | (256, 256, 64) | 36928
Conv2D (256, 256, 64) | 36928
Conv2DTr | (256, 256, 64) | 36928
Conv2D (256, 256, 64) | 36928
Conv2DTr | (256, 256, 64) | 36928
Conv2D (256, 256, 64) | 36928
Conv2DTr | (256, 256, 64) | 36928
OUTPUT (256, 256, 1) 577

Table 1: The architecture of the neural network consists of 16 inter-
nal symmetric convolutional layers of size 256 x 256 with 64 chan-
nels each. Conv2D refers to a convolutional layer while Conv2DTr
labels a transposed convolutional layer, also known as a deconvo-
lution. The left column displays layers, the middle one the shape
of each layer and the right column the number of parameters of
each layer. Filter size was 3 x 3 for all layers.

epochs in the past. We used Google Colaboratory ! to design and
train our models.

"http://colab.research.google.com



The 26" International Conference on Auditory Display (ICAD 2021)

4.3. Dataset

A complete dataset for deep learning training must include a train-
ing set, used for training the network, and a test set, consisting on
images never seen by the network before, used to assess the real
effectiveness of the model for new data.

In the case of bar charts, our training dataset consisted of 5000
random charts generated in Python. We varied bar widths and
styles, grid sizes and scales, random text positioned in random
places, tick marks and legends. For testing, we used 1000 Python
and 544 real-world images downloaded from the internet.

In the case of line charts, our training dataset consisted of 4000
charts generated in Python, 4000 charts created in Matlab and 240
real-world images obtained from the internet. Both Matlab and
Python charts simulate a Brownian motion in order to create a great
diversity of curves. We also varied line width and styles, grid sizes
and scales, random text positioned in random places, tick marks
and legends. The real-world images downloaded from the internet
were 40 and we used data augmentation (rotation and reflections)
to obtain 240 real-world images. Our test dataset consisted of 1000
Matlab charts, 1000 Python charts and 60 real-world images.

4.4. Post-processing

The networks we implemented are designed to blur the unwanted
information as much as possible, as seen in figures 3 and 4. The
original images (figures 3(a) and 4(a)) are scaled down to a 256
x 256 pixel size and converted to gray. The images are then pro-
cessed by a FSCN deep model, resulting in the blurred images
(figures 3(b) and 4(b)).

A threshold, tuned to the average pixel intensity, is applied to
obtain binary images (figures 3(c) and 4(c)). Morphological oper-
ations, such as dilations, erosions and closings are then applied to
connect isolated segments and remove pixel islands, resulting in
the wanted clean images (figures 3(d) and 4(d)).

4.5. Sonification

For the sonification of the data, we proposed a simple scheme
based on an iterative sweep of the pixel intensity levels of each
column of the post-processed image. For each column, we can
estimate the position of the upper non white pixel and we save
its y-coordinate into a data array. In the case of line charts, it is
probable that each column will produce a slightly different value,
while in the case of bar charts, many columns will have the same
y-coordinate value, as those pixels belong to the same bar. Some
of the columns will only contain white pixels, signaling either bar
separation of the beginning and ending of a line or curve. This
simple sonification scheme, similar to the ones proposed in [22]
and [23], associates pitch with the y-coordinate and time with the
z-coordinate. This approach has the advantage that it works in
the same fashion for both bar and line charts, allowing the user to
discriminate the type of chart by simply hearing the information,
without the need of extra contextual information.

This sonification scheme follows all the recommendations
proposed in [5]: map the y-axis to pitch, use musical sounds in-
stead of sine waves, consider an ambitus of midi notes within the
range 35-100, and presentation at a speed that does not impair
comprehension.

244

June 25-28 2021, Virtual Conference

(b) Blurred image

5 It 15 %

(a) Original image

bl A

(c) Binary image

(d) Post-processed image

Figure 3: Steps of the denoising process. The original image (a)
is denoised by an FSCN deep model, resulting in the image (b).
Then, a 50% threshold is applied to obtain a binary image (c).
Morphological filters are then applied to connect isolated segments
and remove pixel islands, resulting in the post-processed image

(d).

5. RESULTS

When testing the FSCN networks, we achieved an optimal loss of
0.007 after 30 epochs for the bar charts and 0.0047 for the line
charts after 12 epochs. To assess the quality of our denoising sys-
tem, including post-processing, we calculated the average mean
squared error (MSE) and its standard deviation between segmented
images directly from the originals, and the ones generated by our
method (table 2). We chose this metric as a way to determine the
quality of the sonification input, as we need to eliminate all objects
that are not data. In consequence, this error allows us to establish a
criteria of how well we are able to effectively eliminate unneeded
elements from the charts.

[ N | Dataset | Average MSE | Standard deviation MSE |

999 | Python 0.006 0.001
999 | Matlab 0.01 0.005
60 Internet 0.03 0.02

Table 2: Mean squared error (MSE) for synthetic (Python, Matlab)
and real (Internet) test datasets

For these measurements, we considered 999 synthetic chart
images generated in Matlab, 999 in Python, and 60 images down-
loaded from the internet. These images belong to the test set,
meaning that they were never seen in the training by the FSCN
network. As shown in table 2, the error increases for real images,
as well as the standard deviation of the error. This means that at



The 26" International Conference on Auditory Display (ICAD 2021)

Live Internet Speed T w t So0W

.

Time in millisecond

(a) Original image

(c) Binary image (d) Post-processed image

Figure 4: Steps of the denoising process. The original image (a)
is denoised by an FSCN deep model, resulting in the image (b).
Then, a 50% threshold is applied to obtain a binary image (c).
Morphological filters are then applied to connect isolated segments
and remove pixel islands, resulting in the post-processed image

(d).

this stage our system is performing well with synthetic images, but
there is still room for improvement for real-world ones. We have
identified that most of the errors are generated at the borders of the
images or when the images contain a significant amount of text or
legends occluding the data. This is not surprising considering the
fraction of real-world images that we used for training compared
to the total. Our sonification stage takes into account some of these
sources of errors in order to minimize their influence in the final
generated sound.

However, when looking at some real-world examples, we can
see that, in most of the cases, our approach performs well. Figure
5 shows two examples of our results. As it can be observed, our
approach is able to generate clean and accurate bar and line charts
removing all elements that are not part of bars or lines, such as grid
lines, labels and tick marks.

As we explained in section 4.5, our sonification approach nat-
urally permits the differentiation of line and bar charts, and it is
significantly eased by the very clean binary images that our system
produces. Reviewers can find code, repositories and demo videos
showing examples of sonifications for several different kinds
of charts at our github site: https://sonificationUC.
github.io.

6. CONCLUSIONS AND FUTURE WORK

Even though these are preliminary results, based on a relatively
simple FSCN deep network architecture and small datasets, we
have shown that this approach could result in a very useful tool for
automatic auditory graph generation directly from the pixel infor-
mation of bar and line chart images. In summary, we believe that
a denoising approach is a viable path for this task.

We decided to focus on a data extraction process and not on
a previous classification task, as we found that there is plenty of
research devoted to that topic and much fewer work is targeted to
the data extraction. Additionally, we believe that our sonification
approach allows the user to infer the type of chart (e.g. bar, line,
etc.) directly from the generated sound.

245

June 25-28 2021, Virtual Conference

£
w0

v

(a) Source line chart (b) Generated line chart

Draw Tick Marks at Each Midpoint

Height

JUUUUD

(d) Generated bar chart

(c) Source bar chart

Figure 5: Examples of results. Our approach is able to generate the
charts seen in the right column (b and d) directly from the source
images shown in the left column (a and c). In these particular
cases, these source images were obtained from the internet. All
elements that are not part of bars or lines, such as grid lines, la-
bels and tick marks, were successfully removed from the original
images.

In this paper we were not focused in the extraction of the ab-
solute numerical quantities contained in a chart, but rather in the
relative values of bars or the estimation of the overall shape of a
curve. The extraction of the absolute values, which is much more
complex task, is planned for future work.

We acknowledge that there is room for additional improve-
ments. In terms of the current errors of our approach for real-world
images, we have identified that most of the errors are generated at
the borders of the images or when the images contain a significant
amount of text or legends occluding the data. To improve perfor-
mance, we are looking forward to dramatically increase the sizes
and variety of our datasets, to refine the network architecture, to
include robust text analysis, contextual information and color, to
incorporate chart classification stages and to implement several al-
ternative sonification strategies, with the aim of combining all of
these items into a usable and freely available auditory graph tool
for visually impaired users.

Finally, it is of utter importance to conduct user tests, specif-
ically aimed towards visually-impaired people, to determine the
usability and precision of our approach from a perceptual stand-
point.

7. ACKNOWLEDGMENTS

This research was partially funded by Fondecyt Grants #1191710,
#1161328 and Anid/PIA/Anillo ACT192064

8. REFERENCES

[1] J. Poco and J. Heer, ‘“Reverse-Engineering Visualizations:
Recovering Visual Encodings from Chart Images,” in Eu-
rographics Conference on Visualization (EuroVis), vol. 36,
no. 3. Blackwell Publishing Ltd, 6 2017, pp. 353-363.



The 26" International Conference on Auditory Display (ICAD 2021)

(2]

3

—

(4]

(5]

[6

—_

(7]

(8]

9

—

(10]

(11]

(12]

(13]

(14]

R. A. Al-Zaidy and C. L. Giles, “Automatic extraction of
data from bar charts,” Proceedings of the Sth International
Conference on Knowledge Capture, K-CAP 2015, 2015.

F. Delogu, M. Palmiero, S. Federici, C. Plaisant, H. Zhao,
and O. Belardinelli, “Non-visual exploration of geographic
maps: does sonification help?” Disability & Rehabilitation:
Assistive Technology, vol. 5, no. 3, pp. 164—-174, 2010.

M. A. Alonso-Arevalo, S. Shelley, D. Hermes, J. Hollowood,
M. Pettitt, S. Sharples, and A. Kohlrausch, “Curve shape and
curvature perception through interactive sonification,” TAP,
vol. 9, no. 4, pp. 1-19, 2012.

L. Brown, S. Brewster, S. Ramloll, and R. Burton,
“Design guidelines for audio presentation of graphs and
tables,” 2003. [Online]. Available: http://sci-hub.cc/http:
/l/eprints.gla.ac.uk/3196/

P. Mishra, S. Kumar, and M. K. Chaube, “ChartFuse: a
novel fusion method for chart classification using heteroge-
neous microstructures,” Multimedia Tools and Applications,
pp- 10417-10439, 2020.

L. Battle, P. Duan, Z. Miranda, D. Mukusheva, R. Chang,
and M. Stonebraker, “Beagle: Automated extraction and in-
terpretation of visualizations from the web,” in Conference
on Human Factors in Computing Systems - Proceedings, vol.
2018-April. Association for Computing Machinery, 4 2018.

M. Savva, N. Kong, A. Chhajta, F. F. Li, M. Agrawala, and
J. Heer, “ReVision: Automated classification, analysis and
redesign of chart images,” UIST’11 - Proceedings of the 24th
Annual ACM Symposium on User Interface Software and
Technology, pp. 393-402, 2011.

W. Huang, S. Zong, and C. L. Tan, “Chart image classifica-
tion using multiple-instance learning,” Proceedings - IEEE
Workshop on Applications of Computer Vision, WACV 2007,
pp. 5-10, 2007.

A. Mishchenko and N. Vassilieva, “Model-based chart im-
age classification,” Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 6939 LNCS, no. PART
2, pp- 476-485, 2011.

J. Amara, P. Kaur, M. Owonibi, and B. Bouaziz, “Convolu-
tional neural network based chart image classification,” Com-
puter Science Research Notes, vol. 2703, no. May, pp. 83-88,
2017.

B. Tang, X. Liu, J. Lei, M. Song, D. Tao, S. Sun,
and F. Dong, “DeepChart: Combining deep convolutional
networks and deep belief networks in chart classification,”
Signal Processing, vol. 124, pp. 156-161, 2016. [Online].
Available: http://dx.doi.org/10.1016/j.sigpro.2015.09.027

P. Chagas, R. Akiyama, A. Meiguins, C. Santos, F. Saraiva,
B. Meiguins, and J. Morais, “Evaluation of Convolutional
Neural Network Architectures for Chart Image Classifica-
tion,” Proceedings of the International Joint Conference on
Neural Networks, vol. 2018-July, 2018.

W. Dai, M. Wang, Z. Niu, and J. Zhang, “Chart decoder:
Generating textual and numeric information from chart
images automatically,” Journal of Visual Languages and
Computing, vol. 48, pp. 101-109, 2018. [Online]. Available:
https://doi.org/10.1016/j.jvlc.2018.08.005

246

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

June 25-28 2021, Virtual Conference

K. Davila, S. Setlur, D. Doermann, U. K. Bhargava, and
V. Govindaraju, “Chart Mining: A Survey of Methods for
Automated Chart Analysis,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 8828, no. c, pp. 1-1,
2020.

M. Cliche, D. Rosenberg, D. Madeka, and C. Yee,
“Scatteract: Automated extraction of data from scatter
plots,” 4 2017. [Online]. Available: http://arxiv.org/abs/
1704.06687http://dx.doi.org/10.1007/978-3-319-71249-9_9

R. A. Al-Zaidy and C. L. Giles, “A Machine Learning
Approach for Semantic Structuring of Scientific Charts
in Scholarly Documents,” Proceedings of the 29th AAAI
Conference on Artificial Intelligence, pp. 4644-4649,
2017. [Online]. Available: http://aaai.org/ocs/index.php/
TAAI/TAAIL7/paper/view/14275

P. De, “Automatic Data Extraction from 2D and 3D Pie Chart
Images,” Proceedings of the Sth International Advance Com-
puting Conference, IACC 2018, pp. 20-25, 2018.

S. A. Priyanka and Y. K. Wang, “Fully symmetric convolu-
tional network for effective image denoising,” Applied Sci-
ences (Switzerland), vol. 9, no. 4, 2019.

R. C. Gonzalez and R. E. Woods, Digital Image Processing,
third edit ed. Prentice Hall, 2008.

D. P. Kingma and J. L. Ba, “Adam: A method for
stochastic optimization,” in 3rd International Conference
on Learning Representations, ICLR 2015 - Conference
Track Proceedings. International Conference on Learning
Representations, ICLR, 12 2015. [Online]. Available:
https://arxiv.org/abs/1412.6980v9

A. Aparicio and R. F. Cadiz, “Audiograph: Auditory graphs
for Google Sheets with Faust,” in The 24th International
Conference on Auditory Display (ICAD 2018), 2018, pp. 1-
4.

L. Harrar and T. Stockman, “Designing auditory graphs
overviews: An examination of discrete vs. continuous sound
and the influence of presentation speed,” in Proceedings
of the 13th International Conference on Auditory Display
(ICAD2007), 2007, pp. 299-305. [Online]. Available: http:
/Isci-hub.cc/https://smartech.gatech.edu/handle/1853/49990



