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SUMMARY 

This PhD thesis explores the analysis of RNA-seq data and the value it can provide 

to the diagnosis of rare genetic disorders. While individually rare, these incurable disorders 

collectively affect as many as 1 in 10 Americans and are mostly without effective 

treatment. Recent developments in personalized medicine and targeted gene-therapies 

indicate the dawn of a new era for rare disease treatment is on the horizon, but the 

advancement of therapeutics is dependent on increasing our knowledge of the causative 

molecular mechanisms underlying each specific disease. Despite the meteoric rise of 

whole genome and whole exome sequencing in the past decade, diagnostic yield for the 

majority of rare disorders hovers around 35%. RNA-seq is a less commonly used 

technology, but holds the potential to show us the intermediary step between DNA and 

protein and the direct effects variants may have on it. My research focuses on developing 

a multi-faceted approach to analysis of RNA for rare disease diagnostics, using targeted 

gene panels to achieve higher read depth and the correlation of multiple data types to 

maximize identification of pathogenic events.   

Chapter 2: In this case study of an individual affected by neuromuscular disease, 

we explored the use of targeted RNA-seq for the affected tissue. Based on the unusual 

clinical presentation, the patient and both parents underwent whole exome sequencing. A 

single heterozygous missense variant was found in GNE, which had been previously 

characterized as pathogenic. However, GNE-myopathies are inherited in an autosomal 

recessive manner, and no second variant was identified. RNA-seq of the muscle showed 

mono-allelic expression of the pathogenic allele, and subsequent aCGH identified an 

upstream deletion of 7.08kb. GNE transcript abundance in RNA indicated a 50% reduction 
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in the patient, which along with the monoallelic expression of the pathogenic variant 

confirmed that the promoter region deletion leads to loss of expression of the GNE 

transcript.  

Chapter 3: My second study explored transcriptome-wide splicing patterns in the 

ileal and rectal tissue of patients with inflammatory bowel disease. Exon inclusion was 

calculated for each paired duplicate sample and analysis of principal components found 

splicing to be less variable than gene expression overall, though both showed clear 

separation by tissue type. Eight individuals exhibited aberrant splicing and gene 

expression profiles that are at least partially explained by altered ratios of specific cell 

types suggestive of active inflammation. The ileal samples of two individuals with Crohn’s 

disease had significantly divergent splicing patterns that resembled the splicing profile of 

rectal tissue, indicating that differential splicing contributes to the pathology of 

inflammatory bowel disease.  

Chapter 4: This extensive study of a sizeable cohort of patients clinically 

suspected of Dysferlinopathy exemplified the diagnostic power of RNA-seq for a single 

gene. Genomic sequencing of DYSF and a protein assay of Dysferlin were performed for 

the entire cohort and a subset of the full cohort underwent targeted RNA-seq of whole 

blood. Prior to RNA-seq, the diagnostic yield of the cohort was 33%. This study relied on 

a novel pipeline for the comprehensive analysis of RNA including splicing, allele specific 

expression, exon usage, and transcript abundance. Emphasis was placed on 

concordance of clinical and laboratory data for a complete diagnosis. RNA-seq identified 

exonic variants, aberrant splicing events, and allele specific expression. Even with only 

around a fifth of the full cohort undergoing RNA-seq, the total diagnostic yield was raised 
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to 44%. In addition, we found that allele specific expression due to nonsense-mediated 

decay can be used to phase variants. 

Chapter 5: In this final study, we explored how the pipeline developed for RNA-

seq analysis in neuromuscular disorders would fare in the diagnosis of disorders with a 

less clear-cut causative gene or inheritance pattern. RNA-seq of PBMCs in a small cohort 

of patients suspected of a primary immunodeficiency or very-early onset inflammatory 

bowel disease who had previously undergone whole exome sequencing was performed 

for a panel of genes associated with immune disease. Although only a few instances of 

aberrant splicing were found, results were frequently suggestive of di- or multi-genic 

inheritance and brought into question the traditional model of variant classification that is 

prone to dismiss potentially disease contributive variants that are only semi-rare. 
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CHAPTER 1.  INTRODUCTION 

In order to understand why RNA-sequencing is relevant to clinical diagnostics, it is 

first necessary to review the recent history of rare human congenital disease and the rise 

of clinical genetic testing.  

1.1 Rare diseases 

An overview of the rare disease information presented here is provided in Figure 

1.1. There are over 7000 defined rare diseases, with 80% or more considered to be 

genetic in origin.[1,2] While each individual disease is exceedingly rare, collectively around 

30 million Americans are estimated to be affected by a rare disease. Despite being a 

relatively small portion of the population, rare disease patients make up roughly 25% of 

pediatric hospitalizations and place a sizeable burden on the healthcare system with 

lifetime estimated costs often exceeding $5 million[3-6]. Addressing rare diseases is an 

important issue for healthcare. Over half of rare diseases are associated with a reduced 

lifespan and years of life lost due to rare disease is 2X that of diabetes and 4X that of 

infectious disease[7].1 Because each of these conditions affects only a handful of 

individuals, there has historically been a lack of research and resources surrounding the 

diagnosis and treatment of rare disease. The Orphan Drug Act of 1983 aimed to improve 

this situation by incentivizing the development of therapeutics for rare diseases. While this 

did lead to the approval of hundreds of orphan drugs, to date just 3% (226) of all rare 

diseases have an approved FDA treatment[8]. That is not to say that all hope is lost, 

 
1 Almost certainly no longer accurate. 
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however. From 2015-2020 orphan drugs made up between 39 and 53% of all new FDA 

approvals, and 11% of registered clinical trials correspond to a rare disease[9].  

 

 

It is incredibly important that rare disease patients receive a diagnosis. Because of 

overlapping and heterogeneous phenotypes along with confounding factors like common 

disorders masking typical symptoms, receiving a diagnosis increasingly means 

identification of the underlying genetic cause, often referred to as a molecular or genetic 

diagnosis[10,11]. In addition, therapies available or in development commonly target 

specific affected regions or variants, making a genetic diagnosis essential for treatment or 

enrollment in clinical trials. Managers of clinical trials may need to know the specific 

diagnosis of people with a suspected rare disease before enrolling them, because the 

Figure 1.1 An overview of rare disease. 
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therapies are designed to be effective only for specific patient subsets.[12]  Such clinical 

trials will also benefit from better information relating to the causative variants for a specific 

disorder so treatments can be targeted to the mutation, as for example with CFTR-

genotype-guided therapy for cystic fibrosis.[13] The Jain Foundation has funded a clinical 

trial for treatment of a subtype of neuromuscular disease, dysferlinopathy, where 

enrolment depends on a molecular diagnosis of a pathogenic DYSF (HGNC ID: 3097) 

genotype. One aim of this thesis is to enhance such diagnosis. 

Even when there is no existing drug therapy, a diagnosis can allow patients to 

receive symptom-alleviating treatment[14]. Studies indicate that between 20-50% of 

genetic diagnoses lead to a recommendation for change in disease management or 

treatment[15,16]. It remains true, however, that a majority of patients with a rare disease 

have no treatment options available or hope for a treatment option in their lifetime. It has 

been speculated that a diagnosis, for these patients, would be detrimental to their mental 

health. Recent studies have conclusively shown that in nearly all cases this is false[17], 

and furthermore there are tangible benefits to receiving a diagnosis[18], beyond the 

psychological (Figure 1.1). A conclusive diagnosis is an end to the diagnostic odyssey that 

takes, on average, 8 years, as well as an end to the constant laboratory tests (some of 

which, like biopsies, are invasive and painful)[19]. A diagnosis also prevents unnecessary 

care like unhelpful or even detrimental therapies[20]. Despite over half of rare diseases 

presenting at birth or in childhood[11], undiagnosed adults experience more difficulty 

navigating the healthcare system[19], making early diagnosis even more important. In 

some countries, patients are unable to access social and ancillary services without a 

diagnosis[14], increasing their burden, both financial and otherwise. Then there are the 

social and psychological benefits like peace of mind, family and life planning, and 
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availability of specific support groups. Finally, even if all the previously mentioned benefits 

of a definitive diagnosis do not apply, rare disease patients report post-diagnosis that they 

are finally taken seriously by health care providers, even when the providers have no 

knowledge about their specific condition[18]. This is particularly common amongst women 

and people of color[21,22], whose unaffected counterparts are already known to 

experience an uphill battle in receiving adequate and necessary care in the face of medical 

disavowal.2 The validation provided by a definitive diagnosis leads to empowerment, self-

confidence, and improved health-related quality of life[23]. 

1.2 Rare disease genetics 

Research has come a long way in the diagnosis of rare disorders of genetic origin. 

Since the shotgun sequencing of the draft human genome two decades ago, sequencing 

technologies have advanced almost exponentially. As costs have decreased at nearly the 

same rate, early diagnosis through genetic sequencing has become more popular.[24,25] 

Here, I will discuss the types of rare disease genetic testing, the standards for sequence 

variant interpretation, and the major challenges and debates present in the field. 

1.2.1 Genomic sequencing 

There are three main test types ordered in the clinical laboratory setting for the 

diagnosis of rare disease: targeted gene panels, whole exome sequencing (WES), and 

whole genome sequencing (WGS). As sequencing costs decreased, single gene tests 

were largely replaced with disease or tissue specific panels of genes. These panels 

 
2 For rare diseases involving fatigue and weakness, women are often told their symptoms are 
psychosomatic or related to menopause or their menstrual cycle, which harkens back to the good old 
days of female hysteria. 
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generally depend on a backbone of gene-disease association research to gather groups 

of genes most likely to contain the underlying cause for a particular range of phenotypes. 

This remains the most common test type ordered by clinicians, despite the push towards 

WES and WGS in the research community[11]. Targeted panels are inexpensive and offer 

a high read depth for increased confidence. However, this sequencing method covers only 

exonic regions (+/- about 5bp), meaning that intronic variants will not be detected. The 

biggest downside to targeted panels is that they will not be able to identify the causal 

variant if it is located in a gene that is not a part of the sequenced panel. WES improves 

upon this aspect of targeted sequencing in that it covers all known protein coding genes. 

Like targeted panels, however, it covers only exonic regions. Just as its name suggests, 

WGS covers the entire genome including exons, introns, and intergenic sequences. The 

pros and cons surrounding the different test options are discussed further later in this 

introduction, in the context of diagnostic yields and variant interpretation. 

1.2.2 Variant interpretation 

The early days of identifying a causative variant primarily involved linkage analysis 

and required animal models to prove pathogenicity. In the past 20 years or so, the 

technology to sequence the human genome has improved far faster than our 

understanding of it. The research community is still recovering from the errors that arose 

from faulty assumptions in early rare disease research. Multiplex pedigrees, at one time 

the standard for diagnostics, overestimated disease penetrance[15]. As a result, the 

penetrance and prevalence of most rare diseases are considered uncertain[8]. Next 

Generation Sequencing (NGS) allowed for causal inference of variants as well as in-silico 

predictions of pathogenicity. Large population sequence databases of presumed healthy 

individuals like ExAC[26] and gnomAD[27] provided more accurate metrics for variant 
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frequency. Variants that had been defined as pathogenic due to their presence in families 

with rare disease were found to be more common than previously thought[28]. In the first 

decade of the millennium, new companies cropped up to bring NGS technology to clinical 

diagnostics. By the early teens, it was apparent to the rare disease diagnostic community 

that the lack of consensus surrounding variant pathogenicity had become a problem both 

for researchers and the patients they aimed to help[29,30], with one study finding that up 

to a third of pathogenic variants in the Human Gene Mutation Database (HGMD) were in 

fact likely benign[31]. In 2015, the American College of Medical Genetics (ACMG) 

released a set of guidelines for variant interpretation.[32]  These were produced by a large 

collaborative process to establish standards by which to determine the significance of a 

variant and are the current foundation for clinical diagnostics. These standards have 

widely been adopted by both researchers and clinical genetic testing laboratories, but they 

are often not applied consistently due to the complexity of the evidence and the fact that 

they were written in broad terms to apply to a number of types of genetic testing.[33] 

Variants are classified as pathogenic (P), likely pathogenic (LP), of unknown significance 

(VUS), likely benign (LB), or benign (B) using a combination of criteria from population 

data, computational data, functional data, and segregation patterns.[32]  The biggest 

obstacles to implementation of these criteria include inconsistent standards of evidence, 

inability to phase pairs of alleles, and failure to incorporate emerging lines of evidence. 

The presence of clinical testing laboratories distinct from rare disease research 

laboratories means that many rare variants have been seen in patients but are not 

published in the literature. Because patients with a specific rare disease are few and far 

between and the variants are, by definition, not often found in the general population, it is 

important to share this information across the diagnostic community. The public database 
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ClinVar was created so that researchers and laboratories could submit variants alongside 

the evidence for their interpretation[34].  

As of June 2021, OMIM[35] lists 6,091 human phenotypes whose molecular basis 

is unknown, while ClinVar[36] lists almost 1.5 million variant records claiming some 

evidence for causation of a condition.  Whole genome sequencing (WGS) is dramatically 

expanding clinical diagnosis, but there are multiple challenges to be overcome[10,37].  

The process of identifying genetic causality in rare disease is incredibly difficult. 

There are 3 billion base pairs in the human genome, of which just 1% code for proteins 

(referred to as the exome)[38]. Changes to the coding sequence, particularly changes that 

lead to premature truncation of the protein like nonsense variants and frameshift deletions 

or insertions, are the easiest to link to rare disease[29]. We know now that the regions 

between exons and between genes are important for regulatory purposes[39], but there 

is still a dearth of knowledge about the exact mechanics. Furthermore, it is challenging 

and often not possible to determine the effect of variants that occur in these regions[40].  

1.2.3 Diagnostic yield and the challenges to interpretation 

Our ability to interpret sequence data was long ago eclipsed by our ability to 

generate it. The use of trios in WES and WGS, where a proband and two closely related 

relatives (ideally parents) are sequenced, helps sort through the large number of potential 

rare variants by allowing for phasing and identification of de novo variants. Although 

diagnostic yields for some disorders, like cystic fibrosis (CF; OMIM #219700), have 

reached upwards of 90% with the use of DNA sequencing[41], most others hover around 

30%.[42-44]  
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The introduction of Whole Exome Sequencing (WES) allowed for gene/disease 

association discoveries to accelerate. WES is now routinely used in research settings for 

gene discovery and variant identification for rare diseases. While Whole Genome 

Sequencing provides more information than WES, WES is often chosen for its lower cost 

both in sequencing and in data storage/interpretation (though neither will be a meaningful 

barrier a decade from now). There is a push for WES/WGS to be used as a primary tool 

for clinical rare disease diagnostics, evidenced by the test offerings at clinical genetic 

testing laboratories and research initiatives focused on newborn screenings and database 

building using the technologies. While this work is undoubtedly incredibly important to the 

implementation of precision medicine strategies, it is unfortunately not very helpful to 

patients currently suffering from an undiagnosed rare disease. Previous studies have 

indicated that for many diseases, WES/WGS offer an improvement in diagnostic yield 

relative to candidate gene screening of only 5-15%.[42-44] There are a number of 

underlying reasons for this, but chief among them is the burden of variants of uncertain 

significance (VUS). Another barrier to WES/WGS becoming a common tool in clinical 

diagnostics is cost. Though it can be argued that WGS/WES as the initial diagnostic test 

saves money in the long run,[12] it is more expensive than individual single-gene or multi-

gene panel tests and a recent survey indicated that most insurance is far less likely to 

cover WES or WGS.[45-48]  

A belief commonly held by researchers focused on clinical diagnostics is that WGS 

is the future – in the future every baby will be sequenced immediately, and this will capture 

issues early on. WGS is future-proof, in the sense that you can always reanalyze the data 

after strides are made in variant interpretation and/or identification of new genes 

associated with a disease. Studies focus on building huge cohorts of WGS sequences, 
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believing that if we sequence enough we will identify the causative variants mostly by 

statistical enrichment.[10,24,25,49,50] I would like to challenge this notion. Because of 

variability in penetrance[1], rarity of disease, and the incredibly high burden of VUS, WGS 

is simply not a sufficient option. By all means we should continue to grow these databases, 

as they undeniably have improved diagnostics and will likely eventually serve the desired 

purpose. But they alone do not help the majority of people with a rare disease and won’t 

within their lifetimes. The critical need is for VUS to be evaluated more systematically. 

Although it is time-consuming and expensive to conduct individual experiments that 

definitively prove a VUS is a causative pathogenic variant, the effort pays off in diagnostic 

accuracy and hence patient health. 

Against this background, I note that RNA seq is cheaper, identifies more clinically 

relevant variants and importantly, directly observes the effects of certain variants. It can 

resolve some of the VUS and also identify variants not seen in DNA sequencing. It also 

adds to the knowledge base – once a variant is seen to be pathogenic in RNA it can be 

used to go back and reanalyze WGS. 

1.3 Splicing 

Alternative splicing is a normal and necessary form of isoform and gene expression 

regulation, though the mechanisms by which it happens are only partially understood[51]. 

Types of alternative splicing events include exon skipping, alternative donor/acceptor sites 

(exon extension, partial exon exclusion), retained introns, and mutually exclusive exon 

usage (Figure 1.2). Exon skipping is the most prevalent type of alternative splicing in 

humans.[52] A splicing event is aberrant if it does not occur naturally in a known, annotated 

transcript or in the population.  
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Apart from variants that disrupt the canonical splice sequence (the two base pairs 

adjacent to the beginning and end of every exon), variant effects on splicing have largely 

been ignored. We cannot even say for certain what percentage of variants in the human 

genome affect splicing. Estimates range from as little as 9% to more than 50%[51,53-55]. 

Splice variants make up around 15% of reported variants in ClinVar, and 75% of those 

disrupt the canonical splice site[56-58]. It is clear that variants affecting splicing are 

understudied and as a result are more likely to be missed when testing for rare disease. 

While in-silico tools for predicting the effect of missense variants on protein function are 

Figure 1.2 Types of alternative splicing. 
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quite accurate and well-tested, similar tools to predict splice variants are mostly out of date 

and unreliable given our historic lack of understanding of non-exonic sequences and 

regulatory mechanisms[51,53]. More recently, the Transcript-inferred Pathogenicity score 

(TraP)[59] and the machine-learning based SpliceAI[53] have shown marked 

improvement in predicting whether a variant will impact splicing. It is questionable, though, 

whether these tools have been incorporated into analysis pipelines at clinical testing 

laboratories. The majority of these labs use the Alamut software, which uses only the 

older, less accurate splice predictors[51]. Moreover, it is important to note that the 

predictors, even when they accurately identify variants that affect splicing, are unable to 

determine the penetrance of the alternative splicing and in many cases cannot even say 

what the new splicing coordinates will be. Determining the precise effects of specific splice 

variants is essential to advancing both our knowledge of splicing mechanics and our ability 

to accurately interpret the pathogenicity of variants. In one example, a BRCA1 splicing 

variant long classified as pathogenic was found to only partially disrupt splicing in the 

affected individuals, potentially leaving enough wild-type transcript to retain normal protein 

function[60,61]. There are currently three methods commonly used to show the effect of 

splicing variants. Minigene constructs are beneficial when the patient sample is not 

available, as any variant can be inserted and splicing effects observed. However, these 

constructs focus on just the small affected region and thus lack the context to view the 

larger effect on the gene, not to mention the inability to observe how penetrant the event 

is in the patient’s tissue. RT-PCR methods directly observe the effect of the variant using 

the patient’s tissue, but require developing specific primers for each individual variant that 

is suspected of impacting splicing. More recently, RNA-sequencing has been used to 

directly observe aberrant splicing in the affected patient without any prior knowledge of 

their genetic variation[43,62,63]. 
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1.4 Approaches to RNA-based diagnostics 

RNA sequencing provides a way to potentially classify some VUS, but also allows 

for identification of functional defects that may not have been seen using DNA alone, such 

as aberrant splicing.  

There are a number of factors that make splicing analysis challenging and may 

provide some explanation for why it is not a more common clinical tool for those working 

to diagnose rare disease. Most RNA-seq performed in research labs is short read, but 

long-reads are optimal for isoform analysis/alternative splicing analysis. However, the high 

error rate and low throughput of long-read sequencing means results would need to be 

confirmed with a low error rate method like short read sequencing.[64-66] As the cost and 

accuracy of long-read sequencing continues to improve and robust tools are developed 

for analysis, it will likely become the method of choice for identification of structural 

variants. In the meantime, a handful of researchers have developed methods to identify 

alternate splice events in short reads, depending on the higher read depth and statistical 

comparisons of splice junction reads between sample groups. 

One of the first studies to advocate for RNA-seq in clinical genetics was Cummings 

et al., who reported a 35% increase in diagnostic yield when using whole mRNA 

sequencing of skeletal muscle for neuromuscular disorders.[62] Their method of 

identifying aberrant splicing, which they called Mendelian RNA-seq, was novel and 

improved upon many aspects of computational analysis that were lacking in previous 

methods. It enabled the identification of splice events that were occurring in just one or a 

few patients and were not necessarily captured in all available reads. Criticisms of the 

Cummings approach are that the cut-off parameters were arbitrary and there was no test 
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for statistical significance.[63,67,68] However, the Cummings method is the only one that 

acknowledges the reality that rare disease variant identification and interpretation often 

depends on manual review and curation of the evidence. Indeed, even the ACMG 

guidelines for variant classification state that some of their defined cut-offs are arbitrary 

and recommend geneticists use their professional judgement.[32] 

Review of the literature on identification of alternative splicing events confirms that 

bioinformatic tools developed for this purpose tend to place undue emphasis on statistical 

significance. This leads to many tools performing well only on group comparisons and 

often completely ignores the nuance of rare genetic variant identification and 

interpretation. Each individual rare pathogenic splicing event identified is likely to only be 

present in one or a few diseases cases in a cohort. This makes it difficult to compare 

groups of samples.  One of the earliest developed research tools is MISO[69], which is 

essentially PSI (percent of exons spliced in) calculations with some additional statistics. It 

only compares individual samples, leading to many false positives and negatives. Another 

tool, DEXSeq,[70] is dependent on exon counts and does not actually examine splice 

sites. It only detects large changes (such as exon skipping, but only when fully penetrant) 

and only works well with sample groups. In 2019, Fresard et al introduced a method that 

they propose identifies the causal gene and variants using blood RNA-seq, which makes 

it easier to analyze a large cohort and large number of genes.[63] However, successful 

application depends entirely on whether the causal variant alters expression of the gene 

in the studied tissue, which often limits it to just loss-of-fuction (LoF) variants since the 

extreme effect of nonsense-mediated decay on gene expression level in RNA is easily 

detectable by statistical methods. Adoption of strict filters and tests for significance means 

that many splicing events that are not fully penetrant and/or occur in just one individual 
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slip through the cracks. In just the past two years, a number of tools have been developed 

including LeafcutterMD, SPOT, and FRASER that purport to identify rare splicing variants 

using robust statistical or machine-learning methods.[67,71,72] It is likely that one or more 

of these tools will be an incredibly helpful addition to a rare disease RNA-seq analysis 

framework, but it is unlikely that one tool alone will be sufficient to perform a complete 

analysis[73].  

1.5 Disease relevant tissue 

One of the drawbacks of RNA sequencing in comparison to DNA is the need to use 

tissue that expresses the gene or genes of interest, ideally the tissue affected by the 

disorder.  A handful of studies have claimed that blood is not useful for diagnostics of rare 

disease when it is not the target tissue, for example in generalized neuromuscular 

disorders.[51,62,74] These conclusions depend primarily on comparisons of read 

abundance from whole mRNA in skeletal muscle and blood, finding that only around half 

of disease-associated genes are adequately expressed in blood. Two flaws are readily 

apparent in this argument.  

The first is the assumption that expression of more disease-associated genes 

necessarily leads to more diagnoses, and hence that analysis should target the tissue with 

the most relevant expression. If the results of mRNA sequencing were the only information 

available, this would be valid. However, most patients have undergone a diagnostic 

odyssey involving clinical evaluations and other laboratory tests, providing a plethora of 

information which could narrow down the list of potential genes even in a disease group 

as heterogeneous as neuromuscular disorders. If these genes are expressed in an 

accessible tissue such as blood, then the targeted RNA-seq approach can be well 
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justified.[63] In addition, landmark RNA-seq diagnostic studies have repeatedly found that 

the number of aberrant events that are potentially causative identified in each individual is 

prohibitively high to proceed with the manual analysis[62,63,67,72]. Each of these studies 

deployed methods to narrow the list to just a handful of events per sample, in many cases 

prioritizing candidate genes using the patients clinical or genomic data. By using a 

targeted panel, one would simply be performing this prioritization prior to sequencing. A 

more valid argument against blood RNA-seq, when blood is not the disease associated 

tissue, is the presence of tissue-specific splicing profiles. In a gene with many isoforms, it 

is important to ensure both that variants can be identified in the exons expressed in the 

disease-associated tissue and that any variants identified actually affect the disease-

relevant transcript(s). 

The second flawed assumption is that whole mRNA sequencing is the only option. 

While total mRNA provides a global transcriptomic profile, it is dominated by a handful of 

the most highly expressed genes in the given tissue.[75,76] In many cases, these genes 

are not relevant to the disease and many of the genes of interest are left with low read 

depth despite being expressed in the tissue. Performing targeted RNA-sequencing on a 

panel of curated genes known to be associated with the disease allows for higher read 

abundance per gene, even with a lower overall sequencing depth. Importantly, it also 

raises the representation of even low-abundance and short exons.  Simply put, 10X 

coverage of 20,000 transcripts can be replaced by 100X coverage of 200 highly relevant 

transcripts for one tenth the sequencing cost. 

While all of these points support the conclusion that disease-specific tissue is ideal 

for RNA-seq analysis, it must be noted that obtaining that tissue is a significant barrier to 

RNA-seq becoming a more widespread tool. Tissue biopsies are painful, invasive, and not 
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regularly collected in patients for diagnostic or research use, particularly when other 

options are available[51]. One of the main reasons that previous RNA-seq studies have 

focused on neuromuscular disorders is that muscle biopsies are frequently part of the 

diagnostic process already. There is more difficulty in obtaining control muscle biopsies 

for these research cohorts as well (particularly in pediatric cases), leading many to choose 

total mRNA seq and follow the sequencing protocols of GTEX samples in order to take 

advantage of the large control cohort it can offer.[62,65,68] However, at least one study 

found that the transcriptome of pediatric individuals tends to differ from adults prior to the 

age of 10, suggesting that GTEX is not a good control cohort for pediatric RNA-seq 

research.[77] The use of targeted RNA sequencing panels on blood samples, when the 

panel and cohort are properly selected, can be just as, or more, successful in diagnosing 

rare disease cases. As part of this thesis I show that whole blood, which is often more 

easily obtainable than affected tissue and is regularly taken for other routine tests, can be 

used in lieu of the disease tissue in instances where the gene of interest is also expressed 

in blood.  

1.6 Specific rare diseases 

The specific rare diseases and groups of disorders studied as a part of this thesis 

are introduced here. A more thorough discussion of each takes place in the associated 

chapter. 

1.6.1 Dysferlinopathies 

Neuromuscular Disorders (NMDs) are a group of over 200 conditions that involve 

the peripheral nervous and muscular systems, many of them genetic in origin.[42,78] 

Although individually each disorder is very rare, as a whole NMDs affect more than 1:3000 
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people with onset ranging from birth to late in life, and symptoms vary from mild weakness 

to severe disability and shortened lifespan.  There is no cure or even treatment for most 

NMDs. In addition to this phenotypic heterogeneity, NMDs also exhibit heterogeneity at 

the genetic and allelic level.  

Dysferlinopathies are an autosomal recessive subset of NMDs that are caused by 

mutations in the Dysferlin (DYSF; HGNC ID: 3097) gene primarily consisting of Limb 

Girdle Muscular Dystrophy Type 2B (LGMD2B; OMIM #253601) and Miyoshi Myopathy 

Type 1 (MM; OMIM #254130) but also including HyperCKemia and Distal Myopathy with 

anterior tibial onset (DMAT; OMIM #606768).[79] Because phenotypically similar forms of 

Limb Girdle Muscular Dystrophy and Miyoshi Myopathy are caused by mutations in other 

genes, identification of the causative variants in the Dysferlin gene is required for a 

diagnosis of a dysferlinopathy. Receiving a specific genetic diagnosis is important for 

patients, not only for peace of mind and family planning, but also for avoidance of harmful 

treatments.  Furthermore, enrollment in current and future clinical trials for therapies will 

likely target specific genes and mutation types, as is the case for clinical trials related to a 

treatment that was recently approved for Duchenne Muscular Dystrophy.[80] 

1.6.2 Primary Immune Deficiencies 

Primary immune deficiencies (PID) describe a group of more than 300 disorders 

caused by genetic variants affecting the immune system.[81] Children are more commonly 

affected than adults, and estimates of prevalence range from 1:1200 births to 

1:10,000.[82] National surveys have shown that more than half of PID cases are not 

diagnosed until adulthood. PIDs are often marked by chronic infections, and 70% of 

surveyed patients reported at least one previous hospitalization.[83-85]  In some cases, 
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early intervention and treatment can allow the patient to live a relatively normal life, making 

early diagnosis one of the top priorities. In the same survey, nearly half of those diagnosed 

with a PID reported no hospitalizations after being diagnosed, underscoring the 

importance of early diagnosis.  

1.6.3 Very Early Onset Inflammatory Bowel Disease 

The genetic contribution to inflammatory bowel disease (IBD) is known to be 

complex, with GWAS studies implicating multiple genes and variants with a range of effect 

sizes.[86-88] However, some evidence suggests that in the small percentage of cases 

occurring in infants and children < 5 years of age, the cause may in some cases be 

monogenic in nature.[89,90]  These cases are known as very early-onset inflammatory 

bowel disease (VEO-IBD).  Registries at the Children’s Hospital of Philadelphia and at 

Boston Children’s Hospital, among others, are slowly expanding the recognition of this 

condition, and already over 50 genes have been causally linked to the condition.[91-93]  

Mutations affecting the protein structure encoded by genes such as CTLA4 (HGNC ID: 

2505), FOXP3 (HGNC ID: 6106), and STAT3 (HGNC ID: 11364) implicate altered 

regulation of immune function, and hence imply that transcriptome analysis of blood from 

patients with VEO-IBD, similar to PID, might well improve the clinical diagnostic yield for 

these conditions.  

1.7 Thesis outline 

In this thesis, I will show the clinical utility of RNA-seq for neuromuscular and 

immune disorders through four studies that differ in approach and/or disease. In Chapter 

1, a GNE-myopathy case study validated the targeted RNA-seq NMD gene panel and 

showed how allele expression can inform further functional assays. In Chapter 2, an 



 19 

analysis of transcriptome-wide splicing in adolescent IBD patients revealed widespread 

differential isoform usage in two patients with Crohn’s Disease causing their ileal tissue to 

resemble rectal tissue, implicating splicing as a contributor to IBD disease pathology. 

Chapter 4 involves the development and refinement of my bioinformatic pipeline and 

analysis approach for targeted RNA-seq. In addition to validating the use of blood as a 

substitute for disease tissue in certain NMDs, I show the power of RNA-seq to evaluate 

VUS, identify aberrant splicing, and phase variants without parental samples. Finally, in 

Chapter 5 I apply the analysis approach from Chapter 4 to a small cohort of PID and 

VEOIBD patients, where results indicate even rare diseases without simple Mendelian 

inheritance patterns benefit from RNA-seq. 
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CHAPTER 2.  CLINICAL UTILITY OF RNA SEQUENCING TO RESOLVE AN 

UNUSUAL GNE MYOPATHY  

This chapter is adapted from the published case report [94] (citation below) to focus 

on and emphasize my contribution, namely the analysis of RNA-seq data. 

Chakravorty S, Berger K, Arafat D, Nallamilli BRR, Subramanian HP, Joseph S, Anderson 
ME, Campbell KP, Glass J, Gibson G, Hegde M. Clinical utility of RNA sequencing to 
resolve unusual GNE myopathy with a novel promoter deletion. Muscle & nerve. 
2019;60(1):98-103. 
 

2.1 Abstract 

Mutations in the UDP N-acetylglucosamine 2-epimerase/N-acetylmannosamine 

kinase (GNE) gene can cause GNE-related myopathies that are mostly autosomal 

recessive diseases associated with the juvenile-onset neuromuscular disorder known as 

hereditary inclusion body myopathy (HIBM). In this report, we describe a patient showing 

an unusual manifestation and progression of HIBM with skeletal muscle weakness and 

some inflammation, and harboring compound heterozygous mutations in GNE gene. We 

used exome sequencing, cDNA sanger confirmation, NGS-based whole mRNA-

sequencing, and microarray-based comparative genomic hybridization (aCGH) to detect 

the novel combination of compound heterozygosity. We found monoallelic expression of 

the GNE gene harboring the V727M missense variant suggesting the deletion of an 

upstream promoter for the other normal allele reducing GNE gene expression by ~50% in 

muscle. We performed gene set enrichment analysis (GSEA) on significantly (p<0.05) 

differentially regulated muscle genes which showed pathways such as that in 

dermatomyositis, inflammatory pathways, extracellular matrix organization and cell 

adhesion, myogenesis, mitochondrial oxidative energy metabolism, slow twitch fiber 
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generation are mostly affected that correlated well with affected cellular components and 

genes’ molecular functions, reminiscent of an abnormal HIBM. Our study shows the 

importance of considering a-CGH and functional assays such as transcriptome 

sequencing in the clinic for faster and definitive molecular diagnosis for GNE-related 

myopathies.  

2.2 Background 

In order to enhance molecular diagnostic yield in neuromuscular disorders (NMDs), 

functional assays downstream of genomic DNA-level has been recommended by the 

American College of Medical Genetics and Genomics and College of American 

Pathologists (ACMG-AMP) committee guidelines[32]. Integrating transcriptome 

sequencing and other functional assays with genome sequencing has been previously 

shown to increase efficiency of annotating functional variants [95,96], which enhances our 

understanding of gene-variant association to disease etiology [97] and furthers clinical 

diagnostics of NMDs. Here, we describe using functional genomic approaches for 

definitive molecular diagnosis of NMDs in an abnormal progressive GNE myopathy case.  

GNE-related myopathy or GNE myopathy (OMIM #605820) is a rare, recessive 

inherited, degenerative NMD involving skeletal muscle disorder caused by variants in the 

human GNE gene (HGNC: 23657; NC_000009.12) with early adult onset [98-101], also 

known as vacuolar myopathy sparing the quadriceps, or hereditary inclusion body 

myopathy (HIBM), or inclusion body myopathy or myositis 2 (IBM-2), or Nonaka myopathy. 

The disease is progressive and leads to marked disability within 10–20 years of initial 

symptoms [101]. Although all leg and all hip muscles get affected, relative sparing of the 

quadriceps occurs. But these muscles become affected at advanced stages of the disease 
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along with neck muscles and respiratory muscles [102-104]. Moreover, dilated 

cardiomyopathy and cardiac conduction abnormalities have been reported in patients, 

some of whom suffered sudden cardiac death [105-107]. If inflammation occurs, the 

disease is generally diagnosed as inclusion body myositis or polymyositis which is one of 

the inflammatory myopathies. The GNE gene encodes a bifunctional enzyme, uridine 

diphosphate (UDP)-N-acetylglucosamine (GlcNAc) 2-epimerase/acetylmannosamine 

(ManNAc) kinase (GNE) [99,108]. The GNE enzyme catalyzes the first two rate-limiting 

steps in the biosynthesis of 5-N-acetylneuraminic acid (Neu5Ac) or sialic acid [109,110] 

that are found as the non-reducing terminal glycans on various glycoproteins and 

glycolipids functioning in a variety of cellular signaling pathways [111], especially the 

sarcolemmal and extracellular matrix (ECM) glycoproteins, such as the sarcoglycans and 

dystroglycan, suggesting their importance in cell-cell adhesion and cell-extra/intracellular 

matrix interactions. 

The molecular pathology of GNE myopathy is still not clear. Most GNE myopathy 

patients harbor bi-allelic (compound heterozygote) missense variants in GNE which 

reduce GNE epimerase and kinase enzymatic activities impairing sialic acid production 

which appears to be the main cause of pathology but is not clearly understood [112-115].  

Here we report a novel compound heterozygote variant combination consisting of a 

novel deletion variant and a common missense variant in GNE in an early adult patient 

that shows abnormal progression of the disease. We emphasize the functional assays we 

used in this case to definitively diagnose and explain the clinical utility of RNA-sequencing 

for diagnostics.  
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2.3 Materials and Methods 

Methods are described below based on their chronological order of testing for the 

proband and parents. Due to the clinical manifestation of the patient, exome sequencing 

was performed which resulted no definite diagnosis. After this, RNA-sequencing was 

performed which gave clues to test deletions/duplication using aCGH that together 

resulted in definitive genetic diagnosis. To characterize further using target muscle biopsy 

tissue and to understand the connection between patient clinical features, 

pathophysiology and molecular diagnosis, we performed gene expression analysis and 

gene ontology-gene set enrichment analysis on the RNA-seq muscle transcript 

abundance data and performed western blot analysis on the biopsy to understand 

glycosylation defects in the patient muscle.  

2.3.1 Exome sequencing and analysis  

Peripheral blood was collected into EDTA tubes from the patient proband and his 

parents. Genomic DNA was extracted using GenEluteTM Blood Genomic DNA (Sigma-

Aldrich NA2020) according to the manufacturer’s protocol. Exome Sequencing (ES) was 

performed on genomic DNA using the NimbleGen (Madison, WI) v3.0 targeted sequence 

capture method to enrich for the exome. These targeted regions were then sequenced 

using the Illumina (San Diego, CA) HiSeq 2000 sequencing system with 100 base pair 

(bp) paired-end reads at an average coverage of 100X in the target region. The targeted 

regions included the exon and 10 bp of flanking intronic sequence. In general, ES assays 

performed at Emory Genetics Laboratory (EGL) have an overall coverage of 92.9%, with 

as high as 94.8% coverage in the coding region.  
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2.3.2 Bioinformatics analysis and variant classification 

Bioinformatic analysis was performed using NextGENe software from 

SoftGenetics (State College, PA). The NextGENe output was customized to mine variants 

from EGL’s internal variant database EmVClass [116] other public databases, and variant 

prediction tools, such as SIFT [117] and PolyPhen [118]. All variants detected were 

classified using population frequency data available from the Exome Variant Server 

(http://evs.gs.washington.edu/EVS/) and previous reports of disease association and 

pathogenicity available through the Human Gene Mutation Database (HGMD), National 

Center for Biotechnology Information PubMed, and Google. Variant classification was 

performed based on American College of Medical Genetics and Genomics- Association 

for Molecular Pathology (ACMG-AMP) guidelines [119]. A detailed overview of the 

bioinformatics pipeline and variant annotation protocol is described elsewhere [120]. All 

variants were curated and reviewed by board-certified laboratory directors and maintained 

as an in-house variant database; they were made publicly accessible via EGL’s online 

tool, EmVClass[116].  

2.3.3 Sanger confirmation of genomic DNA 

PCR-amplified genomic DNA and RT-PCR amplified cDNA products of the GNE 

gene were Sanger sequenced for confirmation of the variants. An automated primer 

design script, developed and validated in-house, was used to design primers[121]. 

2.3.4 Next Generation Sequencing (NGS)-based RNA-sequencing 

High quality (RNA Integrity Number; RIN>7) RNA was extracted from right thigh 

muscle biopsies of the patient and six control individuals using Aurum™ Total RNA Fatty 
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and Fibrous Tissue Kit (cat# 7326870) following the manufacturer’s protocol. Library 

preparation was performed using Agilent Sure Select XT RNA Reagent kit (cat# G9692B) 

following manufacturer’s protocol. Patient samples in replicate and six control normal 

individual muscle biopsy mRNA samples were sequenced in the Georgia Tech Molecular 

Evolution Core on an Illumina Next Seq instrument to obtain high output paired-end by 

150bp reads at a depth of more than 150 million reads. From the whole transcriptome 

sequence data, we focused our analysis on 273 genes that are known to be NMD-

associated and are known to have skeletal muscle expression as retrieved from GTEX 

portal[122]. These 273 genes were curated initially based on the associations to NMDs 

listed in http://www.muscle.ca/wp-

content/uploads/2012/10/Disorder_List_ENG_May2017.pdf. 

2.3.5 Bioinformatics workflow 

Raw sequencing reads were checked for quality using FastQC[123]. Reads were 

not trimmed beyond removal of adapter sequences [124]. Human reference genome 

GRCh38 (NCBI) and NCBI Homo sapiens Annotation Release 106 were obtained from 

Illumina iGenomes and sequenced reads were aligned using the splice-aware alignment 

program STAR version 2.5.2b in 2-pass mode [125]. 

Quality metrics for all samples were obtained by running Picard RNASeqMetrics 

(Available online at: http://broadinstitute.github.io/picard) and principal component 

analysis (PCA) on gene expression was performed to check for outlier status based on 

tissue composition or contamination. Initial unsupervised clustering of samples by relative 

gene expression levels clearly differentiated the patient sample from six controls.  
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For analysis of the variant of interest, alignment files were loaded into Integrated 

Genomics Viewer (IGV) [126] to confirm positive identification of variants found in ES and 

analyze the transcript structure of the candidate gene for potential variant effects such as 

abnormal splicing or allele specific expression.  

To identify possible downstream effects, differential gene expression analysis, 

including both normalization to account for sequencing depth and RNA composition as 

well as identification of surrogate variables to correct for un-modeled variation, was 

performed using the R packages DESeq2 version 1.16.1 [127] and SVA version 3.24.3 

[128]. Read counts mapped per gene were obtained using HTSeq-Count [129] and the 

analysis was conducted following the Bioconductor DESeq2 vignette and the RNA-Seq 

Gene Expression Analysis workflow [130]. To maintain consistency, the same annotation 

file used for alignment was used for all downstream analysis. The result file was filtered to 

include only significantly up or down regulated genes using Benjamini-Hochberg 

adjusted[131] p<0.05, from our curated panel of 273 NMD-associated genes.  

2.3.6 Array CGH 

The targeted gene high-resolution oligonucleotide CGH array was custom 

designed on Oxford Gene Technologies (OGT) 180 K platform to detect deletions and 

duplications. Long oligonucleotides (~45–60 mer) were used to design the array, with 

repeat sequence masking implemented to ensure greater sensitivity and specificity. 

The GNE gene and its upstream was covered by 720,000 probes including covering the 

GNE 13 exons at an average spacing of 15 bp between probes and the intronic region 

was covered at an average spacing of 25 bp between probes. Use of intronic 
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oligonucleotide probes allows detection of dosage changes within the entire genomic 

region of the gene and determination on the approximate breakpoints [132].  

2.3.7 Gene Ontology-Pathway Analysis  

We performed a tiered approach to investigate the genetic and pathway networks 

affected by genes that are statistically significantly differentially regulated in the proband 

muscle biopsy compared to the six control biopsies. We performed a gene-ontology-based 

analysis with MSigDB (Molecular Signature Database) [133,134] that curates gene 

ontologies (GOs), biological processes or pathways, molecular functions, and cellular 

compartments separately that are significantly associated with the gene clustering 

(p<0.01; FDR<0.05) based on greater than 1325 biologically defined gene sets, similar to 

our recent study on infantile spasm[135]. We retrieved the top 100 enriched gene set 

pathways/cellular compartment/molecular functions that are affected in the patient 

muscle. The individual gene sets were then manually collapsed with biological evidence. 

The criteria behind manual compiling are based on a) established hierarchical superfamily 

of the GO functions [136] and external links with ontology and hierarchy for non-GO gene 

sets from MSigDB database, and b) biological similarity of the individual functions and 

pathways (eg. “HALLMARK_MYOGENESIS” and “GO_MUSCLE_CONTRACTION” were 

compiled into “Muscle Development and Contraction"). The compilation criterion was 

consistently followed and performed. The value k is the number of significant genes from 

the patient muscle that are differentially regulated and found in a particular enriched gene 

set, and value K is the total number of significant genes in a gene set. The ratio k/K is the 

proportion of significant genes in the patient muscle found in an enriched gene set.  
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2.4 Results 

2.4.1 Patient Clinical Presentation and Family History 

The patient is a twenty one year old male with Indian ancestry with generalized 

muscle weakness and an abnormal progressive neuromuscular disorder (NMD) and a 

clinical suspicion of Polymyositis or HIBM.  

2.4.2 Exome sequencing revealed a single monoallelic V727M missense variant  

To identify variants of interest, whole-exome sequencing was performed on 

genomic DNA extracted from samples submitted from the proband, biological mother, and 

biological father; 97% of the exome-capture region was covered at a read depth of 20X or 

greater. A known “likely pathogenic” missense variant [c.2179C>T (p.V727M)] was 

identified in GNE. This variant was reported to be “pathogenic” or “likely pathogenic” by 

number of studies and is quite prevalent (rs121908627; allele frequency of 0.0141) among 

South-East Asian population (Indian and Thai descent) [99,137-144] but confirmatory 

functional evidence is still lacking as to its clear functional implication in the GNE protein. 

The V727M location in kinase domain (C-terminal end) of GNE potentially suggests a 

possible, yet not definite, role in pathogenesis towards its kinase activity to phosphorylate 

ManNAc which is known to be a key process in sialic acid biosynthesis for glycoprotein 

glycosylation [145]. But, recently, due to the high prevalence of V727M in south-east Asian 

population, [144] the pathogenicity of V727M variant has been questioned. In fact, it is not 

clearly known if the V727M variant is pathogenic due to its effect in reducing allelic 

expression or reducing the kinase activity. Most GNE-related myopathy cases harboring 

a single V727M variant are prevalent as compound heterozygotes with the other allele 

harboring exonic/intronic deletions or missense variants, but our exome sequencing did 
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not reveal any other pathogenic variants in GNE or other genes. Therefore, we were not 

able to achieve a definite molecular diagnosis at this stage.  

 

Figure 2.1 A novel GNE promoter deletion. (A) Integrated Genomics Viewer (IGV) pile up 
of RNA‐sequencing showing monoallelic expression of GNE gene with only the allele 
harboring c.2179C>T:G>A (p.V727M) missense “likely pathogenic” variant expressed. 
The red arrow indicates the position of the V727M variant in exon 13 of the GNE gene. 
Sanger sequencing confirmation was performed on cDNA showing monoallelic expression 
as shown below. (B) aCGH signal showing a deletion upstream of the GNE gene with 
genomic breakpoints at nucleotide positions g.36,259,402 and 36,266,483 was detected 
in this individual (SCV000599234). This deletion is 7.08 kb in size and encompasses the 
untranslated exon 2 of the hGNE2 transcript but upstream of the hGNE1 transcript of the 
GNE gene. (C,D) Exome sequencing and later aCGH of trios reveal that monoallelic 
expression was due to expression of only the paternal allele of GNE in the proband.
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2.4.3 Transcriptome sequencing revealed monoallelic expression of V727M allele  

NGS-based transcriptome sequencing (RNA-seq) reads of whole mRNA using 

target muscle biopsy revealed presence of only the V727M allele of the GNE gene (Figure 

2.1A). The depth of the alternate allele is very high giving us confidence in our variant call. 

Exome sequencing revealed heterozygous V727M GNE variant and the absence of the 

normal V727 GNE allele from RNA-seq reads suggest monoallelic expression of the 

V727M mutant GNE allele. This result suggested a possible deletion or duplication event 

that can block expression of the normal allele for which we performed array comparative 

genomic hybridization (aCGH) using patient genomic DNA.  

2.4.4 aCGH reveal an large deletion upstream of untranslated exon 1 of GNE 

Recently, a novel ~11.3 kb deletion encompassing exon 2 was found along with a 

single V727M variant [146]. In our study, aCGH deletion/duplication analysis of the GNE 

gene, revealed a novel ~7-9 kb deletion (g.36,259,402 and 36,266,483) upstream of the 

untranslated exon 1 of the GNE gene (Figure 2.1B-D) which was not previously reported 

nor found in genomic databases. To our knowledge, this is the first report of a large 

deletion upstream of all exons (non-exonic/intronic) of the GNE gene in any GNE 

myopathy patient. This result shows a novel compound heterozygous variant combination 

of a large deletion upstream of GNE gene along with previously reported a single missense 

variant V727M. Since the RNA-seq result clearly shows monoallelic expression of the 

mutant V727M allele, this suggests that the upstream deletion is heterozygous 

encompassing promoter region of the normal GNE allele that abolishes its expression.  

 

 



 31 

2.4.5 Gene Expression show 50% reduction in GNE gene expression  

Cluster analysis of transcript abundance of 273 NMD-associated genes from RNA-

seq data in the patient sample in replicate compared to data from 6 control normal biopsies 

show separate clustering of the patient samples and the controls suggesting the 

transcriptome profile of the patient muscle is clearly different from normal control. Out of 

273 genes, 89 muscle genes are significantly differentially expressed between the patient 

and control samples. Importantly, GNE gene expression is reduced by ~50% compared 

to 6 controls (Figure 2.2) further suggesting only the monoallelic expression of V727M 

mutant allele.  

 

 

Figure 2.2 Reduced GNE expression. Approximately 50% lower‐
expression (P < 0.05) of GNE in GNE myopathy patient muscle 
compared with that in 6 control normal muscle biopsies. 
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2.4.6 Gene Ontology and Gene Set Enrichment Analysis 

Gene ontology-based gene set enrichment (GO-Pathway) analysis on the 

differentially-regulated 89 genes identified major enriched “pathways,” “cellular 

compartments,” and “molecular functions.” The common biology is a predicted effect on 

of protein and lipid glycosylation affecting the cytoskeleton-intracellular matrix and ECM 

cross-talk through sarcolemmal proteins, important for the sarcomere integrity. 

2.5 Discussion 

Our study provides important insights for molecular diagnostic approaches to 

understand the pathological and molecular nature of unusual myopathies. We report here 

a family having a patient with a novel upstream promoter-region large deletion in 

the GNE gene, which abolishes expression of the respective allele. Previous reports 

showed that patients with compound heterozygous variants in both epimerase and kinase 

GNE domains manifest more severe phenotypes than those with both variants in 1 

domain[147], suggesting that mild pathogenicity of missense variants in each domain 

needed for more disease severity. Although V727M pathogenicity is uncertain given its 

relatively high prevalence in South Asians, the most parsimonious conclusion given many 

other similar reports is that this compound heterozygous state contributes to the 

pathology. 

The second causal variant was inferred from the combination of aCGH and RNA-

seq that definitively diagnosed the case as GNE-related myopathy and led to identification 

of multiple gene expression perturbations. Previously, Zhu et al.[148] showed that large 

promoter region deletions in GNE are common in already clinically diagnosed GNE-

myopathy patients, and Garland et al.[146] showed that a combination of such deletions 
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and a V727M missense variant causes a more severe reduction in GNE expression than 

the combination of V727M and another missense variant. Here, we show that such variant 

combinations are associated with unique GNE-related myopathy pathology and the 

clinical/molecular diagnostic hurdles faced. Consequently, it is likely that the combination 

of reduced transcription due to promoter region deletion and possible V727M-induced 

subtle altered kinase activity is required for the unique HIBM-like symptoms. Further 

functional studies are needed to classify the pathogenicity of V727M. 

As per ACMG guidelines[32], because the deletion variant causes a 50% reduction 

in GNE gene expression, we clinically classify the variant as “pathogenic.” This potentially 

results in a significant reduction in key sarcolemmal protein α-DG glycosylation and 

aberrant expression of core α-DG and β-DG, which along with altered expression of genes 

and pathways found in GO-pathway analysis could explain the muscle wasting and 

weakness.  

Importantly, this study shows the power of using aCGH, RNA-seq and focused 

functional assays on target muscle tissue following clinical/pathological clues for improving 

diagnostic efficiency and timeliness in the evaluation of undiagnosed myopathies. We 

believe that this approach will be broadly applicable to the diagnosis of NMDs and will thus 

harness the advances in clinical genomics and developing precision therapies. 
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CHAPTER 3.  ALTERED SPLICING ASSOCIATED WITH THE PATHOLOGY 

OF INFLAMMATORY BOWEL DISEASE 

Berger K, Somineni H, Prince J, Kugathasan S, Gibson G. Altered splicing associated 
with the pathology of inflammatory bowel disease. Human genomics. 2021;15(1):1-10. 

 

3.1 Abstract 

3.1.1 Background  

Aberrant splicing of individual genes is a well-known mechanism promoting 

pathology for a wide range of conditions, but disease is less commonly attributed to global 

disruption of exon usage.  To explore the possible association of aberrant splicing with 

inflammatory bowel disease, we developed a pipeline for quantifying transcript abundance 

and exon inclusion transcriptome-wide and applied it to a dataset of ileal and rectal 

biopsies, both obtained in duplicate from 34 pediatric or young adult cases of ulcerative 

colitis and Crohn’s disease.   

3.1.2 Results 

Expression and splicing covary to some extent, and eight individuals exhibited 

aberrant profiles that can be explained by altered ratios of epithelial to stromal and immune 

cells.  Ancestry-related biases in alternative splicing accounting for 5% of the variance 

were also observed, in part also related to cell-type proportions.  In addition, two 

individuals were identified who had 284 exons with significantly divergent percent spliced-

in exons, including in the established IBD risk gene CEACAM1, which caused their ileal 

samples to resemble rectum.  
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3.1.3 Conclusions 

These results imply that quantitative differences in splice usage contribute to the 

pathology of inflammatory bowel disease in a previously unrecognized manner. 

3.2 Background 

Defective RNA splicing contributes to the etiology of a wide variety of 

diseases.[149] Single gene defects that weaken or abolish splice sites, or activate cryptic 

ones, have been associated with over 200 human diseases, including progeria, cystic 

fibrosis, muscular dystrophies, and some cancers.[150-153]  Computational analyses 

have further identified variants in over 80,000 splicing regulatory motifs [154], and scores 

such as TraP (TRanscript inferred Pathogenicity Score) provide pre-computed predictions 

of likely splice defects for polymorphisms affecting all human genes.[59]  Just as 

importantly, global mis-regulation of the splicing of hundreds of genes due to aberrant 

activity of components of the spliceosome, is known to contribute to pathology for a variety 

of conditions, notably myelodysplastic syndrome, myotonic dystrophy, several 

neurological disorders, and cancer metastasis.[155-159]  

The inflammatory bowel diseases (IBD) ulcerative colitis (UC) and Crohn’s disease 

(CD) afflict approaching 1% of adults in developed countries and have been rising in 

prevalence globally for several decades.[160] They are well known to involve aberrant 

gene expression in the gut [161,162] as well as peripheral immune system [163,164], and 

signatures of severe disease at diagnosis have been associated with progression to 

complicated disease or remission [165-167] and are being developed as biomarkers of 

therapeutic response.[168]  There is also some indication that gene expression is to some 

extent ancestry-dependent, resulting in mis-regulation of pathways related to cytokine 
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signaling, extracellular matrix function, and mitochondrial activity that is biased toward 

more adverse outcomes in African Americans.[169]  To date, to our knowledge, there have 

not been any reports of splicing defects in IBD, so we asked whether transcriptome profiles 

assessed by RNAseq of bulk ileal and rectal tissues might provide evidence for unusual 

splice isoforms associated with IBD in a dataset of paired ileal and rectal biopsies from a 

cohort of 34 young individuals with CD or UC. 

3.3 Methods 

We analyzed whole mRNA sequencing profiles of 124 samples obtained from 34 

young donors with IBD (age range 8-20 years).  Duplicate biopsies of both the ileum and 

rectum were analyzed, in general 4 samples per donor, although 6 donors were 

represented by only 3 samples and three by a single biopsy from each 

location.  Individuals were closely matched for ancestry (18 European, 16 African 

American), sex (16 male, 18 female), disease type (20 Crohn’s disease, CD; 14 ulcerative 

colitis, UC), and disease status at time of sampling (20 established cases, 14 cases at 

diagnosis).  All donors were tumor free at biopsy. Following quality control, total transcript 

abundance was measured for 18,929 genes, and percent-spliced-in (PSI) estimates 

[170] were obtained for 7,001 variable exon bins.  

3.3.1 Sequencing  

RNA was extracted and library preparation was performed using the Illumina TruSeq 

Stranded mRNA kit. Paired-end 100bp stranded sequencing was performed for all 

samples on an Illumina HiSeq at a median read depth of 22.7 million (range: 10.2-106 

million) read pairs. 
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3.3.2 Preprocessing  

FastQC was run on raw fastq files to ensure mean phred scores per sequence and 

per base were above 27, to check consistency among samples in per sequence GC 

content, per base N content, sequence length distribution, and sequence duplication 

levels, and to check for the presence of adapters.[171] Samples were trimmed up to but 

not beyond the adapter using trimmomatic.[172]  Samples were aligned with the STAR 

splice aware aligner to hg38 using the Gencode v29 primary assembly sequence and 

annotation.[125,173] Default parameters were used with the following exceptions: to 

increase accuracy of splice site mapping and discovery, two-pass mode was invoked; 

novel splice junctions were required to have a minimum overhang of 8bp, and a minimum 

of 5 unique reads was required for a splice site to be included in the splice junction output. 

To ensure each read used in downstream analysis was accurately mapped and results 

were not affected by high homology regions such as pseudogenes, all multimapping reads 

(which map equally well to two locations in the genome) were filtered out. We further 

confirmed that all reads aligning to the CEACAM1 alternative splice bin did not align to the 

duplicate pseudogene [174], which possesses sufficiently divergent nucleotide sequence 

to prevent multi-mapping. 

3.3.3 QC 

In order to remove samples exhibiting extreme 5’ or 3’ bias or mapping issues that 

could affect splice calculations, sample quality was assessed using the Quality of RNA-

Seq Tool-set (QoRTs) which evaluates cumulative gene diversity, gene-body coverage, 

and number of observed splice junction loci.[175] One rectal sample from individual 6 and 

one from individual 26 were observed to be extreme outliers in 3’ bias and were removed, 
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leaving both individuals with two ileal and one rectal sample.  To confirm that each sample 

from an individual was indeed the same individual, variant calling was performed at 

Purcell’s 5k sites following GATK best practices and identity-by-descent was compared 

using output from PLINK.[176-178] A PI_HAT minimum threshold of 0.7 was used to 

confirm a match between two samples. The single rectal sample from individual 18 failed 

the identity-by-descent QC measure, leading to the removal of all samples from individual 

18.   

3.3.4 Gene Expression Analysis  

Overall differential gene expression was performed with DESeq2, using the STAR 

raw read counts per gene output and including ancestry, disease, location, and the 

interaction of disease and location in the design formula.[127] Prior to analysis, genes 

were filtered for mean coverage >5 reads and both Principal Component Analysis (PCA) 

and Principal Component Variance Analysis (PCVA) were performed on the final set of 

18,929 genes, with results listed in Table 3.1. PCA captures the major components of 

covariance of gene expression, and PVCA sums the amount of variance in each PC that 

is associated with the influencing factor, weighted by the variance in gene expression 

explained by the PC. We only analyzed the first 10PC of both RNA abundance and PSI 

since smaller PC explained less than 1% of the variance each and tend to capture 

differences among individuals or noise. 

Gene expression was also used to estimate abundance of specific cell types. Lists 

of genes expressed in immune, epithelial, and fibroblast cells were created from single 

cell RNAseq data for these cell types obtained from the colonic mucosa of ulcerative colitis 

patients [179], using thresholds of >5 counts per million (CPM) in one cell type and <1 
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CPM in the other two cell types.  We then generated PC1 for each list and estimated the 

correlation with location and ancestry in order to evaluate the contribution of cell type 

abundance to these effects.  

3.3.5 Splicing Analysis 

Splicing patterns between individuals were compared using the Percent Spliced In 

(PSI) metric, which was calculated per exonic bin for each sample. PSI is independent of 

library size and yields a score between 0 and 1 representing the proportion of isoforms 

that include a particular exonic bin.  Inclusion (IR) and exclusion (ER) read counts were 

obtained following the protocol outlined in Schafer et. al.[170] using the splice junction 

output from the STAR alignment, and the recommendation of requiring >10 ER to identify 

alternatively spliced exon bins was used to inform the following filtering steps. For each 

sample, if a site had <10 ER the PSI score was rounded up to the nearest tenth (IR >10) 

to lessen the impact of low exclusion counts or NA (IR <10) to indicate no coverage, 

allowing more exonic bins to be evaluated across all samples without low ER counts 

dominating the analysis. To limit analysis to genes expressed in both tissues, rows where 

one or more samples had no coverage were excluded (511,191 exon bins, leaving 

108,091). Rows where all samples had the exact same PSI (0 or 1) were removed 

(64,129), reducing analysis to only those sites where one or more samples had variability 

in level of exon exclusion. Subsequently, to focus on splice bins with potential group-wise 

differences, further filtering was performed to exclude splice bins where 40% of samples 

were close to constitutively included or excluded (>95% and <5% PSI, respectively). This 

filtering reduced the original 619,282 potential splice sites to 7,001 in the final analysis, 

with a mean PSI score of 0.45. PCA and PCVA were performed on the PSI estimates 

before and after the final stage of filtering, yielding very similar results presented in Table 
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3.1. To identify differentially used exonic bins, linear mixed models were performed on the 

final set of PSI scores with the lme4 R package including fixed effects of disease, location, 

and ancestry and the interaction between disease and location, and a random effect of 

individual.[180]  

3.3.6 Characterization of Differential Splicing in the Spliceopathy samples  

A heatmap of 50 exon bins Figure 3.2a was created to visualize differences in the 

splicing patterns of sample groups. Because the largest contributor of variance in PSI was 

tissue location, the 50 most significant exonic bins by location obtained from the previously 

described analysis were used. Hierarchical clustering of samples for the 50 exonic bins 

was performed using the Euclidian distance and complete linkage method. 

The difference between two PSI averages for each site was again used to observe 

the extent of variation between groups (Figure 3.2d). Samples were split into ileum, 

rectum, intermediate ileum, intermediate rectum, and spliceopathy, and the difference in 

average PSI for each comparison was categorized at every exonic bin in the filtered 7001 

exonic bins used for analysis. 

For the identification of PSI sites in the spliceopathy samples that were significantly 

different from the differentiated ileum, the differentiated rectum, or both, exonic bin 

filtration criteria were relaxed slightly. To limit analysis to genes expressed in all three 

groups, rows where more than five ileal samples, five rectal samples, or one spliceopathy 

sample had no coverage were removed. The missing values in rows where 1-5 ileal or 

rectal samples had no coverage were replaced with the tissue location average at that 

site, allowing these additional 27,514 exonic bins to potentially be included in this analysis. 

The remainder of the filtration steps were carried out as before, this time reducing the 
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original 619,282 potential splice sites to 9,499 in the final analysis, with a mean PSI score 

of 0.43. To identify differentially used exonic bins, linear mixed models were performed on 

the final set of PSI scores including fixed effects of group (ileum, rectum, or spliceopathy) 

and ancestry and a random effect of individual. 

3.4 Results  

3.4.1 Effects of disease, location, and ancestry on splicing and gene expression 

In order to quantify the influences of disease, location and ancestry on splicing and 

gene expression, we first computed the principal components (PC) for both the transcript 

abundance and PSI (percent spliced in) counts from the RNAseq dataset, and then 

generated a weighted sum of the influences on these measures. This principal component 

variance analysis revealed that three quarters (75%) of the expression variability and one 

third (33%) of the splicing variability was captured by the first ten principal components of 

the respective measures, indicating that gene level expression is far more variable than 

exon usage between rectal and ileal tissue. For gene expression, 40.3% of the variance 

was between locations (ileum and rectum), 2.3% between ancestry groups (European and 

African), 0.2% between disease subtypes (UC and CD), and 0.8% captured by the 

interaction between Location and Disease. Corresponding percentages for the splicing 

variance were 20.7% between locations, 5.8% ancestry groups, 0.7% disease and 0.8% 

the interaction effect. These proportions and the contributions to each PC are provided in 

Table 3.1, which also shows that the variance contributions to PSI are relatively unaffected 

by the threshold of inclusion, being similar for datasets with 108,091 or 7,001 exon bins. 

In both cases, then, consistent with previous studies, by far the largest effect is between 

ileum and rectum [181], a meaningful ancestry component is observed [169], and twice as 
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much variance is due to differences in the effect of disease on the two tissues than to 

disease across both tissues.  

 

Table 3.1 Principal Component Variance Analysis (PCVA) decomposition of sources of 
variance. The table shows the percent variance in gene expression or splicing (PSI at two 
inclusion thresholds) explained by the first ten PCs and their sum, as well as the weighted 
contribution of each variance component term (ancestry, disease, location, and the 
interaction of disease and location) to these 10 PC.  Gene expression is for 18929 genes, 
and number of PSI bins is before and after the final two stages of filtering (n=119 samples 
for all). 

Principal component / 

Variance component 

Gene 

Expression 

PSI 

(108091 Exon 

bins) 

PSI 

(7001 Exon bins) 

PC1 28.9% 7.6% 9.3% 

PC2 25.1% 5.5% 6.9% 
PC3   5.2% 4.1% 4.1% 

PC4   4.4% 3.0% 3.2% 
PC5   3.5% 2.6% 2.9% 

PC6   2.3% 2.4% 2.7% 
PC7   2.0% 2.3% 2.3% 

PC8   1.6% 1.8% 2.0% 

PC9   1.6% 1.7% 1.9% 
PC10   1.3% 1.7% 1.6% 

SUM of PC1-PC10 75.9% 33.0% 27.9% 

    

Ancestry   2.3%  5.8%  5.3% 
Location  0.2% 0.7%  0.5% 

Disease 40.3% 20.7% 27.9% 
Location*Disease  0.8%  0.8%  1.0% 
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At the 5% False Discovery Rate, there were 9,569 differentially expressed genes by 

location, 1,847 by ancestry, and just 556 by disease, although 1,570 showed 

an interaction effect, implying that most disease effects, as expected, are specific to the 

ileum (in CD) or rectum (in UC). Correspondingly, there were 1,885 significant PSI by 

location, 90 by ancestry, and none by disease or showing an interaction effect, implying 

that disease has a much smaller impact on splicing in each tissue than it does on overall 

expression.  

The first principal component (PC1) of gene expression and the first two principal 

components (PC1 and PC2) of splicing provide particularly strong separation by 

location as seen in Figure 3.1a,b respectively, with the exception of samples from 8 

individuals highlighted by the solid squares which are also extreme for PC2. We provide 

evidence in Figure 3.1c,d that these major components of variation reflect the proportions 

of the three major tissue compartments [179,182], specifically with elevated epithelial 

contribution to the ileum relative to rectum, and immune and fibroblast contributions to the 

intermediate samples. Analysis of the genes altered in the intermediate-type ileal and 

rectal cases showed indicate that the differentiation of these samples is likely driven by an 

amplified immune response. Of note, the IBD-associated genes TLR2, TLR4, and NOD2 

exhibit elevated expression in intermediate ileal and intermediate rectal samples. 
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Figure 3.1 Principal components of transcript variation. (a) PC2 vs PC1 of transcript 
abundance showing separation of ileal (blue, n=60) and rectal (brown, n=59) samples 
along PC1, and of intermediate samples (solid squares) along PC2.  6 of 8 intermediate 
individuals are represented by two samples each; different individuals are intermediate in 
the two tissues. (b) PC2 vs PC1 of exon usage (PSI) showing similar separation by tissue, 
but with three ileal samples (blue triangles) clustering with the rectal set.  Percentages 
refer to variance explained, shading to disease status. (c,d) Differential abundance of 
immune (c) and epithelial (d) cell contributions summarized by PC1 of compartment-
specific gene expression differentiate ileum and rectum 
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3.4.2 Aberrant Profiles define “Spliceopathies” 

Three ileal samples highlighted by the solid blue triangles in Figure 3.1a,b (2 from 

one donor, 1 from another who did not have a paired ileal biopsy) have rectal-like splicing 

yet gene expression intermediate between ileum and rectum. These two Crohn’s disease 

cases thus have particularly altered splicing, suggesting that their disease is due to a 

“spliceopathy”.  Analysis of variance detected 284 differentially used splice sites in the 

three samples compared to ileum, and the heat map in Figure 3.2a highlights how these 

ileal samples globally more resemble rectum in terms of exon usage. These differentially 

used splice sites come from 246 genes, of which only 104 were found to be differentially 

expressed at the gene level, further supporting the suggestion of a “spliceopathy”. A 

representative example, CEACAM1, itself an established IBD risk gene [183] whose 

product regulates mucosal inflammation via T-cells [184], is shown in Figure 3.2b where 

exon bin 12 has low, rectal-like PSI in ileum, whereas the other intermediate samples are 

more ileal-like.  Overall expression of the gene is normal (Figure 3.2c). 
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Figure 3.2 Characteristics of the spliceopathy samples. (a) Heat map of the top 50 most 
differentially abundant exons showing broad clustering by tissue (rectum to the left) but 
not disease status. (b) Average PSI of exon bins 9 through 14 of CEACAM1, showing 
average levels of E012 (corresponding to CEACAM1 exon 7) differ by tissue and state. 
(c) Gene expression of CEACAM1 by cluster. Intermediate ileum and spliceopathy 
samples are not significantly different from differentiated ileum, whereas intermediate 
rectum and differentiated rectum are both significantly elevated relative to ileum. (d) The 
proportion of sites with indicated difference in average PSI for comparisons of ileum (n=50) 
to rectum (n=52), spliceopathy ileum (n=3) to both ileum and to rectum, and intermediate 
ileum (n=7)or rectum (n=7) to corresponding differentiated tissue. The most differential 
splicing is observed in each bin above 5% for the spliceopathies 
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There are two main isoform types of CEACAM1 that differ in the length of the 

cytoplasmic tail. The inhibitory functions of the long cytoplasmic tail isoform (CEACAM1-

L) are well studied and CEACAM1-L is known to be the predominantly expressed isoform 

in human lymphocytes. Though CEACAM1-S functions are less well characterized, it has 

been linked to mucosal immune regulation and recent studies show that intestinal T-cells 

primarily express this isoform.[185] Exon bin 12 corresponds to exon 7 of the CEACAM1 

gene, which is included only in the CEACAM1-L isoform and also contains regions 

involved in the alternative splicing of this gene.[183,186] Analysis of this region did not 

identify any SNPs that may lead to the differential isoform ratio observed in these samples. 

While no other CEACAM family members exhibited altered splicing profiles we did observe 

elevated gene expression of CEACAM5, known to be a marker of Crohn’s disease, in the 

spliceopathy samples.[187] However, expression was consistent with the level seen 

among rectal samples, further supporting the hypothesis of a transcriptome-wide defect 

causing these ileal samples to resemble rectal tissue. 

Underscoring that the defective splicing is transcriptome-wide, Figure 3.2d shows 

the fraction of exons in bins of differential usage for various contrasts, with the greatest 

deviations seen for the spliceopathy samples. Despite the widespread nature of the 

defective splicing, separation of samples by tissue-type using PCA (principal component 

analysis) could also be performed reliably using just 96 of the 284 splice sites that were 

also differentially used in the rectal samples compared to the ileum, but did not distinguish 

the spliceopathy samples and rectal samples, making these exonic bins “rectal-like”. Gene 

ontology analysis of the genes encompassing these exons identified an enrichment of 

genes involved in fructose catabolism. Three out of five genes in the pathway (KHK, TKFC, 

and GLYCTK) had exons exhibiting rectal-like splicing in the ileal spliceopathy samples. 
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In addition to differential isoform usage, overall transcript abundance of ketohexokinase 

(KHK) and triokinase (TKFC) was also reduced in the spliceopathy samples, to a level 

intermediate between rectum and ileum. Breath testing has been used to demonstrate 

that fructose malabsorption is quite common in individuals with ileal Crohn’s disease [188], 

consistent with the hypothesis that an excess of short chain carbohydrates may be a 

trigger for pathogenesis.  

Expansion of the gene ontology analysis to genes encompassing all 284 exons 

found to be differentially used in spliceopathy compared to ileum also identified enrichment 

of RNA splicing and spliceosome processes, suggesting that the rectal-like splicing 

observed in the spliceopathies is driven by an unknown aberration in the mRNA 

processing mechanisms of these patient’s ileal tissue.  However, there was no evidence 

from splicing, expression, or genotype data for the involvement of any of the three RNA-

binding proteins known to influence alternative splicing of CEACAM1.[186] Two-way 

hierarchical clustering of PSI for the top 24 most spliceopathy-affected exons from 17 

splicing-related genes showed that the two samples from one individual are clear outliers, 

while the single aberrant biopsy from the second individual falls within a small cluster of 

rectal-like ileal samples.  These two cases thus likely have different genetic etiologies. It 

is not possible from this dataset to discern whether a single mutation is responsible for the 

profiles, or whether a combination of genetic and environmental factors lead to disruption 

of the splicing of these gene products, which then mediates the broader set of aberrant 

splice events. 
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3.5 Discussion  

Our results establish that altered splicing is a relevant feature of the IBD gut. Since 

splicing is to some extent co-regulated with transcription [149,189], covariation of both 

aspects of gene expression is observed, for example in similarity of the principal 

components. An appreciable fraction of individuals have more rectal-like ileal expression 

and splicing also because of alterations in the proportions of epithelial, stromal and 

immune cells. These differences are to some extent ancestry-biased, notably with 

elevated stromal (fibroblast) expression in European relative to African Americans (Figure 

3.3a,b). This observation extends our recent demonstration of ancestry-related 

differences in ileal gene expression involving pathways that also associate with disease 

severity [169].  Our ability to determine the cause and observe the downstream effects of 

the "spliceopathy" is limited by both the low number of individuals it was observed in and 

the design of our study. Future research could shed more light on the frequency, effects, 

and possible cause of this type of aberration by analyzing single cell RNAseq and variants 

from whole genome sequencing in addition to bulk mRNAseq in the rectal and ileal tissue. 

It will be important to define the molecular mechanisms responsible for the coordinated 

splicing defects, and to evaluate whether they suggest personalized therapeutic 

interventions.  
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A further noteworthy aspect of this study is the development of a pipeline for 

quantitative analysis of splicing data from RNAseq.  The popular MISO (Mixture of 

Isoforms) protocol [69] incorporates fragment length distributions and exon-level 

abundance estimates into probabilistic estimation of altered isoform usage, but is intended 

for single sample comparisons.  Several other existing approaches to detection of aberrant 

exon usage are incorporated into standard RNAseq analysis tools [70,190,191], while an 

Figure 3.3 Association of ancestry with tissue proportion in biopsies. (a) PC1 of immune 
specific expression is similar between the two ancestry groups. (b) PC1 of fibroblast 
specific expression is significantly different between the two ancestry groups, implying a 
reduced proportion of fibroblasts in the African-ancestry biopsies (p = 0.005, 2-tailed t-
test).  Note that the aberrant intermediate samples have particularly elevated fibroblast 
expression in both groups, whereas the two “spliceopathy” cases, both African American, 
have relatively normal fibroblast proportions 
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approach based on identification of novel or cryptic splice junctions in cases compared 

with controls, led to identification of the molecular basis for 17 of 48 previously 

undiagnosed neuromuscular disease cases .[62] Here we combine attributes of each of 

these algorithms along with quantitative evaluation of exon usage to identify suites of 

concurrent aberrant splicing in outlier individuals. PSI filtering (see Methods) allows for a 

focus on exons that are not constitutively expressed and therefore contribute to differential 

isoform usage, without being limited to annotated isoforms. Similar conclusions were 

observed at a variety of thresholds of inclusion, but careful filtering to rule out artefacts of 

low expression or exon coverage allowed us to focus on a core set of a few hundred genes 

perturbed in two cases of spliceopathy.   

This study was performed using whole mRNA, which has long been the standard 

for gene expression analysis and, by extension, exon level and splice site analysis. 

However, several aspects of whole mRNA sequencing are not ideal for analysis of these 

smaller features, and a case can be made for targeted RNA-seq when at all possible. Our 

samples, following Illumina and ENCODE recommendations [192], had a median 

sequencing depth of 45 million reads. While this provides robust analysis at the gene level, 

it is quite limiting in terms of how many splice sites can be evaluated with accuracy. After 

removing exonic bins in genes with low or no coverage (60% of sites), the mean number 

of informative reads per bin for any given sample is 169 while the average maximum 

number of reads at a single site is over 750,000. At over half of the remaining sites, the 

median PSI score across all samples is 0.99, rendering those sites uninformative for 

differential usage analysis. A careful review of literature and public RNA-seq databases 

such as GTEX could identify genes that, though highly expressed in the target tissue, are 

not relevant for the proposed analysis. By using this information to create a targeted RNA-
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seq panel, researchers can achieve a higher read depth for a more robust analysis of 

splicing without needing to increase overall sequencing depth or sacrifice gene level 

analysis. 

3.6 Conclusions 

Consistent with previous studies, we found tissue location to be the largest 

contributor to variability in gene expression and splicing. Though gene expression 

differences between tissues are often accompanied by changes in splicing, as one might 

expect since different cell types may utilize different isoforms, neither analysis shows the 

whole picture on its own. The observation of the ileal samples in two CD patients exhibiting 

intermediate gene expression but clear rectal-like splicing indicates that differential 

splicing is a previously unrecognized contributor to IBD disease pathology. Because the 

aberrations are seen in the full splicing profile rather than a specific aberrant splicing event, 

we refer to these cases as a “spliceopathy”. Our results indicate that inclusion of splicing 

analysis when performing RNA-Seq experiments for the study of human disease could 

play an important role in identifying additional contributions to the pathology of not only 

IBD, but also other complex diseases. 
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CHAPTER 4. INTEGRATIVE ANALYSIS OF TARGETED RNA-SEQ IN WHOLE 

BLOOD INCREASES DIAGNOSTIC YIELD FOR DYSFERLINOPATHY 

This chapter has been adapted from a version available on MedRxiv[193] (citation 

below). Substantial changes were made for clarity and to focus on the RNA-seq analysis 

and interpretations that I performed. This chapter marks the development and refinement 

of my approach to rare variant analysis in RNA, and the methods have been expanded 

accordingly to better detail and explain the rationale and purpose behind each part. 

Chakravorty S, Berger K, Rufibach L, Gloster L, Emmons S, Shenoy S, Hegde M, 
Dinasarapu AR, Gibson G. Combinatorial clinically driven blood biomarker functional 
genomics significantly enhances genotype-phenotype resolution and diagnostics in 
neuromuscular disease. medRxiv. 2021. 
 

4.1 Abstract 

Even after extensive genetic testing, 50-60% of neuromuscular-disease patients 

remain undiagnosed, hindering precision-medicine and clinical-trial-enrollment. This is 

due to: a) clinical-genetic-heterogeneity; b) high-prevalence of variants-of-uncertain-

significance (VUSs); (c) unresolved genotype-phenotype-correlations for patient 

stratification, and (d) lack of minimally-invasive biomarker-driven-assays. We therefore 

implemented a combinatorial phenotype-driven blood-biomarker functional-genomics 

approach to enhance diagnostics and trial-readiness by elucidating disease mechanisms 

of a neuromuscular-disease patient-cohort clinically suspected of Dysferlinopathy, the 

second-most-prevalent LGMD in the US.  

Using a panel of 273 genes implicated in neuromuscular disease, we performed 

blood-based targeted RNA-seq on a subset of 69 cohort patients to validate our integrative 
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approach to analysis and identify patient variants not seen in DNA, such as splicing, to 

provide additional diagnoses.  

Targeted RNA-seq was highly successful at diagnosing Dysferlinopathy, resolving 

63% of RNA-seq cases and improving the diagnostic yield of the overall cohort to 46.7%, 

an 11% increase over DNA-sequencing. We resolved nearly half of VUSs identified in 

DNA-seq, observing aberrant splicing in 10 variants. Importantly, the high read depth and 

consistency of nonsense-mediated-decay in the presence of protein truncating variants 

(PTVs) allowed for reliable phasing of DYSF variants without the need for trio sequencing. 

Our results show that RNA-seq is a powerful tool for the diagnosis of rare disease and 

that minimally invasive samples such as blood can be used in place of the disease tissue 

under certain circumstances. 

4.2 Introduction 

Limb-girdle muscular-dystrophies (LGMDs) are one of the most prevalent and 

heterogeneous inherited neuromuscular-disorders (NMDs) with >30 monogenic clinically-

overlapping subtypes[194]. Among them, Dysferlinopathy (OMIM 254130, 253601, 

606768), a recessively-inherited muscular dystrophy caused by variants in 

the DYSF (MIM 603009) gene[195,196], with variability in clinical presentations [197-199] 

is the second most prevalent LGMD[194,200,201]. Definitive molecular-diagnosis is 

typically a pre-requirement to enroll patients with such clinico-genetic heterogeneity into 

clinical-trials. Recently, in a large LGMD 35 gene-panel next-generation-sequencing 

(NGS) program, we achieved 27% diagnostic yield[194]. However, 72% of all clinically 

reportable variants were variants of uncertain significance (VUSs) resulting in ∼50% of 

cohort, including at least 90 patients with DYSF VUSs or unresolved compound 
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heterozygosity without known phasing, remaining undiagnosed, hindering trial-enrollment. 

Importantly, with upcoming trials of gene-therapy (NCT02710500) and others on the 

horizon, improved understanding of genotype-phenotype correlations by identifying 

mechanism of pathogenicity of not only VUSs, but also pathogenic or likely pathogenic 

variants at the molecular level is essential to stratify patients appropriately for better 

readiness to clinical trials or precision medicine initiatives. 

Rigorous VUS-reclassification and resolution of genotype-combinations per 

American College of Medical Genetics and Genomics (ACMG) guidelines[32] requires 

understanding disease mechanisms using an integrative approach combining functional-

assays with genotype and phenotype correlation[202-204]. Gene-based or other 

biomarker testing from easily accessible tissue, such as blood or urine, is needed since 

muscle biopsies or skin-derived transdifferentiated myotubes are invasive, costly, and 

adipocyte contamination can compromise quality. DYSF protein-expression in blood, 

although shown by us to be an effective Dysferlinopathy biomarker[205-208], was not able 

to provide definitive genotype-phenotype correlations, resolve carrier-range detection for 

patients clearly Dysferlinopathy-suspected, and was unable to reclassify VUSs. 

Alternatively, transcriptome-sequencing (RNA-Seq) using patient muscles or myotubes or 

fibroblasts or blood without in-depth focused clinical-correlation increased diagnostic-yield 

to a maximum of 36% in clinically diverse cohorts[62,63,74,209].  

The Dysferlin gene presents as an ideal gene for performing RNA-seq from whole 

blood because it is overexpressed in monocytes and hence blood[210] and the 14 

documented, protein-product producing isoforms are relatively large (55-58 exons) yet 

have only four exons that are naturally alternatively spliced (Figure 4.1), referred to here 

as 1, 1a, 5a, 17, and 40a[211,212]. In the disease tissue, skeletal muscle, the main isoform 
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is NM_003494 which utilizes alternative exons 1 and 17. The primary isoforms expressed 

in whole blood NM_001130980 (inclusion of exons 1 and 5a) and NM_001130981 (exons 

1, 5a, and 40a). Very few pathogenic variants have been identified in any of the 

alternatively spliced exons, but isoform differences between the analyzed and diseased 

tissue should be considered carefully when interpreting variants found there.  

 

 

We show here that blood-based targeted-RNA-Seq with clinical-correlation does 

have high resolution when the candidate gene, such as DYSF, is adequately expressed 

as suggested but not shown by two other groups[62,74]. Though blood-based whole 

transcriptome RNA-Seq on trios (proband and parents) provided 38% diagnostic yield in 

combination with exome or genome sequencing[213], for adult neuromuscular disorders 

that are late-onset such as Dysferlinopathy and many other neuromuscular disorders 

parental DNA/RNA may not be available for segregation studies. Here, using NMD-

specific targeted higher depth blood-based RNA-Seq, we show resolution of phases of 

previously unresolved compound heterozygous variants using allele-expression 

imbalance (AEI) as was suggested previously[214]. In our large cohort of 364 patients 

Figure 4.1 The structure of three DYSF transcripts. NM_003494 is the primary transcript 
in skeletal muscle, while NM_001130980 and NM_001130981 are the primary transcripts 
in whole blood. Only regions with naturally alternatively spliced exons are shown. The 
gene model represents an aggregate of all possible exons. 



 57 

clinically suspected of Dysferlinopathy or related-LGMD, we used targeted RNA-seq of 

just 69 cases to raise the diagnostic yield from 34% to 44% and resolve discrepancies 

between genotype and protein expression in monocytes. We explain how phenotype and 

functional assays can inform efficient diagnostic testing and illustrate the importance of a 

combinatorial approach to functional genomics to improve understanding of variant-gene-

disease relationships. 

4.3 Materials and Methods 

4.3.1 Study design 

A total of 364 patients of diverse ethnicities (including Americas and Europe) with 

clinical-suspicion of Dysferlinopathy (LGMD2B/Miyoshi Myopathy/Distal Myopathy with 

Anterior Tibial Onset/related LGMD) or related-LGMD and 15 normal-control samples from 

unaffected individuals were recruited between 2016 and 2019 in this study at Emory 

University based on the following inclusion- and exclusion-criteria. Inclusion-criteria: 

Patients with Dysferlinopathy or related LGMD clinical-suspicion were selected after 

comprehensive clinical-evaluation. Exclusion-criteria: Patients with definitive clinical-

diagnosis of other unrelated muscular-dystrophy types were excluded in order to target a 

focused Dysferlinopathy-suspected cohort. Written informed consent was obtained from 

all participants of the study according to Institutional Review Board approval. Genotype 

information from prior CLIA-CAP-certified genetic-testing reports for all 364 patients who 

underwent DNA-testing to identify disease genetic-basis was also collected where 

available. These genetic tests were heterogeneous, ranging from exome or array-

comparative-genomics-hybridization to known variant Sanger-sequencing based on 

respective physician’s discretion. Subsequently, 342 out of 364 patients underwent blood 
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CD14+ monocyte-assay (MA-assay) for minimally invasive DYSF protein-profile-analysis 

using immunoblotting. 

 

 

Thereafter, targeted RNA-Seq using whole blood with an integrative analytical 

approach (Figure 4.2) was performed on a subset of 69 consenting patients either without 

complete molecular-diagnosis (48 patients) or without resolution of genotype-phenotype 

correlation even with confirmed genetic diagnosis in some cases (2 patients). This 

combinatorial sequential approach enabled understanding the Dysferlinopathy genotype-

phenotype landscape. The cohort samples were categorized into 3 general groups based 

on the results of molecular genetic testing, with a fourth group of negative controls 

comprised of 8 volunteers with no history of neuromuscular disease. Group A was 

comprised of samples having two identified heterozygous pathogenic or likely pathogenic 

Figure 4.2 Overview of multi-faceted approach to analyzing RNA for the diagnosis of 
mendelian disease. The information gleaned from each type of analysis is complementary 
to the others to provide the best support for evidence of pathogenicity. 
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(P/LP) variants (or a single homozygous P/LP variant) by DNA sequencing, so RNA 

sequencing for these samples served as the positive control group. Group B samples have 

a single heterozygous P/LP variant or a homozygous VUS. Identification of a second P/LP 

variant or reclassification of the homozygous VUS to P/LP would result in a molecular 

diagnosis for these cases. Group C is made up of cases where no P/LP variants have 

been observed in DNA, requiring identification or reclassification of two variants in order 

to achieve a molecular diagnosis. Sample numbers for each group are provided in Table 

4.1. 

 

Table 4.1 Sample numbers per group for the suspected dysferlinopathy cohort. 

 Full Cohort RNA-seq 
Group A 
2 heterozygous or 1 homozygous P/LP variants in 
DYSF 

130 21 

Group B 
1 heterozygous P/LP variant in DYSF 87 30 

Group C 
No P/LP variants in DYSF 147 18 

Total 364 69 
 

 

Previous literature using RNA-Seq to diagnose neuromuscular disorders analyzed 

muscle biopsies and used the publicly available GTEx data as controls for 

comparison[62,74]. Although GTEx samples are an important resource for comparison, 

their use as either proxy tissue or as normal controls in RNA-Seq is debatable due to a) 

potential differences in the methods pipeline and sequencing platform settings, b) possible 

sample differences in sex, age, and storage conditions since most GTEx sample are from 
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individuals >40 years age[215]. Therefore, to make our pipeline more clinically cautious 

and relevant, and to improve analyses, we used internal normal control blood specimens. 

These samples came from individuals of different ethnicities without any symptoms or 

individual/family history of neuromuscular or neurological disease, showed ≥100% DYSF 

protein expression in CD14+ monocytes, and underwent the same sample 

collection/storage conditions, sequencing platform and overall methods pipeline as patient 

samples.  

Variants were called and evaluated in RNA-seq and data was analyzed for 

aberrant splicing, allele expression imbalance (AEI), differential exon usage, and transcript 

abundance. Taking together the results of RNA-seq analysis, available clinical information, 

%DYSF protein expression in CD14+ monocytes, and DNA-Seq data, we performed 

phenotype-genotype correlations. The results were clinically correlated to reclassify 

VUSs, identify pathogenic events at the mRNA level, and understand the pathogenic 

nature of the variants as per ACMG-AMP guidelines, in order to submit to public databases 

such as ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), Human Genome Mutation 

Database (HGMD: http://www.hgmd.cf.ac.uk/ac/index.php), Human Genome Variation 

Society (HGVS: https://www.hgvs.org/) and others. All RNA-seq assay results were 

reported back to patients and/or respective physicians as research reports according to 

guidelines of the approved Institutional Review Board protocol. 

4.3.2 Whole Blood Targeted RNA-Seq Library Preparation and Sequencing  

High quality (RNA Integrity Number; RIN>5) RNA was extracted from whole blood of the 

patients and control individuals using QIAamp RNA Blood Kit (cat # 52304, Qiagen) 

following the manufacturer’s protocol. Various studies have shown that samples with an 
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RNA Integrity Number (RIN) above 7 show minimal RNA degradation[216,217]. Samples 

with a RIN below 7 were in some cases still sequenced but were removed from all gene 

expression analyses as research has not established that it is possible to correct for RNA 

degradation through normalization to a degree sufficient to support clinical 

diagnostics.[75,76,216,217] Only blood specimens in EDTA tubes shipped to us within 

24hrs from blood draw time based on time log on top of the EDTA vial were used for RNA 

extraction to control for any time-based RNA degradation effect. Library preparation was 

performed using SureSelectXT RNA Target Enrichment for Illumina Multiplexed 

Sequencing kit (cat# G9691- 9000) following manufacturer’s protocol. Targeted RNA-Seq 

was performed to have a more focused clinically relevant platform for neuromuscular 

disease (NMD) diagnostics and to achieve greater read depth and coverage of the target 

NMD genes. We used a custom-designed target library probe to capture 273 genes that 

are known to be NMD-associated and are known to have skeletal muscle expression 

(≥1TPM) as retrieved from The Genotype-Tissue Expression (GTEx) portal[210]. These 

273 genes were curated initially based on the associations to NMDs (Types of 

Neuromuscular Diseases, http://muscle.ca/wp- 

content/uploads/2019/08/Disorder_List_ENG_May2017.pdf) as recently done by us[94]. 

Using the targeted sequencing here ensured higher read depth in our target gene (DYSF) 

while also providing a preliminary characterization of how a targeted panel of 

neuromuscular disease genes would fare when sequenced in whole blood. Strand-specific 

sequencing was performed on an Illumina NextSeq instrument to obtain high output 150bp 

paired-end reads at a depth of more than 15 million reads per sample. 
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4.3.3 RNA-Seq Analysis  

4.3.3.1 RNA-seq pre-processing pipeline 

The pipeline for RNA analysis is shown in Figure 4.3. The outputs highlighted in 

green squares were used for the following five aspects of RNA analysis: Aberrant Splicing, 

Variant Calling, Allele Expression Imbalance, Isoform Abundance, and Overall Transcript 

Abundance. The framework of the pipeline was built following GATK best practices for 

RNA-seq analysis[218] and further refined after comparison of various guidelines and best 

practices as well as internal testing of various tools. Custom R-Scripts and Codes used 

for RNA-Seq data-analysis are made publicly available through the Github 

repository: https://github.com/kiera-gt/rnaseq-nmd. 

 

 

Figure 4.3 Bioinformatics pipeline for the analysis of RNA-seq data. Green squares 
represent an output file that was analyzed for aberrant splicing, variants, allele expression 
imbalance, isoform abundance, and/or transcript abundance. 
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4.3.3.2 Quality Control  

Quality Control (QC) measures were implemented at multiple stages of the 

pipeline. FastQC[171] was run on raw reads and again after adapter trimming. The 

FastQC tool, like many in this pipeline, was built for the analysis of DNA sequencing reads, 

but the thorough documentation provides insight into the expectations for performance on 

whole mRNA sequencing. After alignment, the Quality of RNA-seq Tool-Set (QoRTs)[175] 

were run on each sample. After all samples completed the individual pipeline, metrics were 

recorded and QoRTs run for the batch to identify any outliers or possible sequencing 

issues before running the joint analysis. Alignment metrics tracked for both total reads and 

only non-duplicate reads include the number of uniquely mapped read pairs, the percent 

of those reads mapped to the target panel of 273 genes, and the number and percent of 

reads mapped to DYSF. The graphical output of QoRTs produces 36 charts of alignment 

statistics. While every graph was given a cursory look to check for extreme outliers, the 

four charts showing cumulative gene assignment diversity and gene-body coverage were 

reviewed for indications of poor sample quality and 3’ or 5’ bias, which can influence 

various aspects of analysis even after applying corrective measures during 

normalization.[219,220]  Finally, a “tissue check” was performed by plotting the first two 

principal components of gene counts, normalized for library size and regularly log 

transformed using DESeq2.[221,222]  Any outliers or batch effects observed in this and 

all previous QC steps were noted, and great care taken to account for these issues in 

downstream analysis steps. 

4.3.3.3 Read alignment  

Previous research has shown that alignment of RNA performs better and captures 

more information when reads are not trimmed beyond adapter removal[223]. 
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Trimmomatic[172], a commonly used read trimming tool, was used to remove Illumina 

universal adapter sequences from reads. Reads were aligned with the STAR[125] splice-

aware aligner, using GRCh38 as the reference sequence and NCBI Annotation 106 as the 

annotation reference. The STAR 2-pass alignment method was used as it consistently 

achieves high marks in precision and accuracy when tested against other 

options[224,225]. Aligning to the genome requires split-read alignment which can be more 

error-prone than transcriptome alignment[65], particularly when a splice event occurs near 

the beginning or end of an individual read. However, downstream tools perform better and, 

in some cases, require that RNA reads be mapped to the genome using a splice-aware 

aligner. Reads were mapped using the same parameters as the ENCODE 

project,[226,227] with the exception that all multi-mapping reads were removed as the 

“correct” alignment for these reads cannot be determined reliably.   

4.3.3.4 Variant Calling  

Duplicate reads were marked in the aligned BAM file, which was then used to call 

variants in the RNA following GATK Best Practices for Variant Calling in RNA-seq[228] 

with the alterations described here. The Base Recalibration step in variant calling with 

GATK is recommended for better calls. However, because we were working with split 

reads and particularly interested in identifying aberrant splicing, the recalibration and 

realignment of reads that occurs in this step would alter the original alignment of the reads 

that was performed with the full (rather than split) reads. Since we examined both the 

variant calling output and the raw aligned reads, the decision was made to forgo base 

recalibration to save time and computing energy.  

Since many samples were analyzed and variant calling in RNA is especially prone 

to false positive calls, a GVCF file was produced for joint variant calling across all samples 
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rather than an individual VCF file for each sample. Joint variant calling using 

HaplotypeCaller was carried out over all 78 samples undergoing RNA-seq to identify 

variant calling trends. Variant calling across all of the panel genes was performed with 

recommended parameters, but genome coordinates encompassing the DYSF gene were 

also called separately with relaxation of parameters that are intended to reduce false 

positive calls. The rationale behind this is to gain an appreciation, while focusing on a 

single gene that can quickly be manually checked in depth, of how many and what type of 

variants tend to be missed by the standard parameters, and then to use this information 

to inform and alter the analysis framework for expansion to multiple genes in future 

studies. The joint VCF file was annotated with dbsnp ID, gene location, functional domain 

information, predicted protein change, population data, conservation and missense in 

silico prediction algorithms including PolyPhen2[229] and SIFT[117], and ClinVar[36] 

classifications using ANNOVAR[230] to aid in prioritizing variants according to ACMG 

classification guidelines[32]. Variants were also annotated with the Transcript inferred 

Pathogenicity Score (TraP Score) to help identify variants predicted to impact splicing[59]. 

Variants were automatically filtered out if they did not pass a minimum quality threshold of 

20 or the alternate allele count was less than 10.  

To optimize the efficiency of the manual portions of the analysis, the DYSF joint 

VCF file was checked for variants already identified via DNA sequencing, and the region 

was visualized in the aligned BAM file using the Integrative Genomics viewer (IGV)[231]. 

DYSF variants called in the VCF file were prioritized for manual evaluation by variant 

quality and indicators of pathogenicity such as variant type, in silico predictor tool results, 

a previous entry or P/LP/VUS in ClinVar[34], and population frequency in the Genome 

Aggregation Database (gnomAD)[27]. In addition, the aligned reads were viewed, and 
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each exon manually checked for any variants not present in the VCF file. Reference and 

alternate allele counts were recorded for every real variant in every sample for use in AEI 

analysis described below. High quality loss of function (LOF) variants and variants with an 

allele frequency of <1% in gnomAD were also pulled for evaluation from the remaining 

273 genes in the panel. All potentially causative variants were manually evaluated using 

the IGV viewer to ensure they were not a result of mis- mapping or noise. 

4.3.3.5 RNA-Seq Allele Expression Imbalance (AEI)  

To evaluate allele expression across DYSF, the allele ratio for each individual high 

confidence single nucleotide variant (SNV) in each sample was calculated by dividing the 

read count of the lesser-expressed nucleotide (lesser allele) by the total number of reads 

at the variant position. Read counts for SNVs passing all filters were obtained from the 

RNA-Seq variant calling VCF file. Each SNV was grouped by the number of PTVs in the 

sample it belonged to. Because the data did not pass tests for normality or homogeneity 

of variance, significant differences between groups were calculated using Wilcoxon rank 

sum tests and p-values were adjusted using the Benjamini-Hochberg method.  

4.3.3.6 Allele Expression Imbalance (AEI) Calculation Method  

Only exonic heterozygous SNVs in DYSF located in constitutively expressed 

exons, called at >50X per allele and passing all variant quality filters, were considered in 

the analysis. Samples that were observed to be outliers by gene expression PCA or did 

not contain any heterozygous SNVs in DYSF were excluded from AEI analysis. Further 

criteria for sample inclusion was a requirement that the sample contained at least two 

heterozygous SNVs located more than 150 coding bases apart, to show that the observed 

AEI is consistent across the entire length of the transcript and that any effect seen is not 

local to any single variant. A total of 50 samples including 6 controls met the criteria for 
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inclusion. In each sample, allele ratios were calculated for every SNV meeting the stated 

criteria by taking the lower number of allele-supporting reads divided by the total available 

reads at that site for Allele A and the greater number of allele- supporting reads divided 

by the total site reads for Allele B. In this manner, allele expression is divorced from the 

concept of “reference” or “alternate” allele. Both AEI and overall gene abundance were 

correlated with the observation of PTVs in a sample and we attempted to keep the gene 

abundance observation in the visualization of AEI. Variant call depth is not normalized and 

varied widely within individuals since depth of coverage is not consistent across all exons, 

so the calculated allele ratios were instead applied to the overall gene TPM for plotting as 

a more stable representative of abundance. Each sample is represented by two plotted 

points showing the average of Allele A and B connected by a line. Error bars represent 

one standard deviation.  

4.3.3.7 RNA-Seq Gene Expression Analysis  

Non-duplicate read counts for all genes in the panel were obtained from STAR 

output files. Transcripts Per Million (TPM) Normalization was performed to control for 

sequencing depth and to make samples directly comparable. Comparisons of gene 

expression were performed using Welch’s t-test followed by pairwise t-tests with non-

pooled SD. P-values were adjusted using the Benjamini-Hochberg method. 

4.3.3.8 Exon usage and splice junction counts 

Percent Spliced In (PSI) was calculated for each of the 58 unique exons in DYSF, 

following the methods laid out in Schafer et al[232]. PSI informed the extent of exon 

skipping, aberrant splice events, as well as usage of the 4 known common variable DYSF 

exons. Raw reads were counted per exon following the DEXSeq[70] vignette and used 

both to complement PSI analysis and to identify regions of DYSF where fewer or more 
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reads mapped than expected. After removing duplicate reads from the initial alignment, 

the BAM file was converted back to fastq files and realigned to the genome using STAR 

with all the same parameters. Counts for splice junctions occurring within the coordinates 

of the DYSF gene were extracted from the STAR splice junction output. These individual 

counts were combined for all samples at every observed splice site.  Raw gene counts for 

the 273 targeted panel genes were extracted from the complete gene counts output from 

STAR for use in analysis of transcript abundance. 

4.3.3.9 Use of duplicate and non-duplicate reads 

There is little consensus in the literature on whether analysis should be performed 

with duplicate reads or with them removed[233-235]. There are pros and cons to both 

ways. Reads with duplicates are more heavily influenced by sample quality and 

sequencing errors are amplified, but they may more accurately represent the true 

expression of genes or structural events. It was determined that a comprehensive RNA 

analysis such as this one would benefit from the use of non-duplicate reads in some 

aspects and a comparison of the two in others. Non-duplicate gene counts and exon 

counts were obtained in addition to counts with duplicates included, while only non-

duplicate counts were used for the identification of novel splice junctions. 

4.3.3.10 Identifying aberrant splice events 

Viewing an individual sample’s PSI calculations across DYSF and comparing to 

both controls and other samples provides very quick identification of exon skipping events. 

Confirmation of these events as well as identification of other types of splice events is 

done by observing non-duplicate read counts mapped to novel splice junctions and 

comparing to the counts in controls and other samples. All possible aberrant splice events 

were inspected carefully in IGV viewer to ensure they were not a result of mis-mapping or 
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other sequencing or alignment error. Like the Macarthur group[62], the threshold for 

considering a novel splice event was that the raw counts are within >10% of the shared 

splice junction of a known splice event. The criticism of this method is that the threshold 

of 10% is arbitrary, but the reality is that any statistical test performed here would be 

similarly subjective. The range of disease severity and symptom variability among 

dysferlinopathies suggests many factors at play, including the possibility that some 

causative variants are “more pathogenic” than others.[79,236] Ten percent of reads being 

affected combined with identification of a nearby variant of interest and axillary clinical 

information provides multiple lines of evidence and errs on the side of caution for reporting. 

Some aberrant splice events and structural changes are not easily seen in PSI 

calculations and raw splice counts. The STAR alignment algorithm weights the donor and 

acceptor splice site sequences based on previous research about the likelihood of certain 

sequences resulting in a splice junction[125]. When a single nucleotide or other variant 

creates a stronger splice donor or acceptor site than the reference sequence in a region 

but gets spliced out, STAR is unaware of the DNA change and tries to best-fit the resulting 

mRNA onto the reference genome. This often results in mapping the reads as an insertion 

or deletion, since that is statistically more plausible than abnormal splicing, and GATK 

variant calling may or may not identify the change. Here, again, manually viewing the 

aligned BAM in IGV viewer is essential. Identifying the mismapping, determining the 

correct splice junction, and feeding that information to STAR for remapping results in a 

more accurate final call. Aligning to the transcriptome and using a tool designed to 

accurately identify insertions and deletions may help find these events easier, but does 

not remove the manual step of working out the correct splice junction. 
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4.4 Results and Discussion 

All variants observed in DNA sequencing were confirmed in mRNA. We confirmed 

the 2 DYSF variants in all 21 validation cases (Group A) and used the 9 samples 

containing one protein truncating variant (PTV) and 10 with two PTVs to validate our ability 

to phase variants using allele expression imbalance (AEI) analysis. In Group B (30 cases), 

26 patients received confirmed diagnoses and one patient was brought closer to a 

diagnosis. In Group C (18 cases), 4 patients received confirmed diagnoses and 5 were 

brought closer to diagnoses with either DYSF (3 cases) or another muscular dystrophy (2 

cases with pathogenic variants identified in other genes). Of the 48 cases that were 

unresolved following DNA sequencing, nearly 63% (30 cases) were diagnosed by RNA-

seq. An additional 6 cases (12%) gained information from RNA-seq that brought them 

closer to a diagnosis. As expected, Group B had a much higher success rate (87% 

diagnosed) than Group C (22%), given that only one variant had to be newly identified or 

reclassified for these patients.  

In total, 39 VUSs identified in DNA were evaluated in RNA, resulting in the 

reclassification of 17 (Table 4.2). Ten DYSF VUSs were found to alter splicing, thereby 

reclassifying them as pathogenic (PVS1,PS3-criteria)[32]. Determination that a VUS was 

in trans with a pathogenic variant provided the additional criteria to reclassify 7 variants (1 

as benign and 6 as LP).  

We note that of 20 P/LP DYSF variants solely identified in mRNA, 7 were exonic 

and 3 located within 10bp of the start or end of an exon but were not reported in DNA-seq 

results. The fact that prior DNA-testing was performed non-uniformly (Exome/Gene-

Panel/Sanger) based on respective physician discretion reflects the real-world 

heterogeneous scenario of clinical genetics diagnostic requisitions from our experience. 
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Low cost, high coverage targeted RNA-seq may provide an alternative to WGS that is 

more likely to be ordered due to its similarity to traditional NGS panels. 

 

Table 4.2 Variants of Uncertain Significance (VUS) reclassified by RNA-seq analysis. 

Exon/Intron Position Variant Type New Class-
ification 

Evidence 
Type 

Exon 5 c.401C>T missense B Phasing 

IVS 9 c.907-3C>A extended splice P Aberrant 
splicing 

Exon 19 c.1668_1669insGT
T 

nonframeshift 
insertion LP Phasing 

IVS 25 c.2643+5G>A extended splice P Aberrant 
splicing 

Exon 28 c.3031G>C cryptic splice P Aberrant 
splicing 

Exon 29 c.3113G>C missense LP Phasing 

Exon 37-40 r.3904-4410del gross deletion P Aberrant 
splicing 

Exon 37  c.4003G>A missense LP Phasing 

IVS 39 c.4334-3C>A extended splice P Aberrant 
splicing 

Exon 43 c.4974G>T missense/leaky 
splice P Aberrant 

splicing 

IVS 45 c.5057+5G>T extended splice P Aberrant 
splicing 

Exon 47 c.5296G>A missense LP Phasing 

Exon 49 c.5503A>G cryptic splice P Aberrant 
splicing 

IVS 49 c.5526-7T>G extended splice LP Aberrant 
splicing 

Exon 53 c.6056G>A cryptic splice P Aberrant 
splicing 

Exon 54 c.6196G>A missense LP Phasing 
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4.4.1 Identification of aberrant splicing resolving geno-phenotype relationship 

Out of 69 patients who underwent RNA-seq, 32 exhibited aberrant splicing, 

indicating this is a major contributor to pathogenicity for DYSF. Three patients (B1, B5, 

and B6), all with only one previously identified P/LP variant, were diagnosed by the 

identification of varying-sized large-deletions all spanning entire DYSF exon 52 (Figure 

4.4),causing primarily a complete exon 52 skip with a small-percentage of transcripts 

skipping both exons 52 and 53. Nonsense-mediated decay (nmd) was also observed. 

Though exon 52 deletions have been previously identified[237], this is the first report of 

the three novel deletions causing similar splicing defects. AEI analyses demonstrated that 

these deletion variants are in trans with the second exonic DYSF pathogenic variants 

found in all three cases. 

Figure 4.4 Sashimi plot of the exon-skipping event seen in patients B1, B5, 
and B6. Subsequent genome sequencing (GS) identified the cause as a 
gross deletion encompassing exon 52. Numbers within continuous and 
dashed lines indicate number of spliced transcripts. solid lines indicate 
reference splicing, while dashed lines show observed aberrant splicing. 
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RNA-Seq can also differentiate between multiple splice events occurring at the 

same locus. Patient B18 had only one DYSF-variant (c.2810+1G>A)[196] reported from 

DNA-seq and an absence of muscle Dysferlin. RNA-Seq revealed an additional aberrant 

splicing event using an alternate splice acceptor site in intron 26 that resulted in a 67 bp 

extension of exon 27 (Figure 4.5). Because these reads use the canonical exon 26 splice 

donor site, it is unlikely they are a consequence of the c.2810+1G>A variant. Rather, we 

identified that another intronic variant (c.2811-20T>G) seen only in the aberrantly spliced 

mRNA reads, disrupts the branch point sequence and leads to preferential use of the 

alternate splice-acceptor site. This data indicates that the previously identified variant 

(c.2810+1G>A) and the novel branch-point variant (c.2811-20T>G) are in trans. 

Nonsense-mediated decay due to frameshift and premature protein-truncation of both 

splice-events is supported by reduced transcript abundance and the observed absence of 

Dysferlin protein. 

Figure 4.5 Multiple splicing events in a single intron. In patient B18, RNA-Seq 
identified exon 26 skipping caused by destruction of the splice donor site by 
the essential splice site IVS26 variant (left inset) and the exon 27 extension 
caused by a novel branch point variant (right inset). Numbers within continuous 
and dashed lines indicate number of spliced transcripts. solid lines indicate 
reference splicing, while dashed lines show observed aberrant splicing. 
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RNA-Seq allowed us to observe mRNA structural effects that DNA-sequencing 

alone can miss. Patient B23 RNA-Seq analysis showed that the exon 49 

c.5503A>G DYSF variant, predicted to be a missense variant, in fact activates a cryptic 

splice site, resulting in a 23 bp deletion (Figure 4.6). 

 

 

4.4.2 Allele expression imbalance (AEI) as a tool to phase variants in adult NMD 

In previous studies, nonsense-mediated decay has prevented some protein 

truncating variants (PTVs) from being called in mRNA[238]. However, the extremely high 

read-depth by our targeted RNA-Seq panel, even without using any nonsense-mediated-

decay inhibitor, allowed us to not only confidently call PTVs, but also use it to 

Figure 4.6 Predicted missense variant activates cryptic splicing. Sashimi plot of 
cryptic splice site variant NM_003494.3:c.5503A>G (inset) in patient B22 which 
leads to a premature stop codon in the transcript. Numbers within continuous 
and dashed lines indicate number of spliced transcripts. solid lines indicate 
reference splicing, while dashed lines show observed aberrant splicing. 
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phase DYSF variants without parental or offspring sequencing which are not readily 

available for later onset adult neuromuscular diseases such as Dysferlinopathy. As noted 

by Cummings et al.,[62] the greater:lesser allele ratio in genes where a sample had one 

truncating SNV variant tends to be ~75:25. We observed the same trend in SNVs and 

further noted that deletions/insertions, splice events, and variants in variably expressed 

exons somewhat follow the same pattern, but with less accuracy due to known issues in 

reliable mapping/calling these variants. We correlated this ratio with overall transcript 

abundance of DYSF, showing that the differences in transcript abundance among these 

samples is predominantly a result of nonsense-mediated decay (Figure 4.7). The allele 

expression imbalance in samples with one truncating variant was so consistent across 

exons and samples that it could often be reliably used to phase variants. All variant calling 

tended to show a slight bias towards the reference allele, so we set two levels of 

confidence (likely and very likely) with ratio thresholds of 60:40 and 70:30.  

AEI analysis was able to phase DYSF variants in 32 cases, aiding in mechanistic 

resolution and diagnosis. Within each sample, the allele ratio was found to be consistent 

for single nucleotide variants (SNVs) across DYSF gene. When SNVs were grouped by 

number of PTVs found in DYSF, we found that the lesser-expressed nucleotide 

expression (lesser allele expression) in patients with one PTV was significantly reduced 

to ∼25% (p=7×10−13) as a result of nmd. For example, in patient A2, the nonsense variant 

c.331C>T (p.Q111X) in exon 4 is called in 168 out of 993 total reads at that site (∼17%). 

Three other variants were called in the mRNA of patient A2: synonymous SNP c.1827T>C 

(p.D609D) in exon 20 (1410 of 1680 total reads, 84%), synonymous SNP c.2583A>T 

(p.S861S) in exon 25 (1465 of 1839 total reads, 80%), and the pathogenic/likely 

pathogenic missense variant c.6124C>T (p.R2042C) in exon 54 (1535 of 2000 total reads, 
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77%). Based on the observed AEI, we can be confident that all three of the other variants 

are in trans with the exon 4 nonsense variant. This method of phasing has the advantage 

of not requiring trio sequencing but is of course not perfect and should be used cautiously. 

In patients with biallelic PTVs, both transcripts were subject to nmd and SNV allele-ratio 

generally returned to 0.5 (Figure 4.7). In these samples we cannot phase each individual 

SNV in DYSF but can still reliably determine that the PTVs are in trans with one another 

by extrapolating knowledge of nmd from cases with 1PTV and using transcript abundance 

as supporting evidence. 

 

Figure 4.7 Allele expression imbalance caused by nonsense-mediated decay of 
transcripts containing a protein truncating variant (PTV). Samples are grouped by the 
number of PTVs observed in DYSF mRNA. See Methods for calculation details. In each 
sample, the average percent and standard deviation were taken for Allele A and Allele B 
and mapped onto the sample’s overall gene abundance to estimate the abundance of 
each DYSF allele copy. Cases with one PTV show normal expression of Allele B and 
reduced expression of Allele A (a result of nonsense-mediated decay acting upon the 
transcript copy containing the PTV). Cases with bi-allelic PTVs show a reduction in both 
copies. Highlighted cases (lavender, yellow, teal, navy) are examples of the need to use 
caution in the interpretation of AEI (see text) 
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In patient B19, RNA-Seq determined that the c.5296G>A (p.Glu1766Lys) VUS 

(PM2, PP3, PP4 criteria[32]) is in trans with the nonsense pathogenic c.4090C>T 

(p.Gln136*) variant based on the inverse relationship of AEI ratios, and hence reclassified 

the c.5296G>A variant as pathogenic (PS3, PM3 criteria). Five other VUSs were able to 

be reclassified as likely pathogenic in this manner (Table 4.2). 

In sample B2, phasing of DYSF variants had the opposite result. Reduced Dysferlin 

staining was seen in muscle. NM_003494.3:c.5022delT and c.401C>T (p.Pro134Leu) 

DYSF variants, previously reported as associated with reduced Dysferlin staining[239] 

were found to be in cis, indicating that c.401C>T is not pathogenic. RNA-Seq identified a 

different missense DYSF VUS [c.6196G>A(p.Ala2066Thr)], previously reported in the 

homozygous-state in a patient with <5%DYSF[238], in trans with the 

NM_003494.3:c.5022delT deletion, leading us to reclassify c.401C>T as benign, 

c.6196G>A as pathogenic, and complete Dysferlinopathy diagnosis. 

There are of course some caveats to using RNA-seq data for variant phasing. Only 

one PTV was identified in Patient B3, but the observed AEI more closely matches that of 

samples with zero or two PTVs. Because the truncating variant seen is located in the last 

exon of DYSF, it is possible that this variant does not lead to nonsense-mediated 

decay[240]. Another possibility is that there is a second PTV that we were unable to 

identify, since the overall DYSF mRNA abundance is also reduced compared to controls. 

Subsequent GS found several rare deep intronic DYSF variants, most notably an ultra-

rare NM_003494.3:c.4509+1586dupG that could possibly cause a regulatory effect, but 

pathogenicity confirmation could not be achieved. In addition, cases with PTVs affecting 

alternatively spliced exons (A11, A12) need to be interpreted in that context rather than 

following the ratio exhibited by other samples. Finally, when a case inexplicably deviates 
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from the observed pattern (B19), the determination that the variants are in trans cannot 

reliably be made. 

4.4.3 Concordance of Monocyte Assay with mRNA Transcript Abundance and Genotype 

While muscle Dysferlin protein expression has been found to correlate well with that 

in blood CD14+ monocytes[205] the same is not true for DYSF mRNA-expression from 

whole-blood, which correlates rather better with the number of DYSF PTVs in the sample 

(Figure 4.8). PTV variants lead to nmd thus decreasing overall gene expression. As a 

group, samples containing biallelic PTVs exhibited >2-fold decrease in DYSF mRNA 

expression compared to those with no PTVs (Figure 4.8, p=1×10−10). Samples containing 

just one-PTV also exhibited a decrease in expression, though to a lesser degree (Figure 

4.8, p=1×10−6). The discordance between mRNA- and protein-expression is likely 

explained by pathogenic missense variants and non-frameshift splicing events leading to 

protein non-functionality or degradation rather than mRNA-decay. For example, patient 

C13, with <10%DYSF, has a homozygous intronic extended splice-site VUS 

(IVS49:c.5526-7T>G) which causes an in-frame insertion of two serine residues that does 

not affect DYSF mRNA expression but abolishes DYSF protein expression. This type of 

resolution to know at what biological level (RNA or protein in this case) the pathogenicity 

of the variant acts is important to use for patient stratification to reduce variability in 

responses to clinical trials. 
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Importantly, RNA-Seq also allowed better patient stratification for those who 

expressed carrier-range %DYSF. In patients A11 and A12, RNA-Seq helped explain 

carrier-range expression despite presence of two P/LP variants. The carrier-range 

%DYSF seen in these patients is due to the natural in-frame skip of exon 17 in the vast 

majority of blood DYSF-transcripts, which results in low expression of their exon 17 or 

Figure 4.8 DYSF mRNA expression. DYSF mRNA abundance in Transcripts per Million 
(TPM) categorized by (a) protein expression in monocytes and (b) number of protein 
truncating variants (PTVs) observed in the sample. (a) mRNA abundance does not 
correlate well with protein abundance in monocytes. N=77; control=8, normal range=4, 
carrier range=4, disease range=61. One-way ANOVA: F=3.3, p=0.03. (b) mRNA 
abundance correlates well with the number of DYSF PTVs observed in a sample, showing 
that nonsense-mediated decay is the single largest factor acting post transcription and 
pre-mRNA processing but prior to translation. Of interest, gross insertions or deletions 
caused by aberrant splicing (marked by navy blue, whether protein truncating or not), do 
not appear to affect mRNA abundance differently than other variants of a similar type (PTV 
vs PTV, non-PTV vs non-PTV). N=78; control=8, zero PTVs=24, one PTV=23, biallelic 
PTVs=23. One-way ANOVA: F=33.3, p=1e-13. Post-hoc comparisons (t-tests with 
Bonferroni correction for multiple tests): p(control vs 1 PTV)=0.006, p(control vs 2 
PTVs)=0.0008, p(0 PTVs vs 1 PTV)=9.2e-05, p(0 PTVs vs 2 PTVs)=1.1e-09, p(1 PTV vs 
2 PTVs)=0.0002. 
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IVS16 PTVs in blood. However, presence of exon 17 in most muscle-tissue RNA-

transcripts results in premature stop and lack of Dysferlin protein expression, leading to 

Dysferlinopathy. Overall, these results show the utility of RNA-Seq in identifying novel 

functional variants and aid in our understanding of the nature of their pathogenicity to 

understand clinical severity. 

Though extreme deficits in DYSF protein expression are common in 

Dysferlinopathies[207], some patients with a clinically-consistent Dysferlinopathy 

phenotype show only moderate loss of DYSF protein expression[205]. Patients B10 and 

C6, both with carrier-range %DYSF, were found to share a VUS in DYSF exon 43 

(c.4794G>T, p.Lys1598His), which has been reported previously in a case with amyloid 

deposits[241]. RNA-Seq showed that this is a “leaky” splice variant, resulting in a complete 

skip of exon 43 in approximately half of the affected reads (Figure 4.9), disrupting the 

DYSF C2F domain and likely causing DYSF mis-folding or deposition in the amyloids seen 

in this patient muscle. DYSF and amyloid-deposit co-localization is known to be 

associated with Dysferlinopathy[242,243]. Also, these patients showed milder/slower 

clinical presentation/progression (muscle-weakness onset after age 45yrs, considerably 

later than typical onset between 17-20yrs) compared to other Dysferlinopathy patients. 

Clinical course difference is possibly due to the residual 56-57% of normally 

spliced DYSF-transcripts, allowing mechanistic understanding, patient stratification and 

better trail-readiness. 
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Figure 4.9 Leaky splice variant associated with carrier range DYSF protein expression in 
monocytes. Upper: Sashimi plot of exon-skipping caused by a leaky splice variant in exon 
43 (Patients B9 and C6) that is reclassified as pathogenic. Inset: Variant expression in a 
minority of reads, which show a normal splice pattern. Lower Left: monocyte assay 
showing reduced DYSF protein expression in patient C6 (patient A2: disease-range 
reference). Numbers within continuous and dashed lines indicate number of spliced 
transcripts. solid lines indicate reference splicing, while dashed lines show observed 
aberrant splicing. 
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4.4.4 Impact of RNA-seq on Overall Diagnostic Yield 

RNA-seq made a significant improvement to diagnostic yield despite being 

performed for less than a quarter of the cases traditional DNA-seq was unable to resolve 

(Figure 4.10). Prior to RNA-seq, a diagnosis of dysferlinopathy based on clinical 

presentation and the presence of two P/LP variants in DYSF was made for 130 patients 

(35.7%). Of the remaining 234 unresolved cases, 48 underwent RNA-seq resulting in an 

additional 30 diagnoses, bringing the diagnostic yield to 43.9%. The DNA variants for the 

remainder of the cohort were reanalyzed after the reclassification of 17 VUSs in RNA-seq, 

providing a diagnosis for 10 more patients for a total diagnostic yield of 46.7%.  

 

 

As noted earlier, RNA-seq was more successful at achieving diagnosis when 1 P/LP 

variant had already been identified in DNA, indicating that patients fitting this description 

would greatly benefit from RNA-seq. If that rate holds true and we were to sequence the 

remaining 52 patients with 1 known P/LP variant, the diagnostic yield for the full cohort 

could increase to 59%. The correlation of disease-range monocyte assay to genotype 

Figure 4.10 Actual and potential diagnostic yield of the full cohort of 364 patients 
suspected of Dysferlinopathy. 
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suggests it could be used to select patients for RNA-seq even in the absence of DNA 

sequencing results. Among the 219 disease-range cases, 76% (166/219) had 

two DYSF pathogenic variants (Table A.1) at the conclusion of this study, whereas among 

64 carrier-range and 59 normal-range cases, only 8% (5/64) and 2% (1/59) respectively 

had two DYSF pathogenic variants indicating the MA-assay’s robustness and that 

Dysferlin protein absence is highly suggestive of Dysferlinopathy. When aberrant splicing 

is a substantial contributor to pathogenesis for a disease, such as it is DYSF in 

dysferlinopathy, no form of DNA-sequencing including WES or WGS can provide the 

diagnostic value that we see with targeted RNA-seq. 

4.5 Conclusion 

We have clearly demonstrated the clinical utility of blood-based targeted RNA-seq 

to elucidate variant pathological mechanisms, to understand genotype-phenotype 

correlations, and significantly enhance diagnostic yield in Dysferlinopathy. Importantly, 

such analysis enables greater patient stratification which in turn increases readiness for 

clinical trials and precision medicine initiatives for neuromuscular and other genetically 

based disorders. In this new genomics era, the intersection of clinical genetics and 

research genetics based tools needs to be considered to identify more efficient indicators 

for disease mechanisms, diagnostics, biomarkers and therapy. While muscle is the main 

target tissue for NMD evaluation, it is possible to use an integrative analysis approach, 

such as done for this study, for NMD genes that are also adequately expressed in blood 

or to find other biomarkers that may expedite the diagnostic odyssey NMD patients face.  
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CHAPTER 5.  TARGETED RNASEQ IMPROVES CLINICAL DIAGNOSIS OF 

VERY EARLY ONSET PEDIATRIC IMMUNE DYSREGULATION 

Berger K, Arafat D, Chandrakasan S, Snapper S, Gibson G. Targeted RNA-seq improves 
clinical diagnosis of very early onset pediatric immune dysregulation. Journal of 
Personalized Medicine. Submitted. 

 

5.1 Abstract 

Despite increased use of whole exome sequencing (WES) for the clinical analysis 

of rare disease, overall diagnostic yield for most disorders hovers around 30%. Previous 

studies of mRNA have succeeded in increasing diagnoses for clearly defined disorders of 

monogenic inheritance. We asked if targeted RNA-sequencing could provide similar 

benefits for primary immunodeficiencies (PIDs) and very early-onset inflammatory bowel 

disease (VEOIBD), both of which are difficult to diagnose due to high heterogeneity and 

variable severity. We performed targeted RNA-sequencing of a panel of 260 immune-

related genes for a cohort of 13 patients (7 suspected PID cases and 6 VEOIBD) and 

analyzed variants, splicing, and exon usage. Exonic variants were identified in 7 cases, 

some of which had been previously prioritized by exome sequencing. For four cases, allele 

specific expression or lack thereof provided additional insights into possible disease 

mechanisms. In addition, we identified 5 instances of aberrant splicing associated with 4 

variants. Three of these variants had been previously classified as benign in ClinVar based 

on population frequency. Digenic or oligogenic inheritance is suggested for at least two 

patients. In addition to validating the use of targeted RNA-sequencing, our results show 

that rare disease research must find a way to incorporate contributing genetic factors into 

the diagnostic approach. 
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5.2 Introduction 

Under the general umbrella of personalized medicine, precision genomic medicine 

refers to investigations designed to diagnose the molecular cause of a clinical 

condition[244]. Whereas large biobank projects such as the TOPMed Precision Medicine 

Program[245] focus on gathering genomic and phenotypic data to elucidate patterns in 

populations that will allow researchers to develop risk predictions, clinicians must be able 

to design therapeutic interventions tailored to the individual’s genetics. As sequencing 

costs have come down, the focus has shifted from individual diagnostic odysseys involving 

trains of tests, to whole exome and genome sequencing[15].  Such studies of single 

individuals or families has typical diagnostic yields between 30% and 50% of patients, in 

many cases leading to more actionable information than that available from phenotypic 

considerations alone[10,15,24,25,42,46,49,50,62,246,247]. Precision medicine is also 

often lauded as the path towards targeted therapies for rare diseases that have previously 

not received much research funding or attention. Although the vast majority of success 

stories in precision medicine-based therapies are related to cancer[248,249], inherited 

immune disorder research is also beginning to yield a number of successful targeted 

therapies as well[250].  Here we ask whether complementation of exome sequencing with 

targeted RNA sequencing can increase diagnostic yield in this context. 

Primary immunodeficiencies (PIDs), also termed inborn errors of immunity (IEI), 

encompass over 400 distinct disorders related to immune dysregulation[81,82,84,251]. 

This includes susceptibility to infection or malignancy, autoimmune and autoinflammatory 

disorders, and allergies. PIDs have historically been branded as monogenic disorders with 

traditional Mendelian inheritance[252], but as more PIDs have been identified and we have 

gained better understanding of immune function and clinical pathogenesis, it has been 
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recognized that these disorders often display variable penetrance and severity[253]. The 

term complex immune dysregulation syndrome captures the idea that many cases of 

aberrant immune activity that share similar presentation nevertheless may have 

heterogeneous, and sometimes oligogenic, causes[254].  

Adult-onset Inflammatory bowel disease (IBD) is known to be a complex disease 

involving multiple genetic and environmental factors that leads to over-activation of the 

inflammatory response in the gastrointestinal tract[86,166]. Pediatric IBD makes up a 

quarter of all diagnosed IBD, and a subset of these cases occur in patients <6 years of 

age[255].  These are termed very-early onset IBD (VEOIBD) and are generally thought to 

have a simpler genetic basis[90,92,256]. VEOIBD has also been associated with PIDs, 

both through symptoms as well as gene involvement[91,92,165,254,257]. Previous exome 

studies of patients with VEOIBD have identified monogenic causes for a small percentage, 

but most cases remain without a genetic diagnosis. Monogenic cases of VEOIBD are more 

likely to have family history of IBD or immunodeficiencies and to be more severe and 

resistant to conventional treatment[92,256]. Research has also found patients with 

VEOIBD to have a higher rate of variants in genes associated with PIDs[257], suggesting 

that some cases for which a monogenic origin is not identified may have a multi-genic 

etiology.  

For both PIDs and VEOIBD, identifying the specific underlying genomic cause is 

important for treatment[163,165,252,254]. Gene specific targeted therapies enable 

improved patient management and have been successfully used for several immune 

conditions[83,84,244]. This group of highly heterogenous disorders often exhibit 

cascading effects where multiple genes or pathways are pathogenically altered. In some 

cases, targeting an affected but not causal gene results in worse patient outcomes[254]. 
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Since diagnostic yield from exome sequencing remains well under 50%, the accessibility 

of immune cells for genomic profiling of peripheral blood samples obtained by standard 

phlebotomy, raises prospects of RNA-based analyses, specifically RNAseq, that might 

identify aberrant molecular events such as altered splicing or gene 

expression[43,51,62,74,149,258]. The relevant mutations might not be observable in 

exome sequences, or may be of uncertain significance. 

Previous cohorts of WES for the diagnosis of PIDs and VEOIBD have prioritized 

genes known to be associated with immune disorders[252,256,257]. Recent studies have 

shown that periodic reanalysis of variants results in additional diagnoses[259-263]. This 

is lauded as a benefit of whole genome (WGS) and whole exome (WES) sequencing, 

allowing for genes newly associated with a disease to be reconsidered for patients. While 

most WES and WGS reanalysis reports an increase in diagnostic yield of around 12% with 

the majority coming from new gene-disease associations, numerous studies have found 

that for a given disease, patients harbor causative variants in genes that have already 

been identified for that disorder or group of disorders[264,265]. Novel disease gene 

discoveries are still happening at a high rate, but there is still a high burden of variants of 

uncertain significance (VUS) and little incentive to systematically resolve them[266]. Low 

cost and high read depth motivate the development of targeted panels, which have been 

used at the DNA level in clinics for several decades now, but are just beginning to be 

considered for RNA analyses. 

RNAseq complements WES and WGS by providing evidence of mRNA effects (or 

lack thereof) for specific variants as well as identifying alterations in splicing or other 

structural changes that DNA sequencing methods cannot see[43]. In large cohorts, 

transcript abundance can also be used to analyze downstream effects of some pathogenic 
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variants and characterize pathways involved in disease[63,267]. Even where a likely 

pathogenic variant is identified by DNA analysis, RNAseq can provide supporting evidence 

that the transcript is affected, and may be used to establish that both alleles are affected 

in trans by different mutations[193,268].  Although peripheral blood is a mixture of dozens 

of cell types, so long as the defect is observed in one or more of the major leukocyte or 

monocyte populations, bulk RNAseq should be a useful source of clinically actionable 

information.  In this study, we show that targeted RNAseq for a set of 13 PID and IBD 

patients resolves the likely source of immune dysfunction for at least 8 patients, where 

previous exome analysis had only diagnosed 3 cases.   

5.3 Materials and Methods 

Targeted RNAseq was performed on samples from 13 patients known to have or 

suspected of having very early onset inflammatory bowel disease (VEOIBD; 6 samples) 

primary immune deficiencies (PID; 7 samples). Results of whole exome sequencing 

(WES), performed previously on all 13 samples, were withheld until initial analysis of 

RNAseq was completed to compare the success of RNAseq analysis without 

supplemental genome information. 

5.3.1 Sequencing 

RNA (median RIN=9.4, range=6.9-9.8) was extracted from peripheral blood 

mononuclear cells (PBMC) and underwent library preparation using a custom Agilent 

SureSelect Targeted Enrichment panel of 260 genes linked to VEOIBD or PID, followed 

by 150bp paired-end sequencing on an Illumina NextSeq platform at an average 

sequencing depth of 11.5M read pairs. 
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5.3.2 Alignment and pre-processing 

After QC of the raw sequencing files using FASTQC[171], reads were aligned to 

GRCh38 using GENCODE v29[173] with STAR splice aware aligner version v2.6.1d[125]. 

In addition to default 2-pass mode parameters, all multimapping reads and splice junctions 

with <5 supporting reads were filtered out. Post-alignment QC was performed using the 

Quality of RNAseq Toolset (QoRTs)[175], primarily checking gene-body coverage plots 

for signs of 5’ or 3’ bias that may affect downstream analysis.  

5.3.3 Variant calling 

Variant calls were made on aligned BAM files following GATK Best Practices for 

Variant Calling in RNAseq[218]. A single VCF file for all samples was created using 

GenotypeGVCFs and standard filters were applied. Variants were annotated using 

ANNOVAR[230] and TraP[59] and subsequently prioritized to identify high quality (ALT 

read depth >= 10 unique non-duplicate reads) exonic variants and variants that may affect 

splicing. Notably, all three variants (two intronic, one exonic) found to affect splicing had 

TrAP scores well above the “probably damaging” threshold. The quality of all variants 

reported were manually confirmed using IGV viewer[231]. 

5.3.4 Exon usage analysis 

To aid in identifying potential aberrant splice events, exon usage was evaluated in 

two ways. First, percent spliced in (PSI) was calculated following the method laid out in 

Schafer et al[232]. PSI was used to confirm exon skipping events identified in other forms 

of data. Second, read counts for collapsed exons were obtained following the DEXSeq 

protocol[269]. To visualize changes in exon usage while controlling for differences in 
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overall gene expression, exons were normalized on a per-gene basis using transcripts per 

million (TPM) in order to factor in exon length. These normalized counts were plotted for 

each gene and used to visually identify genes and specific exons to prioritize for splicing 

analysis. 

5.3.5 Splicing 

Splice counts were obtained for annotated and unannotated junctions following a 

method adapted from Mendelian RNA-Seq[62]. To ensure that all identified splices were 

supported by sufficient non-duplicate, uniquely mapping reads, aligned BAM files had 

duplicate reads removed with Picard Tools and were remapped using STAR after 

converting back to fastq files. The splice junction output files from STAR were combined 

and junctions were annotated with the gene name and a list of transcripts that use the 

junction (for known junctions). To align with established clinical standards for SNP calling, 

a minimum of 10 non-duplicate uniquely mapped reads were required for an unannotated 

junction to be further investigated. In addition, these events needed to meet a minimum 

read support threshold of 10% of the overlapping canonical junction. Events were 

manually analyzed in IGV viewer to confirm that they were not a result of mis-mapping or 

a sequencing artefact.  

5.3.6 Complementary Analysis 

Resulting data files from the above methods were used in a complementary 

manner to analyze the targeted RNAseq from each patient. After identification of exonic 

variants, the annotated VCF was used to prioritize genes for manual analysis of the splice 

counts. Exon usage was used primarily in tandem with spliced read counts to look for 

aberrant splicing events, but also to identify possible differential isoform usage. Allele 
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specific expression was calculated with read counts of high quality exonic variants. Gene 

expression was evaluated with DESeq2 only in conjunction with truncating variants to 

support conclusions about nonsense mediated decay. 

5.4 Results 

5.4.1 Development of a Targeted RNAseq panel for Immunodeficiency Analysis 

We performed targeted RNA sequencing of 260 genes to an average depth of 

11.5M read pairs for 13 patients suspected of, or known to have, an immune-related 

disorder. A comprehensive analysis of the RNA was completed for each sample, which 

included variant calling, identification of aberrant splicing, and outlier gene expression. A 

summary of findings is given in Table 5.1, and the workflow is outlined in Figure 5.1. 

 

Figure 5.1 An overview to the RNA-seq analysis approach. PBMCs are 
extracted from whole blood and sequenced using a targeted gene panel. Allele 
expression imbalance, aberrant splicing, and isoform abundance are analyzed 
in tandem with called variants to provide a more complete picture of the 
functional effects of variants on mRNA structure. 
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Our targeted sequencing panel consisted of 260 genes, 104 of which have been 

implicated in primary immune deficiencies (PID) and 194 in very early onset inflammatory 

bowel disease (VEOIBD), with 38 overlapping both disease classes. GC content and 

gene-body coverage was consistent across all samples. An average of 91% of reads in 

each sample mapped to the targeted genes, with 196 genes (75%) receiving at least 20 

mapped reads in every sample. In order to determine if the coverage extended across the 

entire gene, however, it is important to look at splice junction coverage. A recent paper 

developed a calculation for the minimum read sequencing depth (MRSD) needed to 

express a given gene or genes at a level sufficient for splicing[270]. Because we did not 

have a PBMC whole mRNA control dataset for direct comparison of MRSD with our 

targeted panel we used the MRSD web tool and combined the results for whole blood and 

lymphoblastoid cell lines (LCL), acknowledging that a handful of genes were likely to be 

specific to a given biotype. MRSD indicated that 88 genes (out of 258 panel genes with 

splice junctions, 34%) would have greater than or equal to 20 reads mapped to at least 

75% of splice junctions in 99% of samples at a sequencing depth <= 50M reads per 

sample. With targeted RNAseq we found that 140 genes (54%) met the same criteria at 

an average sequencing depth of ~22M reads (not to mention the fact that we used only 

non-duplicate reads, which were ~6M per sample). An additional 19 genes have 50% of 

exons covered, and if we reduce the confidence interval to 75% of samples (since our 

cohort is disease samples only and we would expect more variation) we end up with a 

total of 171 genes (66%) with good coverage for a robust splicing analysis. 

5.4.2 Application to 7 cases of Primary Immunodeficiency 

We used our targeted RNAseq approach to evaluate likely causal mechanisms for 

7 cases of primary immunodeficiency being treated at Emory University clinics. Four of 
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the cases we consider to be resolved on the basis of exonic mutations, two of which were 

previously noted from WES, whereas the RNA evidence provides additional evidence in 

support of pathogenicity in two cases.  In one of these latter cases, digenic inheritance 

may be implicated on the basis of a retained intron at a second gene, a phenomenon also 

seen in a fifth case.  This left just two cases completely unresolved. Altered therapeutic 

intervention is suggested for two cases. 

Patient P69 presented with refractory IBD and a history of recurrent fevers. Exome 

sequencing revealed a hemizygous deletion encompassing exons 4 and 5 of the XIAP 

(HGNC:592) gene, on the basis of which the patient was started on Anakinra[271], an 

inhibitor of the IL-1 receptor, with the goal of proceeding to a curative bone marrow 

transplantation (BMT). Analysis of the RNA provided functional evidence that the deletion 

results in a shift in the reading frame predicted to lead to a premature stop and a protein 

assay confirmed XIAP deficiency. Loss of function (LOF) variants in XIAP are known to 

be causative for X-Linked Lymphoproliferative Syndrome 2 (XLP2, OMIM 300635). To our 

knowledge, this is the first time this variant has been reported in a patient with a confirmed 

XIAP deficiency. 

Symptoms in patient P49 included immune cytopenia, IBD, and eczema, and 

exome sequencing identified a single heterozygous truncating SNV in CTLA4 (c.442C>T, 

p.Gln148*; HGNC:2505). This variant has not previously been reported, but other 

truncating variants in CTLA4 are known to be causative for Autoimmune 

Lymphoproliferative Syndrome Type 5 (ALPS5, OMIM 616100) by way of 

haploinsufficiency. In addition to a protein assay confirming reduced protein abundance, 

analysis of RNA revealed allele specific expression occurring in CTLA4 (Figure 5.2A). The 

patient was started on Abatacept[272], a CTLA-4 fusion protein that binds to CD80/CD86 
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and inhibits T-cell activation, as well as the immunosuppressant sirolimus 

(rapamycin)[273,274], and subsequently underwent bone marrow transplantation. Two 

other family members were found to harbor the same variant with only mild symptoms, a 

common finding among families with CTLA4 LOF variants that suggests other factors may 

be involved in disease severity[254]. One explanation is compensation by the wild-type 

allele, which could potentially be observed by targeted RNAseq of relatives in addition to 

the proband. 

 

 

Patient P25 was previously found to have a dominant negative mutation in 

CARD11 (HGNC:16393) causing severe atopic disease (IMD11B, OMIM 617638)[275]. 

Noting the possibility of other variants contributing to disease heterogeneity and severity, 

Figure 5.2 Variant allele specific expression. (A) the nonsense variant in 
CTLA4 for patient P49 shows unbalanced expression with around 65% of the 
mapped reads matching the reference allele, suggesting nonsense mediated 
decay. (B) the nonsense variant in TRAF3 for patient CHB535 does not 
exhibit allele specific expression, suggesting it escapes nonsense mediated 
decay. In fact, the slight bias towards the nonsense allele (~55%) suggests 
overexpression of the allele given typical reference allele mapping bias. 
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analysis of RNA continued and identified a pathogenic missense SNV in MEFV 

(HGNC:6998) along with an intron retention event. Although a second variant was not 

identified in MEFV, the highly penetrant M680I mutation has been previously observed in 

symptomatic carriers of familial Mediterranean fever (FMF, OMIM 249100)[276-278]. 

Whether or not a carrier with this variant will be symptomatic does not appear consistent 

within families, suggesting low penetrance and variable expressivity, possibly due to the 

presence of modifier mutations in other genes. An intron retention event was observed in 

this patient at the end of TCF25 (HGNC:29181) intron 9. No causative variant was 

identified, but due to allele specific expression and increased usage of the remaining 

TCF25 exons (Figure 5.3), one possible explanation is a larger duplication. Whole genome 

sequencing or CNV analysis may shed additional light on this event. TCF25 is important 

in transcriptional activity involved in heart development and disease[279]. Disruption of 

TCF25 could potentially be an additional susceptibility factor in FMF carriers with a highly 

penetrant variant. 

 

Figure 5.3 Possible aberrant event in TCF25. (A) Exon 10 of TCF25 in an 
unaffected sample and in P25 showing evidence of intron retention and allele 
specific expression. The variant seen in this exon is a common polymorphism, but 
shows unbalanced allele expression in P25. (B) Normalized exon usage in exons 
prior to the intron retention event compared to the affected exon and following 
exons. 
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Patient P55 was found to have rare exonic variants in both NCF1 

(c.269G>A;p.R90H; HGNC:7660) and NCF2 (c.812A>G;p.Lys271Arg; HGNC:7661), 

which are primarily linked to chronic granulomatous disease (CGD, OMIM 233700). In the 

homozygous state, NCF1 R90H has been associated with a case of pediatric 

interferonopathy[280]. Splicing and exon usage analysis in this patient suggest the 

presence of an additional pathogenic event in this gene involving exons 2-3. Unfortunately, 

the high similarity of pseudogene NCF1B (HGNC:32522) make identifying the specifics of 

this event difficult in RNA alone[281]. Further studies would be needed to confirm whether 

the mutations in NCF1 are in trans and hence whether compound heterozygosity explains 

causation. In any case, the rare events seen in NCF1 and NCF2 strongly point towards 

one or both of these genes being involved in the pathogenesis of this case. In addition, a 

nonframeshift deletion of a single amino acid was identified in WAS (HGNC: 12731), which 

is associated with Wiskott Aldrich Syndrome (WAS, OMIM 301000). While pathogenicity 

of this variant has not been determined, we note that carriers of WAS pathogenic variants 

escape disease through non-random X inactivation and that random X-inactivation has 

been found in symptomatic carriers[282,283], presenting the potential for this to be a 

second or interacting cause.  

Patient P89 also harbors a variant in NCF1 (p.G83R) which has been previously 

found to reduce reactive oxygen species and is associated with more severe disease 

course in pediatric IBD[284]. In addition, though no aberrant splicing was detected, 

abnormal exon usage was observed in the ubiquitin-modifying enzyme (UME) USP4 

(HGNC:12627). UMEs are involved in the regulation of the IBD disease course[285,286]. 

Four other rare exonic or UTR variants were identified in other panel genes for this patient 

(Table 5.1). Exceedingly rare variants have been shown in previous research to be over-
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represented in early-onset IBD and primary immune patients[287,288], suggesting a 

complex multigenic disease origin for this case.  

5.4.3 Application to 6 cases of Very Early Onset Inflammatory Bowel Disease 

We also used our targeted RNAseq approach to evaluate likely causal 

mechanisms for 6 cases of very early onset IBD being treated at Boston Children’s 

Hospital. Three of the cases we consider to be resolved on the basis of exonic mutations, 

two with NOD2 involvement and one hemizygous for a missense variant that the RNAseq 

supports elevating to likely pathogenic.  Two other cases have variants of interest that 

influence splicing or transcript abundance, and the final case provides evidence for 

oligogenic inheritance.  Suggestive genetic abnormalities were thus detected in all cases, 

though follow-up assays would be needed to confirm several of these. Altered therapeutic 

intervention is suggested for two cases. 

NOD2 (HGNC:5331) has been repeatedly associated with IBD[289-291]. A recent 

study suggested that compound heterozygosity of known NOD2 risk alleles explains up to 

10% of pediatric IBD in European-ancestry cases[292]. In our cohort, patients CHB974 

and CHB786 were found to harbor the p.G908R variant. A second NOD2 risk allele, 

p.L1007fs, was identified in CHB974, confirming that NOD2 loss-of-function is likely the 

causative mechanism in this child. While there were no additional NOD2 variants found in 

CHB786, ultra-rare variants were observed in three other genes, including the NOD2 

inhibitor ERBIN (HGNC:15842, Table 5.1), indicating this case could be di-genic. 

X-Linked Agammaglobulinemia (XLA, OMIM 300755), which is characterized by 

low B-cell counts and is associated with early-onset colitis, is caused by defects in the 

BTK (HGNC:1133) gene. CHB749 was found to be hemizygous for a missense variant 
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(c.1955T>C; p.L652P) in the tyrosine kinase domain of BTK. This variant has been 

reported in patients with XLA previously[293,294], but researchers studying BTK variant 

effects on protein have drawn attention to dissimilarities between this variant and other 

pathogenic BTK variants – while the majority of disease-causing BTK variants are 

missense changes in structurally important residues of the tyrosine kinase domain, L652P 

is not a well conserved location and the residue is exposed in the assembled protein 

structure[295,296]. However, the change to Proline in this portion of the kinase domain C-

lobe breaks the α-helix, making this change more likely to be disruptive to the protein. In 

the previous studies that reported the L652P variant in a patient with XLA, protein 

expression was not determined. Assays to assess BTK protein expression and B-cell 

levels should be performed in this patient to confirm a diagnosis of XLA. Since intravenous 

immunoglobulin to treat infections may not improve inflammation from colitis in patients 

with BTK defects[297], a more creative and personalized treatment plan may be required 

for this case. 

Patient CHB535 was found to contain a nonsense variant in TRAF3 

(c.1275C>G;p.Y425X, HGNC:12033). The extensive functions and interactions of TRAF3 

are still being elucidated, but it is known to be important to inflammatory pathway signaling 

and gene abnormalities have been associated with many diseases including herpes 

simplex encephalitis (IIAE5, OMIM 614849), Waldenstrom macroglobulinemia (WM, 

OMIM 153600), and IBD. The Y425X variant occurs in the highly conserved TRAF-C 

subunit of the TRAF domain, which is responsible for receptor binding and participates in 

stabilization of TRAF3 trimerization[298]. Few truncating germline variants have ever been 

reported in TRAF3, and it is not known whether truncating variants are disease-causing. 

A missense variant was previously found to have a dominant-negative effect on the protein 
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via destabilization of TRAF3 trimers leading to protein expression of only 17.5% compared 

to the wild-type[299]. This and other studies have shown that deletion of the TRAF-C 

domain (the predicted effect of the Y425X truncating variant) does not have the same 

effect and produces the 30% of protein necessary to maintain normal signaling function 

(an amount that suggests simple haploinsufficiency is not disease-causing)[300-303]. 

However, the specific deletion variant created in these studies removed not just the TRAF-

C subunit, but also all or part of the TRAF-N subunit shown to be essential for TRAF3 

trimerization. Other studies into TRAF3 protein interactions that deleted specifically the 

TRAF-C subunit in the course of their research unquestionably prove that removal of this 

domain disrupts inflammatory pathway signaling[304,305], but did not study the wild-

type/deletion variant combination. This leaves open the possibility that the Y425X variant 

observed in CHB535 could act in a dominant-negative manner to cause inflammatory 

disease.  Our RNA analysis provides an important clue to clarifying the pathogenicity of 

this variant. In order to act in a dominant-negative fashion, the truncated transcript needs 

to elude degradation by the nonsense-mediated decay (nmd) machinery. This often 

happens when the truncation occurs in the last coding exon of the transcript[240]. The 

RNA analysis showed clear, balanced heterozygosity of the variant as well as normal 

overall expression of TRAF3 (Figure 5.2B), confirming escape from nmd. In order to show 

that TRAF3 protein function is sufficiently deficient and declare Y425X likely pathogenic, 

a protein assay should be performed.  

MERTK  (HGNC:7027) signaling is important in the negative regulation of 

inflammation[306]. Two samples, CHB1025 and P69, harbor a missense variant at the 

end of MERTK exon 5 (c.844G>A;p.A282T). This variant has previously been reported in 

patients with multiple myeloma[307], but in-silico predictors do not agree on whether this 
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change would be damaging to protein function, and gnomAD[27] frequency in African 

Americans is 14%. It is no wonder, then, that submissions of this variant to ClinVar have 

interpreted it as Benign. However, our analysis of mRNA shows this to be a “leaky” variant, 

where the reduced affinity for the canonical splice site results in a non-frameshift exon 

skip (Figure 4). Exon 5 of MERTK is part of one of the immunoglobulin-like domains that 

are important for ligand binding in the inflammatory pathway[308]. Only about 15% of total 

MERTK transcripts are mis-spliced, making it unlikely to be a disease-causative mutation 

for retinitis pigmentosa, the rare disease typically associated with the gene, especially 

given its high frequency in the African population. The possibility remains, though, that this 

is a risk allele for immune disorders, in combination with XIAP hemizygosity in P69, and 

an as yet unidentified cofactor in this case of VEOIBD. 

 

 

Figure 5.4 “Leaky” exon skip in MERTK. (A) The A282T variant is visible at the end of 
exon 5. About 33% of reads mapping to this location have the G>A change and splice 
normally. (B) Sashimi plot showing the skip of exon 5 in patients CHB1025 and P69. About 
15% of total spliced reads skip exon 5. 
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Common variable immune deficiency (CVID, OMIM 607594), a primary immune 

deficiency that has been associated with VEOIBD[257], has been suggested to be 

polygenic in origin rather than the traditional monogenic mode of congenital disease 

inheritance. A total of four potentially disease-causing variants were identified in CHB953, 

three of which are located in genes linked to CVID[309]. A heterozygous nonsense variant 

was found in PIK3CD (HGNC:8977). While PIK3CD-related disease is primarily caused 

by missense gain of function variants, at least two studies have identified loss of function 

variants to be disease-causing as well[310,311]. The second variant identified was a 15bp 

deletion encompassing the exon 7 splice donor site of TYK2 (HGNC:12440). Analysis of 

RNA showed the resulting mRNA change to also be a non-frameshift deletion of 15bp, 

thanks to an alternate splice donor site conveniently located at the beginning of the 

genomic deletion. Despite this minimal disruption, the deletion removes a portion of the 

FERM domain, which has been shown to be important to TYK2 protein function[312]. 

Thirdly, extended splice site variants were found in UNC13D (c.154-8T>A; HGNC:23147) 

and CAT (c.903+5G>T; HGNC:1516), both resulting in intron inclusion (Figure 5.5). The 

UNC13D variant has not previously been reported in the literature but has been reported 

to ClinVar and interpreted as Benign and Likely Benign. The catalase variant was reported 

as causative for acatalasemia/hypocatalasemia (OMIM 614097) in a study that found a 

reduction in catalase levels in patients carrying the variant[313]. Again, this variant has 

been reported to ClinVar, with interpretations of Benign and Uncertain Significance. Both 

variants have likely been disregarded due to their frequency – while generally rare, they 

occur in just over 1% of South Asians according to gnomAD. Usage of the nearby 

canonical splice donor site in CAT is roughly 60% of expected, while canonical splicing in 

UNC13D is just 40% of expected for the affected location. No alternative splicing was 

observed, and a high number of reads mapped to both introns. In both genes, the intron 
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inclusion is expected to result in premature truncation. CAT mRNA levels were not 

reduced compared to other samples, so a protein assay would be needed to confirm 

hypocatalasemia. A reduction of UNC13D was similarly not seen in the mRNA. However, 

exonic SNPs across the entirety of the gene were observed in a roughly 40/60 ratio. 

Coupled with the ~40% use of the canonical splice site, it appears as though rather than 

nmd this transcript is exhibiting increased expression. While these variants cannot be 

classified as pathogenic based on the data in this study, we recommend that they be 

considered VUS until further research can be done on their effects.  Construction of mouse 

strains with combinations of mutants might reveal the oligogenic basis of the pathogenesis 

in this individual[314]. 

 

Figure 5.5 Intron retention events in CHB953. (A) The extended splice variant in CAT 
is present in all unspliced reads. (B) Unspliced reads are visible in the CAT intron. 
Normalized spliced read counts from this exon are around 60% of what is seen in other 
samples. (C) The extended splice variant in UNC13D is present in all unspliced reads. 
(D) Unspliced reads are visible in the UNC13D intron. Normalized splice read counts 
from this exon are around 40% of what is seen in other samples. 



 104 

5.5 Discussion 

This study introduces three innovations with respect to personalized genomic 

medicine: (i) use of targeted RNAseq to increase the resolution of slicing dysregulation, 

(ii) development of a modified bioinformatics pipeline for diagnostic evaluation, and (iii) 

application to a pilot study of 13 cases with two classes of immunodeficiency.  Combining 

these, we provide evidence for previously un-noticed mechanisms of disease for 3 

individuals, confirm likely pathology for another 3, and provide suggestive evidence for di- 

or tri-genic inheritance in two more.  The two major limitations of the approach are that it 

may only be applicable to immune diseases where common blood cell types are involved, 

and the targeted RNAseq panel may not include the causal gene in some cases. 

The decision to use a targeted panel rather than sequencing the entire transcriptome 

is unusual, but is validated by evidence that it increases the proportion of splice sites with 

sufficient read depth to evaluate dysregulation. One of the largest limitations of RNAseq 

for rare disease diagnostics is that the ability to capture a variant is dependent on that 

gene’s expression level in the sequenced tissue type. This generally leads to arguments 

that the disease-relevant tissue is a necessity for RNAseq and/or that sequencing depth 

should be at least 50-100M reads per sample[51,62,74]. The recent minimum read 

sequencing depth (MRSD) study identified whole blood (over LCL, cultured fibroblasts, 

and skeletal muscle) as the worst option for most gene panels[270]. However, we show 

that our targeted gene panel outperformed expectations and allowed us to analyze at least 

20% more genes of interest than we would have been able to with whole mRNA.  

Three variants reported in ClinVar as benign or likely benign were shown to affect 

splicing in mRNA, drawing the previous interpretation into question. This exemplifies some 

of the biggest drawbacks to rare variant interpretation in DNA: the dependence on variant 
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frequency and in-silico predictors. Splice prediction tools, while useful for narrowing in on 

variants, will never be as accurate as directly assessing the effect through RNA-seq. In 

addition, assays showing a reduction in functional protein function are interpreted more 

readily in the context of RNA evidence of the specific change resulting from a splice 

variant. Variant frequency, while it is (and should) remain a primary way of prioritizing 

putatively pathogenic variants, should sometimes also be used with some caution where 

the variant is not necessarily causal, but likely facilitative of dysregulation. Rare disease 

prevalence is widely thought to be underestimated and is complicated by heterogeneous 

phenotypes, digenic and polygenic inheritance, and differences between 

subpopulations[315,316]. For example, acatalasemia/ hypocatalasemia prevalence has 

been estimated at over 2% in some Asian populations[317,318], making it important to 

consider individual ancestry when interpreting catalase variants. In a polygenic inheritance 

model, it is possible that a specific combination of variants that are each individually more 

common than the disease prevalence together create the disease-causative effect. These 

nuances are increasingly important as we improve the field of personalized medicine to 

better understand and treat complex rare disease cases. 

The method in Cummings et. al. has been criticized for lacking a statistical basis 

and arbitrarily choosing cutoff thresholds[63,67,68]. Since publication, multiple tools for a 

robust statistical analysis for the identification of aberrant splicing have been developed, 

most notably FRASER[67]. However, the FRASER paper acknowledges that sample size 

affects the ability of the tool to detect all known splice events, which highlights the 

important point that rare disease RNAseq analysis tends to involve small sample sizes. 

Since our work most closely resembles the Cummings et al method, after completing our 

splicing analysis we also ran FRASER for comparison. Out of seven splice events 
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manually identified through the original analysis, FRASER detected just two with FDR 

<0.1. The FRASER paper suggests that z-score and delta PSI be prioritized over p-value, 

especially in small cohorts like ours. Another three events were successfully identified by 

FRASER using their suggested delta PSI cutoff of 0.3. When the delta PSI threshold was 

lowered to 0.1 and the read counts were used to prioritize events (a method quite similar 

to this study and Cummings et al), FRASER detected 6 of 7 splice events as well as two 

additional events not found in the original analysis.  

For research labs that lack the funds and resources required for whole mRNA 

sequencing of 100 rare disease samples at a depth of >50M reads per sample, RNAseq 

analysis is not at all out of reach. With a well-curated panel, targeted RNAseq can nearly 

double the number of genes that can be analyzed, at a fraction of the total sequencing 

depth. A smaller number of genes to analyze means that each individual patient sample 

can undergo a more thorough analysis that combines variant calling, exon usage 

information, and identification of splice events using both FRASER and the manual 

methods used in this study and Cummings et al to achieve the highest resolution.   

We show the potential of the approach to increase diagnostic yield, but much work 

needs to be done to incorporate findings of this nature into the ACMG guidelines for clinical 

diagnosis, and thence to improve patient care. We stress that the RNA-seq findings 

regarding variants in this paper do not meet the threshold for categorization as pathogenic 

or likely pathogenic. All individuals, even those who are considered healthy, contain many 

rare variants in disease-related genes. However, in the quest to elucidate the genetic 

causes of rare disease and increase diagnostic yield, the field must look beyond a simple 

monogenic mode of inheritance. As we learn more about how variants that are not 

exceedingly rare (but less common than most polymorphisms) contribute to rare disease 
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severity and heterogeneity, it will likely become necessary for additional or adapted 

guidelines to be developed in order to standardize how we interpret these variants in the 

context of a patient’s personal variant profile. 
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CHAPTER 6.  CONCLUSION 

In the diagnosis of rare genetic disease, targeted RNA-seq has proven to be a 

powerful tool independent of or complementary to traditional genomic testing. In the past 

decade, NGS tools have become commonplace in the clinical diagnostic domain, a 

testament to their value and decreasing costs. WGS and WES have become regarded as 

the future of genetic testing due to their ability to be reanalyzed as research identifies new 

disease genes or reclassifies variants. Unfortunately, WGS and WES have shown only 

modest increases to diagnostic yield for most rare congenital diseases. As personalized 

medicine becomes a reality through therapies targeted to specific genes and variants, it 

becomes increasingly important to resolve VUS and identify aberrant splicing through 

functional assays, which DNA-sequencing methods are unable to do. This has always 

been a challenging part of rare disease research, as evaluating the pathogenicity of 

individual variants has typically been time-consuming and expensive. 

RNA-seq is not only able to evaluate the effects of many VUS, but also can identify 

exonic variants in addition to structural events like aberrant splicing. I have shown here 

that aberrant splicing is an important contributor to the pathogenesis of neuromuscular 

and immune disorders. Targeted RNA-seq significantly improves the diagnostic yield of 

rare disease cohorts and can even phase variants without knowledge of parental alleles. 

In addition to validating RNA-seq as a valuable tool for clinical diagnostics, I would like to 

draw attention to a few other conclusions made along the way. 

First, using a targeted gene panel is often the best option when you are able to 

connect a patient’s phenotype to a category of disorders. The high read depth is unrivaled 

when it comes to confidence in variant calling and identification of splice events. Whole 
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transcriptome mRNA is too much information to sift through – bioinformaticians have to 

narrow it down to candidate genes as we simply do not know enough about splicing in 

each individual gene to evaluate aberrant events. Many genes are known to be more 

tolerant to LoF events, and this information translates to splicing analysis as well. One 

downside of targeted RNA-seq is the lack of available reference samples for comparison. 

However, sequencing a large enough disease cohort provides adequate information about 

panel-specific effects on sequencing to determine whether an unannotated event is 

abnormal. 

Second, much work needs to be done to integrate the knowledge that splicing is a 

significant contributor to rare disease into traditional genomic analyses. It is unrealistic to 

believe that RNA sequencing will become favored over WGS and WES. In-silico splice 

predictor algorithms have improved and are being used in the interpretation of sequence 

variants in DNA, but they will never be as good as directly observing variant effect in RNA. 

Additional research needs to be done to expand the knowledge base regarding splicing in 

disease genes. One possibility to assist in this directive would be a database similar to 

ClinVar for reporting whether or not a variant was seen to affect splicing in mRNA studies. 

As a final note, I’d like to discuss the state of rare disease RNA analysis 

methodology. When I first began my PhD research, bioinformatic analysis of human 

mRNA resembled the wild west. Unlike the well-developed and refined world of DNA-

sequencing, few gold standards or widely accepted guidelines for analysis existed. In fact, 

many tools for RNA-seq data were simply the tools for DNA with minor alterations that 

failed to account for the nuances of RNA-seq analysis. The RNA analysis tools that did 

exist were built for application to large sets of replicate samples and did not perform well 
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for rare disease analysis, which typically has just one or two patients harboring the same 

mutation.  

While I was developing my methods for analyzing RNA in rare disease patients, 

many others were doing the same. Time and time again, we have found RNA-seq 

improves diagnostics for Mendelian disease, doing so regardless of methodology used. 

At least one other study has found that using more than one splice analysis tool improves 

diagnostic yield even more. While I have found some of the newly developed tools to be 

helpful, in the current state of RNA data interpretation there is simply too much noise for 

anything to truly improve over manual analysis by a skilled interpreter of sequence data. 

One thing in particular I would like to see for this field is an improved method for variant 

calling in RNA that can accurately weed out false positive variant calls at exon-intron 

boundaries and could possibly take variable read depths at different genes and parts of 

genes (like exons vs introns) into account. 

There are widely accepted standards for the analysis of DNA sequencing data, but 

we must keep in mind that they took time to develop. The analysis of RNA for the 

diagnostics of rare disease is still in its infancy, and the recent development of so many 

new bioinformatic tools for this purpose indicates the excitement behind this field. 

Continuing robust and comprehensive analysis of rare disease cohorts will not only 

provide additional diagnoses for the patients involved, but will advance our ability to best 

analyze this data.  
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APPENDIX A. SUPPLEMENTARY TABLE FOR CHAPTER 4 

Table A.1 Variants and monocyte assay results for the dysferlinopathy cohort 

Patient 
ID 

R
N
A 
ID 

Monocyt
e Assay 
Interpret
ation 

Allele 1 Alelle 2 Alelle 3 Alelle 
4 

Diagnosis 
of other 
forms of 

MD 

Comments 

1   disease 
range 

c.4886+1249G
>T c.1834C>T * -       

2   disease 
range 

c.1168_1180+
1dup14  c.1168_1180+1dup14  -       

3   carrier 
range c.2408G>A - -       

4   disease 
range c.5668-7G>A * c.5768-

1415_5946+710del -       

5   disease 
range c.1620delA c.1861G>C 

(p.G621R) 
c.2690C
>T       

6   normal 
range  -   -  -       

7   normal 
range c.509C>A - - - 

ANO5: 
IVS1-1G>A 
c.191dupA 

Other Gene:  
ANO5. 2 

Pathogenic 
variants 

8   normal 
range  -   -  -       

9   normal 
range c.681C>T  -  -       

10   disease 
range 

c.3444_3445d
elinsAA c.4886+1249G>GT -       

11   carrier 
range  -   -  -       

12   disease 
range c.1392dupA * c.5698_5699delAG * -       

13   disease 
range c.907-3C>A * c.2641A>C -       

14   disease 
range  -   -  -       

15 C1 disease 
range c.3534C>T  -  -   

* RNASeq 
identified 
DNAJB6 

gene UTR 
VUS  

c.-85G>T 

Possible 
DNAJB6 
case with 
the 5'UTR 
VUS could 

have 
regulatory 
effect in 

gene 
expression  

16   disease 
range c.1168G>A c.4886+1249G>T c.4731G

>A       

17   disease 
range 

c.3444_3445d
elinsAA c.4886+1249G>GT -       

18   disease 
range c.797T>G c.1663C>T * -       

19   disease 
range c.2997G>T  c.5668-824C>T * -       

20   carrier 
range c.3892A>G  - -       
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Table A.1 continued 
21   carrier 

range c.3065G>A *  -  -       

22   disease 
range c.4894G>T c.4894G>T  c.1398-

2A>G        

23   disease 
range c.1392dupA *  c.5713C>T -       

24   disease 
range  c.4200dupC c.5509G>A * -       

25   disease 
range c.1481-1G>A * c.5712C>T  -       

26   carrier 
range  -   -  -       

27   carrier 
range  -   -  -       

28   disease 
range  -   -  -       

29   carrier 
range ND ND -       

30   carrier 
range c.2290G>T c.2638G>A -       

31   disease 
range c.5509G>A *  del Ex2_Ex3 -       

32   disease 
range - - -   

Homozygo
us for 

pathogenic 
variant in 
FKRP so 
likely has 
LGMD2I 

FKRP Likely 
Pathogenic 
homozygou

s variant: 
c.826C>A 

33   disease 
range c.5979dupA c.5979dupA -       

34   carrier 
range - - -       

35   disease 
range c.857T>A c.4886+1249G>T -       

36   disease 
range 

c.2643+1G>A 
* c.3327_3328delGT c.4577A

>C *       

37   disease 
range c.742C>T c.5296G>A *         

38   disease 
range c.353delT c.3137G>A *         

39   disease 
range c.1638+2T> c.1642delG         

40   carrier 
range - -     

Compound 
Heteroyzyg

ote for 2 
variants in 
ANO5 so 
likely has 

2L 

Other Gene: 
ANO5: 

c.191dupA 
(pathogenic)
, c.749A>G 

(VUS) 

41   carrier 
range - -         

42   normal 
range c.4794G>T * -         

43   normal 
range  -   -          

45   disease 
range c.937+1G>A c.5441G>A         

46   disease 
range c.4090C>T c.5296G>A *         

47   normal 
range c.757C>T * c.3892A>G         
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Table A.1 continued 

48   normal 
range - - - - 

pathogenic 
variant 

found in 
DMD so 
likely has 

Duchenne/
Becker 

muscular 
dystrophy 

DMD 
Pathogenic 

variant: 
c.1704+1G>

A. 
Confirmed 
Becker's 
muscular 
dystrophy 

(DMD).  

49   disease 
range c.2071C>T c.3113G>A *         

50   normal 
range ND ND         

51   normal 
range ND ND         

52   disease 
range c.1392dupA * c.755C>T         

53   disease 
range del Ex2_3 del Ex2_3         

54   normal 
range c.865T>C c.4794G>T *         

55   disease 
range c.1368C>A c.1368C>A         

56   normal 
range c.3992G>T * c.3065G>A *         

57   disease 
range c.937+1G>A c.5441G>A         

58   disease 
range 

c.2643+1G>A 
* c.2643+1G>A * c.4577A

>C *       

59   disease 
range c.663+1G>C c.1284+2T>C c.4374C

>T       

60   normal 
range  -   -          

61   normal 
range  -   -          

62   disease 
range c.4253G>A * c.4253G>A *         

63   disease 
range c.4253G>A * c.4253G>A *         

64   disease 
range 

c.2643+5G>A 
* c.3113G>A *         

65   carrier 
range ND ND         

66   normal 
range - -         

67 C2 disease 
range c.5341G>A * c.3137G>A *         

68   disease 
range c.3517dupT c.5713C>T         

70   disease 
range c.1639-6T>A * c.5503A>G *         

71   normal 
range - -         

72   disease 
range c.610C>T c.5979dupA         

73   normal 
range - -         

74   carrier 
range ND ND         

75   disease 
range c.937+1G>A c.5266C>T         
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Table A.1 continued 

76   disease 
range  c.4200dupC c.5509G>A *         

77   disease 
range c.1053+1G>A c.792G>C         

79   normal 
range c.3534C>T   -          

80   disease 
range 

c.2643+5G>A 
* c.3113G>A *         

81   carrier 
range ND ND         

82   disease 
range c.6124C>T * c.2352_2355+1delGG

AGG         

83   disease 
range c.5979dupA c.5979dupA         

84   normal 
range - -     

Homozygo
us for 

pathogenic 
variant 

c.191dupA 
in ANO5 so 
likely has 

2L 

ANO5; 
LGMD2L 

85   disease 
range c.2997G>T  c.5668-824C>T *         

87   normal 
range - -         

88   normal 
range c.6197C>T c.4794G>A         

89   disease 
range c.610C>T c.1053+1G>A * c.1120G

>C       

90   disease 
range c.610C>T c.1053+1G>A         

91   normal 
range c.2902A>T -         

92   normal 
range ND ND         

93   disease 
range c.2779delG c.2779delG         

94   carrier 
range - -         

95   disease 
range 

c.5836_5839d
elCAGC * c.5644C>T         

96   disease 
range c.610C>T c.2643+1G>A * c.4577A

>C *       

97   disease 
range c.3702T>C c.2790G>C c.2643+

1G>A * 
c.4577
A>C *     

98   disease 
range c.5713C>T c.5911T>C c.1120G

>C       

99   normal 
range ND ND         

101   normal 
range - -       

Other Gene: 
COL1A1 

likely 
pathogenic 

variant: 
c.1724G>A 
(p.G575D). 

COL1A1 
variants are 

inherited 
autosomal 
dominant 
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Table A.1 continued 

102   ND - -         

103   disease 
range  del Ex2_3 del Ex2_3         

104   disease 
range c.4685dupT c.2162G>C         

115   normal 
range - -         

116   ND - -         

117   carrier 
range c.3851T>C c.681C>T         

118 C3 disease 
range c.4742G>A -         

119   carrier 
range c.1120G>C           

120   disease 
range c.265C>T c.1956G>A         

121   disease 
range c.1931-2delA c.3349-2A>G         

122   carrier 
range - -     

homozygou
s for a 

pathogenic 
variants in 
FKRP so 
likely has 
LGMD2I 

FKRP 
pathogenic 

variant:  
c.826C>A 

123   carrier 
range - -     

homozygou
s for a 

pathogenic 
variant in 
FKRP so 
likely has 
LGMD2I 

Other 
Genes: 
FKRP 

pathogenic 
variant:  

c.826C>A; 

124   normal 
range c.1120G>C -         

125   disease 
range c.855+2T>G c.855+2T>G         

126 C4 normal 
range c.2332C>T -     

* Identified 
by RNA-

Seq;- 
CAPN3 
exon 17 

pathogenic 
c.1981delA 

variant; 
VCP 

exon10 
VUS 

c.1106T>C 

Possibly 
either 

CAPN3 
(with 2nd 

variant not 
yet 

identified) or 
VCP 

(autosomal 
dominant). 

127   disease 
range c.755C>T c.5444G>T         

128   normal 
range c.626C>T -         

129   disease 
range 

c.5982_5989d
up8 c.5982_5989dup8         

130 C5 disease 
range c.3967C>G -         

131   carrier 
range c.4794G>T * -     

homozygou
s for 

pathogenic 
variant in 

CAPN3 so 
likely has 
LGMD2A 

CAPN3 
pathogenic 

variant: 
c.1993-G>A 
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Table A.1 continued 

139   disease 
range c.1343T>C c.790G>T         

140   disease 
range c.1180+5G>C c.1180+5G>C         

141   disease 
range c.3349-2A>G c.5979dupA         

142   disease 
range c.1368C>A c.5342G>A         

143   normal 
range c.2099G>A -         

144   disease 
range c.701G>A c.1555G>A         

145   carrier 
range c.3355G>A -         

147   disease 
range c.4794+1G>T c.1663C>T *         

148   carrier 
range c.1351A>G -         

149   carrier 
range c.6124C>T * c.4794G>T *         

150   disease 
range c.4228C>T c.5609G>A         

151   disease 
range c.5979dupA c.5979dupA         

152   disease 
range del Ex4 * c.4434G>A         

153   carrier 
range c.4024C>T -         

154   disease 
range c.1368C>A c.1368C>A         

155   normal 
range C.707A>C;  C.3760C>T         

156   normal 
range c.758G>A -         

157   carrier 
range c.6022G>A -         

158   disease 
range c.2779delG c.2779delG         

159   disease 
range c.2779delG           c.2779delG         

160   disease 
range c.2779delG c.2779delG         

161   disease 
range c.6056G>T c.6056G>T         

162   disease 
range 

c.5836_5839d
elCAGC *     c.1852G>C         

163   carrier 
range 

c.4886+1249G
>T  -         

164   normal 
range c.5026G>T -         

165   normal 
range c.3277C>T        -         

166   disease 
range c.2875C>T c.5698_5699delAG *         

167   carrier 
range c.221C>T                                     - - - 

homozygou
s for a 

pathogenic 
variant in 
ANO5 so 
likely has 
LGMD2L 

Other Gene: 
ANO5 

homozygou
s 

pathogenic 
variant: 

c.191dupA 

168   normal 
range c.4134C>T c.4267C>T         
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Table A.1 continued 

169   carrier 
range c.5999G>A -         

170   carrier 
range c.1351A>G -         

171   disease 
range 

c.2643+1G>A 
* c.4200dupC         

172   carrier 
range c.842C>T -         

173   disease 
range c.3466T>C c.3466T>C         

174 B1 disease 
range c.1834C>T * del Ex52 * - -     

175   carrier 
range c.4787A>G -         

176   normal 
range c.2756G>A -         

177   normal 
range c.3624C>G -         

178   disease 
range c.5429G>A c.757C>T *         

179   normal 
range c.3487G>A - - - 

Other 
Gene: 

COL6A1 
pathogenic 

variant 
c.362A>G 

Y (COL6A1; 
Bethlem 

myopathy/Ul
rich 

muscular 
dystrophy) 

180   carrier 
range c.2902A>T -         

181   carrier 
range c.2516C>T -         

182   carrier 
range c.3624C>G -         

183   disease 
range c.6124C>T * c.5302C>T         

184   disease 
range c.2997G>T c.2995T>C c.4742G

>A       

185   disease 
range c.5902T>C c.5902T>C         

187   carrier 
range c.757C>T * -         

188   carrier 
range c.2614G>A -         

189   normal 
range c.1402C>T c.4052A>G     

other gene: 
CAPN3 

pathogenic 
variant 

c.1303G>A 

Possibly 
CAPN3 with 
the second 
variant not 

yet 
identified 

190   carrier 
range c.984C>T -         

191 A1
2 

carrier 
range c.1517C>G * c.4408C>T *         

192   carrier 
range c.1351A>G -         

193   disease 
range c.5444G>T del Ex52 *         

194   disease 
range c.3967C>G -         

195   disease 
range c.2875C>T c.5698_5699delAG *         

196   disease 
range 

c.5698_5699d
elAG * c.2875C>T         
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Table A.1 continued 

197   disease 
range c.3137G>A * c.701G>A         

198 B3 disease 
range c.6216delC * c.4509+1586dupG *         

199   disease 
range c.1276G>A c.5713C>T         

200   normal 
range c.2872A>G -         

201   disease 
range 

c.2643+1G>A 
* 

c.4872_4876delGCC
CGinsCCCC         

202   disease 
range c.1368C>A c.3130C>T         

203 B4 disease 
range 

c.5698_5699d
elAG * del Ex4 *         

204   disease 
range 

c.1053+1G>A 
* c.5033G>A         

206   carrier 
range c.1353G>A -         

207   carrier 
range c.1385G>A -     

2 
pathogenic 
variants in 
CAPN3 so  
likely has 
LGMD2A 

other gene: 
2 CAPN3 

pathogenic 
variants 

c.759_761d
elGAA, 

c.1468C>T 

208   carrier 
range c.617C>T -         

209   carrier 
range c.6063C>T -         

210   disease 
range c.2811-2A>C c.5529G>A         

211   carrier 
range c.5189T>C -         

212   carrier 
range c.4865C>T -         

213   disease 
range  c.2105C>T -         

214   carrier 
range c.3243C>T c.3624C>G         

215   disease 
range 

c.2643+1G>A 
* c.2643+1G>A * c.4577A

>C * 
c.4577
A>C *     

217   carrier 
range - -         

218   carrier 
range c.1351A>G c.2423G>A     

other gene: 
CAPN3 

pathogenic 
variant 

c.245C>T 

Possibly 
CAPN3 with 
the second 
variant not 

yet 
identified 

220   disease 
range 

c.879_883dup
GACAG del Ex52 *         

223   disease 
range c.4299C>G c.5713C>T         

224   normal 
range c.4253G>A * -         

225   disease 
range c.4497delT * c.3444T>A * c.4253G

>A *       

227   disease 
range c.2779delG c.2348C>T c.5963C

>T       

229   disease 
range c.3118C>T c.3770G>A         

231   disease 
range c.1834C>T * c.3112C>T                              
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232   normal 
range c.1351A>G -     

other gene: 
COL6A1 

likely 
pathogenic 

variant 
c.1013G>A 

Y (COL6A1; 
Bethlem 

myopathy/Ul
rich 

muscular 
dystrophy) 

233   disease 
range c.1861G>A * c.2643+1G>A *         

234   carrier 
range c.4198C>G -         

235   carrier 
range c.3967C>G -     

pathogenic 
variant in 
MYOT so 
likely has 
LGMD1A 

1 
pathogenic 
variant in 
MYOT: 

c.179C>G. 
MYOT 

variants are 
autosomal 
dominant 
causing 

myofibrillar 
myopathy 
(OMIM# 
604103). 
MYOT 

confirmed 
molecular 
diagnosis.  

236   disease 
range c.1129C>T -         

237   normal 
range c.2726G>T -         

238   carrier 
range c.1250A>G -         

239   disease 
range c.4880T>C c.5509G>A *         

240   carrier 
range c.3983C>T -         

241   carrier 
range c.5245C>T -         

242 B5 disease 
range c.1663C>T * del Ex52 *         

243   disease 
range c.3803G>A c.1053+1G>A *         

244 C1
2 

disease 
range c.2929G>A c.2929G>A c.3022G

>A 
c.3022
G>A     

245   disease 
range 

c.1053+1G>A 
* c.3803G>A         

246 B6 disease 
range c.2875C>T * del Ex52 *         

247 A1 disease 
range 

c.2496_2499d
elGACA * c.5668-7G>A *         

248 C6 carrier 
range c.17T>A c.4794G>T*         

249 A2 disease 
range c.331C>T * c.6124C>T *         

250 A3 disease 
range 

c.2643+1G>A 
* c.6124C>T *         

251 B7 disease 
range c.3112C>T * -         

252   disease 
range c.6008G>A c.3112C>T         

253   disease 
range c.3112C>T c.3112C>T         
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254   disease 
range c.3112C>T c.3112C>T         

255 C1
3 

disease 
range c.5526-7T>G * c.5526-7T>G * c.2079C

>T 
c.2079
C>T     

256   disease 
range c.3112C>T c.6008G>A         

257   carrier 
range c.3112C>T -         

258 A1
4 

disease 
range c.4577A>C* c.2643+1G>A * c.3112C

>T *     

Pathogenic 
DYSF 
variant 

combination 
was not 
known 

259   normal 
range - -         

261   disease 
range c.3383dupT c.3703-2A>G         

262   disease 
range c.2875C>T c.3349-2A>G         

263   normal 
range ND ND         

264 A4 disease 
range c.1071delC * c.5698_5699delAG *         

265   disease 
range c.438T>C c.937+4A>T c.2779d

elG       

266   disease 
range c.755C>T c.5979dupA         

267   disease 
range c.3041A>G c.5526-1G>A         

268   normal 
range c.3388G>A -         

269   disease 
range c.5077C>T c.5698_5699delAG *         

270   carrier 
range c.5216C>A -         

271 C1
5 

disease 
range 

c.4060_4062d
elTCC c.4439A>C         

272   disease 
range 

c.2643+1G>A 
* c.5077C>T         

273   disease 
range c.5713C>T c.1343T>C         

274 C7 normal 
range c.469G>A * -         

275   disease 
range c.1096delA c.1096delA         

276   disease 
range c.487C>T c.5979dupA         

277 B9 disease 
range 

c.1053+1G>A 
* 

del Ex25_29: 
c.2512_3174del *         

278   disease 
range c.5077C>T c.5698_5699delAG         

279   carrier 
range ND ND         

280   disease 
range c.353delT c.5444G>T         

281 A5 disease 
range c.757C>T * c.2894G>A *         

282   disease 
range  c.4168-1G>T c.4168-1G>T c.4090C

>T * 
c.4090
C>T *     

283   normal 
range c.4794G>T * -         

284   normal 
range c.1064A>G c.2408G>A c.2902A

>T       

285   disease 
range 

c.2643+1G>A 
* c.2643+1G>A *         
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286   disease 
range c.757C>T * c.5444G>T         

287   disease 
range c.2779delG c.2779delG         

288   carrier 
range ND ND         

289   disease 
range c.3041A>G c.3041A>G         

290   disease 
range c.5429G>A c.5429G>A         

291   disease 
range c.5302C>T c.5302C>T c.2452C

>T       

292   disease 
range c.5979dupA c.5979dupA         

293   disease 
range c.5884C>T c.4199C>G c.5026G

>T       

294   disease 
range c.1368C>A c.5713C>T         

295   disease 
range c.1094delA c.6124C>T *         

296   disease 
range C.764A>C c.393_394delCC         

297   disease 
range c.1368C>A c.1368C>A         

298   disease 
range 

c.1354-
3_1354-
2delCA 

c.1354-3_1354-
2delCA         

299   disease 
range c.1368C>A c.1368C>A         

300   disease 
range c.1368C>A c.1368C>A         

301   disease 
range c.5979dupA c.5979dupA         

302   disease 
range c.5979dupA c.5979dupA         

303   disease 
range c.5979dupA c.5979dupA         

304   disease 
range ND ND         

305   disease 
range ND ND         

306 C8 normal 
range  c.774C>G * c.2902A>T *         

308 B1
0 

carrier 
range c.6124C>T * c.4794G>T*         

309   normal 
range  - -         

310   disease 
range c.4434G>A del Ex4 *         

311   disease 
range 

c.2643+1G>A 
* c.2643+1G>A *         

312   normal 
range  - -         

313 B1
1 

disease 
range c.3517dupT * c.5836_5839delCAG

C *         

314 A6 disease 
range c.673C>T * c.673C>T *         

315   normal 
range  - -         

316   disease 
range c.4638+1G>A c.757C>T *         

317 B1
2 

disease 
range c.3805dupG * c.907-3C>A*         

325   disease 
range 

c.1053+1G>A 
* c.3517dupT         

326   normal 
range ND ND         
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327   disease 
range 

c.5668-
824C>T * c.6124C>T *         

328   disease 
range del Ex6 c.1639-6T>A *         

329   disease 
range del Ex6 c.1639-6T>A         

330   disease 
range c.3538delT c.5366T>C         

331   disease 
range c.4253G>A * c.4253G>A * c.4943A

>G       

332   disease 
range c.4253G>A * c.4253G>A *         

333   disease 
range c.1368C>A c.1368C>A         

334 C9 disease 
range c.2790G>C * c.4024C>T * c.4526T

>G *       

335   disease 
range c.3137G>A * c.6038C>G         

336   carrier 
range ND ND         

337   disease 
range  c.1368C>A c.1368C>A         

338   disease 
range  

c.2643+1G>A 
* 

c.5836_5839delCAG
C *         

339   disease 
range  

c.1053+1G>A 
* c.3512_3513insT         

340 C1
6 

disease 
range  - -         

342 A1
1 

carrier 
range c.1392dupA * c.1481-1G>A *         

343   disease 
range  

c.5836_5839d
elCAGC * 

c.5836_5839delCAG
C *         

344   disease 
range  c.1834C>T * c.465delA         

345 A1
3 

disease 
range  

c.2643+1G>A 
* c.4577A>C* c.5668-

7G>A *     

Pathogenic 
DYSF 
variant 

combination 
out of the 3 

variants was 
not known 

346   disease 
range  c.1392dupA * c.3516_3517delTT         

347   disease 
range  c.533delG * c.1861G>A *         

348   disease 
range  c.5668-7G>A * c.5668-7G>A *         

349 A1
5 

disease 
range  

c.1171_1180+
4dup14 * 

c.1171_1180+4dup14 
*         

350   disease 
range  

c.3759_3768d
el10 c.2901_2904delCATG         

351 A9 disease 
range  c.533delG * c.1861G>A *         

352   normal 
range  - -     

FKRP 
Homozygo

us 
c.826C>A 
pathogenic 

variant 

Confirmed 
LGMD2I 
(FKRP) 

353   normal 
range  c.4376A>G -         

354   disease 
range  

c.1053+1G>A 
* c.610C>T         
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355   disease 
range  

c.2643+1G>A 
* c.2095C>T         

356 B8 disease 
range  c.5059T>C c.4577A>C * c.2643+

1G>A *       

357   disease 
range  c.5429+2T>A c.5429+2T>A         

358 B2
5 

disease 
range  c.5181delA c.1668_1669insGTT         

359   normal 
range  c.2423G>A -         

360   disease 
range  c.2779delG c.5594delG         

361 B2
7 

disease 
range  c.5979dupA c.5057+5G>A         

362 B2
9 

disease 
range  c.5979dupA -         

363   disease 
range  del Ex38 c.799_800delTT         

364   carrier 
range  c.857T>A c.4794G>T *         

365   disease 
range  

c.2643+1G>A 
* c.1948delC c.4577A

>C *       

366   carrier 
range - -         

367   disease 
range  ND ND         

368   ND c.353delT c.5668-824C>T *         

369 B1
3 ND c.6124C>T * c.5509G>A *         

370 A8 disease 
range  c.5509G>A * c.5903G>A *         

371 B1
4 

disease 
range  c.2163-2A>G * del Ex23_24 *         

372 B1
5 

disease 
range  c.4360G>T * c.4756C>T *         

373 B1
6 

disease 
range  c.5159delG * c.125dupT *         

374   disease 
range  c.5159delG * c.125dupT *         

375 A7 disease 
range  

c.5668-
824C>T * c.5698_5699delAG *         

376 B1
7 

disease 
range  c.863dupA * c.3031+2T>C *         

377   ND c.5871_5872d
elGT c.5668-824C>T *         

378 B1
8 ND c.2810+1G>A 

* c.2811-20T>G *         

379   disease 
range  

c.5698_5699d
elAG * c.5668-824C>T *         

380 B2
1 

disease 
range  c.4756C>T * c.3113G>C * c.3065G

>A*       

381 C1
0 

normal 
range c.3065G>A* c.3992G>T*     

* COL6A2 
exon 25: 

c.1861G>A 
; COL6A2 
exon 28: 

c.2893C>T 

RNA-Seq 
identified 

variants in 
COL6A2 
found so 
likely has 
Bethlem 

myopathy 

382   normal 
range c.6124C>T * c.5768-1G>C *         

383 B2
2 

carrier 
range c.6124C>T * c.5768-1G>C *         

384 B2 ND c.5022delT * c.401C>T * c.6196G
>A *       

385 B2
0 ND c.1663C>T * c.1004G>C* c.509C>

A *       
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386 B1
9 

disease 
range  c.4090C>T * c.5296G>A*         

387 B2
3 

disease 
range  c.1639-6T>A * c.5503A>G*         

388   disease 
range  c.509C>A c.5836_5839delCAG

C *         

389 C1
4 ND c.3904_4410d

el * c.3904_4410del *         

390 B2
4 

disease 
range  c.3112C>T * c.3191_3196dupCGG

AGG * 
c.1180+
5G>A *       

391 B2
8 ND c.2077delC c.4334-3C>A         

392 C1
1 

disease 
range  

c.2643+5G>A 
* c.3113G>A *         

393 B3
0 ND c.5429+1G>T c.5057+5G>T         

394   ND c.3516_3517d
el c.4411-5C>G         

395 A1
6 ND c.3112C>T c.4577A>C c.2643+

1G>A       

396 A1
7 ND c.3517dupT c.3113G>A         

397 A1
0 ND c.3041A>G c.3041A>G c.4820T

>C  
c.4820
T>C      

398 B2
6 

disease 
range  c.855+1delG c.3031G>C         

399   ND c.863dupA c.3031+2T>C         

400 C1
7 ND c.896G>A c.1877T>C         

401 A1
8 ND c.5429G>A c.5429G>A         

402 A1
9 ND c.3444T>A c.4756C>T c.3445G

>A     

Pathogenic 
DYSF 

combination 
of variants 
out of the 

three 
variants was 
not known 
due to lack 

of 
knowledge 
in phasing 

403   ND c.2077delC c.3121C>T c.6056G
>A     

Pathogenic 
DYSF 

combination 
of variants 
out of the 

three 
variants was 
not known 
due to lack 

of 
knowledge 
in phasing 

404 A2
0 ND 

del Ex25_29: 
c.2512_3174d
el * 

c.2077delC         

405 C1
8 ND c.3065G>A c.4003G>A         

406 A2
1 

disease 
range  c.2071C>T c.3113G>A         
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100 
(Control) 
Ethnicity
: India 

  normal 
range 

Normal 
Positive 
Control 

          

132 
(control)   normal 

range 

Normal 
Positive 
Control 

          

133 
(Control) 
Ethnicity

: 
Caucasi

an 

  normal 
range 

Normal 
Positive 
Control 

          

134 
(Control) 
Ethnicity

: 
Caucasi

an 

  normal 
range 

Normal 
Positive 
Control 

          

136 
(Control) 
Ethnicity

: 
Caucasi

an 

  normal 
range 

Normal 
Positive 
Control 

          

137 
(Control, 
Ethnicity

: 
Caucasi

an) 

  normal 
range 

Normal 
Positive 
Control 

          

216 
(Ethnicit
y: Indian 
(south 
east 

Asian)) 

  normal 
range 

Normal 
Positive 
Control 

          

221 
(Control) 
Ethnicity
: South 

east 
Asian 

(Indian 
subconti

nent) 

  normal 
range 

Normal 
Positive 
Control 

          

222 
(Control) 
Ethnicity
: South 

east 
Asian 

(Indian 
subconti

nent) 

  normal 
range 

Normal 
Positive 
Control 

          

260 
(Control) 
Ethnicity
: South-

East 
Asian 

(Indian 
subconti

nent) 

  normal 
range 

Normal 
Positive 
Control 
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307 
(Control) 
Ethnicity

: 
Caucasi

an 

  normal 
range  

Normal 
Positive 
Control 

          

320 
(Control) 
Ethnicity

: 
Hispanic 

  normal 
range  

Normal 
Positive 
Control 

          

321 
(Control) 
Ethnicity

: 
Caucasi

an 
(Australi

a) 

  normal 
range  

Normal 
Positive 
Control 

          

322 
(Control) 
Ethnicity

: 
Caucasi

an 
(Spain) 

  normal 
range  

Normal 
Positive 
Control 

          

324 
(Control) 
Ethnicity

: 
Caucasi

an 

  normal 
range  

Normal 
Positive 
Control 

          

          

  P/LP variants      

  VUS determined to be P/LP by 
RNA-seq 

     

  Variants determined to be 
benign 

     

  VUS        

"-" 
no reportable DYSF variant 
were found in genetic testing.  
ND = not determined 

     

ND Not Determined. For genotype, information was not available. For %DYSF by monocyte assay, ND means 
informed consent or blood sample was not provided. 

Asterisk 
(*) Variant Visualized in RNA-seq      

  
Confirmed diagnosis or close 
to diagnosis of Other Gene (not 
DYSF) 
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