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I. Introduction 

HE force and torque disturbances exerted on a spacecraft are often divided into two categories: those that are not 

caused by the spacecraft, and those that are results of the spacecraft’s operation itself. The first group consists of the 

unwanted environmental torques and forces caused by phenomena such as solar radiation pressure, aerodynamic, and 

gravitational forces. In this paper, we focus on the second group. Specifically, we are interested in modeling and 

mitigating thrust-induced disturbances of continuous low-thrust spacecraft attitude maneuvers. Mission constraints 

such as propellant and power consumption, precision-pointing, and actuator lifetime are affected by unwanted effects 

of thrust fluctuations and hysteresis. Moreover, torque disturbances and excessive force cycling could jeopardize the 

structural integrity of the spacecraft if they exceed any loading constraints. 

 In modeling thrust-induced disturbances, we deviate from the rather traditional disturbance modeling and control 

practices. Instead, each thruster’s disturbance is modeled as a Gaussian white noise process which is multiplicative in 

the commanded force. That is, each thruster’s uncertainty is modeled as a multiplicative noise, in which it becomes 

the additive uncertain component of the generated total force. The consideration of existing noise in thrust enables us 

to embed the uncertainty information directly in the proposed control law. In this manner, we formulate a stochastic 

optimal controller that adjusts its behavior based on the best-known information on the severity of the disturbance. In 

designs where on/off thrusters are used, this stochastic controller can be implemented through use of pulse-width 

pulse-frequency (PWPF) modulation techniques. In the class of low-thrust propulsion engines, thrusters operate for a 

long range of time continuously; thus, the thrust fluctuations can be modeled as stochastic processes, as proposed here. 

 Several studies have previously addressed actuator uncertainty. In an influential work, McLane [1] derived the 

solution of the linear regulator problem for thrust-dependent noise in a physical system. Similarly, in the study of 

stochastic Hill’s equations, Ostoja-Starzewski and Longuski [2] modeled the thrust as an additive random process. 

Gustafson [3] provided the numerical methods for the optimal feedback control of linear spacecraft system with 

thrusters. Jia and Zhao [4] investigated the attitude stabilization of a stochastic spacecraft system under additive 

disturbance. Other experimental studies, such as Nicolini et al. [5], have demonstrated the relation of increasing 

commanded thrust level to that of decreasing thrust accuracy. 

 In this work, spacecraft attitude dynamics are modeled as stochastic differential equations (SDE). For this model, 

we derive a stochastic control law that takes into consideration the multiplicative relation of increasing commanded 

thrust magnitude on the propagated thrust uncertainty. We assume perfect knowledge of initial conditions, and state 

T 
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variables at all times. A Hamilton-Jacobi-Bellman (HJB) equation is formulated, and its solution is approximated 

through a power series-based method [6]. Since the solution to the HJB equation involves the use of power series, the 

resulting optimal control is local in nature. That is, it may become suboptimal away from the origin. Though, in the 

operational domain of state-space, the derived control retains its approximate optimality, and its stability properties 

are desirable. To the best knowledge of the authors, there are three well-studied formulations of attitude dynamics. 

The first is the use of cascade structure as in Ref. [7] and [8]. The second method is the Hamiltonian formulation, 

introduced in Ref. [9], where through differentiating the kinematic differential equations, the dynamic and kinematic 

equations are reformulated as a second order differential equation system. The third approach is that of adjoining the 

kinematic and dynamic equations by constructing the state vector as an extension of the kinematic parameters, and 

body rotational rates. When working with singularity-free kinematic parameterizations, often the derivation of linear 

optimal control involves solving a state-dependent Riccati equation (SDRE). In fact, SDREs can arise even when 

using singular parameterizations, see Ref. [10]. In this paper, the combination of power series-based method [6], and 

a singular kinematic parameterization [11] gives an alternative to dealing with SDREs for nonlinear stochastic 

systems. Instead, we solve a form of algebraic Riccati equation (ARE) to obtain the linear control, where its existence 

(in a deterministic setting) relies on controllability properties of the system. Furthermore, stability and performance 

in a cascade structure depend on how fast the dynamics subsystem is. In addition, it must be shown that the cascaded 

structure is stable through a choice of a separate Lyapunov function. Using the third choice of state-space formulation 

mentioned above, we are able to approximate the HJB; hence the stability of the closed-loop nonlinear system follows 

in a neighborhood of the origin (see Theorem 2). The power series method employed in this paper allows the derivation 

and analysis of each control order separately, thus giving the control designer a choice in approximation. 

 The remaining of this paper is organized into five sections. The stochastic modeling of the spacecraft attitude 

system is carried out in section II. The proofs of optimality, existence, and stability, for both the linear and nonlinear 

control are given in section III. Section IV contains the computed control expressions up to the third order. Higher 

order control expressions can be found in Appendix A. The simulation results are tabulated and discussed in section 

V. Finally, section VI gives a brief conclusion discussing the presented research.      
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II. System Disturbance Modeling 

 The spacecraft attitude system is described by the Euler rigid body equations with addition of three or more 

differential equations describing the orientation of the spacecraft with respect to a reference frame. The dynamic 

equations are 

𝐼𝜔̇ = 𝑆(𝜔)𝐼𝜔 + 𝑀 

𝑆(𝜔) = [

0 𝜔3 −𝜔2

−𝜔3 0 𝜔1

𝜔2 −𝜔1 0
] 

(1) 

where, 𝐼 ∈ ℝ3×3 is the principal moment of inertia matrix, 𝜔 ∈ ℝ3×1 is the angular velocity vector about the body 

principal axes, and 𝑀 is the total applied torque vector. 

 We will use the Tsiotras-Longuski parameterization [11] to describe orientation. The rotation matrix 𝑅 describes 

the orientation of the body reference frame, with respect to the inertial reference frame. Matrix 𝑅 is a result of two 

successive rotations: 𝑅 = 𝑅2(𝑤)𝑅1(𝑧). To be precise, the parameterizing matrices are given by 

𝑅1(𝑧) = [
cos(𝑧) sin(𝑧) 0

− sin(𝑧) cos(𝑧) 0
0 0 1

], 𝑅2(𝑤) =
1

1+𝑤1
2+𝑤2

2 [

1 + 𝑤1
2 − 𝑤2

2 2𝑤1𝑤2 −2𝑤2

2𝑤1𝑤2 1 − 𝑤1
2 + 𝑤2

2 2𝑤1

2𝑤2 −2𝑤1 1 − 𝑤1
2 − 𝑤2

2

] (2) 

where 𝑧 ∈ ℝ is a rotation about the body 𝑧-axis, and 𝑤 = 𝑤1 + 𝑖𝑤2 ∈ ℂ gives the coordinates of a point in the complex 

plane. Let the orientation of 𝑧-axis of the reference frame resulting from the rotation 𝑅1(𝑧), be described by the 

direction cosines (𝑎, 𝑏, 𝑐) in the body reference frame. Then, the mapping 𝑤: 𝑆2\(0,0, −1) → ℂ, 𝑤 =
𝑏−𝑖𝑎

1+𝑐
 is a 

stereographic projection describing the location of the rotated 𝑧-axis in the body reference frame. A more descriptive 

explanation would be that of a complex plane cutting through the unit-sphere at the equator. Then, connecting a line 

from the south pole of that sphere to the point (𝑎, 𝑏, 𝑐) on the sphere, 𝑤 is defined as the intersection point of this line 

with the plane (see the figures in Ref. [11]). Note that since 𝑅1(𝑧), 𝑅2(𝑤) ∈ SO(3), this parameterization, like every 

three-dimensional parameterization, is singular. The singularity occurs when 𝑤1, 𝑤2 → ∞, i.e. pointing towards the 

south pole of the unit-sphere. The evolution of 𝑤, 𝑧 parameters is given by the following differential equations [11] 

[
𝑤̇1

𝑤̇2

𝑧̇

] =

[
 
 
 
 

1

2
0 𝑤2

0
1

2
−𝑤1

−𝑤2 𝑤1 1 ]
 
 
 
 

[

𝜔1

𝜔2

𝜔3

] +

[
 
 
 
 
1

2
(𝑤1

2 − 𝑤2
2) 𝑤1𝑤2 0

𝑤1𝑤2

1

2
(−𝑤1

2 + 𝑤2
2) 0

0 0 0]
 
 
 
 

[

𝜔1

𝜔2

𝜔3

] (3) 
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The advantages of this parametrization are that the parameters describing orientation are equal to the rigid body’s 

degrees of freedom. This reduces both nonlinearity and the dimension of the state-space. Moreover, the differential 

equations (3) contribute a linear component to the complete system (14), which is to be described below. As a result, 

the complete system (14) can be linearized about its defined state’s origin. Specifically, in our application, we are 

interested in making an approximation to the optimal control, and hence, the structure of Eq. (3) allows a degree-by-

degree approximation starting from the linear control. Additionally, as opposed to two possible singularities of Euler 

angles parametrization, the singularity is at a more desirable location. 

 

Fig. 1 Thruster force vector in spherical coordinates. 

 

 Consider a single thruster’s force vector as shown in Fig. 1. Assume that 𝑟 = 𝑟1𝑒1 + 𝑟2𝑒2 + 𝑟3𝑒3 is the vector from 

the center of gravity (center of the body frame) to the thruster of interest. Constant angles 𝛼 and 𝛽 are the thruster 

azimuth and elevation angles [12]. Then, the generated torque from a single thruster is calculated as 

𝜏 = 𝑟 × 𝐹 = 𝑏𝑭́ = [

𝑟2 cos(𝛽) − 𝑟3 sin(𝛼) sin(𝛽)
𝑟3 cos(𝛼) sin(𝛽) − 𝑟1 cos(𝛽)

𝑟1 sin(𝛼) sin(𝛽) − 𝑟2 cos(𝛼) sin(𝛽)

] 𝑭́ (4) 

where, 𝑭́ is the scalar magnitude of the force generated by the thruster, and the force vector 𝐹 is 

𝐹 = [

𝐹1

𝐹2

𝐹3

] = [

cos(𝛼) sin(𝛽)

sin(𝛼)sin⁡(𝛽)

cos(𝛽)
] 𝑭́  (5)    

Since thrusters are typically operated in pairs in attitude maneuvers [12], we assume that the spacecraft is equipped 

with multiple pairs of bi-directional thrusters, numbered by the index 𝑖. For further simplification, we assume that 

each thruster pair is mounted symmetrically as shown in Fig. 2, and hence, the vectors from the center of mass of the 
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spacecraft to each thruster are of equal length. Let 𝑀𝑖 be the torque 𝜏 generated by the 𝑖𝑡ℎ thruster pair. The forces due 

to thruster 1 and 2 of the 𝑖𝑡ℎ pair are denoted by 𝐹𝑖1
 and 𝐹𝑖2

 respectively. 

 

Fig. 2 Produced torque by a thruster pair. 

 For instance, for the lever arms 𝑟𝑖 = 𝑟𝑖1 = −𝑟𝑖2, the generated torque by the 𝑖𝑡ℎ thruster pair is calculated as 𝜏𝑖 =

𝑟𝑖1 × 𝐹𝑖1
+ 𝑟𝑖2 × 𝐹𝑖2

= 𝑟𝑖1 × (‖𝐹𝑖1
‖ + ‖𝐹𝑖2

‖)
𝐹𝑖1

‖𝐹𝑖1‖
⁡. Let us denote expression (‖𝐹𝑖1

‖ + ‖𝐹𝑖2
‖)

𝐹𝑖1

‖𝐹𝑖1‖
 by 𝐹𝑖, that is an 

equivalent net force resulting in the generated torque by the 𝑖𝑡ℎ thruster pair. Then, 𝜏𝑖 = 𝑟𝑖 × 𝐹𝑖 is the torque generated 

by the 𝑖𝑡ℎ pair, and the total generated torque 𝜏 is summation of torques generated by all the thruster pairs. For 𝓂 

thruster pairs, the torque vector is given by 

𝜏 = ∑ 𝜏𝑖

𝓂

𝑖=1

= ∑ 𝑏𝑖𝑭́𝑖

𝓂

𝑖=1

 (6) 

where 𝑭́𝑖 = ‖𝐹𝑖1
‖ + ‖𝐹𝑖2

‖ is the scalar magnitude of the force generated by the 𝑖𝑡ℎ thruster pair, and 𝑏𝑖 is given by 

Eq. (4). Expressing Eq. (6) in state-space notation, the total exerted torque, 𝜏, is equivalent to 

𝜏 = ∑𝑏𝑖𝑭́𝑖

𝓂

𝑖=1

= ∑𝑏𝑖𝑈𝑖(𝑡)

𝓂

𝑖=1

= 𝑏𝑈(𝑡) (7) 

where, 𝑈 ∈ ℝ𝓂 is the control vector, and 𝑏 ∶ ⁡ℝ3 → ℝ𝓂 is a real valued 3-by-𝓂 matrix. The columns of 𝑏, namely 

𝑏𝑖, give the orientation of each thruster pair in terms of angles 𝛼 and 𝛽. In fact, 𝑏𝑖 vectors are the axes about which 

the corresponding control torques ‖𝑏𝑖‖𝑈𝑖 are applied [13]. We consider vectors 𝑏𝑖 to be time invariant by assumption. 

The entries of vector 𝑈, describe the generated net force by each thruster pair. Substituting 𝑏𝑈(𝑡) as the generated 

moment 𝑀 in Eq. (1), the deterministic dynamic equations become 

𝐼𝜔̇ = 𝑆(𝜔)𝐼𝜔 + 𝑏𝑈(𝑡)  (8) 

In modeling thrust uncertainty, the main idea is to let generated uncertainty from the 𝑖𝑡ℎ thruster be modeled as a 

Gaussian white noise process (𝜂𝑡)𝑖, where all the (𝜂𝑡)𝑖 are independent. The uncertainty due to a thruster pair can 

then be represented as 
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((𝜂𝑡)1 + (𝜂𝑡)2) = 𝜉𝑡 (9) 

where 𝜉𝑡 is a Gaussian mean-zero white noise process. Then we have that 

𝑈𝑖(𝑡) = 𝑢𝑖(𝑡)(1 + (𝜉𝑡)𝑖),   𝑖 = 1, …⁡,𝓂 (10) 

and the control vector with multiplicative noise becomes 

𝐼−1𝑏𝑈(𝑡) = 𝐼−1 ∑𝑏𝑖(𝑢𝑖(𝑡))(1 + (𝜉𝑡)𝑖)

𝓂

𝑖=1

 (11) 

where 𝑢 ∈ ℝ𝓂 is the nominal control vector. In general, 𝜉𝑡 accounts for uncertainty in control input, such as thrust 

magnitude variations. As opposed to the additive noise model considered in Ref. [2], the multiplicative uncertainty 

structure provides a more accurate and realistic model where the magnitude of noise generated by the thruster pair is 

dependent on the magnitude of the control input itself. For instance, a small commanded nominal control 𝑢 will result 

in (𝜉𝑢) ≈ 0 for an arbitrary 𝜉. Furthermore, it is known that for a measurable function 𝜎(𝑢(𝑡)), 

∫𝜎(𝑢(𝑡))𝜉𝑡 𝑑𝑡⁡,⁡⁡⁡⁡⁡ ∫ 𝜎(𝑢(𝑡))⁡𝑑𝑊𝑡 (12) 

are statistically equivalent [14]. Hence, the differential equation (8) is statistically equivalent to 

𝜔𝑡 ⁡= 𝜔𝑜 + ∫ [𝐼−1𝑆(𝜔𝑠)𝐼𝜔𝑠 + 𝐼−1𝑏𝑢(𝑠)]⁡𝑑𝑠
𝑡

𝑡𝑜

+ ∫ 𝜎(𝑢(𝑡))⁡𝑑𝑊𝑡

𝑡

𝑡𝑜

 (13) 

where 𝑊𝑡 𝑡 ≥ 0 is the 𝓂-dimensional standard Brownian motion on the probability space (𝛺, ℱ, ℙ), and 𝜎(. ) denotes 

the diffusion coefficient. Next, to adjoin the dynamic and kinematic equations (8) and (3), we define the state vector 

as 𝑥 = [𝜔1⁡𝜔2⁡𝜔3⁡𝑤1⁡𝑤2⁡𝑧]
𝑇. Differentiating 𝑥, and letting 𝐼1 =

𝐼2−𝐼3

𝐼1
, 𝐼2 =

𝐼3−𝐼1

𝐼2
, and 𝐼3 =

𝐼1−𝐼2

𝐼3
, with 𝐼𝑖 , 𝑖 = 1,2,3 

being the entries of the principal moment of inertia matrix, the complete system is described by the following SDE 

𝑑𝑥 = [𝐴𝑥 + 𝑓(2)(𝑥) + 𝑓(3)(𝑥) + 𝐵𝑢(𝑡)]𝑑𝑡 + 𝜎(𝑢(𝑡))𝑑𝑊𝑡 (14) 

where, 𝐴 =

[
 
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1

2
0 0 0 0 0

0
1

2
0 0 0 0

0 0 1 0 0 0]
 
 
 
 
 
 

, 𝑓(2)(𝑥) =

[
 
 
 
 
 

𝐼1𝑥2𝑥3

𝐼2𝑥1𝑥3

𝐼3𝑥1𝑥2
𝑥3𝑥5

−𝑥3𝑥4

−𝑥1𝑥5 + 𝑥2𝑥4]
 
 
 
 
 

, 𝑓(3)(𝑥) =

[
 
 
 
 
 
 

0
0
0

1

2
(𝑥1𝑥4

2 − 𝑥1𝑥5
2) + 𝑥2𝑥4𝑥5

1

2
(−𝑥2𝑥4

2 + 𝑥2𝑥5
2) + 𝑥1𝑥4𝑥5

0 ]
 
 
 
 
 
 

, and 

𝐵 = [
𝐼−1𝑏
03×𝓂

]. The superscript in parenthesis gives the order of the terms in state. In the case of spacecraft thrusters 

with multiplicative noise, the diffusion coefficient is a function of control and is given by 
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𝜎(𝑢) ≝ 𝜀𝐵 [
𝑢1 0 0
0 ⋱ 0
0 0 𝑢𝓂

] (15) 

where, 𝜀 ≥ 0 is a real parameter scaling the thruster uncertainty effects. The diagonal form of the control matrix of 

Eq. (15) makes sure that each entry of the 𝓂-dimensional Wiener process is associated with its respective input 𝑢𝑖(𝑡), 

𝑖 = 1,…⁡ ,𝓂. 

III. Optimal Attitude Control 

 Having derived a model of the spacecraft attitude system, we are now interested in finding a stochastic optimal 

control for the nonlinear constraint (14), which minimizes the expected cost function 

𝒥(𝑢) = 𝔼𝑥𝑜,𝑡𝑜 [∫ 𝑟(𝑥, 𝑢) 𝑑𝑡

∞

𝑡𝑜

] (16) 

in an infinite horizon setting, given the initial time 𝑡𝑜 ≥ 0, and state 𝑥𝑜 ∈ ℝ6. At all times, the initial conditions are 

assumed to be known with probability 1. Let us define the running cost function 𝑟: ℝ6 × ℝ𝓂 → ℝ, as 𝑟(𝑥, 𝑢) =

1

2
𝑢𝑇𝑅𝑢 + 𝓇(𝑥) where 𝑥 ∈ ℝ6, 𝑢 ∈ ℝ𝓂, 𝑅 ∈ ℝ𝓂×𝓂, 𝑅 > 0, 𝓇(𝑥) = ∑ 𝓇(𝑖)(𝑥)𝑚

𝑖=2 ⁡is a power series, and 𝑚 is the 

order of the terms in 𝑥. For 𝑚 = 2, the regulator has the form 𝓇(𝑥) =
1

2
𝑥𝑇𝑄𝑥, where 𝑄 ∈ ℝ6×6, 𝑄 ≥ 0. Let ℙ denote 

the probability measure generated by trajectories starting at (𝑥𝑜, 𝑡𝑜), driven by the Brownian motion 𝑊. Then 𝔼𝑥𝑜,𝑡𝑜  

is an expected value with respect to the probability measure ℙ. 

 Consider the following HJB equation associated with the nonlinear SDE (14) 

min
𝑢

{ℒ𝑢𝑉(𝑥) + 𝑟(𝑥, 𝑢)} = 0 (17) 

ℒ𝑢𝑉(𝑥) = ∑ 𝑓𝑖(𝑥, 𝑢)

6

𝑖=1

𝜕𝑉(𝑥)

𝜕𝑥𝑖

+
1

2
∑∑𝑎𝑖,𝑗(𝑢)

6

𝑗=1

6

𝑖=1

𝜕2𝑉(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗

 (18) 

Here, 𝑎(𝑢) ∈ ℝ6×6, 𝑎𝑖,𝑗(𝑢) = (𝜎(𝑢)𝜎(𝑢)𝑇)𝑖,𝑗 , 𝜎 is defined by (15), and ⁡𝑓(𝑥, 𝑢) = 𝐴𝑥 + 𝑓(2)(𝑥) + 𝑓(3)(𝑥) + 𝐵𝑢(𝑡).  

The superscript 𝑢 denotes the dependency of the infinitesimal generator (18) on control. The solution to the HJB (17), 

is the value function (minimum cost) 𝑉(𝑥): ℝ6×1 → ℝ. We are interested in finding approximations of the optimal 

value function, and consequently of the optimal control in the ring of formal power series over ℝ. The following 

theorem gives the optimality conditions of control. 
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Theorem 1 Suppose a form of 𝑉(𝑥) and 𝑢(𝑥) have been found. If 𝑉(𝑥) and 𝑢(𝑥) satisfy the conditions i-iii, then 

the control 𝑢 = 𝑢(𝑥) is optimal and will minimize the functional (16) in infinite time.    

i. The Lyapunov function, 𝑉(𝑥), satisfies the asymptotic stability conditions of Lyapunov’s second method 

for stochastic dynamical systems (see Remark 2). 

ii. Given the closed-loop system (14), 𝑉(𝑥) satisfies the equation ℒ𝑢𝑉(𝑥) = −𝑟(𝑥, 𝑢(𝑥)), where ℒ𝑢(. ) is 

the infinitesimal generator of diffusion (18). 

iii. The Hamiltonian ℋ(𝑥, 𝜅, 𝑉(𝑥)) = 𝑓(𝑥, 𝜅)𝑇 𝜕𝑉(𝑥)

𝜕𝑥
+

1

2
trace (𝑎(𝜅)

𝜕2𝑉(𝑥)

𝜕𝑥2 ) + 𝑟(𝑥, 𝜅) is strictly convex in 

𝜅, and attains its minimum at 𝜅 = 𝑢. 

 

Proof  To show that the above’s assertion holds, we follow the general steps of Theorem 1.1 in [6], for stochastic 

dynamics. Let 𝑢(𝑥) be the optimal control. Then from condition ii it follows that 

𝑉(𝑥𝑜) = 𝔼𝑥𝑜,𝑡𝑜 [∫ 𝑟(𝑥𝑠, 𝑢(𝑥𝑠))⁡𝑑𝑠 + 𝑉(𝑥𝑡)
𝑡

𝑡𝑜

] (19) 

Set 𝑡𝑜 = 0 and let 𝑡 → ∞. By assumption, condition i of asymptotic stability applies so that for 𝑡 → ∞, 𝑉(𝑥𝑡) → 0. 

Thus, Eq. (19) becomes 

𝑉(𝑥𝑜) = 𝔼𝑥𝑜,𝑡𝑜 [∫ 𝑟(𝑥𝑠, 𝑢(𝑥𝑠))⁡𝑑𝑠
∞

𝑡𝑜=0

] (20) 

Next, assume that 𝑢(𝑥) is not optimal. That is, there exists some 𝑢∗(𝑥) such that 

𝔼𝑥𝑜,𝑡𝑜 [∫ 𝑟(𝑥𝑠 , 𝑢
∗(𝑥𝑠))⁡𝑑𝑠

∞

𝑡𝑜=0

] < ⁡⁡𝔼𝑥𝑜,𝑡𝑜 [∫ 𝑟(𝑥𝑠 , 𝑢(𝑥𝑠))⁡𝑑𝑠
∞

𝑡𝑜=0

] (21) 

From condition iii, we have 

ℋ(𝑥, 𝑢∗, 𝑉(𝑥)) > ℋ(𝑥, 𝑢, 𝑉(𝑥)) (22) 

Integrating (22) with respect to time, the inequality becomes 

∫ ℒ𝑢∗
𝑉(𝑥𝑠)

𝑡

𝑡𝑜

+ ∫ 𝑟(𝑥, 𝑢∗)𝑑𝑠
𝑡

𝑡𝑜

− (∫ ℒ𝑢𝑉(𝑥𝑠)
𝑡

𝑡𝑜

𝑑𝑠 + ∫ 𝑟(𝑥, 𝑢)𝑑𝑠
𝑡

𝑡𝑜

) > 0 
 

⟹⁡𝔼𝑥𝑜,𝑡𝑜
[∫ ℒ𝑢∗

𝑉(𝑥𝑠)
𝑡

𝑡𝑜

+ ∫ 𝑟(𝑥, 𝑢∗)𝑑𝑠
𝑡

𝑡𝑜

] − 𝔼𝑥𝑜,𝑡𝑜
[∫ ℒ𝑢𝑉(𝑥𝑠)

𝑡

𝑡𝑜

𝑑𝑠 + ∫ 𝑟(𝑥, 𝑢)𝑑𝑠
𝑡

𝑡𝑜

] > 0 (23) 

Applying Itô lemma [15] to 𝑉(𝑥), we obtain the expression 
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𝑉(𝑥𝑡) − 𝑉(𝑥𝑜) = 𝔼𝑥𝑜,𝑡𝑜
[∫ ℒ𝑢∗

𝑉(𝑥𝑠)
𝑡

𝑡𝑜

𝑑𝑠 + ∫ (
∂𝑉(𝑥𝑠)

𝜕𝑥
)

𝑇

𝜎(𝑢∗(𝑥𝑠))⁡𝑑𝑊𝑠

𝑡

𝑡𝑜

] (24) 

Substituting expression (24) in inequality (23) for both processes driven by 𝑢∗ and 𝑢, we obtain  

𝑉(𝑥𝑡
𝑢∗

) − 𝑉(𝑥𝑜) + 𝔼𝑥𝑜,𝑡𝑜
[∫ 𝑟(𝑥, 𝑢∗)𝑑𝑠

𝑡

𝑡𝑜

] − (𝑉(𝑥𝑡
𝑢) − 𝑉(𝑥0) + 𝔼𝑥𝑜,𝑡𝑜

[∫ 𝑟(𝑥, 𝑢)𝑑𝑠
𝑡

𝑡𝑜

]) > 0 (25) 

Similarly set 𝑡𝑜 = 0 and let 𝑡 → ∞. By condition i, Eq. (25) becomes 

𝔼𝑥𝑜,𝑡𝑜
[∫ 𝑟(𝑥, 𝑢∗)𝑑𝑠

∞

𝑡𝑜=0

] > 𝔼𝑥𝑜,𝑡𝑜
[∫ 𝑟(𝑥, 𝑢)𝑑𝑠

∞

𝑡𝑜=0

] (26) 

which is a contradiction, proving that 𝑢 is optimal if conditions i, ii, and iii are satisfied.                     ☐ 

 

 In the succeeding sections, conditions of existence and stability of different orders of optimal control are discussed. 

First, for simplicity, we shall introduce some notation. Let 𝐻:ℝ6 → ℝ6×6 be a diagonal second order differential 

function defined as 

𝐻(𝑉) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕2𝑉

𝜕𝑥1
2 0 0 0 0 0

0
𝜕2𝑉

𝜕𝑥2
2 0 0 0 0

0 0
𝜕2𝑉

𝜕𝑥3
2 0 0 0

0 0 0
𝜕2𝑉

𝜕𝑥4
2 0 0

0 0 0 0
𝜕2𝑉

𝜕𝑥5
2 0

0 0 0 0 0
𝜕2𝑉

𝜕𝑥6
2]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (27) 

then inspecting the noise term of HJB (17), assuming a diagonal matrix 𝐼−1𝑏, we have that 

1

2
∑∑ 𝑎𝑖,𝑗(𝑢)

6

𝑗=1

6

𝑖=1

𝜕2𝑉(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗

=
1

2
𝑡𝑟𝑎𝑐𝑒 (𝜎(𝑢)𝜎(𝑢)𝑇

𝜕2𝑉(𝑥)

𝜕𝑥2
)  

⟹⁡∑ ∑𝑎𝑖,𝑗(𝑢)

6

𝑗=1

6

𝑖=1

𝜕2𝑉(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗

= 𝜀2𝑢𝑇𝐵𝑇𝐻[𝑉(𝑥)]𝐵𝑢 (28) 

 Conditions of Theorem 1 imply that 𝑢(𝑥) and 𝑉(𝑥) resulting from HJB (17) are optimal. It remains now to find 

approximations of such solutions in form of truncated series for a choice of 𝑚 ≥ 2. To do so, suppose 𝑢(𝑥) and 𝑉(𝑥) 
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are the optimal solutions of (17). Substituting 𝑢(𝑥) and 𝑉(𝑥) back in (17), we obtain the Hamiltonian Eq. (29). 

Additionally, differentiating Eq. (29) with respect to 𝑢, the control equation (30) is obtained 

(𝐴𝑥 + 𝑓(2)(𝑥) + 𝑓(3)(𝑥))
𝑇 𝜕𝑉(𝑥)

𝜕𝑥
+ (𝐵𝑢)𝑇

𝜕𝑉(𝑥)

𝜕𝑥
+

1

2
𝜀2𝑢𝑇𝐵𝑇𝐻[𝑉(𝑥)]𝐵𝑢 +

1

2
𝑢𝑇𝑅𝑢 + 𝓇(𝑥) = 0 (29) 

𝐵𝑇
𝜕𝑉(𝑥)

𝜕𝑥
+ 𝑅𝑢 + 𝜀2𝐵𝑇𝐻[𝑉(𝑥)]𝐵𝑢 = 0 (30) 

 Note that Eq. (29) and (30) form a system of equations in which their solutions are the assumed optimal control 

and optimal value function. Following Al’brekht’s method of approximation [6], we assume that 𝑉(𝑥) and 𝑢(𝑥) 

possess a power series form of 

𝑉(𝑥) = 𝑉(2)(𝑥) + 𝑉(3)(𝑥) + 𝑉(4)(𝑥) + 𝑉(5)(𝑥) + 𝑉(6)(𝑥) + 𝑉(7)(𝑥) + ⋯+ 𝑉(𝑚)(𝑥) (31) 

𝑢(𝑥) = 𝑘(1)(𝑥) + 𝑘(2)(𝑥) + 𝑘(3)(𝑥) + 𝑘(4)(𝑥) + 𝑘(5)(𝑥) + 𝑘(6) + ⋯+ 𝑘(𝑚−1)(𝑥) (32) 

where 𝑚 ≥ 2 is the order of the term in 𝑥 and 𝑘(1)(𝑥) = 𝐾𝑥, with linear optimal gain 𝐾 ∈ 𝑀3×6[ℝ]. 

 

Proposition 1  Given the dynamical system (14), linear control 

𝑘(1)(𝑥) = 𝐾𝑥 = −(𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥))𝐵)
−1

𝐵𝑇𝑃𝑥 (33) 

asymptotically stabilizes the linear dynamics in probability, and is optimal with respect to the quadratic Hamiltonian, 

if there exists a positive definite Hermitian matrix 𝑃 ∈ 𝑀6[ℝ] satisfying the quadratic expansion of (29). That is, if 

the following two conditions hold simultaneously: 

i. The pair (𝐴, 𝐵) satisfies the Kalman rank condition, and for 𝑄 = 𝐶𝑇𝐶, the pair (𝐶, 𝐴) is detectable.  

ii. sup {|
𝛱1(16×6)

2(𝜆1+𝜆2)
| , |

𝛱2(16×6)

2(𝜆3+𝜆4)
| , |

𝛱3(16×6)

2(𝜆5+𝜆6)
| , |

2𝜆1𝜆2𝛱1(16×6)

𝜆1+𝜆2
| , |

2𝜆3𝜆4𝛱2(16×6)

𝜆3+𝜆4
| , |

𝜆5𝜆6𝛱3(16×6)

2(𝜆5+𝜆6)
|} < 1, where 𝜆𝑖,     

𝑖 = 1,… ,6 are the eigenvalues of 𝐴 + 𝐵𝐾, 𝛱𝑗(16×6) =
𝜀2𝐵𝑗

4

𝑅𝑗
2+𝜀2𝐵𝑗

2𝑅𝑗
, 𝑗 = 1,2,3 and 𝐵𝑗 , 𝑅𝑗 ∈ ℝ are the 𝑗th 

nonzero entries of matrices 𝐵 and diagonal 𝑅 respectively. 

 

Proof  To argue existence of stabilizing linear control, we will use a series of existing results on existence and 

uniqueness of the Lyapunov function (31) in association with (17) for 𝑚 = 2. First, consider the linear part of the 

attitude dynamics (14) 

𝑑𝑥𝑡 = [𝐴𝑥𝑡 + 𝐵𝑘(1)(𝑥)]𝑑𝑡 + 𝜎 (𝑘(1)(𝑥)) 𝑑𝑊𝑡 (34) 
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Suppose there exists, in a neighborhood of the origin 𝒳 ⊆ ℝ6, a twice differentiable positive definite function 𝑉(𝑥), 

such that lim
𝑥→0

𝑉(𝑥) = 0. Then if ℒ𝑢𝑉(𝑥) < 0 in 𝒳, the trajectories of the linear SDE (34), starting within 𝒳, approach 

the trivial solution and the trivial solution is asymptotically stable in probability by Khasminskii’s Corollary 5.1 [16]. 

Hence, if there exists a positive definite Hermitian matrix 𝑃 ∈ 𝑀6[ℝ] such that the Lyapunov function 𝑉(2)(𝑥) =

1

2
𝑥𝑇𝑃𝑥 decreases along the trajectories of (34), then the linear SDE (34) is asymptotically stable in probability. 

Certainly if 𝑃 is positive definite, then 𝑉(2)(𝑥) is positive definite. Under the condition of optimality of control for 

𝑚 = 2, negative definiteness of ℒ𝑢𝑉(2)(𝑥) is guaranteed if 

ℒ𝑢𝑉(2)(𝑥) = −𝑟 (𝑥, 𝑘(1)(𝑥)) (35) 

for 𝑥 in 𝒳. The equality (35) is in fact the quadratic terms of the Hamiltonian (29). Applying the generator (18) on 

𝑉(2)(𝑥), substituting for the linear dynamics (34) and the quadratic running cost, we have 

(𝐴𝑥 + 𝐵𝑘(1)(𝑥))
𝑇 𝜕𝑉2(𝑥)

𝜕𝑥
+

1

2
𝜀2𝑘(1)(𝑥)𝑇𝐵𝑇𝐻[𝑉2(𝑥)]𝐵𝑘(1)(𝑥) = −

1

2
𝑥𝑇𝑄𝑥 − 𝑘(1)(𝑥)𝑇𝑅𝑘(1)(𝑥) (36) 

Simplifying Hamiltonian (36), the following algebraic Riccati equation (ARE) is obtained 

𝑥𝑇[𝑄 + 𝑃𝐴 + 𝐴𝑇𝑃 + 2𝑃𝐵𝐾 + 𝐾𝑇(𝑅 + 𝜀2𝐵𝑇𝑃̃𝐵)𝐾]𝑥 = 0 (37) 

The linear control 𝑘(1)(𝑥) = −(𝑅 + 𝜀2𝐵𝑇𝑃̃𝐵)
−1

(𝐵)𝑇𝑃𝑥 is then computed through differentiating Eq. (36) with 

respect to control. This is equivalent to solving for linear terms of Eq. (30). Substituting for 𝐾, we obtain 

𝑄 + 𝑃𝐴 + 𝐴𝑇𝑃 − ⁡𝑃𝐵(𝑅 + 𝜀2𝐵𝑇𝐻[𝑉2(𝑥)]𝐵)−1(𝑃𝐵)𝑇 = 0 (38) 

 For a linear deterministic system, Eq. (38) will have the form 𝑄 + 𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃𝐵𝑅−1(𝑃𝐵)𝑇 = 0. For such a 

system, stabilizability of the pair (𝐴, 𝐵) is a sufficient condition for existence of matrix 𝑃 (see Theorem 3 in Ref. 

[17]). However, ARE (38) of the stochastic dynamics (34) requires additional consideration. Due to Wonham [18], 

Theorem 4.1, we have that the following form of the ARE 

𝑄 + 𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃𝐵𝑅−1(𝑃𝐵)𝑇 + 𝛱(𝑃) = 0 (39) 

admits at least one positive semidefinite solution 𝑃, if for 𝑄 = 𝐶𝑇𝐶, the pair (𝐶, 𝐴) is detectable, and (𝐴, 𝐵) is 

stabilizable, such that 

𝑖𝑛𝑓
𝐾

‖∫ 𝑒(𝐴+𝐵𝐾)𝑇𝑡𝛱(16×6)𝑒
(𝐴+𝐵𝐾)𝑡

∞

0

𝑑𝑡‖
∞

< 1 (40) 
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where 𝛱:𝑀6(ℝ) → 𝑀6(ℝ) is a linear map from the space of symmetric matrices onto itself, and ‖⁡. ‖∞ denotes the 

spectral norm. In addition, if (𝐶, 𝐴) is observable, then 𝑃 is positive definite and unique [18]. The difference between 

ARE (39) and a deterministic Riccati is the term 𝛱(𝑃), and the bound (40) implies that 𝛱(𝑃) is not too large. 

 Suppose 𝐾∗ is the gain yielding the smallest spectral norm and let 𝐾𝑜 be the optimal gain. If 𝐾∗ = 𝐾𝑜, then 

bounding the spectral norm by 𝐾𝑜 satisfies bound (40). Now suppose 𝐾∗ ≠ 𝐾𝑜. If the spectral norm due to 𝐾𝑜 is 

bounded above by 1, then surely, spectral norm due to 𝐾∗ is also bounded by 1. Here, we set 𝐾 = 𝐾𝑜 and seek 

conditions where bound (40) holds for the optimal gain satisfying Eq. (37). Doing so of course yields a stronger 

condition enabling us to find closed-form expressions guaranteeing bound (40) to be satisfied. 

 Now consider the ARE (38). Applying the Woodbury identity on (𝑅 + 𝜀2𝐵𝑇𝐻[𝑉2(𝑥)]𝐵)−1, we rewrite Eq. (38) 

in the general form of the Eq. (39), where 

𝛱(𝑃) = 𝜀2𝑃𝐵 (𝑅−1𝐵𝑇 (𝐻 (𝑉(2)(𝑃, 𝑥))
−1

+ 𝜀2𝐵𝑅−1𝐵𝑇)
−1

𝐵𝑅−1) (𝑃𝐵)𝑇  
(41) 

and hence, condition (40) applies as an existence condition of ARE (38). Note that the norm of bound (40) is the 

largest singular value of its argument. Define 𝒯 ≝ ∫ 𝑒(𝐴+𝐵𝐾)𝑇𝑡𝛱(16×6)𝑒
(𝐴+𝐵𝐾)𝑡∞

0
𝑑𝑡, then ‖𝒯‖∞ = (𝜆max(𝒯

∗𝒯)⁡⁡)
1

2, 

where 𝜆max denotes the largest eigenvalue, and 𝒯∗ is the conjugate transpose of  𝒯. The integral of (40) converges if 

all the eigenvalues of 𝐴 + 𝐵𝐾 are real and negative. Such a requirement can be satisfied given the controllability of 

the system. Computing the convergent integral, we obtain  

𝒯 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 −

𝛱1(16×6)

2(𝜆1 + 𝜆2)
0 0 0 0 0

0 −
𝛱2(16×6)

2(𝜆3 + 𝜆4)
0 0 0 0

0 0 −
𝛱3(16×6)

2(𝜆5 + 𝜆6)
0 0 0

0 0 0 −
2𝜆1𝜆2𝛱1(16×6)

𝜆1 + 𝜆2

0 0

0 0 0 0 −
2𝜆3𝜆4𝛱2(16×6)

𝜆3 + 𝜆4

0

0 0 0 0 0 −
𝜆5𝜆6𝛱3(16×6)

2(𝜆5 + 𝜆6) ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(42) 

where 𝜆1, … , 𝜆6 are the eigenvalues of 𝐴 + 𝐵𝐾, and 𝛱𝑗(16×6), 𝑗 = 1,2,3 are the nonzero entries of 𝛱(16×6). Since 𝒯 

has converged to a symmetric matrix, we have that ‖𝒯‖∞ = |𝜆𝑚𝑎𝑥(𝒯)|. It then follows that bounding the absolute 

value of all the eigenvalues of 𝒯 by 1 implies ‖𝒯‖∞ < 1. 
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 To conclude, given that matrices 𝐴 and 𝐵 satisfy the Kalman rank condition, and that for 𝑄 = 𝐶𝑇𝐶, matrices 𝐶 

and 𝐴 are detectable such that ‖𝒯‖∞ < 1, then there exists a positive definite Hermitian matrix 𝑃 satisfying the ARE 

(39). This in turn implies the existence of a quadratic Lyapunov function satisfying the equality (35), and therefore 

asymptotic stability of the dynamical system (34) in probability.                                                                            ☐ 

 

Proposition 2  Let 𝐿1 ≡ ((𝐴 + 𝐵𝐾)𝑥)
𝑇 𝜕

𝜕𝑥
 and 𝐿2 ≡

1

2
𝜀2(𝐵𝐾𝑥)(𝐵𝐾𝑥)𝑇𝐻 be linear operators, 𝐿1, 𝐿2: ℝ

6 → ℝ. If 

the minimum eigenvalue of 𝐿1 acting on 𝑉(𝑚)(𝑥) is greater than the maximum eigenvalue of 𝐿2 in magnitude, and the 

linear deterministic part of the dynamics (14) is asymptotically stable, then the nonlinear stochastic control for⁡𝑚 > 2 

exists in some 𝒳𝑚 ⊂ ℝ6 containing the origin and is given by 

𝑘(𝑚−1)(𝑥) = −(𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥)) 𝐵)
−1

[(𝐵)𝑇
𝜕𝑉(𝑚)(𝑥)

𝜕𝑥
+ ∑ 𝜀2⁡𝐵𝑇𝐻 (𝑉(𝑖+1)(𝑥)) 𝐵⁡𝑘(𝑚−𝑖)(𝑥)

𝑚−1

𝑖=2

] (43) 

 

Proof  To show the existence of higher order control, solvability of Lyapunov function (31) for 𝑚 > 2 must be 

shown. To do so, we study the invertibility of the linear operator mapping 𝑉(𝑚)(𝑥) to a polynomial of the same order. 

As the series-based method [6] has allowed us, we inspect the linear operator acting on 𝑉(𝑥), order by order. Let us 

first derive expression of these linear operators for 𝑚 > 2. To do so, we substitute series (31) and (32) into the 

Hamiltonian (29). This expansion is given by 

(𝐴𝑥)𝑇
𝜕𝑉(𝑚)(𝑥)

𝜕𝑥
+ 𝑓(2)𝑇(𝑥)

𝜕𝑉(𝑚−1)(𝑥)

𝜕𝑥
+ 𝑓(3)𝑇(𝑥)

𝜕𝑉(𝑚−2)(𝑥)

𝜕𝑥
+ ∑(𝐵𝑘(𝑚−𝑗+1))

𝑇 𝜕𝑉(𝑗)(𝑥)

𝜕𝑥

𝑚

𝑗=2

 

+
(2 − 𝛿𝛼′𝛽′⁡)

2
(𝑘(𝛼′)(𝑥))

𝑇

𝑅𝑘(𝛽′)(𝑥) +
(2 − 𝛿𝛼𝛽⁡)

2
(𝑘(𝛼)(𝑥))

𝑇

(𝜀2𝐵𝑇𝐻 (𝑉(𝛾)(𝑥)) 𝐵) 𝑘(𝛽)(𝑥)

= −𝓇(𝑚)(𝑥) 

(44) 

for 𝛼 + 𝛾 + 𝛽 = 𝑚 − 2, and 𝛼′ + 𝛽′ = 𝑚, where 𝛼, 𝛾, 𝛽, 𝛼′, 𝛽′ ∈ ℕ, and 𝛿𝑖𝑗⁡ is the Kronecker delta (𝛿𝑖𝑗⁡ = 1, when 

𝑖 = 𝑗 and 𝛿𝑖𝑗⁡ = 0 otherwise). Similarly, we substitute expansions (31) and (32) in the optimal control equation (30). 

Grouping, rearranging, and solving for every control order 𝑘(𝑚−1)(𝑥) separately, the nonlinear control, as a function 

of 𝑉(𝑚)(𝑥) becomes as given by (43) ∀⁡𝑚 > 2. Then to solve the system (29)-(30), we substitute the expressions of 

optimal control (43) back into Hamiltonians (44) to arrive at 𝑚 − 1 equations with 𝑚 − 1 unkowns, one unknown per 

equation. For 𝑗 = 3,4,… ,𝑚 − 1 the solution of equation 𝑗 − 1 is an input to equation 𝑗. In particular, we substitute for 
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(𝐵𝑘(𝑚−𝑗+1))
𝑇 𝜕𝑉(𝑗)(𝑥)

𝜕𝑥
, 𝑗 = 2,3,4, … ,𝑚 − 1, in every 𝑚th order Hamiltonian equation resulting from Eq. (44). To 

construct these terms, let us rewrite Eq. (43) as 

(𝐵)𝑇
𝜕𝑉(𝑚)(𝑥)

𝜕𝑥
= −(𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥)) 𝐵) 𝑘(𝑚−1)(𝑥) − ∑ 𝜀2⁡𝐵𝑇𝐻 (𝑉(𝑖+1)(𝑥)) 𝐵⁡𝑘(𝑚−𝑖)(𝑥)

𝑚−1

𝑖=2

 (45) 

then multiplying by (𝑘(𝑚−𝑗+1))
𝑇
, 𝑗 = 2,3,4, … ,𝑚 − 1, we obtain the modified control expressions 

(𝑘(𝑚−𝑗+1))
𝑇 𝜕𝑉(𝑗)(𝑥)

𝜕𝑥

= −(𝑘(𝑚−𝑗+1))
𝑇
(𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥)) 𝐵) 𝑘(𝑗−1)(𝑥)

− (𝑘(𝑚−𝑗+1))
𝑇
∑ 𝜀2⁡𝐵𝑇𝐻 (𝑉(𝑖+1)(𝑥)) 𝐵⁡𝑘(𝑗−𝑖)(𝑥)⁡

𝑗−1

𝑖=2

 

 

(46) 

for 𝑗 = 2,3,4, … ,𝑚 − 1. Substituting (46) in every 𝑚th order Hamiltonian and carrying out cancellations, we arrive at 

𝑚 − 1 equations of 𝑚th order, which are the expansion of Eq. (29). This system of equations is summarized by 

((𝐴 + 𝐵𝐾)𝑥)
𝑇 𝜕𝑉(𝑚)(𝑥)

𝜕𝑥
+

1

2
(𝐾𝑥)𝑇 (𝜀2𝐵𝑇𝐻 (𝑉(𝑚)(𝑥)) 𝐵) (𝐾𝑥) = Ψ(𝑚)(𝑥) (47) 

where Ψ(𝑚)(𝑥) is the summation of all the polynomials of order 𝑚 with a known form. Notice that 𝑉(𝑚)(𝑥) is the 

only unknown of this equation. To determine the existence of coefficients of 𝑉(𝑚)(𝑥) that would satisfy Eq. (47), let 

us define the linear operator 𝐿 acting on an arbitrary function 𝜃(𝑥) as 

𝐿⁡𝜃(𝑥) ≡ ((𝐴 + 𝐵𝐾)𝑥)
𝑇 𝜕𝜃(𝑥)

𝜕𝑥
+

1

2
(𝐾𝑥)𝑇(𝜀2𝐵𝑇𝐻(𝜃(𝑥))𝐵)(𝐾𝑥) (48) 

where 𝜃:ℝ6 → ℝ is a twice differentiable arbitrary polynomial function. We would like to determine if Ψ(𝑚)(𝑥) are 

in the image of the mapping 𝐿:⁡𝜃(𝑥) → 𝐿(𝜃(𝑥)). To do so, we consider the conditions of nonresonance [19] of the 

homological equation (47). This is of course equivalent to invertibility of the linear operator 𝐿, i.e. being able to 

compute 𝑉(𝑚)(𝑥) = 𝐿−1Ψ(𝑚)(𝑥). We shall show this by considering the eigenvalues of the operators. However, 

observing that 𝐿⁡𝜃(𝑥) = (𝐿1 + 𝐿2)⁡𝜃(𝑥), we treat the invertibility of each linear map 𝐿1 and 𝐿2 separately, and will 

thereafter prove the invertibility of 𝐿. This is because given Eq. (14), eigenvalues of 𝐴 + 𝐵𝐾 and 𝐵𝐾 are not identical. 

 Let (𝜈𝑖 , λ𝑖), 𝑖 = 1,… ,6 denote a left eigenvector of the matrix 𝐴 + 𝐵𝐾 ∈ ℝ6×6, and corresponding eigenvalue. A 

polynomial in 𝑥, 𝜃(𝑚)(𝑥) can be represented in the basis 

𝜃(𝑚)(𝑥) = 〈ℓ1, 𝑥〉〈ℓ2, 𝑥〉 … 〈ℓ𝑚, 𝑥〉 
(49) 
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where ℓ𝑖 ∈ ℝ6, 𝑖 = 1,…⁡,𝑚 are arbitrary vectors, and 〈. , . 〉 denotes a dot product operation [20]. As the base case, let 

𝑚 = 3. Since for system (14), 𝐴 + 𝐵𝐾 has a full set of linearly independent eigenvectors, any polynomial 𝜃(3)(𝑥) in 

the basis of the eigenvectors of 𝐴 + 𝐵𝐾, is given by 

𝜃(3)(𝑥) = ∑ 𝑐𝑖𝑗𝑘
(3)

𝜃𝑖𝑗𝑘
(3)

(𝑥)

6

𝑖,𝑗,𝑘=1

 (50) 

where 𝜃𝑖𝑗𝑘
(3)(𝑥) = 〈𝜈𝑖 , 𝑥〉〈𝜈𝑗 , 𝑥〉〈𝜈𝑘 , 𝑥〉, and 𝑐𝑖𝑗𝑘

(3)
∈ ℝ is a constant for  𝑖, 𝑗, 𝑘 = 1,… , 6. If 𝐿𝑝⁡𝜃𝑖𝑗𝑘

(3)(𝑥) = 𝓈𝑖𝑗𝑘
(3)

𝜃𝑖𝑗𝑘
(3)

(𝑥) for 

𝑝 = 1,2 and some 𝓈𝑖𝑗𝑘, then we conclude that 𝓈𝑖𝑗𝑘 is the 𝑖𝑗𝑘th eigenvalue of 𝐿𝑝. 

 Consider the first order additive portion of the operator, 𝐿1, acting on a basis function of 𝜃𝑖𝑗𝑘
(3)(𝑥). We have that  

𝐿1𝜃𝑖𝑗𝑘
(3)(𝑥) = 𝑥𝑇(𝐴 + 𝐵𝐾)𝑇⁡𝜕/𝜕𝑥[〈𝜈𝑖 , 𝑥〉〈𝜈𝑗 , 𝑥〉〈𝜈𝑘 , 𝑥〉]  

⟹⁡𝐿1𝜃𝑖𝑗𝑘
(3)(𝑥) = 𝑥𝑇(𝐴 + 𝐵𝐾)𝑇[(𝜈𝑖)𝑇〈𝜈𝑗 , 𝑥〉〈𝜈𝑘 , 𝑥〉 + (𝜈𝑗)𝑇〈𝜈𝑖 , 𝑥〉〈𝜈𝑘, 𝑥〉 + (𝜈𝑘)𝑇〈𝜈𝑖 , 𝑥〉〈𝜈𝑗 , 𝑥〉] (51) 

Using the relation 𝜈𝑖(𝐴 + 𝐵𝐾) = 𝜆𝑖𝜈𝑖 , for 𝑖 = 1,…⁡ ,6, we make the following substitutions 

𝐿1𝜃𝑖𝑗𝑘
(3)(𝑥) = 𝑥𝑇⁡[𝜆𝑖𝜈𝑖〈𝜈𝑗 , 𝑥〉〈𝜈𝑘 , 𝑥〉 + 𝜆𝑗𝜈𝑗〈𝜈𝑖 , 𝑥〉〈𝜈𝑘, 𝑥〉 + 𝜆𝑘𝜈𝑘〈𝜈𝑖 , 𝑥〉〈𝜈𝑗 , 𝑥〉]  

⟹⁡𝐿1𝜃𝑖𝑗𝑘
(3)(𝑥) = [𝜆𝑖〈𝜈𝑖 , 𝑥〉〈𝜈𝑗 , 𝑥〉〈𝜈𝑘 , 𝑥〉 + 𝜆𝑗〈𝜈𝑖 , 𝑥〉〈𝜈𝑗 , 𝑥〉〈𝜈𝑘 , 𝑥〉 + 𝜆𝑘〈𝜈𝑖 , 𝑥〉〈𝜈𝑗 , 𝑥〉〈𝜈𝑘 , 𝑥〉]  

⟹⁡𝐿1𝜃𝑖𝑗𝑘
(3)(𝑥) = (λ𝑖 + λ𝑗 + λ𝑘)𝜃𝑖𝑗𝑘

(3)(𝑥) (52) 

Now let (𝜈𝑖 , 𝜆̃𝑖), 𝑖 = 1,… ,6, denote a left eigenvector of the matrix 𝐵𝐾 ∈ ℝ6×6, and corresponding eigenvalue. 

For system (14), 𝐵𝐾 also has a full set of eigenvectors. As the continuation of the base case, consider the second order 

portion of the operator (48), 𝐿2, acting on a basis of 𝜃𝑖𝑗𝑘
(3)(𝑥). We have that 

𝐿2𝜃𝑖𝑗𝑘
(3)(𝑥) =

𝜀2

2
𝑥𝑇(𝐵𝐾)𝑇𝐻[〈𝜈𝑖, 𝑥〉〈𝜈𝑗, 𝑥〉〈𝜈𝑘, 𝑥〉](𝐵𝐾)𝑥 

⟹⁡𝐿2𝜃𝑖𝑗𝑘
(3)(𝑥) =

𝜀2

2
𝑥𝑇(𝐵𝐾)𝑇[(𝜈𝑖𝜈𝑗 + 𝜈𝑗𝜈𝑖)〈𝜈𝑘, 𝑥〉 + (𝜈𝑖𝜈𝑘 + 𝜈𝑘𝜈𝑖)〈𝜈𝑗, 𝑥〉 + (𝜈𝑗𝜈𝑘 + 𝜈𝑘𝜈𝑗)〈𝜈𝑖 , 𝑥〉](𝐵𝐾)𝑥 

⟹⁡𝐿2𝜃𝑖𝑗𝑘
(3)(𝑥) =

𝜀2

2
𝑥𝑇 [2 (𝜈𝑖𝜆̃𝑖𝜆̃𝑗(𝜈𝑗)𝑇 ⁡〈𝜈𝑘, 𝑥〉 + 𝜈𝑖𝜆̃𝑖𝜆̃𝑘(𝜈𝑘)𝑇⁡〈𝜈𝑗, 𝑥〉 + 𝜈𝑗𝜆̃𝑗(𝜆̃𝑘)

𝑇
𝜈𝑘⁡〈𝜈𝑖, 𝑥〉)] 𝑥 

⟹⁡𝐿2𝜃𝑖𝑗𝑘
(3)(𝑥) = 𝜀2(𝜆̃𝑖𝜆̃𝑗 + 𝜆̃𝑖𝜆̃𝑘 + 𝜆̃𝑗𝜆̃𝑘)〈𝜈𝑖, 𝑥〉〈𝜈𝑗 , 𝑥〉〈𝜈𝑘, 𝑥〉 (53) 

Hence, the linear operators 𝐿1 and 𝐿2 acting on 𝜃𝑖𝑗𝑘
(3)(𝑥), have eigenvalues λ𝑖 + λ𝑗 + λ𝑘 , and 𝜀2(𝜆̃𝑖𝜆̃𝑗 + 𝜆̃𝑖𝜆̃𝑘 + 𝜆̃𝑗𝜆̃𝑘) 

respectively for 𝑖, 𝑗, 𝑘 ∈ {1, … ,6} when 𝑚 = 3. 

 Next, let us assume that for 𝑚 = 𝑘, and 𝑘 ≥ 3, 𝐿1 and 𝐿2 acting on the basis 𝜃𝓃1…𝓃𝑘

(𝑘) (𝑥) are given by expressions  
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𝐿1𝜃𝓃1…𝓃𝑘

(𝑘) (𝑥) = (∑𝜆𝓃𝑟

𝑘

𝑟=1

)∏〈𝜈𝓃𝑟 , 𝑥〉

𝑘

𝑟=1

 (54) 

𝐿2𝜃𝓃1…𝓃𝑘

(𝑘) (𝑥) = 𝜀2 (∑ ∑𝜆̃𝓃𝑖𝜆̃𝓃𝑗

𝑘

𝑗>𝑖

𝑘−1

𝑖=1

)∏〈𝜈𝓃𝑝 , 𝑥〉

𝑘

𝑝=1

 (55) 

respectively, for 𝓃1, … , 𝓃𝑚 ∈ {1, … ,6}. Specifically, 𝜃𝓃1…𝓃𝑘

(𝑘) (𝑥) = ∏ 〈𝜈𝓃𝑟 , 𝑥〉𝑘
𝑟=1  in basis of eigenvectors of 𝐴 + 𝐵𝐾, 

and 𝜃𝓃1…𝓃𝑘

(𝑘) (𝑥) = ∏ 〈𝜈𝓃𝑝 , 𝑥〉𝑘
𝑝=1  in basis of eigenvectors of 𝐵𝐾. Then to compute the inductive step, let 𝑚 = 𝑘 + 1. 

Applying 𝐿1 on the eigenfunction of order 𝑘 + 1, we have 

𝐿1𝜃𝓃1…𝓃𝑘+1

(𝑘+1) (𝑥) = 𝐿1 (〈𝜈𝓃𝑞 , 𝑥〉∏〈𝜈𝓃𝑟 , 𝑥〉

𝑘+1

𝑟=1
𝑟≠𝑞

)  

⟹⁡𝐿1𝜃𝓃1…𝓃𝑘

(𝑘) (𝑥) = 𝑥𝑇(𝐴 + 𝐵𝐾)𝑇𝜈𝓃𝑞 ∏〈𝜈𝓃𝑟 , 𝑥〉

𝑘+1

𝑟=1
𝑟≠𝑞

+ 〈𝜈𝓃𝑞 , 𝑥〉⁡𝐿1 ∏〈𝜈𝓃𝑟 , 𝑥〉

𝑘+1

𝑟=1
𝑟≠𝑞

 (56) 

Using the assumption (54) in Eq. (56), and realizing that ((𝐴 + 𝐵𝐾)𝑥)
𝑇
𝜈𝓃𝑞 = 𝜆𝓃𝑞〈𝜈𝓃𝑞 , 𝑥〉, we obtain 

𝐿1𝜃𝓃1…𝓃𝑘

(𝑘) (𝑥) = 𝜆𝓃𝑞〈𝜈𝓃𝑞 , 𝑥〉∏〈𝜈𝓃𝑟 , 𝑥〉

𝑘+1

𝑟=1
𝑟≠𝑞

+ 〈𝜈𝓃𝑞 , 𝑥〉⁡(∑ 𝜆𝓃𝑟

𝑘+1

𝑟=1
𝑟≠𝑞

)∏〈𝜈𝓃𝑟 , 𝑥〉

𝑘+1

𝑟=1
𝑟≠𝑞

  

⟹⁡𝐿1𝜃𝓃1…𝓃𝑘

(𝑘) (𝑥) = (∑ 𝜆𝓃𝑟

𝑘+1

𝑟=1

)∏〈𝜈𝓃𝑟 , 𝑥〉

𝑘+1

𝑟=1

 (57) 

 Continuing the inductive step, we now apply 𝐿2 on the eigenfunction of order 𝑘 + 1 

𝐿2𝜃𝓃1…𝓃𝑘

(𝑘) (𝑥) = 𝐿2 (〈𝜈𝓃𝑘+1 , 𝑥〉∏〈𝜈𝓃𝑝 , 𝑥〉

𝑘

𝑝=1

)  

⟹⁡𝐿2𝜃𝓃1…𝓃𝑘

(𝑘) (𝑥) = 𝜀2𝑥𝑇(𝐵𝐾)𝑇𝜈𝓃𝑘+1 ∑ ((𝜈𝓃𝑞)𝑇𝐵𝐾𝑥 ∏〈𝜈𝓃𝑝 , 𝑥〉

𝑘

𝑝=1
𝑝≠𝑞

)

𝑘

𝑞=1

+ 〈𝜈𝓃𝑘+1 , 𝑥〉⁡𝐿2 ∏〈𝜈𝓃𝑝 , 𝑥〉

𝑘

𝑝=1

 (58) 

Applying the assumption (55) to Eq. (58), and again substituting using the eigenvector equation, we obtain 

𝐿2𝜃𝓃1…𝓃𝑘

(𝑘) (𝑥) = 𝜀2𝜆̃𝓃𝑘+1〈𝜈𝓃𝑘+1 , 𝑥〉 (∑ 𝜆̃𝓃𝑞〈𝜈𝓃𝑞 , 𝑥〉∏〈𝜈𝓃𝑝 , 𝑥〉

𝑘

𝑝=1
𝑝≠𝑞

𝑘

𝑞=1

) + 𝜀2 (∑ ∑𝜆̃𝓃𝑖𝜆̃𝓃𝑗

𝑘

𝑗>𝑖

𝑘−1

𝑖=1

) 〈𝜈𝓃𝑘+1 , 𝑥〉∏〈𝜈𝓃𝑝 , 𝑥〉

𝑘

𝑝=1

 



18 

 

⟹⁡𝐿2𝜃𝓃1…𝓃𝑘

(𝑘) (𝑥) = 𝜀2 ∑(𝜆̃𝓃𝑘+1𝜆̃𝓃𝑞)

𝑘

𝑞=1

∏〈𝜈𝓃𝑝 , 𝑥〉

𝑘+1

𝑝=1

+ 𝜀2 (∑ ∑ 𝜆̃𝓃𝑖𝜆̃𝓃𝑗

𝑘

𝑗>𝑖

𝑘−1

𝑖=1

)∏〈𝜈𝓃𝑝 , 𝑥〉

𝑘+1

𝑝=1

 

⟹⁡𝐿2𝜃𝓃1…𝓃𝑘

(𝑘) (𝑥) = 𝜀2 (∑(𝜆̃𝓃𝑘+1𝜆̃𝓃𝑞)

𝑘

𝑞=1

+ ∑ ∑ 𝜆̃𝓃𝑖 𝜆̃𝓃𝑗

𝑘

𝑗>𝑖

𝑘−1

𝑖=1

)∏〈𝜈𝓃𝑝 , 𝑥〉

𝑘+1

𝑝=1

 

⟹⁡𝐿2𝜃𝓃1…𝓃𝑘

(𝑘) (𝑥) = 𝜀2 (∑ ∑ 𝜆̃𝓃𝑖 𝜆̃𝓃𝑗

𝑘+1

𝑗>𝑖

𝑘

𝑖=1

)∏〈𝜈𝓃𝑝 , 𝑥〉

𝑘+1

𝑝=1

 
(59) 

 Hence, the eigenvalues of the linear operators 𝐿1 and 𝐿2 for 𝑚 > 2 are given by the expressions 

∑ 𝜆𝓃𝑟

𝑚

𝑟=1

  (60) 

𝜀2 ∑ ∑ 𝜆̃𝓃𝑖𝜆̃𝓃𝑗

𝑚

𝑗>𝑖

𝑚−1

𝑖=1

 (61) 

respectively. Therefore, the linear mappings 𝐿1 and 𝐿2 are each invertible if eigenvalues (60) and (61) are nonresonant. 

It can be computed that the eigenvalues of 𝐴 + 𝐵𝐾 and 𝐵𝐾 are real and negative due to stability of the linear controller, 

hence the operators 𝐿1 and 𝐿2 are both invertible. It remains to show that 𝐿 = 𝐿1 + 𝐿2 is invertible as a result. Notice 

that (𝐿1 + 𝐿2)
−1 = 𝐿1

−1(1 + 𝐿2𝐿1
−1)−1, where 𝐿1 is already shown to be invertible. We have that (1 + 𝐿2𝐿1

−1)−1 is 

invertible if ‖𝐿2𝐿1
−1‖∞ < 1, where ‖. ‖∞ denotes the spectral norm as before [21]. Since, 

‖𝐿2𝐿1
−1‖∞ ≤ ‖𝐿2‖∞⁡‖𝐿1

−1‖∞ ≤ ‖𝐿2‖∞⁡(1 − ‖1 − 𝐿1‖∞)−1 (62) 

holds, showing that ‖𝐿2‖∞⁡(1 − ‖1 − 𝐿1‖∞)−1 < 1 will guarantee the invertibility of 𝐿1 + 𝐿2. Having already 

computed the spectral norms of 𝐿1 and 𝐿2 

‖𝐿2‖∞⁡(1 − ‖1 − 𝐿1‖∞)−1 < 1       

⟹⁡⁡max |𝜀2 ∑ ∑𝜆̃𝓃𝑖𝜆̃𝓃𝑗

𝑚

𝑗>𝑖

𝑚−1

𝑖=1

| < 1 − max |(1 − ∑𝜆𝓃𝑟

𝑚

𝑟=1

)|  

⟹⁡|Λ̃max
(𝑚)

|⁡ < |Λmin
(𝑚)

| (63) 

where Λmin
(𝑚)

 is the minimum eigenvalue of 𝐿1 and Λ̃max
(𝑚)

 is the maximum eigenvalue of 𝐿2 in magnitude. Hence we 

have shown the invertibility of 𝐿, and as a result the existence of nonlinear control for 𝑚 > 2 when the linear 

deterministic part of the closed-loop system is asymptotically stable, and the minimum eigenvalue of 𝐿1 acting on 

𝑉(𝑚)(𝑥) is greater than the maximum eigenvalue of 𝐿2 in magnitude.                                                     ☐ 
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Remark 1 The deterministic analogue of Proposition 2 was shown by Lyapunov in 1892 (see Theorem 1 in Ref. 

[22] chapter 2, pages 71-79, or Theorem 1 in Ref. [23] part 21, pages 57-58). Similar to SDE (14), in a deterministic 

setting, the existence of higher order Lyapunov function is guaranteed by stability of the linear dynamics. Specifically, 

if a differential equation of the form 𝑥̇ = 𝑀𝑖1𝑥1 + 𝑀𝑖2𝑥2 + ⋯+ 𝑀𝑖𝑛𝑥𝑛, 𝑖 = 𝑛, for an arbitrary 𝑛 > 0, has eigenvalues 

which do not have a relation of the form 𝑐1𝜆1 + 𝑐2𝜆2 + ⋯+ 𝑐𝑛𝜆𝑛 = 0, for a given positive integer 𝑐 = 𝑐1 + 𝑐2 + ⋯+

𝑐𝑛, where 𝑐𝑖 are non-negative constants, then there exists a polynomial 𝑉(𝑥) of order 𝑚, satisfying the equation 

∑ (𝑀𝑖1𝑥1 + 𝑀𝑖2𝑥2 + ⋯+ 𝑀𝑖𝑛𝑥𝑛)
𝜕𝑉(𝑚)(𝑥)

𝜕𝑥𝑖

𝑛
𝑖=1 = Ψ(𝑚)(𝑥), where Ψ(𝑚)(𝑥) is known polynomial sum of the same order. 

In fact, this is the same condition shown in Proposition 2 when the first order linear operator is applied to 𝑉(𝑚)(𝑥). 

 

 We may now assume that existence conditions of Propositions 1 and 2 are satisfied. Though, one may want to 

consider the conditions of stability for the complete system (14) with a nonlinear control. Studying the stability in this 

sense will provide the region of attraction of the (𝑚 − 1)th order control, i.e. for which set in 𝒳 ⊂ ℝ6, the (𝑚 − 1)𝑡ℎ 

order control asymptotically stabilizes the system. We state the following classical theorem without proof. The results 

are pertaining to a continuous time-variant SDE, but are general enough to apply to the case of SDE (14). 

 

Theorem 2 [24] Consider a generalization of the SDE (14): 𝑑𝑥𝑡 = 𝑓(𝑡, 𝑥𝑡)𝑑𝑡 + 𝜎(𝑡, 𝑥𝑡)𝑑𝑊𝑡, 𝑡 ≥ 𝑡𝑜, where 

𝑓(𝑡, 𝑥) ∈ ℝ𝑛 is an arbitrary drift function, dim(𝑥) = 𝑛. Assume that this SDE satisfies the existence and uniqueness 

conditions [24], and has continues coefficients in 𝑡. Let us further define a time-dependent counterpart of the 

infinitesimal generator: ℒ =
𝜕

𝜕𝑡
+ ∑ 𝑓𝑖(𝑡, 𝑥)𝑛

𝑖=1
𝜕

𝜕𝑥𝑖
+

1

2
∑ ∑ 𝑎𝑖,𝑗(𝑡, 𝑥)𝑛

𝑗=1
𝑛
𝑖=1

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
. Suppose there exists a positive 

definite function 𝑉(𝑡, 𝑥) defined on [𝑡𝑜, ∞) × 𝒳, where 𝒳 = {𝑥: |𝑥| < ℎ}, ℎ > 0. Let such a function be twice 

differentiable in 𝑥, and differentiable in 𝑡. Then if  

ℒ𝑉(𝑡, 𝑥) < −𝐶𝑉(𝑡, 𝑥) (64) 

for some arbitrary constant 𝐶 > 0, ℒ𝑉(𝑡, 𝑥) is negative definite. As a result, the trivial solution of the SDE is 

asymptotically stable in probability. 

 

Remark 2 In this paper, given the form of the SDE (14), we have assumed that the preliminary existence, and 

uniqueness conditions are satisfied. Moreover, we have shown the existence of a Lyapunov function of order 𝑚. It 
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must also be pointed out that for 𝑉(𝑥) to be positive definite on 𝒳 ⊂ ℝ6, 𝑉(𝑡, 𝑥) > 0, 𝑡+ → ∞, ∀𝑥 ∈ 𝒳\{0}⁡is a 

sufficient condition.  Furthermore, if the condition ℒ𝑉(𝑡, 𝑥) < −𝐶𝑉(𝑡, 𝑥) holds on the local set 𝒳, then the system 

(14) is asymptotically stable in probability, where 𝒳 is the region of attraction for a 𝑚th order control. A refined 

version of Theorem 2, as stated in Ref. [25], specifies that if 𝐶1(|𝑥|) ≤ 𝑉(𝑥, 𝑡) ≤ 𝐶2(|𝑥|) and ℒ𝑉(𝑥) ≤ −𝐶3(|𝑥|), are 

satisfied for strictly increasing continuous functions 𝐶1,𝐶2,𝐶3, and radially unbounded functions 𝐶1,𝐶2, such that, 

𝐶𝑖(0) = 0, and 𝑖 = 1,2,3, then, the trivial solution of the SDE is asymptotically stable. For the case of the complete 

power series (31), since we have that ∀𝑥 ≠ 0, 

ℒ𝑢𝑉(𝑥) = −𝑟(𝑥) < 0 (65) 

𝑉(𝑥) > 0 (66) 

where ℒ𝓊 is given by Eq. (18), with argument 𝑢 the solution to Eq. (30), the conditions of asymptotic stability are 

satisfied ∀𝑥 ∈ 𝒳 where inequalities (65) and (66) hold. 

IV. Computation of Control 

 To compute the nonlinear control, we use Eq. (43) along with Eq. (44). Here, we will demonstrate the computation 

of the optimal stochastic control up to cubic order (and up to sextic order in Appendix A). Every order of control will 

have unknowns that come from Hamiltonians with one order higher than that of the control. We begin by expanding 

and simplifying Eq. (30) for 𝑚 − 1 = 1,…⁡,6. The Control expressions are 

𝑘(1)(𝑥) = 𝐾𝑥 = − (𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥)) 𝐵)
−1

[(𝐵)𝑇
𝜕𝑉(2)(𝑥)

𝜕𝑥
] (67) 

𝑘(2)(𝑥) = −(𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥))𝐵)
−1

[(𝐵)𝑇
𝜕𝑉(3)(𝑥)

𝜕𝑥
+ 𝜀2𝐵𝑇𝐻 (𝑉(3)(𝑥)) 𝐵𝐾𝑥] (68) 

𝑘(3)(𝑥) = −(𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥)) 𝐵)
−1

[(𝐵)𝑇
𝜕𝑉(4)(𝑥)

𝜕𝑥
+ 𝜀2𝐵𝑇𝐻 (𝑉(3)(𝑥)) 𝐵𝑘(2)(𝑥)

+ 𝜀2𝐵𝑇𝐻 (𝑉(4)(𝑥)) 𝐵𝐾𝑥] 

(69) 

 To find the unknown 𝑉(𝑥) terms, we solve for every 𝑉(𝑚)(𝑥) through system (29)-(30). Specifically, since we 

have arbitrarily solved up to sixth order control, we require the value function (31) to be known for 𝑚 = 7. Hence, 

we expand Eq. (44) for 𝑚 = 2,3, … ,7. The quadratic through quartic Hamiltonian expansions become 
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(𝐴𝑥)𝑇
𝜕𝑉(2)(𝑥)

𝜕𝑥
+ (𝐵𝐾𝑥)𝑇

𝜕𝑉(2)(𝑥)

𝜕𝑥
+

1

2
(𝐾𝑥)𝑇𝑅𝐾𝑥 +

1

2
𝜀2(𝐾𝑥)𝑇𝐵𝑇𝐻 (𝑉(2)(𝑥))𝐵𝐾𝑥 +

1

2
𝑥𝑇𝑄𝑥 = 0 (70) 

(𝐴𝑥)𝑇
𝜕𝑉(3)(𝑥)

𝜕𝑥
+ 𝑓(2)𝑇(𝑥)

𝜕𝑉(2)(𝑥)

𝜕𝑥
+ (𝐵𝐾𝑥)𝑇

𝜕𝑉(3)(𝑥)

𝜕𝑥
+ (𝐵𝑘(2)(𝑥))

𝑇 𝜕𝑉(2)(𝑥)

𝜕𝑥
 

+
1

2
𝜀2(𝐾𝑥)𝑇𝐵𝑇𝐻 (𝑉(3)(𝑥)) 𝐵𝐾𝑥 + (𝐾𝑥)𝑇 (𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥)) 𝐵) 𝑘(2)(𝑥) + 𝓇(3)(𝑥) = 0 

(71) 

(𝐴𝑥)𝑇
𝜕𝑉(4)(𝑥)

𝜕𝑥
+ 𝑓(2)𝑇(𝑥)

𝜕𝑉(3)(𝑥)

𝜕𝑥
+ 𝑓(3)𝑇(𝑥)

𝜕𝑉(2)(𝑥)

𝜕𝑥
+ (𝐵𝐾𝑥)𝑇

𝜕𝑉(4)(𝑥)

𝜕𝑥

+ (𝐵𝑘(2)(𝑥))
𝑇 𝜕𝑉(3)(𝑥)

𝜕𝑥
+ (𝐵𝑘(3)(𝑥))

𝑇 𝜕𝑉(2)(𝑥)

𝜕𝑥
+

1

2
𝜀2(𝐾𝑥)𝑇𝐵𝑇𝐻 (𝑉(4)(𝑥)) 𝐵𝐾𝑥

+
1

2
(𝑘(2)(𝑥))

𝑇

(𝑅 + 𝜀2𝐵𝑇𝐻(𝑉2(𝑥))𝐵)𝑘(2)(𝑥) + 𝜀2(𝐾𝑥)𝑇𝐵𝑇𝐻 (𝑉(3)(𝑥)) 𝐵𝑘(2)(𝑥)

+ (𝐾𝑥)𝑇(𝑅 + 𝜀2𝐵𝑇𝐻(𝑉2(𝑥))𝐵)𝑘(3)(𝑥) + 𝓇(4)(𝑥) = 0 

(72) 

Orders quintic through septic are listed in Appendix A. Note that in Eq. (70)-(72) and (79)-(81), the expansions are in 

terms of lower orders of known control forms. To solve for 𝑉(𝑚)(𝑥), we substitute the resulting terms of Eq. (46) into 

every 𝑚th order Hamiltonian. Reordering, grouping, and simplifying expressions based on their order 𝑚, we obtain 

the quadratic through quartic simplified Hamiltonians as 

𝑥𝑇(𝑃𝐴 + 𝐴𝑇𝑃)𝑥 − 𝑥𝑇(𝑃𝐵) (𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥))𝐵)
−1

(𝑃𝐵)𝑇𝑥 = −𝑥𝑇𝑄𝑥 (73) 

(𝐴𝑥)𝑇
𝜕𝑉(3)(𝑥)

𝜕𝑥
+ 𝑓(2)𝑇(𝑥)𝑃𝑥 + 𝑥𝑇𝐾𝑇𝐵𝑇

𝜕𝑉(3)(𝑥)

𝜕𝑥
+

1

2
𝜀2(𝐾𝑥)𝑇𝐵𝑇𝐻 (𝑉(3)(𝑥)) 𝐵𝐾𝑥 + 𝓇(3)(𝑥) = 0 (74) 

(𝐴𝑥)𝑇
𝜕𝑉(4)(𝑥)

𝜕𝑥
+ 𝑓(2)𝑇(𝑥)

𝜕𝑉(3)(𝑥)

𝜕𝑥
+ 𝑓(3)𝑇(𝑥)𝑃𝑥 + (𝐵𝐾𝑥)𝑇

𝜕𝑉(4)(𝑥)

𝜕𝑥

+
1

2
𝜀2(𝐾𝑥)𝑇𝐵𝑇𝐻 (𝑉(4)(𝑥)) 𝐵(𝐾𝑥)

−
1

2
(𝑘(2)(𝑥))

𝑇

(𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥)) 𝐵) 𝑘(2)(𝑥) + 𝓇(4)(𝑥) = 0 

  (75) 

 

Remark 3   The Hamiltonian (73) is the Riccati equation (38) discussed in Proposition 1. There are established 

numerical methods (i.e. see Rami and Zhou [26]) that approximate the solution 𝑃 of Eq. (38). For instance, the 

YALMIP optimization toolbox in MATLAB is a useful tool for implementation of Linear Matrix Inequality (LMI) 

method. Though, for the particular case of system (14), the Riccati equation is solvable without the use of these 
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methods. To do so, we assume a tridiagonal form of the solution matrix 𝑃 and control matrix 𝑄. Then solution to Eq. 

(38) will reduce to the problem of root finding of nine equations. 

V. Simulations 

 The specific model of interest is a 6U CubeSat (6 University-class spacecraft in a 2-by-3 configuration) with three 

thruster pairs. The standard dimensions of 6U CubeSat are 10 × 20 × 30 centimeters, and the maximum mass is 6 

kg. As a result, the entries of moment of inertia tensor in principal axes (in units of kilogram meter squared) are 

calculated as 𝐼1 = 0.05⁡,  𝐼2 = 0.065,  𝐼3 = 0.025. We further set 𝑏1
𝑇 = [1 0 0],  𝑏2

𝑇 = [0 1 0],  𝑏3
𝑇 =

[0 0 1]. The Monte Carlo experiment below compares the stochastic nonlinear controller with quadratic cost 

criteria to a LQR (linear quadratic regulator) controller using MATLAB’s built-in function, and then to the 

deterministic nonlinear controller by setting 𝜀 = 0 in the equations of control. Following the numerical experiments 

of Ref. [3] which considered the thrust variations of 10%-20% inspired by experimental propulsion studies, all the 

controllers in this paper are tested with uncertainty having standard deviations of 1%, 10%, and 20% from the 

nominal thrust.  We study the rest-to-rest maneuvers with nonlinear and stochastic controller using two different 

constant gain choices:  

A) A conservative choice of gains where the strong condition ii of Proposition 1 is satisfied. 

B) An aggressive control gain choice where the strong condition ii of Proposition 1 is not satisfied. 

The gain set A is as follows 

𝑄 =

[
 
 
 
 
 
1.17 0 0 0.7 0 0
0 1.14 0 0 0.8 0
0 0 1.3 0 0 0.5

0.7 0 0 0.35 0 0
0 0.8 0 0 0.4 0
0 0 0.5 0 0 0.6]

 
 
 
 
 

, 𝑅 = [
223.8 0 0

0 135 0
0 0 489.8

]  

yielding a Riccati solution of 

𝑃 =

[
 
 
 
 
 
0.9591 0 0 0.4463 0 0

0 0.9699 0 0 0.4817 0
0 0 0.8257 0 0 0.4343

0.4463 0 0 0.1043 0 0
0 0.4817 0 0 0.0108 0
0 0 0.4343 0 0 0.6407]

 
 
 
 
 

  

for 𝜀 = 0.1. Similarly, the gain set B constants are 
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𝑄 =

[
 
 
 
 
 
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1]

 
 
 
 
 

, 𝑅 = [
0.1 0 0
0 0.1 0
0 0 0.1

]  

yielding a Riccati solution of 

𝑃 =

[
 
 
 
 
 
0.0219 0 0 0.0217 0 0

0 0.0266 0 0 0.0262 0
0 0 0.0147 0 0 0.0145

0.0217 0 0 0.0215 0 0
0 0.0262 0 0 0.0261 0
0 0 0.0145 0 0 0.0144]

 
 
 
 
 

  

for 𝜀 = 0.1. The Riccati solution for all noise variations for both sets A and B are given in Appendix B. Notice that 

effort has been made to keep the entries of the optimal solution matrix bounded above by 1. This is because the 

nonlinearity, i.e. order of the entries of 𝑃, grows as the order of the control equations increases, contributing to the 

radius of attraction shrinking. In extreme cases, noise may cause the state trajectories to exit the region of attraction 

contributing to loss of stability. 

Table 1 Comparison of ‖𝓣‖∞ of stochastic and deterministic controllers varying 𝜺 

  

Spectral Norms    

Gain Set A 
𝜺 = 𝟎. 𝟎𝟏 𝜺 = 𝟎. 𝟏 𝜺 = 𝟎. 𝟐 

Stochastic  0.0003 0.0272 0.0985 

Deterministic 0.001 0.098 0.3579 

    

Spectral Norms    

Gain Set B 
𝜺 = 𝟎. 𝟎𝟏 𝜺 = 𝟎. 𝟏 𝜺 = 𝟎. 𝟐 

Stochastic  4884.37 7837.75 7663.75 

Deterministic  4961.84 8012.92 8050.42 

 

The singular values of gain set A are relatively closer to each other than the singular values computed for gain set B. 

It is also clear from Table. 1 that the spectral norm increases with the variance of noise, which is proportional to 𝜀2. 

It must be pointed out that tuning gains in a manner to bound both ‖𝒯‖∞ and all the entries of 𝑃 by 1 is rather difficult. 

However, when accomplished, it is observed that condition ii of Proposition 1 results in similar behaviors of stochastic 

and deterministic controllers as tabulated on the right portion of Tables 2-4. The simulations are carried out for 2000 

particles, during a rest-to-rest maneuver starting from 𝑥 = [0⁡0⁡0⁡1⁡1⁡1]𝑇 and stabilizing at 𝑥 = [0⁡0⁡0⁡0⁡0⁡0]𝑇. 

 



24 

 

Table 2 Mean cost comparison of stochastic controller to LQR and deterministic nonlinear controllers  

for 𝜺 = 𝟎. 𝟎𝟏 using gain set A 

  

Control 

Order 

Stochastic 

Control 

Cost  

Stochastic 

State Cost  

Total 

Cost 

(%) 

Improvement 

compared to 

LQR 

Deterministic 

Control Cost  

Deterministic 

State Cost  

Total 

Cost 

(%) 

Improvement 

compared to 

Deterministic 

LQR     0.0000 0.3221 0.5060 0.8280 
 

Linear 0.3220 0.5060 0.8280 0.0012 0.3221 0.5061 0.8282 0.0228 

Quadratic 0.3575 0.3769 0.7344 11.3019 0.3576 0.3770 0.7346 0.0252 

Cubic  0.2932 0.4341 0.7272 12.1711 0.2933 0.4341 0.7274 0.0253 

Quartic 0.2686 0.4547 0.7233 12.6451 0.2683 0.4554 0.7237 0.0560 

Quintic 0.2931 0.4301 0.7232 12.6566 0.2933 0.4302 0.7235 0.0370 

Sextic 0.3117 0.4117 0.7235 12.6284 0.3118 0.4118 0.7236 0.0147 

 

 

Table 3 Mean cost comparison of stochastic controller to LQR and deterministic nonlinear controllers  

for 𝜺 = 𝟎. 𝟏 using gain set A 

  

Control 

Order 

Stochastic 

Control 

Cost  

Stochastic 

State Cost  

Total 

Cost 

(%) 

Improvement 

compared to 

LQR 

Deterministic 

Control Cost  

Deterministic 

State Cost  

Total 

Cost 

(%) 

Improvement 

compared to 

Deterministic 

LQR     0.0000 0.3255 0.5096 0.8351   

Linear 0.3212 0.5119 0.8331 0.2468 0.3260 0.5088 0.8349 0.2177 

Quadratic 0.3576 0.3832 0.7407 11.3010 0.3621 0.3801 0.7423 0.2056 

Cubic  0.2937 0.4407 0.7344 12.0604 0.2980 0.4374 0.7354 0.1292 

Quartic 0.2680 0.4620 0.7300 12.5860 0.2719 0.4582 0.7302 0.0217 

Quintic 0.2928 0.4361 0.7288 12.7298 0.2973 0.4331 0.7304 0.2127 

Sextic 0.3108 0.4173 0.7281 12.8174 0.3149 0.4136 0.7285 0.0605 

 

Table 4 Mean cost comparison of stochastic controller to LQR and deterministic nonlinear controllers  

for 𝜺 = 𝟎. 𝟐 using gain set A 

  

Control 

Order 

Stochastic 

Control 

Cost  

Stochastic 

State Cost  

Total 

Cost 

(%) 

Improvement 

compared to 

LQR 

Deterministic 

Control Cost  

Deterministic 

State Cost  

Total 

Cost 

(%) 

Improvement 

compared to 

Deterministic 

LQR     0.0000 0.3388 0.5201 0.8589   

Linear 0.3210 0.5313 0.8523 0.7710 0.3383 0.5191 0.8574 0.5891 

Quadratic 0.3574 0.4022 0.7596 11.5600 0.3759 0.3898 0.7658 0.7977 

Cubic  0.2927 0.4596 0.7523 12.4180 0.3105 0.4461 0.7565 0.5645 

Quartic 0.2668 0.4810 0.7478 12.9431 0.2824 0.4655 0.7479 0.0174 

Quintic 0.2919 0.4565 0.7483 12.8792 0.3084 0.4402 0.7487 0.0472 

Sextic 0.3111 0.4373 0.7484 12.8635 0.3299 0.4245 0.7543 0.7804 
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Comparing the stochastic controller to the LQR, every order of the nonlinear controller outperforms the conventional 

LQR controller by minimizing the total cost. Generally, as the order of the nonlinear control increases, the percent 

improvement in cost optimization compared to LQR controller increases as well. Few exceptions to this trend are 

present due to numerical error in computation of the control. On the other hand, comparison of stochastic and 

deterministic nonlinear controllers of all orders reveals significantly smaller improvements due to the choice of gain 

set A. Given a controller 𝐾, the spectral norm (40) quantifies the total energy/variance of noise due to application of 

𝐾 over time. If a controller satisfies condition ii of Proposition 1, then the variance of the controller becomes narrowly 

bounded, hence contributing to the small difference between stochastic and deterministic nonlinear controls satisfying 

the condition. However, as the difference between the spectral norms corresponding to stochastic and deterministic 

controls increases, so does the improvement due to the stochastic controller. The following simulation results tabulated 

in Tables 5-7 are using gain set B which violates condition ii of Proposition 1. 

Table 5 Mean cost comparison of stochastic controller to LQR and deterministic nonlinear controllers  

for 𝜺 = 𝟎. 𝟎𝟏 using gain set B 

  

Control 

Order 

Stochastic 

Control 

Cost  

Stochastic 

State Cost  

Total 

Cost 

(%) 

Improvement 

compared to 

LQR 

Deterministic 

Control Cost  

Deterministic 

State Cost  

Total 

Cost 

(%) 

Improvement 

compared to 

Deterministic 

LQR    0.0000 0.0220 0.0221 0.0441   

Linear 0.0218 0.0221 0.0439 0.3583 0.0219 0.0220 0.0440 0.1910 

Quadratic 0.0220 0.0220 0.0439 0.2468 0.0221 0.0219 0.0440 0.1251 

Cubic  0.0216 0.0222 0.0439 0.4289 0.0217 0.0222 0.0439 0.1415 

Quartic 0.0217 0.0223 0.0439 0.3385 0.0218 0.0222 0.0441 0.3230 

Quintic 0.0217 0.0220 0.0438 0.6176 0.0219 0.0220 0.0439 0.1625 

Sextic 0.0217 0.0221 0.0438 0.5825 0.0218 0.0220 0.0438 −0.0057 

 

 

Table 6 Mean cost comparison of stochastic controller to LQR and deterministic nonlinear controllers  

for 𝜺 = 𝟎. 𝟏 using gain set B 

  

Control 

Order 

Stochastic 

Control 

Cost  

Stochastic 

State Cost  

Total 

Cost 

(%) 

Improvement 

compared to 

LQR 

Deterministic 

Control Cost  

Deterministic 

State Cost  

Total 

Cost 

(%) 

Improvement 

compared to 

Deterministic 

LQR     0.0000 0.0334 0.0333 0.0667   

Linear 0.0206 0.0417 0.0624 6.5498 0.0339 0.0338 0.0676 7.8148 

Quadratic 0.0205 0.0407 0.0613 8.1817 0.0334 0.0331 0.0666 7.9644 

Cubic  0.0201 0.0410 0.0611 8.3855 0.0344 0.0347 0.0691 11.5576 

Quartic 0.0203 0.0405 0.0608 8.9225 0.0353 0.0355 0.0708 14.1990 

Quintic 0.0201 0.0402 0.0603 9.5799 0.0346 0.0346 0.0692 12.7832 

Sextic 0.0199 0.0401 0.0600 10.0456 0.0328 0.0327 0.0655 8.3409 
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Table 7 Mean cost comparison of stochastic controller to LQR and deterministic nonlinear controllers  

for 𝜺 = 𝟎. 𝟐 using gain set B 

  

Control 

Order 

Stochastic 

Control 

Cost  

Stochastic 

State Cost  

Total 

Cost 

(%) 

Improvement 

compared to 

LQR 

Deterministic 

Control Cost  

Deterministic 

State Cost  

Total 

Cost 

(%) 

Improvement 

compared to 

Deterministic 

LQR     0.0000 0.2095 0.2065 0.4159   

Linear 0.0126 0.1165 0.1291 68.9626 4.8204 4.7460 9.5664 98.6505 

Quadratic 0.0126 0.1149 0.1275 69.3395 0.1908 0.1879 0.3787 66.3203 

Cubic  0.0120 0.1153 0.1273 69.3917 0.1677 0.1669 0.3346 61.9504 

Quartic 0.0120 0.1156 0.1276 69.3310 1.9908 1.9607 3.9515 96.7717 

Quintic 0.0124 0.1108 0.1232 70.3798 0.9506 0.9381 1.8887 93.4768 

Sextic 0.0125 0.1101 0.1225 70.5386 0.1994 0.1971 0.3965 69.0942 

  

 

 
Fig. 3 Bar chart comparisons of LQR versus stochastic control (on the left), and stochastic versus 

deterministic control (on the right) with gain set A (on the top), and gain set B (on the bottom) 
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 Simulations of gain set B also demonstrate how increasing 𝜀 leads to a greater difference between the total 

optimized cost in comparison of the stochastic and the LQR controllers in Tables 5-7. Furthermore, it is shown that 

nonlinear stochastic control optimizes the total cost better as its order is increased. Since the gains are more aggressive 

(i.e. leading to larger control constant values), and that the spectral norms tabulated in Table. 1 are larger, we see a 

greater difference between total cost optimized in comparison of the nonlinear stochastic and deterministic controllers. 

This in fact can be attributed to the multiplicative nature of control uncertainty, where larger thrust contributes to 

higher variations in thrust. This difference is then amplified as the noise standard deviation is increased, as shown in 

Tables 5-7. The main results of Tables 2-7 are summarized as bar charts in Fig. 3 above. 

 The performance comparison of a linear deterministic controller such as the LQR to nonlinear stochastic controller 

can also be seen in Fig. 4 and 5. Using gain set A, the cumulative distribution function (CDF) in Fig. 4 shows that the 

sextic nonlinear controller has a higher probability of achieving lower total cost compared to its LQR counterpart 

under a standard deviation of 20%. This trend can also be seen in Fig. 5 when the controllers are tuned using gain set 

B. 

 
 

Fig. 4 Cumulative distribution function comparison of 2000 stabilization realizations of sextic  

stochastic and LQR controllers when 𝜺 = 𝟎. 𝟐 using gain set A. 
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Fig. 5 Cumulative distribution function comparison of 2000 stabilization realizations of sextic  

stochastic and LQR controllers when 𝜺 = 𝟎. 𝟐 using gain set B. 

 

 The following figures depict the stabilization trajectories of 2000 particles starting at 𝑥 = [0⁡0⁡0⁡1⁡1⁡1]𝑇 using two 

different gains, where only the maximum and minimum trajectories are plotted. Figure 6 shows the stabilization 

realizations due to control gain set A, and Fig. 7 depicts the realizations due to control gain set B. 

 
Fig. 6 Stabilization Trajectories of 100 realizations of sextic stochastic control (solid line) and LQR control 

(dashed line) for 𝜺 = 𝟎. 𝟐 using gain set A. 
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Fig. 7 Stabilization Trajectories of 100 realizations of sextic stochastic control (solid line) and LQR control 

(dashed line) for 𝜺 = 𝟎. 𝟐 using gain set B. 

 

 
Fig. 8 Targeting control of 100 realizations of sextic stochastic control (solid line) and LQR control (dashed 

line) for 𝜺 = 𝟎. 𝟐 using gain set A with reference point 𝒙 = [𝟎⁡𝟎⁡𝟎⁡𝟏⁡𝟏⁡𝟏]𝑻. 
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 Above, Fig. 8 demonstrates the targeting ability of the stochastic nonlinear control under standard deviation of 

20% starting from the origin as the initial condition. Comparing the choice of gain sets A and B, Fig. 6 and 7 

demonstrate that the aggressive gains of set B introduce higher variations among the realizations, i.e. the angular 

velocity trajectories of Fig. 6 are mostly bounded between  ±0.5, while Fig. 7 shows angular velocity of some particles 

overshooting above 5 using the gain set B. Although this may become a controller design choice at the end, the control 

design engineer may study the uncertainty induced by the controller of interest through such a multiplicative structure 

where the uncertainty induced is proportional to the inputted control energy. Another fact to point out here is that the 

gain set A satisfied a strong condition, meaning that there may exist other controllers with larger 𝐾 constants which 

may satisfy bound (40) and demonstrate stability. Control gain set B is an instance of such controllers which exhibits 

stability properties while violating condition ii of Proposition 1. Furthermore, comparing the bandgap between the 

maximum and minimum trajectories of LQR and stochastic control, it is observed that the stochastic control is better 

at keeping a narrower gap. This amounts to having the probable trajectories of the system closer together when using 

the stochastic control, hence reducing uncertainty. 

 Earlier, we chose the Riccati solutions to be bounded above by one to ensure that the initial conditions are within 

the region of attraction. In the following Monte Carlo experiment, we demonstrate how this requirement could be 

mitigated through choosing the initial conditions which are within norm 1 of the origin. The demonstrated comparison 

in Table. 8 below is for initial condition of 𝑥 = [0⁡0⁡0⁡0.4⁡0.4⁡0.4]𝑇 when 𝜀 = 0.2. The simulations are for 2000 

particles and the gains chosen for the experiment are  

𝑄 = 1000 ×

[
 
 
 
 
 
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1]

 
 
 
 
 

, 𝑅 = [
900 0 0
0 900 0
0 0 900

]  

which for 𝜀 = 0.2, yield ‖𝒯‖∞ = 0.0561, and a Riccati solution of 

𝑃 =

[
 
 
 
 
 
75.0511 0 0 72.4710 0 0

0 89.5490 0 0 85.9329 0
0 0 55.4350 0 0 52.7248

72.4710 0 0 71.2035 0 0
0 85.9329 0 0 84.1620 0
0 0 52.7248 0 0 51.4036]
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Table 8 Mean cost comparison of stochastic controller to LQR controller 

for 𝜺 = 𝟎. 𝟐  when entries of 𝑷 are large in magnitude 

  

Control 

Order 
Control Cost  State Cost  

Total 

Cost 

(%) Improvement 

compared to LQR 

LQR  24.9884 24.5791 49.5674 0.0000 
Linear 9.6121 24.7539 34.3659 30.6683 

Quadratic 9.3526 23.4565 32.8091 33.8092 
Cubic  9.1873 23.3142 32.5015 34.4297 

Quartic 9.0996 23.2447 32.3443 34.7469 
Quintic 9.1491 23.3681 32.5172 34.3982 

Sextic 9.2217 23.5727 32.7944 33.8389 

 

 Inspecting Table. 8 reveals that even when the Riccati solution has entries with magnitude larger than 1, choosing 

the initial condition within norm 1 of the origin will help to retain stability and optimality properties of the control. In 

fact, this is demonstration of a special case where condition ii of Proposition 1 is satisfied, but the entries of 𝑃 are 

larger than 1. Although being limited to norm 1 of the origin may be restrictive in many applications, this problem 

may be alleviated by use of planning methods where the controller is set to achieve reference waypoints which are 

apart by norm 1 of their origin.  

 In this section we have shown how tuning strategies for nonlinear controllers may help reduce uncertainty due to 

control input. We have shown a case where stochastic nonlinear controller outperforms its deterministic counterpart, 

and another case where stochastic and deterministic controllers perform similarly, with smaller differences in the total 

cost optimized. The results of this section are useful in understanding how control-induced noise is amplified or 

reduced during a design process. Moreover, the numerical results presented here could aid in the design of optimal 

feedback controllers, which are fault tolerant. In many applications, estimating 𝜀 can help stochastic controllers 

attenuate uncertainty and noise regardless of the design gain choices. 
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VI. Conclusion 

 Thrust uncertainty causes state error and accumulated state error is detrimental to mission objectives. A stochastic 

control method has been presented that on average will reduce and regulate the diffusion of uncertainty and its effects 

in nonlinear systems. In the framework outlined in this paper, the choice of control’s degree can be made based on 

factors such as need for accuracy, computational resources available, and the actuators themselves. Through this study, 

a control designer may better understand how different gain-tuning regimes could amplify or alleviate the thrust-

induced uncertainty. In addition, the presented experiments may give insight into how different orders of nonlinearity 

in controllers improve the desired criteria. In general, the disturbance suppression properties of the presented stochastic 

controllers may increase the success chance of space missions. Specifically, in operations where control and state 

trajectory need to be precise, i.e. during docking operations, torque disturbances could be unwanted, or even 

hazardous. Moreover, in a hostile environment such as space, consumption minimization of scarce resources such as 

power and propellants is highly desirable. The discussed stochastic method considers the existing thrust disturbances 

and satisfies the optimal criteria on average.  
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Appendix A: Higher Order Control 

 This Appendix provides the higher order control along with their respective Hamiltonian equations. The following 

are the derived quartic through sextic control equations 

𝑘(4)(𝑥) = −(𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥)) 𝐵)
−1

[(𝐵)𝑇
𝜕𝑉(5)(𝑥)

𝜕𝑥
+ 𝜀2𝐵𝑇𝐻 (𝑉(3)(𝑥)) 𝐵𝑘(3)(𝑥)

+ 𝜀2𝐵𝑇𝐻 (𝑉(4)(𝑥)) 𝐵𝑘(2)(𝑥) + 𝜀2𝐵𝑇𝐻 (𝑉(5)(𝑥))𝐵𝐾𝑥] 

(76) 

𝑘(5)(𝑥) = −(𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥)) 𝐵)
−1

[(𝐵)𝑇
𝜕𝑉(6)(𝑥)

𝜕𝑥
+ 𝜀2𝐵𝑇𝐻 (𝑉(3)(𝑥)) 𝐵𝑘(4)(𝑥)

+ 𝜀2𝐵𝑇𝐻 (𝑉(4)(𝑥)) 𝐵𝑘(3)(𝑥) + 𝜀2𝐵𝑇𝐻 (𝑉(5)(𝑥))𝐵𝑘(2)(𝑥)

+ 𝜀2𝐵𝑇𝐻 (𝑉(6)(𝑥)) 𝐵𝐾𝑥] 

(77) 

𝑘(6)(𝑥) = −(𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥)) 𝐵)
−1

[(𝐵)𝑇
𝜕𝑉(7)(𝑥)

𝜕𝑥
+ 𝜀2𝐵𝑇𝐻 (𝑉(3)(𝑥)) 𝐵𝑘(5)(𝑥)

+ 𝜀2𝐵𝑇𝐻 (𝑉(4)(𝑥)) 𝐵𝑘(4)(𝑥) + 𝜀2𝐵𝑇𝐻 (𝑉(5)(𝑥))𝐵𝑘(3)(𝑥)

+ 𝜀2𝐵𝑇𝐻 (𝑉(6)(𝑥)) 𝐵𝑘(2)(𝑥) + 𝜀2𝐵𝑇𝐻 (𝑉(7)(𝑥))𝐵𝐾𝑥] 

(78) 

 The following equations are the quintic through the septic Hamiltonian equations 

(𝐴𝑥)𝑇
𝜕𝑉(5)(𝑥)

𝜕𝑥
+ 𝑓(2)𝑇(𝑥)

𝜕𝑉(4)(𝑥)

𝜕𝑥
+ 𝑓(3)𝑇(𝑥)

𝜕𝑉(3)(𝑥)

𝜕𝑥
+ (𝐵𝐾𝑥)𝑇

𝜕𝑉(5)(𝑥)

𝜕𝑥

+ (𝐵𝑘(2)(𝑥))
𝑇 𝜕𝑉(4)(𝑥)

𝜕𝑥
+ (𝐵𝑘(3)(𝑥))

𝑇 𝜕𝑉(3)(𝑥)

𝜕𝑥
+ (𝐵𝑘(4)(𝑥))

𝑇 𝜕𝑉(2)(𝑥)

𝜕𝑥

+
1

2
𝜀2(𝐾𝑥)𝑇𝐵𝑇𝐻 (𝑉(5)(𝑥))𝐵𝐾𝑥 +

1

2
𝜀2 (𝑘(2)(𝑥))

𝑇

𝐵𝑇𝐻 (𝑉(3)(𝑥)) 𝐵𝑘(2)(𝑥)

+ 𝜀2(𝐾𝑥)𝑇𝐵𝑇𝐻 (𝑉(4)(𝑥))𝐵𝑘(2)(𝑥) + 𝜀2(𝐾𝑥)𝑇𝐵𝑇𝐻 (𝑉(3)(𝑥))𝐵𝑘(3)(𝑥)

+ (𝐾𝑥)𝑇(𝑅 + 𝜀2𝐵𝑇𝐻(𝑉2(𝑥))𝐵)𝑘(4)(𝑥)

+ (𝑘(2)(𝑥))
𝑇

(𝑅 + 𝜀2𝐵𝑇𝐻(𝑉2(𝑥))𝐵)𝑘(3)(𝑥) + 𝓇(5)(𝑥) = 0 

(79) 
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⁡(𝐴𝑥)𝑇
𝜕𝑉(6)(𝑥)

𝜕𝑥
+ 𝑓(2)𝑇(𝑥)

𝜕𝑉(5)(𝑥)

𝜕𝑥
+ 𝑓(3)𝑇(𝑥)

𝜕𝑉(4)(𝑥)

𝜕𝑥
+ (𝐵𝐾𝑥)𝑇

𝜕𝑉(6)(𝑥)

𝜕𝑥

+ (𝐵𝑘(2)(𝑥))
𝑇 𝜕𝑉(5)(𝑥)

𝜕𝑥
+ (𝐵𝑘(3)(𝑥))

𝑇 𝜕𝑉(4)(𝑥)

𝜕𝑥
+ (𝐵𝑘(4)(𝑥))

𝑇 𝜕𝑉(3)(𝑥)

𝜕𝑥

+ (𝐵𝑘(5)(𝑥))
𝑇 𝜕𝑉(2)(𝑥)

𝜕𝑥
+

1

2
(𝐾𝑥)𝑇 (𝜀2𝐵𝑇𝐻 (𝑉(6)(𝑥)) 𝐵) 𝐾𝑥

+
1

2
(𝑘(2)(𝑥))

𝑇

(𝜀2𝐵𝑇𝐻 (𝑉(4)(𝑥)) 𝐵) 𝑘(2)(𝑥)

+
1

2
(𝑘(3)(𝑥))

𝑇

(𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥))𝐵) 𝑘(3)(𝑥)

+ (𝐾𝑥)𝑇 (𝜀2𝐵𝑇𝐻 (𝑉(5)(𝑥))𝐵) 𝑘(2)(𝑥) + 𝜀2(𝐾𝑥)𝑇 (𝐵𝑇𝐻 (𝑉(4)(𝑥)) 𝐵) 𝑘(3)(𝑥)

+ (𝐾𝑥)𝑇 (𝜀2𝐵𝑇𝐻 (𝑉(3)(𝑥))𝐵) 𝑘(4)(𝑥) + (𝐾𝑥)𝑇 (𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥)) 𝐵) 𝑘(5)(𝑥)

+ (𝑘(2)(𝑥))
𝑇

(𝜀2𝐵𝑇𝐻 (𝑉(3)(𝑥)) 𝐵) 𝑘(3)(𝑥)

+ (𝑘(2)(𝑥))
𝑇

(𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥))𝐵) 𝑘(4)(𝑥) + 𝓇(6)(𝑥) = 0 

(80) 

(𝐴𝑥)𝑇
𝜕𝑉(7)(𝑥)

𝜕𝑥
+ (𝑓(2)(𝑥))

𝑇 𝜕𝑉(6)(𝑥)

𝜕𝑥
+ (𝑓(3)(𝑥))

𝑇 𝜕𝑉(5)(𝑥)

𝜕𝑥
+ (𝐵𝐾𝑥)𝑇

𝜕𝑉(7)(𝑥)

𝜕𝑥

+ (𝐵𝑘(2)(𝑥))
𝑇 𝜕𝑉(6)(𝑥)

𝜕𝑥
+ (𝐵𝑘(3)(𝑥))

𝑇 𝜕𝑉(5)(𝑥)

𝜕𝑥
+ (𝐵𝑘(4)(𝑥))

𝑇 𝜕𝑉(4)(𝑥)

𝜕𝑥

+ (𝐵𝑘(5)(𝑥))
𝑇 𝜕𝑉(3)(𝑥)

𝜕𝑥
+ (𝐵𝑘(6)(𝑥))

𝑇 𝜕𝑉(2)(𝑥)

𝜕𝑥

+
1

2
(𝐾𝑥)𝑇 (𝜀2𝐵𝑇𝐻 (𝑉(7)(𝑥)) 𝐵)𝐾𝑥 +

1

2
(𝑘(2)(𝑥))

𝑇

(𝜀2𝐵𝑇𝐻 (𝑉(5)(𝑥)) 𝐵) 𝑘(2)(𝑥)

+
1

2
(𝑘(3)(𝑥))

𝑇

(𝜀2𝐵𝑇𝐻 (𝑉(3)(𝑥)) 𝐵) 𝑘(3)(𝑥)

+ (𝐾𝑥)𝑇 (𝜀2𝐵𝑇𝐻 (𝑉(6)(𝑥)) 𝐵) 𝑘(2)(𝑥) + (𝐾𝑥)𝑇 (𝜀2𝐵𝑇𝐻 (𝑉(5)(𝑥)) 𝐵) 𝑘(3)(𝑥)

+ (𝐾𝑥)𝑇 (𝜀2𝐵𝑇𝐻 (𝑉(4)(𝑥)) 𝐵) 𝑘(4)(𝑥) + (𝐾𝑥)𝑇 (𝜀2𝐵𝑇𝐻 (𝑉(3)(𝑥)) 𝐵) 𝑘(5)(𝑥)

+ (𝐾𝑥)𝑇(𝑅 + 𝜀2𝐵𝑇𝐻(𝑉2(𝑥))𝐵)𝑘(6)(𝑥) 

(81) 
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+(𝑘(2)(𝑥))
𝑇

(𝜀2𝐵𝑇𝐻 (𝑉(4)(𝑥))𝐵) 𝑘(3)(𝑥) + (𝑘(2)(𝑥))
𝑇

(𝜀2𝐵𝑇𝐻 (𝑉(3)(𝑥)) 𝐵) 𝑘(4)(𝑥)

+ (𝑘(2)(𝑥))
𝑇

(𝑅 + 𝜀2𝐵𝑇𝐻(𝑉2(𝑥))𝐵)𝑘(5)(𝑥)

+ (𝑘(3)(𝑥))
𝑇

(𝑅 + 𝜀2𝐵𝑇𝐻(𝑉2(𝑥))𝐵)𝑘(4)(𝑥) + 𝓇(7)(𝑥) = 0 

Simplifying Eq. (79)-(81) through substituting Eq. (46), the quintic through the septic Hamiltonian equations become 

(𝐴𝑥)𝑇
𝜕𝑉(5)(𝑥)

𝜕𝑥
⁡+ 𝑓(2)𝑇(𝑥)

𝜕𝑉(4)(𝑥)

𝜕𝑥
+ 𝑓(3)(𝑥)

𝜕𝑉(3)(𝑥)

𝜕𝑥
+ (𝐵𝐾𝑥)𝑇

𝜕𝑉(5)(𝑥)

𝜕𝑥

+
1

2
𝜀2(𝐾𝑥)𝑇𝐵𝑇𝐻 (𝑉(5)(𝑥)) 𝐵(𝐾𝑥)−

1

2
𝜀2 (𝑘(2)(𝑥))

𝑇

𝐵𝑇𝐻 (𝑉(3)(𝑥))𝐵𝑘(2)(𝑥)

− (𝑘(2)(𝑥))
𝑇

(𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥)) 𝐵) 𝑘(3)(𝑥) + 𝓇(5)(𝑥) = 0 

(82) 

(𝐴𝑥)𝑇
𝜕𝑉(6)(𝑥)

𝜕𝑥
+ 𝑓(2)𝑇(𝑥)

𝜕𝑉(5)(𝑥)

𝜕𝑥
+ 𝑓(3)𝑇(𝑥)

𝜕𝑉(4)(𝑥)

𝜕𝑥
+ (𝐵𝐾𝑥)𝑇

𝜕𝑉(6)(𝑥)

𝜕𝑥

+
1

2
(𝐾𝑥)𝑇 (𝜀2𝐵𝑇𝐻 (𝑉(6)(𝑥)) 𝐵) (𝐾𝑥)

−
1

2
(𝑘(2)(𝑥))

𝑇

(𝜀2𝐵𝑇𝐻 (𝑉(4)(𝑥))𝐵) 𝑘(2)(𝑥)

−
1

2
(𝑘(3)(𝑥))

𝑇

(𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥))𝐵) 𝑘(3)(𝑥)

− (𝑘(2)(𝑥))
𝑇

𝜀2𝐵𝑇𝐻 (𝑉(3)(𝑥)) 𝐵𝑘(3)(𝑥)

− (𝑘(2)(𝑥))
𝑇

(𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥)) 𝐵) 𝑘(4)(𝑥) + 𝓇(6)(𝑥) = 0 

(83) 

(𝐴𝑥)𝑇
𝜕𝑉(7)(𝑥)

𝜕𝑥
+ (𝑓(2)(𝑥))

𝑇 𝜕𝑉(6)(𝑥)

𝜕𝑥
+ (𝑓(3)(𝑥))

𝑇 𝜕𝑉(5)(𝑥)

𝜕𝑥
+ (𝐵𝐾𝑥)𝑇

𝜕𝑉(7)(𝑥)

𝜕𝑥

+
1

2
(𝐾𝑥)𝑇 (𝜀2𝐵𝑇𝐻 (𝑉(7)(𝑥)) 𝐵)𝐾𝑥 −

1

2
(𝑘(2)(𝑥))

𝑇

(𝜀2𝐵𝑇𝐻 (𝑉(5)(𝑥)) 𝐵) 𝑘(2)(𝑥)

−
1

2
(𝑘(3)(𝑥))

𝑇

(𝜀2𝐵𝑇𝐻 (𝑉(3)(𝑥)) 𝐵) 𝑘(3)(𝑥)

− (𝑘(3)(𝑥))
𝑇

(𝜀2𝐵𝑇𝐻 (𝑉(4)(𝑥)) 𝐵) 𝑘(2)(𝑥)

− (𝑘(3)(𝑥))
𝑇

(𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥)) 𝐵) 𝑘(4)(𝑥) 

(84) 



36 

 

−(𝑘(4)(𝑥))
𝑇

(𝜀2𝐵𝑇𝐻 (𝑉(3)(𝑥)) 𝐵) 𝑘(2)(𝑥) − (𝑘(5)(𝑥))
𝑇

(𝑅 + 𝜀2𝐵𝑇𝐻 (𝑉(2)(𝑥)) 𝐵) 𝑘(2)(𝑥)

+ 𝓇(7)(𝑥) = 0 

 

Appendix B: Riccati Solution 

 Here we provide the optimal solutions of Riccati for both gain sets A and B, across different cases where 𝜀 = 0.01, 

𝜀 = 0.1, and 𝜀 = 0.2. We start by providing the optimal solution for gain set A 

𝑃 =

[
 
 
 
 
 
0.9500 0 0 0.4426 0 0

0 0.9606 0 0 0.4777 0
0 0 0.8128 0 0 0.4286

0.4426 0 0 0.1025 0 0
0 0.4777 0 0 0.0088 0
0 0 0.4286 0 0 0.6377]

 
 
 
 
 

, for 𝜀 = 0.01 

 

 

𝑃 =

[
 
 
 
 
 
0.9591 0 0 0.4463 0 0

0 0.9699 0 0 0.4817 0
0 0 0.8257 0 0 0.4343

0.4463 0 0 0.1043 0 0
0 0.4817 0 0 0.0108 0
0 0 0.4343 0 0 0.6407]

 
 
 
 
 

, for 𝜀 = 0.1  

𝑃 =

[
 
 
 
 
 
0.9875 0 0 0.4579 0 0

0 0.9987 0 0 0.4941 0
0 0 0.8667 0 0 0.4522

0.4579 0 0 0.1096 0 0
0 0.4941 0 0 0.0170 0
0 0 0.4521 0 0 0.6501]

 
 
 
 
 

, for 𝜀 = 0.2  

The Riccati solutions for gain set B are also as follows 

𝑃 =

[
 
 
 
 
 
0.0160 0 0 0.0159 0 0

0 0.0208 0 0 0.0206 0
0 0 0.0080 0 0 0.0080

0.0159 0 0 0.0158 0 0
0 0.0206 0 0 0.0205 0
0 0 0.0080 0 0 0.0079]

 
 
 
 
 

, for 𝜀 = 0.01 

 

 

𝑃 =

[
 
 
 
 
 
0.0219 0 0 0.0217 0 0

0 0.0266 0 0 0.0262 0
0 0 0.0147 0 0 0.0145

0.0217 0 0 0.0215 0 0
0 0.0262 0 0 0.0261 0
0 0 0.0145 0 0 0.0144]

 
 
 
 
 

, for 𝜀 = 0.1  
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𝑃 =

[
 
 
 
 
 
0.0473 0 0 0.0463 0 0

0 0.0507 0 0 0.0495 0
0 0 0.0450 0 0 0.0431

0.0463 0 0 0.0458 0 0
0 0.0495 0 0 0.0489 0
0 0 0.0431 0 0 0.0422]

 
 
 
 
 

, for 𝜀 = 0.2  
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