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Abstract 

The elements governing modifications to the wettability characteristics of ordinary Portland cement 

(OPC) following high power diode laser (HPDL) surface treatment have been identified. Changes in 

the contact angle, θ, and hence the wettability characteristics of the OPC after HPDL treatment were 

attributed to: reductions in the surface roughness of the OPC; the increase in the surface O2 content of 

the ceramic and the increase in the polar component of the surface energy, γ sv

p
. What is more, the 

degree of influence exerted by each element has been qualitatively ascertained and was found to differ 

markedly. Surface energy, by way of microstructural changes, was found to be by far the most 

predominant element governing the wetting characteristics of the OPC. To a much lesser extent, 

surface O2 content, by way of process gas, was also seen to influence to a changes in the wettability 

characteristics of the OPC, whilst surface roughness was found to play a minor role in inducing 

changes in the wettability characteristics. 

Keywords: Ordinary Portland cement (OPC); High power diode laser (HPDL); Glazing; Contact 

angle; Wettability; Surface energy  
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1. Introduction 

Increasingly within the fields of science and engineering, the unique characteristics of lasers are being 

recognised. One such characteristic is the laser’s ability to be employed for the non-contact processing 

of materials which are otherwise difficult to process, such as ordinary Portland cement (OPC) and 

concrete. Despite the considerable amount of work that has been carried out previously to investigate 

the laser processing of OPC and concrete, most has concentrated on the laser cutting of concrete and 

reinforced concrete using high power CO2 lasers [1-3] and the direct glazing, single and multiple layer 

fusion cladding and combined chemical/fusion cladding for the sealing/fixing of radioactive 

contamination onto concrete surfaces [4-7]. More recent work by Johnston et al. [8] reported on the 

successful removal of the contaminated surface layer of concrete (scabbling) by means of Nd:YAG 

and CO2 laser radiation. Work by Sugimoto et al. [9] focused upon modifying the surface appearance 

and surface properties of cement based materials using a high power CO2 laser. The resultant physical 

characteristics and mechanical behaviour of the post-process cement based materials were later fully 

characterised by Wignarajah et al. [10]. Borodina et al. [11] have carried out investigations into the 

structural changes within the composition of zirconia concrete caused by surface exposure to CO2 

laser radiation, detailing microstructural changes, phase changes and the absorptivity characteristics. 

In all of the previous studies conducted with CO2 and Nd:YAG lasers, spallation and excessive 

cracking and pore formation were found to be major problems undermining the performance of the 

laser treated surface layer. In contrast, however, work conducted by Li et al. [12] and further work 

carried out by Lawrence et al. [13-18] using a high power diode laser (HPDL), successfully 

demonstrated the generation of a long-lasting glaze with far fewer cracks and pores.  

There is a burgeoning literature base that testifies to the potential of lasers for altering the surface 

properties of materials in order to improve their wettability characteristics. The well documented fact 

that generated oxide layers often promote metal/oxide wetting has been reported by Zhou and 

DeHosson [19, 20] as a result of work on the laser coating of aluminium alloys with ceramic material. 

Bahners and Bahners et al. [21, 22], have observed and comprehensively detailed the changes in 

technical properties of various textile fibres, including adhesion and wetting properties, with a view to 

developing an alternative to the conventional methods of chemical agents addition or wet-chemical 

pre-processing. In recent years the excimer laser has been employed to precisely control and later the 

surface characteristics of a number of polymer materials. Ample research has been carried out to 

study the effects of excimer laser radiation on the wettability characteristics of polyethylene 

terephthalate (PET) in both film [23], fibre [24] and sheet [25] form, as well as polyparaphenylene 

terephthalamide (PPTA) [26]. Laurens et al. [27] concluded that a more polar surface resulted from 

the excimer laser treatment of polyether-etherketon (PEEK). Extensive and detailed investigations by 

Song and Netravali [29-31] into the effects of excimer laser radiation on the interfacial characteristics 

of UHSPE fibres and epoxy resin revealed a considerable increase in the interfacial shear strength 
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resulted after laser treatment. Furthermore, Heitz et al. [23], Henari and Blau [32] and Olfert et al. 

[33] have found that excimer laser treatment of metals results in improved coating adhesion.  

Still, the reasons for the changes in the wetting characteristics with regard to changes in the material’s 

surface topography, surface composition and surface energy have not been reported on in great deal in 

any of the previous studies. Having said that, Lawrence and Li have sufficiently demonstrated the 

practicability of employing different types of lasers to effect changes in the wettability characteristics 

of ceramics [34-38] metals [39-41] and polymers [42, 43] for improved adhesion and bonding, as well 

as comprehensively examining the changes in the wettability characteristics of the materials in terms 

of surface topography, surface composition and surface energy. Moreover, Lawrence and Li [44] have 

extended knowledge in this field by determining the predominant influential elements involved with 

the HPDL modification the wettability characteristics of metallic materials, as well as quantifying the 

degree of influence each element exerts.  

This paper aims to extend this preceding work on metallic materials by elucidating and giving a 

greater understanding of the basic process phenomena and the predominant influential elements 

involved with the HPDL modification the wettability characteristics of OPC. In particular, the 

principal elements governing the wettability characteristics, namely morphology, microstructure and 

surface chemistry, and the individual effects thereof on the HPDL modified wettability characteristics 

of OPC are identified. This work describes the employment of a number of techniques to isolate these 

elements, thereby allowing their singular effect on changes to the wettability characteristics of the 

OPC treated with the HPDL to be established. 

2. Theoretical background of wettability and adhesion  

2.1. Contact angle 

When a drop of liquid is placed on a solid surface it may remain as a spherical drop, or spread to 

cover (wet) the solid surface. The angle with which the liquid subtends the solid is known as the 

contact angle. In practice, for wetting to occur the contact angle is less than 90
0
. If the contact angle is 

greater than 90
0
 then the liquid does not wet the solid and no adhesion occurs [45]. When a drop of 

liquid is brought into contact with a flat solid surface, the final shape taken by the drop, and thus 

whether it will wet the surface or not, depends upon the relative magnitudes of the molecular forces 

that exist within the liquid (cohesive) and between the liquid and the solid (adhesive). The index of 

this effect is the contact angle, θ, which the liquid subtends with the solid. θ is related to the solid and 

liquid surface energies, γsv and γlv, and the solid-liquid interfacial energy γsl, through the principle of 

virtual work expressed by the rearranged Young’s equation: 
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   cosθ
γ γ

γ
=

−sv sl

lv

 (1) 

Clearly, to achieve wetting γsv should be large, while γsl and γlv should be small. Hence liquids of a 

lower surface tension will always spread over a solid surface of higher surface tension in order to 

reduce the total free-energy of the system [46]. This is on account of the fact that the molecular 

adhesion between solid and liquid is greater than the cohesion between the molecules of the liquid 

[45]. 

2.2. Work of adhesion 

In fundamental terms, the driving force for the formation of a metal/ceramic interface is the energy 

relinquished when the intimate contact between the metal and the ceramic is formed. This driving 

force is usually characterised by the adhesion energy. The adhesion energy, or work of adhesion, Wad, 

is defined as the work per unit area which needs to be provided to separate reversibly a solid/liquid 

interface so as to create distinct solid/vapour and liquid/vapour interfaces. Thus 

   sllvsvadW γγγ −+=  (2) 

If one takes into account Young’s equation then Eq. (1) can be rearranged to form the Young-Dupre 

equation. Thus the Wad can be expressed as 

   ( )Wad lv= +γ θ1 cos  (3) 

In this way experimental values of Wad can be determined from the γlv value of the liquid and the 

value of θ produced when the liquid is in contact with the solid.  

Generally the value of Wad in metal/ceramic systems can be expressed as the sum of the different 

contributions of the interfacial interactions between two phases: 

   equilnonequilad WWW −+=  (4) 

where Wnon-equil denotes the non-equilibrium contribution to the work of adhesion when a chemical 

reaction takes place at the metal/ceramic interface, while Wequil represents the equilibrium contribution 

which corresponds to non-reactive systems. This contribution can be further divided into two separate 

terms: Wchem-equil, which is the cohesive energy between the two contacting phases that results from the 

establishment of chemical equilibrium bonds achieved by the mutual saturation of the free valences of 

the contacting surfaces and WVDW, which signifies the van der Waals interaction or dispersion forces. 

As such, Eq. 4 becomes 

   equilnonVDWequilchemad WWWW −− ++=  (4a) 
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2.3. Surface energy 

The intermolecular attraction which is responsible for surface energy, γ, arises from a variety of 

intermolecular forces whose contribution to the total surface energy is additive. The majority of these 

forces are functions of the particular chemical nature of a certain material, and as such the total 

surface energy comprises of γp
 (polar or non-dispersive interaction) and γd

 (dispersive component; 

since van der Waals forces are present in all systems regardless of their chemical nature). Therefore, 

the surface energy of any system can be described by [45] 

 γ γ γ= +d p  (5) 

Likewise, Wad can be expressed as the sum of the different intermolecular forces that act at the 

interface [45]: 

 ( ) ( )W W Wad ad

d

ad

p

sv

d

lv

d

sv

p

lv

p= + = +2 2
1 2 1 2

γ γ γ γ
/ /

 (6) 

where 
d

adW  is the dispersive component of the work of adhesion, 
p

adW  is the polar component of the 

work of adhesion, 
d

svγ  is the dispersive component of the surface energy at the solid-vapour interface, 

γ lv

d
 is the dispersive component of the surface energy at the liquid-vapour interface, 

p

svγ  is the polar 

component of the surface energy at the solid-vapour interface and 
p

lvγ  is the polar component of the 

surface energy at the liquid-vapour interface. By equating Eq. (6) with Eq. (2), θ for solid/liquid 

systems can be related to the surface energies of the respective liquid and solid by 

 
( ) ( )

cos

/ /

θ
γ γ γ γ

γ
=

+
−

2 2
1

1 2 1 2

sv

d

lv

d

sv

p

lv

p

lv

 (7) 

According to Fowkes [45], γ sv

d
 can be estimated by using Eq. (7) and plotting the graph of cos θ 

against (γ lv

d
)
1/2
/γlv. Hence the value of γ sv

d
 is estimated by the gradient (=2(γ sv

d
)
1/2
) of the line which 

connects the origin (cos θ = -1) with the intercept point of the straight line (cos θ against (γ lv

d
)
1/2
/γlv) 

correlating the data point with the abscissa at cos θ = 1.  

It is not possible to determine 
p

svγ  in the same direct fashion as the intercept of the straight line (cos θ 

against (γ lv

d
)
1/2
/γlv) is at ( )2

1 2

γ γsv

p

lv

p
/

/γlv and as such, only refers to individual control test liquids and 

not the control test liquid system as a whole. Still, it has been established that the entire amount of the 

surface energies owing to dispersion forces of either the solids or the liquids are active in the 

wettability performance [45, 47]. It is therefore possible to calculate Wad

d
 by using only the relevant 

part of Eq. (6) thus 
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 ( )d

lv

d

sv

d

adW γγ2=  (8) 

Now, if one plots a graph of adW  against Wad

d
 for the solid substrate, then for each particular control 

test liquid in a given system in contact with the solid substrate surface, Wad  (which can be determined 

from Eq. (3)) can usually be correlated with Wad

d
 by a linear relationship which satisfies 

 W aW bad ad

d= +  (9) 

For a solid substrate the constants a and b can be deduced respectively by calculating the gradient of 

the best-fit straight line and by extrapolating the best-fit straight line to find the axis intercept. Also, if 

one plots a graph of 
p

lvγ  against 
d

lvγ , then for the control test liquids in a given control test liquid 

system, 
p

lvγ  can often be correlated with 
d

lvγ  by a linear relationship which satisfies 

  ( ) ( ) dc d

lv

p

lv +=
2/12/1

γγ  (10) 

Again, for a solid substrate the constants c and d can be deduced respectively by calculating the 

gradient of the best-fit straight line and by extrapolating the best-fit straight line to find the axis 

intercept. By introducing Eq. (9) into Eq. (6) and rearranging, then 

       ( )W a W bad

p

ad

d= − +1  (11) 

or alternatively 

              ( ) ( ) ( )( ) ( )γ γ γ γsv

p

lv

p

sv

d

lv

da
b1 2 1 2 1 2 1 2

1
2

/ / / /

= − +  (12) 

Further, by introducing Eq. (10) into Eq. (12) and differentiating with respect to ( )γ lv

d
1 2/

, considering 

that ( )γ sv

d
1 2/

 and ( )γ sv

p
1 2/

are constant, then the following is valid: 

                         ( ) ( ) ( )
c

ad

svp

sv

1
2/1

2/1 −
=

γ
γ  (13) 

Since γ sv

d
 has already been determined from the plot based on Eq. (7), it is possible to calculate γ sv

p
 

for the solid substrate using Eq. (13). By employing this approach it is possible to determine, from θ 

measurements and the control test liquid surface energy properties, the changes in the wettability 

characteristics effected by HPDL treatment of the OPC. 
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3. Experimental procedures 

3.1. Materials 

The OPC used in this work was the naturally occurring layer that forms on the outer surfaces of 

concrete following casting. In this instance, to facilitate the simple execution of the experiments, as-

received concrete blocks were sectioned into squares (120 x 120 x 20 mm
3
) prior to HPDL treatment. 

The composition by volume of the OPC is as follows: CaO (63.9%), SiO2 (21.9%), Al2O3 (5.7%), 

Fe2O3 (2.8%), SO3 (2.7%), MgO (2.2%), K2O (0.7%) and Na2O (0.1%), whilst the concrete blocks 

themselves had a composition by volume of: 20 mm limestone aggregate (40%); 10 mm limestone 

aggregate (14%); zone M sand (28.5%); OPC (10.5%) and particulate fine aggregate (7%). 

3.2. Laser processing arrangement 

In this work a HPDL (DL020, Rofin-Baasel) emitting at 940±10 nm with a maximum output power of 

2 kW. The HPDL beam was delivered to the work area by means of a 10 m long, 1.5 mm core 

diameter optical fibre, the end of which was connected to a focusing lens assembly. The laser 

operated in the continuous wave (CW) mode and produced a multi-mode beam. The defocused laser 

beam was fired across the surface of the OPC samples by traversing the samples beneath the beams 

using the x- and y-axis of CNC gantry tables at speeds ranging from 60-600 mm/min. The laser optics 

were protected by means of a coaxially blown shield gas jet a rate of 5 l/min. To investigate the 

effects of process gas type Ar, N2 and O2 process gasses were employed. To determine the 

characteristics of the glazes the as-received and HPDL treated OPC samples were examined using 

optical microscopy, scanning electron microscopy (SEM), energy disperse X-ray analysis (EDX) and 

X-ray diffraction (XRD) techniques.  

3.3 Wetting and surface energy characterisation procedure 

To examine the wetting and surface energy characteristics of the as-received and HPDL treated OPC 

and hence quantify any surface energy changes in the OPC resulting from HPDL interaction, a series 

of control experiments were carried out using the sessile drop technique with a variety of liquids with 

known surface energy properties. The control test liquids, along with their total surface energy, 

dispersive and polar components, are detailed in Table 1. This particular test liquid series was selected 

because it has been shown in previous studies [34-38, 48] to be most suitable for materials such as 

OPC. The experiments were conducted in normal atmospheric conditions at a temperature of 20
0
C 

±20C with the temperature of the liquids themselves throughout the experiments also being 

maintained at around 20
0
C. The droplets were released onto the surface of the test OPC (HPDL 

treated and as-received) from the tip of a micropipette, with the resultant volume of the drops being 

approximately 6 x 10
-3
 cm

3
. Each experiment lasted for three minutes and profile photographs of the 
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sessile drops being obtained every minute with θ being measured simultaneously. The standard 

deviation due to experimental error was calculated as being ±0.80. 

4. The effects of high power diode laser interaction on the wettability characteristics of 

ordinary Portland cement  

An optical micrograph of a sessile drop of a solidified vitreous enamel (20
0
C) placed on the surface of 

the OPC (a) before and (b) after HPDL irradiation with θ superimposed is shown in Fig. 1. The 

experimental results showed that throughout the period of cooling of the enamel, from the molten 

state at 600
0
C to the solid state at room temperature, no discernible change in the magnitude of the of 

θ took place during the time of the experiments. This observation indicates that thermodynamic 

equilibrium was established at the solid-liquid interface at the outset of the experiment [48]. It is 

clearly apparent from Fig. 1 that prior to HPDL interaction, it was not possible to fire the enamel onto 

the surface of the OPC since θ was measured as 1090, and as such would prevent the enamel from 

wetting the OPC. Indeed, HPDL interaction with the enamel when placed on the as-received OPC 

surface simply resulted in the ‘balling’ of the enamel, that is the formation of small spheres 

approximately the diameter of the laser beam itself [49-50]. Furthermore, as is evident from Table 2, 

under the experimental laser parameters employed and processing in an O2 atmosphere, HPDL 

irradiation of the surface of the OPC samples resulted in changes in θ. It can be seen that in general, 

interaction of the OPC with the HPDL beam resulted in the θ between the OPC and the control liquids 

reducing. 

4.1. The effect of surface morphology 

The role that the morphology of HPDL treated OPC surface plays in influencing wetting 

characteristics is of some importance. More specifically, the aspect of the surface morphology that is 

of particular importance is substrate surface roughness, since this aspect contributes to effect changes 

in θ. Rough grooves on a surface can be categorised as either radial or circular grooves. In practical 

terms, any rough surface can be represented by a combination of these two cases [51], with two 

roughness parameters being defined as the Wenzel type, DR [52] and the Cassie/Baxter type, FR [53]. 

In the case that wetting spreads radially, as is the likely case with the OPC, then the resulting radial 

contact angle, θrad, is related to the theoretical contact angle, θth, by [51] 

 ( )cos cosθ θrad R R th RD F F= − −1  (14) 

According to Neumann [54], only if FR is equal to zero, then a model similar to that for heterogeneous 

solid surfaces can be developed in order to account for surface irregularities, being given by a 

rearrangement of Wenzel’s equation: 
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     γ γ
γ θ

sl sv

lv w

r
= −









cos
 (15) 

where, r is the roughness factor defined as the ratio of the real and apparent surface areas and θw is the 

contact angle for the wetting of a rough surface. It is important to note that Wenzel’s treatment is only 

effective at the position of wetting triple line [52]. Nonetheless, it is evident from Eq. (15) that if the 

roughness factor, r, is large, that is the solid surface is smooth, then γsl will become small, thus, a 

reduction in the contact angle will be inherently realised by the liquid if θw<90
0
. Conversely, if θw>90

0
 

then the opposite will be observed. At this point it is worth remarking that other more sophisticated 

approaches may be taken to examine the effects of surface roughness on wetting [55]. For this present 

study, however, the use of Eq. (7) is quite sufficient. 

Regardless of the process gas used, marked reductions in the surface roughness of the OPC were 

observed (using a Taylor-Hobson Surtronic 3+ profileometer) after interaction with the HPDL beam 

(see Table 3). Therefore, according to Eq. (3), a reduction in θ will be inherently effected. Indeed, this 

presumption appears to be valid when one considers the θ values observed for the various control 

liquids in contact with the HPDL treated OPC (see Table 2). Such results are in agreement with those 

obtained by Nicolas et al. [56] and Lawrence et al.[34-38], who observed that laser treatment of 

various ceramic materials yielded smoother surfaces. 

4.2. The effect of process gas type 

According to Ueki [57] and Li [58], process gas type will play a part in determining θ, since the O2 

content of a material’s surface is an influential factor governing the wetting performance of the 

material. Experiments were therefore conducted to investigate the effects of using Ar, N2 and O2 

process gasses on θ. In order to study exclusively the effects of process gas on the wettability 

characteristics of the OPC, the HPDL operating parameters were set such that a similar degree of 

melting and solidification occurred and a similar surface roughness was achieved. Wetting is 

governed by the first atomic layers of the surface of a material, so to determine the element content of 

O2 at the surface of the OPC, it was necessary to examine the surface using X-ray photoemission 

spectroscopy (XPS).  

The results of the XPS analysis of the OPC in terms of the surface O2 content when processed with 

the selected gasses is shown in Fig. 2. As is evident from Fig. 2, increases in the surface O2 content of 

the OPC after HPDL interaction were observed only when processing was carried with an O2 

processing gas; in all other instances the surface O2 content remained similar to the original value. 

More significantly, the assertion that surface O2 content is an important factor in determining θ is 

confirmed somewhat by Fig. 3, in which the effects of the differences in surface O2 content appear to 

have a noticeable influence on θ. Yet it is highly significant that the reductions in θ seen in Fig. 5 bear 
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no direct relationship with the surface O2 content results given in Fig. 4. Indeed, Fig. 5 shows that 

reductions in θ were brought about after HPDL treatment regardless of the process gas employed, 

with the reductions being similar in value. Nevertheless, Fig. 5 shows quite clearly that the largest 

reduction in θ occurred when O2 was used as the process gas and the surface O2 content was 

subsequently the highest. 

4.3. The effect of surface energy and its dispersive/polar attributes 

As was mentioned earlier in Section 2, the dispersive component of the surface energy of the OPC can 

be estimated by using Eq. (7) and plotting the graph of cos θ against (γ lv

d
)
1/2
/γlv. Thus, Fig. 4 shows 

the best-fit plot of cos θ against (γ lv

d
)
1/2
/γlv according to Eq. (7) for the as-received and HPDL treated 

OPC (Ar, N2 and O2 process gas) - experimental control liquids system. Comparing the ordinate 

intercept points of the as-received and HPDL treated OPC (Ar, N2 and O2 process gas) - liquid 

systems, it can be seen clearly from Fig. 4 that for the as-received OPC (Ar, N2 and O2 process gas) - 

liquid systems the best-fit straight line intercepts the ordinate closer to the origin, indicating that, in 

principle, dispersion forces act mainly at the as-received OPC - liquid interfaces resulting in poor 

adhesion [45, 59]. Conversely, Fig. 4 shows that the best-fit straight line for the HPDL treated OPC 

(Ar, N2 and O2 process gas) - liquid systems intercepts the ordinate much higher above the origin. 

Such a finding implies the action of polar forces across the interface, in addition to dispersion forces, 

therefore improved wettability and adhesion is promoted [45, 59]. 

Now, earlier in Section 2 it was shown that it is not possible to determine the value of γ sv

p
 for the 

OPC directly from Fig. 4. Instead it is necessary to utilise Eq. (13). But first it is a prerequisite that 

that values of the constants a and c are determined. So, plotting according to Eq. (10) yielded a linear 

relationship between γ sv

d
 and γ sv

p
 for the control test liquids used. Thus the value of c was deduced 

as 1.3. Similarly, plotting according to Eq. (11) for the as-received and HPDL treated OPC (Ar, N2 

and O2 process gases) allowed a to be determined 

The values determined for γ sv

d
 and γ sv

p
 for both the as-received and HPDL treated OPC (Ar, N2 and 

O2 process gas) are given in Table 4. Evidently the HPDL treatment of the surface of the OPC, in any 

gas atmosphere, leads to an increase in the total surface energy whilst increasing γ sv

p
, thereby 

improving the action of wetting and adhesion. Such changes in the surface energy of the OPC after 

HPDL treatment are due to the fact that partial vitrification of the surface is occasioned, a transition 

that is known to effect a reduction in γsv and an increase in γ sv

p
 [48]. It is important to note that 

because of the long range ionic interactions in the OPC and the composite nature of the interfaces 

between the OPC and the liquids, it is highly likely that the thermodynamically defined total solid 

surface energy, as defined in Eq. (2), will be higher than the sum of the γd and γp components of the 
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surface energy. Indeed, the derivation that leads to Eq. (5) can only be done under the specific 

assumption that the ionisation potentials are all equal and that dipole-dipole random orientation 

interactions dominate over dipole-induced dipole random interactions. Although the increase in 

(excess) surface free energy will probably be less then the increase in the total lattice energy. On the 

other hand an absorbed liquid layer may shield the ionic fields substantially. As such, all the data 

derived from Eqs. (4) - (5) and Eqs. (8) - (12) should be considered as being semi-empirical. 

Notwithstanding this, as the studies by Gutowski et al. [60] and Agathopoulos and Nikolopoulos [48] 

found, it is reasonable to conclude from the data obtained from Eqs. (8) - (12) that HPDL treatment of 

the OPC surface in any gas atmosphere has effected an increase in γp . 

4.4. The effects of surface melting and microstructure 

Owing to its complexity, the chemistry of OPC and the hydration of its various constituents has not 

yet been fully resolved [61]. Nonetheless, it is known that the constituents of OPC are minerals which 

exist as multi-component solid solution chemical compounds. One of the major constituents of OPC is 

Ca, but, OPC contains in relatively large proportions SiO2 (21wt%), Al2O3 (5wt%) and Fe2O3 (3wt%), 

which are basic glass network formers and modifiers. As such, the intense local heating brought about 

by interaction with the incident HPDL beam results in the melting of these compounds at around 

12830C, thereby causing the materials to lose the retained water and form an amorphous glaze of 

glassy material consisting of various calcium-silicate-alumina compounds [4, 15, 16]. Indeed, the 

amorphous nature of the HPDL generated glaze was verified by an XRD analysis (see Fig. 5). In 

addition, it is evident from Fig. 6 that the microstructure of the HPDL generated glaze displays no 

discernible structure and appears to be fully amorphous. 

It is worth remarking on the dramatic colour change occasioned in the OPC surface of the concrete 

after HPDL interaction; changing from grey to green. Such a change can be ascribed to the resultant 

phase transitions, and also the presence in small concentrations of metal transition ions in various 

oxidation states within the OPC composition, in particular, ferric ions in the Fe3+ and Fe2+ oxidation 

state. Fe3+ and Fe2+ ions are known to give rise to green and blue colours respectively when subjected 

to intense heating [61]. However, if both phases are present within the composition, then the colour is 

determined by the Fe3+/Fe2+ ion ratio, resulting in dark blue or black colours [61]. Since the surface 

produced after HPDL treatment was green, then it is reasonable to assume that both phases were not 

present within the OPC. 

Taken together, it is clear from Fig. 1 that the surface meting and the subsequent changes that are 

occasioned after interaction with the HPDL beam contribute to the marked effect on θ. Notably, Fig. 1 

suggests that the melting, and consequently the vitrification of the glass forming elements (SiO2 and 

Al2O3) within the OPC, is a prerequisite for realising significant reductions in θ.  
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5. Identification of the predominant wettability mechanisms active in the ordinary 

Portland cement after high power diode laser interaction  

From the foregoing results and discussion it is apparent that interaction of the HPDL beam with the 

OPC resulted in the θ formed between the control liquids altering to various degrees, depending upon 

the laser processing parameters employed, in particular, the processing gas used. These observed 

changes in the value of θ are caused by modifications to the wettability characteristics of the OPC and 

are brought about by: modifications to the surface roughness, changes in the surface O2 content and 

changes to the surface energy characteristics of the OPC. In the first place, beneficial modifications to 

the surface roughness of the OPC were seen to occur regardless of the process gas used. This implies 

that under the conditions used, the HPDL generated glaze on the surface of the OPC gave rise to 

reductions in the surface roughness, thereby directly reducing θ in accordance with Eq. (15), and in 

turn, Eq. (3). Secondly, changes in the surface O2 content of the OPC resulting from HPDL treatment 

in the various process gas atmospheres is an influential factor in the promotion of the action of 

wetting. This is because an increase in surface O2 content inherently effects a decrease in θ and vice 

versa. Lastly, the melting and resolidification of the surface of the OPC following HPDL interaction 

occasioned a phase change by generating a vitreous surface. This in turn effected an increase in γ sv

p
.  

It is not possible to identify from these findings which of these elements of the wettability 

characteristics of the OPC are active in causing the changes in the wettability characteristics of the 

OPC after HPDL surface treatment. The degree of influence each element exerts also unclear, as is the 

question of whether each element acts alone or in association with another. However, by employing a 

strictly monitored multi-stage grinding procedure, it was possible to isolate the various elements and 

thus analyse and qualitatively determine the effect each one had on the wettability characteristics of 

the OPC. In the first stage, the surfaces of the as-received and HPDL treated OPC samples (treated in 

Ar, N2 and O2 atmospheres) were ground down to a surface roughness (Ra) of 3 µm, whilst still 

retaining a HPDL treated surface. In this way it was possible to isolate the effects of surface 

roughness by rendering them non-effective, and investigate the effects of the microstructural and 

phase changes (and hence surface energy) and possibly those of the O2 content (and hence process gas 

effects). In order to evaluate the influence of surface roughness an intermediate grinding stage was 

incorporated in which the samples were ground down to 1 µm whilst still retaining the HPDL induced 

microstructure. In the final stage the same OPC samples were ground down further (1 µm) to remove 

the HPDL induced microstructures. In this way one is effectively removing the effects of 

microstructural changes (surface energy) from the previous investigation, thereby allowing the O2 

content (process gas effects) to be studied.  
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An examination of the θ characteristics of the ground OPC samples using only glycerol revealed that 

a considerable difference in θ between the HPDL treated and as-received samples was still present. 

For the HPDL treated samples, θ had increased slightly across the range of samples to around 26-290. 

In contrast, θ for the as-received samples was seen to have reduced from 400 to 370. From an XPS 

analysis of the O2 content of the OPC samples it was found that the O2 content of the as-received 

sample remained around the original value of 44.7at%, whilst that of the HPDL treated samples was 

found to have reduced to a level similar to that of the as-received sample, 44.9-45.2at%. Since a 

considerable difference in the measured θ of the HPDL treated and as-received OPC samples was still 

in evidence, despite grinding down the samples to a surface roughness of 3 µm, is it is reasonable to 

postulate that surface roughness does not have as greater influence on the wetting characteristics of 

the OPC as microstructure. The slight increase in θ for the HPDL treated OPC samples is believed to 

be due to the reduction on the surface O2 content. This is noteworthy as such a supposition implies 

that surface O2 content is more influential in determining the wetting characteristics of the OPC than 

surface roughness. Indeed, additional grinding of the samples bore this assertion out somewhat. In this 

subsequent stage the samples were ground down to a surface roughness of 1 µm whilst still retaining 

the HPDL induced microstructure, thereby allowing a comparative analysis of the effects of surface 

O2 content and surface roughness to be carried out. An XPS analysis of the O2 content of the OPC 

samples revealed that the O2 content of the as-received and HPDL treated samples remained around 

the values obtained after the first grinding stage; for the as-received sample around the original value 

of 44.7at% and likewise for the HPDL treated samples at 45.0-45.4at%. The values of θ observed for 

the as-received and HPDL treated OPC were again markedly different. Whereas in the previous 

grinding stage, θ for the HPDL treated samples remained consistent at 27-290, for the as-received 

samples θ had further reduced to 350. Following on from this observation it is possible to assert that 

the reductions in θ due to reductions in the surface roughness are limited to a value well above that 

achieved after HPDL treatment. Moreover, this leads one to conclude that surface O2 content is indeed 

more instrumental in deciding the wetting characteristics of the OPC than surface roughness since no 

reduction in θ for the HPDL treated OPC samples was observed after generating a much smoother 

surface. After the same OPC samples were ground down further (1 µm) to remove the HPDL induced 

microstructures, an XPS analysis showed that the surface O2 content on the as-received and HPDL 

treated samples were virtually the same value as the original as-received sample, 44.6-44.8at%. 

Similarly, an examination of the contact angles for the as-received and HPDL treated samples 

revealed that θ  for the as-received OPC sample remained at approximately the same value as in the 

previous grinding stage, 35
0
. But more significantly, θ  for the HPDL treated samples had increased 

and was now consistently in the region of the as-received samples, 36-38
0
. Clearly the removal of the 

HPDL generated microstructure has effected an increase in θ for the HPDL treated samples, despite 
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the generation of a much smoother surface (1 µm compared to 2.9-3.8 µm). Such findings reveal 

unequivocally that microstructure is by far the most predominant mechanism governing the wetting 

characteristics of the OPC. So, it is therefore reasonable to assume that surface energy differences 

brought about by microstructural changes have a more active part in deciding the wettability 

characteristics of the OPC than either surface roughness or surface O2 content. Furthermore, because a 

θ increase, rather than a decrease, was realised for the HPDL treated OPC samples when reductions in 

the surface O2 were occasioned and smoother surfaces were generated simultaneously, it is reasonable 

to assume that O2 has more influence over the wettability characteristics of the OPC than surface 

roughness. 

6. Conclusions 

High power diode laser (HPDL) modification of the contact angle, θ, and hence the wettability 

characteristics of OPC has been demonstrated. Such changes in the wettability characteristics of the 

OPC after HPDL treatment can be attributed to: modifications to the surface roughness which 

accordingly effected reductions in θ; the increase in the surface O2 content of the OPC which 

intrinsically brings about a decrease in θ, and vice versa and the semi-empirically determined increase 

in the polar component of the surface energy, γ sv

p
, of the OPC due to the HPDL induced surface 

melting and resolidification which consequently created a vitrified microstructure that was seen to 

augment the wetting action. Work was conducted to isolate each of these elements, thereby allowing 

the magnitude of their influence to be qualitatively determined. The degree of influence exerted by 

each element was found to differ considerably. From the analysis, surface energy, by way of 

microstructural and phase changes, was found to be by far the most predominant element active. To a 

much lesser extent, surface O2 content, by way of process gas, was also seen to contribute to effecting 

changes in the wettability characteristics of the OPC, whilst surface roughness was found to play a 

minor role in inducing changes in the wettability characteristics. Furthermore, based on the findings 

of this study, it is not unreasonable to assert that the results are generic and could therefore be applied 

to many ceramic materials of a similar nature in terms of wettability characteristics modification by 

means of HPDL radiation. 
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Table 1 

 

 

Liquid γγγγ γγγγ lv
d  γγγγ lv

p  

 (mJ/m2) (mJ/m2) (mJ/m2) 

Human Blood 47.5 11.2 36.3 

Human Blood Plasma 50.5 11.0 39.5 

Glycerol 63.4 37.0 26.4 

4-Octonol 27.5 7.4 20.1 
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Table 2 

. 

 

 

Control Test Liquid Contact Angle, θθθθ (deg) 
 As-received HPDL Treated 

  Ar Process Gas N2 Process Gas O2 Process Gas 

Human Blood Plasma 61 42 45 41 

Human Blood 58 38 43 35 

Glycerol 40 26 28 24 

4-Octonol 37 23 25 21 
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Table 3 

 

 

Surface Roughness, Ra (µµµµm) 
As-received Ar N2 O2 

21.9 3.8 3.1 2.9 
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Table 4 

 

 

 

Surface Energy Component As-received HPDL Treated 

  Ar Process Gas N2 Process Gas O2 Process Gas 

Dispersive Component (γ sv

d
) 65.0 mJ/m

2 
72.6 mJ/m

2
 72.5 mJ/m

2
 73.1 mJ/m

2
 

Polar Component (γ sv

p
)   3.5 mJ/m

2
 11.9 mJ/m

2
   9.4 mJ/m

2
 15.6 mJ/m

2
 

Total Surface Energy (γsv) 68.5 mJ/m
2
 84.5 mJ/m

2
 81.9 mJ/m

2
 88.7 mJ/m

2
 

 


