
RESEARCH NOTES

The Cost of Fairness in AI: Evidence from E-Commerce

Moritz von Zahn • Stefan Feuerriegel • Niklas Kuehl

Received: 14 July 2020 / Accepted: 9 June 2021 / Published online: 7 September 2021

� The Author(s) 2021

Abstract Contemporary information systems make wide-

spread use of artificial intelligence (AI). While AI offers

various benefits, it can also be subject to systematic errors,

whereby people from certain groups (defined by gender,

age, or other sensitive attributes) experience disparate

outcomes. In many AI applications, disparate outcomes

confront businesses and organizations with legal and rep-

utational risks. To address these, technologies for so-called

‘‘AI fairness’’ have been developed, by which AI is adapted

such that mathematical constraints for fairness are fulfilled.

However, the financial costs of AI fairness are unclear.

Therefore, the authors develop AI fairness for a real-world

use case from e-commerce, where coupons are allocated

according to clickstream sessions. In their setting, the

authors find that AI fairness successfully manages to

adhere to fairness requirements, while reducing the overall

prediction performance only slightly. However, they find

that AI fairness also results in an increase in financial cost.

Thus, in this way the paper’s findings contribute to

designing information systems on the basis of AI fairness.

Keywords AI fairness � Algorithmic fairness � Fair AI �
Costs � Artificial intelligence � Machine learning

1 Introduction

Contemporary information systems make widespread use

of artificial intelligence (AI). Artificial intelligence helps

value creation (e. g., Müller et al. 2018), yet it is contin-

uously confronted with ethical issues and fairness laws

(Hacker 2018; White and Case 2017). For instance, AI can

lead to disparate outcomes for people according to certain

sociodemographics (gender, race, or other attributes

deemed sensitive). In this case, AI1 may lead to discrimi-

nation (Barocas and Selbst 2016).

Empirical evidence has confirmed disparate outcomes in

a variety of AI use cases. In credit scoring, AI has been

found to deny loan applications from women and racial

minorities at a disproportionately high rate (Hardt et al.

2016). In the criminal justice system, AI is being increas-

ingly utilized to predict the risk of recidivism, but it has

falsely classified black defendants as ‘‘at risk’’ more fre-

quently than non-black defendants (Angwin et al. 2016). In

e-commerce, AI is utilized to personalize website interac-

tions, and yet it has been found that AI systems show

significantly fewer advertisements for high-paying jobs to

women than to men (Datta et al. 2015; Lambrecht and

Tucker 2019). This could limit women’s access to resour-

ces or hinder economic advances.

In order to overcome fairness issues in AI, prior litera-

ture has developed algorithms for so-called ‘‘AI fairness’’
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1 Many AI applications that are subject to fairness issues originate

from the subdomain of supervised machine learning (including this

study). Fairness is also a concern in other areas of AI such as

unsupervised learning (Garg et al. 2018) and even rule-based

inferences. Hence, we follow follow the terminology from Russell

et al. (2015) and utilize the term ‘‘AI’’ consistently for any type of

inference engine, as this allows us to highlight that the implications of

discrimination in AI are of widespread applicability.
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(cf. Feuerriegel et al. 2020; Haas 2019). AI fairness makes

it possible to build inferences that satisfy mathematical

definitions of fairness and that do not lead to disparate

outcomes for certain individuals (Dwork et al. 2012; Hardt

et al. 2016). Intuitively, it might seem sufficient to simply

omit sensitive attributes. However, other attributes may

serve as proxies and, as a result, the source of unfairness

may persist (Barocas and Selbst 2016). This is best illus-

trated by means of an example. Salary may serve as a

proxy for gender. Therefore, even if gender is removed, AI

can leverage one of the proxies and thus lead to outcomes

that discriminate by gender. A remedy is provided by AI

fairness, which is designed so that certain mathematical

constraints are fulfilled in the interest of fairness (see Sect.

2 for an introduction).

From a theoretical viewpoint, the use of AI fairness

should have implications for the underlying prediction

performance. This is because AI fairness introduces addi-

tional mathematical constraints and thus changes the

parameter search space (Wick et al. 2019). This may

eventually affect the underlying prediction performance

and, therefore, also the financial costs when AI fairness is

deployed in information systems (IS) practice. However,

empirical evidence quantifying the financial costs of AI

fairness is lacking.

We study the financial costs of AI fairness in e-com-

merce due to several reasons. First, a lack of fairness in

e-commerce might be unethical as it can have negative

implications for users (Susser et al. 2019). For instance,

targeted advertising based on AI has been found to be

biased by gender (Lambrecht and Tucker 2019), where, as

a result, women are withheld from seeing ads related to

high-paid jobs. Second, a lack of fairness in AI for

e-commerce may be unlawful. This is best explained

through an example where an AI application awards users

digital coupons with discounts and thus incentivizes a

purchase (Koehn et al. 2020). Here AI may lead to a

coupon distribution according to which users of certain

sociodemographics are favored at a disproportionate rate.

This could violate fairness laws, as previous research has

argued (Hacker 2018; White and Case 2017; Barocas et al.

2019). Third, a lack of fairness in e-commerce carries

reputational risks. A prominent example from the United

States concerns the retailer Staples, which leveraged ana-

lytics to offer discounts based on geographic properties.

Later, it was found that discounts were unevenly dis-

tributed and primarily targeted neighborhoods with high-

income households (while withholding discounts from low-

income households). This was perceived as ‘‘highly dis-

criminatory’’ by users (Valentino-Devries et al. 2012).

Such reputational risk can be mitigated by IS practitioners

through the use of AI fairness.

In this paper, we implement AI fairness in a use case

from e-commerce where the retailer aims at steering users

towards purchase by allocating personalized digital cou-

pons. A coupon is issued if a user is at risk of exiting the

e-commerce website with no purchase, which we predict

based on real-world clickstream data from a large online

retailer. For the retailer, interventions through digital

coupons incur financial costs in the form of lost profits

(e. g., if a coupon was not issued and where, as a result, the

user left the website without generating profits from a

purchase). For the underlying predictions, we implement

AI fairness that treats gender as a sensitive attribute. We

then compare our implementation of AI fairness against

those obtained from a default application of AI without

considering fairness constraints. Based on this, we quantify

the financial costs of AI fairness.

2 Background

2.1 Fairness in AI

Fairness in AI is mathematically formalized through so-

called fairness notions, which measure deviations from an

outcome that would be regarded as fair (Chouldechova and

Roth 2020). However, different notions exist, and it is

mathematically impossible to fulfill all notions of fairness

at the same time (Kleinberg et al. 2016). Therefore, IS

practitioners need to choose a fairness notion that is

appropriate to the given use case. For a detailed overview

of fairness notions, we refer to Barocas et al. (2019). In the

following, we provide a brief summary of two fairness

notions – i. e., statistical parity and equalized odds – that

are particularly relevant to IS practice. For this, we use the

following notation: we refer to the predicted label as Ŷ , the

actual label as Y, and the sensitive attribute as A.

Statistical parity (also called demographic parity and

equal parity) requires that the predicted label Ŷ is inde-

pendent of the sensitive attribute A (Dwork et al. 2012). In

other words, the likelihood of outcomes should be the same

across the protected group (e. g., female users) and outside

of it. Formally, this is given by

PðŶ ¼ ŷÞ ¼ PðŶ ¼ ŷ jA ¼ aÞ; 8a 2 A: ð1Þ

For instance, in e-commerce, statistical parity would

require users selected by AI to receive digital coupons to

reflect an equal distribution of male and female users. This

definition of fairness is common in real-world applications

and many legal frameworks (Feldman et al. 2015; Barocas

and Selbst 2016). Due to its legal relevance, statistical

parity is used in our empirical study in e-commerce.

However, inherent to statistical parity is that it only
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considers the predicted label, but neither the actual distri-

bution of labels nor the error rates when making inferences.

As such, statistical parity ignores any possible correlation

between Y and A, which is often not desirable in cases of

different base rates (e. g., because the website has pri-

marily customers from one gender).

Equalized odds refers to independence between the

sensitive attribute A and both type-I/type-II errors (Hardt

et al. 2016). This notion is especially useful for cases in

which a positive prediction provides a specific benefit, yet

where errors in granting this benefit should be equal within

the protected group and outside of it. Formally, inferences

satisfy the notion of equalized odds with respect to a sen-

sitive group if both outcome Ŷ and A are independent

conditional on the actual distribution of labels Y. This is

given by

PðŶ ¼ ŷ j Y ¼ yÞ ¼ PðŶ ¼ ŷ j Y ¼ y; A ¼ aÞ; 8a 2 A; 8y 2 Y :

ð2Þ

When applied to our previous example from e-commerce,

equalized odds suggests that (1) the probability of users

eligible for a coupon being identified as such must be the

same for male and female users, and (2) the probability of

users that are not eligible to still receive a coupon must also

be the same for male and female users. Hence, equalized

odds as a fairness notion is beneficial for IS use cases

where disparities in the actual distribution of labels Y can

be considered legitimate (and not unfair).

In our e-commerce study, we consider both statistical

parity and equalized odds. We provide further details on

how we measure the level of fairness as part of our

empirical setting (Sect. 3.6).

2.2 Implementations of AI fairness

Different algorithms have been developed for implement-

ing AI fairness (Holstein et al. 2019). In general, these

algorithms target a specific notion of fairness and are

typically designed to mitigate between-group disparities in

the predictions. For this, AI fairness explicitly requires

access to the sensitive attribute at the time of training.

A naı̈ve strategy for achieving fairness may be to simply

omit the sensitive attribute, which we refer to as ‘‘blind-

ing’’. However, this has been found to be insufficient for

achieving fairness as other attributes may carry information

pertaining to the sensitive attribute and thereby serve as

proxies (e. g., Barocas et al. 2019). For instance, in

e-commerce, AI might consider a user’s browser history to

determine advertising content. However, information on

browser history is a proxy for gender (e. g., github.com as

a proxy for men and pinterest.com as a proxy for women;

Barocas et al. 2019). Instead, one needs to leverage algo-

rithms from AI fairness.

Algorithms for AI fairness can be grouped according to

the stages at which fairness enters the AI pipeline (Barocas

et al. 2019). First, preprocessing algorithms transform the

underlying data so that potential biases are mitigated (e. g.,

reweighing; Kamiran and Calders 2012). Second, in-pro-

cessing algorithms change the underlying classifier so that

fairness becomes part of the objective (e. g., adversarial

debiasing; Zhang et al. 2018). Third, post-processing

algorithms adjust the predictions post hoc (e. g., reject

option based classification; Kamiran et al. 2012). If fair-

ness enters the AI pipeline at an early stage, it might be

reverted again at a later stage. In order to circumvent this

issue, we primarily rely on post-processing in the form of

reject option based classification.

2.3 Cost-Fairness Tradeoff

Prior research has studied AI fairness in terms of its

tradeoff between fairness and prediction performance.

Corbett-Davies et al. (2017) inferred the tradeoff between

prediction performance and fairness when predicting the

risk of recidivism. Friedler et al. (2018) compared the

tradeoff across different algorithms for AI fairness. A

similar approach was taken by Haas (2019), who presented

a framework that can introduce different levels of fairness

in order to balance fairness against prediction performance.

The aforementioned studies often use the term ‘‘costs’’ to

refer to the loss function measuring the prediction perfor-

mance, whereas the actual financial costs have been

overlooked. Hence, to the best of our knowledge, we offer

the first research to examine an economic impact of AI

fairness.

The use of AI fairness might theoretically impact

financial costs in either a positive or negative direction. On

the one hand, AI fairness typically improves the prediction

performance for the protected group (e. g., Hardt et al.

2016) but lowers it for the non-protected group, which

often represents the larger user base. Hence, one could

expect that this results in larger overall financial costs. On

the other hand, if prediction errors for the protected group

are comparatively expensive, fewer prediction errors in the

protected group might decrease overall financial costs.

Hence, the overall relationship between prediction perfor-

mance and financial costs in AI fairness is complicated and

motivates our research question:

How does AI fairness for price promotions in

e-commerce affect financial costs?

In the following, we empirically evaluate this research

question based on a real-world use case from e-commerce.
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3 Empirical Setting

3.1 AI fairness for E-Commerce

In e-commerce, retailers aim at steering user behavior

towards purchasing and, for this purpose, make use of AI.

In particular, AI can be utilized by online retailers to target

users exiting their website with no purchase. By predicting

whether a user will exit with no purchase, online retailers

can trigger personalized interventions (e. g., digital cou-

pons) to steer users towards making a purchase (Gofman

et al. 2009; McDowell et al. 2016; Ding et al. 2015).

Predictions in e-commerce typically build upon click-

stream data. Clickstream data records the behavior of users

on a website. It comprises information such as the pages

visited, the time spent on each page, and the overall

number of user interactions in the form of clicks. Click-

stream data can be leveraged by AI to predict the risk that a

user will exit with no purchase (Montgomery et al. 2004;

Hatt and Feuerriegel 2020). These predictions have been

built upon linear models (Olbrich and Holsing 2011),

neural networks (Jenkins 2019; Sheil et al. 2018), or

boosting (de Bock and van den Poel 2010), often in com-

bination with feature engineering in order to accommodate

the sequential structure of clickstream data (e. g., Baumann

et al. 2019). For a detailed overview of clickstream ana-

lytics, we refer to Mobasher (2007).

Clickstream analytics may yield disparate outcomes

with regard to gender. If users from one gender exhibit

different clickstream behavior, then this is likely to be

reflected in the predictions based on clickstream data.

Hence, users from that gender might be – depending on the

intervention – favored or disadvantaged in a dispropor-

tionate manner. This is best illustrated by considering an

example. In general, users benefit from digital coupons

through reduced prices (Reimers and Xie 2019). However,

groups of users who systematically produce a lower rate of

mouse clicks receive more coupons and, hence, are dis-

proportionately favored. Notably, it has been proven that

gender biases are present in real-world clickstream settings.

For instance, it was found that clickstream data can indeed

be utilized in order to predict the gender of users (de Bock

and van den Poel 2010) and that women see significantly

fewer online ads related to high-paying jobs than men

(Datta et al. 2015; Lambrecht and Tucker 2019). Online

ads and digital coupons may differ in the type of benefit

they provide, still both illustrate how AI in e-commerce

can lead to disparate outcomes. Needless to say, if online

retailers are interested in remedying such disparate out-

comes, they could implement AI fairness as shown in the

following.

In our evaluations, the fairness notion is first set to

statistical parity due to its widespread use in the legal

domain (Feldman et al. 2015). We then expand the study to

include equalized odds, which shifts the focus towards

prediction performance responsible for offering coupons.

3.2 Data Description

We evaluate AI fairness based on real-world clickstream

data from Digitec Galaxus. Digitec Galaxus is the largest

online retailer in Switzerland, offering more than a million

different products with an emphasis on consumer elec-

tronics. The company’s website offers a diverse range of

information, including product reviews.

Our data consists of the complete set of clickstream

sessions that we collected over the course of one week in

the summer of 2019. Each session is of variable length and

corresponds to the sequence of pages visited. Furthermore,

for each page in that sequence, the following three vari-

ables were retrieved: (1) the visit depth, that is the number

of pages visited before the given page; (2) the time spent

on the given page; (3) the number of visits to pages within

the category to which the current page belongs. In addition,

for every session, the data comprises the total number of

pages visited, the total duration, and the age and gender of

the user. Finally, for each session, the prediction label

denotes whether a purchase or an exit with no purchase

took place. The data was preprocessed in a manner anal-

ogous to that found in prior literature (e. g., Montgomery

et al. 2004), which is detailed in ‘‘Appendix 1’’ (available

online via http://link.springer.com).

In our e-commerce setting, the objective is to identify

users at risk of exiting with no purchase and, once identi-

fied, to steer them towards purchase by providing a coupon.

Hence, this yields different financial costs for type-I/type-II

errors in the prediction. To account for this, financial costs

(here: lost profits) were assigned to different prediction

errors as would arise for such a user exit prediction; see

Table 1. For reasons of confidentiality, these costs were

calculated based on industry-wide operating margins. A

false positive represents a type-I error whereby the exit was

falsely predicted and thus incurred costs for an unnecessary

coupon. A false negative represents a type-II error whereby

the purchase was falsely predicted and, due to the absence

of a coupon, resulted in the loss of a potential sale. Lost

Table 1 Financial costs (lost profits) of prediction errors by gender

False negative False positive

(Ŷ = ‘‘purchase’’, (Ŷ = ‘‘no purchase’’,

Y = ‘‘no purchase’’) Y = ‘‘purchase’’)

Female USD 2.82 USD 2.50

Male USD 4.24 USD 2.50
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sales are discounted, as coupons do not always have the

desired effect on each user and, if they do, reduce the sales

price itself. Therefore, based on the operating margin, the

discounted average profit per purchase is assigned to the

type-II error. We distinguish the average profit by gender,

as the average sales volume also differs by gender.

3.3 Descriptive Statistics

The preprocessed data sample comprises 400 clickstream

sessions. The descriptive statistics of the sessions are

reported in Table 2. All variables are transformed to pre-

serve confidentiality (i. e., this maintains the relative dis-

tribution but units are sanitized). Overall, clickstream

sessions reveal pronounced differences between female and

male users. On average, female users browse more pages

per session, spend more time on each page, and visit the

same page category more frequently. This is also reflected

in the different quantiles of the summary statistics. More-

over, user age is distributed differently for each gender,

with female users corresponding to a higher mean age, but

a lower median age, than male users. Hence, in our data,

several attributes relay information on gender and may

serve as proxies.

The data is highly imbalanced with regard to both

gender (four-fifth are men) and the prediction label (most

of the sessions are exited with no purchase). For compar-

ison, industry averages have estimated the ratio of sessions

with no purchase to 97 % (Statista 2020). The ratio of user

sessions with no purchase reveals a gender imbalance, i. e.,

it is larger for male than for female users. Hence, not only

the clickstream data, but also the purchase behavior itself is

subject to gender differences (Digitec Galaxus 2018).

3.4 Prediction Framework

We estimate different classifiers – namely (1) a default,

(2) a blinded, and (3) a fair classifier – for the purpose of

predicting user exits with no purchase:

(1) Default classifier This approach represents the

status quo that is currently utilized in clickstream

analytics (cf. Baumann et al. 2019). The default

classifier has access to the sensitive attribute and, on

top of that, its inferences are not bound by fairness

constraints. In our analysis, we report results for

when the classifier is implemented by extreme

gradient boosting (e. g., as in Senoner et al. 2021).

Other classifiers are part of the robustness checks.

For all, the classification threshold is chosen based

on the training set so that the financial costs of

prediction errors are minimal.

(2) Blinded classifier This classifier is analogous to the

default classifier and makes predictions without

constraints for ensuring fairness. Yet it differs from

the default classifier in one regard: the sensitive

attribute is omitted. Nevertheless, it may still infer

information concerning gender from other features

that act as proxies. For instance, as mentioned above,

female users might be characterized by different

clickstream behavior whereby they spend more time

on pages than male users (which is supported by our

descriptive statistics). Again, the classifier is imple-

mented via boosting.

(3) Fair classifier This classifier makes predictions

(based on boosting, as above) while explicitly

accommodating fairness constraints, i. e., statistical

parity or equalized odds with regard to gender as the

sensitive attribute. In our work, we implement

fairness via reject option based classification as a

post-processing technique (Kamiran et al. 2012).

Post-processing techniques are well suited to real-

world settings. In contrast to preprocessing, they

introduce fairness at a later stage in the prediction

pipeline. This is especially beneficial for imbalanced

datasets where fairness from preprocessing is

reverted by a classifier as a means of reweighing

samples to counteract the imbalances. In addition,

unlike in-processing, post-processing techniques are

flexible in terms of the underlying classifier.

Table 2 Descriptive statistics by gender

Variable Mean Standard deviation 25 % quantile Median 75 % quantile

Female Male Female Male Female Male Female Male Female Male

Gender 1.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

Age 1.662 1.608 0.458 0.508 1.300 1.257 1.539 1.560 1.950 1.950

Visit depth 0.457 0.409 0.289 0.268 0.211 0.211 0.386 0.331 0.622 0.579

Duration per page 0.151 0.145 0.241 0.259 0.004 0.000 0.067 0.046 0.177 0.162

Cumulative number of clicks 0.394 0.333 0.311 0.272 0.132 0.132 0.353 0.249 0.534 0.448
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Reject option based classification achieves fairness by

altering the prediction of uncertain instances within a

confidence band (Kamiran et al. 2012). This confidence

band is of variable length and centered around the classi-

fication threshold (e. g., if the threshold is 0.5, the interval

of [0.4, 0.6] may be a suitable confidence band). The width

of this band is determined based on training data and

depends on the magnitude of the disparities in the predic-

tions, the level of fairness to be achieved, and the corre-

sponding financial costs. Specifically, among all different

widths achieving the required level of fairness, the one

yielding the lowest financial cost is chosen. Within the

confidence band, instances are flipped, which means that

the favorable labels (i. e., exit with no purchase) are

replaced by non-favorable labels (i. e., purchase) and vice

versa. This is done based on group membership, i. e., based

on gender. Specifically, an instance is flipped if two con-

ditions are met: first, the score of the prediction must be

within the confidence band and, second, the instance must

either hold the non-favorable label and be of the protected

group (female) or hold the favorable label outside the

protected group (male). This results in a higher number of

favorable labels within the protected group and a lower

number outside of it, which may also imply a shift in

prediction errors. The algorithm thereby mitigates

between-group disparities. Our implementation is based on

the ‘‘aif360’’ library.2

Later, we perform analyses with two additional classi-

fiers, namely a lasso and a deep neural network. The lasso

performs an implicit variable selection in order to avoid

overfitting. Deep neural networks are known for being

highly flexible as they can model complex non-linearities,

and yet their advantages often become evident only in

applications with large-scale datasets (Kraus et al. 2020).

3.5 Estimation Details

The data was randomly split into different sets for training

and testing, following common conventions (Hastie et al.

2017). Formally, we ensure an equal proportion of labels

within the sets by performing stratified sampling. All

classifiers utilize the same 80 % of data for training and the

same 20 % for testing. For the fair classifier, 20 % of the

training set is reserved as a validation set based on which

the parameters of the fairness algorithm are determined

(i. e., the confidence band of reject option based classifi-

cation). Analogous to prior literature on AI fairness (Frie-

dler et al. 2018), we perform a total of 30 random train-test

splits, that is, we repeat all computational experiments

across 30 runs. All results are reported for the test set and

thus for out-of-sample data.

The classifiers are trained as follows. The hyperparam-

eters for boosting are determined by applying a grid search

in a 5-fold cross-validation on the training set (tuning

ranges are reported in ‘‘Appendix 2’’). All robustness

checks with the lasso and the neural network are imple-

mented accordingly.

3.6 Performance Metrics

Different performance metrics are utilized. We draw upon

(1) the overall prediction performance, (2) fairness met-

rics, and (3) financial costs, as detailed in the following.

The prediction performance in detecting users at risk of

exiting with no purchase is based on the area under the

receiver operator characteristic, or AUROC for short. The

AUROC accounts for imbalances in the dataset. For com-

parison, we also report the balanced accuracy, the F1-score,

and the AUPRC (area under the precision recall curve).

Fairness is quantified according to the notions of sta-

tistical parity (Dwork et al. 2012) and equalized odds

(Hardt et al. 2016). Statistical parity is selected as our

default metric for assessing fairness due to its widespread

use in the legal domain (Barocas and Selbst 2016). For-

mally, one computes the difference in the probability of

labeling female vs. male users as being about to exit with

no purchase and thus receiving a coupon. Let us consider

an example in which the proportion of female users that are

predicted to exit with no purchase is 0.75, and the pro-

portion of male users anticipated to do so is 0.80. In this

example, the difference amounts to 0:75� 0:80 ¼ �0:05;

that is, the probability of receiving a coupon is 5 percent-

age points lower for female than for male users. For

comparison, a value of 0 is considered fair. For a given

classifier, the level of fairness is computed using

Equalized odds measures the difference in the error rates

between male and female users (Hardt et al. 2016). For

certain products in e-commerce, equalized odds can be a

useful alternative to statistical parity, especially when one

gender is represented more frequently among the buyers.

For instance, for high heels, it may not make sense to aim

STATISTICALPARITY ¼ PðŶ ¼ ‘‘no purchase’’ j ‘‘female’’Þ � PðŶ ¼ ‘‘no purchase’’ j ‘‘male’’Þ: ð3Þ

2 IBM AI Fairness 360 Open Source Toolkit (aif360): https://aif360.

mybluemix.net/.
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at fairness as defined by statistical parity, which would

aspire to an equal probability of coupons for female vs.

male users. Due to the nature of the product, the proportion

of potential buyers is higher among female than male users.

Therefore, equalized odds might be the preferred notion of

fairness, which would simply ensure that a male user

interested in high heels has the same chance of being

selected for a coupon as an interested female user. In our

setting, male users who ultimately exit with no purchase

may have a probability of 0.05 of being classified incor-

rectly. For female users, let the probability amount to 0.10,

corresponding to a difference of �0:05 in the false negative

rate. As a consequence, the female users who intend to exit

without purchase are 5 percentage points less likely to

benefit from coupons than like-minded male users. For-

mally, the false positive rate FPR refers to the probability

that users who intend to purchase a product are being

classified incorrectly. Both FNR and FPR are combined

when computing the level of fairness according to equal-

ized odds via

where FPRfemale refers to the false positive rate among

female users and where FPRmale, FNRfemale, and FNRmale

are defined analogously.

Financial costs are computed by weighting the confusion

matrices of female and male users with the corresponding

costs in USD (given in Table 1). Hence, this takes into

account differences between the financial costs associated

with type-I and type-II errors. Formally, we add up the costs

caused by errors made on the test data and then divide the

total costs by the number of samples. This is given by

where FP refers to the total number of false positives,

FPfemale to the number of false positives for female users, and

all other variables are defined analogously.

4 Empirical Results

The results are reported for both statistical parity (Sect. 4.1)

and equalized odds (Sect. 4.2). We focus on the results

generated on the basis of boosting, as this model achieved

the best overall prediction performance and is thus favored

during model selection. Afterwards, we replace boosting

with other classifiers (Sect. 4.3). Finally, we provide

additional analysis to interpret our results (Sect. 4.4).

4.1 Results for Statistical Parity

The results are reported in Table 3 (panel: boosting). The

default and blinded classifier yield a similar prediction

performance, whereas the prediction performance of the

fair classifier is slightly inferior. However, the fair classi-

fier yields a significantly higher level of fairness (i. e., as

defined by statistical parity) than the default and blinded

classifiers. The default classifier results in a statistical

parity metric of �0:077. This means that the probability of

receiving a coupon is 7.7 percentage points higher for male

than for female users. The blinded classifier performs

slightly better, with the probability being 3.1 percentage

points higher for male users. The fair classifier achieves

nearly full statistical parity, with the probability of

receiving a coupon being 0.1 percentage points lower for

male users.

Introducing AI fairness results in higher financial costs.

Specifically, the fair classifier results in costs of USD 0.551

as compared to USD 0.508 for the default classifier. This

corresponds to an increase of 8.5 %. In sum, replacing the

default with the fair classifier leaves the prediction per-

formance only slightly diminished, but improves fairness at

a higher financial cost.

4.2 Results for Equalized Odds

The results for equalized odds are reported in Table 4

(panel: boosting). Similar to the results for statistical parity,

the fair classifier yields a slightly lower prediction perfor-

mance than both the default and blinded classifiers. Fur-

thermore, the fair classifier also yields a higher level of

fairness (i. e., as defined by equalized odds) than the other

classifiers, reducing the equalized odds metric to �0:028

from �0:127 and �0:067, respectively. In our setting, this

EQUALIZED ODDS ¼ 1

2

�
ðFPRfemale � FPRmaleÞ þ ðFNRmale � FNRfemaleÞ

�
, ð4Þ

FINANCIAL COSTS ¼ 2:50 ðFPfemale þ FPmaleÞ þ 2:82FNfemale þ 4:24FNmale

TPþ TN þ FPþ FN
, ð5Þ
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means that the difference between the prediction perfor-

mance for male and female users declines by 9.9 and 3.9

percentage points, respectively. Hence, introducing the fair

classifier promotes equal chances of being financially

(dis)favored between women and men.

The financial impact of AI fairness is as follows. The

fair classifier results in higher costs than the default clas-

sifier (USD 0.554 as compared to USD 0.508). This cor-

responds to an increase of 9:1%, which is of similar

magnitude as the result for statistical parity.

4.3 Sensitivity Analysis

In addition to boosting as the underlying prediction algo-

rithm, we have repeated all experiments based on the lasso

and a deep neural network. For both, we yield results that

mainly support our initial findings. In addition to reject

option based classification as the underlying algorithm for

AI fairness, we have repeated the experiments with a

preprocessing algorithm (i. e., reweighing; Kamiran and

Calders 2012) and an in-processing algorithm (i. e.,

adversarial debiasing; Zhang et al. 2018). However, we

found both algorithms to be ineffective in our setting. More

details on the sensitivity analysis can be found in ‘‘Ap-

pendix 3’’.

4.4 Interpretation

We find two aspects of our results particularly noteworthy.

Therefore, we provide interpretations for (i) the level of

fairness provided by the blinded classifier and (ii) the dif-

ferences in prediction performance and financial costs

between the fair and default classifiers.

The blinded classifier provides a level of fairness that

lies between the levels of the other classifiers. The reason is

that the disparities can have two different causes: First,

disparities can be induced directly by the sensitive attri-

bute. However, sensitive attributes are only present in the

default classifier, while they are omitted in the blinded

classifier. Specifically, the sensitive attribute ‘‘gender’’ is

leveraged by the default classifier to predict whether a user

will exit with no purchase, particularly for female users.

This is supported when analyzing the underlying variable

importance (Fig. 1). As a result, female users yield

Table 3 Performance metrics for statistical parity

Prediction

model

Classifier Balanced

accuracy

F1-

score

AUROC AUPRC Fairness metric

(statistical parity)

Financial costs (in

USD)

Boosting Default 0.649 0.881 0.727 0.855 - 0.077 0.508

Blinded 0.642 0.879 0.725 0.852 - 0.031 0.525

Fair 0.644 0.875 0.705 0.836 0.001 0.551

Lasso Default 0.521 0.847 0.596 0.790 - 0.040 0.672

Blinded 0.522 0.849 0.600 0.793 - 0.027 0.663

Fair 0.517 0.845 0.519 0.729 0.007 0.683

Neural network Default 0.651 0.883 0.664 0.808 - 0.048 0.498

Blinded 0.655 0.886 0.670 0.807 - 0.009 0.485

Fair 0.647 0.874 0.679 0.825 0.014 0.554

Stated: mean value over 30 random train-test splits

Table 4 Performance metrics for equalized odds

Prediction model Classifier Balanced

accuracy

F1-

score

AUROC AUPRC Fairness metric

(equalized odds)

Financial costs (in

USD)

Boosting Default 0.649 0.881 0.727 0.855 - 0.127 0.508

Blinded 0.642 0.879 0.725 0.852 - 0.067 0.525

Fair 0.640 0.874 0.707 0.846 - 0.028 0.554

Lasso Default 0.521 0.847 0.596 0.790 - 0.052 0.672

Blinded 0.522 0.849 0.600 0.793 - 0.043 0.663

Fair 0.517 0.846 0.518 0.731 - 0.009 0.679

Neural

network

Default 0.651 0.883 0.664 0.808 - 0.060 0.498

Blinded 0.655 0.886 0.670 0.807 - 0.021 0.485

Fair 0.651 0.877 0.610 0.771 0.014 0.536

Stated: mean value over 30 random train-test splits
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disparate outcomes, i. e., fewer coupons, in the case of the

default classifier. However, the sensitive attribute is absent

in the blinded classifier. Second, disparities are induced by

proxies. For instance, the average visit depth is both a

proxy for gender (Fig. 2) and further appears to be an

important predictor (Fig. 1). As a result, the blinded clas-

sifier is subject to the disparities from proxies, but not to

disparities induced directly by the sensitive attribute. In

contrast, the default classifier is subject to both, while the

fair classifier mitigates both.

When comparing the fair classifier to the default clas-

sifier, we observe significantly higher financial costs

despite an only slightly lower prediction performance. This

is due to imbalances in the cost structure: costs are dif-

ferently distributed (by gender and classification outcome)

than prediction errors (by classification outcome only).

Specifically, Table 5 shows that for female users, the

default classifier triggers coupons for 83.7 % of users and

yields an accuracy of 0.833. After introducing fairness,

i. e., the fair classifier with statistical parity, 89.1 % of

female users receive a coupon with the respective accuracy

decreasing to 0.809.3 Here the number of false negatives

decreases, but the number of false positives increases more

sharply. For male users, the default classifier triggers

coupons for 91.5 % of users and yields an accuracy of

0.799, whereas the fair classifier triggers coupons for

88.9 % of users and yields a similar accuracy of 0.793. In

this case, the number of false positives decreases to almost

the same degree as the number of false negatives increases.

Hence, the accuracy for male users is barely affected by

introducing the fair classifier. However, the financial costs

associated with false negatives for male users are particu-

larly high (USD 4.24, see Table 1) due to the high expected

sales volume for male users for a true positive, i. e., if a

coupon had been triggered. As a consequence, a large

extent of the overall cost increase (i. e., 76.7 %) is driven

by the shift in prediction errors for male users.

In sum, we find that the fair classifier building upon

reject option based classification consistently provides a

high level of fairness. In addition, for the two classifiers

with the highest prediction performance (boosting algo-

rithm and deep neural network), the fair variant results in

higher financial costs than the default classifier.4 This

increase is primarily due to AI fairness shifting the distri-

bution of errors towards more expensive prediction errors.

Specifically, the financial costs increase by 8 to 10 %.

5 Discussion

Prior research has found that AI fairness typically lowers

the prediction performance (e. g., Kamiran and Calders

2012), but its financial costs have remained unclear. As
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Fig. 1 The variable importance for the predictions of the default classifier based on boosting are shown for female (left) and male users (right).

On the vertical axis, the clickstream and user attributes are listed. The horizontal axis shows the absolute average SHAP value, indicating the

impact of the attribute on the prediction (Lundberg and Lee 2017)

3 Notably, the lower prediction performance for female users is

different form findings in, e. g., Hardt et al. (2016), where fairness

increases the prediction performance for the protected group.

4 We further compare the results to a cost-optimal classifier, which

would give an lower bound to the price of AI fairness. For this, we

draw upon a perfect (error-free) classifier and then compute the

corresponding costs due to ensuring the fairness constraint from

statistical parity (i. e., by providing additional coupons to female

users until the share is equal to that of male users). In this hypothetical

setting, statistical parity would inflict costs of USD 0.021.
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detailed above, the relationship between a lower overall

prediction performance and financial costs is non-trivial

and requires a thorough empirical analysis. Hence, we

expand over the body of knowledge by providing real-

world estimates on the financial costs of AI fairness in a

use case from e-commerce. In the following, we will dis-

cuss the implications of our work (Sect. 5.1) and future

opportunities for IS research (Sect. 5.2).

5.1 Implications

Our findings entail several implications. For academics, we

provide real-world estimates of the actual financial costs

due to AI fairness, which is an insight frequently requested

by the research community (e. g., Chouldechova and Roth

2020; Smith and Neupane 2018). Thereby, we support the

further development of AI-based information systems and

their degree of maturity within socio-technical systems

(Maedche et al. 2019).

For managers and practitioners, we provide multiple

relevant insights. First, we raise awareness of the fact that

the introduction of AI fairness may have negative financial

impacts. While we only analyzed one specific case and the

results are not generalizable, we demonstrate that intro-

ducing AI fairness was associated with financial costs in

our e-commerce example. It could also lead to unethical

outcomes whereby some individuals are left in a more

inferior position – as they received fewer coupons. How-

ever, there might also be cases where AI fairness has no

financial cost. For our e-commerce setting, we further find

that the financial costs due to statistical parity and equal-

ized odds are of similar magnitude. This is important as it

means that costs might not be an argument when compa-

nies choose upon a fairness notion.

In terms of design choices for AI fairness, we see the

following approaches deducted from our e-commerce

application. As shown above, one approach demonstrated

within this work is related to the ‘‘fairness by design’’

paradigm for AI (Abbasi et al. 2018), i. e., implementing

post-processing techniques for constant fairness correction.

For our default classifier, we observe that the difference in

statistical parity is 7.7 %. This raises the question if full

statistical parity is necessary. Some companies are likely to

implement a relaxed version of statistical parity in which a

certain difference in statistical parity is deemed tolerable.

For instance, one such such relaxed variant is the 80 %

rule.5 If a company adopts the 80 % rule as a measure of
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5 The 80 % rule is common in many legal frameworks (Feldman

et al. 2015; Barocas and Selbst 2016) and can be seen as a relaxed

variant of statistical parity. The 80 % rule requires the share of

favorable labels in the protected group to be at least 80 % of the share

outside of it. This is fulfilled in our default classification, where the

rate of coupons for female users is 92.3 % of that for male users.
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fairness, our e-commerce use case would not require AI

fairness. Hence, besides implementing AI fairness, another

approach for companies might instead be to monitor the

level of fairness and intervene only if a certain threshold is

violated. Notwithstanding, IS practitioners might want to

engage with AI fairness for a variety of reasons. In addition

to legal and ethical considerations, unfairness in e-com-

merce might pose substantial reputational risks, as shown

in the case of Staples (Valentino-Devries et al. 2012). Such

reputational risks can be mitigated with state-of-the-art

methods from AI fairness, such as the ones demonstrated in

the present work.

Policymakers should be aware of the (potential) costs

associated with AI fairness. By providing rigorous insights

into the financial costs, we wish to stimulate broader

societal discourse regarding AI fairness and particularly

hope to raise awareness of its economic consequences

(e. g., what price are we as society willing to accept for fair

outcomes?). As our example shows, the introduction of

fairness can link to additional costs for businesses, and

increased opportunities for one group has adverse effects

on multiple other stakeholders. Hence, fairness will not

necessarily generate beneficial outcomes per se, but may

lead to detrimental outcomes for some stakeholders. In

fact, fairness may cause an overall negative effect. In the

context of e-commerce, this will depend on the relative

costs of a firms’ potential adjustments, as this study shows.

Within the fairness community, this is an often-discussed

issue. Different notions of fairness contradict each other,

and privileging one group may lead to the discrimination of

another (Kleinberg et al. 2017). Therefore, policymakers

should take both – potential financial costs and contra-

dicting fairness perspectives – into account when drafting

or amending legislation. For instance, the GDPR of the EU

requires businesses to ‘‘ensure fair and transparent [data]

processing’’ drawing upon ‘‘appropriate mathematical or

statistical procedures’’ (GDPR 2016, Article 22, Recital

71). When enforcing these guidelines on national or state

level, these mentioned tradeoffs should be kept in mind.

5.2 Opportunities for Future IS Research

Our empirical findings create many opportunities for future

IS research. Most importantly, our findings are based on a

particular empirical setting in e-commerce, namely click-

stream analytics for price promotions. Future research

should focus on exploring the financial costs of AI fairness

in additional settings, i. e., how the 8 to 10 % cost increase

would carry over to other use cases within, but also outside,

the area of e-commerce. From a practical standpoint, it

would be interesting to advance algorithms for AI fairness

that can effectively deal with class imbalances, as these are

widespread in real-world settings. It would be especially

interesting to identify how class imbalances moderate the

outcome of AI fairness. For this, our findings can provide

researchers with a springboard (cf. Veale and Binns 2017).

A major aspect when dealing with AI fairness in IS is

the choice of a suitable notion of fairness. As it is mathe-

matically impossible for all notations of fairness to be

fulfilled at the same time, the choice needs to be weighted

carefully. As a first step, we started by investigating group

fairness in the present work, namely statistical parity and

equalized odds. Statistical parity in particular entails

notable drawbacks in IS settings, as illustrated by our

example of handing out coupons for high heels to female

and male users equally. Hence, future research could add to

the knowledge base by investigating other fairness notions

and link them to user perceptions of what is considered

fair. This is relevant as fairness ultimately represents a

socio-technical construct and, hence, the definition of what

is regarded as fair or unfair is not intrinsic to algorithms but

rather lies in the hands of the programmers. Here the IS

discipline is well suited to making relevant and impactful

contributions.

This work studies the costs of AI fairness. If companies

additionally gain a better understanding of the value of AI

fairness, an economic weighing of both expenses and value

added will allow managers to make better-informed deci-

sions. Moreover, for a thorough economic analysis of AI

fairness, further investigation is required into its effects on

consumers, welfare, and social efficiency including the

long-term returns. This is still an under-researched topic

and thus represents an opportunity for the IS community to

make a distinctive contribution.

6 Conclusion

Nowadays, information systems make widespread use of

AI. However, AI might introduce disparate outcomes for

users depending on certain sociodemographics, such as

gender. A remedy to disparate outcomes has been devel-

oped in the form of AI fairness. In this work, we have

quantified the financial costs of AI fairness based on an

e-commerce application. We find that our fair classifier

mitigates disparate outcomes, yet it also increases the

financial costs by approximately 8 to 10 %. Thereby, our

work represents an important empirical contribution for

both research and IS practice.

Appendix 1: Data Preprocessing

The clickstream data was preprocessed in a manner anal-

ogous to that found in prior literature (e. g., Montgomery

et al. 2004). First, we only extracted the pages that were
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actually visited, that is, rendered in the browser window.

Second, we omitted sessions that originated from web

crawlers (this is based on a classification from the online

retailer). Third, we assigned every page to one of the fol-

lowing categories: home, account, overview, product,

marketing, content, community, and checkout (Mont-

gomery et al. 2004). Fourth, we also filtered out the ses-

sions containing either fewer than three pages or more than

50 pages visited. Fifth, we considered a session closed if

the same page was open for longer than 20 minutes. Sixth,

we only considered sessions in which users were logged in.

This was necessary in order to obtain information on

gender, which is a prerequiste for AI fairness algorithms.

Seventh, we performed feature engineering. For this, we

transformed the three variables (visit depth, time spent on

page, and cumulative number of visits) via the following

functions: average, standard deviation, 25 % quantile,

maximum, and approximate entropy. We also experi-

mented with other functions, such as 75 % quantile and

minimum, but these did not result in a performance

improvement and were thus discarded.

Appendix 2: Hyperparameter Tuning

Table 6 reports the tuning parameters used in our grid

search. For the neural network, we used a single hidden

layer. Increasing the number of layers did not improve the

overall performance due to the limited size of the dataset.

All parameters were estimated using Adam and early

stopping.

Appendix 3: Sensitivity Analysis

In addition to boosting, all experiments are repeated based

on the lasso and a deep neural network. Overall, the clas-

sifiers based on boosting yield the best prediction perfor-

mance, registering an AUROC of 0.727 for the default

classifier. In contrast, the default classifiers based on the

lasso and the neural network correspond to 0.596 and

0.664, respectively. A possible explanation for the lower

performance of the lasso is due to non-linearities in the

data, which the lasso is unable to capture. Furthermore, the

lower performance of the neural network is presumably

due to the relatively small quantity of training data, in

which case deep neural networks are unable to realize their

full potential (Kraus et al. 2020). However, we consider

AUROC to be particularly important, as practitioners

commonly rely on the algorithm yielding the highest pre-

diction performance. Moreover, AUROC measures the

prediction performance across all possible classification

thresholds and, hence, is independent of the financial costs

that are specific to our setting. Therefore, the results for

AUROC support our choice of boosting as the underlying

prediction algorithm.

Nonetheless, the findings yielded by boosting are mainly

supported by those obtained from the lasso and the neural

network (Tables 3 and 4). In particular, the fair classifier

results in higher financial costs across all configurations,

that is, for all prediction algorithms and both notions of

fairness. Similarly, in terms of fairness, the fair classifier

provides a higher level than the default classifier for all

configurations and both notions under study. However,

only in the case of boosting and the lasso does the fair

classifier provide a higher level of statistical parity than the

blinded classifier. For the neural network, the fair and

blinded classifiers yield a similar level. This is partly rel-

ativized by the high standard deviations that are observed

for results from the neural network.

Furthermore, the fair classifier has been implemented

with two additional algorithms for AI fairness, namely a

preprocessing algorithm (i. e., reweighing; Kamiran and

Calders 2012) and an in-processing algorithm (i. e.,

adversarial debiasing; Zhang et al. 2018). However, in our

setting, only a post-processing algorithm (i. e., reject

option based classification; Kamiran et al. 2012) has

achieved fairness, i. e., statistical parity and equalized

odds, respectively. Reweighing was ineffective for both

training and test data, providing a level of statistical parity

and equalized odds similar to that of the default classifier.

Moreover, adversarial debiasing did provide a high level of

Table 6 Grid search for

hyperparameter tuning
Model Tuning parameter Tuning range

Boosting Minimum sum of weights in child 1, 2, 3, 4, 5, 6

Maximum depth of trees 2, 3, 4, 5, 6, 7, 8

Maximum delta steps 0, 1, 2, 3, 4

Lasso Regularization strength a 10�3, 10�2, 10�1, 100, 101, 102, 103

Neural network Learning rate 0.01, 0.05, 0.1

Dropout rate 0.25, 0.5, 0.75

Number of neurons 10, 12, 14, 16, 18, 20, 22

Batch size 2, 4, 8, 16, 32
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statistical parity and equalized odds on the training data,

but a level similar to that of the default classifier when

applied to the test data. This observation can be explained

by the nature of how the different algorithms operate. If

fairness is injected at an early stage of the prediction

pipeline, it might be counteracted at other stages of the

pipeline, especially in the context of imbalanced datasets.

Hence, our findings are in line with prior research high-

lighting the limitations of pre- and in-processing algo-

rithms in real-world applications (e. g., Kamiran et al.

2012).
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