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Abstract 

Conventional demand models (e.g., gravity model) in air transport literature tend to rely heavily on the 
mainstream econometric variables (e.g., distance, population, and GDP), which cannot be dynamically 
measured or used for short-term predictions. This study seeks to complement the short-term predictability 
of such conventional approaches by introducing dynamic predictors while alleviating the endogeneity by 
implementing panel data modeling analysis. Utilizing 40,072 air passenger data stacked in 3,344 city pairs 
over twelve months in 2020, we demonstrate that a large variability in demand can be explained by a 
handful of non-conventional variables such as internet search volume and geometric mobility indicators. 
The performance of our fixed effect model was dramatically improved by adding the regional intensity of 
google search for “airport” and “flight” and by adding the measure of people’s time spent at residential areas 
in the origin and destination state (Adj. R2 to .74). 

Keywords 

Google Search, Dynamic Data, Geometric Mobility, Demand Modeling. 

Introduction 

There is much uncertainty among the experts in the aviation industry over how long it will be before the air 
transportation sector recovers and passenger airlines are once again profitable. Suau-Sanchez et al. (2020) 
conducted a series of in-depth interviews with 16 senior aviation industry executives to gain an industry 
perspective on the impact of COVID-19 on commercial aviation. These interviews revealed perceived 
serious long-term consequences including airline industry consolidation, adverse effects from government 
aid, and the slow recovery of business travel due to teleworking and the digital transformation of the 
business world (Suau-Sanchez et al. 2020). Aviation experts believe the recovery of the U.S. passenger air 
transportation industry will take between three and six years (Hotle & Mumbower 2021; Sobieralski 2020). 
In the meantime, aviation industry stakeholders need to reconsider existing methods of air travel demand 
forecasting, as these models are slow to respond, and seek a modeling approach that includes dynamic data. 

The process of air travel demand estimation involves model identification, parameter estimation and 
prediction using a specified model. Accurate air travel demand estimation is important for airlines and 
airports to predict future levels of passengers traveling via air transportation. A problem with traditional 
air travel demand forecasting methods is that researchers generally utilize solely historical data to predict 
future air travel demand. Current models for air travel demand do not incorporate data that is readily 
available in real-time thus making it difficult to make estimations in the presence of industry wide “shocks.” 
Using data from daily updated repositories, mobile device location reporting and search engine interest 
results, this paper seeks to fill the gap in the literature that exists and bridge the gap between big data and 
traditional air travel demand estimation. 
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Theoretical Foundations 

Air travel demand forecasting models have been considered extensively in the literature over the years. 
Early studies have implemented the gravity model to investigate different factors that have an effect on the 
demand for air transportation (Doganis 1966; Brown & Watkins 1968; Verleger 1972; Moore and Soliman 
1981; Fotheringham 1983b; Rengaraju & Arasan 1992; Russon and Riley 1993; O’Kelly et al. 1995; Jorge-
Calderón 1997; Shen 2004; Grosche et al. 2007). Since the work of Fotheringham (1981; 1983a) on spatial 
interaction models, spatial structures and distance-decay parameters, numerous empirical studies set out 
to model that of air travel demand (Abrahams 1983; Suryani et al. 2010; Carson et al. 2011; Li and Wan 
2019; Suh & Ryerson 2019; and Birolini et al. 2020) employing a wide variety of methodologies to develop 
different forecasting models. Air travel demand modeling methodologies have included multiple regression 
(Ba-Fail et al 2000; Valdes 2015; and Wilken et al. 2016), stepwise regression (Abed et al. 2001), semi-
logarithmic regression (Bhadra 2003; Sivrikaya & Tunç 2013), and multivariate neural forecasting 
(Alekseev & Seixas 2009; Blinova 2007). Further related artificial neural network (ANN) studies improved 
forecasting accuracy (Chen et al. 2012; Srisaeng et al., 2015c). Since, empirically tested genetic algorithms 
for predicting aviation demand have been successfully implemented showing better results than ANNs 
(Sineglazov et al. 2013; Srisaeng et al. 2015a; Srisaeng et al. 2016). AI methods have been employed for 
predicting air travel demand by using adaptive neuro-fuzzy inference systems (ANFIS) for even higher 
predictive power (Srisaeng et al. 2015b). 

The vast majority of these empirical models recognize the aforementioned principles of push and pull 
factors involving repulsion and attraction. The demand between the two destinations is directly 
proportional to their size (population) and economic benefits (GDP) while inversely proportional to the cost 
of travel and the geographic distance between them. However, a review of the air travel demand forecasting 
literature uncovers very few empirical studies that take into consideration such dramatic and significant 
impacts as a pandemic on the air transportation industry. At the time of this writing, there is currently no 
body of knowledge of air transportation demand during a pandemic. Studies have yet to include influential 
factors that are specific to the estimation of air passenger volume under precipitous economic disruptions. 

Empirical Strategy 

First, this study seeks to provide detailed instruction in the methods of dynamic data collection of new 
explanatory factors for the inclusion in an analytical model to help predict air transportation volumes in 
times of unanticipated economic disruption. Second, the study hopes to develop a better method of air 
transportation volume estimation during times of unprecedented economic disruption. This is done 
through first starting with a traditional gravity model and then using a stepwise regression approach to 
show how dynamic data strengthens the predictive power of the air passenger traffic demand model. 

Variables and Data 

The dependent variable used in this study is the natural logarithm of number of passengers traveling from 
cityi to cityj. Utilizing a data sample of passenger volumes from 3,344 city pairs over a twelve-month period 
in 2020, we examine the feasibility of parameterizing the influence of haphazard events such as 
government-imposed lockdowns, supply chain disruptions, and unpredictable social turmoil. Although 
multiple independent variables such as COVID cases, human mobility device location tracking, and volume 
of internet searches for “airline” were tested, only eleven important determinants for air travel demand 
were identified. The following sections define the variables used in the empirical analysis as well as the 
descriptive statistics of the factors (see Table 1). 
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Table 1 

Passengers 

In this study, the variable representing passengers (pax) is defined as the total volume of people traveling 
from the origin to the destination or the city-pair in a given month. Data were collected from the Bureau of 
Transportation Statistics’ TranStats pages under passengers form All Carriers and All Airports. This is 
represented by PAXij and indicates the quantity of one-way trips from the origin airport’s city i and 
concluding in city j, whether a layover was made or not. In the econometric model, total demand between 
airports is represented by the natural logarithm of the passenger data, it is the dependent variable and it is 
provided for all city-pairs for all twelve months (see Figure 1, Figure 2).   

 
Figure 1 

  
Figure 2 

Population 

US population data by county were obtained from the US Census Bureau. The 2010-2019 population 
estimates by county dataset was the most recent dataset at the time of data collection. The data were 
downloaded and used to estimate the monthly population numbers for 2020. By calculating the exponential 
growth rate for the previous year monthly populations for the 2020 year were estimated. 

Distance 

Airport distances were calculated using the haversine formula. Given the latitude and longitude the great 
circle distance between two points on a sphere can be determined using the law of haversines. Using the 
pracma R library this calculation can be completed in R with the haversine package [haversine()]. All 
coordinates for airports were pulled from the FAA’s Airport Data and Information Portal (ADIP). To access, 
go to the adip.faa.gov website, click on advanced facility search and then click download all data. On the all-
airport-data.xlsx spreadsheet, each airport’s latitude and longitude is provided. Alternatively, one could 
navigate to the FAA Aviation Data Portal’s National Flight Data Center (NFDC) on GitHub and follow the 
instructions to utilize the Application Programming Interface (API) call [airportData.facilities(options)]. 

Variable N Mean SD SE Min Median Max
lnpax 4007 2 7 .9606 1.6544 0.0083 0 8.1681 11 .861
lnpipj 4007 2 27 .152 2.1315 0.0106 13.512 27 .458 31.592
lngigj 4007 2 35.523 2.2687 0.0113 22.7 96 35.858 40.154
cov_casei 4007 2 2027 8 42065 209.99 0 3853 2687 58
cov_casej 4007 2 20318 4207 8 210.05 0 387 4 2687 58
cov_dthi 4007 2 132.62 311.8 1.56 0 35 3906
cov_dthj 4007 2 132.87 311.82 1.56 0 35 3906
gcovidi 4007 2 2908.8 1595.6 7 .9652 0 3215.4 7 460
gcovidj 4007 2 2908 1595.5 7 .9646 0 317 6.3 7 460
gairporti 4007 2 27 43.9 1047 .8 5.2306 960.5 2392 9200
gairportj 4007 2 27 47 .6 1049.9 5.241 960.5 2392 9200
gflighti 4007 2 2989.9 1168.3 5.8322 1168.5 2692.8 7 925
gflightj 4007 2 2992.3 1169.4 5.837 4 1168.5 2692.8 7 925
resij 4007 2 91.946 89.917 0.4489 -1 .04 69.7 51 568.03
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Gross Domestic Product 

The US Department of Commerce and the Bureau of Economic Analysis (BEA) in collaboration with the 
European Commissions’ DG CONNECT and Eurostat provide a Transatlantic Open Data Partnership that 
focuses on economic data and open access to that data through an API. This partnership created the 
eu.us.opendata R library to enable open access to datasets from both the Eurostat API and BEA API. Using 
a Linked Open Data design, this R library makes it simple to obtain economic data from the BEA API. While 
US and European economic data can be assessed through the eu.us.opdendata API, we only need US data 
and thus chose to use the BEA API and bea.R library instead. 

In order to access the BEA API through the bea.R library, we first registered for an API key through the 
apps.bea.gov website. Once registered we were able to install bea.R packages, open the bea.R library, and 
load the API key from the email we received. Real GDP in thousands of chained 2012 dollars data were 
obtained from the BEA and for brevity will be referred to as simply GDP.   

The data files that were downloaded contained state and county level real GDP numbers and percent 
changes. Since monthly data is not available, it was created using both annual numbers and quarterly 
percent changes. Taking the 2019 ending GDP and calculating the Q1 percent change for 2020, the 
difference was divided evenly for each month of Q1. These same steps were used to determine Q2, Q3 and 
Q4. 

COVID-19 Related Deaths 

Data for COVID-19 related deaths were obtained from the COVID-19 Data Repository by the Center for 
Systems Science and Engineering (CSSE) at Johns Hopkins University. This time series data provided the 
number of deaths per day for each county during 2020. The daily death toll was converted to a monthly 
report simply by subtracting the number of the deaths on the first day of the month from the last day of the 
month for each month and for each county. The data was collected from the CSSEGISandData repository 
on GitHub. 

COVID-19 Related Cases 

Data for COVID-19 confirmed cases were obtained from the COVID-19 Data Repository by the Center for 
Systems Science and Engineering (CSSE) at Johns Hopkins University. This time series data provided the 
number of cases per day for each county during 2020. The confirmed COVID-19 cases were converted to a 
monthly report simply by subtracting the number of the cases on the first day of the month from the last 
day of the month for each month and for each county. The data was collected from the CSSEGISandData 
repository on GitHub. 

Community Mobility Reports 

These time series datasets reveal how outings to locations, such as grocery stores and parks are changing in 
each region. The datasets indicate how visits and length of stay at different locations change when compared 
to the baseline. Baseline days represent a normal value for that day of the week and is the median value 
from January 3, 2020 to February 6, 2020. Anonymized data comes from users who have opted-in to 
location history on their mobile device. Although the datasets contain county information, data has been 
omitted when there are too few datapoints to ensure anonymity, thus much of the county data is missing. 
Therefore, state mobility data were converted from daily time series to monthly time series by averaging all 
of the days of the month together for each state. The mobility reports are described in more detail and 
include the following place categories: Grocery & pharmacy, Parks, Transit stations, Retail & recreation, 
Residential, Workplaces. 

Retail and recreation data shows how the number of visitors to places of retail and recreation has changed 
relative to the period before the pandemic. This includes places like restaurants, cafés, shopping centers, 
theme parks, museums, libraries, movie theaters. Grocery and pharmacy stores data shows how the number 
of visitors to grocery and pharmacy stores has changed relative to the period before the pandemic. This 
includes places like grocery markets, farmers markets, specialty food shops, drug stores, and pharmacies. 
Public transport stations data shows how the number of visitors to transit stations has changed relative to 
the period before the pandemic. This includes public transport hubs such as subway, bus, and train stations. 
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Parks and outdoor spaces data shows how the number of visitors to parks and outdoor spaces has changed 
relative to the period before the pandemic. This includes places like local parks, national parks, public 
beaches, marinas, dog parks, plazas, public gardens. Workplace visitors’ data shows how the number of 
visitors to workplaces has changed relative to the period before the pandemic. Residential mobility trends 
provide information on time spent at home and the data shows how the number of visitors to residential 
areas has changed relative to the period before the pandemic. 

Internet Search Engine Query Volume 

There are several internet search engines on the web, but none have reached the popularity of Google. Top 
search queries can be analyzed for popularity across various regions and can be compared over time. Google 
Trends data provides access to actual search requests made to Google. This type of analysis provides 
anonymized, aggregated, and normalized data that can be either real-time or historic. Google’s normalized 
data is shown on a scale of 0 to 100 based on the search volume.   

 

  
Figure 3 

  
Figure 4 

Normalized search engine trend query data has been successfully utilized by researchers to explore both 
travel demand and financial markets (Li Long, Guleria & Alam, 2021; Baig et al., 2013). Google trends 
provides an API that can be accessed through the gtrendsR package for R. Through this package, data on 
frequency of search terms in a time series format can be downloaded. This data can potentially have 
predictive power as the data represent the search interest for the general population.  

In an effort to capture the interest intensity in air travel during 2020, three similar search queries were 
compared. “Airline” appeared to be the least intense search query of the three. Therefore, “airport” and 
“flight” were selected for the study (see Figure 3). Next, we looked to see how “airport” compared to the 
intensity of “covid.” The data shows the intensity for the keyword “covid” was much greater (see Figure 4). 
Data on Google searches for “covid”, “airport”, and “flight” were obtained using the gtrendsR package. The 
normalized keyword search intensity data for each state were multiplied by the normalized keyword search 
intensity data for the overall nation. 

Google searches for “covid” and “airport” were obtained using the gtrendsR package. The quantity of 
searches for “covid” is expected to have an inverse relationship with air transportation demand while 
searches for “airport” are expected to be an attraction factor.   

We could see that google search on certain keyword is highly correlated with the passenger volume of each 
city-pair (see Figure 5). 
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Figure 5 

Correlation Matrix 

The correlation matrix (see Figure 6) indicates that the conventional explanatory variables (Distance:lndist, 
Population:lnpipj, GDP:lngigj) are indeed strongly correlated with passenger volume (lnpax). However, it 
is notable that Google search (gcovidi, gcovidj, gairprti, gairprtj, gflighti, gflightj ) and mobility (resi, resj) 
shows significant correlations with passenger volume. 

 
Figure 6 

Sources of the Data 

US population data by county were obtained from the US Census Bureau. Gross Domestic Product (GDP) 
data were obtained from the U.S. Bureau of Economic Analysis (BEA). Airport coordinates and information 
were collected from the FAA. Airport distances were calculated using the Haversine Formula. Data for 
COVID-19 related cases and deaths were obtained from the COVID-19 Data Repository by the Center for 
Systems Science and Engineering (CSSE) at Johns Hopkins University. Community Mobility Reports were 
obtained from Google.   

Treatment of Data 

We downloaded all flights from the US DOT T-100 report for each month in 2020. From this list, we 
compiled all 9,401 of the individual origin destination airport pairs. We removed all service to international 
locations, leaving only domestic US flights. Next, we removed all locations without regularly scheduled 
service. We then removed all seaplane bases. We also removed all locations that did not offer scheduled 
service for all 12 months. The balanced panel data includes 3,344 individual city-pairs observed at monthly 
time periods for all months of 2020. 

Research Approach 

Given our theoretical interest in both the route-specific effects and the changes over time, we opted for a 
panel data analysis study. Analysis will be conducted using panel data regression analysis in the period of 
2020. An appropriate panel regression model will be chosen with the assistance of the Hausman test and 
the redundant fixed-effect or log-likelihood test. In an effort to determine which factors of determining air 
travel demand is suitable to data, the regression coefficients will be calculated and inspected. 

To interpret our results as elasticities, all the numerical variables, except the dummies and normalized data, 
will be transformed into natural logarithms. For the static model, the equation is specified as follows: 

Paxk,t = β’xk,t + αk + εk,t                                                                             (1) 

where t = {January 2020…December 2020} and k = {all origin destination city-pairs}. 

Paxk,t is the log of the k-th city-pair's total passengers carried at time t; αk is the city-pair effect invariant 
to time; and εk,t is the error term. xk,t is the vector of explanatory variables. 

xk,t = {lnpipj, lngigj, covidi, covidj, groci, grocj, retaili, retailj, parki, parkj, transi, transj, worki, 
workj, resi, resj, gcovidi, gcovidj, gairprti, gairprtj, gflighti, gflightj}                                                               

(2) 
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where lnpipj is the log of the product of k-th city-pair’s population at time t, lngigj is the log of the product 
of k-th city-pair’s GDP at time t, covidi is the number of COVID-19 deaths in the origin city at time t, covidj 
is the number of COVID-19 deaths in the destination city at time t. Whereas groci, retaili, parki, transi, 
worki, resi, are the normalized mobility data for number of people visiting grocery and pharmacy stores, 
places of retail and recreation, parks and outdoor spaces, transit stations, workplaces and number of people 
staying home, respectively, in the origin city at time t, while grocj, retailj, parkj, transj, workj, resj, are the 
normalized mobility data for number of people visiting grocery and pharmacy stores, places of retail and 
recreation, parks and outdoor spaces, transit stations, workplaces and number of people staying home, 
respectively, in the destination city at time t.  gcovidi is the normalized internet search data for the number 
of people searching for the word “covid” in the origin city at time t, gcovidj is the normalized internet search 
data for the number of people searching for the word “covid” in the destination city at time t, gairprti is the 
normalized internet search data for the number of people searching for the word “airport” in the origin city 
at time t, gairprtj is the normalized internet search data for the number of people searching for the word 
“airport” in the destination city at time t, gflighti is the normalized internet search data for the number of 
people searching for the word “flight” in the origin city at time t, gflightj is the normalized internet search 
data for the number of people searching for the word “flight” in the destination city at time t, lndist was 
omitted because the distance between the cities is a time invariant variable. Although each of these mobility 
reports were tested, only the residential mobility trends proved to be statistically significant. 

The next step was to remove the variables that were not significant. Then we run a pooled OLS ignoring the 
time and panel information. The results of the pooled model (model 1) suggest that while the three 
conventional key variables for the gravity model (lndist, lnpipj, and lngigj) are still highly significant, during 
the inception of the pandemic, they can only explain 36 percent of variances in passenger (lnpax) (see Table 
2). This is a significant drawback of the model considering that in normal times they usually explain more 
than 70% of the variance in passenger traffic (Grosche et al., 2007).  

Introducing our dynamic variables in the pooled model shows a meaningful increase in performance (adj 
R2 =.60). However, the pooled model could not take advantage of panel data, and it suffers from 
endogeneity. Further, Breusch–Pagan test results were significant (BP = 2762.8, df = 21, p < 0.01), 
suggesting that the homoscedasticity assumption does not hold, and thus, the pooled OLS cannot be used 
for modeling the data. Hausman test results (χ2=1107.8, df=18, p<0.01) rejected the null hypothesis (i.e., 
random effect model is consistent) suggesting that fixed effect model (vs. random effect model) is the best 
choice for our data. 
   

 
Table 2 

Estimation Method and Results 

Model Description and Variables 

As the fixed effect (FE) estimation eliminates all the time-invariant effects through de-meaning, it 
automatically drops constant variables (e.g., distance) from the model and highlights the effect of within 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiOtt-csKX2AhXzmmoFHV3TDG0QFnoECAUQAQ&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBreusch%25E2%2580%2593Pagan_test&usg=AOvVaw1xf3sK8I4Il9_kXZoRWiWO
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route variations. We ran the analysis first with the mainstream key variables from the gravity model, 
distance, Population, and GDP (model 1). Next, we brought in the data from the COVID cases and COVID 
deaths. While significant, COVID cases and death did not substantially improve the model (model 2). It 
appears that the effect of these two variables may exhibit a “delayed” effect on the number of passengers. 
This indicates a need for a future study that explicitly factor in the time-differencing technique. Next, we 
include the internet keyword search intensity for “covid”, “airport”, and “flight.” This results in a 
substantial improvement in model performance(model3). Finally, effects of the geographic mobility 
reporting from electronic devices have been included in the model (model 4); Adding the intensity of 
people’s time spent at residential areas in the origin and destination state (i.e., resi * resj) results in a 
substantial improvement in model performance. 

Regression Results 

Table 3 presents the results from the fixed-effect model. 

 
Table 3 

Conclusions 

As seen in the results the traditional gravity model variables perform very poorly in response to sudden 
catastrophic changes in socioeconomic fabric of our society. In this model the variables population and GDP 
are statistically significant at the 0.01 significance level. However, the coefficient of determination indicates 
that only 18% of the variation in the passenger numbers can be explained by the model. 

Daily supply chain disruptions, weekly government-imposed restrictions, and an ongoing fear of leaving 
one’s home are unaccounted for in these traditional models. It was this realization that led for the need of 
discovery into the underlying factors that contribute to the demand for air travel in the United States, more 
specifically, air transportation during times of major socioeconomic disruption. 

In an effort to explain these effects several determinants were selected for investigation. The intensity of 
keyword searches for “flight” and “airport” as expected were positively correlated with the quantity of air 
passengers. Nevertheless, the searches for “covid” also had a positive effect on the dependent variable. 
Initially, it was hypothesized that as searches for “covid” increased it would represent the perception of fear 
and would be negatively corelated with the number of air passengers. The statistically significant results for 
the internet keyword search results indicate otherwise. This could potentially be explained by travelers 
searching for covid restrictions prior to traveling. Travelers need to know what to expect when walking 
through the airport, boarding the plane, and reaching their destination. Therefore, these results make 
intuitive sense and show that the model can be strengthened using dynamic data. These three keywords 
helped to increase the explanatory power of the model (adj. R2 = 0.61).   

Mobility reporting from personal electronic devices is another determinant that was investigated due to the 
almost real time results and dynamic data capabilities. Unfortunately, of the eight categories tested for this 
model, only the residence mobility variable was statistically significant (p<0.01). Time spent at home data 
shows how the number of visitors to residential areas has changed relative to the period before the 
pandemic. This explains the inverse relationship with the number of passengers using air transportation as 
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indicated by the -0.007 coefficient for resij that is statistically significant at the 0.01 significance level. The 
addition of the mobility reporting increased the explanatory power of the model (adj.R2 = 0.74). 

During the ongoing pandemic of 2020, data of confirmed COVID-19 cases and deaths were being reported 
on a daily basis. The availability of this dynamic data and the socioeconomic implications of the information 
it contains made it convenient for further exploration. Surprisingly, the number of confirmed cases of 
COVID-19 were not statistically significant and were dropped from the model. The number of confirmed 
deaths as a result of COVID-19 were significant at the point of origin but not at the destination location. 
Thus, the variables were dropped from the model with no loss of explanatory power of the model. 
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