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Introduction

By 2030 up to 130M fully electric vehicles (EV) are expected to share the roads with the traditional vehicle
fleet (IEA 2020). To facilitate this growth and to drive adoption, adequate charging infrastructure needs to
be provisioned that accommodates existing user behavior and driving patterns (Avci et al. 2015). Currently,
the preeminent charging option – for lack of other viable opportunities – is charging from home (Hoover
et al. 2021). As more and more non-homeowners adopt EVs and as commercial fleets are electrified, charg-
ing opportunities at the workplace, at popular destinations such as supermarkets and at fleet depots will
be needed (Hoover et al. 2021; Jun and Meintz 2018; Lee et al. 2019). We refer to these charging hubs
as EV Charging Clusters (EVCCs). With a growing proportion of future charging requests expected to take
place in such locally concentrated EVCCs, the challenge of planning, operating and integrating these sites
becomes important. We focus here on the decision problem of an EVCC owner/operator who wishes to pro-
vide charging facilities and services to a user base with an increasing share of EVs. Our research reveals
that by leveraging real-world consumer preference data, by allowing for parallel use of charging equipment
and by approaching the EVCC planning challenge from an integrated perspective, much better investment
decisions can be achieved. The degree to which the full flexibility of a parked EVs can be exploited during
charging depends not only on the preferences of the underlying user populations, but also on the layout and
size of the installed on-site charging infrastructure (Ferguson et al. 2018). A complex system with three-
way interdependencies between preferences, operational decisions and infrastructure investment emerges.
We address these complexities by formulating an integrated decision support system that jointly derives
optimal investment and operations decisions over the planning horizon against detailed preference mod-
els. Our work makes a number of contributions. First, we use two large empirical parking and charging
datasets (>3.8M transactions) to model behavior in unprecedented detail. Second, we use this data as input
into a novel integrated decision framework that provides optimal solution to the investment and operations
decision. Our optimization model is the first to consider parallel use of charging infrastructure. Third, we
explore the impact of different user populations on the sizing and operations decisions of EVCCs. We show
that different mixes of parker types may require very different charging infrastructure and provide evidence
for the need to incorporate consumer modeling into the EVCC investment decision. In sum, we contribute
an IS artifact to support the electric vehicle transition and respond to our community’s call for impactful IS
research that addresses grand challenges. The remainder of this paper is structured as follows: We first dis-
cuss the literature relevant to this study. We proceed with a description of our research framework. We then
present our model followed by an analysis of experimental results. We end with a discussion and outlook.
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RelatedWork

We position our work broadly within the extant research stream of Green IS (Watson et al. 2010). Informa-
tion systems have been shown to promote sustainable practicing by consumers, to enable smart electricity
grids or assist green policy design. Green IS has also been embraced by the design science (DS) community
(Rai 2017). DS researchers have brought forward numerous actionable IS artifacts targeted at solving press-
ing sustainability issues. Examples that are broadly related to our work include decision support systems
for real-time electric vehicle charging on parking lots operations (Babic et al. 2018), positioning on-street
charging stations in a city based on real-world movement data (Wagner et al. 2014), and balancing shared
vehicle fleets (Schroer et al. 2019). Our research contributes to this streamby focusing onEV integration and
adoption. We propose a prescriptive IS framework for the problem of preference-based EV infrastructure
provisioning at large-scale parking facilities. Our contribution is best classified as belonging to the compu-
tational and optimization genre of DS as described in Rai 2017. We utilize bothmachine learning techniques
and mathematical programming, thus drawing from both genres.

Literature on planning and operations of clustered EV charging infrastructure also informs this research.
EV charging operations environments range from fully distributed on-street charging and private home
charging to charging in large-scale parking lots/depots (i.e., EVCCs). We focus here on research related
to the latter application case. In line with the growing acknowledgement of the importance of EVCCs and
charging hubs to drive EV adoption (Hoover et al. 2021; Huang and Zhou 2015), academic interest in the
topic has intensified. We find that a substantial body of work has developed particularly on topics related
to charge management of EVCCs. Early examples include Huang and Zhou 2015 who develop a mixed-
integer optimization framework for workplace charging strategies taking into account different eligibility
levels and Wu et al. 2017 who propose a two-stage energy management framework for office buildings with
workplace EV charging and renewable energy. Nunes et al. 2016 investigate how charging processes can best
be coordinated to use parking lots for EV solar-charging. Ferguson et al. 2018 propose an integrated load
management approach to optimize EV charging processes forminimumcost taking into account the building
base load and PV generation. Finally, Lee et al. 2019 explore several optimization-driven approaches to
operational issues in charging hubs. Planning of EVCCs has received somewhat less attention. This may be
surprising given the strong relationship between sizing and operations meaning that both aspects should
(ideally) be considered jointly. Most extant research resolves the ensuing complexity by using simulation-
based approaches. For example, in Kazemi et al. 2016 the authors use a genetic search algorithm on top
of an EVCC simulation to derive the optimal size of an EV parking lot. Babic et al. 2018 also use a greedy
search over a simulation of a parking lot to derive optimal infrastructure decisions. Li et al. 2020 propose a
mathematical programming framework for joint optimization of both size and operations of a small-scale,
100-vehicle EV-capable parking lot. Yet, they utilize highly simplified, deterministic consumer preference
assumptions of a single EVCC type and do not consider parallel charging, which adds significant complexity.
In a simulation study, Ferguson et al. 2018 show that parallel charging significantly reduces infrastructure
requirement while achieving similar service level.

Finally, we review approaches tomodelling user behavior. From anEVCC operations perspective three user-
level preference inputs are required: time of arrival, required energy and actual time of departure. These
parameters define the flexibility with which an EV can be charged (Nakahira et al. 2017). We find that
extant research either fully neglects the stochasticity in user preferences by assuming recurring population-
level usage patterns (e.g., Li et al. 2020) or makes naive distributional assumptions, e.g., on the size of
batteries or the state of charge upon entry from which random draws are taken per each simulation run
(Uhrig et al. 2015). Only a handful of studies have access to real-world charging behavior (e.g., Ferguson
et al. 2018; Lee et al. 2019). Their charging data, however, only captures served charging demand which
is constrained by the on-site charging infrastructure. Consequently, such datasets – on their own – are
not suitable for sizing exercises. In sum, our work addresses several important gaps in the charging hub
literature. We are the first to use detailed preference modeling on an extensive set of real-world parking
and charging data to ensure preference-aware sizing. In doing so we explore the sensitivity of planning
decisions to changes in user preferences, a point that has been neglected by existing work. Our model also
allows for parallel use of charging infrastructure which significantly boosts performance at the expense of
higher operational complexity. Our novel optimization approach addresses this complexity. Our work also
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has important societal and sustainability implications.

Model

We define an EVCC as an EV charging-capable parking lot, depot or garage that will typically be attached to
an existing building. Both the building and the EVCC receive power from the same grid connection point.

EVCC planning and operations involves two interrelated sets of decisions: the Investment Decision and
the Operations Decision. The first entails the choices of how many units of EV supply equipment (EVSEs)
to acquire (

∑
k xk), how many connectors to install per each EVSE (

∑
i yk,i) and whether to upgrade the

existing grid connection capacity (P+). The second decision centers on the choice of charging and vehicle
routing strategy. The initial assignment (ωk,j) of a vehicle to a specific connector has future implications for
the charging rate (ψk,j,t) that is available to that vehicle and other vehicles now and in the future.

Both sets of decisions are influenced by cost data. Naturally, equipment costs (cgrid, cEV SE , cPlug) constitute
an important factor in the investment decision. Additionally, operating cost (cost of energyT e

t and grid usage
T c) are of relevance in both the planning and operations of the EVCC. Finally, User Preferences are a key
determinant of the infrastructure and operations of an EVCC. As discussed, threemain inputs are important
here: (1) time of arrival per vehicle (Aj), (2) duration of stay (δj) and (3) requested energy (edj ). We assume
here that users provide these inputs upon entry into the EVCC (Lee et al. 2019). The parameters determine
how flexibly the vehicle can be charged. Taken together EVCC planning and operations decisions result
in investment costs (CΦ) and recurring operating costs (CΩ) that are required to fulfill the EVCC’s target
service level (ηs).

We now lay out our two-stage prescriptive EVCC planning and operationsmodel. Stage I implements a pref-
erence learning routine which extracts User Preferences from empirical data. In Stage II we derive Invest-
mentDecisions under the assumption of optimalOperationsDecisionswithin amathematical programming
framework. Table 1 provides an overview of notation.

Stage I: Parking and Charging User Preference Learning

User preferences (of an individual j) in an EVCC context are described by the three-dimensional vector
vj = (Aj , δj , e

d
j ). We start by building a model of current archetypical parking patterns, thus focusing on Aj

and δj . To identify parker archetypes we employ clustering, an unsupervised machine learning technique
for which we leverage a unique proprietary dataset of parking events. The dataset was provided by a ma-
jor European real-estate investor and includes parking transactions from seven large-scale parking garages
(capacities range from 275 to 2200 parking spots). A mix of workplace, inner-city, and shopping center fa-
cilities is available. Per each facility we have transaction-level parking data, meaning each row in our dataset
represents one parking event j with corresponding arrival and departure preference information. Individ-
ual users cannot be identified due to privacy reasons. We use a full year of data to capture daily, weekly and
yearly seasonality. 2019 is chosen as reference year to filter out pandemic-related effects. In total, our data
comprises 3.84M parking events.

We cluster parking events j based onAj and δj , the two core parameters of interest at thismodeling stage. To
account for the circular nature of arrival timeAj , we create two circular features of the following formAsin

j =

sin(2π(Aj/24)) and Acos
j = cos(2π(Aj/24)). This yields the following vector of clustering variables vclustj =

(Asin
j , Acos

j , δj), which we normalize. Given the size of our dataset we limit our algorithm search to clustering
algorithms that are sufficiently scalable. We run initial tests with three clustering algorithms: k-means++, a
centroid-based algorithm, GaussianMixtureModels (GMM) andBIRCH, a scalable density-based clustering
algorithm. Overall, we find k-means++ to perform best in terms of runtime and stability. While GMM
yields relatively similar results, BIRCH performs very poorly, yielding unstable and non-cohesive clusters
suggesting that relative densitymaynot be a good identifier of clusters for the givendataset. We thus focus on
fine tuning k-means++. To identify good candidate choices for k, we perform extensive quantitative internal
validity tests (elbow method, Calinski-Harabasz scores (Calinski and Harabasz 1974), silhouette analyses
(Rousseeuw 1987)) and qualitative external validity checks (stakeholder interviews). These (unreported)
tests suggest k = 6 to be the optimal choice. We assess cluster stability through cross-validation in which
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Symbol Description Unit
Sets
Ik Set of candidate connectors per EVSE k ∈ K and index i set
J Set of unique EVs entering the EVCC during the planing horizon with index j set
K Set of EV supply equipment (EVSE) candidates with index k set
T Set of time periods in planning horizon with index t set
Tj Set of time periods t ∈ Tj during which vehicle j remains in EVCC (Tj = [Aj , Dj ]) set
Ξ Set of decision variables Ξ = {xk, yk,i, P+, ωk,j , ψk,j,t} set
Parameters
Aj Arrival time of vehicle j period
cPlug Cost per connector USD
cEV SE Cost per EV supply equipment (EVSE) (i.e., charging station) USD
cGrid Cost per kW of grid connection (i.e., transformer) USD/kW
Dj Departure time of vehicle j period
δj Duration of stay of vehicle j hours
edj Total energy requested by vehicle j over duration of stay kWh
ηs Service level expressed as ratio of fulfilled vs. actual demand ratio
H Duration of a single period t hours
lt Base load of attached facility (e.g., office building excl. EVCC) during period t kW
l∗ Maximum expected base load of attached facility in month of period t kW
PEV SE Maximum power per each EVSE kW
PGrid Maximum existing power of grid connection kW
S Space limitation in number of parking spots count
T c Cost of induced peak per period USD/kW
T e
t Cost of energy in period t as per TOU tariff USD/kWh
Uj,t Indicator of whether vehicle j is present in the EVCC during period t boolean
Variables
CΦ Total normalized investment cost for the EVCC per planning horizon USD
CΩ Total cost of operating the EVCC over the planning horizon USD
esj,t Energy supplied to vehicle j during period t kWh
p∗ Induced max peak attributable to EVCC operations during planning horizon kW
p+ Additionally required grid connection capacity that needs to be installed kW
ψk,j,t Energy supplied to vehicle j connected to EVSE k during period t kWh
wk,j Indicator for whether a vehicle j is connected to EVSE k ∈ K boolean
xk Indicator for whether a charging station is installed at candidate location k ∈ K boolean
yk,i Indicator for whether a connector is installed at candidate point i of EVSE k ∈ K boolean

Table 1. Nomenclature

we iteratively perform 2-1 splits of the data and re-run k-means++ on the larger dataset, then use the fitted
algorithm to predict the labels of the smaller (test) dataset. We find our clustering results to be stable with
observations in the test set having the same label 99.14% (σ = 0.51 %, 100 replications) of the time. We also
find that high quality clustering results can be obtained with just three weeks of data (95.28%, (σ = 3.49 %)
accuracy). In Table 2 we summarize our results.

Cluster Size Characteristics
(avg, std. in parentheses)

k Name N share Aj δj
1 Business 671,384 17.47% 7:26am (1.43h) 7.92h (2.73h)
2 Morning Short 1,279,646 33.30% 11:10am (1.33h) 2.12h (1.90h)
3 Afternoon Short 985,710 25.65% 3:03pm (1.00h) 1.73h (1.35h)
4 Evening Short 744,753 19.38% 6:17pm (1.84h) 1.47h (1.30h)
5 Overnight 129,273 3.36% 5:22 pm (4.01h) 15.84h (4.02h)
6 Long-term 32,241 0.84% 2:28pm (4.94h) 37.04h (6.70h)

Table 2. Cluster Results
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In sum, we obtain six parker types that are supported both by internal criteria and real-world observation.
The largest proportion of our dataset is made up of three short-term parker types (Morning Short, After-
noon Short and Evening Short). These users enter the parking lot in the morning, afternoon or evening
respectively and typically stay for periods of 1-2 hours. We also observe a Business cluster, which com-
prises parking events that commence in the early morning (7:26am on average) and last for an average
of 8 hours. k-means++ identified two additional segments comprising longer-term parking events. These
are Overnight parkers, which enter the parking lot in the late afternoon and stay until the next morning
(typically 15.8 hours on average) and Long-term parkers that stay for periods longer than 24h on average.
We also look at the distribution of parker types across the different facilities. Three archetypical facilities
can be identified: workplace, destination (supermarkets, malls, etc.) and mixed-use facilities (e.g., inner-
city parking facility catering to workers, residents, shoppers and others) (see Figure 1). Understanding and
quantifying the sensitivity of the charging infrastructure investment decision to the different compositions
of the user base is a core objective of this research.
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Figure 1. Daily occupation by parker type across three archetypical parking facilities

Finally, we focus on the third required preference input variable: the requested energy per vehicle edj . We
employ a novel and real-world dataset by Lee et al. 2019 containing >25,000 charging transactions for the
year 2019. Per each charging transaction the full preference vector vj = (Aj , δj , e

d
j ) is available. Weblend the

charging data (which only contains served sessions that are constrained by the available infrastructure) with
our parking dataset (which contains all parking requests per facility) by using techniques from collaborative
filtering. We essentially train a prediction model on the labeled Lee et al. 2019 dataset and use the resulting
model to predict charging demand in the parking dataset. Specifically, we train a kNN-model on the charging
transaction dataset using the set of clustering variables from before as predictors and the requested energy
in kWh as target. Cross-validation reveals k=12 neighbors to be a good value. We use the trained algorithm
to predict charging demand per transaction in our unlabeled parking dataset.

Stage II: EVCC Investment and Operations Decision Algorithm

We formulate the Preference-aware EVCC Planning and Operations decision challenge as a feasibility prob-
lem which aims to satisfy all or a specified amount of total charging demand under rate, space, and to-
tal capacity constraints. The problem then becomes a cost minimization planning to jointly minimize the
investment cost (CΦ) and the operations cost (CΩ) of the EVCC while ensuring a certain service level ηs.
Formally, the objective can be expressed as follows:

MinΞ(C
Φ(xk, yk,i, p

+) + CΩ(ωk,j , ψk,j,t, p
∗)) (1)

Where the investment cost (CΦ(xk, yk,i, p
+) = cGridp+ +

∑
k∈K c

EV SExk +
∑

k∈K,i∈Ik
cPlug) is the sum of

the grid expansion cost (if any), the cost of EVSEs and the total cost of connectors (plugs). The operations
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cost (CΩ(ωk,j , ψk,j,t, p
∗) =

∑
j∈J ,t∈T T

e
t e

s
j,t + T pp∗) is defined as the sum of electricity costs plus demand

charges arising from the induced peak load attributable to EVCC operations.

p∗ ≥
∑

j∈J e
s
j,t

H
+ lt − l∗ ∀t ∈ T (2)∑

t∈Tj

esj,t ≥ ηsedj ∀j ∈ J (3)

∑
k∈K

xk,
∑

k∈K,i∈Ik

yk,i ≤ S (4)∑
j∈J e

s
j,t

H
+ lt ≤ PGrid + p+ ∀t ∈ T (5)

ωk,j ≤ xk ∀k ∈ K, j ∈ J (6)∑
k∈K

ωk,j ≤ 1 ∀j ∈ J (7)∑
j∈J

ωk,jUj,t ≤
∑
i∈Ik

yk,i ∀k ∈ K, t ∈ T (8)

0 ≤ ψk,j,t

H
≤ ωk,jUj,tP

EV SE ∀k ∈ K, j ∈ J , t ∈ T (9)∑
j∈J

ψk,j,t

H
≤ PEV SE ∀k ∈ K, t ∈ T (10)

Demand charges are designed to incentivize efficient utilization of the grid (Gust et al. 2021) and are typically
based on the monthly peak load induced by the facility. We therefore define p∗ as the excess of the expected
facility peak load l∗ (excl. EVCCoperations) for themonth that contains t (Eq (2)). Service level is guaranteed
by constraint (3), where, esj,t =

∑
k∈K ψk,j,t∀j ∈ J , t ∈ Tj . Note that the summation is bounded by set

Tj , meaning that we consider the received energy at the departure time. Both EVSEs and connectors are
restricted by the space constraints S of the facility (Eq (4)). At any time, our model ensures that the EVCC’s
base load and charging loads cannot exceed the total grid capacity (existing and extension), which is enforced
by Constraint (5). In terms of vehicle routing and charging, we assign vehicles to chargers upon arrival
(one-off decision) and periodically adjust the charging power over the duration of their visit. Constraint
(6) allocates vehicle j to spot k only if it is equipped with an EVSE. Equation (7) ensures that each vehicle
connects to at most one EVSE. The number of connected vehicles per each EVSE is at most equal to the sum
of its connectors (Constraint (8)). Constraint (9) guarantees that vehicle j receives non-negative energy
(bounded by the maximum power) from EVSE k only if it is connected to EVSE k. Finally, the total energy
outflow for each EVSE must be less or equal to its rated power PEV SE (Constraint (10)).

Numerical Experiments

We test ourmodel through extensive numerical experimentation. For this, we draw directly on the compiled
user preference data. To ease comparison, we limit the parking capacity per facility type in scope to 250
vehicles. We use a time-of-use (TOU) electricity tariff from Southern California Edison (SCE) (see Table 3).
It also includes a demand charge, which is amonthly grid fee (T c) of 15.48USD per each kWof peak capacity
demand within that month. Investment costs based on actual quotes made available to us by our industry
partner, a major real estate developer. Grid connection cost cGrid is 240 USD/kW, the cost of a 22-kW AC
charging station (cEV SE) is set to 4,500USD per unit1. By default, we consider parallel charging (up to four)
in all simulations, where each additional connection costs cPlug = 250 USD. Based on the building base load
lt, we let the peak base load l∗=max(lt)= 450kW and the existing size of the grid connection (PGrid) equal
to 1.5l∗.

1A review of different received offers revealed that the cost driver of AC chargers was not the capacity per charger but the installation
and cabling, thus it made sense to only consider the largest AC charger type available
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Summer Winter
(Jun - Sep) (all other months)

Super Off-Peak (8am-4pm) 0.08 USD/kWh 0.06 USD/kWh
On-Peak (4pm to 9pm) 0.23 USD/kWh 0.23 USD/kWh
Off-Peak (9pm-8am) 0.08 USD/kWh 0.08 USD/kWh

Table 3. Time-of-use tariff for large-scale EV charging customers (> 500 kW)

Results

Figure 2 shows the charging decisions (hourly energy consumption) for the three archetypical facility types
for summer and winter days. Our model charges vehicles mostly during off-peak hours then, reduces con-
sumption after 4pm during on-peak times.
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Figure 2. Hourly energy consumption in summer (left) and winter (right)

Workplace and mixed-use facilities have similar patterns, while the destination facility has higher and de-
layed peak energy consumption. Later arrivals and lower laxity require higher charge rates at later times
in the day, but still on-peak hours are largely avoided. Comparing winter and summer days, workplace
consumption in winter starts with a higher peak and the peak of destination facility reduces compared to
summer. However, the marginal electricity price reduction in super off-peak hours (8am-4pm) does not
change the load curve significantly. Investment decisions are depicted in Figure 3. Since our model guaran-
tees a service level for all vehicles, it will install connectors equal to the peak number of parked vehicles. For
all three facilities, there are more EVSEs than minimum to take advantage of low price hours. The optimal
number of EVSEs (grid expansion) for the destination facility is significantly higher due to a large share of
short parkers.

Our analysis of service level (not shown here) reveals that its reduction has a linear effect on the grid expan-
sion, but does not necessarily lead to fewer chargers. There must be a minimum number of connectors (and
accordingly chargers) to meet individual demands. Also, even with low service level it might be more cost
effective to invest more on charging capacity to take advantage of off-peak energy tariffs. To analyse parallel
charging, we test different number of connectors per EVSE. Parallel charging significantly increases asset
utilization while requiring similar grid expansion. Also using dedicated chargers has no operational benefit,
but requires more investment.

Finally, we benchmark our approach against a status quo investment framework. In a recent property de-
velopment project we have reviewed, a rule-of-thumb approach was used by by which 10% of parking spots
were equipped with 22kW chargers to satisfy an anticipated medium-term EV adoption share of 10%. To
simulate this naive benchmark we fix the number of EVSEs and connectors in our optimization and let the
model determine optimal operational decisions and grid expansion. We then compare it with our optimal
approach for a discrete range of adoption rates. The results are shown in Figure 4. Our EVCC approach out-
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Figure 3. Number of EVSEs and required grid expansion for different facility types

performs in all scenarios in terms of the number of EVSEs (71% less on average) and the investment costs
(63% less on average). These numbers might vary from one case to another according to users preferences.
To sum up, our model significantly reduces investment costs by using parallel charging and optimal sizing.
On the other hand, since we consider optimal operations for both approaches, the operational costs and grid
expansion are very similar (i.e., no grid expansion and operational costs reduction using dedicated charges).
It also shows that as EV adoption is gradual, the infrastructure expansion should also be gradual as well.
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Figure 4. Sensitivity to adoption rate and comparison against status quo planning approach

Discussion

Wecontribute aGreen IS artifact to address the urgent challenge of transport electrification. Beyond that, we
make several important academic contributions. First, we develop a novel data-driven taxonomy of parker
types alongwith an estimation of their future charging demand. While previous work had to rely on assump-
tions of user behavior or used highly-aggregated data from single homogeneous parking facilities, we lever-
age a unique dataset of parking transactions from diverse facilities, which we blend with another dataset of
real-world observed charging demand to achieve empirically-grounded estimates of future charging behav-
ior. Second, we propose a novel integrated modeling approach that simultaneously optimizes investment
and operations decision. Previous work either focused on one of the two decision classes or used greedy
simulation approaches. We derive globally optimal solutions. Third, we explore the impact of user popu-
lation heterogeneity on the sizing and operations decisions of EVCCs. Specifically, we explore how differ-
ences in the compositions of the parker types impact charging infrastructure requirements. We find that
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the EVCC investment decision is highly sensitive to changes in the user mix. Fourth, our work is also the
first to consider parallel use of charging infrastructure for sizing charging clusters while ensuring optimal
operations. We separately consider the charging station decision and the connection point decision. This
assumptions adds complexity at the operational level but we demonstrate in several experiments that it can
significantly improve asset utilization versus a single-use setup. Our work is not without limitations which
provide opportunities for future work. First, given our focus on the planning decision and its sensitivity to
user behavior, several simplifying assumptions regarding operations were made. We ignore uncertainty in
the arrival, departure and charging behavior of the user population and assume perfect foresight. While
this is a common assumption for planning problems, the impact of real-world stochasticity remains to be
explored. Such a problem could be cast into a dynamic programming framework which we aim to address
in future work. Second, several important sensitivities and trade-off decisions remain unexplored in this
research due to scope limitations. For example, it would be interesting to understand how small the grid
connection capacity can be given some flexibility in user preferences. Similarly, it would be interesting to
explore the trade-off between integrating behind-the-meter decentral storage and generation units (e.g, PV)
and the need for grid connection expansion among other analyses. Finally, a dynamic view of the investment
decision should be considered taking into account the dynamics of EV adoption, charging behaviour shifts,
changes in installation costs and possible shifts in electricity and demand charges.
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